Cerbelaud, Manuella; Lestriez, Bernard; Ferrando, Riccardo; Videcoq, Arnaud; Richard-Plouet, Mireille; Caldes, Maria Teresa; Guyomard, Dominique
2014-03-18
Suspensions of carbon blacks and spherical carbon particles are studied experimentally and numerically to understand the role of the particle shape on the tendency to percolation. Two commercial carbon blacks and one lab-synthesized spherical carbon are used. The percolation thresholds in suspensions are experimentally determined by two complementary methods: impedance spectroscopy and rheology. Brownian dynamics simulations are performed to explain the experimental results taking into account the fractal shape of the aggregates in the carbon blacks. The results of Brownian dynamics simulations are in good agreement with the experimental results and allow one to explain the experimental behavior of suspensions.
NASA Astrophysics Data System (ADS)
Abtahizadeh, Seyed Ebrahim; van Oijen, Jeroen; de Goey, Philip
2012-11-01
Recently Mild combustion is subjected to intensive research because of its unique ability to provide high efficiency and low pollutant combustion simultaneously in industrial heating processes. In most practical Mild combustion applications, a fuel jet is ignited due to recirculation of hot burned gases. The impact of burned gases on autoignition and flame stabilization has been studied in a laboratory jet-in-hot-coflow (JHC) burner. Results of this study help us to understand recent experimental observations of the Delft group (DJHC burner) in which Dutch Natural Gas (DNG) is mixed with various amounts of H2. The main focus is on the modeling of autoignition in the DJHC burner by using the Flamelet Generated Manifolds (FGM) technique. In this technique, kinetic information is tabulated with a few controlling variables which results in a significant decrease in simulation time. The FGM tabulation has been performed using igniting laminar counterflow diffusion flames. Since H2 is present in the fuel composition, it is essential to include preferential diffusion effects in the table due to the high diffusivity of H2. Based on results, the FGM table is capable to reproduce the autoignition of hydrogen containing fuel predicted by detailed chemistry in 1D counterflow flames. The Authors gratefully acknowledge financial support of the Dutch Technology Foundation STW.
Guo, Hongsheng; Neill, W. Stuart
2009-02-15
This paper investigates the effects of hydrogen/reformate gas addition on flame temperature and NO formation in strained methane/air diffusion flames by numerical simulation. The results reveal that flame temperature changes due to the combined effects of adiabatic temperature, fuel Lewis number and radiation heat loss, when hydrogen/reformate gas is added to the fuel of a methane/air diffusion flame. The effect of Lewis number causes the flame temperature to increase much faster than the corresponding adiabatic equilibrium temperature when hydrogen is added, and results in a qualitatively different variation from the adiabatic equilibrium temperature as reformate gas is added. At some conditions, the addition of hydrogen results in a super-adiabatic flame temperature. The addition of hydrogen/reformate gas causes NO formation to change because of the variations in flame temperature, structure and NO formation mechanism, and the effect becomes more significant with increasing strain rate. The addition of a small amount of hydrogen or reformate gas has little effect on NO formation at low strain rates, and results in an increase in NO formation at moderate or high strain rates. However, the addition of a large amount of hydrogen increases NO formation at all strain rates, except near pure hydrogen condition. Conversely, the addition of a large amount of reformate gas results in a reduction in NO formation. (author)
Numerical Studies of Topological phases
NASA Astrophysics Data System (ADS)
Geraedts, Scott
The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases. Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of ''integer'' (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases. Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30
Additional Sawmill Electrical Energy Study.
Carroll, Hatch & Associates.
1987-02-01
This study was undertaken to investigate the potential for reducing use of electrical energy at lumber dry kilns by reducing fan speeds part way through the lumber drying process. It included three tasks: to quantify energy savings at a typical mill through field tests; to investigate the level of electric energy use at a representative sample of other mills and thereby to estimate the transferability of the conservation to the region; and to prepare a guidebook to present the technology to mill operators, and to allow them to estimate the economic value of adopting the technique at their facilities. This document reports on the first two tasks.
Gyrotactic trapping: A numerical study
NASA Astrophysics Data System (ADS)
Ghorai, S.
2016-04-01
Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.
Numerical study of polyampholyte configuration
Bratko, D.; Chakraborty, A.K.
1996-01-25
Monte Carlo simulation and variational mean field calculations are used to study the structure of isolated polyampholyte chains at conditions roughly corresponding to dilute aqueous solutions. The simulations are performed by modeling the polymer as a necklace of charged hard spheres connected by rigid bonds with free rotations. A random distribution of cationic and anionic groups on the chain is assumed and average properties for samples with restricted or fluctuating net charge on individual chains are computed. The chains swell with increasing net charge while they are contracted when a balance of positive and negative charges is attained. The variational mean field theory successfully describes the swelling at high net charge while it underestimates the attractive effects characteristic of neutral or nearly neutral chains. This difference is interpreted as a result of spatial correlations among ionized polyampholyte beads in compact coils. The effects studied by determining the structure of ionic atmospheres surrounding individual charges in the coil in analogy with the known behavior of simple ionic solutions. The mean field model neglects this effect but still captures the essential features of the temperature dependence of the average coil for both the ensemble with enforced chain neutrality and the unrestricted ensemble with fluctuations of charge on individual chains. 77 refs., 7 figs., 1 tab.
Numerical Method for the Design of Healing Chamber in Additive-Manufactured Dental Implants.
Lee, Hsiao-Chien; Tsai, Pei-I; Huang, Chih-Chieh; Chen, San-Yuan; Chao, Chuen-Guang; Tsou, Nien-Ti
2017-01-01
The inclusion of a healing chamber in dental implants has been shown to promote biological healing. In this paper, a novel numerical approach to the design of the healing chamber for additive-manufactured dental implants is proposed. This study developed an algorithm for the modeling of bone growth and employed finite element method in ANSYS to facilitate the design of healing chambers with a highly complex configuration. The model was then applied to the design of dental implants for insertion into the posterior maxillary bones. Two types of ITI® solid cylindrical screwed implant with extra rectangular-shaped healing chamber as an initial design are adopted, with which to evaluate the proposed system. This resulted in several configurations for the healing chamber, which were then evaluated based on the corresponding volume fraction of healthy surrounding bone. The best of these implants resulted in a healing chamber surrounded by around 9.2% more healthy bone than that obtained from the original design. The optimal design increased the contact area between the bone and implant by around 52.9%, which is expected to have a significant effect on osseointegration. The proposed approach is highly efficient which typically completes the optimization of each implant within 3-5 days on an ordinary personal computer. It is also sufficiently general to permit extension to various loading conditions.
Numerical Method for the Design of Healing Chamber in Additive-Manufactured Dental Implants
Lee, Hsiao-Chien; Tsai, Pei-I; Huang, Chih-Chieh; Chen, San-Yuan; Chao, Chuen-Guang
2017-01-01
The inclusion of a healing chamber in dental implants has been shown to promote biological healing. In this paper, a novel numerical approach to the design of the healing chamber for additive-manufactured dental implants is proposed. This study developed an algorithm for the modeling of bone growth and employed finite element method in ANSYS to facilitate the design of healing chambers with a highly complex configuration. The model was then applied to the design of dental implants for insertion into the posterior maxillary bones. Two types of ITI® solid cylindrical screwed implant with extra rectangular-shaped healing chamber as an initial design are adopted, with which to evaluate the proposed system. This resulted in several configurations for the healing chamber, which were then evaluated based on the corresponding volume fraction of healthy surrounding bone. The best of these implants resulted in a healing chamber surrounded by around 9.2% more healthy bone than that obtained from the original design. The optimal design increased the contact area between the bone and implant by around 52.9%, which is expected to have a significant effect on osseointegration. The proposed approach is highly efficient which typically completes the optimization of each implant within 3–5 days on an ordinary personal computer. It is also sufficiently general to permit extension to various loading conditions. PMID:28293628
Numerical Study of Orbital Trajectories about Phobos
1988-12-01
COF NUMERICAL STUDY OF ORBITAL TRAJECTORIES ABOUT PHOBOS THESIS Robert B. Teets Captain, USAF AFIT/GS0/AA/8 8D- 16 ..................D TIC SELECTEh...ful em t%... . 9 ... 3 ...29 ...058_... AFIT/GSO/AA/88D-16 0 NUMERICAL STUDY OF ORBITAL TRAJECTORIES ABOUT PHOBOS THESIS Robert B. Teets Captain...ORBITAL TRAJECTORIES ABOUT PHOBOS THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In
Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives
NASA Technical Reports Server (NTRS)
Dubief, Yves
2003-01-01
The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non
Numerical Study of Suspension Plasma Spraying
NASA Astrophysics Data System (ADS)
Farrokhpanah, Amirsaman; Coyle, Thomas W.; Mostaghimi, Javad
2017-01-01
A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.
Naito, M; Miura, H
2001-03-01
Using a cutoff design (J. Bisanz, F. J. Morrison, & M. Dunn, 1995) to separate school-related influences from those that are age related, the study investigated the development of number concepts and addition skills in Japanese children. Three groups of kindergarten and 1st grade children who differed in age and/or school experiences completed tasks on their numerical competencies 1 and 6 months after school entrance. Children's use of addition strategies, rather than their solution accuracy, changed primarily as a function of schooling, not age. Children's Base 10 number concepts improved with the amount of schooling, as well as with other social and age-related factors. Results suggest that schooling is an important determinant in developing Japanese-speaking children's numerical competencies, which were not explained solely by their language characteristics or by age-related factors.
Study of Cardiac Defibrillation Through Numerical Simulations
NASA Astrophysics Data System (ADS)
Bragard, J.; Marin, S.; Cherry, E. M.; Fenton, F. H.
Three-dimensional numerical simulations of the defibrillation problem are presented. In particular, in this study we use the rabbit ventricular geometry as a realistic model system for evaluating the efficacy of defibrillatory shocks. Statistical data obtained from the simulations were analyzed in term of a dose-response curve. Good quantitative agreement between our numerical results and clinically relevant values is obtained. An electric field strength of about 6.6 V/cm indicates a fifty percent probability of successful defibrillation for a 12-ms monophasic shock. Our validated model will be useful for optimizing defibrillation protocols.
A Numerical Study on Microwave Coagulation Therapy
2013-01-01
improvement of therapeutic effect. References [1] P. Prakash, “Theoretical Modeling for Hepatic Microwave Ablation ,” The Open Biomedical...A Numerical Study on Microwave Coagulation Therapy Amy J. Liu † , Hong Zhou * and Wei Kang * Department of Applied Mathematics Naval...is properly cited. Abstract Microwave coagulation therapy is a clinical technique for treating hepatocellular carcinoma (small size liver
Numerical study of localization in antidot lattices
NASA Astrophysics Data System (ADS)
Uryu, Seiji; Ando, Tsuneya
1998-10-01
Localization effects in antidot lattices in weak magnetic fields are numerically studied with the use of a Thouless-number method. In hexagonal antidot lattices, both conductance and inverse localization length oscillate as a function of a magnetic flux with the same period as an Al'tshuler-Aronov-Spivak oscillation, in qualitative agreement with recent experiments.
NASA Technical Reports Server (NTRS)
Smalheer, C. V.
1973-01-01
The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.
A Numerical Study of Feathering Instability
NASA Astrophysics Data System (ADS)
Lee, Wing-Kit; Wang, Hsiang-Hsu
2016-06-01
The stability of a spiral shock of self-gravitating, magnetized interstellar medium is studied by performing two-dimensional numerical simulations of a local patch of tight-winding spiral arm. As previously suggested by the linear studies, two types of instabilities are identified, namely, wiggle instability and feathering instability. The former instability occurs in the hydrodynamics limit and results in short wavelength perturbations. On the other hand, the feathering instability requires both self-gravitating and magnetic fields and results in wider structures.
Study on the numerical schemes for hypersonic flow simulation
NASA Astrophysics Data System (ADS)
Nagdewe, S. P.; Shevare, G. R.; Kim, Heuy-Dong
2009-10-01
Hypersonic flow is full of complex physical and chemical processes, hence its investigation needs careful analysis of existing schemes and choosing a suitable scheme or designing a brand new scheme. The present study deals with two numerical schemes Harten, Lax, and van Leer with Contact (HLLC) and advection upstream splitting method (AUSM) to effectively simulate hypersonic flow fields, and accurately predict shock waves with minimal diffusion. In present computations, hypersonic flows have been modeled as a system of hyperbolic equations with one additional equation for non-equilibrium energy and relaxing source terms. Real gas effects, which appear typically in hypersonic flows, have been simulated through energy relaxation method. HLLC and AUSM methods are modified to incorporate the conservation laws for non-equilibrium energy. Numerical implementation have shown that non-equilibrium energy convect with mass, and hence has no bearing on the basic numerical scheme. The numerical simulation carried out shows good comparison with experimental data available in literature. Both numerical schemes have shown identical results at equilibrium. Present study has demonstrated that real gas effects in hypersonic flows can be modeled through energy relaxation method along with either AUSM or HLLC numerical scheme.
A numerical and experimental study of coaxial jets
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Karki, K. C.; Mongia, H. C.; Mcdonell, V. G.; Samuelsen, G. S.
1989-01-01
An algebraic stress model and the standard k-epsilon model is applied to predict the mean and turbulence quantities for axisymmetric, nonswirling coaxial jets without confinement. To investigate the effects of numerical (false) diffusion on the predicted results, three different discretization schemes, namely, hybrid, power-law, and the flux-spline, are employed. In addition, an experimental study is conducted to provide data of good quality, especially near the inlet, for model assessment. The results show that the use of the algebraic stress model leads to better agreement between the numerical results and experimental data.
Numerical Study of Tip Vortex Flows
NASA Technical Reports Server (NTRS)
Dacles-Mariani, Jennifer; Hafez, Mohamed
1998-01-01
This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.
A Numerical Climate Observing Network Design Study
NASA Technical Reports Server (NTRS)
Stammer, Detlef
2003-01-01
This project was concerned with three related questions of an optimal design of a climate observing system: 1. The spatial sampling characteristics required from an ARGO system. 2. The degree to which surface observations from ARGO can be used to calibrate and test satellite remote sensing observations of sea surface salinity (SSS) as it is anticipated now. 3. The more general design of an climate observing system as it is required in the near future for CLIVAR in the Atlantic. An important question in implementing an observing system is that of the sampling density required to observe climate-related variations in the ocean. For that purpose this project was concerned with the sampling requirements for the ARGO float system, but investigated also other elements of a climate observing system. As part of this project we studied the horizontal and vertical sampling characteristics of a global ARGO system which is required to make it fully complementary to altimeter data with the goal to capture climate related variations on large spatial scales (less thanAttachment: 1000 km). We addressed this question in the framework of a numerical model study in the North Atlantic with an 1/6 horizontal resolution. The advantage of a numerical design study is the knowledge of the full model state. Sampled by a synthetic float array, model results will therefore allow to test and improve existing deployment strategies with the goal to make the system as optimal and cost-efficient as possible. Attachment: "Optimal observations for variational data assimilation".
Additional EIPC Study Analysis. Final Report
Hadley, Stanton W; Gotham, Douglas J.; Luciani, Ralph L.
2014-12-01
Between 2010 and 2012 the Eastern Interconnection Planning Collaborative (EIPC) conducted a major long-term resource and transmission study of the Eastern Interconnection (EI). With guidance from a Stakeholder Steering Committee (SSC) that included representatives from the Eastern Interconnection States Planning Council (EISPC) among others, the project was conducted in two phases. Phase 1 involved a long-term capacity expansion analysis that involved creation of eight major futures plus 72 sensitivities. Three scenarios were selected for more extensive transmission- focused evaluation in Phase 2. Five power flow analyses, nine production cost model runs (including six sensitivities), and three capital cost estimations were developed during this second phase. The results from Phase 1 and 2 provided a wealth of data that could be examined further to address energy-related questions. A list of 14 topics was developed for further analysis. This paper brings together the earlier interim reports of the first 13 topics plus one additional topic into a single final report.
Numerical aerodynamic simulation facility feasibility study
NASA Technical Reports Server (NTRS)
1979-01-01
There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.
Addition theorem of Slater type orbitals: a numerical evaluation of Barnett Coulson/Löwdin functions
NASA Astrophysics Data System (ADS)
Bouferguene, Ahmed
2005-04-01
When using the one-centre two-range expansion method to evaluate multicentre integrals over Slater type orbitals (STOs), it may become necessary to compute numerical values of the corresponding Fourier coefficients, also known as Barnett-Coulson/Löwdin Functions (BCLFs) (Bouferguene and Jones 1998 J. Chem. Phys. 109 5718). To carry out this task, it is crucial to not only have a stable numerical procedure but also a fast algorithm. In previous work (Bouferguene and Rinaldi 1994 Int. J. Quantum Chem. 50 21), BCLFs were represented by a double integral which led to a numerically stable algorithm but this turned out to be disappointingly time consuming. The present work aims at exploring another path in which BCLFs are represented either by an infinite series involving modified Bessel functions {\\bf K}_{\
Strong Coupling Unquenched QED. II --- Numerical Study ---
NASA Astrophysics Data System (ADS)
Kondo, K.; Nakatani, H.
1992-10-01
Dynamical chiral-symmetry-breaking in massless QED with N fermion species is studied through the numerical solution of the coupled Schwinger-Dyson (SD) equation. We have taken into account the fermion loop effect (at the 1-loop level) in the SD equation for the photon propagator through the vacuum polarization function Π (k2), with and without the standard approximation: Π((p-q)2) ≍ Π(max(p2, q2)). We have found that the scaling law is unchanged by this approximation and that, irrespective of the fermion flavor N, the dynamical fermion mass and chiral order parameter obey the same mean-field type scaling, while the quenched planar QED without the vacuum polarization (N = 0 limit) obeys the Miransky scaling with the essential singularity.
A numerical study of thin flame representations
Rotman, D.A.; Pindera, M.Z.
1989-08-11
In studies of reacting flows, the flame may be viewed as a moving discontinuity endowed with certain properties; notably, it acts as a source of velocity and vorticity. Asymptotic analysis shows this to be justified provided that the flame curvature is small compared to the flame thickness. Such an approach is useful when one is interested in the hydrodynamic effects of the flame on the surrounding flowfield. In numerical models of this kind it is customary to treat the discontinuity as a collection of discrete velocity blobs. In this study, we show that the velocities associated with such a representation can be very non-smooth, particularly very near to the flame surface. As an alternative, we propose the use of a finite line source as the basic flame element. Comparisons of the two flame representations are made for several simple test cases as well as for a flame propagating through an enclosure forming the tulip shape. The results show that the use of line sources eliminates spurious fluctuations in nearfield velocities thus allowing for a more accurate calculation of flame propagation and flame-flowfield interactions. 7 refs., 15 figs.
Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation
NASA Astrophysics Data System (ADS)
Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo
2010-10-01
A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.
Numerical Study of a Convective Turbulence Encounter
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.
2002-01-01
A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.
Structure Property Studies for Additively Manufactured Parts
Milenski, Helen M; Schmalzer, Andrew Michael; Kelly, Daniel
2015-08-17
Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.
Numerical studies of solar chromospheric jets
NASA Astrophysics Data System (ADS)
Iijima, Haruhisa
2016-03-01
The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2-8 Mm, lifetime of 2-7 min, maximum upward velocity of 10- 50 km/s, and deceleration of 100-350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates some of the
Numerical study of a microscopic artificial swimmer
NASA Astrophysics Data System (ADS)
Gauger, Erik; Stark, Holger
2006-08-01
We present a detailed numerical study of a microscopic artificial swimmer realized recently by Dreyfus in experiments [Dreyfus , Nature 437, 862 (2005)]. It consists of an elastic filament composed of superparamagnetic particles that are linked together by DNA strands. Attached to a load particle, the resulting swimmer is actuated by an oscillating external magnetic field so that it performs a nonreciprocal motion in order to move forward. We model the superparamagnetic filament by a bead-spring configuration that resists bending like a rigid rod and whose beads experience friction with the surrounding fluid and hydrodynamic interactions with each other. We show that, aside from finite-size effects, its dynamics is governed by the dimensionless sperm number, the magnitude of the magnetic field, and the angular amplitude of the field’s oscillating direction. Then we study the mean velocity and the efficiency of the swimmer as a function of these parameters and the size of the load particle. In particular, we clarify that the real velocity of the swimmer is influenced by two main factors, namely the shape of the beating filament (determined by the sperm number and the magnetic-field strength) and the oscillation frequency. Furthermore, the load size influences the performance of the swimmer and has to be chosen as a compromise between the largest swimming velocity and the best efficiency. Finally, we demonstrate that the direction of the swimming velocity changes in a symmetry-breaking transition when the angular amplitude of the field’s oscillating direction is increased, in agreement with experiments.
An original traffic additional emission model and numerical simulation on a signalized road
NASA Astrophysics Data System (ADS)
Zhu, Wen-Xing; Zhang, Jing-Yu
2017-02-01
Based on VSP (Vehicle Specific Power) model traffic real emissions were theoretically classified into two parts: basic emission and additional emission. An original additional emission model was presented to calculate the vehicle's emission due to the signal control effects. Car-following model was developed and used to describe the traffic behavior including cruising, accelerating, decelerating and idling at a signalized intersection. Simulations were conducted under two situations: single intersection and two adjacent intersections with their respective control policy. Results are in good agreement with the theoretical analysis. It is also proved that additional emission model may be used to design the signal control policy in our modern traffic system to solve the serious environmental problems.
DNA binding studies of tartrazine food additive.
Kashanian, Soheila; Zeidali, Sahar Heidary
2011-07-01
The interaction of native calf thymus DNA with tartrazine in 10 mM Tris-HCl aqueous solution at neutral pH 7.4 was investigated. Tartrazine is a nitrous derivative and may cause allergic reactions, with a potential of toxicological risk. Also, tartrazine induces oxidative stress and DNA damage. Its DNA binding properties were studied by UV-vis and circular dichroism spectra, competitive binding with Hoechst 33258, and viscosity measurements. Tartrazine molecules bind to DNA via groove mode as illustrated by hyperchromism in the UV absorption band of tartrazine, decrease in Hoechst-DNA solution fluorescence, unchanged viscosity of DNA, and conformational changes such as conversion from B-like to C-like in the circular dichroism spectra of DNA. The binding constants (K(b)) of DNA with tartrazine were calculated at different temperatures. Enthalpy and entropy changes were calculated to be +37 and +213 kJ mol(-1), respectively, according to the Van't Hoff equation, which indicated that the reaction is predominantly entropically driven. Also, tartrazine does not cleave plasmid DNA. Tartrazine interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 3.75 × 10(4) M(-1).
Hurtado, Pablo I; Garrido, Pedro L
2010-04-01
Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.
NASA Astrophysics Data System (ADS)
Hurtado, Pablo I.; Garrido, Pedro L.
2010-04-01
Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.
Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S
2016-03-01
In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction.
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Bonk, C.; Grbic, N.; Vucetic, M.
2017-02-01
By sheet metal forming processes the forming limits and part characteristics are defined through the process specific loads. In deep drawing processes the maximum deep draw ratios as well as the springback behaviour of the metal parts are depending on the stress distribution in the part material during the forming process. While exceeding the load limits, a failure in the material occurs, which can be avoided by additional force transmission activated in the deep drawing process before the forming limit of material is achieved. This contribution deals with numerical investigation of process effect caused by additional force transmission regarding the extension of the process limits. Here, the steel material HCT 600X+Z (1.0941) in thickness s 0 = 1.0 mm is analyzed numerically using the anisotropic model Hill48. This model is validated by the means of cup test by Swift. Both, the FEA of conventional and forming process with additional force transmission are carried out. The numerical results are compared with reference geometry of rectangle cup.
Numerical study of insect free hovering flight
NASA Astrophysics Data System (ADS)
Wu, Di; Yeo, Khoon Seng; Lim, Tee Tai; Fluid lab, Mechanical Engineering, National University of Singapore Team
2012-11-01
In this paper we present the computational fluid dynamics study of three-dimensional flow field around a free hovering fruit fly integrated with unsteady FSI analysis and the adaptive flight control system for the first time. The FSI model being specified for fruitfly hovering is achieved by coupling a structural problem based on Newton's second law with a rigorous CFD solver concerning generalized finite difference method. In contrast to the previous hovering flight research, the wing motion employed here is not acquired from experimental data but governed by our proposed control systems. Two types of hovering control strategies i.e. stroke plane adjustment mode and paddling mode are explored, capable of generating the fixed body position and orientation characteristic of hovering flight. Hovering flight associated with multiple wing kinematics and body orientations are shown as well, indicating the means by which fruitfly actually maintains hovering may have considerable freedom and therefore might be influenced by many other factors beyond the physical and aerodynamic requirements. Additionally, both the near- and far-field flow and vortex structure agree well with the results from other researchers, demonstrating the reliability of our current model.
Superradiance from hydrodynamic vortices: A numerical study
Federici, F.; Tosi, M. P.; Cherubini, C.; Succi, S.
2006-03-15
The scattering of sound-wave perturbations from vortex excitations in hydrodynamic systems with typical Bose-Einstein-condensate (BEC) parameters is investigated by numerical integration of the associated Klein-Gordon equation. The simulations indicate that at sufficiently high angular speeds, in the perturbative limit where back-reaction effects can be neglected, sound wave packets can extract a sizable fraction of the vortex energy through a mechanism of superradiant scattering. It is conjectured that this superradiant regime may be detectable in BEC experiments.
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
Numerical studies of 2-dimensional flows
NASA Technical Reports Server (NTRS)
Moretti, G.
1985-01-01
A formulation of the lambda scheme for the analysis of two dimensional inviscid, compressible, unsteady transonic flows is presented. The scheme uses generalized Riemann variables to determine the appropriate two point, one sided finite difference approximation for each derivative in the unsteady Euler equations. These finite differences are applied at the predictor and corrector levels with shock updating at each level. The weaker oblique shocks are captured, but strong near normal shocks are fitted into the flow using the Rankine-Hugoniot relations. This code is demonstrated with a numerical example of a duct flow problem with developing normal and oblique shock waves. The technique is implemented in a code which has been made efficient by streamlining to a minimal number of operations and by eliminating branch statements. The scheme is shown to provide an accurate analysis of the flow, including formation, motions, and interactions of shocks; the results obtained on a relatively coarse mesh are comparable to those obtained by other methods on much finer meshes.
Numerical study of a helicon gas discharge
NASA Astrophysics Data System (ADS)
Batishchev, Oleg; Molvig, Kim
2001-06-01
Plasma sources based on the helicon gas discharge are widely used in industry [1] due to their high efficiency. We investigate performance of a particular helicon plasma sources designed for the VASIMR [2] plasma thruster. Specifically we are interested in the VX-10 configuration [3] operating with hydrogen or helium plasmas. Firstly, we use our zero-dimensional model to characterize plasma condition and composition [4]. Next we couple it to one-dimensional hybrid model [5] for a rarified gas flow in the system feeding pipe - quartz tube of the helicon. We perform numerical analysis of plasma source operation in different regimes. Results are compared and used to explain experimental data [3]. Finally, we'll discuss more detailed fully kinetic models for the gas and plasma species evolution in the helicon discharge with parameters typical to that of the VASIMR plasma thruster. [1] M.A. Lieberman and A.J.Lihtenberg, , 'Principles of plasma discharges and materials processing', Wiley, NY, 1994; [2] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [3] J. Squire et al., Bull. APS 45 (7) 130, 2000; [4] O.Batishchev and Kim Molvig, AIAA technical paper 2000-3754, 2000; [5] O.Batishchev and Kim Molvig, AIAA technical paper 2001-0963, 2001.
A Numerical Study of Heat Pulse Propagation
NASA Astrophysics Data System (ADS)
Borse, Garold; Sylvia, Patti; Bateman, Glenn; Kritz, Arnold
1999-11-01
A highly nonlinear transport model in which the effective diffusivity, D, is a step function of the temperature gradient is numerically applied to the phenomena of heat pulse propagation in tokamaks. After obtaining the steady state solution, an instantaneous heat pulse is used as the initial condition for a time-dependent solution. The temperature deviation from steady state is plotted as a function of time at various values of the minor radius, and the time-to-peak of each curve is obtained. Using these results it is found that the solution, while still diffusive, is characterized by two regions of approximately constant, but significantly different diffusivities. The interior region, very close to the pulse edge, is characterized by a slow diffusion and its size is independent of the height of the step in D. The time for the pulse to reach the transition region is inversely proportional to the step height, and the subsequent larger diffusivity is proportional to the step height. Since the results depend strongly on the steepness and step height of D(-fracpartial Tpartial r), it should be possible to determine the value of the diffusivity in the two regions from the characteristics of the heat pulse propagation.
Numerical Studies of Boundary-Layer Receptivity
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1995-01-01
Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.
Externally fed star formation: a numerical study
NASA Astrophysics Data System (ADS)
Mohammadpour, Motahareh; Stahler, Steven W.
2013-08-01
We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.
Limit velocities of lamb waves: Analytic and numerical studies
NASA Astrophysics Data System (ADS)
Avershieva, A. V.; Goldstein, R. V.; Kuznetsov, S. V.
2016-09-01
The Lamb wave propagation in elastic isotropic and orthotropic layers is studied by numerical and analytic methods. An analytic solution is obtained by using the Cauchy formalism for the entire frequency range. Numerical solutions are obtained in a neighborhood of the second limit velocity corresponding to very small frequencies. The influence of variations in the layer geometry on the dispersion curves is studied.
Numerical study of fluid motion in bioreactor with two mixers
Zheleva, I.; Lecheva, A.
2015-10-28
Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.
ERIC Educational Resources Information Center
Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George
2014-01-01
A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…
Electrostatic interaction between nonuniformly charged colloids: experimental and numerical study.
Derot, Claire; Porcar, Lionel; Lee, YongJin; Pincus, Phillip A; Jho, YongSeok; In, Martin
2015-02-10
The influence of the surface charge distribution on the interaction between nanosized particles in water is reported. The distribution of charges at the surface of initially neutral microemulsion droplets has been modulated by additions of various oligomeric cationic surfactants. The osmotic compressibility of the doped microemulsions was measured by light and small-angle neutrons scattering and reveals that the overall effective interaction induced by the ionic groups is repulsive. However, particular charge distributions decrease the osmotic compressibility much less than others. Independent measurements of the activity of the bromide counterions with specific electrodes evidence a significant decrease in the effective charge, which, however, cannot account for the osmotic compressibility in the framework of the primitive model. The q dependence of the structure factor reveals an attractive contribution over a short distance. Numerical studies assign this attractive contribution to the overlap of hydration shells that are extended as a result of the charge localization.
Studying Spacecraft Charging via Numerical Simulations
NASA Astrophysics Data System (ADS)
Delzanno, G. L.; Moulton, D.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.
2015-12-01
The electrical charging of spacecraft due to bombarding charged particles can affect their performance and operation. We study this charging using CPIC; a particle-in-cell code specifically designed for studying plasma-material interactions [1]. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. Relevant plasma parameters are imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Simulated spacecraft charging results of representative Van Allen Probe geometries using these plasma parameters will be presented, along with an overview of the code. [1] G.L. Delzanno, E. Camporeale, J.D. Moulton, J.E. Borovsky, E.A. MacDonald, and M.F. Thomsen, "CPIC: A Curvilinear Particle-In-Cell Code for Plasma-Material Interaction Studies," IEEE Trans. Plas. Sci., 41 (12), 3577 (2013).
A numerical study of forced lithospheric thinning
NASA Technical Reports Server (NTRS)
Schubert, G.; Anderson, A.; Fishbein, E.
1985-01-01
Subsolidus lithospheric thinning by mantle plumes may be involved in the creation of swells, hotspots, and rifts. Among the major questions concerning this process are the timescale on which it occurs and the structure of the plumes. The lithosphere is known to have been substantially thinned in 10 Ma or less. Current studies are focused on the lithospheric thinning by time-dependent plumes hypothesized to have large temperature differences across them.
Numerical Studies of Properties of Confined Helium
NASA Technical Reports Server (NTRS)
Manousakis, Efstratios
2003-01-01
We carry out state of the art simulations of properties of confined liquid helium near the superfluid transition to a degree of accuracy which allows to make predictions for the outcome of fundamental physics experiments in microgravity. First we report our results for the finite-size scaling behavior of heat capacity of superfluids for cubic and parallel-plate geometry. This allows us to study the crossover from zero and two dimensions to three dimensions. Our calculated scaling functions are in good agreement with recently measured specific heat scaling functions for the above mentioned geometries. We also present our results of a quantum simulation of submonolayer of molecular hydrogen deposited on an ideal graphite substrate using path-integral quantum Monte Carlo simulation. We find that the monolayer phase diagram is rich and very similar to that of helium monolayer. We are able to uncover the main features of the complex monolayer phase diagram, such as the commensurate solid phases and the commensurate to incommensurate transition, in agreement with the experiments and to find some features which are missing from the experimental analysis.
NASA Technical Reports Server (NTRS)
Kwon, J. H.
1977-01-01
Numerical solution of two dimensional, time dependent, compressible viscous Navier-Stokes equations about arbitrary bodies was treated using density gradients as additional dependent variables. Thus, six dependent variables were computed with the SOR iteration method. Besides formulation for pressure gradient terms, a formulation for computing the body density was presented. To approximate the governing equations, an implicit finite difference method was employed. In computing the solution for the flow about a circular cylinder, a problem arose near the wall at both stagnation points. Thus, computations with various conditions were tried to examine the problem. Also, computations with and without formulations are compared. The flow variables were computed on 37 by 40 field first, then on an 81 by 40 field.
A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1976-01-01
The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.
Sound Transmission Validation and Sensitivity Studies in Numerical Models.
Oberrecht, Steve P; Krysl, Petr; Cranford, Ted W
2016-01-01
In 1974, Norris and Harvey published an experimental study of sound transmission into the head of the bottlenose dolphin. We used this rare source of data to validate our Vibroacoustic Toolkit, an array of numerical modeling simulation tools. Norris and Harvey provided measurements of received sound pressure in various locations within the dolphin's head from a sound source that was moved around the outside of the head. Our toolkit was used to predict the curves of pressure with the best-guess input data (material properties, transducer and hydrophone locations, and geometry of the animal's head). In addition, we performed a series of sensitivity analyses (SAs). SA is concerned with understanding how input changes to the model influence the outputs. SA can enhance understanding of a complex model by finding and analyzing unexpected model behavior, discriminating which inputs have a dominant effect on particular outputs, exploring how inputs combine to affect outputs, and gaining insight as to what additional information improves the model's ability to predict. Even when a computational model does not adequately reproduce the behavior of a physical system, its sensitivities may be useful for developing inferences about key features of the physical system. Our findings may become a valuable source of information for modeling the interactions between sound and anatomy.
Numerical comparison of Kalman filter algorithms - Orbit determination case study
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Thornton, C. L.
1977-01-01
Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.
A numerical study of three-dimensional vortex breakdown
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Ash, Robert L.
1987-01-01
A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.
Numerical Study of a Hydrodynamic Instability Driven by Evaporation
NASA Astrophysics Data System (ADS)
Hernandez-Zapata, Sergio; Romo-Cruz, Julio Cesar Ruben; Lopez-Sanchez, Erick Javier; Ruiz-Chavarria, Gerardo
2013-11-01
The study of hydrodynamic instabilities in liquid layers produced by evaporation has several applications on industry and technology. In this work we study numerically the conditions under which a liquid layer becomes unstable when evaporation in the vapor-liquid interphase is present. The evaporation process follows the Hertz-Knudsen law (the evaporation rate is proportional to the difference between the saturated vapor pressure at the liquid layer temperature and the vapor partial pressure in the environment). Additionally to the usual boundary conditions on solid walls (for example, the non-slip condition for the velocity), we analyze the boundary conditions in the vapor-liquid interphase where the momentum and energy balances have to be taken into account and where the evaporation plays a crucial role. To solve this problem the linear theory of stability is used; that is, a small perturbation around the basic solution is applied (flow at rest and a temperature stationary field). The equations are solved using the Chebyshev pseudo-spectral method. The results are compared with the more usual Rayleigh-Bénard and Marangoni mechanisms as well as with some experiments carried out by our team. Authors acknowledge DGAPA-UNAM by support under project IN116312, ``Vorticidad y Ondas no lineales en fluidos.''
Study on thermal effects & sulfurized additives, in lubricating greases
NASA Astrophysics Data System (ADS)
Shah, Ami Atul
Lithium Base grease constitutes about 50% of market. The greases are developed to be able to work in multiple working conditions and have longer working life. Greases with extreme pressure additives and anti-wear additives have been developed as a solution to many of the applications. These developed greases are tested under ASTM D2266 testing conditions to meet the requirements. The actual working conditions, although, differ than the real testing conditions. The loading, speed and temperature conditions can be more harsh, or fluctuating in nature. The cyclic nature of the parameters cannot be directly related to the test performance. For this purpose studies on the performance under spectrum loading, variable speed and fluctuating temperature must be performed. This study includes tests to understand the effect of thermal variation on some of the most commonly used grease additives that perform well under ASTM D2266 testing conditions. The studied additives include most widely used industrial extreme pressure additive MoS2. Performance of ZDDP which is trying to replace MoS2 in its industrial applications has also been studied. The tests cover study of extreme pressure, anti-wear and friction modifier additives to get a general idea on the effects of thermal variation in three areas. Sulphur is the most common extreme pressure additive. Sulphur based MoS 2 is extensively used grease additive. Study to understand the tribological performance of this additive through wear testing and SEM/EDX studies has been done. This performance is also studied for other metallic sulfides like WS2 and sulphur based organic compound. The aim is to study the importance of the type of bond that sulphur shares in its additive's structure on its performance. The MoS2 film formation is found to be on the basis of the FeS formation on the substrate and protection through sacrificial monolayer deposition of the MoS2 sheared structure. The free Mo then tends to oxidise. An attempt to
Numerical Study of Magnetic Damping During Unidirectional Solidification
NASA Technical Reports Server (NTRS)
Li, Ben Q.
1997-01-01
A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring
Numerical studies of laminar and turbulent drag reduction
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Orszag, S. A.
1981-01-01
Two-dimensional incompressible flow over wavy surfaces is studied numerically by spectral methods. Turbulence effects are modeled. Results for symmetric and asymmetric wave forms are presented. Effect of propagating surface waves on drag reduction is studied. Comparisons between computer simulations and experimental results are made.
Dynamical Approach Study of Spurious Numerics in Nonlinear Computations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi (Technical Monitor)
2002-01-01
The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.
Numerical aerodynamic simulation facility preliminary study: Executive study
NASA Technical Reports Server (NTRS)
1977-01-01
A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.
Numerical study of fractional nonlinear Schrödinger equations.
Klein, Christian; Sparber, Christof; Markowich, Peter
2014-12-08
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.
Vogel, Stephan E; Grabner, Roland H; Schneider, Michael; Siegler, Robert S; Ansari, Daniel
2013-04-01
How are numerical and non-numerical magnitudes processed in the brain? Brain imaging research, primarily using comparison paradigms (i.e. judging which of two magnitudes is larger), has provided strong evidence demonstrating that the intraparietal sulcus (IPS) is a key region for processing both numerical (e.g. Arabic numerals, arrays of dots) and non-numerical magnitudes (e.g. height, brightness). These studies have suggested that there is both activation overlap and segregation in the brain regions involved in processing different dimensions of magnitude. In the present functional Magnetic Resonance Imaging (fMRI) study, we extended this line of investigation by probing the brain mechanisms underlying the mapping of numerical (Arabic numerals) and non-numerical magnitudes (brightness levels) onto a number line. Consistent with previous studies the present results revealed that number and brightness estimation was associated with overlapping activation within right lateralized areas of the posterior IPS. In addition, the contrast between number and brightness estimation revealed that bilateral anterior regions of the IPS are specifically involved in the process of estimating the position of symbolic numbers onto a number line. Furthermore, we found a significant influence of landmark reference points (0, 50 and 100) on brain activation in the right IPS for number estimation only. No regions were found to be specifically associated with brightness estimation. The results of this study reveal that the estimation of both numerical and non-numerical magnitude are associated with the engagement of a right lateralized magnitude system, but that symbolic number estimation is associated with additional engagement of bilateral regions of the anterior IPS.
A numerical study of comet ISON near perihelion
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M. R.; Jia, X.; Hansen, K. C.
2013-12-01
The comet ISON has an extremely small perihelion distance (2.7 solar radii) and is also expected to have a very high production rate during its passage close to the sun in November of 2013. During that period, it is planned to be monitored by many ground- and space-based observatories, i.e. SOHO, STEREO, SDO, MRO, MESSENGER, SWIFT, Chandra, Spitzer, etc., all of which are able to provide substantial observational data of high quality about the comet and its interaction with the solar wind. In addition, as this sun-grazing comet penetrates so deep into the solar atmosphere, where the plasma environment is totally different from the normal solar wind conditions we are familiar with, it offers a great opportunity to study a new type of solar wind-comet interaction. Near perihelion, the photo-ionization time scale of the cometary neutrals is on the order of 100 s, which means that a large portion of neutrals are lost and most of the cometary ions are produced in a small region near the nucleus. Therefore, a much smaller upstream mass-loading region, a high production rate, a solar wind with a low Mach number and a strong interplanetary magnetic field together can dramatically alter the conventional cometary plasma environment of a bow shock, diamagnetic cavity and plasma tail. Preliminary results of a numerical study using the University of Michigan BATSRUS MHD model exploring the nature of the solar wind interaction and the coma environment are described. This work has been partially supported by grant AST-0707283 from the NSF Planetary Astronomy program and NASA Planetary Atmospheres program grant NNX09AB59G.
Numerical hysteresis model for intermittent studies in unsaturated soils
NASA Astrophysics Data System (ADS)
Banerjee, M.
1986-07-01
In the present study, the use of one of the recent dependent domain models of capillary hysteresis in the numerical analysis of intermittent infiltration and redistribution of water in two types of soils (a sand and Rubicon Sandy Loam) has been shown. The numerical results for both the soils have been presented in terms of pressure head depth, moisture content depth and the pressure head-moisture content relationships. The capillary hysteresis model has been found to be very useful for the prediction of both wetting and drying scanning curves of various orders.
A Numerical/Experimental Study of Nitinol Actuator Springs
NASA Astrophysics Data System (ADS)
Auricchio, Ferdinando; Scalet, Giulia; Urbano, Marco
2014-07-01
This study deals with the numerical modeling, simulation and experimental analysis of shape-memory alloy (SMA) helicoidal springs. An experimental campaign is conducted on both SMA straight wires and helicoidal springs that experienced the same annealing process. Then, we use such experimental results to investigate three phenomenological constitutive models able to represent SMA macroscopic behavior. In particular, after the identification of all the material parameters from experimental results on SMA wires, we inspect the thermo-mechanical behavior of SMA helicoidal springs by comparing numerical predictions to experimental data. Finally, we discuss models capabilities and some aspects characterizing SMA material behavior.
Numerical study of porosity in titanium dental castings.
Wu, M; Sahm, P R; Augthun, M; Spiekermann, H; Schädlich-Stubenrauch, J
1999-09-01
A commercial software package, MAGMASOFT (MAGMA Giessereitechnologie GmbH, Aachen, Germany), was used to study shrinkage and gas porosity in titanium dental castings. A geometrical model for two simplified tooth crowns connected by a connector bar was created. Both mold filling and solidification of this casting model were numerically simulated. Shrinkage porosity was quantitatively predicted by means of a built-in feeding criterion. The risk of gas pore formation was investigated using the numerical filling and solidification results. The results of the numerical simulations were compared with experiments, which were carried out on a centrifugal casting machine with an investment block mold. The block mold was made of SiO2 based slurry with a 1 mm thick Zr2 face coat to reduce metal-mold reactions. Both melting and casting were carried out under protective argon (40 kPa). The finished castings were sectioned and the shrinkage porosity determined. The experimentally determined shrinkage porosity coincided with the predicted numerical simulation results. No apparent gas porosity was found in these model castings. Several running and gating systems for the above model casting were numerically simulated. An optimized running and gating system design was then experimentally cast, which resulted in porosity-free castings.
Field and Numerical Study on Natural River Mixing
2011-06-01
AND NUMERICAL STUDY ON NATURAL RIVER MIXING by William A. Swick June 2011 Dissertation Supervisor: James MacMahan THIS PAGE......ABSTRACT (maximum 200 words) Mixing in several natural rivers is investigated using comprehensive point-source dye experiments, Lagrangian GPS-equipped
Experimental and numerical study of pulsating transversal jets
NASA Astrophysics Data System (ADS)
Goldfeld, M. A.; Fedorova, N. N.; Fedorchenko, I. A.; Pozdnyakov, G. A.; Timofeev, K. Yu.; Zhakharova, Yu. V.
2015-06-01
Paper presents results of joint experimental and numerical investigation of pulsating jet penetration into still air and supersonic flow. Goal of the study is to investigate two-dimensional (2D) Hartmann generator (HG) properties and clear up its possibilities in providing better mixing between air and secondary (injected) gases.
Numerical Study of Laminar Flow over Acoustic Cavities
NASA Astrophysics Data System (ADS)
Owen, Matthew; Cheng, Gary
2016-11-01
Fluid flow over an open cavity often emits acoustic waves with certain natural frequencies dependent on the geometry of the cavity and the properties and flow conditions of the fluid. Numerical studies of this kind, Computational Aeroacoustics (CAA), pose a grave challenge to the accuracy and efficiency of numerical methods. This project examines the Space-Time Conservation Element Solution Element (CESE) method developed by Dr. S.C. Chang at NASA GRC and compares numerical results of two-dimensional flow to previous experimental data found in literature. The conclusion the project reached is that the test data agrees well with one of the modes of the predicted frequencies, and that further testing is needed to be able to match experimental results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.
Biofouling in forward osmosis systems: An experimental and numerical study.
Bucs, Szilárd S; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S; Picioreanu, Cristian
2016-12-01
This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling.
Comparison between Experimental and Numerical Studies of a Reflex Triode
2005-06-01
This paper presents a comparison of experimental and simulated results of a reflex triode driven by a compact Marx system. The experimental setup...consists of a Marx system and a reflex triode together with a short output waveguide. A parametric study has been performed. The diagnostics used include...particle-in-cell simulation code MAGIC is used to numerically study the system described above. A 1D model of the Marx system has been designed and this is
Numerical study of acoustic modes in ducted shear flow
NASA Astrophysics Data System (ADS)
Vilenski, Gregory G.; Rienstra, Sjoerd W.
2007-11-01
The propagation of small-amplitude modes in an inviscid but sheared mean flow inside a duct is studied numerically. For isentropic flow in a circular duct with zero swirl and constant mean flow density the pressure modes are described in terms of the eigenvalue problem for the Pridmore-Brown equation. Since for sufficiently high Helmholtz and wavenumbers, which are of great interest for applications, the field equation is inherently stiff, special care is taken to insure the stability of the numerical algorithm designed to tackle this problem. The accuracy of the method is checked against the well-known analytical solution for uniform flow. The numerical method is shown to be consistent with the analytical predictions at least for Helmholtz numbers up to 100 and circumferential wavenumbers as large as 50, typical Mach numbers being up to 0.65. In order to gain further insight into the possible structure of the modal solutions and to obtain an independent verification of the robustness of the numerical scheme, comparison to the asymptotic solution of the problem based on the WKB method is performed. The asymptotic solution is also used as a benchmark for computations with high Helmholtz numbers, where numerical solutions of other authors are not available. The bulk of the analysis concentrates on the influence of the wall lining. The proposed numerical procedure is adapted in order to include Ingard-Myers boundary conditions. In parallel with this, the WKB solution is used to check the numerical predictions of the typical behaviour of the axial wavenumber in the complex plane, when the wall impedance varies in the complex plane. Numerical analysis of the problem with zero mean flow at the wall and acoustic lining shows that the use of Ingard-Myers condition in combination with an appropriate slip-stream approximation instead of the actual no-slip mean flow profile gives valid results in the limit of vanishing boundary-layer thickness, although the boundary layer
Numerical Model Studies of the Martian Mesoscale Circulations
NASA Technical Reports Server (NTRS)
Segal, Moti; Arritt, Raymond W.
1997-01-01
The study objectives were to evaluate by numerical modeling various possible mesoscale circulation on Mars and related atmospheric boundary layer processes. The study was in collaboration with J. Tillman of the University of Washington (who supported the study observationally). Interaction has been made with J. Prusa of Iowa State University in numerical modeling investigation of dynamical effects of topographically-influenced flow. Modeling simulations included evaluations of surface physical characteristics on: (i) the Martian atmospheric boundary layer and (ii) their impact on thermally and dynamically forced mesoscale flows. Special model evaluations were made in support of selection of the Pathfinder landing sites. J. Tillman's finding of VL-2 inter-annual temperature difference was followed by model simulations attempting to point out the forcing for this feature. Publication of the results in the reviewed literature in pending upon completion of the manuscripts in preparation as indicated later.
