Science.gov

Sample records for addition particle size

  1. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives.

    PubMed

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-07-25

    Four types of SiO2, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w(-1)) a nearly silica-free instant barley coffee powder with a known SiO2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO2 particles and verify the new particle size distribution. The SiO2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w(-1)). The protocol to isolate the silica particles was so applied to the most SiO2-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification.

  2. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains.

    PubMed

    Membrillo, Isabel; Sánchez, Carmen; Meneses, Marcos; Favela, Ernesto; Loera, Octavio

    2008-11-01

    Two strains of Pleurotus ostreatus (IE-8 and CP-50) were grown on defined medium added with wheat straw extract (WSE). Mycelia from these cultures were used as an inoculum for solid fermentation using sugar cane bagasse (C:N=142). This substrate was used separately either as a mixture of heterogeneous particle sizes (average size 2.9 mm) or as batches with two different particle sizes (0.92 mm and 1.68 mm). Protein enrichment and production of lignocellulolytic enzymes on each particle size was compared. The effect of ammonium sulphate (AS) addition was also analyzed (modified C:N=20), this compound favored higher levels of protein content. Strain CP-50 showed the highest increase of protein content (48% on particle size of 1.68 mm) when compared to media with no additional N source. However, strain IE-8 produced the highest levels of all enzymes: xylanases (5.79 IU/g dry wt on heterogeneous particles) and cellulases (0.18 IU/g dry wt on smallest particles), both without the addition of AS. The highest laccase activity (0.040 IU/g dry wt) was obtained on particles of 1.68 mm in the presence of AS. Since effect of particle size and addition AS was different for each strain, these criteria should be considered for diverse biotechnological applications.

  3. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles

    SciTech Connect

    Gan, Yanan; Qiao, Li

    2011-02-15

    The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size, surfactant concentration, and the type of base fluid were varied. In general, nanosuspensions can last much longer than micron suspensions, and ethanol-based fuels were found to achieve much better suspension than n-decane-based fuels. Five distinctive stages (preheating and ignition, classical combustion, microexplosion, surfactant flame, and aluminum droplet flame) were identified for an n-decane/nano-Al droplet, while only the first three stages occurred for an n-decane/micron-Al droplet. For the same solid loading rate and surfactant concentration, the disruption and microexplosion behavior of the micron suspension occurred later with much stronger intensity. The intense droplet fragmentation was accompanied by shell rupture, which caused a massive explosion of particles, and most of them were burned during this event. On the contrary, for the nanosuspension, combustion of the large agglomerate at the later stage requires a longer time and is less complete because of formation of an oxide shell on the surface. This difference is mainly due to the different structure and characteristics of particle agglomerates formed during the early stage, which is a spherical, porous, and more-uniformly distributed aggregate for the nanosuspension, but it is a densely packed and impermeable shell for the micron suspension. A theoretical analysis was then conducted to understand the effect of particle size on particle collision mechanism and aggregation rate. The results show that for nanosuspensions, particle collision and aggregation are dominated by the random Brownian motion. For micron suspensions, however, they are dominated by fluid motion such as droplet surface regression, droplet expansion resulting from bubble formation, and internal circulation. And the Brownian motion is the least important. This theoretical analysis explains the

  4. Particle size distribution and chemical composition of total mixed rations for dairy cattle: water addition and feed sampling effects.

    PubMed

    Arzola-Alvarez, C; Bocanegra-Viezca, J A; Murphy, M R; Salinas-Chavira, J; Corral-Luna, A; Romanos, A; Ruíz-Barrera, O; Rodríguez-Muela, C

    2010-09-01

    Four dairy farms were used to determine the effects of water addition to diets and sample collection location on the particle size distribution and chemical composition of total mixed rations (TMR). Samples were collected weekly from the mixing wagon and from 3 locations in the feed bunk (top, middle, and bottom) for 5 mo (April, May, July, August, and October). Samples were partially dried to determine the effect of moisture on particle size distribution. Particle size distribution was measured using the Penn State Particle Size Separator. Crude protein, neutral detergent fiber, and acid detergent fiber contents were also analyzed. Particle fractions 19 to 8, 8 to 1.18, and <1.18 mm were judged adequate in all TMR for rumen function and milk yield; however, the percentage of material>19 mm was greater than recommended for TMR, according to the guidelines of Cooperative Extension of Pennsylvania State University. The particle size distribution in April differed from that in October, but intermediate months (May, July, and August) had similar particle size distributions. Samples from the bottom of the feed bunk had the highest percentage of particles retained on the 19-mm sieve. Samples from the top and middle of the feed bunk were similar to that from the mixing wagon. Higher percentages of particles were retained on >19, 19 to 8, and 8 to 1.18 mm sieves for wet than dried samples. The reverse was found for particles passing the 1.18-mm sieve. Mean particle size was higher for wet than dried samples. The crude protein, neutral detergent fiber, and acid detergent fiber contents of TMR varied with month of sampling (18-21, 40-57, and 21-34%, respectively) but were within recommended ranges for high-yielding dairy cows. Analyses of TMR particle size distributions are useful for proper feed bunk management and formulation of diets that maintain rumen function and maximize milk production and quality. Water addition may help reduce dust associated with feeding TMR. PMID

  5. Investigation of effect of particle size and rumen fluid addition on specific methane yields of high lignocellulose grass silage.

    PubMed

    Wall, D M; Straccialini, B; Allen, E; Nolan, P; Herrmann, C; O'Kiely, P; Murphy, J D

    2015-09-01

    This work examines the digestion of advanced growth stage grass silage. Two variables were investigated: particle size (greater than 3 cm and less than 1cm) and rumen fluid addition. Batch studies indicated particle size and rumen fluid addition had little effect on specific methane yields (SMYs). In continuous digestion of 3 cm silage the SMY was 342 and 343 L CH4 kg(-1)VS, respectively, with and without rumen fluid addition. However, digester operation was significantly affected through silage floating on the liquor surface and its entanglement in the mixing system. Digestion of 1cm silage with no rumen fluid addition struggled; volatile fatty acid concentrations rose and SMYs dropped. The best case was 1cm silage with rumen fluid addition, offering higher SMYs of 371 L CH4 kg(-1)VS and stable operation throughout. Thus, physical and biological treatments benefited continuous digestion of high fibre grass silage.

  6. EFFECTS OF QUARTZ PARTICLE SIZE AND SUCROSE ADDITION ON MELTING BEHAVIOR OF A MELTER FEED FOR HIGH-LEVEL GLASS

    SciTech Connect

    MARCIAL J; KRUGER AA; HRMA PR; SCHWEIGER MJ; SWEARINGEN KJ; TEGROTENHUIS WE; HENAGER SH

    2010-07-28

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5-{micro

  7. Shrinkage Behavior and Diffusion in Ni-based Internal Electrodes with Additional Amount and Particle Size of BaTiO3 Additive

    NASA Astrophysics Data System (ADS)