Numerical study on 3D composite morphing actuators
NASA Astrophysics Data System (ADS)
Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru
2015-04-01
There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.
Benchmark Study of Industrial Needs for Additive Manufacturing in Finland
NASA Astrophysics Data System (ADS)
Lindqvist, Markku; Piili, Heidi; Salminen, Antti
Additive manufacturing (AM) is a modern way to produce parts for industrial use. Even though the technical knowledge and research of AM processes are strong in Finland, there are only few industrial applications. Aim of this study is to collect practical knowledge of companies who are interested in industrial use of AM, especially in South-Eastern Finland. Goal of this study is also to investigate demands and requirements of applications for industrial use of AM in this area of Finland. It was concluded, that two of the reasons prohibiting wider industrial use of AM in Finland, are wrong expectations against this technology as well as lack of basic knowledge of possibilities of the technology. Especially, it was noticed that strong 3D-hype is even causing misunderstandings. Nevertheless, the high-level industrial know-how in the area, built around Finnish lumber industry is a strong foundation for the additive manufacturing technology.
Electrostatic Levitation for Studies of Additive Manufactured Materials
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri
2014-01-01
The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL
Attosecond lighthouses in gases: A theoretical and numerical study
NASA Astrophysics Data System (ADS)
Auguste, T.; Gobert, O.; Ruchon, T.; Quéré, F.
2016-03-01
We present an extensive theoretical and numerical study of the attosecond lighthouse effect in gases. We study how this scheme impacts the spatiotemporal structure of the driving laser field all along the generation medium, and show that this can modify the phase matching relation governing high-harmonic generation (HHG) in gases. We then present a set of numerical simulations performed to test the robustness of the effect against variations of HHG parameters, and to identify possible solutions for relaxing the constraint on the driving laser pulse duration. We thus demonstrate that the lighthouse effect can actually be achieved with laser pulses consisting of up to ˜8 optical periods available from current lasers without postcompression, for instance by using an appropriate combination of 800 - and 1600 -nm wavelength fields.
Numerical study of fractional nonlinear Schrödinger equations
Klein, Christian; Sparber, Christof; Markowich, Peter
2014-01-01
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation. PMID:25484604
Numerical Studies of a Fluidic Diverter for Flow Control
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya
2009-01-01
The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.
Numerical Study of Single-Chamber Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Hao, Yong
Single-chamber solid oxide fuel cells (SCFC) are ones in which the fuel and oxidizer are premixed, and selective electrode catalysts are used to generate the oxygen partial pressure gradient that in a conventional dual-chamber design is produced by physical separation of the fuel and oxidizer streams. The SCFC concept is a novel simplification of a conventional solid oxide fuel cell (SOFC), and SCFCs have been shown capable of generating power densities high enough to make them potentially useful in many applications where the simplicity of a single gas chamber and absence of seals offsets the expected lower efficiency of SCFCs compared to dual-chamber SOFCs. SCFC performance is found to depend sensitively on cell microstructure, geometry, and flow conditions, and optimization of SCFC stacks requires considering complex, coupled chemical and transport processes. However, research activity in this area is far from sufficient and insights about SCFC systems are very limited. The understanding of many fundamental physical and chemical processes required for improving SCFC designs is often beyond the capability of modern experimental techniques, and efficient experimental studies are often held back by the lack of guidance from theoretical models due to the fact that modeling study about SCFC is very rare to date, and existing models about conventional SOFCs are not suitable for simulating SCFCs because of the inherent differences of single-chamber SOFCs from conventional ones. In order to systematically investigate these problems and optimize the electrical performance of SCFC systems, a 2D numerical model of a single-chamber solid oxide fuel cell (SCFC) operating on hydrocarbon fuels is developed and presented in this work. The model accounts for the coupled effects of gas channel fluid flow, heat transfer, porous media transport, catalytic reforming/shifting chemistry, electrochemistry, and mixed ionic-electronic conductivity. It solves for the velocity, temperature
Numerical studies on boundary effects on the FPU paradox
NASA Astrophysics Data System (ADS)
Bambusi, D.; Muraro, D.; Penati, T.
2008-03-01
We study numerically the dynamics of a chain of particles subjected to an on site restoring nonlinear force and a first neighbor harmonic coupling. We excite the first linear mode and investigate the distribution of the average harmonic energies at metastable regime, in the spirit of Fermi Pasta Ulam experiment. The limit distribution turns out to strongly depend on the boundary conditions. A theoretical discussion of the phenomenon is also given.
Numerical study of multicomponent droplet vaporization at near critical conditions
NASA Technical Reports Server (NTRS)
Hsieh, Kwang-Chung; Shuen, Jian-Shun; Yang, Vigor
1988-01-01
A comprehensive numerical analysis of multicomponent droplet vaporization at near critical conditions has been carried out. The model is based on the full time-dependent conservation equations and accommodates various important high-pressure phenomena. As an example, the case involving a two-component (n-pentane and n-octane) fuel droplet in nitrogen gas is studied. The influences of transient effects, surface regression, ambient gas solubility, and phase-equilibrium relations on vaporization mechanisms are examined in detail.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Antokhin, Pavel
2016-11-01
The performance of a variational data assimilation algorithm for a transport and transformation model of atmospheric chemical composition is studied numerically in the case where the emission inventories are missing while there are additional in situ indirect concentration measurements. The algorithm is based on decomposition and splitting methods with a direct solution of the data assimilation problems at the splitting stages. This design allows avoiding iterative processes and working in real-time. In numerical experiments we study the sensitivity of data assimilation to measurement data quantity and quality.
Experimental and numerical study on fragmentation of steel projectiles
NASA Astrophysics Data System (ADS)
Råkvaag, K. G.; Børvik, T.; Hopperstad, O. S.; Westermann, I.
2012-08-01
A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.
A numerical study on liquid charging inside electrostatic atomizers
NASA Astrophysics Data System (ADS)
Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad
2016-11-01
The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.
Numerical Study on Tsunami Hazard Mitigation Using a Submerged Breakwater
Yoo, Jeseon; Han, Sejong; Cho, Yong-Sik
2014-01-01
Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated. PMID:25215334
Numerical and Experimental Study on Unsteady Shedding of Partial Cavitation
NASA Astrophysics Data System (ADS)
Ji, Bin; Luo, Xianwu; Wu, Yulin; Peng, Xiaoxing; Xu, Hongyuan
Periodically unsteady shedding of partial cavity and forming of cavitation cloud have a great influence on hydraulic performances and cavitation erosion for ship propellers and hydro machines. In the present study, the unsteady cavitating flow around a hydrofoil has been calculated by using the single fluid approach with a developed cavitation mass transfer expression based on the vaporization and condensation of the fluid. The numerical simulation depicted the unsteady shedding of partial cavity, such as the process of cavity developing, breaking off and collapsing in the downstream under the steady incoming flow condition. It is noted that good agreement between the numerical results and that of experiment conducted at a cavitation tunnel is achieved. The cavitating flow field indicates that the cavity shedding was mainly caused by the re-entrant jet near cavity trailing edge, which was also clearly recorded by high-speed photographing.
Numerical Relativity as a tool for studying the Early Universe
NASA Astrophysics Data System (ADS)
Garrison, David
2013-04-01
Numerical simulations are becoming a more effective tool for conducting detailed investigations into the evolution of our universe. In this presentation, I show how the framework of numerical relativity can be used for studying cosmological models. We are working to develop a large-scale simulation of the dynamical processes in the early universe. These take into account interactions of dark matter, scalar perturbations, gravitational waves, magnetic fields and a turbulent plasma. The code described in this report is a GRMHD code based on the Cactus framework and is structured to utilize one of several different differencing methods chosen at run-time. It is being developed and tested on the Texas Learning and Computation Center's Xanadu cluster.
Numerical Study of Tokamak Equilibrium with Toroidal Flow on EAST
NASA Astrophysics Data System (ADS)
Ren, Qilong; Zhang, Cheng
2006-09-01
The effect of the toroidal flow on the equilibrium of tokamak plasmas is a sensitive point for high performance plasma and its precise control. In this paper the effect is studied numerically using the EFIT (Equilibrium Fitting) code on EAST (Experimental Advanced Superconducting Tokamak). Firstly, the numerical calculation exhibits a clear outward shift of pressure contour from the magnetic surfaces in the plasma core and the shift grows with the increase of the toroidal velocity. The peak shift of 8% is observed when the ratio between the plasma velocity and the Alfvén speed equals to 0.15. Secondly, it is shown that the magnetic surfaces shift outwards from those without flow. With a certain plasma current the safety factor on the magnetic axis decreases as the plasma flow velocity increases. The magnetic shear increases about 10% on the plasma boundary compared with the case without flow.
Theoretical and numerical studies of density modulated whistlers
NASA Astrophysics Data System (ADS)
Eliasson, B.; Shukla, P. K.
2004-09-01
Recently, observations from laboratory experiments, which are relevant to space observations as well, have conclusively revealed the amplitude modulation of whistlers by low-frequency perturbations. Our objective here is to present theoretical and simulation studies of amplitude modulated whistler packets on account of their interaction with background low-frequency density perturbations that are reinforced by the whistler ponderomotive force. Specifically, we show that nonlinear interactions between whistlers and finite amplitude density perturbations are governed by a nonlinear Schrödinger equation for the modulated whistlers, and a set of equations for arbitrary large amplitude density perturbations in the presence of the whistler ponderomotive force. The governing equations are solved numerically to show the existence of large scale density perturbations that are self-consistently created by localized modulated whistler wavepackets. Our numerical results are found to be in good agreement with experimental results, as well as have relevance to observations from magnetized space plasmas.
Recommended Protocol for Round Robin Studies in Additive Manufacturing.
Moylan, Shawn; Brown, Christopher U; Slotwinski, John
2016-03-01
One way to improve confidence and encourage proliferation of additive manufacturing (AM) technologies and parts is by generating more high quality data describing the performance of AM processes and parts. Many in the AM community see round robin studies as a way to generate large data sets while distributing the cost among the participants, thereby reducing the cost to individual users. The National Institute of Standards and Technology (NIST) has conducted and participated in several of these AM round robin studies. While the results of these studies are interesting and informative, many of the lessons learned in conducting these studies concern the logistics and methods of the study and unique issues presented by AM. Existing standards for conducting interlaboratory studies of measurement methods, along with NIST's experience, form the basis for recommended protocols for conducting AM round robin studies. The role of round robin studies in AM qualification, some of the limitations of round robin studies, and the potential benefit of less formal collaborative experiments where multiple factors, AM machine being only one, are varied simultaneously are also discussed.
Recommended Protocol for Round Robin Studies in Additive Manufacturing
Moylan, Shawn; Brown, Christopher U.; Slotwinski, John
2016-01-01
One way to improve confidence and encourage proliferation of additive manufacturing (AM) technologies and parts is by generating more high quality data describing the performance of AM processes and parts. Many in the AM community see round robin studies as a way to generate large data sets while distributing the cost among the participants, thereby reducing the cost to individual users. The National Institute of Standards and Technology (NIST) has conducted and participated in several of these AM round robin studies. While the results of these studies are interesting and informative, many of the lessons learned in conducting these studies concern the logistics and methods of the study and unique issues presented by AM. Existing standards for conducting interlaboratory studies of measurement methods, along with NIST’s experience, form the basis for recommended protocols for conducting AM round robin studies. The role of round robin studies in AM qualification, some of the limitations of round robin studies, and the potential benefit of less formal collaborative experiments where multiple factors, AM machine being only one, are varied simultaneously are also discussed. PMID:27274602
New numerical method to study phase transitions and its applications
Lee, Jooyoung; Kosterlitz, J.M.
1991-11-01
We present a powerful method of identifying the nature of transitions by numerical simulation of finite systems. By studying the finite size scaling properties of free energy barrier between competing states, we can identify unambiguously a weak first order transition even when accessible system sizes are L/{xi} < 0.05 as in the five state Potts model in two dimensions. When studying a continuous phase transition we obtain quite accurate estimates of critical exponents by treating it as a field driven first order transition. The method has been successfully applied to various systems.
Numerical study of transient flow phenomena in shock tunnels
NASA Technical Reports Server (NTRS)
Tokarcik-Polsky, Susan; Cambier, Jean-Luc
1994-01-01
Computational fluid dynamics (CFD) was used to study some transient flow features that can occur during the startup process of a shoch tunnel. The investigation concentrated on two areas: (1) the flow near the endwall of the driven tube during shock reflection and (2) the transient flow in the nozzle. The driven tube calculations were inviscid and focused on the study of a vortex system that was seen to form at the driven tube's axis of symmetry. The nozzle flow calculations examined viscous and inviscid effects during nozzle startup. The CFD solutions of the nozzle flows were compared with experimental data to demonstrate the effectiveness of the numerical analysis.
Feasibility study for a numerical aerodynamic simulation facility: Summary
NASA Technical Reports Server (NTRS)
Lincoln, N. R.
1979-01-01
The Ames Research Center of NASA is engaged in the development and investigation of numerical methods and computer technologies to be employed in conjunction with physical experiments, particularly utilizing wind tunnels in the furtherance of the field of aircraft and aerodynamic body design. Several studies, aimed primarily at the areas of development and production of extremely high-speed computing facilities, were conducted. The studies focused on evaluating the aspects of feasibility, reliability, costs, and practicability of designing, constructing, and bringing into effect production of a special-purpose system. An executive summary of the activities for this project is presented in this volume.
Genotoxicity studies of the food additive ester gum.
Mukherjee, A; Agarwal, K; Chakrabarti, J
1992-07-01
Ester gum (EG) is used in citrus oil-based beverage flavourings as a weighting or colouring agent. In the present study, concentrations of 50, 100 and 150 mg/kg body weight were administered orally to male Swiss albino mice, and sister chromatid exchange and chromosomal aberration were used as the cytogenetic endpoints to determine the genotoxic and clastogenic potential of the food additive. Although EG was weakly clastogenic and could induce a marginal increase in sister chromatid exchange frequencies, it was not a potential health hazard at the doses tested.
Theoretical and Numerical Study of Nonlinear Phononic Crystals
NASA Astrophysics Data System (ADS)
Guerder, Pierre-Yves
This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an elastic wave through the crystals. A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a strong link between bones hydration and their ability to dissipate the energy. The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when the amplitude of the incident wave reaches a threshold. A full analytical model is provided. The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced.
Making intelligent systems team players: Additional case studies
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Rhoads, Ron W.
1993-01-01
Observations from a case study of intelligent systems are reported as part of a multi-year interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. A series of studies were conducted to investigate issues in designing intelligent fault management systems in aerospace applications for effective human-computer interaction. The results of the initial study are documented in two NASA technical memoranda: TM 104738 Making Intelligent Systems Team Players: Case Studies and Design Issues, Volumes 1 and 2; and TM 104751, Making Intelligent Systems Team Players: Overview for Designers. The objective of this additional study was to broaden the investigation of human-computer interaction design issues beyond the focus on monitoring and fault detection in the initial study. The results of this second study are documented which is intended as a supplement to the original design guidance documents. These results should be of interest to designers of intelligent systems for use in real-time operations, and to researchers in the areas of human-computer interaction and artificial intelligence.
Critical behavior of k -core percolation: Numerical studies
NASA Astrophysics Data System (ADS)
Lee, Deokjae; Jo, Minjae; Kahng, B.
2016-12-01
k -core percolation has served as a paradigmatic model of discontinuous percolation for a long time. Recently it was revealed that the order parameter of k -core percolation of random networks additionally exhibits critical behavior. Thus k -core percolation exhibits a hybrid phase transition. Unlike the critical behaviors of ordinary percolation that are well understood, those of hybrid percolation transitions have not been thoroughly understood yet. Here, we investigate the critical behavior of k -core percolation of Erdős-Rényi networks. We find numerically that the fluctuations of the order parameter and the mean avalanche size diverge in different ways. Thus, we classify the critical exponents into two types: those associated with the order parameter and those with finite avalanches. The conventional scaling relations hold within each set, however, these two critical exponents are coupled. Finally we discuss some universal features of the critical behaviors of k -core percolation and the cascade failure model on multiplex networks.
Numerical study of a recent black-hole lasing experiment
NASA Astrophysics Data System (ADS)
Tettamanti, M.; Cacciatori, S. L.; Parola, A.; Carusotto, I.
2016-06-01
We theoretically analyse a recent experiment reporting the observation of a self-amplifying Hawking radiation in a flowing atomic condensate (Steinhauer J., Nat. Phys., 10 (2014) 864). We are able to accurately reproduce the experimental observations using a theoretical model based on the numerical solution of a mean-field Gross-Pitaevskii equation that does not include quantum fluctuations of the matter field. In addition to confirming the black-hole lasing mechanism, our results show that the underlying dynamical instability has a classical hydrodynamic origin and is triggered by a seed of deterministic nature, linked to the non-stationary of the process, rather than by thermal or zero-point fluctuations.
Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan
NASA Astrophysics Data System (ADS)
Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz
2017-03-01
Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.
Numerical study of forced convective heat transfer around airships
NASA Astrophysics Data System (ADS)
Dai, Qiumin; Fang, Xiande
2016-02-01
Forced convective heat transfer is an important factor that affects the thermal characteristics of airships. In this paper, the steady state forced convective heat transfer around an ellipsoid is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic (CFD) software over the extended Re range from 20 to 108 and the aspect ratio from 2 to 4. Based on the regression and optimization with software, a new piecewise correlation of the Nusselt number at constant wall temperature for ellipsoid is proposed, which is suitable for applications to airships and other ellipse shaped bodies such as elliptical balloons. The thermal characteristics of a stratospheric airship in midsummer located in the north hemisphere are numerical studied. The helium temperature predicated using the new correlation is compared to those predicted by correlations applicable for spheres and flat plates. The results show that the helium temperature obtained using the new correlation at noon is about 5.4 K lower than that using the correlation of spheres and about 2.1 K higher than that of flat plates.
Additive Manufacturing Materials Study for Gaseous Radiation Detection
Steer, C.A.; Durose, A.; Boakes, J.
2015-07-01
Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)
RAMSEYS DRAFT WILDERNESS STUDY AREA AND ADDITION, VIRGINIA.
Lesure, Frank G.; Mory, Peter C.
1984-01-01
Mineral-resource surveys of the Ramseys Draft Wilderness Study Area and adjoining roadless area addition in George Washington National Forest in the western valley and ridge province, Augusta and Highland Counties, Virginia, were done. The surveys outlined three small areas containing anomalous amounts of copper, lead, and zinc related to stratabound red-bed copper mineralization, but these occurrences are not large and are not considered as having mineral-resource potential. The area contains abundant sandstone suitable for construction materials and shale suitable for making brick, tile, and other low-grade ceramic products, but these commodities occur in abundance outside the wilderness study area. Structural conditions are probably favorable for the accumulation of natural gas, but exploratory drilling has not been done sufficiently near the area to evaluate the gas potential.
Numerical study of the Azov Sea level seiche oscillations
NASA Astrophysics Data System (ADS)
Matishov, G. G.; Inzhebeikin, Yu. I.
2009-08-01
Seiche oscillations of the Azov Sea level are studied on the basis of the developed two-dimensional numerical hydrodynamic model grounded on the shallow water theory and recent data on the morphometric characteristics of the Sea of Azov. Frequency and spatial characteristics of the first five modes corresponding to seiche oscillations of the Azov Sea level are computed. It is shown that the frequency and spatial characteristics of the first five modes obtained for the Sea of Azov level changes correspond to seiche oscillations. The calculated parameters are compared with the field observations, which show their realistic character.
Numerical study of nanoparticle formation in a free turbulent jet
NASA Astrophysics Data System (ADS)
Gilfanov, A. K.; Koch, W.; Zaripov, S. K.; Rybdylova, O. D.
2016-11-01
Di-ethyl-hexyl-sebacate (DEHS) aerosol nanoparticle formation in a free turbulent jet as a result of nucleation, condensation and coagulation is studied using fluid flow simulation and the method of moments under the assumption of lognormal particle size distribution. The case of high nucleation rates and the coagulation-controlled growth of particles is considered. The formed aerosol performance is jet is numerically investigated for the various nozzle diameters and two approximations of the saturation pressure dependence on the temperature. It is demonstrated that a higher polydispersity of the aerosol is obtained for smaller nozzle diameters.
Numerical study of Q-ball formation in gravity mediation
Hiramatsu, Takashi; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp
2010-06-01
We study Q-ball formation in the expanding universe on 1D, 2D and 3D lattice simulations. We obtain detailed Q-ball charge distributions, and find that the distribution is peaked at Q{sup 3D}{sub peak} ≅ 1.9 × 10{sup −2}(|Φ{sub in}|/m){sup 2}, which is greater than the existing result by about 60%. Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we make a comment on possible deviation of the charge distributions from what was conjectured in the past.
Numerical study of localization length in disordered graphene nanoribbons
NASA Astrophysics Data System (ADS)
Shokri, A. A.; Khoeini, F.
2012-06-01
In this work, we study quantum transport properties of a defective graphene nanoribbon (DGNR) attached to two semi-infinite metallic armchair graphene nanoribbon (AGNR) leads. A line of defects is considered in the GNR device with different configurations, which affects on the energy spectrum of the system. The calculations are based on the tight-binding model and Green's function method, in which localization length of the system is investigated, numerically. By controlling disorder concentration, the extended states can be separated from the localized states in the system. Our results may have important applications for building blocks in the nano-electronic devices based on GNRs.
A numerical and experimental study of confined swirling jets
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Mongia, H. C.; Samuelsen, G. S.; Mcdonell, V. G.
1989-01-01
A numerical and experimental study of a confined strong swirling flow is presented. Detailed velocity measurements are made using a two-component laser Doppler velocimeter (LDV) technique. Computations are performed using a differential second-moment (DSM) closure. The effect of inlet dissipation rate on calculated mean and turbulence fields is investigated. Various model constants are employed in the pressure-strain model to demonstrate their influences on the predicted results. Finally, comparison of the DSM calculations with the algebraic second-monent (ASM) closure results shows that the DSM is better suited for complex swirling flow analysis.
Numerical study of river bedrock incision by bedload sediment transport.
NASA Astrophysics Data System (ADS)
Aubert, Guilhem; Langlois, Vincent
2013-04-01
Modelling approaches of bedload sediment transport have long been restricted to the detachment-limited and transport-limited regimes. However recent experimental and numerical studies have revealed the crucial influence of sediment load on the rate of bedrock incision [Sklar and Dietrich (2001), Lague(2010)] by abrasion which results in the competition between the tool effect and the cover effect. We present a numerical study of the interactions between a bedload layer and an underlying bedrock. We use molecular dynamics to simulate the motion of solid particles entrained by a laminar viscous flow. These simulations are based on a combination of discrete and continuous approaches. Sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a "mean field" model. This allows us to compute individual particle trajectories inside the active layer and therefore to predict the transfer of energy between grains and the bedrock. The effect of three control parameters has been studied : sediment density, flow discharge and bedrock rugosity. We determine the phase space domain where the system reaches a saltation regime and calculate the resulting erosion rate of the bedrock. Our model exhibits a competition between tool and cover effects. The results of this mechanistic approach are compared with available experimental data and existing stochastic models.
Numerical and Analytic Studies of Random-Walk Models.
NASA Astrophysics Data System (ADS)
Li, Bin
We begin by recapitulating the universality approach to problems associated with critical systems, and discussing the role that random-walk models play in the study of phase transitions and critical phenomena. As our first numerical simulation project, we perform high-precision Monte Carlo calculations for the exponents of the intersection probability of pairs and triplets of ordinary random walks in 2 dimensions, in order to test the conformal-invariance theory predictions. Our numerical results strongly support the theory. Our second numerical project aims to test the hyperscaling relation dnu = 2 Delta_4-gamma for self-avoiding walks in 2 and 3 dimensions. We apply the pivot method to generate pairs of self-avoiding walks, and then for each pair, using the Karp-Luby algorithm, perform an inner -loop Monte Carlo calculation of the number of different translates of one walk that makes at least one intersection with the other. Applying a least-squares fit to estimate the exponents, we have obtained strong numerical evidence that the hyperscaling relation is true in 3 dimensions. Our great amount of data for walks of unprecedented length(up to 80000 steps), yield a updated value for the end-to-end distance and radius of gyration exponent nu = 0.588 +/- 0.001 (95% confidence limit), which comes out in good agreement with the renormalization -group prediction. In an analytic study of random-walk models, we introduce multi-colored random-walk models and generalize the Symanzik and B.F.S. random-walk representations to the multi-colored case. We prove that the zero-component lambdavarphi^2psi^2 theory can be represented by a two-color mutually -repelling random-walk model, and it becomes the mutually -avoiding walk model in the limit lambda to infty. However, our main concern and major break-through lies in the study of the two-point correlation function for the lambda varphi^2psi^2 theory with N > 0 components. By representing it as a two-color random-walk expansion
Experimental, theoretical, and numerical studies of small scale combustion
NASA Astrophysics Data System (ADS)
Xu, Bo
Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number
Numerical Study of Low Emission Gas Turbine Combustor Concepts
NASA Technical Reports Server (NTRS)
Yang, Song-Lin
2002-01-01
To further reduce pollutant emissions, such as CO, NO(x), UHCs, etc., in the next few decades, innovative concepts of gas turbine combustors must be developed. Several concepts, such as the LIPP (Lean- Premixed- Prevaporized), RQL (Rich-Burn Quick-Quench Lean-Burn), and LDI (Lean-Direct-Injection), have been under study for many years. To fully realize the potential of these concepts, several improvements, such as inlet geometry, air swirler, aerothermochemistry control, fuel preparation, fuel injection and injector design, etc., must be made, which can be studied through the experimental method and/or the numerical technique. The purpose of this proposal is to use the CFD technique to study, and hence, to guide the design process for low emission gas turbine combustors. A total of 13 technical papers have been (or will be) published.
Analytical and Numerical Studies of Several Fluid Mechanical Problems
NASA Astrophysics Data System (ADS)
Kong, D. L.
2014-03-01
In this thesis, three parts, each with several chapters, are respectively devoted to hydrostatic, viscous, and inertial fluids theories and applications. Involved topics include planetary, biological fluid systems, and high performance computing technology. In the hydrostatics part, the classical Maclaurin spheroids theory is generalized, for the first time, to a more realistic multi-layer model, establishing geometries of both the outer surface and the interfaces. For one of its astrophysical applications, the theory explicitly predicts physical shapes of surface and core-mantle-boundary for layered terrestrial planets, which enables the studies of some gravity problems, and the direct numerical simulations of dynamo flows in rotating planetary cores. As another application of the figure theory, the zonal flow in the deep atmosphere of Jupiter is investigated for a better understanding of the Jovian gravity field. An upper bound of gravity field distortions, especially in higher-order zonal gravitational coefficients, induced by deep zonal winds is estimated firstly. The oblate spheroidal shape of an undistorted Jupiter resulting from its fast solid body rotation is fully taken into account, which marks the most significant improvement from previous approximation based Jovian wind theories. High viscosity flows, for example Stokes flows, occur in a lot of processes involving low-speed motions in fluids. Microorganism swimming is such a typical case. A fully three dimensional analytic solution of incompressible Stokes equation is derived in the exterior domain of an arbitrarily translating and rotating prolate spheroid, which models a large family of microorganisms such as cocci bacteria. The solution is then applied to the magnetotactic bacteria swimming problem, and good consistency has been found between theoretical predictions and laboratory observations of the moving patterns of such bacteria under magnetic fields. In the analysis of dynamics of planetary
Numerical Study of Pyrolysis of Biomass in Fluidized Beds
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.
Numerical Study of Rotating Turbulence with External Forcing
NASA Technical Reports Server (NTRS)
Yeung, P. K.; Zhou, Ye
1998-01-01
Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.
Numerical study of natural convection in fully open tilted cavities
Elsayed, M.M.; Al-Najem, N.M.; El-Refaee, M.M.; Noor, A.A.
1999-09-01
A numerical simulation of two-dimensional laminar natural convection in a fully open tilted square cavity with an isothermally heated back wall is conducted. The remaining two walls of the cavity are adiabatic. Steady-state solutions are presented for Grashof numbers between 10{sup 2} and 10{sup 5} and for tilt angles ranging from {minus}60{degree} to 90{degree} (where 90{degree} represents a cavity with the opening facing down). The fluid properties are assumed to be constant except for the density variation with temperature that gives rise to the buoyancy forces, which is treated by the Boussinesq approximation. The fluid concerned is air with Prandtl number fixed at 0.71. The governing equations are expressed in a normalized primitive variables formulation. Numerical predictions of the velocity and temperature fields are obtained using the finite-volume-based power law (SIMPLER: Semi-Implicit Method for Pressure-Linked Equations Revised) algorithm. For a vertical open cavity ({alpha} = 0{degree}), the algorithm generated results that were in good agreement with those previously published. Flow patterns and isotherms are shown in order to give a better understanding of the heat transfer and flow mechanisms inside the cavity. Effects of the controlling parameters-Grashof number and tilt angle-on the heat transfer (average Nusselt number) are presented and analyzed. The results also revealed that the open-cavity Nusselt number approaches the flat-plate solution when either Grashof number or tilt angle increases. In addition, a correlation of the Nusselt number in terms of the Grashof number and tilt angle is developed and presented; a comparison is made with available data from other literature.
Experimental and numerical study of open-air active cooling
NASA Astrophysics Data System (ADS)
Al-Fifi, Salman Amsari
The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed
Numerical Study of EUV Wave Phenomenon on 2009 February 13
NASA Astrophysics Data System (ADS)
Zhang, Lei; Zheng, Hui-Nan; Liao, Chi-Jian
2014-01-01
Combining the observations of STEREO satellites with the method of three-dimensional magnetohydrodynamic (MHD) numerical simulation, adopt- ing the magnetic field data of the Wilcox Solar Observatory (WSO) and the model of potential field source surface to build up the initial magnetic field in solar corona, and adding a time-varying disturbance of pressure to the active re- gion on the solar surface, the study on the event of coronal mass ejection (CME) and extreme-ultraviolet (EUV) wave happened at 05:35 UT of 2009 February 13 has been performed. It is judged from the images of COR1/STEREO-A that the front speed of this CME is about 350 km·s-1, and the angular width is about 60∘. By analyzing the running difference images of EUVI/STEREO-B at 195 ˚A, it is found that the bright toroidal wavefront is spreading toward all directions around the active region, and behind the bright toroidal wavefront is a coronal dimming area. The positions of the wavefront in four directions are taken to perform linear fittings, it is known that the EUV wave speed is 247 km·s-1, and the EUV wave speed obtained from the numerical simulation is 245 km·s-1. After the IDL visualization program has been carried out for the calculated result, the structures of the bright loop and dimming area can be seen clearly. The numerical simulation is consistent with the satellite observation, which shows that the observed EUV wave may belong to the fast magnetosonic wave.
Experimental and numerical study of flashback in the SimVal Combustion Chamber
Eggenspieler, G.; Strakey, P.A.; Sidwell, T.G.
2008-01-01
The effects of hydrogen addition on a lean-premixed swirl-stabilized combustor operating on natural gas and air were studied. Measurements of equivalence ratio and hydrogen concentration at flame flashback have been made at pressures ranging from 1 to 8 atmospheres, hydrogen concentration in the fuel of 60 to 100% and inlet velocities of 10, 20, 40 and 80 m/s. Increasing the hydrogen concentration in the fuel was found to significantly lower the equivalence ratio at flashback. This was believed to be the result of the much higher flame speed for hydrogen compared to methane. Increasing pressure was found to also decrease the equivalence ratio at flashback, while increasing the inlet velocity was found to increase the equivalence ratio at flashback. Two of these experiments were reproduced numerically using the FLUENTTM software. Numerical data were found to be in good agreement with experimental data at atmospheric pressure. The flashback process was investigated using the numerical data.
Numerical study of plasma formation from current carrying conductors
NASA Astrophysics Data System (ADS)
Angelova, Milena A.
The problem of plasma formation from thick conductors driven by intense currents have practical applications in a number of high energy density (HED) fields of interest where complex interaction between conductor surfaces and megagauss magnetic fields is involved. These include: wire-array Z-pinches, magnetically accelerated flier plates, liner acceleration by magnetic field, ultrahigh magnetic field generators, high current fuses, magneto-inertial fusion (MIF), magnetically insulated transmission lines, as well as some astrophysical applications. Recent aluminum rod experiments driven by 1-MA Zebra generator at University of Nevada, Reno (UNR) have provided a benchmark for magnetohydrodynamic (MHD) modeling. The innovative 'hourglass' and 'barbell' load geometries used in the experiments made it possible to distinguish between plasma formation due to Ohmic heating, which can be studied numerically utilizing MHD codes, and plasma formation due to high electric fields, by introducing a large-diameter contact with the electrodes. This prevents nonthermal formation of plasma from being caused early in the current pulse by plasma at contacts, as occurs in simple straight-rod explosion experiments. The UNR megagauss rod experiments were modeled by employing the state-of-the-art radiation-magneto-hydrodynamic code MHRDR. Numerical simulations were performed for a wide range of rods, varying from 100 to 580 microns in radius. A "cold start" initiation was employed in order to create initial parameters close to the experimental conditions. Material properties of aluminum, crucial for such simulations, were modeled employing a set of well tested SESAME format equations-of-state (EOS), ionization, and thermal and electrical conductivity tables. The cold start initiation also allowed observation of the numerical phase transitions of the aluminum rod, from solid to liquid to vapor and finally to low density plasma as it is ohmically heated by the megaampere driving current
Experimental Study of Additives on Viscosity biodiesel at Low Temperature
NASA Astrophysics Data System (ADS)
Fajar, Berkah; Sukarno
2015-09-01
An experimental investigation was performed to find out the viscosity of additive and biodiesel fuel mixture in the temperature range from 283 K to 318 K. Solutions to reduce the viscosity of biodiesel is to add the biodiesel with some additive. The viscosity was measured using a Brookfield Rheometer DV-II. The additives were the generic additive (Diethyl Ether/DDE) and the commercial additive Viscoplex 10-330 CFI. Each biodiesel blends had a concentration of the mixture: 0.0; 0.25; 0.5; 0.75; 1.0; and 1.25% vol. Temperature of biodiesel was controlled from 40°C to 0°C. The viscosity of biodiesel and additive mixture at a constant temperature can be approximated by a polynomial equation and at a constant concentration by exponential equation. The optimum mixture is at 0.75% for diethyl ether and 0.5% for viscoplex.
Numerical aerodynamic simulation facility feasibility study, executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability, reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year.
Numerical Study of Unsteady Flow in Centrifugal Cold Compressor
NASA Astrophysics Data System (ADS)
Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing
In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.
MAGNETIZATION DEGREE OF GAMMA-RAY BURST FIREBALLS: NUMERICAL STUDY
Harrison, Richard; Kobayashi, Shiho
2013-08-01
The relative strength between forward and reverse shock emission in early gamma-ray burst (GRB) afterglow reflects that of magnetic energy densities in the two shock regions. We numerically show that with the current standard treatment, the fireball magnetization is underestimated by up to two orders of magnitude. This discrepancy is especially large in the sub-relativistic reverse shock regime (i.e., the thin shell and intermediate regime), where most optical flashes were detected. We provide new analytic estimates of the reverse shock emission based on a better shock approximation, which well describe numerical results in the intermediate regime. We show that the reverse shock temperature at the onset of afterglow is constant, ( {Gamma}-bar{sub d}-1){approx}8 Multiplication-Sign 10{sup -2}, when the dimensionless parameter {xi}{sub 0} is more than several. Our approach is applied to case studies of GRB 990123 and 090102, and we find that magnetic fields in the fireballs are even stronger than previously believed. However, these events are still likely to be due to a baryonic jet with {sigma} {approx} 10{sup -3} for GRB 990123 and {approx}3 Multiplication-Sign 10{sup -4} to 3 for GRB 090102.
Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies
Safta, Cosmin; Najm, Habib N.; Phipps, Eric Todd
2014-09-01
Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.
Experimental and numerical FSI study of compliant hydrofoils
NASA Astrophysics Data System (ADS)
Augier, B.; Yan, J.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y.
2015-06-01
A propulsion system based on tandem hydrofoils is studied experimentally and numerically. An experimental measurement system is developed to extract hydrodynamic loads on the foils and capture their twisting deformation during operation. The measured data allowed us to assess the efficiency of the propulsion system as a function of travel speed and stroke frequency. The numerical simulation of the propulsion system is also presented and involves 3D, full-scale fluid-structure interaction (FSI) computation of a single (forward) foil. The foil is modeled as a combination of the isogeometric rotation-free Kirchhoff-Love shell and bending-stabilized cable, while the hydrodynamics makes use of the finite-element-based arbitrary Lagrangian-Eulerian variational multiscale formulation. The large added mass is handled through a quasi-direct FSI coupling technique. The measurement data collected is used in the validation of the FSI simulation, and excellent agreement is achieved between the predicted and measured hydrodynamic loads and foil twisting motion.
Numerical Study on Mixed-mode Fracture in Reinforced Concrete
Yu, Rena C.; Saucedo, Luis; Ruiz, Gonzalo
2010-05-21
The object of this work is to model the propagation of fracture in mixed-mode in lightly reinforced concrete beams. When a notched beam does not have enough shear reinforcement, fracture can initiate and propagate unstably and lead to failure through diagonal tension. In order to study this phenomenon numerically, a model capable of dealing with both static and dynamic crack propagation as well as the natural transition of those two regimes is necessary. We adopt a cohesive model for concrete fracture and an interface model for the deterioration between concrete and steel re-bar, both combined with an insertion algorithm. The static process is solved by dynamic relaxation (DR) method together with a modified technique to enhance convergence rate. The same DR method is used to detect a dynamic process and switch to a dynamic calculation. The numerically obtained load-displacement curves, load-CMOD curves and crack patterns fit reasonably well with their experimental counterparts, having in mind that we fed the calculations only with parameters measured experimentally.
Numerical study of delta wing leading edge blowing
NASA Technical Reports Server (NTRS)
Yeh, David; Tavella, Domingo; Roberts, Leonard
1988-01-01
Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.
Numerical study of Taylor bubbles with adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry
2014-11-01
The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Numerical Studies of Ablative Mass Loss from Wind Accelerated Clouds.
NASA Astrophysics Data System (ADS)
Knerr, Jeffrey Matthew
1993-01-01
We have used numerical hydrodynamics to study the acceleration of dense gas clouds via wind ram pressure. Our goal has been to examine a model for the explanation of broad absorption lines (BALs) seen in the spectra of a certain fraction of observed QSOs. This model postulates cool dense clouds moving at very high speeds as the source of the BALs. Furthermore, it invokes simple wind ram pressure as the acceleration mechanism for the clouds. A crucial question is whether the clouds can survive potentially disruptive fluid instabilities, allowing time for acceleration to speeds comparable to the wind velocity. Linear stability arguments imply Rayleigh-Taylor (RT) instability growth occurs on time scales much shorter than the acceleration time scale. These arguments conclude acceleration via ram pressure cannot produce bulk cloud velocities in excess of the cloud's internal sound speed. Our simulations show this is simply not true. We present two-dimensional slab-symmetric simulations where clouds are accelerated to speeds close to an order of magnitude greater than their internal sound speed. Ablative mass loss by the flow of shocked wind gas around the periphery of the clouds acts to limit the growth of potentially disruptive instabilities. Simulations run at different computational grid resolutions clearly show the stabilizing effect ablation has on the evolution of the clouds. Simplified models for line profiles have been developed using mass-velocity histograms generated from the numerical simulations. There is good qualitative agreement between the simulated line profiles and observed BAL profiles.
Additive Manufacturing in Production: A Study Case Applying Technical Requirements
NASA Astrophysics Data System (ADS)
Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni
Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.
Numerical Study of Stratified Charge Combustion in Wave Rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi
1997-01-01
A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.
Numerical studies of the KP line-solitons
NASA Astrophysics Data System (ADS)
Chakravarty, S.; McDowell, T.; Osborne, M.
2017-03-01
The Kadomtsev-Petviashvili (KP) equation admits a class of solitary wave solutions localized along distinct rays in the xy-plane, called the line-solitons, which describe the interaction of shallow water waves on a flat surface. These wave interactions have been observed on long, flat beaches, as well as have been recreated in laboratory experiments. In this paper, the line-solitons are investigated via direct numerical simulations of the KP equation, and the interactions of the evolved solitary wave patterns are studied. The objective is to obtain greater insight into solitary wave interactions in shallow water and to determine the extent the KP equation is a good model in describing these nonlinear interactions.
Dynamics of a cylinder plunging into liquid: a numerical study
NASA Astrophysics Data System (ADS)
Ding, Hang
2012-11-01
The impact of a cylinder on a liquid surface and subsequent events are investigated numerically. The flows are resolved by solving the Navier-Stokes equations and the Cahn-Hilliard equation. Moving contact lines are modeled by a diffuse interface model (Seppecher 1996; Jaqcmin 2000), and contact-angle hysteresis is included (Ding&Spelt 2008). The method is validated by comparison to the experiments by Aristoff and Bush (2009). Our studies focus on the dynamics of the waves induced by the impact and the cavity collapse behind the cylinder. A variety of parameters affect the flow behaviors such as wettability, impact speed, viscosity etc. Their effects on the transition of the flow phenomena are investigated through parametric simulations over relevant ranges of Weber and Reynolds numbers and contact angles. This work is supposed by the 100 Talents Program of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No. 11172294).
Understanding asteroid collisional history through experimental and numerical studies
NASA Technical Reports Server (NTRS)
Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.
1991-01-01
Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.
Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.
Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G
2013-10-01
The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.
A numerical taxonomic study of Actinobacillus, Pasteurella and Yersinia.
Sneath, P H; Stevens, M
1985-10-01
A numerical taxonomic study of strains of Actinobacillus, Pasteurella and Yersinia, with some allied bacteria, showed 23 reasonably distinct groups. These fell into three major areas. Area A contained species of Actinobacillus and Pasteurella: A. suis, A. equuli, A. lignieresii, P. haemolytica biovar A, P. haemolytica biovar T, P. multocida, A. actinomycetemcomitans, 'P. bettii', 'A. seminis', P. ureae and P. aerogenes. Also included in A was a composite group of Pasteurella pneumotropica and P. gallinarum, together with unnamed groups referred to as 'BLG', 'Mair', 'Ross' and 'aer-2'. Area B contained species of Yersinia: Y. enterocolitica, Y. pseudotuberculosis, Y. pestis and a group 'ent-b' similar to Y. enterocolitica. Area C contained non-fermenting strains: Y. philomiragia, Moraxella anatipestifer and a miscellaneous group 'past-b'. There were also a small number of unnamed single strains.
A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms.
Zhao, Jia; Shen, Ya; Haapasalo, Markus; Wang, Zhejun; Wang, Qi
2016-03-07
We develop a 3D hydrodynamic model to investigate the mechanism of antimicrobial persistence in a multi-species oral biofilm and its recovery after being treated by bisbiguanide chlorhexidine gluconate (CHX). In addition to the hydrodynamic transport in the spatially heterogeneous biofilm, the model also includes mechanisms of solvent-biomass interaction, bacterial phenotype conversion, and bacteria-drug interaction. A numerical solver for the model is developed using a second order numerical scheme in 3D space and time and implemented on GPUs for high-performance computing. The model is calibrated against a set of experimental data obtained using confocal laser scan microscopy (CLSM) on multi-species oral biofilms, where a quantitative agreement is reached. Our numerical results reveal that quorum sensing molecules and growth factors in this model are instrumental in biofilm formation and recovery after the antimicrobial treatment. In particular, we show that (i) young biofilms are more susceptible to the antimicrobial treatment than the mature ones, (ii) this phenomenon is strongly correlated with volume fractions of the persister and EPS in the biofilm being treated. This suggests that antimicrobial treatment should be best administered to biofilms earlier before they mature to produce a thick protective EPS layer. In addition, the numerical study also indicates that an antimicrobial effect can be achieved should a proper mechanism be devised to minimize the conversion of susceptible bacteria to persisters during and even after the treatment.
Dry powder segregation and flowability: Experimental and numerical studies
NASA Astrophysics Data System (ADS)
Ely, David R.
Dry powder blending is a very important industrial and physical process used in the production of numerous pharmaceutical dosage forms such as tablets, capsules, and dry powder aerosols. Key aspects of this unit operation are process monitoring and control. Process control is particularly difficult due to the complexity of particle-particle interactions, which arise from the adhesion/cohesion characteristics of interfaces and morphological characteristics such as particle size, shape, and dispersity. The effects of such characteristics need to be understood in detail in order to correlate individual particle properties to bulk powder properties. The present dissertation numerically and experimentally quantifies the mixing process to rationalize particle-particle interactions. In particular, near infrared spectroscopy (NIRS) was used to non-invasively characterize in real-time the blending processes and thus investigate the dynamics of blending under different operating conditions. A novel image analysis technique was developed to quantify the scale of segregation from images obtained non-destructively via near infrared chemical imaging (NIR-CI). Although NIR-CI data acquisition times are too long for real-time data collection, NIR-CI has an advantage, in that it provides the spatial distribution of the drug. Therefore, NIRS and NIR-CI are complementary techniques for investigating the complex process of blending dry powders and assessing end-product quality. Additionally, the discrete element method was used to investigate the effect of powder cohesion on the packing fraction. Simulations indicated an exponential relationship between the random loose packing fraction and cohesive forces. Specifically, the packing fraction decreased asymptotically with increased ratio of cohesive force to particle weight. Thus, increasing this force ratio above a critical value has negligible impact on the packing fraction. Such result directly impacts the Hausner ratio flowability
A numerical study of the upwelling circulation off Central Chile
NASA Astrophysics Data System (ADS)
Mesias, Jorge M.
The summer upwelling circulation off Central Chile between 34°--40°S is studied using the Princeton Ocean Circulation numerical model, implemented with realistic atmospheric forcings and bottom topography. The simulations are made for summers of years 1992, 1993, and 1994. Sea surface temperature (SST) from the model results and satellite sensors (derived from NASA/NOAA Pathfinder Project datasets) are compared to determine regions where the numerical simulations more realistically represent the oceanic fields. The summer local winds are predominantly equatorward and fluctuate affected by the seasonal displacement of the Subtropical Anticyclone of the Southeast Pacific. The model ocean circulation shows the presence of a surface coastal equatorward jet flowing over a poleward undercurrent that spreads over the continental shelf and slope break. These currents resemble those historically observed off Central Chile, following a classical Ekman-geostrophy dynamics. The oceanic variability is strongly related to the variability of the local wind forcing, bottom relief, and coastline geometry. Strong wind fluctuations induce the formation of cyclonic/anticyclonic mesoscale eddies, favored by the separation of the equatorward jet from the coast, downstream of a prominent mid-domain cape. The flow variability between regions depends on the spatial variability of the wind forcing. The wind relaxation is larger in the southern regions, where the upwelling tends to disappear. In the northern areas, the separation of the jet and the formation of eddies induce a strong cross-shelf transport activity. Comparisons among SST fields for all years indicate that the model and satellite fields vary in similar patterns, especially in the northern coastal areas, and suggest that oceanic fields are largely affected by changes in local winds during El Nino events. During El Nino periods, the upwelling activity weakens due to a rapid decrease of the equatorward winds, and the passage of
Experimental and numerical study of high intensity argon cluster beams
Korobeishchikov, N. G.; Kalyada, V. V.; Shmakov, A. A.; Zarvin, A. E.; Skovorodko, P. A.
2014-12-09
Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data.
Addition of molecular methods to mutation studies with Drosophila melanogaster
Lee, W.R. )
1989-01-01
For 80 years, Drosophila melanogaster has been used as a major tool in analyzing Mendelian genetics. By using chromosome inversions that suppress crossing over, geneticists have developed a large number of stocks for mutation analysis. These stocks permit numerous tests for specific locus mutations, lethals at multiple loci on any chromosome, chromosome exchanges, insertions, and deletions. The entire genome can be manipulated for a degree of genetic control not found in other germ-line systems. Recombinant DNA techniques now permit analysis of mutations to the nucleotide level. By combining classical genetic analysis with recombinant DNA techniques, it is possible to analyze mutations that range from chromosome aberrations and multilocus deficiencies to single nucleotide transitions.
Addition of molecular methods to mutation studies with Drosophila melanogaster.
Lee, W R
1989-01-01
For 80 years, Drosophila melanogaster has been used as a major tool in analyzing Mendelian genetics. By using chromosome inversions that suppress crossing over, geneticists have developed a large number of stocks for mutation analysis. These stocks permit numerous tests for specific locus mutations, lethals at multiple loci on any chromosome, chromosome exchanges, insertions, and deletions. The entire genome can be manipulated for a degree of genetic control not found in other germ-line systems. Recombinant DNA techniques now permit analysis of mutations to the nucleotide level. By combining classical genetic analysis with recombinant DNA techniques, it is possible to analyze mutations that range from chromosome aberrations and multilocus deficiencies to single nucleotide transitions.
A numerical study of laminar flames propagating in stratified mixtures
NASA Astrophysics Data System (ADS)
Zhang, Jiacheng
Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate
Observational and numerical studies of extreme frontal scale contraction
NASA Technical Reports Server (NTRS)
Koch, Steven E.
1995-01-01
The general objective of this effort is to increase understanding of how frontal scale contraction processes may create and sustain intense mesoscale precipitation along intensifying cold fronts. The five-part project (an expansion of the originally proposed two-part project) employed conventional meteorological data, special mesoscale data, remote sensing measurements, and various numerical models. First an idealized hydrostatic modeling study of the scale contraction effects of differential cloud cover on low-level frontal structure and dynamics was completed and published in a peer-reviewed journal. The second objective was to complete and publish the results from a three dimensional numerical model simulation of a cold front in which differential sensible heating related to cloud coverage patterns was apparently crucial in the formation of a severe frontal squall line. The third objective was to use a nonhydrostatic model to examine the nonlinear interactions between the transverse circulation arising from inhomogeneous cloud cover, the adiabatic frontal circulation related to semi-geostrophic forcing, and diabatic effects related to precipitation processes, in the development of a density current-like microstructure at the leading edge of cold fronts. Although the development of a frontal model that could be used to initialize such a primitive equation model was begun, we decided to focus our efforts instead on a project that could be successfully completed in this short time, due to the lack of prospects for continued NASA funding beyond this first year (our proposal was not accepted for future funding). Thus, a fourth task was added, which was to use the nonhydrostatic model to test tentative hypotheses developed from the most detailed observations ever obtained on a density current (primarily sodar and wind profiler data). These simulations were successfully completed, the findings were reported at a scientific conference, and the results have recently been
Numerical renormalization group study of a dissipative quantum dot
NASA Astrophysics Data System (ADS)
Glossop, M. T.; Ingersent, K.
2007-03-01
We study the quantum phase transition (QPT) induced by dissipation in a quantum dot device at the degeneracy point. We employ a Bose-Fermi numerical renormalization group approach [1] to study the simplest case of a spinless resonant-level model that couples the charge density on the dot to a dissipative bosonic bath with density of states B(φ)ŝ. In anticipation of future experiments [2] and to assess further the validity of theoretical techniques in this rapidly developing area, we take the conduction-electron leads to have a pseudogap density of states: ρ(φ) |φ|^r, as considered in a very recent perturbative renormalization group study [3]. We establish the conditions on r and s such that a QPT arises with increasing dissipation strength --- from a delocalized phase, where resonant tunneling leads to large charge fluctuations on the dot, to a localized phase where such fluctuations are frozen. We present results for the single-particle spectrum and the response of the system to a local electric field, extracting critical exponents that depend in general on r and s and obey hyperscaling relations. We make full comparison with results of [3] where appropriate. Supported by NSF Grant DMR-0312939. [1] M. T. Glossop and K. Ingersent, PRL 95, 067202 (2005); PRB (2006). [2] L. G. G. V. Dias da Silva, N. P. Sandler, K. Ingersent, and S. E. Ulloa, PRL 97, 096603 (2006). [3] C.-H. Chung, M. Kir'can, L. Fritz, and M. Vojta (2006).
Numerical study of heat transfer characteristics in BOG heat exchanger
NASA Astrophysics Data System (ADS)
Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin
2016-12-01
In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.
Numerical Studies of Dust Distribution around Small Asteroids
NASA Astrophysics Data System (ADS)
Yu, W.; Wang, J.; Han, D.; Chou, K.
2015-12-01
While the dynamics of dust transport around an airless body has been a focused area of research in recent years, various challenging aspects still remain to be addressed. This paper presents an investigation of charged dust transport and distribution around small asteroids utilizing two newly developed numerical models and laboratory measurements of dust layer charging in a simulated asteroid plasma environment. The first model is a full particle Particle-in-Cell (PIC) model to simulate plasma flow around an asteroid and calculate surface charging self-consistently from charge deposition on asteroid. A major feature of this model is that the asteroid surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the entire asteroid. An immersed-finite-element field solver is applied which calculates both the surface floating potential and the electric field inside the asteroid directly from local charge deposition. The material properties of asteroid are also explicitly included in the simulation. Results from PIC simulations of asteroid-plasma interactions, along with laboratory measurements of dust charge-to-mass ratio under a simulated asteroid surface charging environment, are fed into a dust dynamics model to simulate charged dust levitation, transport and distribution. In addition to electrostatic and gravitational forces, the dynamics of dust surface impacts and asteroid body rotation are also included in the model. We discuss the effects of asteroid composition and space plasma environments on dust levitation and transport. We present simulation results of dust distribution around several different types of small asteroids.
Numerical and experimental study of an Archimedean Screw Generator
NASA Astrophysics Data System (ADS)
Dellinger, G.; Garambois, P.-A.; Dufresne, M.; Terfous, A.; Vazquez, J.; Ghenaim, A.
2016-11-01
Finding new, safe and renewable energy is becoming more and more of a priority with global warming. One solution that is gaining popularity is the Archimedean Screw Generator (ASG). This kind of hydroelectric plant allows transforming potential energy of a fluid into mechanical energy and is convenient for low-head hydraulic sites. As it is a new and growing technology, there are few references dealing with their design and performance optimization. The present contribution proposes to investigate experimentally and numerically the ASG performances. The experimental study is performed for various flow conditions and a laboratory scale screw device installed at the fluid mechanics laboratory of the INSA of Strasbourg. The first results show that the screw efficiencies are higher than 80% for various hydraulic conditions. In order to study the structure of 3D turbulent flows and energy losses in a screw, the 3D Navier Stokes equations are solved with the k-w SST turbulence model. The exact geometry of the laboratory-scale screw was used in these simulations. Interestingly, the modeled values of efficiency are in fairly good agreement with experimental results while any friction coefficient is involved.
Numerical study of Wavy Blade Section for Wind Turbines
NASA Astrophysics Data System (ADS)
Kobæk, C. M.; Hansen, M. O. L.
2016-09-01
The Wavy Blade concept is inspired by the unique flipper of a humpback whale, characterized by the tubercles located at the leading edge. It has been suggested that this shape may have been a result of a natural selection process, since this flipper under some circumstances can produce higher lift than a flipper having a smooth trailing edge and thus could be potentially beneficial when catching food. A thorough literature study of the Wavy Blade concept is made and followed by CFD computations of two wavy blade geometries and a comparison with their baseline S809 airfoil at conditions more relevant for modern wind turbines. The findings in the literature from geometries similar to the hump back whale flipper indicate that the aerodynamic performance can be improved at high angles of attack, but sometimes at the expense of a lower lift slope and increased drag before stall. The numerical results for a blade section based on the S809 airfoil are, however, not as promising as some of the findings reported in the literature for the whale flipper at high angles of attack. These first CFD computations using a thicker airfoil and a higher Reynolds number than the whale flipper indicate that the results may very well depend on the actual airfoil geometry and perhaps also the Reynolds number, and future studies are necessary in order to illuminate this further.
Some studies of the numerical solution of ordinary differential equations
NASA Astrophysics Data System (ADS)
Mehdiyeva, G.; Ibrahimov, V.; Imanova, M.
2012-08-01
With the numerical solution of ordinary differential equations(ODE), scientists engaged in the Middle Ages, beginning with the work of Clairaut. The domain of the numerical methods involved in many famous mathematicians - Euler, Runge, Kutta, Adams, Laplace, and others. They have constructed methods with different properties. In this paper we consider the construction of numerical methods with high accuracy and to this end is proposed to use multi-step multi-derivative and hybrid methods. As well as specific methods are constructed with a certain accuracy.
Numerical Study of Wake Vortex Interaction with the Ground Using the Terminal Area Simulation System
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Han, Jongil
1999-01-01
A sensitivity study for the in-ground effect on aircraft wake vortices has been conducted using a validated large eddy simulation model. The numerical results are compared with observed data and show good agreement for vortex decay and lateral vortex transport. The vortex decay rate is strongly influenced by the ground, but appears somewhat insensitive to ambient turbulence. In addition, the results show that the ground can affect the trajectory and descent-rate of a wake vortex pair at elevations up to about 3 b(sub o) (where b(sub o) is the initial vortex separation). However, the ground does not influence the average circulation of the vortices until the cores descend to within about 0.6 b(sub o), after which time the ground greatly enhances their rate of demise. Vortex rebound occurs in the simulations, but is more subtle than shown in previous numerical studies.
Numerical studies of bubble dynamics in laser thrombolysis
Chapyak, E.J.; Godwin, R.P.
1996-03-01
The applicability of modern numerical hydrodynamic methods for modeling the bubble dynamics occurring in Laser Thrombolysis is addressed. An idealized test problem is formulated and comparisons are made between numerical and analytical results. We find that approximately 23% of the available energy is radiated acoustically in one cycle with larger fractions likely to be radiated under more realistic conditions. We conclude that this approach shows promise in helping to optimize design parameters.
Méndez-Méndez, J V; Alonso-Rasgado, M T; Faria, E Correia; Flores-Johnson, E A; Snook, R D
2014-11-01
When atomic force microscopy (AFM) is employed for in vivo study of immersed biological samples, the fluid medium presents additional complexities, not least of which is the hydrodynamic drag force due to viscous friction of the cantilever with the liquid. This force should be considered when interpreting experimental results and any calculated material properties. In this paper, a numerical model is presented to study the influence of the drag force on experimental data obtained from AFM measurements using computational fluid dynamics (CFD) simulation. The model provides quantification of the drag force in AFM measurements of soft specimens in fluids. The numerical predictions were compared with experimental data obtained using AFM with a V-shaped cantilever fitted with a pyramidal tip. Tip velocities ranging from 1.05 to 105 μm/s were employed in water, polyethylene glycol and glycerol with the platform approaching from a distance of 6000 nm. The model was also compared with an existing analytical model. Good agreement was observed between numerical results, experiments and analytical predictions. Accurate predictions were obtained without the need for extrapolation of experimental data. In addition, the model can be employed over the range of tip geometries and velocities typically utilized in AFM measurements.
Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.
2016-04-26
The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) and also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.
Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; ...
2016-04-26
The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less
Experimental and numerical study of dual bell nozzle flow
NASA Astrophysics Data System (ADS)
Génin, C.; Stark, R.; Haidn, O.; Quering, K.; Frey, M.
2013-06-01
The dual bell is a nozzle concept for altitude adaption. The flow separates at the contour inflection in sea level mode in a mainly controlled and symmetrical way, reducing the side load generation and increasing the thrust. The transition to altitude mode is reached when the flow suddenly attaches to the extension for an improved altitude thrust. The conditions of this transition and its evolution are the key for the study of dual bell nozzles. For a better understanding of the flow behavior, a two-dimensional (2D) subscale dual bell model has been designed and tested at the German Aerospace Center (DLR). The tests were divided into two campaigns and performed under cold and hot flow conditions. The evolution of the shock system at the inflection during the transition was observed using schlieren optics. The planar nozzle was tested under various conditions in pressure and temperature. Both test campaigns have been recalculated in cooperation with Astrium. Numerical and experimental results are presented.
Numerical study on inter-tidal transports in coastal seas
NASA Astrophysics Data System (ADS)
Mao, Xinyan; Jiang, Wensheng; Zhang, Ping; Feng, Shizuo
2016-06-01
Inter-tidal (subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al. (2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian inter-tidal concentration (LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is numerically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as `flat-bottom', `stairs' and `cape' case, respectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the `flat-bottom' case still meets the convectively weakly nonlinear condition. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the dependence of the LIS (Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coastlines, and that in the latter region is due to the presence of the estuarine salinity front.
Numerical study of tokamak equilibria with arbitrary flow
NASA Astrophysics Data System (ADS)
Guazzotto, L.; Betti, R.; Manickam, J.; Kaye, S.
2004-02-01
The effects of toroidal and poloidal flows on the equilibrium of tokamak plasmas are numerically investigated using the code FLOW. The code is used to determine the changes in the profiles induced by large toroidal flows on NSTX-like equilibria [with NSTX being the National Spherical Torus Experiment, M. Ono, S.M. Kaye, Y.-K.M. Peng et al., Nucl. Fusion 40, 557 (2000)] where flows exceeding the sound speed lead to a considerable outward shift of the plasma. The code is also used to study the effects of poloidal flow when the flow velocity profile varies from subsonic to supersonic with respect to the poloidal sound speed. It is found that pressure and density profiles develop a pedestal structure characterized by radial discontinuities at the transonic surface where the poloidal velocity abruptly jumps from subsonic to supersonic values. These results confirm the conclusions of the analytic theory of R. Betti and J. P. Freidberg [Phys. Plasmas 7, 2439 (2000)], derived for a low-β, large aspect ratio tokamak with a circular cross section.
A numerical study of high-pressure droplet vaporization
NASA Astrophysics Data System (ADS)
Curtis, E. W.; Farrell, P. V.
1992-08-01
The evaporation of single, spherical fuel droplets in a high-pressure, high-temperature environment has been studied numerically. The model is fully transient in both the liquid and the vapor phases. Transport properties are functions of temperature, pressure, and composition, and vary throughout the liquid droplet and the vapor boundary layer. Equilibrium at the liquid-vapor interface is calculated using the Peng-Robinson equation of state, and accounts for diffusion of the gas into the liquid droplet. The Peng-Robinson equation of state is also used to calculate the enthalpy of vaporization of the fuel species as well as the liquid and vapor mixture densities. The proposed model is compared with data obtained for a variety of liquids. Transient effects in both the liquid and vapor phases are found to have a large effect on the droplet heatup and vaporization process. At very high temperature and pressure conditions the droplets were found to reach their thermodynamic critical mixing point in a totally transient process.
Numerical studies on the geomechanical stability ofhydrate-bearing sediments
Rutqvist, Jonny; Moridis, George J.
2007-05-01
The thermal and mechanical loading of oceanicHydrate-Bearing Sediments (HBS) can result in hydrate dissociation and asignificant pressure increase, with potentially adverse consequences onthe integrity and stability of the wellbore assembly, the HBS, and thebounding formations. The perception of HBS instability, coupled withinsufficient knowledge of their geomechanical behavior and the absence ofpredictive capabilities, have resulted in a strategy of avoidance of HBSwhen locating offshore production platforms, and can impede thedevelopment of hydrate deposits as gas resources.In this study weinvestigate in three cases of coupled hydraulic, thermodynamic andgeomechanical behavior of oceanic hydrate-bearing sediments. The firstinvolves hydrate heating as warm fluids from deeper conventionalreservoirs ascend to the ocean floor through uninsulated pipesintersecting the HBS. The second case describes system response duringgas production from a hydrate deposit, and the third involves mechanicalloading caused by the weight of structures placed on the ocean flooroverlying hydrate-bearing sediments.For the analysis of the geomechanicalstability of HBS, we developed and used a numerical model that integratesa commercial geomechanical code and a simulator describing the coupledprocesses of fluid flow, heat transport and thermodynamic behavior in theHBS. Our simulation results indicate that the stability of HBS in thevicinity of warm pipes may be significantly affected, especially if thesediments are unconsolidated and more compressible. Gas production fromoceanic deposits may also affect the geomechanical stability of HBS underthe conditions that are deemed desirablefor production. Conversely, theincreased pressure caused by the weight of structures on the ocean floorincreases the stability of underlying hydrates.
Basic study on the rectangular numeric keys for touch screen.
Harada, H; Katsuura, T; Kikuchi, Y
1997-06-01
The present study was conducted to examine the optimum inter-key spacing of numeric rectangular keys for touch screens. Six male students (22-25 years old) and three female students (21-24 years old) participated in the experiment. Each subject performed the data entry task using rectangular keys of touch devices. These keys were arranged in both horizontal and vertical layouts. The sizes of the rectangular keys in both layouts were 12 x 21 mm and 15 x 39 mm, and each of the inter-key spacing of each key was 0, 3, 6, 12 and 21 mm. The response time with inter-key spacing of 3 mm was significantly faster than with the inter-key spacing of 0, 12 and 21 mm (p < 0.05). Keys of vertical position produced faster response time than that of horizontal position. The subjective ratings showed that the inter-key spacing of 6 mm was significantly better than the inter-key spacing of 0, 3, 12 and 21 mm (p < 0.05).
Numerical Study of Surface Connectivity in the Eastern Mexican Pacific
NASA Astrophysics Data System (ADS)
Inda Diaz, H. A.; Pares-Sierra, A.
2014-12-01
East boundary ecosystems are the most productive regions in the world and they sustain a large percentage of world fisheries. Understand and describe the connectivity and exchange between different regions of the ocean is very important for larvae dispersion study and other tracers like pollutants. In this work we use an offline numerical model to simulate Lagrangian particle trajectories in the Eastern Mexican Pacific (between 120-94 W and 12-34 N). Particles are advected whit velocity fields generated with the model ROMS (Regional Ocean Modeling System) in the period 1980-2006. We define connectivity indexes in order to classify different zones by their capacity of exporting, receiving and retaining particles. We aim to identify the most transited pathways, quantify connectivity between different regions of EMP through connectivity matrix and describe their seasonal variability. It has been identified zones of high isolation and retention (Vizcaino Bay, Northern of Gulf of California), high retention and importation (between Ensenada and Point Conception) and high exportation and importation (Cabo Corrientes). Connectivity has clear equatoward preference in the California Peninsula region dominated by the influence of California Current with an increase in winter and spring, and also equatoward in the south region of Mexico (from Cabo Corrientes to Tehuantepec Gulf), dominated by the anticyclonic circulation of Tehuantepec Dome. It is observed a complete disconnection between the Baja California Peninsula and Cabo Corrientes zone and further south. Results suggest that the scales of connectivity does not significantly change for simulations over 3 months.
Numerical study of similarity in prototype and model pumped turbines
NASA Astrophysics Data System (ADS)
Li, Z. J.; Wang, Z. W.; Bi, H. L.
2014-03-01
Similarity study of prototype and model pumped turbines are performed by numerical simulation and the partial discharge case is analysed in detail. It is found out that in the RSI (rotor-stator interaction) region where the flow is convectively accelerated with minor flow separation, a high level of similarity in flow patterns and pressure fluctuation appear with relative pressure fluctuation amplitude of model turbine slightly higher than that of prototype turbine. As for the condition in the runner where the flow is convectively accelerated with severe separation, similarity fades substantially due to different topology of flow separation and vortex formation brought by distinctive Reynolds numbers of the two turbines. In the draft tube where the flow is diffusively decelerated, similarity becomes debilitated owing to different vortex rope formation impacted by Reynolds number. It is noted that the pressure fluctuation amplitude and characteristic frequency of model turbine are larger than those of prototype turbine. The differences in pressure fluctuation characteristics are discussed theoretically through dimensionless Navier-Stokes equation. The above conclusions are all made based on simulation without regard to the penstock response and resonance.
Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell
2013-01-01
The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3rd and 4th grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively “start-up” tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school. PMID:24255710
Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell
2013-01-01
The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3(rd) and 4(th) grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively "start-up" tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school.
Numerical Simulation Study of the Sanchiao Fault Earthquake Scenarios
NASA Astrophysics Data System (ADS)
Wang, Yi-Min; Lee, Shiann-Jong
2015-04-01
Sanchiao fault is a western boundary fault of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. Recent study indicated that there is about 40 km of the fault trace extended to the marine area offshore northern Taiwan. Combining the marine and terrestrial parts, the total fault length of Sanchiao fault could be nearly 70 kilometers which implies that this fault has potential to produce a big earthquake. In this study, we analyze several Sanchiao fault earthquake scenarios based on the recipe for predicting strong ground motion. The characterized source parameters include fault length, rupture area, seismic moment, asperity, and slip pattern on the fault plane. According to the assumption of the characterized source model, Sanchiao fault has been inferred to have the potential to produce an earthquake with moment magnitude (Mw) larger than 7.0. Three-dimensional seismic simulation results based upon spectral-element method (SEM) indicate that peak ground acceleration (PGA) is significantly stronger along the fault trace. The basin effect also plays an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. Among all rupture scenarios, the rupture propagated from north to south is the most serious one. Owing to the rupture directivity as well as the basin effects, large PGA (>1g) was observed in the Taipei basin, especially in the northwest side. The results of these scenario earthquake simulations will provide important physically-based numerical data for earthquake mitigation and seismic hazard assessment.
Additive empirical parametrization and microscopic study of deuteron breakup
NASA Astrophysics Data System (ADS)
Avrigeanu, M.; Avrigeanu, V.
2017-02-01
Comparative assessment of the total breakup proton-emission cross sections measured for 56 MeV deuteron interaction with target nuclei from 12C to 209Bi, with an empirical parametrization and recently calculated microscopic neutron-removal cross sections was done at the same time with similar data measured at 15, 25.5, 70, and 80 MeV. Comparable mass dependencies of the elastic-breakup (EB) cross sections provided by the empirical parametrization and the microscopic results have been also found at the deuteron energy of 56 MeV, while the assessment of absolute-values variance up to a factor of two was not possible because of the lack of EB measurements at energies higher than 25.5 MeV. While the similarities represent an additional validation of the microscopic calculations, the cross-section difference should be considered within the objectives of further measurements.
Numerical study of the gravitational shock wave inside a spherical charged black hole
NASA Astrophysics Data System (ADS)
Eilon, Ehud; Ori, Amos
2016-11-01
We numerically investigate the interior of a four-dimensional, asymptotically flat, spherically symmetric charged black hole perturbed by a scalar field Φ . Previous study by Marolf and Ori indicated that late infalling observers will encounter an effective shock wave as they approach the left portion of the inner horizon. This shock manifests itself as a sudden change in the values of various fields, within a tremendously short interval of proper time τ of the infalling observers. We confirm this prediction numerically for both test and self-gravitating scalar-field perturbations. In both cases we demonstrate the effective shock in the scalar field by exploring Φ (τ ) along a family of infalling timelike geodesics. In the self-gravitating case we also demonstrate the shock in the area coordinate r by exploring r (τ ). We confirm the theoretical prediction concerning the shock sharpening rate, which is exponential in the time of infall into the black hole. In addition we numerically probe the early stages of shock formation. We also employ a family of null (rather than timelike) ingoing geodesics to probe the shock in r . We use a finite-difference numerical code with double-null coordinates combined with a recently developed adaptive gauge method in order to solve the (Einstein+scalar ) field equations and to evolve the spacetime (and scalar field)—from the region outside the black hole down to the vicinity of the Cauchy horizon and the spacelike r =0 singularity.
Numerical Study of Solar Storms From the Sun to Earth
NASA Astrophysics Data System (ADS)
Feng, Xueshang
2015-08-01
As solar storms are sweeping the Earth, adverse changes occur in geospace environment. It is of both scientific significance to understand the dynamic process during solar storm’s propagation in interplanetary space and realistic value to conduct physics-based numerical researches on the three-dimensional process of solar storms in interplanetary space with the aid of powerful computing capacity to predict the arrival times, intensities, and probable geoeffectiveness of solar storms at the Earth. Numerical modeling community has a common goal to develop an end-to-end physics-based modeling system for forecasting the Sun-Earth relationship. It is hoped that the models’ prediction capabilities may be improved by incorporating the observational findings and constraints into physics-based models, combining the observations, empirical models and MHD simulations in organic ways.In this talk, we birefly review the current status of the existing three-dimensional numerical physics-based coronal and interplanetary models and their recent research results, particularly our recent progress in using solar observations to produce realistic magnetic configurations of CMEs as they leave the Sun, and coupling data-driven simulations of CMEs to heliospheric simulations that then propagate the CME configuration to 1AU, and outlook the important numerical issues and their possible solutions in numerical space weather modeling from the Sun to Earth for future research.
European Air Quality and Climate Change: a numerical modeling study
NASA Astrophysics Data System (ADS)
Lacressonniere, G.
2011-12-01
In the context of climate change, the evolution of air quality in Europe is a challenging scientific question, despite the political measures taken to limit and reduce anthropogenic emissions. Heat waves, changes in transport pathways or synoptic patterns, increase of emissions in other areas in the world, or for instance possible increase of biogenic emissions or changes in deposition and land use may affect adversely future Air Quality levels in Europe. In the context of a project co-funded by the French environment agency ADEME, a numerical modeling study has begun relying on the tools used by Météo-France for its contribution to the 5th IPCC assessment report, to GMES atmospheric services (MACC FP7 project) and to the French national operational Air Quality platform Prév'Air (http://www.prevair.org). In particular, the MOCAGE 3-D chemical transport model (CTM) is used with a configuration comprising a global (2°) and a European domain (0.2°), allowing representation of both long-range transport of pollutants and European Air Quality at relevant resolutions and with a two-ways coupling. MOCAGE includes 47 layers from the surface to 5hPa. The first step of this project was to assess the impact of meteorological forcings, either analyses ("best" meteorology available for the recent past) or climate runs for the current atmosphere, on air quality hindcasts with MOCAGE over Europe. For these climate runs, we rely on Météo-France Earth-System model CNRM-CM, and particularly the ARPEGE-climate general circulation model for the atmosphere. By studying several key variables for Air Quality (surface and low troposphere concentrations of ozone, nitrogen oxides, volatile organic compounds, radicals, PM,...), we investigated the indicators that are robust, through averages over several years, (monthly averages, frequency of exceedances, AOTs, ...) for a given climate when using climatological forcings instead of analyses, which constitutes the reference. Both
Experimental and numerical study of drill bit drop tests on Kuru granite.
Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko
2017-01-28
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Experimental and numerical study of drill bit drop tests on Kuru granite
NASA Astrophysics Data System (ADS)
Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko
2017-01-01
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
FEM numerical model study of heating in magnetic nanoparticles
Pearce, John A.; Cook, Jason R.; Hoopes, P. Jack; Giustini, Andrew
2013-01-01
Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m−3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 × 10−19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m−3) is required to achieve a steady state particle temperature of 52 °C — the total power coupled to the particle is 2.44 μW. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density. PMID:24386534
Numerical study of a Taylor bubble rising in stagnant liquids.
Kang, Chang-Wei; Quan, Shaoping; Lou, Jing
2010-06-01
The dynamics of a Taylor bubble rising in stagnant liquids is numerically investigated using a front tracking coupled with finite difference method. Parametric studies on the dynamics of the rising Taylor bubble including the final shape, the Reynolds number (Re(T)), the Weber number (We(T)), the Froude number (Fr), the thin liquid film thickness (w/D), and the wake length (l(w)/D) are carried out. The effects of density ratio (η), viscosity ratio (λ), Eötvös number (Eo), and Archimedes number (Ar) are examined. The simulations demonstrate that the density ratio and the viscosity ratio under consideration have minimal effect on the dynamics of the Taylor bubble. Eötvös number and Archimedes number influence the elongation of the tail and the wake structures, where higher Eo and Ar result in longer wake. To explain the sudden extension of the tail, a Weber number (We(l)) based on local curvature and velocity is evaluated and a critical We(l) is detected around unity. The onset of flow separation at the wake occurs in between Ar=2×10(3) and Ar=1×10(4), which corresponds to Re(T) between 13.39 and 32.55. Archimedes number also drastically affects the final shape of Taylor bubble, the terminal velocity, the thickness of thin liquid film, as well as the wall shear stress. It is found that w/D=0.32 Ar(-0.1).
FEM numerical model study of heating in magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Pearce, John A.; Cook, Jason R.; Hoopes, P. Jack; Giustini, Andrew
2011-03-01
Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m-3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 x 10-19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m-3) is required to achieve a steady state particle temperature of 52°C - the total power coupled to the particle is 2.44 μW. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density.
Numerical study of a confined slot impinging jet with nanofluids
2011-01-01
Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the
Symbolic, Nonsymbolic and Conceptual: An Across-Notation Study on the Space Mapping of Numerals.
Zhang, Yu; You, Xuqun; Zhu, Rongjuan
2016-07-01
Previous studies suggested that there are interconnections between two numeral modalities of symbolic notation and nonsymbolic notation (array of dots), differences and similarities of the processing, and representation of the two modalities have both been found in previous research. However, whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation is still uninvestigated. The present study aims to examine whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation; especially how zero, as both a symbolic magnitude numeral and a nonsymbolic conceptual numeral, mapping onto space; and if the mapping happens automatically at an early stage of the numeral information processing. Results of the two experiments demonstrate that the low-level processing of symbolic numerals including zero and nonsymbolic numerals except zero can mapping onto space, whereas the low-level processing of nonsymbolic zero as a semantic conceptual numeral cannot mapping onto space, which indicating the specialty of zero in the numeral domain. The present study indicates that the processing of non-semantic numerals can mapping onto space, whereas semantic conceptual numerals cannot mapping onto space.
NMR relaxometry study of plaster mortar with polymer additives
Jumate, E.; Manea, D.; Moldovan, D.; Fechete, R.
2013-11-13
The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.
A numerical study of drop-on-demand ink jets
NASA Technical Reports Server (NTRS)
Fromm, J.
1982-01-01
Ongoing work related to development and utilization of a numerical model for treating the fluid dynamics of ink jets is discussed. The model embodies the complete nonlinear, time dependent, axi-symmetric equations in finite difference form. The jet nozzle geometry with no-slip boundary conditions and the existence of a contact circle are included. The contact circle is allowed some freedom of movement, but wetting of exterior surfaces is not addressed. The principal objective in current numerical experiments is to determine what pressure history, in conjunction with surface forces, will lead to clean drop formation.
A numerical study of transient, thermally-conductive solar wind
NASA Technical Reports Server (NTRS)
Han, S. M.; Wu, S. T.; Dryer, M.
1987-01-01
A numerical analysis of transient solar wind starting at the solar surface and arriving at 1 AU is performed by an implicit numerical method. The model hydrodynamic equations include thermal conduction terms for both steady and unsteady simulations. Simulation results show significant influence of thermal conduction on both steady and time-dependent solar wind. Higher thermal conduction results in higher solar wind speed, higher temperature, but lower plasma density at 1 AU. Higher base temperature at the solar surface gives lower plasma speed, lower temperature, but higher density at 1 AU. Higher base density, on the other hand, gives lower velocity, lower temperature, but higher density at 1 AU.
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
NASA Technical Reports Server (NTRS)
Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.
1979-01-01
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.
Numerical Study of Underwater Explosions and Following Bubble Pulses
NASA Astrophysics Data System (ADS)
Abe, A.; Katayama, M.; Murata, K.; Kato, Y.; Tanaka, K.
2007-12-01
Underwater explosions and following bubble pulses were simulated by using a hydrocode ANSYS® AUTODYN®. Effects of (a) pressure gradient depending on a water depth, (b) atmospheric pressure, (c) gravitational acceleration during bubble pulsation and (d) reaction process of non-ideal detonation on bubble pulsation phenomena were investigated numerically. Numerical bubble properties were compared with experimental data. Emulsion explosive of a charge weight 100 g was detonated at water depth of 4 m in an underwater explosion testing tank. These conditions (a), (b) and (d) could lead precise simulations of the bubble pulses consistent with the experimental data. The condition (c) could give bubble upward motion under its buoyancy effect.
Pseudoconvexity of the atomic electron density: A numerical study
NASA Astrophysics Data System (ADS)
Esquivel, Rodolfo O.; Sagar, Robin P.; Smith, Vedene H., Jr.; Chen, Jiqiang; Stott, M. J.
1993-06-01
The curvature, ρ''(r), of the atomic electron density ρ(r) is studied using results from a bare-Coulomb-field (BCF) model, Hartree-Fock (HF), and configuration-interaction (CI) calculations. A region of nonconvexity in ρ(r), previously reported by Angulo, Dehesa, and Gálvez [Phys. Rev. A 42, 641 (1990)] for light atoms in a Hartree-Fock framework, is investigated for all atoms up to Z=92 and is found not to be an artifact of the basis set or the HF model. Numerical results for the BCF model show that the total electron density of an arbitrary number of closed shells is convex. However, for the same model with electrons filling orbitals according to Stoner's restriction we find that nonconvexity of the density is a periodic property appearing around closed-shell ground-state hydrogenic configurations. Cusp conditions, reported earlier by Esquivel et al. [Phys. Rev. A 47, 936 (1993)] for the second derivative of the BCF density are verified for model atoms with s and p subshells. Using wave functions of near-HF accuracy we have found a region of nonconvexity in ρ(r) for atoms with Z=3-6, 16-32, and 45-92. Highly correlated densities of CI and Hylleraas-type quality for atoms of Li and Be isoelectronic sequences show that the nonconvex region of ρ(r) is largely unaffected by the inclusion of electron correlation. These results, coupled with those from the BCF model, lead us to suggest that it is the bare Coulomb field of the nucleus that is mainly responsible for the appearance of nonconvex regions in atoms. Furthermore, the degree of nonconvexity is shown to decrease as Z increases along the isoelectronic series. The contributions of different spin densities to the nonconvex electron densities is also studied. Finally, the behavior of the curvature of the electron density far from the nucleus is investigated. The ratio ρ''(r)/ρ(r) is found to approach an asymptotic value from above or below, according to the magnitude of the ionization potential.
A qualitative numerical study of high dimensional dynamical systems
NASA Astrophysics Data System (ADS)
Albers, David James
Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high
Additional EIPC Study Analysis: Interim Report on High Priority Topics
Hadley, Stanton W
2013-11-01
Between 2010 and 2012 the Eastern Interconnection Planning Collaborative (EIPC) conducted a major long-term resource and transmission study of the Eastern Interconnection (EI). With guidance from a Stakeholder Steering Committee (SSC) that included representatives from the Eastern Interconnection States Planning Council (EISPC) among others, the project was conducted in two phases. Phase 1 involved a long-term capacity expansion analysis that involved creation of eight major futures plus 72 sensitivities. Three scenarios were selected for more extensive transmission- focused evaluation in Phase 2. Five power flow analyses, nine production cost model runs (including six sensitivities), and three capital cost estimations were developed during this second phase. The results from Phase 1 and 2 provided a wealth of data that could be examined further to address energy-related questions. A list of 13 topics was developed for further analysis; this paper discusses the first five.
Additional studies for the spectrophotometric measurement of iodine in water
NASA Technical Reports Server (NTRS)
1972-01-01
Previous work in iodine spectroscopy is briefly reviewed. Continued studies of the direct spectrophotometric determination of aqueous iodine complexed with potassium iodide show that free iodine is optimally determined at the isosbestic point for these solutions. The effects on iodine determinations of turbidity and chemical substances (in trace amounts) is discussed and illustrated. At the levels tested, iodine measurements are not significantly altered by such substances. A preliminary design for an on-line, automated iodine monitor with eventual capability of operating also as a controller was analyzed and developed in detail with respect single beam colorimeter operating at two wavelengths (using a rotating filter wheel). A flow-through sample cell allows the instrument to operate continuously, except for momentary stop flow when measurements are made. The timed automatic cycling of the system may be interrupted whenever desired, for manual operation. An analog output signal permits controlling an iodine generator.
Numerical Studies of Sub-Grid Scale Processes with Special Emphasis on Discrete Sources.
NASA Astrophysics Data System (ADS)
Kasibhatla, Prasad Shanyi
1988-12-01
State-of-the-art numerical software packages used to solve differential equations utilize adaptive grid techniques. In these methods, the mesh is refined based on a posteriori error estimates. Due to the large computational time requirements for real time air pollution simulations, it is impractical to use adaptive grids. The aim of this study is to identify parameters which affect the accuracy of numerical solutions of the transport equations involving discrete sources. Based on this a grid can be chosen a priori and used for the entire simulation. Numerical results are presented for a one-dimensional problem in which the discontinuity is in the form of a Dirac delta initial condition. This initial condition is approximated using two approaches, namely, T_2 mollification and L _2 projection. These methods are compared in terms of solution accuracy and rate of convergence. Various time-integration schemes are also tested concurrently. Extensions to two- and three-dimensional problems, with sources occurring as forcing functions, are also presented. A time-split scheme and a finite element scheme are used to solve these problems. Numerical results for inert plumes emanating from discrete sources show that the ratio of the advection time scale to the turbulent diffusion time scale plays a key role in determining solution accuracy. In addition, comparisons between the volume-averaged representation of a point source and the use of an irregular grid for point source representation demonstrate that, near the source, improved results can be obtained by placing a node at the source location. Numerical results also reveal that the cross-derivative term, which appears in the governing differential equation when the wind velocity vector is not aligned along grid lines, can be ignored without significant loss of accuracy.
Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-Song; Chen, Fei-Yan
2015-08-01
Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation.
Semi Active Control of Civil Structures, Analytical and Numerical Studies
NASA Astrophysics Data System (ADS)
Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.
numerical example of the parallel R-L piezoelectric vibration shunt control simulated with MATLAB® is presented. An analytical study of the resistor-inductor (R-L) passive piezoelectric vibration shunt control of a cantilever beam was undertaken. The modal and strain analyses were performed by varying the material properties and geometric configurations of the piezoelectric transducer in relation to the structure in order to maximize the mechanical strain produced in the piezoelectric transducer.
Numerical Study of a Bosonic Topological Insulator in three dimensions
NASA Astrophysics Data System (ADS)
Geraedts, Scott; Motrunich, Olexei
2014-03-01
We construct a model which realizes a (3+1)-dimensional symmetry-protected topological phase of bosons with U(1) charge conservation and time reversal symmetry, envisioned by A. Vishwanath and T. Senthil [PRX 4 011016]. Our model works by introducing an additional O(3) degree of freedom, and binding its hedgehogs to a species of charged bosons; the continuous symmetry is thus enlarged to SO(3) × U(1) . We study the model using Monte Carlo and determine its bulk phase diagram; the phase where the bound states of hedgehogs and charges condense is the topological phase. We also study surface phase diagram on a (2+1)-dimensional boundary between the topological and trivial insulators. The theory for the surface is the same as for a (2+1)D hedgehog-suppressed non-linear sigma model, which confirms the proposed so-called NCCP1 field theory. We apply a Zeeman field to the surface, which breaks time reversal on the surface only, and observe a surface Hall conductivity which is half of a quantized value allowed for bosons in strictly (2+1)D, thus establishing topological nature of the (3+1)D bulk phase. Support from NSF Grant DMR-1206096; Caltech Institute of Quantum Imformation and Matter, and an NSERC PGS fellowship.
Food additives and Hymenolepis nana infection: an experimental study.
El-Nouby, Kholoud A; Hamouda, Hala E; Abd El Azeem, Mona A; El-Ebiary, Ahmad A
2009-12-01
The effect of sodium benzoate (SB) on the pathogenesis of Hymenolepis nana (H. nana) and its neurological manifestations was studied in the present work. One hundred and thirty five mice were classified into three groups. GI: received SB alone. GII: received SB before & after infection with H. nana and GIII: infected with H. nana. All groups were subjected to parasitological, histopathological, immunohistochemical and biochemical assays. The results revealed a significant decrease in IL-4 serum level with a significant increase in gamma amino butyric acid (GABA) and decrease in zinc brain levels in GI, while GII showed non significant increase in IL-4 level that resulted in a highly significant increase in the mean number of cysticercoids and adult worms with delayed expulsion as compared to GIII. This was reflected on histopathological and immunohistochemical changes in the brain. Also, there was a highly significant increase in GABA and decrease in zinc brain levels in GII to the degree that induced behavioral changes. This emphasizes the possible synergistic effect of SB on the neurological manifestations of H. nana and could, in part, explain the increased incidence of behavioral changes in children exposed to high doses of SB and unfortunately have H. nana infection.
A numerical study of scaling issues for trench power MOSFETs
NASA Astrophysics Data System (ADS)
Roig, J.; Cortés, I.; Jiménez, D.; Flores, D.; Iñiguez, B.; Hidalgo, S.; Rebollo, J.
2005-06-01
The effect of the scaling down on the electrical performance of trench power MOSFET structures is investigated in this work by means of numerical simulation tools. Layout dimensions of trench power MOSFETs have been continuously reduced in order to decrease the specific on-resistance, maintaining equal vertical dimensions. Nowadays, the last scaling efforts provide trench width and distance between two consecutive trenches in the submicron range. The resultant short distance between gates is expected to induce significant modifications in the device electrical performances, since the fully depletion condition will be feasible in the body region. Hence, the influence of the fully depleted body on the on-state resistance, threshold voltage, breakdown voltage, parasitic bipolar transistor and internal capacitances are features of particular interest. Furthermore, device reliability aspects, such as hot-carrier and self-heating effects, are evaluated by numerical simulation in trench power MOSFETs for the first time.
Numerical studies of motion and decay of vortex filaments
NASA Technical Reports Server (NTRS)
Liu, C. H.; Tavantzis, J.; Ting, L.
1986-01-01
A computational code is developed for the integro-differential equations governing the motion of the centerlines of vortex filaments submerged in a background potential flow. These equations, which are derived from the method of matched asymptotic analysis, include the effect of decaying large-magnitude circumferential and axial velocity components in the vortical cores. Numerical examples are presented to assess the effect of large axial velocity and of nonsimilar initial profiles in vortical cores. The initial configurations of the filaments are chosen so as to fulfill the basic assumption of asymptotic analysis, which is the effective vortical core size is much smaller than all other length scales in the flowfield, e.g., the radius of curvature and interfilament distance. The computations are continued until the basic assumption is no longer valid, that is, when the merging or intersection of filaments have begun. Various types of local or global merging or intersection of filaments are classified and demonstrated by numerical examples.
Experimental and numerical study on ice resistance for icebreaking vessels
NASA Astrophysics Data System (ADS)
Hu, Jian; Zhou, Li
2015-05-01
Ice resistance is defined as the time average of all longitudinal forces due to ice acting on the ship. Estimation of ship's resistance in ice-covered waters is very important to both designers and shipbuilders since it is closely related to propulsion of a ship and it determines the engine power of the ship. Good ice performance requires ice resistance should be as low as possible to allow different manoeuvres. In this paper, different numerical methods are presented to calculate ice resistance, including semi-analytical method and empirical methods. A model test of an icebreaking vessel that was done in an ice basin has been introduced for going straight ahead in level ice at low speed. Then the comparison between model test results and numerical results are made. Some discussions and suggestions are presented as well to provide an insight into icebreaking vessel design at early stage.
Experimental and numerical study on ice resistance for icebreaking vessels
NASA Astrophysics Data System (ADS)
Hu, Jian; Zhou, Li
2015-09-01
Ice resistance is defined as the time average of all longitudinal forces due to ice acting on the ship. Estimation of ship's resistance in ice-covered waters is very important to both designers and shipbuilders since it is closely related to propulsion of a ship and it determines the engine power of the ship. Good ice performance requires ice resistance should be as low as possible to allow different manoeuvres. In this paper, different numerical methods are presented to calculate ice resistance, including semi-analytical method and empirical methods. A model test of an icebreaking vessel that was done in an ice basin has been introduced for going straight ahead in level ice at low speed. Then the comparison between model test results and numerical results are made. Some discussions and suggestions are presented as well to provide an insight into icebreaking vessel design at early stage.
Numerical study of dynamo action at low magnetic Prandtl numbers.
Ponty, Y; Mininni, P D; Montgomery, D C; Pinton, J-F; Politano, H; Pouquet, A
2005-04-29
We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers P(M). The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are (i) dynamos are observed from P(M)=1 down to P(M)=10(-2), (ii) the critical magnetic Reynolds number increases sharply with P(M)(-1) as turbulence sets in and then it saturates, and (iii) in the linear growth phase, unstable magnetic modes move to smaller scales as P(M) is decreased. Then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.
Physics, astronomy, and astrophysics: A numerical study of the black hole plus Brill wave spacetime
NASA Astrophysics Data System (ADS)
Bernstein, David Harold
We investigate solutions of the vacuum Einstein equations in space-times containing a single Einstein-Rosen bridge. The physical and geometrical content of the Schwarzschild solution is analyzed in a number of different spacetime coordinate systems, some well known and some new. In addition, the accuracy of numerical schemes for solving the evolution equations is studied. The same numerical methods are then used to construct axisymmetric solutions which correspond to a Schwarzschild black hole in the presence of time symmetric gravitational radiation (which we call 'Brill waves'). The initial data, evolution of perturbations, and evolution of large amplitude waves are discussed in detail. The initial data is found to display some of the properties of similar data sets studied in the past. The perturbation solutions are shown to agree with known black hole perturbation theory results to within a few percent. Some new results about the apparent horizon in the perturbed Schwarzschild solution are displayed (e.g., the apparent horizon undergoes oscillations similar to that of a damped harmonic oscillator). In addition, traditional radiative variables used in numerical relativity are matched against the known radiative variables of perturbation theory and good agreement is reached in most cases. The large amplitude wave space times are then studied by examining the behavior of the apparent horizon and by investigating the nature of the waveforms as the amplitude is increased into the 'nonlinear' regime. It is found that the apparent horizon may undergo severe distortions by collision with a large amplitude wave. The total mass loss in radiation is studied and it is shown that in some cases a large amount of the initial radiation may escape to null infinity.
Numerical study on thermodynamic characteristics of rotational supercavitating evaporator
NASA Astrophysics Data System (ADS)
Li, Q.; Zheng, Z. Y.; Li, F. C.; Kulagin, V. A.
2016-05-01
Rotational Supercavitating Evaporator (RSCE) has been proposed as a new technology for seawater desalination. However, thermodynamic characteristics of rotational supercavitation are still vacant. In this paper, numerical simulations are conducted on the supercavitating flows around a 3D rotating blade of RSCE with different rotational speeds and extraction pressures. Energy effect is taken into consideration in the simulation and thermodynamic characteristics of rotational supercavitation are obtained. Rotational supercavitation has a larger convective heat transfer coefficient than the boiling on a heated wall.
A Numerical Study of Heat Transfer Behavior in Welding
1998-06-01
subcooled liquid. For the subcooled boiling , the heat flux can be estimated as [Ref. 23] 18 q"=qs"i i + ^l\\^sat * liquid) 24 nhf.pv Pv og(p...STATEMENT Approved for public release; distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) A numerical model has...dependent thermal properties have been used in the calculations. Convective, radiative and boiling surface thermal conditions have also been included. The
Lift augmentation via spanwise tip blowing - A numerical study
NASA Technical Reports Server (NTRS)
Childs, R. E.
1986-01-01
Numerical simulations of a low aspect ratio wing with and without a spanwise directed jet issuing from the wing tip have been performed. The results show that the tip vortex is displaced outward and upward by the blowing. This gives rise to a local lift augmentation mechanism, vortex lift caused by the vortex core being above the wing, and a global mechanism, the reduction of induced velocities due to greater apparent spin.
Numerical study of supersonic turbulent flow over small protuberances
NASA Technical Reports Server (NTRS)
Polak, A.; Werle, M. J.
1975-01-01
Supersonic turbulent boundary layers over two-dimensional protuberances are investigated, using the numerical finite difference alternating direction implicit (ADI) method. The turbulence is modeled mathematically. The turbulence is represented here by the eddy viscosity approach. The turbulent boundary layer structure as well as an interest in thick boundary layers and much larger protuberance heights than in the laminar case lead to new difficulties. The problems encountered and the means to remove them are discussed.
Key issues review: numerical studies of turbulence in stars
NASA Astrophysics Data System (ADS)
Arnett, W. David; Meakin, Casey
2016-10-01
Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.
Numerical studies of diffusive shock acceleration at spherical shocks
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Jones, T. W.
2006-05-01
We have developed a cosmic ray (CR) shock code in one-dimensional spherical geometry with which the particle distribution, the gas flow and their nonlinear interaction can be followed numerically in a frame comoving with an expanding shock. In order to accommodate a very wide dynamic range of diffusion length scales in the CR shock problem, we have incorporated subzone shock tracking and adaptive mesh refinement techniques. We find the spatial grid resolution required for numerical convergence is less stringent in this code compared to typical, fixed-grid Eulerian codes. The improved convergence behavior derives from maintaining the shock discontinuity inside the same grid zone in the comoving code. That feature improves numerical estimates of the compression rate experienced by CRs crossing the subshock compared to codes that allow the subshock to drift on the grid. Using this code with a Bohm-like diffusion model we have calculated the CR acceleration and the nonlinear feedback at supernova remnant shocks during the Sedov-Taylor stage. Similarly to plane-parallel shocks, with an adopted thermal leakage injection model, about 10 -3 of the particles that pass through the shock and up to 60% of the explosion energy are transferred to the CR component. These results are in good agreement with previous nonlinear spherical CR shock calculations of Berezhko and collaborators.
Numerical Studies and Equipment Development for Single Point Incremental Forming
NASA Astrophysics Data System (ADS)
Marabuto, S. R.; Sena, J. I. V.; Afonso, D.; Martins, M. A. B. E.; Coelho, R. M.; Ferreira, J. A. F.; Valente, R. A. F.; de Sousa, R. J. Alves
2011-05-01
This paper summarizes the achievements obtained so far in the context of a research project carried out at the University of Aveiro, Portugal on both numerical and experimental viewpoints concerning Single Point Incremental Forming (SPIF). On the experimental side, the general guidelines on the development of a new SPIF machine are detailed. The innovation features are related to the choice of a six-degrees-of-freedom, parallel kinematics machine, with a high payload, to broad the range of materials to be tested, and allowing for a higher flexibility on tool-path generation. On the numerical side, preliminary results on simulation of SPIF processes resorting to an innovative solid-shell finite element are presented. The final target is an accurate and fast simulation of SPIF processes by means of numerical methods. Accuracy is obtained through the use of a finite element accounting for three-dimensional stress and strain fields. The developed formulation allows for an unlimited number of integration points through its thickness direction, which promotes accuracy without loss of CPU efficiency. Preliminary results and designs are shown and discussions over the obtained solutions are provided in order to further improve the research framework.
Key issues review: numerical studies of turbulence in stars.
David Arnett, W; Meakin, Casey
2016-10-01
Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of [Formula: see text], and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.
High Resolution Numerical Studies of the Milky Way Halo
NASA Astrophysics Data System (ADS)
Rashkov, Valery
2013-01-01
The halo of the MilkyWay (MW) contains residual evidence of its hierarchical accretion history, such as stellar streams, dwarf satellite galaxies and possibly even intermediate-mass black holes the latter carried as they fell into the larger Galaxy. The discovery and study of these objects have the potential to answer elusive questions about our Galaxy, such as the accurate determination of its total mass, a fundamental quantity that determines the properties and fate of galaxies in the Universe. I use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with stars. The method is calibrated using the observed luminosity function of Milky Way satellites and the concentration of their stellar populations, and self-consistently follows the accretion and disruption of progenitor dwarfs and the build-up of the stellar halo in a cosmological "live host". Simple prescriptions for assigning stellar populations to collisionless particles are able to reproduce many properties of the observed Milky Way halo and its surviving dwarf satellites, like velocity dispersions, sizes, brightness profiles, metallicities, and spatial distribution. I apply a standard mass estimation algorithm based on Jeans modelling of the line-of-sight velocity dispersion profiles to the simulated dwarf spheroidals, and test the accuracy of this technique. The inner mass-luminosity relation for currently detectable satellites is nearly flat in this mode! l, in qualitative agreement with the "common mass scale" found in Milky Way dwarfs. I extend the tagging approach to the study of intermediate-mass black holes (IMBHs), and assess the size, properties, and detectability of the leftover accreted halo population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the MBH-sigma star relation, and self-consistently follows the accretion and disruption of Milky Way
Numerical studies of a plasma diode with external forcing
NASA Astrophysics Data System (ADS)
Rekaa, V. L.; Pécseli, H. L.; Trulsen, J. K.
2012-08-01
With reference to laboratory Q-machine studies we analyze the dynamics of a plasma diode under external forcing. Assuming a strong axial magnetic field, the problem is analyzed in one spatial dimension by a particle-in-cell code. The cathode is assumed to be operated in electron rich conditions, supplying an abundance of electrons. We compare different forcing schemes with the results obtained by solving the van der Pol equation. In one method of forcing we apply an oscillation in addition to the DC end plate bias and consider both amplitude and frequency variations. An alternative method of perturbation consists of modelling an absorbing grid at some internal position. Also in this case we can have a constant frequency with varying amplitude or alternatively an oscillation with chirped frequency but constant amplitude. We find that the overall features of the forced van der Pol equation are recovered, but the details in the plasma response need more attention to the harmonic responses, requiring extensions of the model equation. The analysis is extended by introducing collisional effects, where we emphasize charge exchange collisions of ions, since these processes usually have the largest cross sections and give significant modifications of the diode performance. In particular we find a reduction in oscillator frequency, although a linear scaling of the oscillation time with the system length remains also in this case.
Some numerically studies of the atmospheric composition climate of Bulgaria
NASA Astrophysics Data System (ADS)
Gadzhev, G. K.; Ganev, K. G.; Prodanov, M.; Syrakov, D. E.; Miloshev, N. G.; Georgiev, G. J.
2013-10-01
Some extensive numerical simulations of the atmospheric composition fields in Bulgaria have been recently performed. The US EPA Model-3 system was chosen as a modelling tool. The system consists of three components: MM5 - the 5th generation PSU/NCAR Meso-meteorological Model used as meteorological pre-processor; CMAQ - the Community Multiscale Air Quality System CMAQ; SMOKE - the Sparse Matrix Operator Kernel Emissions Modelling System - the emission model [4]. As the NCEP Global Analysis Data with 1 degree resolution was used as meteorological background, the MM5 and CMAQ nesting capabilities were applied for downscaling the simulations to a 3 km resolution over Bulgaria. The TNO emission inventory was used as emission input. Special pre-processing procedures are created for introducing temporal profiles and speciation of the emissions. The biogenic emissions of VOC are estimated by the model SMOKE. The numerical experiments have been carried out for different emission scenarios, which makes it possible the contribution of emissions from different source categories to be evaluated. The air pollution pattern is formed as a result of interaction of different processes, so knowing the contribution of each for different meteorological conditions and given emission spatial configuration and temporal behaviour could be interesting. Therefore the Models-3 "Integrated Process Rate Analysis" option is applied to discriminate the role of different dynamic and chemical processes for the air pollution formation. The obtained ensemble of numerical simulation results is extensive enough to allow statistical treatment - calculating not only the mean concentrations and different source categories contribution mean fields, but also standard deviations, skewness, etc. with their dominant temporal modes (seasonal and/or diurnal variations). Thus some basic facts about the atmospheric composition climate of Bulgaria can be retrieved from the simulation ensemble.
Localized fluidization in granular materials: Theoretical and numerical study
NASA Astrophysics Data System (ADS)
Montellà, E. P.; Toraldo, M.; Chareyre, B.; Sibille, L.
2016-11-01
We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy's law and Therzaghi's effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous, i.e., for small injection rates. The numerical approach is at the particle scale based on the coupled discrete element method and a pore-scale finite volume method. It tackles the more heterogeneous situations which occur at larger injection rates. The results from both methods are in qualitative agreement with data published independently. A more quantitative agreement is achieved by the numerical model. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. While narrow apertures let the three different regimes be distinguished clearly, larger apertures tend to produce a single homogeneous fluidization regime. In the former case, it is found that the transition between the cavity regime and the chimney regime for an increasing injection rate coincides with a peak in the evolution of inlet pressure. Finally, the occurrence of the different regimes is defined in terms of the normalized flux and aperture.
Localized fluidization in granular materials: Theoretical and numerical study.
Montellà, E P; Toraldo, M; Chareyre, B; Sibille, L
2016-11-01
We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy's law and Therzaghi's effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous, i.e., for small injection rates. The numerical approach is at the particle scale based on the coupled discrete element method and a pore-scale finite volume method. It tackles the more heterogeneous situations which occur at larger injection rates. The results from both methods are in qualitative agreement with data published independently. A more quantitative agreement is achieved by the numerical model. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. While narrow apertures let the three different regimes be distinguished clearly, larger apertures tend to produce a single homogeneous fluidization regime. In the former case, it is found that the transition between the cavity regime and the chimney regime for an increasing injection rate coincides with a peak in the evolution of inlet pressure. Finally, the occurrence of the different regimes is defined in terms of the normalized flux and aperture.
Numerical aerodynamic simulation facility preliminary study, volume 1
NASA Technical Reports Server (NTRS)
1977-01-01
A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.
Numerical Studies of Non-Exponential Decay of Wavefunctions
NASA Astrophysics Data System (ADS)
Vermedahl, Jon; Petridis, Athanasios; Luban, Marshall; Staunton, Lawrence
2002-04-01
We use the staggered-leap-frog algorithm to numerically solve the time-dependent Schrödinger equation. This algorithm is particularly accurate and stable as demonstrated in a number of cases whose solutions are analytically known. Deviations from exponential decay have been established for short times for a wavefunction initially set within finite depth potential wells. The survival probability has been fit with analytical functions that reproduce exponential decay at long times. Various time scales characterizing the decay are thus extracted.
A numerical study of electromagnetic scattering from ocean like surfaces
NASA Technical Reports Server (NTRS)
Lentz, R. R.
1972-01-01
The integral equations describing electromagnetic scattering from one dimensional conducting surfaces are formulated and numerical results are presented. The results are compared with those obtained using approximate methods such as physical optics, geometrical optics, and perturbation theory. The integral equation solutions show that the surface radius of curvature must be greater than 2.5 wavelengths for either the physical optics or geometric optics to give satisfactory results. It has also been shown that perturbation theory agrees with the exact fields as long as the root mean square surface roughness is less than one-tenth of a wavelength.
Numerical study of signal propagation in corrugated coaxial cables
Li, Jichun; Machorro, Eric A.; Shields, Sidney
2017-01-01
Our article focuses on high-fidelity modeling of signal propagation in corrugated coaxial cables. Taking advantage of the axisymmetry, the authors reduce the 3-D problem to a 2-D problem by solving time-dependent Maxwell's equations in cylindrical coordinates.They then develop a nodal discontinuous Galerkin method for solving their model equations. We prove stability and error analysis for the semi-discrete scheme. We we present our numerical results, we demonstrate that our algorithm not only converges as our theoretical analysis predicts, but it is also very effective in solving a variety of signal propagation problems in practical corrugated coaxial cables.
Numerical Study on Coalescence of Pre-Existing Flaw Pairs in Rock-Like Material
NASA Astrophysics Data System (ADS)
Li, Huan-Qiang; Wong, Louis Ngai Yuen
2014-11-01
The present numerical study, which is an extension of our previous numerical analysis on cracking processes of a single pre-existing flaw, focuses on the coalescence of two pre-existing parallel open flaws in rock subjected to a uniaxial compressive loading. To facilitate a systematic investigation, the arrangements of the flaw pair are classified into 11 categories. Simulations engaging AUTODYN are conducted on each category. The numerical results are compared with some published physical experimental test results. Eleven typical coalescence patterns are obtained, which are in good agreement with the experimental results, which include two coalescence patterns obtained in flaw pair arrangements (II) and (VIII″) not being reported in previous studies. The information gathered in the simulations helps identify the type (tensile/shear) of each crack segment involved in the coalescence. Most of the coalescence cracks initiate at or around the flaw tips, except those in flaw pair arrangements (II) and (IX') with a very short ligament length, in which the coalescence cracks initiate on the flaw surfaces away from the flaw tip regions. Based on the numerical simulation results, the properties of the 11 coalescence patterns are obtained. Except those in flaw pair arrangements (II) and (IX'), the other coalescence patterns can be interpreted with respect to the basic crack types—tensile wing crack, horsetail crack and anti-wing crack. In addition, based on the type of crack segments involved in coalescence, namely tensile and shear, the coalescence can be classified into T mode (tensile mode), S mode (shear mode) and TS mode (mixed tensile-shear mode).
Numerical Studies of Magnetization Reversal in Thin Annular Nanorings
NASA Astrophysics Data System (ADS)
Chaves-O'Flynn, Gabriel; Kent, Andrew; Stein, Daniel; Bedau, Daniel
2009-03-01
The rate of thermally activated magnetization reversal in thin ferromagnetic nanorings has been found analytically in a 1D model in which the demagnetization energy is approximated by a local surface term [1]. Numerical micromagnetic calculations confirm all aspects of the analytic model for narrow thin rings, such as permalloy rings of 200 nm mean radius, 40 nm width and 2 nm thickness [2]. However, the model breaks down in for extremely wide rings, when the ring width approaches its mean diameter. Here we present numerical micromagnetic results for the transition states between the clockwise and counterclockwise state in this limit. We describe how the two transition configurations of narrow rings cease to be saddles of the energy functional. Also, a new low energy metastable state is found to exist for a narrow range of fields. We discuss the results of applying the String Method [3] to determine the transition states and energy barriers between the lowest magnetization configurations of rings. [1] K. Martens, D.L. Stein, and A.D. Kent, PRB 73, 054413 (2006) [2] G. D. Chaves-O'Flynn, D.L. Stein, and A.D. Kent, arXiv:0811.0440 (2008) [3] W. E, W. Ren, E. Vanden-Eijnden, J. Chem. Phys 126, 164103 (2007)
Multivariate numerical integration via fluctuationlessness theorem: Case study
NASA Astrophysics Data System (ADS)
Baykara, N. A.; Gürvit, Ercan
2017-01-01
In this work we come up with the statement of the Fluctuationlessness theorem recently conjectured and proven by M. Demiralp and its application to numerical integration of univariate functions by restructuring the Taylor expansion with explicit remainder term. The Fluctuationlessness theorem is stated. Following this step an orthonormal basis set is formed and the necessary formulae for calculating the coefficients of the three term recursion formula are constructed. Then for multivariate numerical integration, instead of dealing with a single formula for multiple remainder terms, a new approach that is already mentioned for bivariate functions is taken into consideration. At every step of a multivariate integration one variable is considered and the others are held constant. In such a way, this gives us the possibility to get rid of the complexity of calculations. The trivariate case is taken into account and its generalization is step by step explained. At the final stage implementations are done for some trivariate functions and the results are tabulated together with the implementation times.
Numerical and Experimental Studies on Impact Loaded Concrete Structures
Saarenheimo, Arja; Hakola, Ilkka; Karna, Tuomo; Hyvarinen, Juhani
2006-07-01
An experimental set-up has been constructed for medium scale impact tests. The main objective of this effort is to provide data for the calibration and verification of numerical models of a loading scenario where an aircraft impacts against a nuclear power plant. One goal is to develop and take in use numerical methods for predicting response of reinforced concrete structures to impacts of deformable projectiles that may contain combustible liquid ('fuel'). Loading, structural behaviour, like collapsing mechanism and the damage grade, will be predicted by simple analytical methods and using non-linear FE-method. In the so-called Riera method the behavior of the missile material is assumed to be rigid plastic or rigid visco-plastic. Using elastic plastic and elastic visco-plastic material models calculations are carried out by ABAQUS/Explicit finite element code, assuming axisymmetric deformation mode for the missile. With both methods, typically, the impact force time history, the velocity of the missile rear end and the missile shortening during the impact were recorded for comparisons. (authors)
A numerical study of the Yucatan upwelling processes
NASA Astrophysics Data System (ADS)
Ramos-Musalem, A.; Zavala-Hidalgo, J.; Ruiz-Angulo, A.
2013-05-01
Hydrographic observations of upwelling in the Yucatan Peninsula have been reported more than 50 years ago; however, there is no general agreement on the physical processes that cause it. The mechanisms of the upwelling events in the Yucatan Peninsula are explored with numerical simulations performed with the MIT general circulation model. The computational domain spans the Gulf of Mexico (98.1W to 80.15W, 18.1N to 31.15N) on a rectangular regular grid of 352x269x48 nodes with a horizontal resolution of 1/20° and 48 vertical levels with 20 of them on the first 100 m. The numerical model is forced on the surface with winds, heat fluxes, air temperature, relative humidity and precipitation taken from the NCEP/NCAR reanalysis. The initial and boundary conditions were taken from the HYCOM 1/25° Gulf of Mexico experiment. Further analysis of the output time series shows a close correlation between the vertical transport in the upwelling area, East-West transport of cold water over the Yucatan shelf, the sea surface height, and the local relative vorticity. Spectral analysis of these variables shows, consistently, a peak between 5 and 10 days, which may be related to coastal-trapped waves traveling along the slope of the Gulf of Mexico.
Numeric aspects in pitch identification: an fMRI study
2011-01-01
Background Pitch identification had yielded unique response patterns compared to other auditory skills. Selecting one out of numerous pitches distinguished this task from detecting a pitch ascent. Encoding of numerous stimuli had activated the intraparietal sulcus in the visual domain. Therefore, we hypothesized that numerosity encoding during pitch identification activates the intraparietal sulcus as well. Methods To assess pitch identification, the participants had to recognize a single pitch from a set of four possible pitches in each trial. Functional magnetic resonance imaging (fMRI) disentangled neural activation during this four-pitch-choice task from activation during pitch contour perception, tone localization, and pitch discrimination. Results Pitch identification induced bilateral activation in the intraparietal sulcus compared to pitch discrimination. Correct responses in pitch identification correlated with activation in the left intraparietal sulcus. Pitch contour perception activated the superior temporal gyrus conceivably due to the larger range of presented tones. The differentiation between pitch identification and tone localization failed. Activation in an ACC-hippocampus network distinguished pitch discrimination from pitch identification. Conclusion Pitch identification is distinguishable from pitch discrimination on the base of activation in the IPS. IPS activity during pitch identification may be the auditory counterpart of numerosity encoding in the visual domain. PMID:21392373
Numerical study of instability of nanofluids: the coagulation effect and sedimentation effect.
Ni, Yu; Fan, Jianren; Hu, Yacai
2011-02-28
This study is a numerical study on the coagulation as well as the sedimentation effect of nanofluids using the Brownian dynamics method. Three cases are simulated, focusing on the effects of the sizes, volume fraction, and ζ potentials of nano-particles on the formation of coagulation and sedimentation of nanofluids. The rms fluctuation of the particle number concentration, as well as the flatness factor of it, is employed to study the formation and variation of the coagulation process. The results indicate a superposition of coagulation and sedimentation effect of small nano-particles. Moreover, it is stable of nanofluids with the volume fraction of particles below the limit of "resolution" of the fluids. In addition, the effect of ζ potentials is against the formation of coagulation and positive to the stability of nanofluids.
Numerical study for MHD peristaltic flow in a rotating frame.
Hayat, T; Zahir, Hina; Tanveer, Anum; Alsaedi, A
2016-12-01
The aim of present investigation is to model and analyze the magnetohydrodynamic (MHD) peristaltic transport of Prandtl fluid in a channel with flexible walls. The whole system consisting of fluid and channel are in a rotating frame of reference with uniform angular velocity. Viscous dissipation in thermal equation is not ignored. The channel boundaries satisfy the convective conditions in terms of temperature. The arising complicated problems are reduced in solvable form using large wavelength and small Reynolds number assumptions. Numerical solution for axial and secondary velocities, temperature and heat transfer coefficient are presented. Main emphasis is given to the outcome of rotation and material parameters of Prandtl fluid on the physical quantities of interest.
Numerical study of twin-jet impingement upwash flow
NASA Technical Reports Server (NTRS)
Pegues, W. J.; Vanka, S. P.
1990-01-01
Two horizontally spaced jets impinging normally on a flat surface create a fountain upwash flow due to the collision of the radially flowing wall jets. This fountain flow is of importance to the dynamics and propulsion of STOVL aircraft. The fountain flow influences the lift forces on the aircraft and the ingestion of hot gases and debris by the engine inlet. In this paper, a multigrid based finite-difference numerical procedure has been applied to solve the equations governing this three-dimensional flow. The standard k-epsilon turbulence model has been used. Comparisons with experimental data reveal that while the mean velocities are predicted with reasonable accuracy, the turbulent kinetic energies are seriously in error. The reasons for this discrepancy could be the intense unsteadiness and large-scale structures of the flow in the near-wall region, which cannot be captured well by any Reynolds-averaged turbulence model.
Numerical model study of radio frequency vessel sealing thermodynamics
NASA Astrophysics Data System (ADS)
Pearce, John
2015-03-01
Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.
Experimental and Numerical Study of Bright Matter- Wave Soliton Collisions
NASA Astrophysics Data System (ADS)
Luo, H.; Nguyen, J. H. V.; Dyke, P.; Hulet, R. G.
2014-05-01
We create pairs of bright matter-wave solitons from Bose-Einstein condensates of 7Li atoms by tuning the scattering length to a negative value. We examine the collision of a pair of solitons formed in a quasi-1-D harmonic trap as a function of their relative phase. While the solitons pass through one another without change in shape or amplitude, they nonetheless exhibit an effective interaction that can be either repulsive or attractive depending on their relative phase. Furthermore, we observe a discontinuous jump in the soliton motion that causes the dipole mode oscillation frequency to shift to values greater than the trap frequency. The result is compared to numerical solution of the 3-D Gross-Pitaevskii equation. Work supported by the NSF, ONR, an ARO MURI, and the Welch Foundation.
Progress report on LBL's numerical modeling studies on Cerro Prieto
Halfman-Dooley, S.E.; Lippman, M.J.; Bodvarsson, G.S.
1989-04-01
An exploitation model of the Cerro Prieto geothermal system is needed to assess the energy capacity of the field, estimate its productive lifetime and develop an optimal reservoir management plan. The model must consider the natural state (i.e., pre-exploitation) conditions of the system and be able to predict changes in the reservoir thermodynamic conditions (and fluid chemistry) in response to fluid production (and injection). This paper discusses the results of a three-dimensional numerical simulation of the natural state conditions of the Cerro Prieto field and compares computed and observed pressure and temperature/enthalpy changes for the 1973--1987 production period. 16 refs., 24 figs., 2 tabs.
Numerical studies of identification in nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.
1989-01-01
An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.
Studying Barred Galaxies by Means of Numerical Simulations
NASA Astrophysics Data System (ADS)
Martinez-Valpuesta, Inma
We describe two morphological structures of barred galaxies with the help of numerical simulations. The first one is a feature seen in face-on barred galaxies, the ansae, probably very important dynamically speaking. The second one are the Boxy/Peanut bulges in disc galaxies. They have been associated to stellar bars, and are a result of the secular evolution of barred galaxies. We analyze their properties in a large sample of N-body simulations, using different methods to measure their strength, shape and possible asymmetry, and then inter-compare the results. Some of these methods can be applied to both simulations and observations. In particular, we seek correlations between bar and peanut properties, which, when applied to real galaxies, will give information on bars in edge-on galaxies, and on peanuts in face-on galaxies.
Numerical Modeling for Yield Pillar Design: A Case Study
NASA Astrophysics Data System (ADS)
Li, Wenfeng; Bai, Jianbiao; Peng, Syd; Wang, Xiangyu; Xu, Ying
2015-01-01
Two single-entry gateroad systems employing a yield pillar for bump control in a Chinese coal mine were introduced. The overburden depth of the longwall panels was approximately 390 m. When the width/height (W/H) ratio of the yield pillar was 2.67, coal bumps in the tailgate occurred in front of the longwall retreating face. However, in another panel, the coal bump was eliminated because the W/H ratio was reduced to 1.67. Under this condition, instrumentation results indicated that the roof-to-floor and rib-to-rib convergences reached 1,050 and 790 mm, respectively, during longwall retreat. The numerical model was used to back-analyze the two cases of yield pillar application in the hope to find the principle for yield pillar design. In order to improve the reliability of the numerical model, the strain-hardening gob and strain-softening pillar materials were meticulously calibrated, and the coal/rock interface strength was determined by laboratory direct shear tests. The results of the validated model indicate that if the W/H ratio of the yield pillar equals 1.67, the peak vertical stress in the panel rib (37.7 MPa) is much larger than that in the yield pillar (21.1 MPa); however, the peak vertical stress in the panel rib (30.87 MPa) is smaller than that in the yield pillar (36 MPa) when the W/H ratio of yield pillar is 2.67. These findings may be helpful to the design of yield pillars for bump control.
NASA Astrophysics Data System (ADS)
Chen, Yan-Jun; Wang, Ping-Yang; Liu, Zhen-Hua
2016-11-01
The natural convective heat transfer and flow characteristics of nanofluids in an enclosure are numerically simulated using the multiphase-flow model and single phase model respectively. The simulated results are compared with the experimental results from the published papers to investigate the applicability of these models for nanofluids from a macro standpoint. The effects of Rayleigh number, Grashof number and volume concentration of nanoparticles on the heat transfer and flow characteristics are investigated and discussed. Comparisons of the horizontal and vertical central dimensionless velocity profiles between nanofluid and water for various Grashof numbers are studied. In addition, both streamline contours and isotherms lines for different volume concentrations of nanofluids are analyzed as well. The study results show that a great deviation exists between the simulated result of the single phase model and the experimental data on the relation of Nusselt number and Rayleigh number, which indicates that the single phase model cannot reflect the heat transfer characteristic of nanofluid. While the simulated results using the multiphase-flow model show a good agreement with the experimental data of nanofluid, which means that the multiphase-flow model is more suitable for the numerical study of nanofluid. For the natural convection, the present study holds the point that using Grashof numbers as the benchmark would be more appropriate to describe the heat transfer characteristics of nanofluid. Moreover, the simulated results demonstrate that adding nanoparticles into the base fluid can enhance both the motion of fluid and convection in the enclosure significantly.
A water soluble additive to suppress respirable dust from concrete-cutting chainsaws: a case study.
Summers, Michael P; Parmigiani, John P
2015-01-01
Respirable dust is of particular concern in the construction industry because it contains crystalline silica. Respirable forms of silica are a severe health threat because they heighten the risk of numerous respirable diseases. Concrete cutting, a common work practice in the construction industry, is a major contributor to dust generation. No studies have been found that focus on the dust suppression of concrete-cutting chainsaws, presumably because, during normal operation water is supplied continuously and copiously to the dust generation points. However, there is a desire to better understand dust creation at low water flow rates. In this case study, a water-soluble surfactant additive was used in the chainsaw's water supply. Cutting was performed on a free-standing concrete wall in a covered outdoor lab with a hand-held, gas-powered, concrete-cutting chainsaw. Air was sampled at the operator's lapel, and around the concrete wall to simulate nearby personnel. Two additive concentrations were tested (2.0% and 0.2%), across a range of fluid flow rates (0.38-3.8 Lpm [0.1-1.0 gpm] at 0.38 Lpm [0.1 gpm] increments). Results indicate that when a lower concentration of additive is used exposure levels increase. However, all exposure levels, once adjusted for 3 hours of continuous cutting in an 8-hour work shift, are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 5 mg/m(3). Estimates were made using trend lines to predict the fluid flow rates that would cause respirable dust exposure to exceed both the OSHA PEL and the American Conference of Governmental Industrial Hygienists (ACGIH®) threshold limit value (TLV).
NASA Technical Reports Server (NTRS)
Fowlis, W. W. (Editor); Davis, M. H. (Editor)
1981-01-01
The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.
Numerical study on microwave-sustained argon discharge under atmospheric pressure
Yang, Y.; Hua, W. Guo, S. Y.
2014-04-15
A numerical study on microwave sustained argon discharge under atmospheric pressure is reported in this paper. The purpose of this study is to investigate both the process and effects of the conditions of microwave-excited gas discharge under atmospheric pressure, thereby aiding improvements in the design of the discharge system, setting the appropriate working time, and controlling the operating conditions. A 3D model is presented, which includes the physical processes of electromagnetic wave propagation, electron transport, heavy species transport, gas flow, and heat transfer. The results can be obtained by means of the fluid approximation. The maxima of the electron density and gas temperature are 4.96 × 10{sup 18} m{sup −3} and 2514.8 K, respectively, and the gas pressure remains almost unchanged for typical operating conditions with a gas flow rate of 20 l/min, microwave power of 1000 W, and initial temperature of 473 K. In addition, the conditions (microwave power, gas flow rate, and initial temperature) of discharge are varied to obtain deeper information about the electron density and gas temperature. The results of our numerical study are valid and clearly describe both the physical process and effects of the conditions of microwave-excited argon discharge.
Numerical Study of Fractional Ensemble Average Transport Equations
NASA Astrophysics Data System (ADS)
Kim, S.; Park, Y.; Gyeong, C. B.; Lee, O.
2014-12-01
In this presentation, a newly developed theory is applied to the case of stationary and non-stationary stochastic advective flow field, and a numerical solution method is presented for the resulting fractional Fokker-Planck equation (fFPE), which describes the evolution of the probability density function (PDF) of contaminant concentration. The derived fFPE is evaluated for three different form: 1) purely advective form, 2) second-order moment form and 3) second-order cumulant form. The Monte Carlo analysis of the fractional governing equation is then performed in a stochastic flow field, generated by a fractional Brownian motion for the stationary and non-stationary stochastic advection, in order to provide a benchmark for the results obtained from the fFPEs. When compared to the Monte Carlo simulation based PDFs and their ensemble average, the second-order cumulant form gives a good fit in terms of the shape and mode of the PDF of the contaminant concentration. Therefore, it is quite promising that the non-Fickian transport behavior can be modeled by the derived fractional ensemble average transport equations either by means of the long memory in the underlying stochastic flow, or by means of the time-space non-stationarity of the underlying stochastic flow, or by means of the time and space fractional derivatives of the transport equations.
A Comparison Study of Two Numerical Tsunami Forecasting Systems
NASA Astrophysics Data System (ADS)
Greenslade, Diana J. M.; Titov, Vasily V.
2008-12-01
This paper presents a comparison of two tsunami forecasting systems: the NOAA/PMEL system (SIFT) and the Australian Bureau of Meteorology system (T1). Both of these systems are based on a tsunami scenario database and both use the same numerical model. However, there are some major differences in the way in which the scenarios are constructed and in the implementation of the systems. Two tsunami events are considered here: Tonga 2006 and Sumatra 2007. The results show that there are some differences in the distribution of maximum wave amplitude, particularly for the Tonga event, however both systems compare well to the available tsunameter observations. To assess differences in the forecasts for coastal amplitude predictions, the offshore forecast results from both systems were used as boundary conditions for a high-resolution model for Hilo, Hawaii. The minor differences seen between the two systems in deep water become considerably smaller at the tide gauge and both systems compare very well with the observations.
A numerical study of two interacting coronal mass ejections
NASA Astrophysics Data System (ADS)
Schmidt, J.; Cargill, P.
2004-06-01
The interaction in the solar wind between two coronal mass ejections (CMEs) is investigated using numerical simulations. We show that the nature of the interaction depends on whether the CME magnetic structures interact, but in all cases the result is an equilisation of the speed of the two CMEs. In the absence of magnetic interaction, the forward shock of the faster trailing CME interacts with the slow leading CME, and accelerates it. When the two CMEs have magnetic fields with the same sense of rotation, magnetic reconnection occurs between the two CMEs, leading to the formation of a single magnetic structure: in the most extreme cases, one CME "eats" the other. When the senses of rotation are opposite, reconnection does not occur, but the CMEs collide in a highly non-elastic manner, again forming a single structure. The possibility of enhanced particle acceleration in such processes is assessed. The presence of strong magnetic reconnection provides excellent opportunities for the acceleration of thermal particles, which then form a seed population for further acceleration at the CME shocks. The presence of a large population of seed particles will thus lead to an overall increase in energetic particle fluxes, as suggested by some observations.
Numerical study on small scale vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.
2016-03-01
The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.
Numerical Study of Mixing of Two Fluids Under Low Gravity
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.
1992-01-01
The mixing characteristics of two fluids inside a cavity due to buoyancy driven flow fields for low gravity conditions is investigated via numerical experiments. The buoyancy driven flow, depending on the parametric region, stretches and deforms the material interface into a wave morphological pattern. The morphological pattern affects the resulting stratification thickness of the mixed region. Three basic mixing regimes occur: convective, diffusive, and chaotic. In the convective regime, an overturning motion occurs which gives rise to a stable wave formation. This wave oscillates and its decay leads to a stable stratification. Whereas, in the diffusive regime, the length of the interface remains constant while mixing occurs. This limiting behavior is very important to materials processing in space, and it admits a closed form solution corresponding to vanishing convective terms which agrees with computational results. Finally, in the chaotic regime, the material interface continuously stretches and folds on itself similar to a horseshoe map. The length of stretch of the interface increases exponentially. Internal wavebreaking occurs for this case. This wavebreaking generates local turbulence, and provides an effective mechanism for mixing.
A numerical study of interactions and stellar bars
NASA Astrophysics Data System (ADS)
Martinez-Valpuesta, Inma; Aguerri, J. Alfonso L.; González-García, A. César; Dalla Vecchia, Claudio; Stringer, Martin
2017-01-01
For several decades, it has been known that stellar bars in disc galaxies can be triggered by interactions, or by internal processes such as dynamical instabilities. In this work, we explore the differences between these two mechanisms using numerical simulations. We perform two groups of simulations based on isolated galaxies, one group in which a bar develops naturally, and another group in which the bar could not develop in isolation. The rest of the simulations recreate 1:1 coplanar fly-by interactions computed with the impulse approximation. The orbits we use for the interactions represent the fly-bys in groups or clusters of different masses accordingly to the velocity of the encounter. In the analysis, we focus on bars' amplitude, size, pattern speed and their rotation parameter, R=R_{CR}/R_{bar}. The latter is used to define fast (R<1.4) and slow rotation (R>1.4). Compared with equivalent isolated galaxies, we find that bars affected or triggered by interactions: (i) remain in the slow regime for longer, (ii) are more boxy in face-on views and (iii) they host kinematically hotter discs. Within this set of simulations, we do not see strong differences between retrograde or prograde fly-bys. We also show that slow interactions can trigger bar formation.
Numerical Studies of Disordered Tight-Binding Hamiltonians
NASA Astrophysics Data System (ADS)
Scalettar, R. T.
2007-06-01
These are notes used for a set of lectures delivered at the Vietri summer school on Condensed Matter Physics in Fall 2006. They concern the general problem of the interplay of interactions and disorder in two dimensional electronic systems, as realized in the specific context of Quantum Monte Carlo simulations of the Anderson-Hubbard Hamiltonian. I wish to thank the organizers of this school for their hospitality during my visit, and their work in general in providing this educational opportunity for students over the years. It is a pleasure also to acknowledge the collaborators together with whom I have learned much of the physics and numerics presented in these notes: Zhaojun Bai, Andrew Baldwin, George Batrouni, Karim Bouadim, Wenbin Chen, Peter Denteneer, Fred Hébert, Norman Paris, Matt Schram, Nandini Trivedi, Martin Ulmke, Ichitaro Yamazaki and Gergely Zimanyi. This work was supported by the National Science Foundation (NSF-DMR-0312261 and NSF-ITR-0313390), and China Special Funds for Major State Basic Research Projects under contract 2005CB321700.
A numerical study of aerosol effects on electrification of thunderstorms
NASA Astrophysics Data System (ADS)
Tan, Y. B.; Shi, Z.; Chen, Z. L.; Peng, L.; Yang, Y.; Guo, X. F.; Chen, H. R.
2017-02-01
Numerical simulations are performed to investigate the effect of aerosol on microphysical and electrification in thunderstorm clouds. A two-dimensional (2-D) cumulus model with electrification scheme including non-inductive and inductive charge separation is used. The concentration of aerosol particles with distribution fitted by superimposing three log-normal distributions rises from 50 to 10,000 cm-3. The results show that the response of charge separation rate to the increase of aerosol concentration is nonmonotonic. When aerosol concentration is changed from 50 to 1000 cm-3, a stronger formation of cloud droplet, graupel and ice crystal results in increasing charge separation via non-inductive and inductive mechanism. However, in the range of 1000-3000 cm-3, vapor competition arises in the decrease of ice crystal mixing ratio and the reduction of ice crystals size leads to a slightly decrease in non-inductive charge rate, while inductive charging rate has no significant change in magnitude. Above aerosol concentration of 3000 cm-3, the magnitude of charging rate which keeps steady is insensitive to the increase in aerosol concentration. The results also suggest that non-inductive charge separation between ice crystal and graupel contributes to the main upper positive charge region and the middle negative charge region. Inductive graupel-cloud droplet charge separation, on the other hand, is found to play an important role in the development of lower charge region.
Lin, Guang; Tartakovsky, Alexandre M.
2010-04-01
In this study, we solve the three-dimensional stochastic Darcy's equation and stochastic advection-diffusion-dispersion equation using a probabilistic collocation method (PCM) on sparse grids. Karhunen-Lo\\`{e}ve (KL) decomposition is employed to represent the three-dimensional log hydraulic conductivity $Y=\\ln K_s$. The numerical examples which demonstrate the convergence of PCM are presented. It appears that the faster convergence rate in the variance can be obtained by using the Jacobi-chaos representing the truncated Gaussian distributions than using the Hermite-chaos for the Gaussian distribution. The effect of dispersion coefficient on the mean and standard deviation of the hydraulic head and solute concentration is investigated. Additionally, we also study how the statistical properties of the hydraulic head and solute concentration vary while using different types of random distributions and different standard deviations of random hydraulic conductivity.
Numerical study of the Columbia high-beta device: Torus-II
Izzo, R.
1981-01-01
The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.
Assisted Sonication vs Conventional Transesterification Numerical Simulation and Sensitivity Study
NASA Astrophysics Data System (ADS)
Janajreh, Isam; Noorul Hussain, Mohammed; El Samad, Tala
2015-10-01
Transeterification is known as slow reaction that can take over several hours to complete as the two immiscible liquid reactants combine to form biodiesel and the less favorable glycerol. The quest of finding the perfect catalyst, optimal operational conditions, and reactor configuration to accelerate the reaction in mere few minutes that ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction is a key enabler for the development of a continuous processing that otherwise is fairly costly and low throughput using conventional method. The reaction kinetics of sonication assisted as inferred by several authors is several time faster and this work implements these rates in a high fidelity numerical simulation model. This flow model is based on Navier-Stokes equations coupled with energy equation for non-isothermal flow and the transport equations of the multiple reactive species. The model is initially validated against experimental data from previous work of the authors using an annular reactor configuration. Following the validation, comparison of the reaction rate is shown to gain more insight to the distribution of the reaction and its attained rates. The two models (conventional and sonication) then compared on the basis of their sensitivity to the methane to oil molar ratio as the most pronounced process parameter. Both the exit reactor yield and the distribution of the species are evaluated with favorable yield under sonication process. These results pave the way to build a more robust process intensified reactor having an integrated selective heterogeneous catalyst to steer the reaction. This can avoid the downstream cleaning processes, cutting reaction time, and render economic benefit to the process.
NASA Astrophysics Data System (ADS)
Xie, Shuisheng; Huang, Guojie; Zhang, Xiaoli; Yang, Haoqiang
2007-05-01
Damper Cooling Tube (DCT) Method to fabricate the semi-solid metal slurry has been studied in this paper. Firstly, numerical simulation is adopted to investigate the flow process in order to optimize the technical parameters. The temperature effects on the rheological properties of the slurries are also considered. The effects of technical parameters on the slurry properties are studied in detail. Then the experiment was carried out with AZ91 magnesium alloy in order to examine the numerical simulation results. The results of numerical simulation are consistent with the experimental results. According to the numerical and experiment results, the DCT device can fabricate fine semisolid slurry with primary globular phase.
ERIC Educational Resources Information Center
Attout, Lucie; Noël, Marie-Pascale; Majerus, Steve
2014-01-01
Despite numerous studies, the link between verbal working memory (WM) and calculation abilities remains poorly understood. The present longitudinal study focuses specifically on the role of serial order retention capacities, based on recent findings suggesting a link between ordinal processing in verbal WM and numerical processing tasks. Children…
Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel.
Daghighi, Yasaman; Li, Dongqing
2010-03-01
A major challenge in lab-on-a-chip devices is how to concentrate sample molecules from a dilute solution, which is critical to the effectiveness and the detection limit of on-chip bio-chemical reactions. A numerical study of sample concentration control by electrokinetic microfluidic means in a closed-end microchannel is presented in this paper. The present method provides a simple and efficient way of concentration control by using electrokinetic trapping of a charged species of interest, controlling liquid flow and separating different sample molecules in the microchannel. The electrokinetic-concentration process and the controlled transport of the sample molecules are numerically studied. In this system, in addition to the electroosmotic flow and the electrophoresis, the closed-end of the chamber causes velocity variation at both ends of the channel and induces a pressure gradient and the associated fluid movement in the channel. The combined effects determine the final concentration field of the sample molecules. The influences of a number of parameters such as the channel dimensions, electrode size and the applied electric field are investigated.
Dryer, Frederick L.
2009-04-10
This project was an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work were conducted in large-diameter flow reactors, at 0.3 to 18 atm pressure, 500 to 1100 K temperature, and 10^{-2} to 2 seconds reaction time. Experiments were also conducted to determine reference laminar flame speeds using a premixed laminar stagnation flame experiment and particle image velocimetry, as well as pressurized bomb experiments. Flow reactor data for oxidation experiments include: (1)adiabatic/isothermal species time-histories of a reaction under fixed initial pressure, temperature, and composition; to determine the species present after a fixed reaction time, initial pressure; (2)species distributions with varying initial reaction temperature; (3)perturbations of a well-defined reaction systems (e.g. CO/H_{2}/O_{2} or H_{2}/O_{2})by the addition of small amounts of an additive species. Radical scavenging techniques are applied to determine unimolecular decomposition rates from pyrolysis experiments. Laminar flame speed measurements are determined as a function of equivalence ratio, dilution, and unburned gas temperature at 1 atm pressure. Hierarchical, comprehensive mechanistic construction methods were applied to develop detailed kinetic mechanisms which describe the measurements and literature kinetic data. Modeling using well-defined and validated mechanisms for the CO/H_{2}/Oxidant systems and perturbations of oxidation experiments by small amounts of additives were also used to derive absolute reaction rates and to investigate the compatibility of published elementary kinetic and thermochemical information. Numerical tools were developed and applied to assess the importance of individual elementary reactions to the predictive performance of the
A numerical and experimental study of stratified thermal storage
Oppel, F.J.; Ghajar, A.J.; Moretti, P.M.
1986-01-01
A one-dimensional, implicit, finite-difference model of a single stratified thermal storage tank has been developed. The model covers variable flow rates for charging or discharging the thermal storage tank and conduction and turbulent mixing within the water for two different inlet configurations. In order to handle variable flow rates, a ''conceptual buffer tank'' algorithm was developed. Turbulent mixing occurring in the tank was simulated through thermal eddy conductivity factors, which were determined from experimental data. A decreasing hyperbolic function predicted the best variation of the eddy conductivity factor inside the tank. A general relationship between the inlet eddy conductivity factor and the ratio of Reynolds number over Richardson number was established for the inlets investigated. The simulation model adequately predicted the experimental data. In addition, the model reproduced hydraulic test data better than a recent one-dimensional model found in the literature.
NASA Astrophysics Data System (ADS)
Hornich, Julian; Pflaum, Christoph; Brabec, Christoph; Forberich, Karen
2016-09-01
We are studying the influence of spherical silver nanoparticles (AgNP) in absorbing media by numerically solving the Maxwell's equations. Our simulations show that the near-field absorption enhancement introduced by a single AgNP in the surrounding medium is increasing with the growing particle diameter. However, we observe that the relative absorption per particle volume is on a similar level for different particle sizes; hence, different numbers of particles with the same total volume yield the same near-field absorption enhancement. We also investigate the effect of non-absorbing shells around the AgNP with the conclusion that even very thin shells suppress the beneficial effects of the particles noticeably. Additionally, we include AgNP in an organic solar cell at different vertical positions with different particle spacings and observe the beneficial effects for small AgNP and the scattering dependent performance for larger particles.
Numerical Study of Shock Wave Attenuation Using Logarithmic Spiral Liquid Sheet
NASA Astrophysics Data System (ADS)
Wan, Qian; Deiterding, Ralf; Eliasson, Veronica
2016-11-01
Research of shock wave attenuation has drawn much attention due to its military and civilian applications. One method to attenuate shock waves is to use water to block the shock wave propagation path and allow the shock wave to lose energy by breaking up the water sheet. We propose a way by holding a water sheet in logarithmic spiral shape, which has the ability of focusing the incident shock wave to its focal region. In addition, the shock wave will break up the bulk water and thus lose energy. The process of shock wave reflecting off and transmitting through the water sheet is numerically modeled using Euler equations and stiffened gas equation of state. In this study, the shock focusing ability of a logarithmic spiral water sheet is compared for various logarithmic spiral sheets. Further, the attenuation effect is quantified by the measurement of pressure impulse and peak pressure behind the transmitted and reflected shock waves.
Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD
Luz, Fernando H. P.; Mendes, Tereza
2010-11-12
Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.
NASA Astrophysics Data System (ADS)
Tanigaki, Kenichi; Idouji, Toru; Horikawa, Keitaro; Kobayashi, Hidetoshi; Ogawa, Kinya
2015-09-01
Finite element models of closed-cell foam structures were created using the three-dimensional Voronoi tessellation method coupled with the random sequential addition algorithm. The dynamic compressive deformation behaviors of the models were numerically studied using LS-DYNA code. The deformation mode of the models changed gradually as the deformation rate increases. Also, the generation and the propagation of plastic wave was clearly observed with the rate of 100 m/s. The longitudinal elastic wave velocity showed a weak negative dependency on the deformation rate although the strain rate dependence of material properties was not considered. Furthermore, a prediction method for the dynamic stress state on the impact side based on the static stress-strain relationship was presented.
NASA Technical Reports Server (NTRS)
Cushman, Paula P.
1993-01-01
Research will be undertaken in this contract in the area of Modeling Resource and Facilities Enhancement to include computer, technical and educational support to NASA investigators to facilitate model implementation, execution and analysis of output; to provide facilities linking USRA and the NASA/EADS Computer System as well as resident work stations in ESAD; and to provide a centralized location for documentation, archival and dissemination of modeling information pertaining to NASA's program. Additional research will be undertaken in the area of Numerical Model Scale Interaction/Convective Parameterization Studies to include implementation of the comparison of cloud and rain systems and convective-scale processes between the model simulations and what was observed; and to incorporate the findings of these and related research findings in at least two refereed journal articles.
Numerical study of ion orbits in EAST plasmas with a current-reversal equilibrium configuration
NASA Astrophysics Data System (ADS)
Zhong, Yi-jun; Gong, Xue-yu; Hu, Ye-ming; Li, Xin-xia
2015-06-01
By solving the Grad-Shafranov equation in the cylindrical coordinate system, we numerically obtain the tokamak plasma equilibrium configurations of the conventional mode and the high-to-lowfield-side current-reversal equilibrium mode (HL-CREC) by using the discharge parameters for the Experimental Advanced Superconductor Tokamak (EAST). By coupling with the particle's motion equation, we obtain the orbits of trapped particles and passing particles under both equilibrium configurations. We find that the orbit of the passing particle in the HL-CREC is wholly confined on the low-field side and that the half width of the banana orbit of trapped particles increases greatly compared with those in the conventional equilibrium configuration. In addition, the ion loss is studied based on the Monte Carlo method. The results show that for ions near the plasma edge, a much high ion loss rate can be obtained in HL-CREC than that in the conventional equilibrium configuration.
Numerical study of aerodynamic effects on road vehicles lifting surfaces
NASA Astrophysics Data System (ADS)
Cernat, Mihail Victor; Cernat Bobonea, Andreea
2017-01-01
The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.
Numerical aerodynamic simulation facility preliminary study, volume 2 and appendices
NASA Technical Reports Server (NTRS)
1977-01-01
Data to support results obtained in technology assessment studies are presented. Objectives, starting points, and future study tasks are outlined. Key design issues discussed in appendices include: data allocation, transposition network design, fault tolerance and trustworthiness, logic design, processing element of existing components, number of processors, the host system, alternate data base memory designs, number representation, fast div 521 instruction, architectures, and lockstep array versus synchronizable array machine comparison.
Gómez-Velázquez, Fabiola Reveca; Berumen, Gustavo; González-Garrido, Andrés Antonio
2015-11-19
The ability to map between non-symbolic and symbolic magnitude representations is crucial in the development of mathematics and this map is disturbed in children with math difficulties. In addition, positive parietal ERPs have been found to be sensitive to the number distance effect and skills solving arithmetic problems. Therefore we aimed to contrast the behavioral and ERP responses in children with different levels of mathematical achievement: low (LA), average (AA) and high (HA), while comparing symbolic and non-symbolic magnitudes. The results showed that LA children repeatedly failed when comparing magnitudes, particularly the symbolic ones. In addition, a positive correlation between correct responses while analyzing symbolic quantities and WRAT-4 scores emerged. The amplitude of N200 was significantly larger during non-symbolic comparisons. In addition, P2P amplitude was consistently smaller in LA children while comparing both symbolic and non-symbolic quantities, and correlated positively with the WRAT-4 scores. The latency of P3 seemed to be sensitive to the type of numerical comparison. The results suggest that math difficulties might be related to a more general magnitude representation problem, and that ERP are useful to study its timecourse in children with different mathematical skills.
Numerical simulation study on thermal response of PBX explosive by low velocity impact
NASA Astrophysics Data System (ADS)
Lou, Jianfeng; Zhou, Tingting; Zhang, Yangeng; Zhang, Xiaoli
2015-06-01
It is a great threat for both bare dynamite and shell charge when subjected to low velocity impact involved in traffic accidents or charge piece drops. The impact sensitivity is an important index in evaluating the safety and performance of explosives. The Steven Test is an effective tool to evaluate the relative sensitivity of various explosives. In 1993, Chidester et al. preliminarily designed the Steven Test, and then applied it to delay detonation (XDT) phenomenon study. Subsequently, a series of low velocity impact Steven Tests on HMX based explosives were carried out by S K Chidester, D J Idar, R J Scammon, S Wortley et al. In this paper, we built the numerical simulation method involving mechanical, thermo and chemical properties of Steven Test based on the thermo-mechanical coupled material model. In the model, the stress-strain relationship is described by dynamic plasticity model, the thermal effect of the explosive induced by impact is depicted by isotropic thermal material model, the chemical reaction of explosives is described by Arrhenius reaction rate law, and the effects of heating and melting on mechanical properties and thermal properties of materials are also taken into account. Specific to the standard Steven Test, the thermal and mechanical response rules of PBX9501 at different impact velocities were numerical analyzed, and the threshold velocity of explosive initiation was obtained. In addition, the effect of confine condition of test device to the threshold velocity was explored.
Numerical simulation study on thermal response of PBX 9501 to low velocity impact
NASA Astrophysics Data System (ADS)
Lou, Jianfeng; Zhou, Tingting; Zhang, Yangeng; Zhang, Xiaoli
2017-01-01
Impact sensitivity of solid high explosives, an important index in evaluating the safety and performance of explosives, is an important concern in handling, storage, and shipping procedures. It is a great threat for either bare dynamite or shell charge when subjected to low velocity impact involved in traffic accidents or charge piece drops. The Steven test is an effective tool to study the relative sensitivity of various explosives. In this paper, we built the numerical simulation method involving mechanical, thermo and chemical properties of Steven test based on the thermo-mechanical coupled material model. In the model, the stress-strain relationship is described by dynamic plasticity model, the thermal effect of the explosive induced by impact is depicted by isotropic thermal material model, the chemical reaction of explosives is described by Arrhenius reaction rate law, and the effects of heating and melting on mechanical properties and thermal properties of materials are also taken into account. Specific to the standard Steven test, the thermal and mechanical response rules of PBX 9501 at various impact velocities were numerically analyzed, and the threshold velocity of explosive initiation was obtained, which is in good agreement with experimental results. In addition, the effect of confine condition of test device to the threshold velocity was explored.
Experimental and Numerical Study of Swirling Flows and Flame Dynamics
NASA Astrophysics Data System (ADS)
Abricka, M.; Barmina, I.; Valdmanis, R.; Zake, M.
2014-08-01
The effect of swirling air on the flow dynamics was investigated for the cold non-reacting flows and the flame arising at thermo-chemical conversion of biomass pellets downstream of a cylindrical channel. Under experimental and numerical investigation was the swirling flow dynamics with the primary axial air supply below a biomass layer and swirling air supply above it. The results indicate that for cold flows the swirling air jet outflow from tangential nozzles leads to the formation of a complex flow dynamics which is influenced both by upstream and downstream air swirl propagation near the channel walls, with correlating swirl-enhanced formation of the upstream and downstream axial flows close to the flow centreline depending on the swirling air supply rate. These axial flows can be completely balanced at their stagnation within the axial recirculation zone. It is shown that at equal boundary conditions for the swirling flame and the cold flows the swirling flow dynamics is influenced by the upstream air swirl-enhanced mixing of the reactants below the air swirl nozzles. This determines the formation of a downstream reaction zone with correlating development of the flow velocity, temperature and composition profiles in the downstream flame regions with improved combustion stability. The low swirl intensity in these regions prevents the formation of a recirculation zone Ir veikti kompleksi aukstu nereaģējošu un liesmas virpuļplūsmu dinamikas veidošanās eksperimentālie pētījumi, izvērtējot galvenos faktorus, kas ietekmē šo plūsmu dinamikas veidošanos cilindriskā kanālā virs granulēta biomasas slāņa pie aksiālas primārā gaisa padeves zem granulu slāņa un gaisa virpuļplūsmas padeves virs tā. Auksto virpuļplūsmu pētījumi apliecina, ka plūsmas dinamiku būtiski ietekmē divu savstarpēji konkurējošu un pretēji vērstu virpuļplūsmu veidošanās pie tangenciālās gaisa padeves sprauslas izejas. Lejupvērstā virpuļplūsma, kas
Numerical studies of laminar and turbulent drag reduction, part 2
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Orszag, S. A.
1983-01-01
The flow over wave shaped surfaces is studied using a Navier Stokes solver. Detailed comparisons with theoretical results are presented, including the stability of a laminar flow over wavy surfaces. Drag characteristics of nonplanar surfaces are predicted using the Navier-Stokes solver. The secondary instabilities of wall bounded and free shear flows are also discussed.
Dynamic Testing and Numerical Correlation Studies For Folsom Dam
2005-09-01
report prepared with support from the National Research Council of the United States reviewed the state of practice on seismic design and evaluation of...excitations. This report describes a research study conducted by the U.S. Army Engineer Research and Development Center consisting of a series of field...Forced Vibration Tests .....................................................................................6 Overview
A NUMERICAL study of solar chimney power plants in Tunisia
NASA Astrophysics Data System (ADS)
Bahar F, Attig; S, Guellouz M.; M, Sahraoui; S, Kaddeche
2015-04-01
A 3D CFD (Computational fluid dynamics) model of a Solar Chimney Power Plant (SCPP) was developed and validated through comparison with the experimental data of the Manzanares plant. Then, it was employed to study the SCPP performance for locations throughout Tunisia.
Numerical study on the interaction between supercavitation and turbulence
NASA Astrophysics Data System (ADS)
Liu, Han; Xiao, Zuoli; Shen, Lian
2016-11-01
Supercavitation uses a bubble of gas inside a liquid large enough to encompass an object travelling through the liquid so that the skin friction on the object can be greatly reduced and high speed can be obtained. In this study, computational fluid dynamics is used to investigate the interaction between supercavitation and turbulence. The study builds on an in-house simulation code that uses the coupled level set and volume of fluid method to accurately capture the interface between the water and gas phases. A ventilated disk cavitator is used for the bubble generation, and it is modelled by a sharp interface immersed boundary method. Turbulence in the incoming flow is generated by a grid of small spheres upstream. Based on the simulation data, the influence of turbulence on the supercavitation and the underlying mechanisms are analyzed.
Numerical and Experimental Case Study of Blasting Works Effect
NASA Astrophysics Data System (ADS)
Papán, Daniel; Valašková, Veronika; Drusa, Marian
2016-10-01
This article introduces the theoretical and experimental case study of dynamic monitoring of the geological environment above constructed highway tunnel. The monitored structure is in this case a very important water supply pipeline, which crosses the tunnel and was made from steel tubes with a diameter of 800 mm. The basic dynamic parameters had been monitored during blasting works, and were compared with the FEM (Finite Element Method) calculations and checked by the Slovak standard limits. A calibrated FEM model based on the experimental measurement data results was created and used in order to receive more realistic results in further predictions, time and space extrapolations. This case study was required and demanded by the general contractor company and also by the owner of water pipeline, and it was an answer of public safety evaluation of risks during tunnel construction.
Experimental and numerical study of the intermittency exponent mu
NASA Technical Reports Server (NTRS)
Praskovsky, Alexander
1994-01-01
After publication of the Kolmogorov refined similarity hypotheses, the small-scale intermittency of the energy dissipation field became a central problem in fully developed turbulence (FDT). This phenomenon has been studied in many different ways, e.g. by searching for corrections to scaling exponents in the inertial range velocity structure functions. A direct measure of this intermittency is, however, available by studying the local rate of energy dissipation, and it may be quantitatively characterized by the intermittency exponent mu. As far as we know, nobody has posed an obvious question: Is the intermittency exponent mu a unique constant, i.e., are the values mu(sub kappa), mu(sub epsilon), mu(sub r), mu(sub b), and mu(sub e) the same at high Reynolds numbers, or do they create a set of different (and perhaps independent) exponents? This paper addresses the above question using the high Reynolds number experiments.
A numerical study of blood flow using mixture theory
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.
2014-01-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016
Numerical Study of Axial Turbulent Flow Over Long Cylinders
1992-04-01
the planar case, with maxima (-21/2/u;t 3.2) also located at y+ 12. In a visualization study of axial flow over a cylinder, Lueptow & Haritonidis...a) I 0 0 50 100 150 200I + FIcuE 4.2 Profiles of the root-mean-square value of the pressure source terms normalized by v and Ur: (a) linear
Numerical study of Reynolds stress in compressible flows
NASA Technical Reports Server (NTRS)
Vandromme, D.; Hamin, H.
1985-01-01
A second order closure has been implemented in an implicit Navier-Stokes solver to study the behavior of the Reynolds stresses under the influence of severe pressure gradients. In the boundary layer zone, the strongly sheared character of the mean flow dominates the turbulence generation mechanisms. However, the pressure gradients also play a very important role for these processes, but at different locations within the boundary layer.
Numerical study of nozzle wall cooling for nuclear thermal rockets
NASA Technical Reports Server (NTRS)
Kim, Suk C.; Stubbs, Robert M.
1993-01-01
The flowfields and performance of nuclear thermal rockets, which utilize radiation and film-cooling to cool the nozzle extension, are studied by solving the Navier-Stokes equations and species equations. The thrust level of the rocket for the present study is about 75,000 lb(f) for a chamber pressure of 68 atm(l,000 psi) and a chamber temperature of 2700 K. The throat radius of the nozzle is 0.0936 m and the area ratios of the nozzles are 300 and 500. It is assumed that the flow is chemically frozen and the turbulence is simulated by the modified Baldwin-Lomax turbulence model. The calculated results for various area ratios and film mass-flow rates are presented as Mach number contours, variations of nozzle wall temperature, exit profiles, and vacuum specific impulses. The present study shows that by selecting the flow rate of the film-cooling hydrogen and area ratio of the nozzle correctly, high area ratio nozzle extensions can be cooled effectively with radiation and film-cooling without significant penalty in performance.
Numerical study of ocean wave effect on offshore wind farm
NASA Astrophysics Data System (ADS)
Shen, Lian; Yang, Di; Meneveau, Charles
2013-11-01
Wind power at sea has become increasingly important in renewable energy study. For energy harvesting, winds over oceans have many advantages over winds on land, for example, larger and open surface area, faster wind speed, and more wind resource close to high population regions. On the other hand, the presence of ocean waves introduces complexities to wind turbines. There is a critical need to study the dynamical interactions among marine atmospheric boundary layer, ocean wave field, and floating turbines. In this research, we study offshore wind farm by performing large-eddy simulations for winds coupled with potential-flow-theory based simulations for broadband irregular waves, with the wind turbines represented by an actuator disk model. Our results show that windseas at different development stages result in different sea-surface roughness and have an appreciable effect on wind profile and the energy extraction rate of the turbines. If swells are present, swell-to-wind momentum and energy transfer further changes the wind field to introduce oscillations in as well as modify the mean of the wind power. DY and LS acknowledge the support of NSF-CBET-1341062. CM acknowledges the support of NSF-AGS-1045189 and NSF-OISE-1243482.
Numerical study of the properties of compact stars
NASA Astrophysics Data System (ADS)
Negreiros, Rodrigo Picanco
2009-10-01
Compact stars are formed in catastrophic astrophysical events such as supernova explosions and binary stellar collisions. These objects permanently harbor compressed ultra-dense nuclear matter in their interiors. This key feature, together with the ongoing progress in observational astrophysics, make compact stars superb astrophysical laboratories for a wide range of intriguing physicals studies. Several such studies are performed in this thesis. The first activity concerns the widely unknown nuclear equation of state and the core composition of compact stars. Particular attention is paid to the possible presence of hyperons in the cores of neutron stars as well as to stars made of unconfined up, down and strange quarks (strange quark stars). The effects of ultra-strong electric fields on the surfaces of the latter is explored. The second activity aims at investigating the structure and stability of rapidly rotating compact stars. Special attention is paid to the maximal stable rotational frequencies of rotating compact stars. The third activity focuses on the thermal evolution of compact stars, driven by neutrino emission from their cores and by photon emission from the surfaces. It is show that the thermal behavior depends very strongly on the stellar core composition. Moreover, it is found that the thermal evolution of neutron stars is significantly different to that of strange quark stars. The studies performed in this thesis are key for our understanding of the thermal evolution of isolated rotating neutron stars, anomalous X-ray pulsars and soft gamma repeaters, and provide most valuable information about the phase diagram of isospin-asymmetric ultra-dense nuclear matter which can not be probed in high-energy collision experiments.
Experimental and numerical study of patterns in laryngeal flow
NASA Astrophysics Data System (ADS)
Chisari, N. E.; Artana, G.; Sciamarella, D.
2009-05-01
Unsteady airflow is investigated in a channel with a geometry approximating that of the human larynx. The laryngeal flow is simulated by solving the Navier-Stokes equations for an incompressible two-dimensional viscous fluid, and visualized using the Schlieren technique in an experimental setup consisting of a rigid replica of the larynx, with and without ventricular bands. This study shows the spontaneous formation of vortex couples in several regions of the laryngeal profile, and at different stages of the evolution of the starting glottal jet.
Numerical Study of Nanophotolysis Approach for Breast Cancer
NASA Astrophysics Data System (ADS)
Ashiq, M. G. B.; Saeed, M. A.; Ibrahim, Noorddin; Shahid, M.; Tahir, B. A.
2012-11-01
Laser based cancer therapy of gold nanoparticles targeted breast tumor is an effective modality to kill cancer cells selectively without affecting healthy tissues. Nanophotolysis approach for selective smash up the breast cancer cells is used in the present study. Different parameters concerning nanophotolysis, such as the energy of nanobullets, velocity of the shock front, Coulomb pressure and nanosecond short pulse duration with absorption depth of gold foil have been discussed in detail. Results are suitable for breast tumor size 0.022 cm which approximately exists near the armpit of women.
Numerical study of tandem flapping wings hovering near ground
NASA Astrophysics Data System (ADS)
Srinidhi, N. G.; Vengadesan, S.
2016-11-01
The ground effect on tandem elliptical foils hovering in an inclined stroke plane is studied using immersed boundary projection method. The computations are carried out at a low Reynolds number, Re = 100 , in a quiescent fluid at different heights from the ground. The effect of phase relationship, Ψ, between the fore- and hindwings on force variation is studied. Flow induced by the rebound vortices changes the effective angle of attack (AoA) of the wings and influences the force generation. In some cases, the shed vortices merge with the rebound vortices and create a sustained recirculating vortex which has a significant effect on the force generation of the forewing. In counter-stroking (Ψ =180o) and in-phase stroking (Ψ =0o), the rebound vortices increase the effective AoA of the forewing and increase the lift coefficients; interestingly, for Ψ =90o , such an increase in forces is not observed. Except for the cases with Ψ =90o , time-averaged vertical force coefficient of the forewing is always greater than the hindwing. For selected cases, backward in time finite-time Lyapunov exponent (FTLE) ridges are used in conjunction with vorticity contours to gain more insight into the vorticity dynamics.
A Parametric Numerical Study of Mixing in a Cylindrical Duct
NASA Technical Reports Server (NTRS)
Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.
1992-01-01
The interaction is described of some of the important parameters affecting the mixing process in a quick mixing region of a rich burn/quick mix/lean burn (RQL) combustor. The performance of the quick mixing region is significantly affected by the geometric designs of both the mixing domain and the jet inlet orifices. Several of the important geometric parameters and operating conditions affecting the mixing process were analytically studied. Parameters such as jet-to-mainstream momentum flux ratio (J), mass flow ratio (MR), orifice geometry, orifice orientation, and number of orifices/row (equally spaced) around the circumferential direction were analyzed. Three different sets of orifice shapes were studied: (1) square, (2) elongated slots, and (3) equilateral triangles. Based on the analytical results, the best mixing configuration depends significantly on the penetration depth of the jet to prevent the hot mainstream flow from being entrained behind the orifice. The structure in a circular mixing section is highly weighted toward the outer wall and any mixing structure affecting this area significantly affects the overall results. The increase in the number of orifices per row increases the mixing at higher J conditions. Higher slot slant angles and aspect ratios are generally the best mixing configurations at higher momentum flux ratio (J) conditions. However, the square and triangular shaped orifices were more effective mixing configurations at lower J conditions.
A numerical parametric study on hydrofoil interaction in tandem
NASA Astrophysics Data System (ADS)
Kemal, Omer
2015-01-01
Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid
Numerical study of compressible magnetoconvection with an open transitional boundary
Hanami, H.; Tajima, T.
1990-08-01
We study by computer simulation nonlinear evolution of magnetoconvection in a system with a dynamical open boundary between the convection region and corona of the sun. We study a model in which the fluid is subject to the vertical gravitation, magnetohydrodynamics (MHD), and high stratification, through an MHD code with the MacCormack-Donner cell hybrid scheme in order to well represent convective phenomena. Initially the vertical fluid flux penetrates from the convectively unstable zone at the bottom into the upper diffuse atmosphere. As the instability develops, the magnetic fields are twisted by the convection motion and the folding magnetic fields is observed. When the magnetic pressure is comparable to the thermal pressure in the upper layer of convective zone, strong flux expulsion from the convective cell interior toward the cell boundary appears. Under appropriate conditions our simulation exhibits no shock formation incurred by the fluid convected to the photosphere, in contrast to earlier works with box boundaries. The magnetic field patterns observed are those of concentrated magnetic flux tubes, accumulation of dynamo flux near the bottom boundary, pinched flux near the downdraft region, and the surface movement of magnetic flux toward the downdraft region. Many of these computationally observed features are reminiscent of solar observations of the fluid and magnetic structures of their motions.
Numerical study of the performance of a model scramjet engine
NASA Astrophysics Data System (ADS)
Alhumadi, Ayad
A computational parametric investigation was conducted to study the effect of variations to several geometric parameters on the performance of a two-dimensional model scramjet engine (square cross section area for 3-D model). Geometric parameters included backstep location, height, and angle and fuel injector angle, diameter, and location. Two- and three-dimensional geometries have been studied, using a finite-volume computational fluid dynamics (CFD) code (FLUENT) with structured grids with sizes between 50,000 and 90,000 cells for the two-dimensional geometry and with structured hexahedral grid sizes between 650,000 and 949,725 cells for the three-dimensional geometry. Otherwise, identical values of program inputs were utilized for the two- and three-dimensional simulations. Performance parameters investigated were combustion efficiency, thrust, pressure losses, and the equivalence ratio for the hydrogen-air combustor. A set of values for independent variables was identified which resulted in maximum thrust, minimum pressure losses, and an equivalence ratio close to unity.
Effects of Convective Asymmetries on Hurricane Intensity: A Numerical Study
NASA Technical Reports Server (NTRS)
Wu, Liguang; Braun, Scott A.
2003-01-01
The influence of the uniform large-scale flow, beta effect, and vertical shear of the environmental flow on hurricane intensity is investigated in the context of the induced convective or potential vorticity asymmetries with a hydrostatic primitive equation hurricane model. In agreement with the previous studies, imposing of one of these environmental effects can substantially weaken the simulated tropical cyclones. In response t o the environmental influence, significant asymmetries develop with a structure similar to the spiral bands in real hurricanes, which are dominated by wavenumber-one components. The tendencies of the mean radial, azimuthal winds and temperature associated with the environment-induced convective asymmetries are evaluated respectively. The resulting asymmetries can effectively reduce hurricane intensity by directly producing the negative tendency of the mean tangential wind in the vicinity of the radius of maximum wind, and by weakening the mean radial circulation. The reduction effects are closely associated with the spiral structure of the induced asymmetries. The time lag observed between the imposition of the environmental influence and the resulting rise in the minimum central pressure is the time required for developing the spiral structure. This study also confirms the axisymmetrization process associated with the induced wavenumber-one components of potential vorticity asymmetries, but it exists only within the radius of maximum wind.
A numerical study of gas transport in human lung models
NASA Astrophysics Data System (ADS)
Lin, Ching-Long; Hoffman, Eric A.
2005-04-01
Stable Xenon (Xe) gas has been used as an imaging agent for decades in its radioactive form, is chemically inert, and has been used as a ventilation tracer in its non radioactive form during computerized tomography (CT) imaging. Magnetic resonance imaging (MRI) using hyperpolarized Helium (He) gas and Xe has also emerged as a powerful tool to study regional lung structure and function. However, the present state of knowledge regarding intra-bronchial Xe and He transport properties is incomplete. As the use of these gases rapidly advances, it has become critically important to understand the nature of their transport properties and to, in the process, better understand the role of gas density in general in determining regional distribution of respiratory gases. In this paper, we applied the custom developed characteristic-Galerkin finite element method, which solves the three-dimensional (3D) incompressible variable-density Navier-Stokes equations, to study the transport of Xe and He in the CT-based human lung geometries, especially emulating the washin and washout processes. The realistic lung geometries are segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-064368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. The simulation results show that the gas transport process depends on the gas density and the body posture. The implications of these results on the difference between washin and washout time constants are discussed.
Numerical Study on GRB-Jet Formation in Collapsars
Nagataki, Shigehiro; Takahashi, Rohta; Mizuta, Akira; Takiwaki, Tomoya; /Tokyo U.
2006-08-22
Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time {approx} 10-100 s is required to confirm this effect. It is shown that considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by {nu}{sub e} capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma-rays.
Numerical study of low pressure nuclear thermal rockets
NASA Technical Reports Server (NTRS)
Kim, Suk C.; Stubbs, Robert M.
1992-01-01
The flowfields and performance of low pressure nuclear thermal rockets, which use hydrogen as a propellant, are studied by solving the Navier-Stokes equations and the species equations. A finite-rate chemistry model is used in the species equations, and the turbulence is simulated by the Baldwin-Lomax turbulence model with a modified van Driest's damping constant. The calculated results for the chamber temperatures of 3200 K and 4000 K with a chamber pressure range of 0.1 atm to 6 atm are presented as contours, centerline variations, and exit profiles. The performance values from the present calculations, such as the vacuum specific impulse and thrust, are compared with those from the 1D, inviscid equilibrium and frozen flow code.
Numerical Model Studies of the Martian Mesoscale Circulations
NASA Technical Reports Server (NTRS)
Segal, M.; Arritt, R. W.
1996-01-01
Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.
Numerical study on the initial stage of thrombus growth
NASA Astrophysics Data System (ADS)
Takagi, Shu; , Satoshi, II; Shiozaki, Seiji; Sugiyama, Kazuyasu; Matsumoto, Yoichiro
2011-11-01
Thrombosis is regarded as one of the most important diseases, which cause the myocardial and cerebral infarctions. It is affected from molecular scale protein-protein interaction to continuum scale in blood flow. Initially, platelets start aggregate at the injured vessel wall, where von Willebrand Factor (vWF) is attached. The Glycoprotein, GPIb- αs on platelet membrane starts showing ligand-receptor interaction with this vWF and platelets start aggregating around this spot. In the present study, the molecular scale interaction between vWF and GPIb- α g is taken into account through the kinetic Monte Carlo simulations. Then, the interacting force between platelets and vascular endothelium obtained from kinetic Monte Carlo simulation is coupled with the continuum scale simulation. The results illustrate that platelets are much easier to aggregate on the wall in the presence of red blood cells and the effect of molecular interaction force are quantitatively discussed on the aggregation of platelets.
Numerical Modeling Studies of Wake Vortices: Real Case Simulations
NASA Technical Reports Server (NTRS)
Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.
1999-01-01
A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.
Numerical study of grating-assisted optical diffraction tomography
Chaumet, Patrick C.; Belkebir, Kamal; Sentenac, Anne
2007-07-15
We study the resolution of an optical diffraction tomography system in which the objects are either in an homogeneous background or deposited onto a glass prism, a prism surmounted by a thin metallic film or a prism surmounted by a metallic film covered by a periodically nanostructured dielectric layer. For all these configurations, we present an inversion procedure that yields the map of the relative permittivity of the objects from their diffracted far field. When multiple scattering can be neglected, we show that the homogeneous, prism, and metallic film configurations yield a resolution about {lambda}/4 while the grating substrate yields a resolution better than {lambda}/10. When Born approximation fails, we point out that it is possible to neglect the coupling between the object and the substrate and account solely for the multiple scattering within the objects to obtain a satisfactory reconstruction. Last, we present the robustness of our inversion procedure to noise.
Numerical study of low-current steady arcs
NASA Technical Reports Server (NTRS)
Kim, S. C.; Nagamatsu, H. T.
1992-01-01
The development of a high-efficiency CW YLF laser doped with Er,Tm,Ho: and featuring a strongly focusing resonator that collects a high density of pump power on the active crystal is described. The emission is investigated at 2.06 microns and a tuning range both at liquid-nitrogen (77 K) and at dry-ice (210 K) temperature. The noise characteristics and the long-term power stability of the laser is studied with an eye to employing this source for high-resolution spectroscopy in the 2-micron wavelength region. The detection of several absorption lines of NH3 at low pressure is described. The output power of the laser as a function of the power impinging on the crystal for different transmission of the output mirror is illustrated. The best result obtained is 1.46 W output for 3.2 W of argon pump. The minimum threshold achieved is 3.5 mW with a 1-percent transmission mirror. It is concluded that it is possible to develop a highly efficient Ho:YLF laser featuring low noise and sufficient tunability for high-resolution spectroscopy in the 2-micron region.
A numerical and experimental study of ultrasonic metal welding
NASA Astrophysics Data System (ADS)
Al-Sarraf, Z.; Lucas, M.; Harkness, P.
2012-12-01
Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.
Study of inhomogeneities in turbid media: experimental and numerical results
NASA Astrophysics Data System (ADS)
Carbone, N. A.; di Rocco, Héctor O.; Iriarte, Daniela I.; Pomarico, Juan A.; Ranea-Sandoval, Héctor F.; Pardini, Pamela; Waks-Serra, M. Victoria
2011-08-01
Near Infrared diffuse transmission of light through tissue is a tool for noninvasive imaging for diagnostic purposes. Most of the research has been focused over breast cancer imaging; however, major efforts have been done in cerebral tomography and topography imaging, as well as small animal organs imaging systems. In this work, we investigate the transmitted light profiles when scattering and absorbing cylindrical inhomogeneities are submerged at different depths inside slabs of turbid media. We analyze the transilluminance profiles when the phantom is scanned using both, CW and time resolved detection. The study of the spatial profiles obtained with CW light, shows an apparently contradictory effect when the absorption coefficient of the inclusion is higher than that of the bulk. In this case, the intensity profiles displays a peak of higher intensity where the inclusion is located, as it would be expected for a less absorbing inclusion. The experiments were compared and analyzed with a theoretical model for cylindrical inclusions and Monte Carlo simulations implemented in a Graphic Processing Unit (GPU).
Recent Numerical Studies of the Spin Glass State
NASA Astrophysics Data System (ADS)
Palassini, Matteo
2001-03-01
The nature of the low temperature phase of spin glasses remains a controversial issue, which has recently received considerable renewed interest. Two theories have been extensively discussed: the droplet model and the replica symmetry breaking theory. In this talk, I will discuss some recent investigations of the low temperature phase of Ising spin glasses with short range interactions in three and four dimensions. I will present the results of a new approach [1] based on studying changes in the ground state when an external perturbation is applied, using efficient optimization algorithms, as well as the results of Monte Carlo simulations at very low temperatures [2]. I will compare these results with several theoretical scenarios: the droplet model, the replica symmetry breaking theory, and a new intermediate scenario in which there are large scale excitations which cost a finite energy in the thermodynamic limit, but whose surface has a vanishing density. [1] M.Palassini and A.P. Young, Phys. Rev. Lett. 85, 3017 (2000); Phys. Rev. Lett. 83, 5126 (1999); and unpublished. [2] H.G. Katzgraber, M.Palassini and A.P. Young, cond-mat/0007113; M.Palassini and A.P.Young, unpublished.
[Numerical simulation study of SOA in Pearl River Delta region].
Cheng, Yan-li; Li, Tian-tian; Bai, Yu-hua; Li, Jin-long; Liu, Zhao-rong; Wang, Xue-song
2009-12-01
Secondary organic aerosols (SOA) is an important component of the atmospheric particle pollution, thus, determining the status and sources of SOA pollution is the premise of deeply understanding the occurrence, development law and the influence factors of the atmospheric particle pollution. Based on the pollution sources and meteorological data of Pearl River Delta region, the study used the two-dimensional model coupled with SOA module to stimulate the status and source of SOA pollution in regional scale. The results show: the generation of SOA presents obvious characteristics of photochemical reaction, and the high concentration appears at about 14:00; SOA concentration is high in some areas of Guangshou and Dongguan with large pollution source-emission, and it is also high in some areas of Zhongshan, Zhuhai and Jiangmen which are at downwind position of Guangzhou and Dongguan. Contribution ratios of several main pollution sources to SOA are: biogenic sources 72.6%, mobile sources 30.7%, point sources 12%, solvent and oil paint sources 12%, surface sources less than 5% respectively.
Numerical study of oxygen transport in a carotid bifurcation
NASA Astrophysics Data System (ADS)
Tada, Shigeru
2010-07-01
This study investigates the oxygen mass transport in the region around the human carotid bifurcation, particularly addressing the effects of bifurcation geometry and pulsatile blood flow on the oxygen transport between the blood flow and artery wall tissue, coupled with the metabolic oxygen consumption and oxygen diffusion in the artery wall tissue. The temporal variations and spatial distributions of the oxygen tension are predicted quantitatively using a geometric model of the human carotid bifurcation and realistic blood flow waveforms. Results reveal that the flow separation at the outside wall of the sinus of the internal carotid artery (ICA) can markedly alter the flow pattern, oxygen tension and the oxygen wall flux. Results also clarify that the flow unsteadiness has a secondary effect on the oxygen tension inside the wall. The non-dimensional oxygen flux, the Sherwood number Sh, at the outside wall of the ICA sinus, takes markedly lower values of about 45 than at other sites because the rates of oxygen transport by the convective flow are reduced at the outside wall of the ICA sinus. The transverse distributions of the oxygen tension inside the artery wall show parabolic profiles having minima in the middle of the wall thickness, with the lowest value of 35 mmHg. These predicted distributions of the oxygen tension inside the wall closely resemble those obtained from experiments. The results demonstrate that hypoxic zones appear inside the artery walls at locations where atherosclerotic lesions are prone to develop.
Numerical study of persistence in models with absorbing states
NASA Astrophysics Data System (ADS)
Albano, Ezequiel V.; Muñoz, Miguel A.
2001-03-01
Extensive Monte Carlo simulations are performed in order to evaluate both the local (θl) and global (θg) persistence exponents in the Ziff-Gulari-Barshad (ZGB) [Phys. Rev. Lett. 56, 2553 (1986)] irreversible reaction model. At the second-order irreversible phase transition (IPT) we find that both the local and the global persistence exhibit power-law behavior with a crossover between two different time regimes. On the other hand, at the ZGB first-order IPT, active sites are short lived and the persistence decays more abruptly; it is not clear whether it shows power-law behavior or not. In order to analyze universality issues, we have also studied another model with absorbing states, the contact process, and evaluated the local persistence exponent in dimensions from 1 to 4. A striking apparent superuniversality is reported: the local persistence exponent seems to coincide in both one- and two-dimensional systems. Some other aspects of persistence in systems with absorbing states are also analyzed.
Numerical study of persistence in models with absorbing states.
Albano, E V; Muñoz, M A
2001-03-01
Extensive Monte Carlo simulations are performed in order to evaluate both the local (straight theta(l)) and global (straight theta(g)) persistence exponents in the Ziff-Gulari-Barshad (ZGB) [Phys. Rev. Lett. 56, 2553 (1986)] irreversible reaction model. At the second-order irreversible phase transition (IPT) we find that both the local and the global persistence exhibit power-law behavior with a crossover between two different time regimes. On the other hand, at the ZGB first-order IPT, active sites are short lived and the persistence decays more abruptly; it is not clear whether it shows power-law behavior or not. In order to analyze universality issues, we have also studied another model with absorbing states, the contact process, and evaluated the local persistence exponent in dimensions from 1 to 4. A striking apparent superuniversality is reported: the local persistence exponent seems to coincide in both one- and two-dimensional systems. Some other aspects of persistence in systems with absorbing states are also analyzed.
Numerical study of 1998 late summer flood in East Asia
NASA Astrophysics Data System (ADS)
Sun, Wen-Yih; Min, Ki-Hong; Chern, Jiun-Dar
2011-02-01
The Purdue Regional Model (PRM) is applied to study the evolution of regional climate and weather systems during the heavy precipitation over Korea and China between 30 July and 18 August 1998. The results show that heavy rainfall along the Mei-yu and Changma front was due to the combination of: (1) an anomalous 850 hPa subtropical high, (2) a stronger baroclinicity around 40°N over eastern Asia and a low pressure located to the north of the front, and (3) an excessive evaporation from abnormal wet, warm land. The precipitation ended by 18 August when the subtropical high had retreated and the low pressure in Mongolia moved away from Asia continent. The model reproduced in great detail the observed baroclinic waves to the north, subtropical high and low-level jet to the south, and the front with heavy precipitation extending from southern China, and the Korean peninsula to Japan. High correlations are found for mass, momentum, and moisture fields between model simulation and the European Center for Medium Range Weather Forecast (ECMWF) reanalysis for the 20-day means.
Experimental and Numerical Study on Blanking Process with Negative Clearance
NASA Astrophysics Data System (ADS)
Hirota, Kenji; Yanaga, Hiroki; Fukushima, Katsunori
This study summarizes the characteristics of blanking behavior with a negative clearance. Several experiments were performed for two aluminum sheets over a wide range of clearances including negative values. Blanking with negatively large clearances was found to produce fine cut edges with less roll-over and no fracture zone even for a brittle material. Corresponding simulations were performed using the Ayada's criterion for predicting ductile fracture initiation. Each zone of blanked part edges such as roll-over and fractured zone agreed well with that obtained in the experiments except a few cases accompanied by secondary shear. The reason for prevention of fracture by using negative clearances was explained with the change of the damage value during the process; the damage value was kept low throughout the blanking operation since the mean stress dominating the damage value became compressive around the die edge. Influences of blanking parameters on load-stroke curves were also investigated. The curves for negative clearances showed gradual increase in load toward the end of stroke. The earlier fracture initiated, the earlier the load reached a peak. Simulated curves showed the same tendency and in good agreement with the experimental ones quantitatively.
Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies.
Weiner, Myra L
2014-03-01
Carrageenan (CGN) is a seaweed-derived high molecular weight (Mw) hydrocolloid, primarily used as a stabilizer and thickener in food. The safety of CGN regarding its use in food is reviewed. Based on experimental studies in animals, ingested CGN is excreted quantitatively in the feces. Studies have shown that CGN is not significantly degraded by low gastric pH or microflora in the gastrointestinal (GI) tract. Due to its Mw, structure and its stability when bound to protein, CGN is not significantly absorbed or metabolized. CGN also does not significantly affect the absorption of nutrients. Subchronic and chronic feeding studies in rodents indicate that CGN at doses up to 5% in the diet does not induce any toxicological effects other than soft stools or diarrhea, which are a common effect for non-digestible high molecular weight compounds. Review of several studies from numerous species indicates that food grade CGN does not produce intestinal ulceration at doses up to 5% in the diet. Effects of CGN on the immune system following parenteral administration are well known, but not relevant to food additive uses. The majority of the studies evaluating the immunotoxicity potential were conducted with CGN administered in drinking water or by oral gavage where CGN exists in a random, open structured molecular conformation, particularly the lambda form; hence, it has more exposure to the intestinal mucosa than when bound to protein in food. Based on the many animal subchronic and chronic toxicity studies, CGN has not been found to affect the immune system, as judged by lack of effects on organ histopathology, clinical chemistry, hematology, normal health, and the lack of target organ toxicities. In these studies, animals consumed CGN at orders of magnitude above levels of CGN in the human diet: ≥1000 mg/kg/d in animals compared to 18-40 mg/kg/d estimated in the human diet. Dietary CGN has been shown to lack carcinogenic, tumor promoter, genotoxic, developmental, and
Numerical studies of Siberian snakes and spin rotators for RHIC
Luccio, A.
1995-04-17
For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180{degrees} apart and with their axis of spin precession at 90{degrees} to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis.
A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling.
Boileau, Etienne; Nithiarasu, Perumal; Blanco, Pablo J; Müller, Lucas O; Fossan, Fredrik Eikeland; Hellevik, Leif Rune; Donders, Wouter P; Huberts, Wouter; Willemet, Marie; Alastruey, Jordi
2015-10-01
Haemodynamical simulations using one-dimensional (1D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. Recent interest in verifying 1D numerical schemes has led to the development of alternative experimental setups and the use of three-dimensional numerical models to acquire data not easily measured in vivo. In most studies to date, only one particular 1D scheme is tested. In this paper, we present a systematic comparison of six commonly used numerical schemes for 1D blood flow modelling: discontinuous Galerkin, locally conservative Galerkin, Galerkin least-squares finite element method, finite volume method, finite difference MacCormack method and a simplified trapezium rule method. Comparisons are made in a series of six benchmark test cases with an increasing degree of complexity. The accuracy of the numerical schemes is assessed by comparison with theoretical results, three-dimensional numerical data in compatible domains with distensible walls or experimental data in a network of silicone tubes. Results show a good agreement among all numerical schemes and their ability to capture the main features of pressure, flow and area waveforms in large arteries. All the information used in this study, including the input data for all benchmark cases, experimental data where available and numerical solutions for each scheme, is made publicly available online, providing a comprehensive reference data set to support the development of 1D models and numerical schemes.
Analytical and numerical studies of dark matter halos
NASA Astrophysics Data System (ADS)
Austin, Crystal Gayle
This dissertation focuses on the evolution and structure of dark matter halos of galaxies, groups and clusters of galaxies. I explore the dependence of the final halo's properties on the initial conditions and the physical processes that guide the halo to equilibrium, with special focus on the power-law nature of the r/s 3 profile, where r is the density profile and s is the velocity dispersion profile. As the astronomy community does not yet fully understand these processes, this research expands our understanding of collisionless, gravitationally-interacting systems. In the initial chapters, I study the collisionless semi-analytic halo simulations and show that the final properties are sensitive to the initial conditions, such as the power-spectra filtering scale, the secondary velocities' magnitudes and directions, and the accretion rate. The general conclusions are that semi-analytic halos are in hydrostatic equilibrium and have a power-law r/s 3 profile. If there were discontinuities in the initial conditions, the power-law feature in r/s 3 breaks. Because of this, hydrostatic equilibrium is a less restrictive condition than the r/s 3 profile. These halos can recover from moderate discontinuities by either correcting a single profile by sacrificing other quantities or by sufficient post-accretion. Finally, I compare collisionless semi-analytic and N-body simulations directly. This novel comparison is useful because these techniques use different physics to collapse the proto-halo. The physical differences between these two methods are used to determine causes of the final halo profiles. Specifically, I find the NFW density profile and power-law r/s 3 are due to the slow rate of evolution, which is determined from the initial conditions and cosmology. The density slope-velocity anisotropy relationship is dependent, rather, on the physical processes (notably the radial orbit instability) and three-dimensional evolution used to collapse the proto-halos. We also
NASA Astrophysics Data System (ADS)
Shokrollahi, Mahvash; Semnani, Dariush; Morshed, Mohammad; Rezaei, Behzad; Mirsoofian, Mehdi
2013-12-01
PVA-TiO2 nanocomposite polymer electrolytes (PEs) were produced with different amounts of TiO2 (0, 5, 10, 15, and 20 wt.%) using the electrospinning process. Morphological studies of PVA-TiO2 nanofibers were accomplished with SEM. PVA-TiO2 membranes exhibited a high porosity of 79-91%. The impedance results showed that incorporation of TiO2 into the nanofiber membrane improved its ionic conductivity from 0.7 × 10-5 to 2.5 × 10-5 S/cm at room temperature. Nanofiber PEs showed very good reversibility and electrochemical stability up to 4.7 V. Diffusion coefficient of Li ion into PVA-TiO2 nanocomposite PEs was estimated by using a complex numerical model of partial differential equation for evaluation of ion transmission. Diffusion coefficient of PVA-TiO2 PEs containing different amounts of TiO2 (0, 5, 10, 15, and 20 wt.%) increased with increasing the nanoparticles content.
Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes
Boehm, H.; Braun-Unkhoff, M.
2008-04-15
This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased
A Numerical Study of Resistivity and Hall Effects for a Compressible MHD Model
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjogreen, B.
2005-01-01
The effect of resistive, Hall, and viscous terms on the flow structure compared with compressible ideal MHD is studied numerically for a one-fluid non-ideal MHD model. The goal of the present study is to shed some light on the emerging area of non-ideal MHD modeling and simulation. Numerical experiments are performed on a hypersonic blunt body flow with future application to plasma aerodynamics flow control in reentry vehicles. Numerical experiments are also performed on a magnetized time-developing mixing layer with possible application to magnetic/turbulence mixing.
A study of the effects of numerical dissipation on the calculation of supersonic separated flows
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Anderson, J. D., Jr.
1985-01-01
An extensive investigation of the effect of numerical dissipation on the calculation of supersonic, separated flow over a rearward-facing step is carried out. The complete two-dimensional Navier-Stokes equations are solved by means of MacCormack's standard explicit, unsplit, time-dependent, finite difference method. A fourth-order numerical dissipation term is added explicitly. The magnitude of this term is progressively varied, and its consequences on the flowfield calculations are identified and studied. For a cold-wall, heat transfer case, numerical dissipation had a major effect on the results, particularly in the separated region. However, rather dramatically for an adiabatic wall case, numerical dissipation had virtually no effect on the results. The role of grid size on both the influence of numerical dissipation, and on the overall accuracy of the separated flow solutions is discussed.
Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation
NASA Astrophysics Data System (ADS)
Wardhani, Puteri Kusuma; Watanabe, Masaji
2016-02-01
The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.
Study of wood plastic composite in the presence of nitrogen containing additives
NASA Astrophysics Data System (ADS)
Ali, K. M. Idriss; Khan, Mubarak A.; Husain, M. M.
1994-10-01
Effect of nitrogen-containing additives in the study of wood plastic composites of MMA with simul and mango wood of Bangladesh has been investigated. Nine different additives were used and the additives containing carboamide group induce the highest tensile strength to the composite.
Asymmetric Processing of Numerical and Nonnumerical Magnitudes in the Brain: An fMRI Study.
Leibovich, Tali; Vogel, Stephan E; Henik, Avishai; Ansari, Daniel
2016-01-01
It is well established that, when comparing nonsymbolic magnitudes (e.g., dot arrays), adults can use both numerical (i.e., the number of items) and nonnumerical (density, total surface areas, etc.) magnitudes. It is less clear which of these magnitudes is more salient or processed more automatically. In this fMRI study, we used a nonsymbolic comparison task to ask if different brain areas are responsible for the automatic processing of numerical and nonnumerical magnitudes, when participants were instructed to attend to either the numerical or the nonnumerical magnitudes of the same stimuli. An interaction of task (numerical vs. nonnumerical) and congruity (congruent vs. incongruent) was found in the right TPJ. Specifically, this brain region was more strongly activated during numerical processing when the nonnumerical magnitudes were negatively correlated with numerosity (incongruent trials). In contrast, such an interference effect was not evident during nonnumerical processing when the task-irrelevant numerical magnitude was incongruent. In view of the role of the right TPJ in the control of stimulus-driven attention, we argue that these data demonstrate that the processing of nonnumerical magnitudes is more automatic than that of numerical magnitudes and that, therefore, the influence of numerical and nonnumerical variables on each other is asymmetrical.
Numerical water quality model study for the Los Angeles Harbor Pier 400 project. Final report
Hall, R.W.
1995-01-01
The Port of Los Angeles plans to construct an additional port facility referred to as Pier 400. The Pier 400 harbor facility may affect water quality by changing the tidal circulation and flushing patterns. Numerical water quality model simulations were used to compare flushing and dissolved oxygen (DO) resources at existing conditions and two stages of plan implementation. The flushing simulations computed the transport and dilution of a conservative tracer inserted into various regions of the harbor. The flushing studies provided a qualitative comparison between plans where a decrease in flushing rate prolongs the period of time that oxygen-demanding substances exert their influence on the DO concentration. The water quality simulations included the variables temperature, phytoplankton, phosphate, nitrate, biochemical oxygen demand, and DO, and were conducted for the period August 1-31, 1987, where a complete set of field data were available to establish initial and boundary conditions and to calibrate the model under existing conditions. Two flushing studies were conducted: injection of tracer into all regions interior to the Federal breakwaters, and injection. of tracer only in the region east of the Stage 1 access causeway. The first flushing study revealed that the two stages of plan implementation inhibited flushing in the LA Outer Harbor, Fish Harbor, Seaplane Lagoon, and Main Channel. The second flushing study showed that the access corridor prevented advection to areas west of the causeway; the dilution rate decreased by an order of three.
Field, Laboratory and Numerical Study of Turbulent Dispersion in Built Environments
NASA Astrophysics Data System (ADS)
Princevac, M.; Pan, H.; Bartolome, C.
2009-09-01
Field measurements were conducted in seven southern Californian cities. These included SF6 tracer studies in Wilmington and Palm Springs and traffic related particulate measurements in Los Angeles, Long Beach, Anaheim, Pasadena and Huntington Beach. Urban areas were selected to cover five typical building arrangements which are 1) low density settlement, 2) low-rise settlement, 3) mid-rise settlement, 4) high-rise settlement, and 5) strip mall with surface parking. In addition to SF6 and particulate concentration extensive micrometeorological measurements were performed at each site. The field experiments were accompanied with systematical laboratory modeling in a water channel. Detailed velocity and concentration fields within model urban settings were simultaneously measured by Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) system. Model buildings were created from transparent acrylic blocks to allow for the whole plane measurements inside the urban canopy. Complexity of modeled urban areas ranged from uniform cubical arrays to scaled downtowns of Los Angeles, Long Beach and Huntington Beach. Numerical simulations of flows and dispersion in these urban areas were performed using three fundamentally different models: 1) AERMOD - similarity based US EPA regulatory model, 2) CFD k-e model, and 3) QUIC - semi empirical, fast response model. Performance of each numerical model will be discussed and the advantages and challenges of utilizing laboratory experiments to model urban flows will be presented. Surface energy balance components, measured via net radiometer, krypton hygrometer, sonic anemometer and heat flux plates were utilized to develop new models for estimates of sensible, latent and ground fluxes over different surfaces and surroundings. This extensive study for the first time explained phenomena of lateral channeling in regular arrays which is responsible for a sudden plume spread at the entrance of the obstacle array.
Numerical comparison of discrete Kalman filter algorithms - Orbit determination case study
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Thornton, C. L.
1976-01-01
Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.
NASA Technical Reports Server (NTRS)
Chen, Kuo-Huey; Kelecy, Franklyn J.; Pletcher, Richard H.
1992-01-01
A numerical and experimental study of three dimensional liquid sloshing inside a partially-filled spherical container undergoing an orbital rotating motion is described. Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a gradual spin-up from rest are compared with experimental data obtained using a rotating test rig fitted with two liquid-filled spherical tanks. Data gathered from several experiments are reduced in terms of a dimensionless free surface height for comparison with transient results from the numerical simulations. The numerical solutions are found to compare favorably with the experimental data.
NASA Technical Reports Server (NTRS)
Chen, J. -Y.; Echekki, T.
1999-01-01
Triple flames arise in a number of practical configurations where fuel and oxidizer are partially premixed, such as in the base of a lifted jet flame. Past experimental studies, theoretical analyses, and numerical modeling of triple flames suggested the potential role of triple flames in stabilizing turbulent flames and in promoting flame propagation. From recent numerical simulations of laminar triple flames, a strong influence of differential diffusion among species and heat on the triple flame structure has been gradually appreciated. This paper reports preliminary numerical results on the influence of gravity and differential diffusion effects on the structure and dynamics of triple flames with a one-step global irreversible chemistry model.
Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li
2014-09-01
Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing.
Review of The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing
Bailey, David
2005-01-25
In the January 2002 edition of SIAM News, Nick Trefethen announced the '$100, 100-Digit Challenge'. In this note he presented ten easy-to-state but hard-to-solve problems of numerical analysis, and challenged readers to find each answer to ten-digit accuracy. Trefethen closed with the enticing comment: 'Hint: They're hard! If anyone gets 50 digits in total, I will be impressed.' This challenge obviously struck a chord in hundreds of numerical mathematicians worldwide, as 94 teams from 25 nations later submitted entries. Many of these submissions exceeded the target of 50 correct digits; in fact, 20 teams achieved a perfect score of 100 correct digits. Trefethen had offered $100 for the best submission. Given the overwhelming response, a generous donor (William Browning, founder of Applied Mathematics, Inc.) provided additional funds to provide a $100 award to each of the 20 winning teams. Soon after the results were out, four participants, each from a winning team, got together and agreed to write a book about the problems and their solutions. The team is truly international: Bornemann is from Germany, Laurie is from South Africa, Wagon is from the USA, and Waldvogel is from Switzerland. This book provides some mathematical background for each problem, and then shows in detail how each of them can be solved. In fact, multiple solution techniques are mentioned in each case. The book describes how to extend these solutions to much larger problems and much higher numeric precision (hundreds or thousands of digit accuracy). The authors also show how to compute error bounds for the results, so that one can say with confidence that one's results are accurate to the level stated. Numerous numerical software tools are demonstrated in the process, including the commercial products Mathematica, Maple and Matlab. Computer programs that perform many of the algorithms mentioned in the book are provided, both in an appendix to the book and on a website. In the process, the
A numerical study of mixing in supersonic combustors with hypermixing injectors
NASA Technical Reports Server (NTRS)
Lee, J.
1992-01-01
A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Averaged Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.
Impact of 3D root uptake on solute transport: a numerical study
NASA Astrophysics Data System (ADS)
Schröder, N.; Javaux, M.; Vanderborght, J.; Steffen, B.; Vereecken, H.
2011-12-01
Plant transpiration is an important component of the hydrological cycle. Through root water uptake, plants do not only affect the 3D soil water flow velocity distribution, but also solute movement in soil. This numerical study aims at investigating how solute fate is impacted by root uptake using the 3D biophysical model R-SWMS (Javaux et al., 2008). This model solves the Richards equation in 3D in the soil and the flow equation within the plant root xylem vessels. Furthermore, for solute transport simulations, the 3D particle tracker PARTRACE (Bechtold et al., 2011) was used. . We generated 3D virtual steady-state breakthrough curves (BTC) experiments in soils with transpiring plants. The averaged BTCs were then fitted with a 1D numerical flow model under steady-state conditions to obtain apparent CDE parameters. Two types of root architecture, a fibrous and a taprooted structure, were compared in virtual 3D experiments. The solute uptake type or the transpiration rate were also modified and we analyzed how these parameters affected apparent disperisivity and velocity profiles. Our simulation results show, that both, apparent velocity and dispersivity length are affected by water and solute root uptake. In addition, under high exclusion processes (slight or no active uptake), solute accumulates around roots and generates a long tailing to the breakthrough curves, which cannot be reproduced by 1D models that simulate root water uptake with solute exclusion. This observation may have an important impact on how to model pollutant mass transfer to groundwater at larger scales. Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 7:1079-1088.doi: 10.2136/vzj2007.0115. Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, P.A. Ferre, and H. Vereecken. 2011. Near-surface solute redistribution during evaporation. Submitted to Geophys. Res. Lett
Influence of in situ stress variations on acoustic emissions: a numerical study
NASA Astrophysics Data System (ADS)
Zhao, Qi; Tisato, Nicola; Grasselli, Giovanni; Mahabadi, Omid K.; Lisjak, Andrea; Liu, Qinya
2015-11-01
The study of acoustic emissions (AEs) is of paramount importance to understand rock deformation processes. AE recorded during laboratory experiments mimics, in a controlled geometry and environment, natural and induced seismicity. However, these experiments are destructive, time consuming and require a significant amount of resources. Lately, significant progresses have been made in numerical simulations of rock failure processes, providing detailed insights into AE. We utilized the 2-D combined finite-discrete element method to simulate the deformation of Stanstead Granite under varying confining pressure (Pc) and demonstrated that the increase of confining pressure, Pc, (i) shifts failures from tensile towards shear dominated and (ii) enhance the macroscopic ductility. We quantitatively describe the AE activity associated with the fracturing process by assessing the spatial fractal dimension (D-value), the temporal distribution (AE rate) and the slope of the frequency-magnitude distribution (b-value). Based on the evaluation of D-value and AE rate, we defined two distinct deformation phases: Phase I and Phase II. The influence of Pc on the spatial distribution of AE varies according to the deformation phase: for increasing Pc, D-value decreases and increases during Phases I and II, respectively. In addition, b-value decreases with increasing Pc during the entire experiment. Our numerical results show for the first time that variations of D- and b-values as a function of in situ stress can be simulated using the combined finite-discrete element approach. We demonstrate that the examination of seismicity should be carried out carefully, taking into consideration the deformation phase and in situ stress conditions.
A study of numerical methods for hyperbolic conservation laws with stiff source terms
NASA Technical Reports Server (NTRS)
Leveque, R. J.; Yee, H. C.
1988-01-01
The proper modeling of nonequilibrium gas dynamics is required in certain regimes of hypersonic flow. For inviscid flow this gives a system of conservation laws coupled with source terms representing the chemistry. Often a wide range of time scales is present in the problem, leading to numerical difficulties as in stiff systems of ordinary differential equations. Stability can be achieved by using implicit methods, but other numerical difficulties are observed. The behavior of typical numerical methods on a simple advection equation with a parameter-dependent source term was studied. Two approaches to incorporate the source term were utilized: MacCormack type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps. Various comparisons over a wide range of parameter values were made. In the stiff case where the solution contains discontinuities, incorrect numerical propagation speeds are observed with all of the methods considered. This phenomenon is studied and explained.
Numerical study on the drag coefficient for an ellipsoidal bubble with fore-aft asymmetry
NASA Astrophysics Data System (ADS)
Sanada, Toshiyuki; Takagi, Shu; Saito, Takayuki
2008-11-01
We evaluate the drag coefficient for ellipsoidal clean bubbles rising steadily at high Re. Flow fields and bubble shapes are obtained using a numerical simulation. The method is based on a finite-difference solution of the equation s of motion on an orthogonal curvilinear coordinate system [Takagi et al., Phys. Fluids (1994), Ryskin & Leal, J. Fluid Mech. (1984)]. The degree of fore-aft asymmetric bubble shape is quantitatively evaluated using Legendre polynomials. The numerically obtained drag coefficients are compared with those of experimental results. In addition, by comparing the drag coefficients with those for symmetric ellipsoidal bubble obtained analytically by Moore [J. Fluid Mech. (1965)], and via numerical simulation by Blanco & Magnaudet [Phys. Fluids (1995)], the effect of fore-aft asymmetry on a drag coefficient is evaluated. Furthermore the formation of the standing eddy at the rear of deformable bubbles is discussed.
Numerical study of superradiant instability for charged stringy black hole-mirror system
NASA Astrophysics Data System (ADS)
Li, Ran; Zhao, Junkun
2015-01-01
We numerically study the superradiant instability of charged massless scalar field in the background of charged stringy black hole with mirror-like boundary condition. We compare the numerical result with the previous analytical result and show the dependencies of this instability upon various values of black hole charge Q, scalar field charge q, and mirror radius rm. Especially, we have observed that imaginary part of BQN frequencies grows with the scalar field charge q rapidly.
Numerical and experimental study on the flow distribution in a water manifold
NASA Astrophysics Data System (ADS)
Min, Gwansik; Jong Lee, Pil; Kang, Jong Hoon
2016-03-01
This study presents water distribution analysis of the device for spraying cooling water through specific nozzles numerically and experimentally. Numerical analysis was performed using the 3-D incompressible, multi-phase flow model, for different Reynolds numbers of 4 × 105, 8 × 105. Experimental analysis was performed at real-size, under the same conditions. The calculated results and the measured results for the distribution of flow were matched relatively well. The distribution of the nozzle flow depends on the Reynolds number.
Experimental and numerical study of a bird strike against a windshield
NASA Astrophysics Data System (ADS)
Plassard, Fabien; Hereil, Pierre-Louis; Joseph, Pierric; Mespoulet, Jérôme
2015-09-01
This paper describes a bird strike study performed at THIOT-INGENIERIE laboratory. For aeronautic requirements, the 220 mm version of the gas gun TITAN is used to perform bird strike on instrumented structures. This paper shows a bird strike on a polycarbonate windshield instrumented with high speed cameras, velocity and force sensors. A crossed work with numerical simulation has been performed to design target support and diagnostic tools. It permits also to demonstrate reliability of the numerical tools.
The numerical study of first order wetting transition with two defect lines
NASA Astrophysics Data System (ADS)
Wu, X. T.
2016-09-01
The first order wetting transition with two defect lines, one near a wall and another at a distance N1, in the d = 2 Ising model is studied by the bond propagation algorithm. The numerical calculations are carried out on very large lattices with size up to 1602 × 160. The finite size effects of the first order transition in that model are discussed. The magnetization profile is also calculated. The numerical results agree with the exact results very well.
Numerical simulation study of polar lows in Russian Arctic: dynamical characteristics
NASA Astrophysics Data System (ADS)
Verezemskaya, Polina; Baranyuk, Anastasia; Stepanenko, Victor
2015-04-01
Polar Lows (hereafter PL) are intensive mesoscale cyclones, appearing above the sea surface, usually behind the arctic front and characterized by severe weather conditions [1]. All in consequence of the global warming PLs started to emerge in the arctic water area as well - in summer and autumn. The research goal is to examine PLs by considering multisensory data and the resulting numerical mesoscale model. The main purpose was to realize which conditions induce PL development in such thermodynamically unusual season and region as Kara sea. In order to conduct the analysis we used visible and infrared images from MODIS (Aqua). Atmospheric water vapor V, cloud liquid water Q content and surface wind fields W were resampled by examining AMSR-E microwave radiometer data (Aqua)[2], the last one was additionally extracted from QuickSCAT scatterometer. We have selected some PL cases in Kara sea, appeared in autumn of 2007-2008. Life span of the PL was between 24 to 36 hours. Vortexes' characteristics were: W from 15m/s, Q and V values: 0.08-0.11 kg/m2 and 8-15 kg/m2 relatively. Numerical experiments were carried out with Weather Research and Forecasting model (WRF), which was installed on supercomputer "Lomonosov" of Research Computing Center of Moscow State University [3]. As initial conditions was used reanalysis data ERA-Interim from European Centre for Medium-Range Weather Forecasts. Numerical experiments were made with 5 km spatial resolution, with Goddard center microphysical parameterization and explicit convection simulation. Modeling fields were compared with satellite observations and shown good accordance. Than dynamic characteristics were analyzed: evolution of potential and absolute vorticity [4], surface heat and momentum fluxes, and CAPE and WISHE mechanisms realization. 1. Polar lows, J. Turner, E.A. Rasmussen, 612, Cambridge University press, Cambridge, 2003. 2. Zabolotskikh, E. V., Mitnik, L. M., & Chapron, B. (2013). New approach for severe marine
A numerical study on the dynamics of droplet formation in a microfluidic double T-junction
Dang, Trung-Dung; Byon, Chan; Joo, Sang Woo
2015-01-01
In this study, droplet formations in microfluidic double T-junctions (MFDTD) are investigated based on a two-dimensional numerical model with volume of fluid method. Parametric ranges for generating alternating droplet formation (ADF) are identified. A physical background responsible for the ADF is suggested by analyzing the dynamical stability of flow system. Since the phase discrepancy between dispersed flows is mainly caused by non-symmetrical breaking of merging droplet, merging regime becomes the alternating regime at appropriate conditions. In addition, the effects of channel geometries on droplet formation are studied in terms of relative channel width. The predicted results show that the ADF region is shifted toward lower capillary numbers when channel width ratio is less than unity. The alternating droplet size increases with the increase of channel width ratio. When this ratio reaches unity, alternating droplets can be formed at very high water fraction (wf = 0.8). The droplet formation in MFDTD depends significantly on the viscosity ratio, and the droplet size in ADF decreases with the increase of the viscosity ratio. The understanding of underlying physics of the ADF phenomenon is useful for many applications, including nanoparticle synthesis with different concentrations, hydrogel bead generation, and cell transplantation in biomedical therapy. PMID:25825622
Numerical Study Comparing RANS and LES Approaches on a Circulation Control Airfoil
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Nishino, Takafumi
2011-01-01
A numerical study over a nominally two-dimensional circulation control airfoil is performed using a large-eddy simulation code and two Reynolds-averaged Navier-Stokes codes. Different Coanda jet blowing conditions are investigated. In addition to investigating the influence of grid density, a comparison is made between incompressible and compressible flow solvers. The incompressible equations are found to yield negligible differences from the compressible equations up to at least a jet exit Mach number of 0.64. The effects of different turbulence models are also studied. Models that do not account for streamline curvature effects tend to predict jet separation from the Coanda surface too late, and can produce non-physical solutions at high blowing rates. Three different turbulence models that account for streamline curvature are compared with each other and with large eddy simulation solutions. All three models are found to predict the Coanda jet separation location reasonably well, but one of the models predicts specific flow field details near the Coanda surface prior to separation much better than the other two. All Reynolds-averaged Navier-Stokes computations produce higher circulation than large eddy simulation computations, with different stagnation point location and greater flow acceleration around the nose onto the upper surface. The precise reasons for the higher circulation are not clear, although it is not solely a function of predicting the jet separation location correctly.
3D Numerical Study of the Shear Rheology of a Semi-dilute Viscoelastic Suspension
NASA Astrophysics Data System (ADS)
Yang, Mengfei; Krishnan, Sreenath; Shaqfeh, Eric
2016-11-01
The stress in suspensions of rigid particles in polymer solutions is of considerable interest in applications such as manufacturing processes and fracturing technologies. Deriving an analytic expression for the material functions of a viscoelastic suspension under shear is difficult due to the nonlinear particle-fluid and particle-particle interactions, and theoretical studies have been limited to dilute suspensions at low shear Weissenberg number (Wi) or low polymer concentrations. Previously, we performed 3D single-particle simulations and showed that the results agreed well with the existing theories in the appropriate parameter regimes. We found that suspensions in constant-viscosity elastic fluids shear-thicken over a range of Wi and their material properties plateau at higher Wi. However, discrepancies between simulation and existing experimental measurements for volume fractions as low as 2.5% suggested that interparticle hydrodynamic interactions could not be neglected. We now present 3D high fidelity numerical simulations of multiple spheres freely suspended in a sheared viscoelastic fluid using an immersed boundary framework to study the relationship between hydrodynamic interactions, particle structure formation, and the bulk rheology of viscoelastic suspensions. We observe that in a non-shear thinning elastic fluid, particles do not "chain", but their interactions induce additional polymer stresses in the fluid which contribute to a stronger particle effect than predicted in the dilute limit.
Biodegradation in numerical basin modelling: a case study from the Gifhorn Trough, N-Germany
NASA Astrophysics Data System (ADS)
Blumenstein, I. O.; Krooss, B. M.; di Primio, R.; Rottke, W.; Müller, E.; Westerlage, C.; Littke, R.
2008-09-01
A mass balance concept based on petroleum compositional description using 14 individual compound groups has been developed to reproduce the process of in-reservoir petroleum biodegradation. Individual compound groups have been attributed different “biodegradabilities” and biodegradation rates to account for observed differences in their susceptibility to biodegradation. Petroleum compositional information is derived from basin modelling, in addition to temperature histories, filling rates and volumetric information. This new method has been subsequently applied to model the biodegradation processes in a petroleum system in the North German Basin. The case study area is situated in the Gifhorn Trough, where Jurassic reservoirs contain oils of variable API gravity (24°-33°), although present depth and temperature are similar. Numerical modelling revealed, however, that the filling histories of the individual reservoir structures differ considerably. Taking into account filling and temperature history of the reservoir structures, the newly developed biodegradation algorithm Biodexx predicted compositional data and API gravities similar to those observed in the study area, whereas earlier biodegradation approaches such as the biodegradation index (BDI) by Yu et al. (2002) did not reproduce the different biodegradation levels in the two investigated fields.
Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.
2013-01-01
This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.
A numerical study of the direct contact condensation on a horizontal surface
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.
1991-01-01
The results of a numerical study of the direct contact condensation on a slowly moving horizontal liquid surface are presented. The geometrical configuration and the input conditions used to obtain numerical solutions are representative to those of experiments of Celata et al. The effects of Prandtl number (Pr), inflow Reynolds number, and Richardson number on the condensation rate are investigated. Numerical predictions of condensation rate for laminar flow are in good agreement with experimental data. The effect of buoyancy on the condensation rate is characterized by Richardson number. A correlation based on the numerical solutions is developed to predict the average condensation Nusselt number in terms of Richardson number, Peclet number, and inflow Reynolds number.
On the numerical study of the rational solutions of the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Islas, A.; Schober, C. M.
2016-10-01
The stability of the rational solutions of the nonlinear Schrödinger (NLS) equation has only recently began to be addressed. In this paper we develop a Chebyshev pseudo-spectral method for the NLS equation to study the stability of the rational solutions. Using the map x = cot θ and the Fast Fourier Transform (FFT) to approximate uxx, the Chebyshev scheme effectively handles the infinite line boundary conditions. An extensive numerical study, involving large ensembles of perturbed initial data for the Peregrine solution (the lowest order rational solution), indicates it is linearly unstable. Working with unstable solutions is numerically challenging. In the current literature, numerical experiments related to the Peregrine solution frequently employ standard Fourier methods without a discussion of the related numerical issues. We examine the performance of a Fourier pseudo-spectral method (FPS4) using Peregrine initial data. Applying FPS4, tiny Gibbs oscillations occur in the first few steps of the numerical solution. These oscillations grow to O(1), providing further evidence of the instability of the Peregrine solution. We modify the FPS4 method using a spectral-splitting technique which resolves the Gibbs oscillations and significantly improves the numerical solution.
Numerical Sedimentation Study of Shoaling on the Ohio River near Mound City, Illinois
2015-08-01
ER D C/ CH L TR -1 5- 12 Numerical Sedimentation Study of Shoaling on the Ohio River near Mound City , Illinois Co as ta l a nd H yd...Numerical Sedimentation Study of Shoaling on the Ohio River near Mound City , Illinois David Abraham, PhD., P.E., and Nate Clifton Coastal and Hydraulics...was conducted on the Ohio River in the vicinity of Mound City , IL. The purpose of the study was to evaluate shoaling tendencies between River Miles
Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves
Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi
2010-01-15
We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.
NASA Astrophysics Data System (ADS)
Hao, Jiaao; Wang, Jingying; Lee, Chunhian
2016-09-01
Effects of two different 11-species chemical reaction models on hypersonic reentry flow simulations are numerically investigated. These two models were proposed by Gupta (1990) and Park (1990) [12,15], respectively. In this study, two typical configurations, the RAM-C II vehicle and FIRE II capsule, are selected as test cases, whose thermo-chemical nonequilibrium flowfields are computed by a multi-block finite volume code using a two-temperature model (a translational-rotational temperature and a vibrational-electron-electronic temperature). In the RAM-C II case, it is indicated that although electron number density distributions of the two reaction models appear in a similar trend, their values are distinctively different. Results of the Gupta's model show a better agreement with the electrostatic probe data, while those of the Park's model are more consistent with the reflectometers data. Both models give similar temperature distributions. In the FIRE II case, the two models yield significantly different distribution profiles of ions and electrons, whose differences could reach an order of magnitude. In addition, an abnormal nonequilibrium relaxation process in the shock layer is found in the FIRE II flowfield simulated by the Gupta's model, which proves to be a consequence of electron impact ionization reactions.
Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study
Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris
2017-01-01
In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation. PMID:28245557
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
NASA Astrophysics Data System (ADS)
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
Numerical study of the disordered Poland Scheraga model of DNA denaturation
NASA Astrophysics Data System (ADS)
Garel, Thomas; Monthus, Cécile
2005-06-01
We numerically study the binary disordered Poland-Scheraga model of DNA denaturation, in the regime where the pure model displays a first-order transition (loop exponent c = 2.15>2). We use a Fixman-Freire scheme for the entropy of loops and consider chain length up to N = 4 × 105, with averages over 104 samples. We present in parallel the results of various observables for two boundary conditions, namely bound-bound (bb) and bound-unbound (bu), because they present very different finite-size behaviours, both in the pure case and in the disordered case. Our main conclusion is that the transition remains first order in the disordered case: in the (bu) case, the disorder averaged energy and contact densities present crossings for different values of N without rescaling. In addition, we obtain that these disorder averaged observables do not satisfy finite-size scaling, as a consequence of strong sample to sample fluctuations of the pseudo-critical temperature. For a given sample, we propose a procedure to identify its pseudo-critical temperature, and show that this sample then obeys first order transition finite-size scaling behaviour. Finally, we obtain that the disorder averaged critical loop distribution is still governed by P(l)~1/lc in the regime l \\ll N , as in the pure case.
An observational and numerical study of a flash flood event in Eastern Marmara Region.
NASA Astrophysics Data System (ADS)
Kahraman, A.
2010-09-01
Warm season cut-off cyclones over North-western Anatolia frequently triggers storms with heavy precipitation over Marmara and Western Black Sea Region. Since the area is highly urbanized with a deficiency in substructure, an important percentage of these storms result in flash floods, producing severe damage and fatalities. A heavy precipitation case from 5th to 9th of June, 2010 is studied. With the large scale circulation of the cut-off low, the storm system over Northern Anatolia moved Black Sea, and after getting richer in moisture, turned back to land over Eastern Marmara Region resulting more than 100 mm of precipitation in 24 hours. A peak of 77 mm in 6 hours is observed at Istanbul Sabiha Gokcen Airport on 7th of June, 2010. Damage in some buildings and one death occured related with the flash flood. In addition to synoptic charts, satellite data, surface and upper air observations, numerical simulation with WRF-ARW is used to make a mesoscale analysis of the meteorological conditions. Heavy rain ingredients such as conditionally unstability, low level jet and high moisture exist over the region according to the model output. Precipitable water and storm relative helicity values are mature and CAPE is moderate.
Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study.
Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris
2017-02-24
In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head's liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts' quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation.
A Numerical Study of Sea-Spray Aerosol Motion in a Coastal Thermal Internal Boundary Layer
NASA Astrophysics Data System (ADS)
Liang, Tinghao; Yu, Xiping
2016-08-01
A three-dimensional large-eddy simulation model is applied to the study of sea-spray aerosol transport, dispersion and settling in the coastal thermal internal boundary layer (IBL) formed by cool airflow from the open sea to the warm land. An idealized situation with constant inflow from the ocean and constant heat flux over the coastal land is considered. The numerical results confirm that the thickness of the coastal thermal IBL increases with the distance from the coastline until the outer edge of the IBL penetrates into the capping inversion layer. The thickness increases also with time until a fully-developed thermal boundary layer is formed. In addition, the thickness of the coastal thermal IBL increases more rapidly when the heat flux over the land is greater. Existence of large-scale eddies within the thermal IBL is identified and the turbulence intensity within the thermal IBL is also found to be significantly higher than that above. It is also indicated that the vertical position of the maximum concentration does not occur at the surface but increases as sea-spray aerosols are transported inland. The vertical position of the maximum flux of sea-spray aerosols within the coastal thermal IBL is shown to coincide with that of the maximum vertical velocity fluctuations when the coastal thermal IBL is fully developed with increased distance in the airflow direction.
Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions
NASA Astrophysics Data System (ADS)
Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.
2016-09-01
The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.
7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...
7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...
7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 11 2013-01-01 2013-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...
7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...
7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 11 2012-01-01 2012-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...
Part-whole bias in intertemporal choice: An empirical study of additive assumption
NASA Astrophysics Data System (ADS)
Lu, Yang; Wu, Dongmei; Zhuang, Xintian
2016-12-01
Additive assumption means the overall value of multiple-dated outcomes is based on a simple aggregation of the values of each individual outcome. This assumption is generally accepted in the field of intertemporal choices. However, recent studies show additive assumption is questionable. In this paper, we experimentally tested the additive property of multiple-dated monetary rewards. Our results show: (1) additive assumption does not hold regardless of gain or loss; (2) the sum of subjective values of individual rewards is consistently larger than the valuation placed on the same rewards as a whole. This finding suggests that part-whole bias exists in the context of valuation of intertemporal monetary rewards.
NASA Astrophysics Data System (ADS)
Huang, Yuet
This dissertation presents a numerical simulation study of linear hypersonic boundary-layer receptivity and stability over blunt compression cones with freestream hotspot perturbations. This study is conducted for freestream disturbances with broad, continuous frequency spectra over cones that have nose radii of 1, 0.5 and 0.1 mm under freestream conditions of Mach 6, 10 and 15. The simulations are carried out using the high-order shock-fitting finite-difference scheme developed by Zhong (1998), the results of which are shown to agree well with linear stability theory (LST) and experiments. The general receptivity mechanism is then studied by the simulation-LST comparisons under two parametric effects: nose bluntness and freestream Mach number. Among the new findings of the current study, the mechanisms of the receptivity process are found to be mainly caused by the fast acoustic waves that are generated behind the bow shock from the hotspot/shock interaction in the nose region. It is these fast acoustic waves that substantially enter the boundary layer and generate mode F through the synchronization of fast acoustic waves and mode F in the upstream part of the cone. Subsequently, the synchronization of modes F and S generates mode S, or the second mode, which eventually grows into a dominant level at the downstream part of the cone. Additionally, we have obtained the receptivity coefficients of mode S along the Branch-I neutral stability curve using a method that combines LST predicted N-factors and simulated disturbance amplitudes. These receptivity coefficients agree well with those obtained from the theoretical modal decomposition method. In addition to obtaining the general receptivity mechanism and receptivity coefficients, we have also studied the parametric effects of nose bluntness and freestream Mach number on boundary-layer receptivity and stability over cones. Specifically, our results have shown that nose bluntness reduces the boundary
ERIC Educational Resources Information Center
Falaye, F. V.
2006-01-01
The study investigated the influence of gender, course of study and numerical ability (independent variables) on secondary school students' achievement in Practical Geography (dependent variable). Purposive sampling was used to select four co-educational secondary schools established in the same year. A sample of 367 Geography students (157…
Freddie Fish. A Primary Environmental Study of Basic Numerals, Sets, Ordinals and Shapes.
ERIC Educational Resources Information Center
Kraynak, Ola
This teacher's guide and study guide are an environmental approach to mathematics education in the primary grades. The mathematical studies of the numerals 0-10, ordinals, number sets, and basic shapes - diamond, circle, square, rectangle, and triangle - are developed through the story of Freddie Fish and his search for clean water. The…
Experimental and numerical study of surface alloying by femtosecond laser radiation
NASA Astrophysics Data System (ADS)
Gurevich, E. L.; Kittel, S.; Hergenröder, R.
2012-01-01
Here we report on experimental studies of femtosecond laser induced surface metal alloying. We demonstrate that layers of different metals can be mixed in a certain range of laser pulse energies. Numeric simulations demonstrate that the sub-surface melting and mixing is advantaged through the difference in the electron-phonon coupling constants of the metals in the multi-layer system. Dependence of the depth of the mixed layer on the number of laser pulses per unit area is studied. Numeric simulations illustrate physical picture of the laser alloying process.
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
Ding, Ning Zhang, Yang Xiao, Delong Wu, Jiming Huang, Jun Yin, Li Sun, Shunkai Xue, Chuang Dai, Zihuan Ning, Cheng Shu, Xiaojian Wang, Jianguo Li, Hua
2014-12-15
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
NASA Astrophysics Data System (ADS)
Ghoneim, Adam
The primary goals of the research in this dissertation are to perform a systematic study to identify and understand the fundamental cause of prolonged processing time during transient liquid phase bonding of difficult-to-bond single crystal Ni-base materials, and use the acquired knowledge to develop an effective way to reduce the isothermal solidification time without sacrificing the single crystalline nature of the base materials. To achieve these objectives, a multi-scale numerical modeling approach, that involves the use of a 2-D fully implicit moving-mesh Finite Element method and a Cellular Automata method, was developed to theoretically investigate the cause of long isothermal solidification times and determine a viable way to minimize the problem. Subsequently, the predictions of the theoretical models are experimentally validated. Contrary to previous suggestions, numerical calculations and experimental verifications have shown that enhanced intergranular diffusivity has a negligible effect on solidification time in cast superalloys and that another important factor must be responsible. In addition, it was found that the concept of competition between solute diffusivity and solubility as predicted by standard analytical TLP bonding models and reported in the literature as a possible cause of long solidification times is not suitable to explain salient experimental observations. In contrast, however, this study shows that the problem of long solidification times, which anomalously increase with temperature is fundamentally caused by departure from diffusion controlled parabolic migration of the liquid-solid interface with holding time during bonding due to a significant reduction in the solute concentration gradient in the base material. Theoretical analyses showed it is possible to minimize the solidification time and prevent formation of stray-grains in joints between single crystal substrates by using a composite powder mixture of brazing alloy and base
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
NASA Astrophysics Data System (ADS)
Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua
2014-12-01
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes
NASA Astrophysics Data System (ADS)
Saxena, Priyank
oxides of nitrogen and other potential pollutants in similar partially premixed flames of ethanol and other fuels for comparison purposes. The computational results with the present mechanism are in reasonable agreement with experiment and perform as well as or better than predictions of other, generally much larger, mechanisms available in the literature. Further research is, however, warranted for providing additional and more stringent tests of the mechanism and its predictions, especially for condition at higher pressures. The second part of the dissertation consists of analytical study of autoignition of higher alkane fuels. It is shown that, above about 1000 K, ignition delay times for propane and all higher alkanes, as well as for a number of other fuels, can be calculated well by employing rate parameters of only three types of elementary steps, namely CmHn+HO2→C mHn-1+H2O2, H2O2+M→2OH+M and 2HO2→H2O2+O2, only the first of which is fuel-specific, the other two clearly being common to all fuels. The prediction of this remarkably simple result relies on a steady-state approximation for HO2, as well as steady states for more active radicals during induction. The resulting approximation to the chemistry exhibits a slow, finite-rate buildup of H2O2 and removal of fuel during the induction period. The criterion employed for termination of the induction period is the complete depletion of the original fuel subject to the approximations introduced. Numerical comparisons of the ignition-time formula with the experiments show that the predictions work well not only for higher alkanes but also for propene and JP-10. The analytical approximation thus produces reasonable results for a wide range of fuels. These results provide a new perspective on high-temperature autoignition chemistry and a general means of easily estimating ignition times of the large number of fuels of practical importance.
Experimental and numerical study of a 10MW TLP wind turbine in waves and wind
NASA Astrophysics Data System (ADS)
Pegalajar-Jurado, Antonio; Hansen, Anders M.; Laugesen, Robert; Mikkelsen, Robert F.; Borg, Michael; Kim, Taeseong; Heilskov, Nicolai F.; Bredmose, Henrik
2016-09-01
This paper presents tests on a 1:60 version of the DTU 10MW wind turbine mounted on a tension leg platform and their numerical reproduction. Both the experimental setup and the numerical model are Froude-scaled, and the dynamic response of the floating wind turbine to wind and waves is compared in terms of motion in the six degrees of freedom, nacelle acceleration and mooring line tension. The numerical model is implemented in the aero-elastic code Flex5, featuring the unsteady BEM method and the Morison equation for the modelling of aerodynamics and hydrodynamics, respectively. It was calibrated with the tests by matching key system features, namely the steady thrust curve and the decay tests in water. The calibrated model is used to reproduce the wind-wave climates in the laboratory, including regular and irregular waves, with and without wind. The model predictions are compared to the measured data, and a good agreement is found for surge and heave, while some discrepancies are observed for pitch, nacelle acceleration and line tension. The addition of wind generally improves the agreement with test results. The aerodynamic damping is identified in both tests and simulations. Finally, the sources of the discrepancies are discussed and some improvements in the numerical model are suggested in order to obtain a better agreement with the experiments.
Stratospheric gravity waves generated by typhoon--A numerical simulation study SIMULATION STUDY
NASA Astrophysics Data System (ADS)
Chen, Zeyu; Preusse, P.; Jarisch, M.; Ern, M.; Offermann, D.
In this presentation the results of a numerical simulation study focusing on investigating the typhoon effect of generating stratospheric GWs will be presented. With applying the PSU/NCAR mm5 model for a northwestern Pacific typhoon (Winnie, 05-23 August 1997), the critical features of the typhoon (comparing with the brightness temperature observations from GMS-5 satellite) and the mean state of the background circulations (comparing with the temperatures observations of the stratosphere from the CRISTA II mission) were captured by the simulation. Detailed investigations revealed that significant stratospheric GWs were triggered by the typhoon. A Typhoon related Gravity Waves Active Area (hereafter referred to as TGWAA) was defined. Momentum flux spectrum with respect to the zonal wave number and frequency in the TGWAA was calculated. Results indicated that the GWs dominant modes were those propagating in the upstream of the background flow (Easterly wind) with a spatial scale ranging from 500 km to 1000 km in the horizontal, and from 7 km to 10 km in the vertical. The temporal scale was rather monotonic with the periods concentrated at 15 hr. The averaged momentum flux in the TGWAA was ˜ 0.001 Pascal at 19 km altitude, 0.0008 Pascal at 25 km altitude, indicating that the waves effect on the mean flow should be paid much attention.
Study on Applicability of Numerical Simulation to Evaluation of Gas Entrainment From Free Surface
Kei Ito; Takaaki Sakai; Hiroyuki Ohshima
2006-07-01
An onset condition of gas entrainment (GE) due to free surface vortex has been studied to establish a design of fast breeder reactor with higher coolant velocity than conventional designs, because the GE might cause the reactor operation instability and therefore should be avoided. The onset condition of the GE has been investigated experimentally and theoretically, however, dependency of the vortex type GE on local geometry configuration of each experimental system and local velocity distribution has prevented researchers from formulating the universal onset condition of the vortex type GE. A real scale test is considered as an accurate method to evaluate the occurrence of the vortex type GE, but the real scale test is generally expensive and not useful in the design study of large and complicated FBR systems, because frequent displacement of inner equipments accompanied by the design change is difficult in the real scale test. Numerical simulation seems to be promising method as an alternative to the real scale test. In this research, to evaluate the applicability of the numerical simulation to the design work, numerical simulations were conducted on the basic experimental system of the vortex type GE. This basic experiment consisted of rectangular flow channel and two important equipments for vortex type GE in the channel, i.e. vortex generation and suction equipments. Generated vortex grew rapidly interacting with the suction flow and the grown vortex formed a free surface dent (gas core). When the tip of the gas core or the bubbles detached from the tip of the gas core reached the suction mouth, the gas was entrained to the suction tube. The results of numerical simulation under the experimental conditions were compared to the experiment in terms of velocity distributions and free surface shape. As a result, the numerical simulation showed qualitatively good agreement with experimental data. The numerical simulation results were similar to the experimental
An observational and numerical study of the sea breeze in the eastern Cantabrian coast (Spain)
NASA Astrophysics Data System (ADS)
Ander Arrillaga, Jon; Yagüe, Carlos; Sastre, Mariano; Román-Cascón, Carlos
2015-04-01
The sea breeze and its characteristics are well studied in the Mediterranean coast of the Iberian Peninsula, but not so in the Cantabrian coast, perhaps due to a lower prevalence of stable synoptic conditions during the summer period. However, it was found that the sea breeze was one of the main drivers of pollution episodes in the industrialised metropolitan area of Bilbao. In addition, an accurate prediction of this mesoscale phenomenon is fundamental for forecasting hot spells with predominant southerly gradient winds, especially in the eastern half of the Cantabrian Sea, during which can be recorded up to 40 °C close to the shore. In this work, an automated method is used for selecting sea breeze days [1], based in 6 filters that evaluate the observed synoptic and surface conditions in the Eastern Cantabrian, provided by the Basque and Spanish meteorological agencies. The main objective is to make an observational and numerical analysis of this phenomenon in the aforementioned region, focusing on the predictability of the Sea Breeze Index (SBI) [2] and the evolution of turbulent parameters such as the Turbulent Kinetic Energy (TKE). Numerical simulations are performed using the mesoscale model Weather Research and Forecast (WRF). The selection method fails filtering a non-sea-breeze day owing to a shift hint in the wind direction, which is predominantly southerly making temperature reach around 40 °C in one of the meteorological stations. This day is simulated both with and without updating the Sea Surface Temperature (SST). The latter simulation leads to a more unrealistic situation. Furthermore, the Planetary Boundary Layer (PBL) height evolution given by the model is compared for a sea breeze and a non-sea-breeze day, concluding that the establishment of a maritime flux results in a lower diffusive capacity in the lower atmosphere, which would lead to a higher concentration of pollutants close to the surface. It is also found that the cause of the
Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon
NASA Astrophysics Data System (ADS)
Feldman, Joseph L.; Kluge, Mark D.; Allen, Philip B.; Wooten, Frederick
1993-11-01
Numerical calculations of thermal conductivity κ(T) are reported for realistic atomic structure models of amorphous silicon with 1000 atoms and periodic boundary conditions. Using Stillinger-Weber forces, the vibrational eigenstates are computed by exact diagonalization in harmonic approximation. Only the uppermost 3% of the states are localized. The finite size of the system prevents accurate information about low-energy vibrations, but the 98% of the modes with energies above 10 meV are densely enough represented to permit a lot of information to be extracted. Each harmonic mode has an intrinsic (harmonic) diffusivity defined by the Kubo formula, which we can accurately calculate for ω>10 meV. If the mode could be assigned a wave vector k and a velocity v=∂ω/∂k, then Boltzmann theory assigns a diffusivity Dk=1/3vl, where l is the mean free path. We find that we cannot define a wave vector for the majority of the states, but the intrinsic harmonic diffusivity is still well-defined and has a numerical value similar to what one gets by using the Boltzmann result, replacing v by a sound velocity and replacing l by an interatomic distance a. This appears to justify the notion of a minimum thermal conductivity as discussed by Kittel, Slack, and others. In order to fit the experimental κ(T) it is necessary to add a Debye-like continuation from 10 meV down to 0 meV. The harmonic diffusivity becomes a Rayleigh ω-4 law and gives a divergent κ(T) as T-->0. To eliminate this we make the standard assumption of resonant-plus-relaxational absorption from two-level systems (this is an anharmonic effect which would lie outside our model even if it did contain two-level systems implicitly). A reasonable fit and explanation then results for the behavior of κ(T) in all temperature regimes. We also study the effect of increasing the harmonic disorder by substitutional mass defects (modeling amorphous Si/Ge alloys). The additional disorder increases the fraction of
Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study
NASA Technical Reports Server (NTRS)
Tucker, Gregory E.; Slingerland, Rudy L.
1994-01-01
Erosional escarpments common features of high-elevation rifted continets. Fission track data suffest that these escarpments form by base level lowering and/or marginal uplift during rifting, followed by lateral retreat of an erosion front across tens to hundreds of kioometers. Previous modeling studies have shown that this characteristic pattern of denudation can have a profound impact upon marginal isostatic uplift and the evolution of offshore sedimentary basins. Yet at present there is only a rudimentary understanding of the geomorphic mechanisms capable of driving such prolonged escarpment retreat. In this study we present a nonlinear, two-dimensional landscape evolution model tha tis used to asses the necessary and sufficient conditions for long-term retreat of a rift-generated escarpment. The model represents topography as a grid of cells, with drainage networkds evolving as water flows across the grid in the direction of steepest descent. The model accounts for sediment production by weathering, fluvial sediment transport, bedrock channel erosion, and hillslope sediment transport by diffusive mechanisms and by mass failure. Numerical experiments presented explore the effects of different combinations of erosion processes and of dynamic coupling between denudation and flexural isostatic uplift. Model results suggest that the necessary and sufficient conditions for long-term escarpment retreat are (1) incising bedrock channels in which the erosion rate increases with increasing drainage area, so that the channels steepen and propagate headward; (2) a low rate of sediment production relative to sediment transport efficiency, which promotes relief-generating processes over diffusive ones; (3) high continental elevation, which allows greater freedom for fluvial dissection; and (4) any process, including flexural isostatic uplift, that helps to maintain a drainage divide near an escarpment crest. Flexural isostatic uplift also facilitates escarpment, thereby
Textural and numerical study of cordierite growth in the Adamello contact aureole, Italy
NASA Astrophysics Data System (ADS)
Mettasch, S.; Baumgartner, L. P.; Vrijmoed, J. C.; Podladchikov, Y.
2012-04-01
The study of metamorphic textures in contact aureoles provides excellent insights in the kinetics and mechanism of metamorphic processes. In general, the growth of a mineral involves the following fundamental mechanism: Development of a chemical potential gradient by initiation of a reaction triggered by heating a system, dissolution of reactant minerals, transport of nutrients, nucleation of product minerals and precipitation of the product mineral on the surface of the nucleus. The overall reaction rate is always limited by the slowest of these mechanisms (Fisher, 1978). Since all processes occur simultaneously (on rock scale) and can interact with each other, the rate-limiting step might change over the period of growth and therefore results in the formation of various textures (Carlson, 2010). In this study, we investigate different cordierite growth textures formed by low P/high T contact metamorphism due to the emplacement of the Adamello batholith, a Tertiary intrusion of mostly granodioritic to tonalitic composition (Callegari & Dal Piaz, 1973). The cordierites show variable morphologies from egg-shaped, almost spherical porphyroblasts to irregular, dendrite- or tree-like patterns. Both textures tend to form poikiloblasts with inclusions dominated by quartz. Preliminary results suggest that one discriminating factor is the variation of bulk rock chemistry, since different morphologies were observed within a single outcrop, which experienced a unique temperature-time path. Rocks displaying dendritic growth are generally higher in bulk rock SiO2 than samples with roundish cordierite porphyroblast. Additionally, all different morphologies can occur with halos, indicating diffusion limited growth, and without halos. The halos, of variable sizes and shapes, are biotite-free, but contain otherwise the same mineralogy as the matrix (muscovite - K-feldspar - quartz - oxide - plagioclase). To test these findings we will conduct a numerical experiment using a 2D
Numerical study of soap-film flow by nonuniform alternating electric fields.
Nasiri, M; Shirsavar, R; Mollaei, S; Ramos, A
2017-02-01
Fluid flow of suspended liquid films induced by non-uniform alternating electric fields has been reported. The electric fields were generated by two rod-like electrodes perpendicular to the fluid surface. The observed fluid flow was explained qualitatively by considering a charge induction mechanism, where the electric field actuates on the charge induced on the film surface. In this paper we perform a numerical study of this fluid flow taking into account the charge induction mechanism. The numerical results are compared with experiments and good agreement is found. Finally, we propose the application of the device as a new kind of two dimensional fluid pump.
A numerical study of rays in random media. [Monte Carlo method simulation
NASA Technical Reports Server (NTRS)
Youakim, M. Y.; Liu, C. H.; Yeh, K. C.
1973-01-01
Statistics of electromagnetic rays in a random medium are studied numerically by the Monte Carlo method. Two dimensional random surfaces with prescribed correlation functions are used to simulate the random media. Rays are then traced in these sample media. Statistics of the ray properties such as the ray positions and directions are computed. Histograms showing the distributions of the ray positions and directions at different points along the ray path as well as at given points in space are given. The numerical experiment is repeated for different cases corresponding to weakly and strongly random media with isotropic and anisotropic irregularities. Results are compared with those derived from theoretical investigations whenever possible.
Numerical Study of the High-Speed Leg of a Wind Tunnel
NASA Technical Reports Server (NTRS)
Nayani, Sudheer; Sellers, William L, III; Brynildsen, Scott E.; Everhart, Joel L.
2015-01-01
The paper describes a numerical study of the high-speed leg of the NASA Langley 14 x 22-ft Low-Speed Wind Tunnel. The high-speed leg consists of the settling chamber, contraction, test section, and first diffuser. Results are shown comparing two different sources of surface geometry, and two different unstructured grid solvers for the flow characteristics. Numerical simulations of the flow on the tunnel centerline, boundary layer profiles on the floor, and wall static pressures have been compared with experiment. Flow angularities along the test section length have also been determined.
A study of numerical methods for hyperbolic conservation laws with stiff source terms
NASA Technical Reports Server (NTRS)
Leveque, R. J.; Yee, H. C.
1990-01-01
In the present study of the behavior of typical numerical methods in the case of a model advection equation having a parameter-dependent source term, two approaches to the incorporation of the source terms are used: MacCormack-type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps. The latter are found to perform slightly better. The model scalar equation is used to show that the incorrectness of the propagation speeds of discontinuities observed in the stiff case is due to the introduction of nonequilibrium values through numerical dissipation in the advection step.
Numerical study of soap-film flow by nonuniform alternating electric fields
NASA Astrophysics Data System (ADS)
Nasiri, M.; Shirsavar, R.; Mollaei, S.; Ramos, A.
2017-02-01
Fluid flow of suspended liquid films induced by non-uniform alternating electric fields has been reported. The electric fields were generated by two rod-like electrodes perpendicular to the fluid surface. The observed fluid flow was explained qualitatively by considering a charge induction mechanism, where the electric field actuates on the charge induced on the film surface. In this paper we perform a numerical study of this fluid flow taking into account the charge induction mechanism. The numerical results are compared with experiments and good agreement is found. Finally, we propose the application of the device as a new kind of two dimensional fluid pump.
Numerical Study of the Gravitational and Electromagnetic Waves on the Null Cone
NASA Astrophysics Data System (ADS)
Babiuc, Maria
2015-04-01
The numerical calculation of the Einstein-Maxwell equations in a characteristic framework has not been done numerically before and is expected to shed new light on nonlinear phenomena like null memory. The main objective of this study is the analytical and numerical modeling of the of gravitational and electromagnetic radiation in a fully general relativistic framework, as it propagates on the null cone to null infinity, with no simplifications due to assumed symmetries. Moreover, the global interaction between the gravitational and electromagnetic radiation will be closely monitored, in order to reveal the electromagnetic radiation memory induced by the gravitational field. The numerical approach used, called the ``Cauchy-characteristic extraction'' method, is the most precise method for the computation of gravitational waveforms at infinite distance from a world-tube that encloses the source. The analytical and numerical models presented here will be implemented in the PittNull code, and the experience gained will be disseminated, in order to facilitate new standalone characteristic codes.This will lead to more insight on the interaction between gravitational and electromagnetic fields, and even point to new effects.
Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels.
Muller, Peter Barkholt; Bruus, Henrik
2014-10-01
We present a numerical study of thermoviscous effects on the acoustic streaming flow generated by an ultrasound standing-wave resonance in a long straight microfluidic channel containing a Newtonian fluid. These effects enter primarily through the temperature and density dependence of the fluid viscosity. The resulting magnitude of the streaming flow is calculated and characterized numerically, and we find that even for thin acoustic boundary layers, the channel height affects the magnitude of the streaming flow. For the special case of a sufficiently large channel height, we have successfully validated our numerics with analytical results from 2011 by Rednikov and Sadhal for a single planar wall. We analyzed the time-averaged energy transport in the system and the time-averaged second-order temperature perturbation of the fluid. Finally, we have made three main changes in our previously published numerical scheme to improve the numerical performance: (i) The time-averaged products of first-order variables in the time-averaged second-order equations have been recast as flux densities instead of as body forces. (ii) The order of the finite-element basis functions has been increased in an optimal manner. (iii) Based on the International Association for the Properties of Water and Steam (IAPWS 1995, 2008, and 2011), we provide accurate polynomial fits in temperature for all relevant thermodynamic and transport parameters of water in the temperature range from 10 to 50 °C.
A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows
NASA Astrophysics Data System (ADS)
Martins, F. P.; Oishi, C. M.; Afonso, A. M.; Alves, M. A.
2015-12-01
This work presents a numerical application of a generic conformation tensor transformation for simulating highly elastic flows of non-Newtonian fluids typically observed in computational rheology. In the Kernel-conformation framework [14], the conformation tensor constitutive law for a viscoelastic fluid is transformed introducing a generic tensor transformation function. The numerical stability of the application of the Kernel-conformation for highly elastic flows is ultimately related with the specific kernel function used in the matrix transformation, but also to the existence of singularities introduced either by flow geometry or by the characteristics of the constitutive equation. In this work, we implement this methodology in a free-surface Marker-And-Cell discretization methodology implemented in a finite differences method. The main contributions of this work are two fold: on one hand, we demonstrate the accuracy of this Kernel-conformation formulation using a finite differences method and free surfaces; on the other hand, we assess the numerical efficiency of specific kernel functions at high-Weissenberg number flows. The numerical study considers different viscoelastic fluid flow problems, including the Poiseuille flow in a channel, the lid-driven cavity flow and the die-swell free surface flow. The numerical results demonstrate the adequacy of this methodology for high Weissenberg number flows using the Oldroyd-B model.
A numerical study of the steady scalar convective diffusion equation for small viscosity
NASA Technical Reports Server (NTRS)
Giles, M. B.; Rose, M. E.
1983-01-01
A time-independent convection diffusion equation is studied by means of a compact finite difference scheme and numerical solutions are compared to the analytic inviscid solutions. The correct internal and external boundary layer behavior is observed, due to an inherent feature of the scheme which automatically produces upwind differencing in inviscid regions and the correct viscous behavior in viscous regions.
Study of Some Numerical Phenomena Intervening in the Computer Simulations of Some Physical Processes
NASA Astrophysics Data System (ADS)
Iordache, D. A.; Delsanto, P. P.; Iordache, V.
2007-04-01
The mechanisms of the computing schemes leading to the main numerical phenomena: instabilities, divergence or pseudo-convergence, distortions, as well as of the stability and convergence radii, and of the optimization possibilities of the computer simulations of some physical processes were studied by this work.
Studying Turbulence Using Numerical Simulation Databases. Proceedings of the 1987 Summer Program
NASA Technical Reports Server (NTRS)
Moin, Parviz (Editor); Reynolds, William C. (Editor); Kim, John (Editor)
1987-01-01
The focus was on the use of databases obtained from direct numerical simulations of turbulent flows, for study of turbulence physics and modeling. Topics addressed included: stochastic decomposition/chaos/bifurcation; two-point closure (or k-space) modeling; scalar transport/reacting flows; Reynolds stress modeling; and structure of turbulent boundary layers.
Numerical Study of the High-Speed Leg of a Wind Tunnel
NASA Technical Reports Server (NTRS)
Nayani, Sudheer; Sellers, William L., III; Brynildsen, Scott E.; Everhart, Joel L.
2015-01-01
The paper describes the numerical study of the high-speed leg of the NASA Langley 14 by 22-foot Low Speed Wind Tunnel. The high-speed leg consists of the Settling Chamber, Contraction, Test Section, and First Diffuser. Results are shown comparing two different exit boundary conditions and two different methods of determining the surface geometry.
Numerical study of influence of hydrogen backflow on krypton Hall effect thruster plasma focusing
NASA Astrophysics Data System (ADS)
Yan, Shilin; Ding, Yongjie; Wei, Liqiu; Hu, Yanlin; Li, Jie; Ning, Zhongxi; Yu, Daren
2017-03-01
The influence of backflow hydrogen on plasma plume focusing of a krypton Hall effect thruster is studied via a numerical simulation method. Theoretical analysis indicates that hydrogen participates in the plasma discharge process, changes the potential and ionization distribution in the thruster discharge cavity, and finally affects the plume focusing within a vacuum vessel.
Numerical study of a closed-cycle gasdynamic CO2 laser for industrial application
NASA Astrophysics Data System (ADS)
Breev, V. V.; Gubarev, A. V.; Kazhidub, A. V.; Kukharenko, A. T.; Lebedev, F. V.; Panchenko, V. P.
1981-08-01
A mathematical model is presented suitable for calculating a closed-cycle gasdynamic CO2 laser consisting of a discharge chamber, an optical resonator-amplifier, a radiation focusing system, a nozzle, diffusers, coolers, a compressor, and junction pipelines. The programs that were developed were used to perform a numerical study of a 10-kW CO2 laser suitable for industrial application.
NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a
numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...
NASA Astrophysics Data System (ADS)
Liu, Changjiang; Zheng, Zhoulian; Yang, Xiaoyan
2016-12-01
Orthotropic membrane components and structures are widely used in building structures, instruments and meters, electronic engineering, space and aeronautics, etc., because of their light weights. However, the same lightweight combined with low stiffness make membranes prone to vibration under dynamic loads, and in some cases the vibration may lead to structural failure. Herein, the undamped nonlinear vibration response of pretension rectangular orthotropic membrane structures subjected to impact loading is studied by analytical and numerical methods. The analytical solution is obtained by solving the governing equations by the Bubnov-Galerkin method and the Lindstedt-Poincaré perturbation method. Numerical analysis has also been carried out based on the same theoretical model. The analytical and numerical results have been compared and analyzed, and the influence of various model parameters on membrane vibration discussed. The results obtained herein provide some theoretical basis for the vibration control and dynamic design of orthotropic membrane components and structures.
Numerical studies of flow over a circular cylinder at ReD=3900
NASA Astrophysics Data System (ADS)
Kravchenko, Arthur G.; Moin, Parviz
2000-02-01
Flow over a circular cylinder at Reynolds number 3900 is studied numerically using the technique of large eddy simulation. The computations are carried out with a high-order accurate numerical method based on B-splines and compared with previous upwind-biased and central finite-difference simulations and with the existing experimental data. In the very near wake, all three simulations are in agreement with each other. Farther downstream, the results of the B-spline computations are in better agreement with the hot-wire experiment of Ong and Wallace [Exp. Fluids 20, 441-453 (1996)] than those obtained in the finite-difference simulations. In particular, the power spectra of velocity fluctuations are in excellent agreement with the experimental data. The impact of numerical resolution on the shear layer transition is investigated.
An experimental and numerical study of particle-laden coaxial jet flows
NASA Technical Reports Server (NTRS)
Mostafa, A. A.; Mongia, H. C.; Mcdonell, V. G.; Samuelsen, G. S.
1990-01-01
A detailed experimental and numerical study of the developing region of coaxial jet flows with and without glass beads is performed. A two-component phase/Doppler interferometer is used to measure mean and fluctuating velocity components for each phase and particle-number density. The numerical calculation is based on a stochastic Lagrangian treatment for the particles and a recently proposed two-equation turbulence model for two-phase flows. Results show that the particle-number density profile becomes narrower than the corresponding profile for round jet flow and that the particles attain a uniform velocity across the jet radius. The particles attenuate the level of gas turbulence and increase their anisotropy level. The numerical calculations yield reasonable and encouraging agreement with the measurements.
Numerical study of electron beam welded butt joints with the GTN model
NASA Astrophysics Data System (ADS)
Tu, Haoyun; Schmauder, Siegfried; Weber, Ulrich
2012-08-01
The fracture behavior of S355NL electron beam welded steel joints is investigated experimentally and numerically. The simulation of crack propagation in an electron beam welded steel joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. A parameter study of the GTN model was adopted which reveals the influence of parameters on the material behavior of notched round and compact tension specimens. Based on the combined method of metallographic investigations and numerical calibration, the GTN parameters were fixed. The same parameters were used to predict the ductile fracture of compact tension specimens with the initial crack located at different locations. Good match can be found between the numerical and experimental results in the form of force versus Crack Opening Displacement as well as fracture resistance curves.
Clinical study and numerical simulation of brain cancer dynamics under radiotherapy
NASA Astrophysics Data System (ADS)
Nawrocki, S.; Zubik-Kowal, B.
2015-05-01
We perform a clinical and numerical study of the progression of brain cancer tumor growth dynamics coupled with the effects of radiotherapy. We obtained clinical data from a sample of brain cancer patients undergoing radiotherapy and compare it to our numerical simulations to a mathematical model of brain tumor cell population growth influenced by radiation treatment. We model how the body biologically receives a physically delivered dose of radiation to the affected tumorous area in the form of a generalized LQ model, modified to account for the conversion process of sublethal lesions into lethal lesions at high radiation doses. We obtain good agreement between our clinical data and our numerical simulations of brain cancer progression given by the mathematical model, which couples tumor growth dynamics and the effect of irradiation. The correlation, spanning a wide dataset, demonstrates the potential of the mathematical model to describe the dynamics of brain tumor growth influenced by radiotherapy.
Evaluating Drugs and Food Additives for Public Use: A Case Studies Approach.
ERIC Educational Resources Information Center
Merritt, Sheridan V.
1980-01-01
Described is a case study used in an introductory college biology course that provides a basis for generating debate on an issue concerning the regulation of controversial food additives and prescription drugs. The case study contained within this article deals with drug screening, specifically with information related to thalidomide. (CS)
Tavakoli, Hamdollah Manzari
2016-11-01
The relationship between children's accuracy during numerical magnitude comparisons and arithmetic ability has been investigated by many researchers. Contradictory results have been reported from these studies due to the use of many different tasks and indices to determine the accuracy of numerical magnitude comparisons. In the light of this inconsistency among measurement techniques, the present study aimed to investigate this relationship among Iranian second grade children (n = 113) using a pre-established test (known as the Numeracy Screener) to measure numerical magnitude comparison accuracy. The results revealed that both the symbolic and non-symbolic items of the Numeracy Screener significantly correlated with arithmetic ability. However, after controlling for the effect of working memory, processing speed, and long-term memory, only performance on symbolic items accounted for the unique variances in children's arithmetic ability. Furthermore, while working memory uniquely contributed to arithmetic ability in one-and two-digit arithmetic problem solving, processing speed uniquely explained only the variance in single-digit arithmetic skills and long-term memory did not contribute to any significant additional variance for one-digit or two-digit arithmetic problem solving.
Collapse of patterns with various geometries during drying in photolithography: numerical study
NASA Astrophysics Data System (ADS)
Chini, S. Farshid; Amirfazli, Alidad
2012-07-01
Photolithography is one of the main mass nanoproduction processes. Manufacturing small devices by photolithography is a challenge because of the risk of collapse of patterns during the drying of rinse liquid. Literature models are usable for only long (i.e., LAR, pattern length/spacing greater than 20) two-line parallel patterns. In the current study, a numerical framework is introduced that allows study the collapse of different pattern geometries. In this framework, the rinse interface shape is found using Surface Evolver, and pattern deformation is found using ANSYS through coupled modeling. The results of the new numerical approach, was in agreement with the analytical model results in the range of its applicability (i.e., long two-line parallel pattern). The developed numerical framework was then used to study a few simple geometries where the analytical model was not applicable. One of the findings from the numerical framework results was that, despite the fact that buttresses stiffen the patterns, buttressed patterns deform more owing to the increase in Laplace pressure.
A numerical study of thunderstorm electrification: Model development and case study
Norville, K.; Baker, M. ); Latham, J. )
1991-04-20
The authors have developed a numerical model for examining the thunderstorm electrification process in which they assume the electrification is entirely due to noinductive charge transfer between colliding ice crystals and hail. Since this ice-hail charge mechanism is very independent on particle sizes and distributions, they use an explicit microphysical framework. To maintain simplicity, the electrification model is kinematic; thus the temperature and velocity fields are input into the electrification model. These fields can be either calculated by a background model or retrieved from observations. For this study, they have used the cloud model of Taylor (1989) to generate the temperature and velocity fields to examine the July 19, 1981, CCOPE thundercloud. Using these fields, the electrification model produced time-dependent ice particle concentrations, radar reflectives, charge and vertical electric field distributions in good general agreement with those observed. The model produced a maximum electric field strength of 1.27 kV/cm, which is on the order of that needed for lightning initiation, and this maximum occured very close to the time of the observed discharge (as inferred by the sailplane measurements). Thus the ice-hail charge mechanism appears to have played an important role in the electrical development of the July 19 cloud. The details of the electrification depended on the liquid water content and the glaciation processes, and particularly on the ice crystal characteristics. Rapid growth of the crystals to riming sizes (>400{mu}) yielded the most efficient charging. The electrification was also sensitive to the ice-ice sticking efficiency but not to the characteristics of the large riming ice.
NASA Astrophysics Data System (ADS)
Boano, Fulvio; Ridolfi, Luca; Packman, Aaron; Vidali, Cristina
2014-05-01
Streambeds are biogeochemical hotspots for a number of reactions that influence the fate of nutrients in streams and groundwater and that are performed by microorganisms attached to the hyporheic sediments. It is well known that in nutrient-enriched streams the metabolic activity of hyporheic microbes relies on water-borne solutes that are supplied by water exchanged with the stream. However, microbes also exert feedbacks on nutrient fluxes through the process of bioclogging, i.e., the reduction of water-filled pore volume and sediment permeability caused by biofilm growth and gas production. Unfortunately, the present understanding of this process is limited by the difficulty of data collection within streambed sediments. In order to better understand the dynamics of bioclogging, we have performed a numerical modeling study on the coupling between water fluxes, nutrient reactions, and permeability variations due to microbial growth. We have updated a previously published hydro-biogeochemical model with the addition of two microbial components representing autotrophic (nitrifying) bacteria and heterotrophic (facultative aerobic) bacteria. We assume that biofilm grows and occupies pore space, thus altering hydraulic conductivity and modifying the fluxes of water and nutrients which support microbial metabolism. The simulation results show that the system eventually attains an equilibrium between microbial growth and nutrient fluxes that is characterized by a vertical stratification of the microbial species and by a strong reduction of permeability near the stream-sediment interface. These findings denote the existence of an equilibrium configuration and provide insights on how microbial reaction rates are constrained by sediment properties, hydrodynamic factors, and nutrient availability.
Experimental and numerical study of the effect of mold vibration on aluminum castings alloys
NASA Astrophysics Data System (ADS)
Abu-Dheir, Numan
2005-07-01
The recent advances in scientific and engineering tools have allowed researchers to integrate more science into manufacturing, leading to improved and new innovative processes. As a result, important accomplishments have been reached in the area of designing and engineering new materials for various industrial applications. This subject is of critical significance because of the impact it could have on the manufacturing industry. In the casting industry, obtaining the desired microstructure and properties during solidification may reduce or eliminate the need for costly thermo-mechanical processing prior to secondary manufacturing processes. Several techniques have been developed to alter and control the microstructure of castings during solidification including semi-solid processing, electromagnetic stirring, electromagnetic vibration, and mechanical vibration. Although it is established that mold vibration can significantly influence the structure and properties of castings, however, most of the studies are generally qualitative, limited to a small range of conditions and no attempts have been made to simulate the effect of vibration on casting microstructure. In this work, a detailed experimental and numerical investigation is carried out to advance the utilization of mold vibration as an effective tool for controlling and modifying the casting microstructure. The effects of a wide range of vibration amplitudes and frequencies on the solidification kinetics, microstructure formation and mechanical properties of Al-Si alloys are examined. Results show strong influence of mold vibration on the resulting casting. The presence of porosity was significantly reduced as a result of mold vibration. In addition, the changes in microstructure and mechanical properties can be successfully represented by the changes in solidification characteristics. Increasing the vibration amplitude tends to reduce the lamellar spacing and change the silicon morphology to become more
Numerical study of light-induced phase behavior of smectic solids
NASA Astrophysics Data System (ADS)
Chung, Hayoung; Park, Jaesung; Cho, Maenghyo
2016-10-01
By the chemical cross-linking of rigid molecules, liquid crystal polymer (LCP) has been envisaged as a novel heterogeneous material due to the fact that various optical and geometric states of the liquid crystalline (LC) phases are projected onto the polymeric constituents. The phase behavior, which refers to the macroscopic shape change of LCP under thermotropic phase change, is a compelling example of such optical-mechanical coupling. In this study, the photomechanical behavior, which broadly refers to the thermal- or light-induced actuation of smectic solids, is investigated using three-dimensional nonlinear finite element analysis (FEA). First, the various phases of LC are considered as well as their relation to polymeric conformation defined by the strain energy of the smectic polymer; a comprehensive constitutive equation that bridges the strong, optomechanical coupling is then derived. Such photomechanical coupling is incorporated in the FEA considering geometric nonlinearity, which is vital to understanding the large-scale light-induced bending behavior of the smectic solid.To demonstrate the simulation capability of the present model, numerous examples of photomechanical deformations are investigated parametrically, either by changing the operating conditions such as stimuli (postsynthesis) or the intrinsic properties (presynthesis). When compared to nematic solids, distinguished behaviors due to smectic substances are found herein and discussed through experiments. The quasisoftness that bidirectionally couples microscopic variables to mechanical behavior is also explained, while considering the effect of nonlinearity. In addition to providing a comprehensive measure that could deepen the knowledge of photomechanical coupling, the use of the proposed finite element framework offers an insight into the design of light-responsive actuating systems made of smectic solids.
A numerical study on collisions of icy bodies using SPH method combined with GRAPE
NASA Astrophysics Data System (ADS)
Nakajima, M.; Genda, H.; Ida, S.
2009-12-01
We have worked on the collisions of icy bodies using Smoothed Particles Hydrodynamics (SPH) method combined with Gravity PipE (GRAPE) in order to understand the basic behavior of icy bodies during impacts. Collisions of Mars-size rocky bodies have been investigated well, because those collisions are related to the origin of the moon and the formation of the terrestrial planets. On the other hand, collisions of icy bodies have not been studied yet, although these collisions would frequently occur in the solar and extra-solar systems, such as the formation of icy exoplanets. Through our research, we figure out the effect of ice during impact in detail. Our SPH code has two special features. First, GRAvity PipE computer (GRAPE) is used, which calculates the gravitational force of each particle up to 100 times faster than usual computers. Second, SESAME equation of state database is used to build a realistic model, taking into account the effect of phase change. In this research, we focused on differences and similarities between collisions of icy bodies and those of rocky ones, such as a merging criterion. Agnor & Asphaug (2004) have shown that a collision of rocky Mars-size protoplanets leads to an inelastic collision when its relative velocities are smaller than 1.4-1.5v, 1.1-1.2v, 1.1-1.2v when its impact angles are 30, 45, and 60 degrees, respectively. Here, v means escape velocity. The same calculations for icy bodies are performed in our numerical code. They have shown that the merging criterion of icy bodies is the same as that of rocky bodies. In addition to the merging criterion, we also clarify the relationship between impact parameters and the change of solid, liquid/vapor mass ratio due to impacts.
[TG-FTIR study on pyrolysis of wheat-straw with abundant CaO additives].
Han, Long; Wang, Qin-Hui; Yang, Yu-Kun; Yu, Chun-Jiang; Fang, Meng-Xiang; Luo, Zhong-Yang
2011-04-01
Biomass pyrolysis in presence of abundant CaO additives is a fundamental process prior to CaO sorption enhanced gasification in biomass-based zero emission system. In the present study, thermogravimetric Fourier transform infrared (TG-FTIR) analysis was adopted to examine the effects of CaO additives on the mass loss process and volatiles evolution of wheat-straw pyrolysis. Observations from TG and FTIR analyses simultaneously demonstrated a two-stage process for CaO catalyzed wheat-straw pyrolysis, different from the single stage process for pure wheat-straw pyrolysis. CaO additives could not only absorb the released CO2 but also reduce the yields of tar species such as toluene, phenol, and formic acid in the first stage, resulting in decreased mass loss and maximum mass loss rate in this stage with an increase in CaO addition. The second stage was attributed to the CaCO3 decomposition and the mass loss and maximum mass loss rate increased with increasing amount of CaO additives. The results of the present study demonstrated the great potential of CaO additives to capture CO2 and reduce tars yields in biomass-based zero emission system. The gasification temperature in the system should be lowered down to avoid CaCO3 decomposition.
Code Comparison Study Fosters Confidence in the Numerical Simulation of Enhanced Geothermal Systems
White, Mark D.; Phillips, Benjamin R.
2015-01-26
Numerical simulation has become a standard analytical tool for scientists and engineers to evaluate the potential and performance of enhanced geothermal systems. A variety of numerical simulators developed by industry, universities, and national laboratories are currently available and being applied to better understand enhanced geothermal systems at the field scale. To yield credible predictions and be of value to site operators, numerical simulators must be able to accurately represent the complex coupled processes induced by producing geothermal systems, such as fracture aperture changes due to thermal stimulation, fracture shear displacement with fluid injection, rate of thermal depletion of reservoir rocks, and permeability alteration with mineral precipitation or dissolution. A suite of numerical simulators was exercised on a series of test problems that considered coupled thermal, hydraulic, geomechanical, and geochemical (THMC) processes. Problems were selected and designed to isolate selected coupled processes, to be executed on workstation class computers, and have simple but illustrative metrics for result comparisons. This paper summarizes the initial suite of seven benchmark problems, describes the code comparison activities, provides example results for problems and documents the capabilities of currently available numerical simulation codes to represent coupled processes that occur during the production of geothermal resources. Code comparisons described in this paper use the ISO (International Organization for Standardization) standard ISO-13538 for proficiency testing of numerical simulators. This approach was adopted for a recent code comparison study within the radiation transfer-modeling field of atmospheric sciences, which was focused on canopy reflectance models. This standard specifies statistical methods for analyzing laboratory data from proficiency testing schemes to demonstrate that the measurement results do not exhibit evidence of an
Garg, Charu C; Evans, David B; Dmytraczenko, Tania; Izazola-Licea, José-Antonio; Tangcharoensathien, Viroj; Ejeder, Tessa Tan-Torres
2012-02-01
Donor nations and philanthropic organizations increasingly require that funds provided for a specific health priority such as HIV should supplement domestic spending on that priority-a concept known as "additionality." We investigated the "additionality" concept using data from Honduras, Rwanda, and Thailand, and we found that the three countries increased funding for HIV in response to increased donor funding. In contrast, the study revealed that donors, faced with increased Global Fund resources for HIV in certain countries, tended to decrease their funding for HIV or shift funds for use in non-HIV health areas. More broadly, we found many problems in the measurement and interpretation of additionality. These findings suggest that it would be preferable for donors and countries to agree on how best to use available domestic and external funds to improve population health, and to develop better means of tracking outcomes, than to try to develop more sophisticated methods to track additionality.
Logistic distributed activation energy model--Part 1: Derivation and numerical parametric study.
Cai, Junmeng; Jin, Chuan; Yang, Songyuan; Chen, Yong
2011-01-01
A new distributed activation energy model is presented using the logistic distribution to mathematically represent the pyrolysis kinetics of complex solid fuels. A numerical parametric study of the logistic distributed activation energy model is conducted to evaluate the influences of the model parameters on the numerical results of the model. The parameters studied include the heating rate, reaction order, frequency factor, mean of the logistic activation energy distribution, standard deviation of the logistic activation energy distribution. The parametric study addresses the dependence on the forms of the calculated α-T and dα/dT-T curves (α: reaction conversion, T: temperature). The study results would be very helpful to the application of the logistic distributed activation energy model, which is the main subject of the next part of this series.
ERIC Educational Resources Information Center
Bjork, Isabel Maria; Bowyer-Crane, Claudine
2013-01-01
This study investigates the relationship between skills that underpin mathematical word problems and those that underpin numerical operations, such as addition, subtraction, division and multiplication. Sixty children aged 6-7 years were tested on measures of mathematical ability, reading accuracy, reading comprehension, verbal intelligence and…
A numerical study of air layer drag reduction phenomenon on a flat plate
NASA Astrophysics Data System (ADS)
Kim, Dokyun; Moin, Parviz
2009-11-01
The objective of the present study is to predict and understand the air layer drag reduction (ALDR) phenomenon. Recent experiments (Elbing et al. JFM 2008) have shown large net drag reductions if air is injected beyond a critical rate at the wall. The stability analysis and numerical simulations are performed to investigate mechanisms of ALDR on a flat plate using the same geometry as in the experiment. The linear stability of air-liquid interface is investigated by solving the Orr-Sommerfeld equations, and numerical simulations of two-phase flow have been performed to describe the evolution of air-water interface. The stability analysis shows that the air flow rates, Reynolds number, Weber number, and Froude number are important parameters determining the stability of the air layer. In laminar boundary layer, it is observed from the numerical simulations that the Froude number is the key to the stability of the air layer. The presentation will include a new and very efficient numerical method for two-phase flow calculations used in this study.
NASA Astrophysics Data System (ADS)
Zhou, L. X.; Li, K.
2015-08-01
Existing droplet evaporation/combustion models in computational fluid dynamics (CFD) simulation of spray combustion are based on simplified 1-D models. Both these models and recently developed 3-D models of single-droplet combustion do not give the conditions for the different existing droplet combustion modes. In this paper, droplet evaporation and combustion are studied both analytically and numerically. In the analytical solution, a 2-D axisymmetric flow surrounding an evaporating and combusting droplet was considered. The governing equations were solved using an integral method, similar to the Karman-Pohlhausen method for solving boundary-layer flows with pressure gradient. The results give a local evaporation rate and flame radius in agreement with experimental results. In numerical simulation, 3-D combusting gas flows surrounding an ethanol droplet were studied. The prediction results show three modes of droplet combustion under different relative velocities, explaining the change in the evaporation constant with an increase in relative velocity observed in experiments. This implies that different droplet combustion models should be developed in simulating spray combustion. The predicted local evaporation rate and flame radius by numerical simulation are in agreement with the analytical solution in the range of azimuthal angles . The numerical results indicate that the drag force of an evaporating and combusting droplet is much smaller than that of a cold solid particle, and thus the currently used drag models should be modified.
Lee, Gyudo; Park, Insu; Kwon, Kiwoon; Kwon, Taeyun; Seo, Jongbum; Chang, Woo-Jin; Nam, Hakhyun; Cha, Geun Sig; Choi, Moon Hee; Yoon, Dae Sung; Lee, Sang Woo
2012-04-01
The concentration of C-reactive protein (CRP), a classic acute phase plasma protein, increases rapidly in response to tissue infection or inflammation, especially in cases of cardiovascular disease and stroke. Thus, highly sensitive monitoring of the CRP concentration plays a pivotal role in detecting these diseases. Many researchers have studied methods for the detection of CRP concentrations such as optical, mechanical, and electrochemical techniques inside microfluidic devices. While significant progress has been made towards improving the resolution and sensitivity of detection, only a few studies have systematically analyzed the CRP concentration using both numerical and experimental approaches. Specifically, systematic analyses of the electrochemical detection of high-sensitivity CRP (hsCRP) using an enzyme-linked immunosorbant assay (ELISA) inside a microfluidic device have never been conducted. In this paper, we systematically analyzed the electrochemical detection of CRP modified through the attachment of an alkaline phosphatase (ALP-labeled CRP) using ELISA inside a chip. For this analysis, we developed a model based on antigen-antibody binding kinetics theory for the numerical quantification of the CRP concentration. We also experimentally measured the current value corresponding to the ALP-labeled CRP concentration inside the microfluidic chip. The measured value closely matched the calculated value obtained by numerical simulation using the developed model. Through this comparison, we validated the numerical simulation methods, and the calculated and measured values. Lastly, we examined the effects of various microfluidic parameters on electrochemical detection of the ALP-labeled CRP concentration using numerical simulations. The results of these simulations provide insight into the microfluidic electrochemical reactions used for protein detection. Furthermore, the results described in this study should be useful for the design and optimization of
Pan, Jin-ren; Chen, Kun
2010-07-01
Interaction assessment is an important step in epidemiological analysis. When etiological study is carried out, the logarithmic models such as logistic model or Cox proportional hazard model are commonly used to estimate the independent effects of the risk factors. However, estimating interaction between risk factors by the regression coefficient of the product term is on multiplicative scale, and for public-health purposes, it is supposed to be on additive scale or departure from additivity. This paper illustrates with a example of cohort study by fitting Cox proportional hazard model to estimate three measures for additive interaction which presented by Rothman. Adopting the S-Plus application with a built-in Bootstrap function, it is convenient to estimate the confidence interval for additive interaction. Furthermore, this method can avoid the exaggerated estimation by using ORs in a cohort study to gain better precision. When using the complex combination models between additive interaction and multiplicative interaction, it is reasonable to choose the former one when the result is inconsistent.
NASA Astrophysics Data System (ADS)
Hattori, Kiyohito; Fujii, Hiroyuki; Tatekura, Yuki; Kobayashi, Kazumichi; Watanabe, Masao
2015-12-01
An accurate determination of optical properties of agricultural products is crucial for non-destructive assessment of food quality. For the determination, light intensity is measured at the surface of the product; then, inverse analysis is employed based on a light propagation model such as the radiative transfer equation (RTE). The inverse analysis requires high computational loads because the light intensity is numerically calculated using the model every time the optical properties are changed. For the calculation, we propose an efficient technique by combining a numerical solution with an analytical solution of the RTE, and investigate the validity of the technique in a two-dimensional homogeneous circular medium which is regarded as a light propagation model with optical properties of kiwifruit. The proposed technique can provide accurate results of the light intensity in change of the optical properties, and the accuracy is less dependent on the boundary conditions and source-detector angles. In addition, the technique can reduce computation time compared with that for numerical calculation of the RTE. These results indicate usefulness of the proposed technique for the inverse analysis.
Studying Turbulence Using Numerical Simulation Databases. No. 7; Proceedings of the Summer Program
NASA Technical Reports Server (NTRS)
1998-01-01
The Seventh Summer Program of the Center for Turbulence Research took place in the four-week period, July 5 to July 31, 1998. This was the largest CTR Summer Program to date, involving thirty-six participants from the U. S. and nine other countries. Thirty-one Stanford and NASA-Ames staff members facilitated and contributed to most of the Summer projects. A new feature, and perhaps a preview of the future programs, was that many of the projects were executed on non-NASA computers. These included supercomputers located in Europe as well as those operated by the Departments of Defense and Energy in the United States. In addition, several simulation programs developed by the visiting participants at their home institutions were used. Another new feature was the prevalence of lap-top personal computers which were used by several participants to carry out some of the work that in the past were performed on desk-top workstations. We expect these trends to continue as computing power is enhanced and as more researchers (many of whom CTR alumni) use numerical simulations to study turbulent flows. CTR's main role continues to be in providing a forum for the study of turbulence for engineering analysis and in facilitating intellectual exchange among the leading researchers in the field. Once again the combustion group was the largest. Turbulent combustion has enjoyed remarkable progress in using simulations to address increasingly complex and practically more relevant questions. The combustion group's studies included such challenging topics as fuel evaporation, soot chemistry, and thermonuclear reactions. The latter study was one of three projects related to the Department of Energy's ASCI Program (www.llnl.gov/asci); the other two (rocket propulsion and fire safety) were carried out in the turbulence modeling group. The flow control and acoustics group demonstrated a successful application of the so-called evolution algorithms which actually led to a previously unknown
Numerical study of mixed convection between two corotating symmetrically heated disks
Soong, C.Y.; Yan, W.M. Hua Fan Inst. of Technology, Taipei )
1993-03-01
This article is concerned with a numerical study of mixed convection between two symmetrically heated corotating disks. Both thermal boundary conditions of constant wall temperature and uniform heat flux are considered. By applying the boundary-layer approximation and a linear relation for density variation in centrifugal force term, the governing equations reduce to a Boussinesq system of parabolic nature. The spatially developing flow and heat transfer are studied numerically. The effects of centrifugal buoyancy, Coriolis force, radial through-flow, and wall-heating on the flow structure and heat transfer performance are examined in detail. The results reveal that the centrifugal buoyancy, which was ignored in prior studies, is indeed a significant effect in this class of rotating flows. 19 refs.
Particle behavior in linear shear flow: an experimental and numerical study
NASA Astrophysics Data System (ADS)
Fathi, Nima; Ingber, Marc; Vorobieff, Peter
2012-11-01
We study particle behavior in low Reynolds number flows. Our experimental setup can produce both Couette flow and Pouseuille flow at low Reynolds numbers. Spherical particles are suspended in gravity-stratified Newtonian fluid. Their predominantly two-dimensional motion is driven by moving belts (and/or piston) that produce shear in the fluids. Particle migration and translational velocity have been studied. The irreversibility of particle motion has been investigated. The experimental results are compared to the numerical simulations performed with discrete phase element method (DPM). Particle trajectories with the same boundary conditions in viscous fluids have been studied. The irreversibility in numerical simulation has been modeled for different cases. Results show the particle migration is a function of shear rate, particle size, degree of symmetry of the fluid domain, and also of the initial starting position, the latter playing an important role in the irreversibility of particle motion. This research is partly supported by Procter & Gamble.
NASA Astrophysics Data System (ADS)
Petibon, R.; Sinha, N. N.; Burns, J. C.; Aiken, C. P.; Ye, Hui; VanElzen, Collette M.; Jain, Gaurav; Trussler, S.; Dahn, J. R.
2014-04-01
The effect of various electrolyte additives and additive combinations added to a 1 M LiPF6 EC:EMC electrolyte on the positive and negative electrodes surface of 1 year old wound LiCoO2/graphite cells and Li[Ni0.4Mn0.4Co0.2])O2/graphite cells was studied using electrochemical impedance spectroscopy (EIS) on symmetric cells. The additives tested were: vinylene carbonate (VC), trimethoxyboroxine (TMOBX), fluoroethylene carbonate (FEC), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and H2O alone or in combination. In general, compared to control electrolyte, the additives tested reduced the impedance of the positive electrode and increased the impedance of the negative electrode with the exception of LiTFSI in Li[Ni0.4Mn0.4Co0.2]O2/graphite wound cells. Higher charge voltage led to higher positive electrode impedance, with the exception of 2%VC + 2% FEC, and 2% LiTFSI. In some cases, some additives when mixed with another controlled the formation of the SEI at one electrode, and shared the formation of the SEI at one electrode when mixed with a different additive.
A numerical study on parasitic capillary waves using unsteady conformal mapping
NASA Astrophysics Data System (ADS)
Murashige, Sunao; Choi, Wooyoung
2017-01-01
This paper describes fully nonlinear computation of unsteady motion of parasitic capillary waves that appear on the front face of steep gravity waves progressing on water of infinite depth, within the framework of irrotational plane flow. As an alternative to the widely-used boundary integral method with mixed-Eulerian-Lagrangian (MEL) time updating, we focus on a numerical method based on unsteady conformal mapping, which will be hereafter referred to as the unsteady hodograph transformation (UHT) method. In this method, we solve the nonlinear evolution equations to find an unsteady conformal map in a complex plane with which the flow domain is mapped onto the unit disk while the free surface is fixed on the unit circle. The aim of this work is to compare the UHT method with the MEL method and find a more efficient method to compute parasitic capillary waves. From linear stability analysis, it is found that a critical difference between these two methods arises from the kernel of cotangent function in singular integrals, and the UHT method can avoid some numerical instability due to it. Numerical examples demonstrate that the UHT method is more suitable than the MEL method for not only parasitic capillary waves, but also capillary dominated waves. In particular, the UHT method requires no artificial techniques, such as filtering, to control numerical errors, in these examples. In addition, another major difference between the two methods is observed in terms of the clustering property of sample points on the free surface, depending on the restoring force of waves (gravity or surface tension).
Generating Scenarios of Addition and Subtraction: A Study of Japanese University Students
ERIC Educational Resources Information Center
Kinda, Shigehiro
2013-01-01
Students are presented with problems involving three scenario types of addition and subtraction in elementary mathematics: one dynamic ("Change") and two static ("Combine, Compare"). Previous studies have indicated that the dynamic type is easier for school children, whereas the static types are more difficult and comprehended only gradually…
ERIC Educational Resources Information Center
Romberg, Thomas A.; And Others
The purpose of this study was to relate children's cognitive processing capabilities and their grade level to their performance and to the strategies they used when working addition and subtraction problems. From two sets of data which assessed memory capacity and cognitive processing capacities, six groups of children with different cognitive…
Using E-Learning to Enhance the Learning of Additional Languages--A Pilot Comparative Study
ERIC Educational Resources Information Center
Hilton, Gillian L. S.
2013-01-01
This paper is concerned with a small pilot study to ascertain the use of, and changes in the use of e-learning to promote the learning of foreign and additional languages in a variety of countries in Europe. It was undertaken by individual researchers in an attempt to examine how the drive towards the teaching of new languages, encouraged by the…
Industry research on the use and effects of levulinic acid: a case study in cigarette additives.
Keithly, Lois; Ferris Wayne, Geoffrey; Cullen, Doris M; Connolly, Gregory N
2005-10-01
Public health officials and tobacco researchers have raised concerns about the possible contributions of additives to the toxicity of cigarettes. However, little attention has been given to the process whereby additives promote initiation and addiction. Levulinic acid is a known cigarette additive. Review of internal tobacco industry documents indicates that levulinic acid was used to increase nicotine yields while enhancing perceptions of smoothness and mildness. Levulinic acid reduces the pH of cigarette smoke and desensitizes the upper respiratory tract, increasing the potential for cigarette smoke to be inhaled deeper into the lungs. Levulinic acid also may enhance the binding of nicotine to neurons that ordinarily would be unresponsive to nicotine. These findings held particular interest in the internal development of ultralight and so-called reduced-exposure cigarette prototypes. Industry studies found significantly increased peak plasma nicotine levels in smokers of ultralight cigarettes following addition of levulinic acid. Further, internal studies observed changes in mainstream and sidestream smoke composition that may present increased health risks. The use of levulinic acid illustrates the need for regulatory authority over tobacco products as well as better understanding of the role of additives in cigarettes and other tobacco products.
A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
Thalhammer, Mechthild; Abhau, Jochen
2012-08-15
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that
A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations
Thalhammer, Mechthild; Abhau, Jochen
2012-01-01
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0<ε≪1, especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the
Numerical study of wave propagation around an underground cavity: acoustic case
NASA Astrophysics Data System (ADS)
Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz
2015-04-01
Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the
Numerical studies of the fluid and optical fields associated with complex cavity flows
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1992-01-01
Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.
Large Scale Numerical Modelling to Study the Dispersion of Persistent Toxic Substances Over Europe
NASA Astrophysics Data System (ADS)
Aulinger, A.; Petersen, G.
2003-12-01
For the past two decades environmental research at the GKSS Research Centre has been concerned with airborne pollutants with adverse effects on human health. The research was mainly focused on investigating the dispersion and deposition of heavy metals like lead and mercury over Europe by means of numerical modelling frameworks. Lead, in particular, served as a model substance to study the relationship between emissions and human exposition. The major source of airborne lead in Germany was fuel combustion until the 1980ies when its use as gasoline additive declined due to political decisions. Since then, the concentration of lead in ambient air and the deposition rates decreased in the same way as the consumption of leaded fuel. These observations could further be related to the decrease of lead concentrations in human blood measured during medical studies in several German cities. Based on the experience with models for heavy metal transport and deposition we have now started to turn our research focus to organic substances, e.g. PAHs. PAHs have been recognized as significant air borne carcinogens for several decades. However, it is not yet possible to precisely quantify the risk of human exposure to those compounds. Physical and chemical data, known from literature, describing the partitioning of the compounds between particle and gas phase and their degradation in the gas phase are implemented in a tropospheric chemistry module. In this way, the fate of PAHs in the atmosphere due to different particle type and size and different meteorological conditions is tested before carrying out large-scale and long-time studies. First model runs have been carried out for Benzo(a)Pyrene as one of the principal carcinogenic PAHs. Up to now, nearly nothing is known about degradation reactions of particle bound BaP. Thus, they could not be taken into account in the model so far. On the other hand, the proportion of BaP in the gas phase has to be considered at higher ambient
Soylu, Firat; Newman, Sharlene D
2016-02-01
Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development.
Oxidative addition of methane and benzene C--H bonds to rhodium center: A DFT study
NASA Astrophysics Data System (ADS)
Bi, Siwei; Zhang, Zhenwei; Zhu, Shufen
2006-11-01
A density functional theory study on mechanisms of the oxidative addition of methane and benzene C-H bonds to the rhodium center containing Cp and PMe 3 ligands has been performed. Our calculated results confirm that the C-H bond cleavage from a sigma complex to a hydride alkyl complex is the rate-determining step. Compared with the case of methane C-H bond, the oxidative addition of benzene C-H bond is more favorable kinetically and thermodynamically. Stronger backdonation from metal center to the σ ∗ antibonding orbital of benzene C-H bond is responsible for the observations.
Monitoring red tide with satellite imagery and numerical models: a case study in the Arabian Gulf.
Zhao, Jun; Ghedira, Hosni
2014-02-15
A red tide event that occurred in August 2008 in the Arabian Gulf was monitored and assessed using satellite observations and numerical models. Satellite observations revealed the bloom extent and evolution from August 2008 to August 2009. Flow patterns of the bloom patch were confirmed by results from a HYCOM model. HYCOM data and satellite-derived sea surface temperature data further suggested that the bloom could have been initiated offshore and advected onshore by bottom Ekman layer. Analysis indicated that nutrient sources supporting the bloom included upwelling, Trichodesmium, and dust deposition while other potential sources of nutrient supply should also be considered. In order to monitor and detect red tide effectively and provide insights into its initiation and maintenance mechanisms, the integration of multiple platforms is required. The case study presented here demonstrated the benefit of combing satellite observations and numerical models for studying red tide outbreaks and dynamics.
Numerical study of an error model for a strap-down INS
NASA Astrophysics Data System (ADS)
Grigorie, T. L.; Sandu, D. G.; Corcau, C. L.
2016-10-01
The paper presents a numerical study related to a mathematical error model developed for a strap-down inertial navigation system. The study aims to validate the error model by using some Matlab/Simulink software models implementing the inertial navigator and the error model mathematics. To generate the inputs in the evaluation Matlab/Simulink software some inertial sensors software models are used. The sensors models were developed based on the IEEE equivalent models for the inertial sensorsand on the analysis of the data sheets related to real inertial sensors. In the paper are successively exposed the inertial navigation equations (attitude, position and speed), the mathematics of the inertial navigator error model, the software implementations and the numerical evaluation results.
A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer
NASA Technical Reports Server (NTRS)
Mack, L. M.
1976-01-01
A numerical study is made of the temporal eigenvalue spectrum of the Orr-Sommerfeld equation for the Blasius boundary layer. Unlike channel flows, there is no mathematical proof that this flow has an infinite spectrum of discrete eigenvalues. The Orr-Sommerfeld equation is integrated numerically, and the eigenvalues located by tracing out the contour lines in the complex wave velocity plane on which the real and imaginary parts of the secular determinant are zero. The spectrum of plane Poiseuille flow is used as a guide to study the spectrum of an artificial two-wall flow which consists of two Blasius boundary layers. As the upper boundary of this flow moves to infinity, it is found that the portion of the spectrum with an infinite number of eigenvalues moves towards phase velocity equal to unity and the spacing between eigenvalues goes to zero. The original few eigenvalues found are the only discrete eigenvalues that exist for Blasius flow.
Numerical Simulation and Experimental Study of a Dental Handpiece Air Turbine
NASA Astrophysics Data System (ADS)
Hsu, Chih-Neng; Chiang, Hsiao-Wei D.; Chang, Ya-Yi
2011-06-01
Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, however, little work has been reported on their performance. In dental air turbine handpieces, the types of flow channel and turbine blade shape can have very different designs. These different designs can have major influence on the torque, rotating speed, and power performance. This research is focused on the turbine blade and the flow channel designs. Using numerical simulation and experiments, the key design parameters which influence the performance of dental hand pieces can be studied. Three types of dental air turbine designs with different turbine blades, nozzle angles, nozzle flow channels, and shroud clearances were tested and analyzed. Very good agreement was demonstrated between the numerical simulation analyses and the experiments. Using the analytical model, parametric studies were performed to identify key design parameters.
Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.
2007-01-01
The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.
Numerical study of rotating detonation engine with an array of injection holes
NASA Astrophysics Data System (ADS)
Yao, S.; Han, X.; Liu, Y.; Wang, J.
2016-10-01
This paper aims to adopt the method of injection via an array of holes in three-dimensional numerical simulations of a rotating detonation engine (RDE). The calculation is based on the Euler equations coupled with a one-step Arrhenius chemistry model. A pre-mixed stoichiometric hydrogen-air mixture is used. The present study uses a more practical fuel injection method in RDE simulations, injection via an array of holes, which is different from the previous conventional simulations where a relatively simple full injection method is usually adopted. The computational results capture some important experimental observations and a transient period after initiation. These phenomena are usually absent in conventional RDE simulations due to the use of an idealistic injection approximation. The results are compared with those obtained from other numerical studies and experiments with RDEs.
Numerical Study of Ram Air Airfoils and Upper Surface Bleed-Air Control
2014-06-16
of ram -air parachute systems to complement the design and analysis of new and existing airdrop systems. In this paper an unsteady numerical study of...two-dimensional, rigid, ram -air sections with an array of upper surface bleed-air actuators is presented. Aerodynamic forces and lift-to-drag ratios of...a modified Clark-Y ram -air airfoil are calculated from unsteady Reynolds-Averaged Navier-Stokes (RANS) simulations, using the Kestrel and Cobalt flow
NASA Astrophysics Data System (ADS)
Ivanov, D. S.; Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Doronin, D. M.; Ovchinnikov, A. V.
2017-03-01
Attitude motion of a satellite equipped with magnetic control system is considered. System comprises of three magnetorquers and one three-axis magnetometer. Satellite is stabilized in orbital reference frame using PD controller and extended Kalman filter. Three-axis attitude is analyzed numerically with advanced assumptions: inertia tensor uncertainty, disturbances of unknown nature, magnetometer errors are taken into account. Stabilization and determination accuracy dependence on orbit inclination is studied.
A numerical study of the stabilitiy of helical vortices using vortex methods
NASA Astrophysics Data System (ADS)
Walther, J. H.; Guénot, M.; Machefaux, E.; Rasmussen, J. T.; Chatelain, P.; Okulov, V. L.; Sørensen, J. N.; Bergdorf, M.; Koumoutsakos, P.
2007-07-01
We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices—similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.
Numerical Study of Two-Phase Flow Field in a Simplified Swirl Cup Combustor (Preprint)
2007-09-24
Article 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Numerical Study of Two-Phase Flow Field in a Simplified Swirl Cup...swirl provides a recirculation zone which enhances mixing and flame stability. Some high-performance aircraft engines such as in GE/SNECMA CFM56 ...downstream of a GE/SNECMA CFM56 engine combustor swirl cup in which the primary and secondary swirlers provide co-axial, counter-swirling airstreams
Numerical study of super-resolved optical microscopy with partly staggered beams
NASA Astrophysics Data System (ADS)
He, Jinping; Wang, Nan; Kobayashi, Takayoshi
2016-12-01
The resolving power of optical microscopy involving two or even more beams, such as pump-probe microscopy and nonlinear optical microscopy, can be enhanced both laterally and longitudinally with partly staggered beams. A numerical study of the new super-resolution imaging technology is performed with vector diffraction theory. The influence of polarization is discussed. A resolving power of sub-100 nm and sub-300 nm in the lateral and longitudinal directions, respectively, is achievable.
Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai
2015-01-01
Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. The observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys. PMID:26446425
Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai
2015-10-08
Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. In conclusion, the observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.
NASA Astrophysics Data System (ADS)
Matsangouras, I. T.; Nastos, P. T.; Pytharoulis, I.
2016-03-01
Recent research revealed that western Greece and NW Peloponnese are regions that favor prefrontal tornadic incidence. On March 25, 2009 a tornado developed approximately at 10:30 UTC near Varda village (NW Peloponnese). Tornado intensity was T4-T5 (TORRO scale) and consequently caused an economic impact of 350,000 € over the local society. The goals of this study are: (i) to analyze synoptic and remote sensing features regarding the tornado event over NW Peloponnese and (ii) to investigate the role of topography in tornadogenesis triggered under strong synoptic scale forcing over that area. Synoptic analysis was based on the European Centre for Medium-Range Weather Forecasts (ECMWF) data sets. The analysis of daily anomaly of synoptic conditions with respect to 30 years' climatology (1981-2010), was based on the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis data sets. In addition, numerous remote sensing data sets were derived by the Hellenic National Meteorological Service (HNMS) weather station network in order to better interpret the examined tornado event. Finally, numerical modeling was performed using the non-hydrostatic Weather Research and Forecasting model (WRF), initialized by ECMWF gridded analyses, with telescoping nested grids that allow the representation of atmospheric circulations ranging from the synoptic scale down to the meso-scale. The two numerical experiments were performed on the basis of: (a) the presence and (b) the absence of topography (landscape), so as to determine whether the occurrence of a tornado - identified by diagnostic instability indices - could be indicated by modifying topography. The energy helicity index (EHI), the bulk Richardson number (BRN) shear, the storm-relative environmental helicity (SRH), and the maximum convective available potential energy (MCAPE, for parcels with maximum θe) were considered as principal diagnostic instability variables and
Studies of levels of biogenic amines in meat samples in relation to the content of additives.
Jastrzębska, Aneta; Kowalska, Sylwia; Szłyk, Edward
2016-01-01
The impact of meat additives on the concentration of biogenic amines and the quality of meat was studied. Fresh white and red meat samples were fortified with the following food additives: citric and lactic acids, disodium diphosphate, sodium nitrite, sodium metabisulphite, potassium sorbate, sodium chloride, ascorbic acid, α-tocopherol, propyl 3,4,5-trihydroxybenzoate (propyl gallate) and butylated hydroxyanisole. The content of spermine, spermidine, putrescine, cadaverine, histamine, tyramine, tryptamine and 2-phenylethylamine was determined by capillary isotachophoretic methods in meat samples (fresh and fortified) during four days of storage at 4°C. The results were applied to estimate the impact of the tested additives on the formation of biogenic amines in white and red meat. For all tested meats, sodium nitrite, sodium chloride and disodium diphosphate showed the best inhibition. However, cadaverine and putrescine were characterised by the biggest changes in concentration during the storage time of all the additives. Based on the presented data for the content of biogenic amines in meat samples analysed as a function of storage time and additives, we suggest that cadaverine and putrescine have a significant impact on meat quality.
Study of the occlusion effect induced by an earplug: Numerical modelling and experimental validation
NASA Astrophysics Data System (ADS)
Brummund, Martin
(IRSST) and the Ecole de technologie superieure (ETS) has been launched. The present study represents a part of this collaboration and aims at studying the occlusion effect of the system earplug - ear canal through the development of novel numerical models and experimental methods. (Abstract shortened by UMI.).
Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
Chua, L P; Zhang, J-M; Yu, S C M; Ghista, D N; Tan, Y S
2005-09-01
Haemodynamics was widely believed to correlate with anastomosis restenosis. Utilizing the haemodynamic parameters as indicator functions, distal anastomosis was redesigned by some researchers so as to improve the long-term graft patency rate. However, there were few studies upon the proximal anastomosis. Therefore, in this study, flow characteristics and distributions of the haemodynamic parameters in proximal anastomosis under physiological flow condition have been investigated numerically for three different grafting angles: namely, 45 degrees forward facing, 45 degrees backward facing, and 90 degrees anastomotic joints. The simulation results showed a flow separation region along the graft inner wall immediately after the heel at peak flow phase and it decreased in size with the grafting angle shifting from 45 degrees forward facing to 45 degrees backward facing. At the same time, a pair of vortex was found in the cross-sectional planes of the 45 degrees backward facing and 90 degrees grafts. In addition, stagnation point was found along the graft outer wall with small shifting during the physiological cycle. High spatial and temporal wall shear stresses gradients (WSSG) were observed around the anastomotic joint. Low time-averaged wall shear stress (WSS) with elevated oscillation shear index (OSI) was found near the middle of anastomosis at the aorta wall and along the graft inner wall respectively, while high time-averaged WSS with low OSI was found at the heel, the toe, and the region downstream of the toe. These regions correlated to early lesion growth. Elevated time-averaged WSSG was found at the same region, where the elevated low-density lipoprotein (LDL) permeability was observed as reported in the literature. The existence of nearly fixed stagnating location, flow separation, vortex, high time-averaged WSS with low OSI, low time-averaged WSS with elevated OSI, and high time-averaged WSSG may lead to graft stenosis. Moreover, the simulation results
Mechanisms of microbubble–vessel interactions and induced stresses: A numerical study
Hosseinkhah, N.; Chen, H.; Matula, T. J.; Burns, P. N.; Hynynen, K.
2013-01-01
Oscillating microbubbles within microvessels could induce stresses that lead to bioeffects or vascular damage. Previous work has attributed vascular damage to the vessel expansion or bubble jet. However, ultra-high speed images of recent studies suggest that it could happen due to the vascular invagination. Numerical simulations of confined bubbles could provide insight into understanding the mechanism behind bubble–vessel interactions. In this study, a finite element model of a coupled bubble/fluid/vessel system was developed and validated with experimental data. Also, for a more realistic study viscoelastic properties of microvessels were assessed and incorporated into this comprehensive numerical model. The wall shear stress (WSS) and circumferential stress (CS), metrics of vascular damage, were calculated from these simulations. Resultant amplitudes of oscillation were within 15% of those measured in experiments (four cases). Among the experimental cases, it was numerically found that maximum WSS values were between 1.1–18.3 kPa during bubble expansion and 1.5–74 kPa during bubble collapse. CS was between 0.43–2.2 MPa during expansion and 0.44–6 MPa while invaginated. This finding confirmed that vascular damage could occur during vascular invaginations. Predicted thresholds in which these stresses are higher during vessel invagination were calculated from simulations. PMID:23967921
NASA Astrophysics Data System (ADS)
Kourkoulis, S.-K.; Mentzini, M.; Ganniari-Papageorgiou, E.
2010-06-01
The mechanical behaviour of fractured prismatic marble architraves (epistyles) is evaluated in the present study both experimentally and numerically. The study is based on a recently introduced method for the calculation of the reinforcement required for joining together fractured structural elements of ancient monuments. The experimental assessment includes the construction of an accurate model of the most seriously damaged architrave of the north colonnade of the Parthenon Temple in a scale 1:3. The epistyle is considered symmetrically fractured at its mid-plane and it is restored with three horizontal layers of titanium bars. A multi-point bending arrangement was designed including a system of double T-beams and steel rollers in order to approach in an optimum manner the action of the uniformly distributed load exerted on the epistyle in its original position. A numerical analysis followed in an effort to study the parameters influencing the behaviour of the epistyle. The numerical model simulated accurately all the geometrical details of the experimental model, the load application mode and the mechanical characteristics of the three materials used for the restoration (marble, titanium and interposed cementitious material). The analysis enlightened interesting points concerning the location of the regions of the structure more susceptible to failure.
Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James
2016-01-01
Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period.
Piepel, Gregory F.; Amidan, Brett G.; Morrow, Jayne B.
2010-12-29
This report and an associated Excel file(a) summarizes the investigations and results of previous chamber and controlled studies(b) to characterize the performance of methods for collecting, storing and/or transporting, extracting, and analyzing samples from surfaces contaminated by Bacillus anthracis (BA) or related simulants. This report and the Excel are the joint work of the Pacific Northwest National Laboratory (PNNL) and the National Institute of Standards and Technology (NIST) for the Department of Homeland Security, Science and Technology Directorate. The report was originally released as PNNL-SA-69338, Rev. 0 in November 2009 with limited distribution, but was subsequently cleared for release with unlimited distribution in this Rev. 1. Only minor changes were made to Rev. 0 to yield Rev. 1. A more substantial update (including summarizing data from other studies and more condensed summary tables of data) is underway
Numerical and experimental approaches to study soil transport and clogging in granular filters
NASA Astrophysics Data System (ADS)
Kanarska, Y.; Smith, J. J.; Ezzedine, S. M.; Lomov, I.; Glascoe, L. G.
2012-12-01
Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. Numerical modeling has proved to be a cost-effective tool for improving our understanding of physical processes. Traditionally, the consideration of flow and particle transport in porous media has focused on treating the media as continuum. Practical models typically address flow and transport based on the Darcy's law as a function of a pressure gradient and a medium-dependent permeability parameter. Additional macroscopic constitutes describe porosity, and permeability changes during the migration of a suspension through porous media. However, most of them rely on empirical correlations, which often need to be recalibrated for each application. Grain-scale modeling can be used to gain insight into scale dependence of continuum macroscale parameters. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration in the filter layers of gravity dam. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. It is believed that the agreement between simulations and experimental data demonstrates the applicability of the proposed approach for prediction of the soil transport and clogging in embankment dams. To get more precise understanding of
Agrillo, Christian; Bisazza, Angelo
2014-08-30
A large body of experimental evidence shows that animals as diverse as mammals, birds, and fish are capable of processing numerical information. Considerable differences have been reported in some cases among species and a wide debate currently surrounds the issue of whether all vertebrates share the same numerical systems or not. Part of the problem is due to the fact that these studies often use different methods, a circumstance that potentially introduces confounding factors in a comparative analysis. In most studies, two main methodological approaches have been used: spontaneous choice tests and training procedures. The former approach consists of presenting to the subjects two groups of biologically-relevant stimuli (e.g., food items or social companions) differing in numerosity with the assumption that if they are able to discriminate between the two quantities, they are expected to spontaneously select the larger/smaller quantity. In the latter approach, subjects undergo extensive training in which some neutral stimuli (e.g., a quantity of dots) are associated with a reward and the capacity to learn a numerical rule is taken as evidence of numerical abilities. We review the literature on this topic, highlighting the relevance, and potential weaknesses in controlling confounding factors obtained with either approach.
Using epidemiology to regulate food additives: saccharin case-control studies.
Cordle, F; Miller, S A
1984-01-01
The increasing use of nonnutritive sweeteners and the widely publicized 1969 ban on cyclamate led to additional investigations in rodents of the carcinogenic potential of saccharin. Preliminary results of a long-term feeding study indicated formation of bladder tumors in rodents, and collective experimental evidence has demonstrated that high doses of the synthetic sweetener saccharin can cause bladder cancer in rodents. Based on the results of that and other rodent studies indicating an increased risk of bladder cancer associated with saccharin, the Commissioner of the Food and Drug Administration announced the agency's intention to propose a ban on saccharin. This intention was made known in April 1977 under the Delaney Clause of the Food, Drug, and Cosmetic Act. The clause essentially states that no additive shall be deemed safe if it is found to induce cancer in man or animals, or if it is found, after tests appropriate for the evaluation of the safety of food additives, to induce cancer in man or animals. Also in 1977, a group of epidemiologists began to assess the available epidemiologic information to determine the potential human risk. This report describes the assessment of several human epidemiologic studies available then and the results of more recent epidemiologic studies.
A kinetic study of struvite precipitation recycling technology with NaOH/Mg(OH)2 addition.
Yu, Rongtai; Ren, Hongqiang; Wang, Yanru; Ding, Lili; Geng, Jingji; Xu, Ke; Zhang, Yan
2013-09-01
Struvite precipitation recycling technology is received wide attention in removal ammonium and phosphate out of wastewater. While past study focused on process efficiency, and less on kinetics. The kinetic study is essential for the design and optimization in the application of struvite precipitation recycling technology. The kinetics of struvite with NaOH/Mg(OH)2 addition were studied by thermogravimetry analysis with three rates (5, 10, 20 °C/min), using Friedman method and Ozawa-Flynn-Wall method, respectively. Degradation process of struvite with NaOH/Mg(OH)2 addition was three steps. The stripping of ammonia from struvite was mainly occurred at the first step. In the first step, the activation energy was about 70 kJ/mol, which has gradually declined as the reaction progress. By model fitting studies, the proper mechanism function for struvite decomposition process with NaOH/Mg(OH)2 addition was revealed. The mechanism function was f(α)=α(α)-(1-α)(n), a Prout-Tompkins nth order (Bna) model.
Note on numerical study of the beam energy spread in NDCX-I
Vay, J.-L.; Seidl, P.A.; Friedman, A.
2011-01-19
The kinetic energy spread (defined here as the standard deviation of the beam particle energies) sets the ultimate theoretical limit on the longitudinal compression that can be attained on NDCX-I and NDCX-II. Experimental measurements will inevitably include the real influences on the longitudinal phase space of the beam due to injector and accelerator field imperfections1. These induced energy variations may be the real limit to the longitudinal compression in an accelerator. We report on a numerical investigation of the energy spread evolution in NDCX-I; these studies do not include all the real imperfections, but rather are intended to confirm that there are no other intrinsic mechanisms (translaminar effects, transverse-longitudinal anisotropy instability, etc.) for significant broadening of the energy distribution. We have performed Warp simulations that use a realistic Marx voltage waveform which was derived from experimental measurements (averaged over several shots), a fully-featured model of the accelerating and focusing lattice, and new diagnostics for computing the local energy spread (and temperature) that properly account for linear correlations that arise from the discrete binning along each physical dimension (these capabilities reproduce and extend those of the earlier HIF code BPIC). The new diagnostics allow for the calculation of multi-dimensional maps of energy spread and temperature in 2-D axisymmetric or 3-D Cartesian space at selected times. The simulated beam-line was terminated at z = 3 m by a conducting plate, so as to approximately reproduce the experimental conditions at the entrance of the spectrometer that was used for mapping the longitudinal phase space. Snapshots of the beam projection and current, as well as the Marx waveform and history of beam kinetic energy collected at the end plate, are shown in Fig. 1. A two-dimensional axisymmetric map of energy spread from simulations of a typical NDCX-I configuration is shown in Fig. 2 (a
Identification of flow regimes around two staggered square cylinders by a numerical study
NASA Astrophysics Data System (ADS)
Aboueian, J.; Sohankar, A.
2017-02-01
The flow over two square cylinders in staggered arrangement is simulated numerically at a fixed Reynolds number (Re =150 ) for different gap spacing between cylinders from 0.1 to 6 times a cylinder side to understand the flow structures. The non-inclined square cylinders are located on a line with a staggered angle of 45° the oncoming velocity vector. All numerical simulations are carried out with a finite-volume code based on a collocated grid arrangement. The effects of vortex shedding on the various features of the flow field are numerically visualized using different flow contours such as λ 2 criterion, vorticity, pressure and magnitudes of velocity to distinguish the distinctive flow patterns. By changing the gap spacing between cylinders, five different flow regimes are identified and classified as single body, periodic gap flow, aperiodic, modulated periodic and synchronized vortex shedding regimes. This study revealed that the observed multiple frequencies in global forces of the downstream cylinder in the modulated periodic regime are more properly associated with differences in vortex shedding frequencies of individual cylinders than individual shear layers reported in some previous works; particularly, both shear layers from the downstream cylinder often shed vortices at the same multiple frequencies. The maximum Strouhal number for the upstream cylinder is also identified at {G}^{*}=1 for aperiodic flow pattern. Furthermore, for most cases studied, the downstream cylinder experiences larger drag force than the upstream cylinder.
NASA Technical Reports Server (NTRS)
de Groh, Henry C., III; Yao, Minwu
1994-01-01
A numerical and experimental study of the growth of succinonitrile (SCN) using a horizontal Bridginan furnace and transparent glass ampoule was conducted. Two experiments were considered: one in which the temperature profile was fixed relative to the ampoule (no-growth case); and a second in which the thermal profile was translated at a constant rate (steady growth case). Measured temperature profiles on the outer surface of the ampoule were used as thermal boundary conditions for the modelling. The apparent heat capacity formulation combined with the variable viscositymeth was used to model the phase change in SeN. Both 2-D and 3-D models were studied and numerical solutions obtained using the commercial finite element code, FIDAP1. Comparison of the numerical results to experimental data showed excellent agreement. The complex 3-D shallow-cavity flow in the melt, differences between 2-D and 3-D models, effects of natural convection on the thermal gradient and shape of the solid/liquid interface, and the sensitivity of simulations to specific assumptions, are also discussed.
Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J.
2015-01-01
We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves. PMID:26001199
Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun
2015-06-21
We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.
Development of a numerical code for the study of a supersonic planar wake
NASA Astrophysics Data System (ADS)
Hickey, Jean-Pierre; Wu, Xiaohua
2009-11-01
The fully-developed supersonic planar wake represents a canonical high-speed flow occurring in many aeronautical applications. The goal of the current research program is to perform a high-quality direct numerical simulation in order to thoroughly compare the statistics with classical experimental data and gain a better understanding of the structures present in the far-field of a supersonic planar wake. In order to study this flow a code is under development using a very efficient modified MacCormack-type scheme to solve the governing equation set. The main drawback of this numerical method is the large dispersive errors occurring in regions of sharp gradients which can occur in as shocklets in highly compressible flow. To this effect, a study of the numerical properties of this scheme is done using classical one-dimensional test cases such as the Shu-Osher and the Sod problem. The scheme compares very favorably to typical compressible schemes such as the Pade and Roe solvers but shows a very significant advantage in terms of memory usage and speed.
Hyde, D C; Berteletti, I; Mou, Y
2016-01-01
Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test.
NASA Astrophysics Data System (ADS)
Jung, C. K.; Jang, J. H.; Han, K. S.
2008-11-01
An axisymmetric finite element (FE) model is developed for the process of squeeze casting the metal-matrix composites (MMCs). The flow in the mold, the infiltration into the porous preform, and the solidification of the molten metal are studied numerically. The saturated porous flow model is adopted to simulate metal infiltration into the fibrous preform. To track the fluid front during the mold filling and infiltration, the level-set method is used. The enthalpy method is used to deal with transient heat transfer, including phase changes. Also, a simple preform deformation model is used to predict the permeability change caused by preform compression during infiltration. A numerical model representing the experiment setup is proposed. The infiltration and cooling behaviors during a process were calculated using pure aluminum as the matrix and a Saffil fiber preform. To validate the assumptions used in the numerical model, a series of infiltration experiments was carried out. The infiltration kinetics and the preform deformation were studied at different inlet pressures and at different preheat temperatures of the aluminum and the mold. A comparison with the experimental data shows that the developed FE program successfully predicts the actual squeeze casting process.
NASA Astrophysics Data System (ADS)
Zima, Piotr
2014-12-01
The article presents a proposal of a method for computer-aided design and analysis of breeding reservoirs in zoos and aquariums. The method applied involves the use of computer simulations of water circulation in breeding pools. A mathematical model of a pool was developed, and a tracer study was carried out. A simplified model of two-dimensional flow in the form of a biharmonic equation for the stream function (converted into components of the velocity vector) was adopted to describe the flow field. This equation, supplemented by appropriate boundary conditions, was solved numerically by the finite difference method. Next, a tracer migration equation was solved, which was a two-dimensional advection-dispersion equation describing the unsteady transport of a non-active, permanent solute. In order to obtain a proper solution, a tracer study (with rhodamine WT as a tracer) was conducted in situ. The results of these measurements were compared with numerical solutions obtained. The results of numerical simulations made it possible to reconstruct water circulation in the breading pool and to identify still water zones, where water circulation was impeded.
Blanloeuil, Philippe; Croxford, Anthony J; Meziane, Anissa
2014-04-01
The nonlinear interaction of shear waves with a frictional interface are presented and modeled using simple Coulomb friction. Analytical and finite difference implementations are proposed with both in agreement and showing a unique trend in terms of the generated nonlinearity. A dimensionless parameter ξ is proposed to uniquely quantify the nonlinearity produced. The trends produced in the numerical study are then validated with good agreement experimentally. This is carried out loading an interface between two steel blocks and exciting this interface with different amplitude normal incidence shear waves. The experimental results are in good agreement with the numerical results, suggesting the simple friction model does a reasonable job of capturing the fundamental physics. The resulting approach offers a potential way to characterize a contacting interface; however, the difficulty in activating that interface may ultimately limit its applicability.
Experimental and Numerical Study of Pore-Scale Multi-Phase Flow Dynamics
NASA Astrophysics Data System (ADS)
Tartakovsky, A. M.; Ling, B.; Oostrom, M.; Bao, J.; Kim, K.; Trask, N.; Battiato, I.
2015-12-01
Understanding multiphase fluid flow is critical for many applications, including CO2 sequestration, bioremediation, and oil recovery. Micro-fluidic experiments and pore-scale simulations become important tools in studying multiphase flow in porous media. At the same time, many pore-scale numerical models lack rigorous validation and verification, and micro-fluidic experiments are hard to reproduce due to physical instabilities and challenges in precisely controlling the experiments. We performed a set of microcell experiments and determined conditions necessary to obtain reproducible pore-scale evolution of the fluid-fluid interfaces during both infiltration and drainage phases. Next, we modeled the experiments using Finite Volume and Smoothed Particle Hydrodynamics codes. The point-by-point comparison of the experimental results and numerical simulations revealed advantages and disadvantages of these two methods in capturing the overall behavior and pore-scale phenomena, including residual saturations, formation of thin films, fluid bridges and various fluid trapping mechanisms.
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Milani, Federico
2012-12-01
The main problem in the industrial production process of thick EPM/EPDM elements is constituted by the different temperatures which undergo internal (cooler) and external regions. Indeed, while internal layers remain essentially under-vulcanized, external coating is always over-vulcanized, resulting in an overall average tensile strength insufficient to permit the utilization of the items in several applications where it is required a certain level of performance. Possible ways to improve rubber output mechanical properties include a careful calibration of exposition time and curing temperature in traditional heating or a vulcanization through innovative techniques, such as microwaves. In the present paper, a comprehensive numerical model able to give predictions on the optimized final mechanical properties of vulcanized 2D and 3D thick rubber items is presented and applied to a meaningful example of engineering interest. A detailed comparative numerical study is finally presented in order to establish pros and cons of traditional vulcanization vs microwaves curing.
Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol; Kwak, Jin
2013-01-01
The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility.
Numerical study of light-emitting diode with injected current modulated by designed electrode
NASA Astrophysics Data System (ADS)
Nishidate, Yohei; Khmyrova, Irina; Kholopova, Julia; Polushkin, Evgeny; Shevchenko, Bogdan; Shapoval, Sergei
2016-10-01
Numerical model and procedure are developed to study the output optical performance of light-emitting diode (LED) in which injected current is spatially modulated by mesh-like top metal electrode. The mesh strips have rectangular crossection as in realistic LEDs. The finite element method is applied to obtain three-dimensional distributions of electric potential which are incorporated in the equations for total output power. The numerical procedure is applied to evaluate LED's total output optical power at different geometric parameters of the electrode: the mesh pitch, the width, and the height of the top mesh-like electrodes. Modeling results demonstrate the effect of mesh pitch variation on the output optical power. In particular, at a certain value of the mesh pitch maximum total output optical power is revealed. The presented approach can be used in the optimization of the LEDs with designed metal electrodes.
Numerical Study of Aerodynamic Characteristics of a Symmetric NACA Section with Simulated Ice Shapes
NASA Astrophysics Data System (ADS)
Tabatabaei, N.; Cervantes, M. J.; Trivedi, C.; Aidanpää, Jan-Olof
2016-09-01
To develop a numerical model of icing on wind turbine blades, a CFD simulation was conducted to investigate the effect of critical ice accretions on the aerodynamic characteristics of a 0.610 m chord NACA 0011 airfoil section. Aerodynamic performance coefficients and pressure profile were calculated and compared with the available measurements for a chord Reynolds number of 1.83x106. Ice shapes were simulated with flat plates (spoiler-ice) extending along the span of the wing. Lift, drag, and pressure coefficients were calculated in zero angle of attack through the steady state and transient simulations. Different approaches of numerical studies have been applied to investigate the icing conditions on the blades. The simulated separated flow over the sharp spoilers is challenging and can be seen as a worst test case for validation. It allows determining a reliable strategy to simulate real ice shapes [1] for which the detailed validation cannot easily be provided.
A comparative study of time-marching and space-marching numerical methods. [for flowfield codes
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Moss, J. N.; Simmonds, A. L.
1983-01-01
Menees (1981) has conducted an evaluation of three different flowfield codes for the Jupiter entry conditions. However, a comparison of the codes has been made difficult by the fact that the three codes use different solution procedures, different computational mesh sizes, and a different convergence criterion. There are also other differences. For an objective evaluation of the different numerical solution methods employed by the codes, it would be desirable to select a simple no-blowing perfect-gas flowfield case for which the turbulent models are well established. The present investigation is concerned with the results of such a study. It is found that the choice of the numerical method is rather problem dependent. The time-marching and the space-marching method provide both comparable results if care is taken in selecting the appropriate mesh size near the body surface.
Van So, Pham; Jun, Hyun Woo; Lee, Jaichan
2013-12-01
We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.
Numerical study of co-firing pulverized coal and biomass inside a cement calciner.
Mikulčić, Hrvoje; von Berg, Eberhard; Vujanović, Milan; Duić, Neven
2014-07-01
The use of waste wood biomass as fuel is increasingly gaining significance in the cement industry. The combustion of biomass and particularly co-firing of biomass and coal in existing pulverized-fuel burners still faces significant challenges. One possibility for the ex ante control and investigation of the co-firing process are computational fluid dynamics (CFD) simulations. The purpose of this paper is to present a numerical analysis of co-firing pulverized coal and biomass in a cement calciner. Numerical models of pulverized coal and biomass combustion were developed and implemented into a commercial CFD code FIRE, which was then used for the analysis. Three-dimensional geometry of a real industrial cement calciner was used for the analysis. Three different co-firing cases were analysed. The results obtained from this study can be used for assessing different co-firing cases, and for improving the understanding of the co-firing process inside the calculated calciner.
NASA Astrophysics Data System (ADS)
Wen, Mao-Yu; Yeh, Cheng-Hsiung
2016-12-01
This paper presents a numerical simulation of the heat transfer performance under forced convection for two different types of circular pin fin heat sinks with (Type A) and without (Type B) a hollow in the heated base. COMSOL Multiphysics, which is used for the thermal hydraulic analyses, has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. The standard κ- ɛ two-equations turbulence model is employed to describe the turbulent structure and behavior. The numerical results are validated with the experimental results, and are shown to be in good agreement. The effects of the Reynolds number, height of the fin, finning factor and the perforated base plate on the heat-transfer coefficient are investigated and evaluated. The present study strongly recommends the use of a small hollow ( (Dh /Db ) < 0.15 ) constructed in the base plate of the pin fin heat sink.
Numerical simulation of damage evolution for ductile materials and mechanical properties study
NASA Astrophysics Data System (ADS)
El Amri, A.; Hanafi, I.; Haddou, M. E. Y.; Khamlichi, A.
2015-12-01
This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations.
Sirazetdinov, Vladimir S
2008-03-01
A detailed experimental study of spatial characteristics for laser beams propagating through the turbulent aerojet has been performed. The obtained results for radiation wavelengths of 0.53, 1.06, and 10.6 microm were used for the development of the numerical mathematical model for beam propagation through an extreme turbulent medium. The combination of parameters and algorithms for the numerical model was determined, which made it possible to obtain computational laser beam spatial characteristics that agreed quite well with the experimental data. Good agreement between the results points to the possibility, in principle, to regard the central jet area as a medium locally homogeneous in the statistical sense and anisotropic on the turbulent outer scales.
A Newton/upwind method and numerical study of shock wave/boundary layer interactions
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1989-01-01
The objective of the paper is two-fold. First, an upwind/central differencing method for solving the steady Navier-Stokes equations is described. The symmetric line relation method is used to solve the resulting algebraic system to achieve high computational efficiency. The grid spacings used in the calculations are determined from the triple-deck theory, in terms of Mach and Reynolds numbers and other flow parameters. Thus the accuracy of the numerical solutions is improved by comparing them with experimental, analytical, and other computational results. Secondly, the shock wave/boundary layer interactions are studied numerically, with special attention given to the flow separation. The concept of free interaction is confirmed. Although the separated region varies with Mach and Reynolds numbers, it is found that the transverse velocity component behind the incident shock, which has not been identified heretofore, is also an important parameter. A small change of this quantity is sufficient to eliminate the flow separation entirely.
A numerical study of 2D detonation waves with adaptive finite volume methods on unstructured grids
NASA Astrophysics Data System (ADS)
Hu, Guanghui
2017-02-01
In this paper, a framework of adaptive finite volume solutions for the reactive Euler equations on unstructured grids is proposed. The main ingredients of the algorithm include a second order total variation diminishing Runge-Kutta method for temporal discretization, and the finite volume method with piecewise linear solution reconstruction of the conservative variables for the spatial discretization in which the least square method is employed for the reconstruction, and weighted essentially nonoscillatory strategy is used to restrain the potential numerical oscillation. To resolve the high demanding on the computational resources due to the stiffness of the system caused by the reaction term and the shock structure in the solutions, the h-adaptive method is introduced. OpenMP parallelization of the algorithm is also adopted to further improve the efficiency of the implementation. Several one and two dimensional benchmark tests on the ZND model are studied in detail, and numerical results successfully show the effectiveness of the proposed method.
Study of asphalt/asphaltene precipitation during addition of solvents to West Sak crude
Jiang, J.C.; Patil, S.L.; Kamath, V.A. )
1990-07-01
In this study, experimental data on the amount of asphalt and asphaltene precipitation due to addition of solvents to West Sak crude were gathered. The first set of tests were conducted for two types of West Sak stock tank oils. Solvents used include: ethane, carbon dioxide, propane, n-butane, n-pentane, n-heptane, Prudhoe Bay natural gas (PBG) and natural gas liquids (NGL). Effect of solvent to oil dilution ratio on the amount of precipitation was studied. Alteration of crude oil composition due to asphalt precipitation was measured using gas-liquid chromatography. A second set of experiments were conducted to measure asphaltene precipitation due to addition of CO{sub 2} to live (recombined) West Sak crude.
Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
Marrero, Victor L; Tichy, John A; Sahni, Onkar; Jansen, Kenneth E
2014-10-01
It is well known that blood has non-Newtonian properties, but it is generally accepted that blood behaves as a Newtonian fluid at shear rates above 100 s-1. However, in transient conditions, there are times and locations where the shear rate is well below 100 s-1, and it is reasonable to infer that non-Newtonian effects could become important. In this study, purely viscous non-Newtonian (generalized Newtonian) properties of blood are incorporated into the simulation-based framework for cardiovascular surgery planning developed by Taylor et al. (1999, "Predictive Medicine: Computational Techniques in Therapeutic Decision Making," Comput. Aided Surg., 4, pp. 231-247; 1998, "Finite Element Modeling of Blood Flow in Arteries," Comput. Methods Appl. Mech. Eng., 158, pp. 155-196). Equations describing blood flow are solved in a patient-based abdominal aortic aneurysm model under steady and physiological flow conditions. Direct numerical simulation (DNS) is used, and the complex flow is found to be constantly transitioning between laminar and turbulent in both the spatial and temporal sense. It is found for the case simulated that using the non-Newtonian viscosity modifies the solution in subtle ways that yield a mesh-independent solution with fewer degrees of freedom than the Newtonian counterpart. It appears that in regions of separated flow, the lower shear rate produces higher viscosity with the non-Newtonian model, which reduces the associated resolution needs. When considering the real case of pulsatile flow, high shear layers lead to greater unsteadiness in the Newtonian case relative to the non-Newtonian case. This, in turn, results in a tendency for the non-Newtonian model to need fewer computational resources even though it has to perform additional calculations for the viscosity. It is also shown that both viscosity models predict comparable wall shear stress distribution. This work suggests that the use of a non-Newtonian viscosity models may be attractive
Cross-flow turbines: physical and numerical model studies towards improved array simulations
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2015-12-01
Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An
NASA Astrophysics Data System (ADS)
Hirata, Kunihiro; Ishida, Hiroshi; Hiragori, Motohiro; Nakayama, Yasuya; Kajiwara, Toshihisa
2015-05-01
In the kneading of glass-fiber-reinforced plastics by twin-screw extrusion, the use of a backward-mixing screw (BMS) element for melt mixing has been found to be effective in dispersing glass-fiber bundles. In this study, we use the computational fluid dynamics (CFD) to study the mechanism of dispersion by a BMS element for glass fiber bundles. The result of CFD for a BMS and a forward kneading disk (FKD) reveals that the melt mixing by a BMS is highly effective to act the required stress on overall resin. In addition, there is a good correlation between the incidence of undispersed glass-fiber bundles measured experimentally and the minimum value of distribution of the time-integrated stress calculated numerically. On the basis of the above results, we propose a method to predict the operating conditions in which the incident probability of undispersed glass-fiber bundles and thermal degradation are controlled.
Additive effects of neurofeedback on the treatment of ADHD: A randomized controlled study.
Lee, Eun-Jeong; Jung, Chul-Ho
2017-02-01
Neurofeedback (NF) has been identified as a "possibly efficacious" treatment in current evidence-based reviews; therefore, more research is needed to determine its effects. The current study examined the potential additive effect of NF for children diagnosed with ADHD beginning a medication trial first. Thirty-six children (6-12 years) with a DSM-IV-TR diagnosis of ADHD were randomly assigned to an NF with medication (NF condition) or a medication only condition. Children in the NF group attended 20 twice-weekly sessions. Outcome measures included individual cognitive performance scores (ADS, K-WISC-III), ADHD rating scores completed by their parents (ARS, CRS) and brainwave indices of left and right hemispheres before and after NF treatment. Significant additive treatment effect in any of the symptom variables was found and a reduction of theta waves in both the right and left hemispheres was recorded in NF condition participants. However our randomized controlled study could not demonstrate superior effects of combined NF on intelligent functioning compared to the medication treatment only. This study suggested any possible evidence of positive and additive treatment effects of NF on brainwaves and ADHD symptomatology.
Vogel, Stephan E; Goffin, Celia; Ansari, Daniel
2015-04-01
The way the human brain constructs representations of numerical symbols is poorly understood. While increasing evidence from neuroimaging studies has indicated that the intraparietal sulcus (IPS) becomes increasingly specialized for symbolic numerical magnitude representation over developmental time, the extent to which these changes are associated with age-related differences in symbolic numerical magnitude representation or with developmental changes in non-numerical processes, such as response selection, remains to be uncovered. To address these outstanding questions we investigated developmental changes in the cortical representation of symbolic numerical magnitude in 6- to 14-year-old children using a passive functional magnetic resonance imaging adaptation design, thereby mitigating the influence of response selection. A single-digit Arabic numeral was repeatedly presented on a computer screen and interspersed with the presentation of novel digits deviating as a function of numerical ratio (smaller/larger number). Results demonstrated a correlation between age and numerical ratio in the left IPS, suggesting an age-related increase in the extent to which numerical symbols are represented in the left IPS. Brain activation of the right IPS was modulated by numerical ratio but did not correlate with age, indicating hemispheric differences in IPS engagement during the development of symbolic numerical representation.
TEM and HRTEM studies of ball milled 6061 aluminium alloy powder with Zr addition.
Lityńska-Dobrzyńska, L; Dutkiewicz, J; Maziarz, W; Rogal, Ł
2010-03-01
The effect of mechanical alloying on the microstructure of atomized 6061 aluminium alloy powder and 6061 powder with a zirconium addition was studied in the work. The atomized 6061 aluminium alloy powder and 6061 powder with addition of 2 wt.% Zr were milled in a planetary ball mill and investigated using X-ray diffraction measurements, conventional and high-resolution electron microscopy (TEM/HRTEM) and high-angle annular dark field scanning transmission electron microscopy combined with energy dispersive X-ray microanalysis. An increase of stresses was observed in milled powders after the refinement of crystallites beyond 100 nm. In the powder with zirconium addition, some part of the Zr atoms diffused in aluminium forming a solid solution containing up to 0.5 wt.% Zr. The remaining was found to form Zr-rich particles containing up to 88 wt.% Zr and were identified as face centred cubic (fcc) phase with lattice constant a= 0.48 nm. That fcc phase partially transformed into the L1(2) ordered phase. Eighty-hour milling brought an increase of microhardness (measured with Vickers method) from about 50 HV (168 MPa) for the initial 6061 powder to about 170 HV (552 MPa). The addition of zirconium had no influence on the microhardness.
Hallux valgus: comparative study between two surgical techniques of proximal addition osteotomy
Lara, Luiz Carlos Ribeiro; de Araujo, Bruno Vierno; Franco, Nelson; Hita, Roberto Minoru
2012-01-01
OBJECTIVE: To clinically and radiographically compare the results of treatment of hallux valgus, by two addition osteotomy techniques: one using resected exostosis, and the other using a plate fixation for addition wedge. METHODS: We evaluated 24 feet of 19 patients, mean age 51.3 years, affected by hallux valgus, with a mean follow-up of 50.1 months. 13 feet underwent addition osteotomy with resected exostosis (AORE) and 11 patients (11 feet) underwent addition osteotomy with plate (AOP). The AOFAS score, intermetatarsal 1 and 2 angles, and hallux valgus angle were evaluated before and after surgery. RESULTS: In the AORE technique, the mean preoperative AOFAS was 46.6, with IMA 14o and HVA 32o, while in the postoperative AOFAS it was 81.3, with IMA 9o and HVA 25o, and 92.3% satisfactory results. In the AOP technique, the mean preoperative AOFAS was 42.1, with IMA 15o and HVA 29o while in the postoperative AOFAS it was 77.4, with IMA 11o and HVA 23o and 81.8% of satisfactory results. CONCLUSIONS: Both techniques proved to be effective in the treatment of hallux valgus, both clinically and radiografically, with no statistical difference between them. Level of evidence III, Retrospective comparative study. PMID:24453631
Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak
Hu, Youjun; Li, Guoqiang; Yang, Wenjun; Zhou, Deng; Ren, Qilong; Gorelenkov, N. N.; Cai, Huishan
2014-05-15
Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane.
Numerical study of rotor-stator interactions in a hydraulic turbine with Foam-extend
NASA Astrophysics Data System (ADS)
Romain, Cappato; Guibault, François; Devals, Christophe; Nennemann, Bernd
2016-11-01
In the development of high head hydraulic turbines, vibrations are one of the critical problems. In Francis turbines, pressure fluctuations occur at the interface between the blades of the runner and guide vanes. This rotor-stator interaction can be responsible for fatigue failures and cracks. Although the flow inside the turbomachinery is complex, and the unsteadiness makes it difficult to model, the choice of an appropriate setup enables the study of this phenomenon. This study validates a numerical setup of the Foam-extend open source software for rotor-stator simulations. Pressure fluctuations results show a good correspondence with data from experiments.
NASA Technical Reports Server (NTRS)
Golik, W. L.
1996-01-01
A robust solver for the elliptic grid generation equations is sought via a numerical study. The system of PDEs is discretized with finite differences, and multigrid methods are applied to the resulting nonlinear algebraic equations. Multigrid iterations are compared with respect to the robustness and efficiency. Different smoothers are tried to improve the convergence of iterations. The methods are applied to four 2D grid generation problems over a wide range of grid distortions. The results of the study help to select smoothing schemes and the overall multigrid procedures for elliptic grid generation.
Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole
NASA Astrophysics Data System (ADS)
Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua
2016-06-01
The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.
A numerical study of bench blast row delay timing and its influence on percent-cast
Preece, D.S.
1993-11-01
The computer program, DMC (Distinct Motion Code), which was developed for simulating the rock motion associated with blasting, has been used to study the influence of row delay timing on rock motion. The numerical simulations correspond with field observations in that very short delays (< 50ms) and very long delays (> 300ms) produce a lower percent-cast than a medium delay (100 to 200 ms). The DMC predicted relationship between row delay timing and percent-cast is more complex than expected with a dip in the curve where the optimum timing might be expected. More study is required to gain a full understanding of this phenomenon.
A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory
Li, Xiantao
2014-10-28
Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].
Numerical study of black-hole formation in Painleve-Gullstrand coordinates
Ziprick, Jonathan; Kunstatter, Gabor
2009-05-15
We study numerically black-hole formation from a collapsing massless scalar field. The use of Painleve-Gullstrand coordinates allows the evolution to proceed until singularity formation. We generate spacetime maps of the collapse, illustrating the evolution of apparent horizons for various initial data. A study of the Choptuik scaling reveals the expected universal values for the critical exponent and echoing period. The periodic oscillations in the supercritical horizon scaling relation, while universal with respect to initial Painleve-Gullstrand data, show unexpected structure with large amplitude cusps.
Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock waves
NASA Technical Reports Server (NTRS)
Liewer, P. C.; Decyk, V. K.; Dawson, J. M.; Lembege, B.
1991-01-01
Linear and nonlinear electron damping of the whistler precursor wave train to low Mach number quasi-perpendicular oblique shocks is studied using a one-dimensional electromagnetic plasma simulation code with particle electrons and ions. In some parameter regimes, electrons are observed to trap along the magnetic field lines in the potential of the whistler precursor wave train. This trapping can lead to significant electron heating in front of the shock for low beta(e). Use of a 64-processor hypercube concurrent computer has enabled long runs using realistic mass ratios in the full particle in-cell code and thus simulate shock parameter regimes and phenomena not previously studied numerically.
NASA Astrophysics Data System (ADS)
Zeng, J.
2014-12-01
Agriculture is an important part in the Nebraska state economy. While it is found that precipitation and photosynthetically active radiation (PAR) are the two most important factors deciding the annual agricultural yields. It is imperative for us to understand the seasonal/annual variation of precipitation and surface solar radiation, and understand their relationship with agricultural yields. In this study, we will use numerical land surface model to study the precipitation and radiation variation using the data from NASA's Earth Observation System. The research results will be a supplemental references for the farmers in NE agricultural industry and provide valuable information to the government administrators, policy makers in Nebraska department of Agriculture.
Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin; Widayani,; Celino, Massimo
2012-06-06
In this present work, we report numerical results of iron (cladding) corrosion study in interaction with lead-bismuth eutectic coolant of advanced nuclear reactors. The goal of this work is to study how the oxygen can be used to reduce the corrosion rate of cladding. The molecular dynamics method was applied to simulate corrosion process. By evaluating the diffusion coefficients, RDF functions, MSD curves of the iron and also observed the crystal structure of iron before and after oxygen injection to the coolant then we concluded that a significant and effective reduction can be achieved by issuing about 2% number of oxygen atoms to lead-bismuth eutectic coolant.
Experimental and Numerical Study on PDMS Collapse for Fabrication of Micro/Nanochannels
NASA Astrophysics Data System (ADS)
Yin, Zhifu; Zou, Helin
2016-12-01
PDMS (polydimethylsiloxane) collapse method is a simple and low cost approach for micronanochannel fabrication. However, the bonding pressure which influences the size of the final PDMS micro/nanochannels has not yet been studied. In this study, the effect of the bonding pressure on the size and maximum local stress of the PDMS micronanochannels was investigated by both experimental and numerical simulation method. The results show that when the bonding pressure is lower than 0.15 MPa the experiment results can agree well with the simulation results. The fluorescent images demonstrate that there is no blocking or leakage over the entire micro/nanochannels.
A numerical study on the oblique focus in MR-guided transcranial focused ultrasound
NASA Astrophysics Data System (ADS)
Hughes, Alec; Huang, Yuexi; Pulkkinen, Aki; Schwartz, Michael L.; Lozano, Andres M.; Hynynen, Kullervo
2016-11-01
Recent clinical data showing thermal lesions from treatments of essential tremor using MR-guided transcranial focused ultrasound shows that in many cases the focus is oblique to the main axis of the phased array. The potential for this obliquity to extend the focus into lateral regions of the brain has led to speculation as to the cause of the oblique focus, and whether it is possible to realign the focus. Numerical simulations were performed on clinical export data to analyze the causes of the oblique focus and determine methods for its correction. It was found that the focal obliquity could be replicated with the numerical simulations to within 23.2+/- {{13.6}\\circ} of the clinical cases. It was then found that a major cause of the focal obliquity was the presence of sidelobes, caused by an unequal deposition of power from the different transducer elements in the array at the focus. In addition, it was found that a 65% reduction in focal obliquity was possible using phase and amplitude corrections. Potential drawbacks include the higher levels of skull heating required when modifying the distribution of power among the transducer elements, and the difficulty at present in obtaining ideal phase corrections from CT information alone. These techniques for the reduction of focal obliquity can be applied to other applications of transcranial focused ultrasound involving lower total energy deposition, such as blood-brain barrier opening, where the issue of skull heating is minimal.
Development of a numerical reactive transport modelling framework - Concept & Case Studies
NASA Astrophysics Data System (ADS)
Kalbacher, T.; Jang, E.; He, W.; Shao, H.; Zolfaghari, R.; Kolditz, O.
2014-12-01
Civilization and in particular agriculture worldwide depends on the availability of clean freshwater resources stored in the underlying soil and aquifer systems. Unfortunately, water quality is often deteriorating, which is e.g. due to the extensive use of fertilizers or pesticides in agriculture or infiltrating waste water from cities and industries. All groundwater bodies commonly discharge into the nearby surface-water bodies like streams, lakes, or springs, and soil water is a direct water source for the biosphere. Therefore, bio-hydro-geochemical reaction systems along flow paths of the unsaturated as well as the saturated zone can have a strong impact on aquatic and terrestrial ecosystems. The simulation of such reactive transport problems in different hydrological compartments can help to understanding the comprehensive processes chain. One way to evaluate the water quality in space and time is to model the mass transport in soil and/or groundwater together with the contemporaneous chemical reactions numerically. Such physical and bio- hydro- geochemical driven forward simulations are usually solved by standard finite differences, finite element or finite volume methods, but simulating these scenarios at catchment scales is a challenging task due to the extreme computational load, numerical stability issues and different scale-dependencies. The main focus of the present study is the numerical simulation of reactive transport processes in heterogeneous porous media at large scales, i.e. from field scale, over hill slopes towards catchment scale. The objective of the study is, to develop a robust modelling framework which allows to identify appropriate levels of heterogeneity as well as the possibly dominating structural features (e.g. S-shaped clay lenses) with respect to specific reaction systems. The presented modelling framework will describe the functional interaction of different numerical methods and high performing computing (HPC) techniques by the use
Dickinson, Rebecca; Raynor, David K; MacDonald, Jan
2016-01-01
Objective To explore the impact of providing additional information about the potential benefits of simvastatin in a patient leaflet on attitudes and beliefs. Design Interview-based study using a generic qualitative approach and framework analysis. Participants 21 participants receiving a prescription for simvastatin were recruited from a general practitioner practice (from a total of 120). 8 participants were women; the age range was 55–92. Intervention Participants were provided with leaflets showing one of 3 types of additional benefit information: (1) textual statement, (2) number needed to treat (NNT) or (3) natural frequency. Semistructured interviews explored patient's attitudes and beliefs. Results A descriptive narrative of preferences for format suggested patients prefer textual as opposed to numerical benefit information. Significant barriers to the acceptance of numerical benefit information included difficulty in understanding the numbers. Patients overestimated the benefits of statins and expressed surprise at the numerical information. Conclusions Textual information was preferred but numerical information, in particular in the form of a natural frequency, may help patients make judgements about their medicines. NNTs were found to be very difficult to understand. This raises the prospect that some patients might reject medicines because of disappointment with the perceived low benefits of their medicines. The self-reported impact on behaviour appeared minimal with reports of intentions to ‘do what the doctor tells me’. Further research is needed to explore the impact of such statements on people who are yet to be prescribed a statin. PMID:27913558
A numerical study of the stability of radiative shocks. [in accretion flows onto white dwarf stars
NASA Technical Reports Server (NTRS)
Imamura, J. N.; Wolff, M. T.; Durisen, R. H.
1984-01-01
Attention is given to the oscillatory instability of optically thin radiative shocks in time-dependent numerical calculations of accretion flows onto degenerate dwarfs. The present nonlinear calculations yield good quantitative agreement with the linear results obtained for oscillation frequencies, damping rates, and critical alpha-values. The fundamental mode and the first overtone in the shock radius and luminosity variations can be clearly identified, and evidence is sometimes seen for the second overtone. Time-dependent calculations are also performed which include additional physics relevant to degenerate dwarf accretion, such as electron thermal conduction, unequal electron and ion temperatures, Compton cooling, and relativistic corrections to the bremsstrahlung cooling law. All oscillatory modes are found to be damped, and hence stable, in the case of a 1-solar mass white dwarf accreting in spherical symmetry.
Partial Synchronization in Pulse-Coupled Oscillator Networks II: A Numerical Study
NASA Astrophysics Data System (ADS)
Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato
We use high-precision numerical simulations, to compute the dynamics of N identical integrate and fire model neurons coupled in an all-to-all network through α-function pulses. In particular, we determine the discrete evolution of the state of our system from spike to spike. In addition to traditional fully synchronous and splay states, we exhibit multiple competing partially synchronized ordered states, which are fixed points and limit cycles in the phase space. Close examinations reveal the bifurcations among different states. By varying the parameters, we map out the phase diagram of stable fixed points. Our results illustrate the power of dimensional reduction in complex dynamical systems, and shed light on the collective behaviors of neural networks. Work supported by NSF DMS 1413020.
NASA Technical Reports Server (NTRS)
Kenner, B. G.; Lincoln, N. R.
1979-01-01
The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.
Experimental and Numerical Study of Ceramic Breeder Pebble Bed Thermal Deformation Behavior
An Zhiyong; Ying, Alice; Abdou, Mohamed
2005-05-15
Experiments on thermomechanics interactions between clad and pebble beds have been performed with overstoichiometric lithium orthosilicate pebbles (pebble diameters between 0.25 and 0.63 mm) at temperatures of 700-800 deg. C. The experimental results show that the thermal deformation of our pebble bed system is nonlinear and when the operating temperature is higher than 600 deg. C, thermal creep deformation is generated. In this paper, constitutive equations of the elastic and creep deformation are derived from the experimental results. Incorporating the effective constitutive equations in finite element method (FEM), numerical investigations presenting the elastic and plastic deformation characteristics of pebble bed system are comparable to the experimental behaviors. In addition, discrete element method (DEM) is underdevelopment to derive constitutive equations for different pebble beds. The preliminary results of DEM show the stress distribution inside the pebble beds at steady or transient states, which helps us to identify the destructive region in a pebble bed system.
Numerical study of thermal radiation and thermophoresis on peristalsis with rotational aspects
NASA Astrophysics Data System (ADS)
Hayat, T.; Zahir, H.; Alsaedi, A.; Ahmad, B.
The present work concentrates for the impact of thermal radiation on peristaltic transport of viscous fluid in a rotating channel. Both fluid and channel are in a state of rigid body rotation. The influences of thermophoresis and chemical reaction are taken into account. Convective conditions for heat and mass transfer in the formulation are adopted. In addition, the non-uniform heat source/sink effect is included in heat transfer analysis. Exact solutions for stream function and temperature are obtained. Numerical solution for concentration of the developed mathematical model are obtained by considering low Reynolds number and long wavelength. The effects of emerging physical parameters are analyzed through graphical illustrations. It is found that the influence of thermophoretic and thermal radiation parameters on the temperature and concentration are quite opposite. Further heat transfer coefficient decays when rotation is increased.
Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study
NASA Astrophysics Data System (ADS)
Quijano, J. C.; Raynaud, F.; Nguyen, D.; Piacentini, N.; Meister, J. J.
2016-08-01
Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.