    Kang, Ji-Hun; Joo, Dongwon; Jung, Yeon-Gil; Paik, Ungyu

    2008-02-01

    The effect of additional amount and particle size of BaTiO3 additive on shrinkage behavior and inter-diffusion in Ni-based internal electrodes has been investigated, in order to reduce the large shrinkage mismatch between the internal electrode and the dielectric layer and to control the thermal and/or residual stresses in multilayer ceramic capacitors (MLCCs). Ni powder of 100-500 nm and two kinds of BaTiO3 powders of 100 and 200 nm were used as matrix and additive, respectively. The Ni and BaTiO3 powders were mixed with volume ratios of 95:5, 90:10, 85:15, respectively, and then cold-isostatic pressed. The shrinkage of starting materials and each composite was measured in a range of 700-1300 °C with 150 °C interval in H2/Ar atmosphere, using ASTM standard method. Diffusion phenomena at interface of Ni/BaTiO3 composites with 85:15 and 90:10 volume ratios were investigated using SEM, EDX, and TEM. The particle size affects the shrinkage behavior in relatively low temperatures below 1000 °C, showing a turning point at that temperature. The final shrinkage of composites is matched with that of bulk BaTiO3 of smaller particle size, independent of additional amount of BaTiO3 additive. A reaction layer of about 1000 nm wide is observed at the interface between the Ni and BaTiO3 powders in the composite of 85:15 volume ratio. The quantitative amount of elemental Ni diffused into the BaTiO3 is about 9.7 mass% in the composite of 90:10 volume ratio, without another phase seen in the Ni.

  8. Chemical and particle-size evidence for addition of fine dust to soils of the midwestern United States

    NASA Astrophysics Data System (ADS)

    Mason, Joseph A.; Jacobs, Peter M.

    1998-12-01

    Significant long-term atmospheric dust additions to soils are well documented in many parts of the world, but not in the midwestern United States. We investigated elemental mass fluxes associated with soil development in late Wisconsinan loess in Illinois and Minnesota, using Zr as a stable index element. Positive mass fluxes of Al, Fe, and Ti can most plausibly be explained by additions to these soils of fine far-traveled dust, with higher Al/Zr, Fe/Zr, and Ti/Zr ratios than the coarser locally derived loess. High-resolution particle-size analyses support this explanation. The proposed dust influx will complicate efforts to quantify weathering processes in these soils. Far-traveled dust influx could have occurred simultaneously with the final phase of local loess deposition, and/or later, in the Holocene. Depending on the timing of dust influx, many other soils of the region may have been affected by it.

  9. Effect of Bi2O3 particle sizes and addition of starch into Bi2O3-PVA composites for X-ray shielding

    NASA Astrophysics Data System (ADS)

    Noor Azman, Nurul Z.; Musa, Nur F. L.; Nik Ab Razak, Nik N. A.; Ramli, Ramzun M.; Mustafa, Iskandar S.; Abdul Rahman, Azhar; Yahaya, Nor Z.

    2016-09-01

    The effect of Bi2O3 particle sizes filled PVA composites on X-ray transmission for X-ray shielding purpose had been successfully fabricated and analyzed by using X-ray fluorescent spectroscopy (XRF) and mammography units with various low X-ray energy ranges. Besides, a preliminary investigation was carried out by using XRF unit to obtain the effect of starch addition into the composite on the X-ray transmissions by both particle sizes of Bi2O3-PVA composites. The results showed that the ability of the composite to attenuate the initial X-ray beam was augmented with the increased Bi2O3 weight percentage (wt%). The density of both particle sizes of Bi2O3-PVA composites was compared with the addition of 1 and 3 wt% starch, while a fluctuation of density occurred for the composites without starch. Moreover, the nano-sized Bi2O3-PVA composite without starch did not exemplify better X-ray attenuation capability compared to its micro-sized counterpart even though their density was higher than the micro-sized Bi2O3-PVA composite. However, the nano-sized Bi2O3-PVA composite with starch offered better particle size effect for X-ray shielding ability than its micro-sized counterpart compared to the Bi2O3-PVA composites without starch.

  10. Particle Size Analysis.

    ERIC Educational Resources Information Center

    Barth, Howard G.; Sun, Shao-Tang

    1989-01-01

    Presents a review of research focusing on scattering, elution techniques, electrozone sensing, filtration, centrifugation, comparison of techniques, data analysis, and particle size standards. The review covers the period 1986-1988. (MVL)

  11. Particle-Size Analysis

    SciTech Connect

    Gee, Glendon W. ); Or, Dani; J.H. Dane and G.C. Topp

    2002-11-01

    Book Chapter describing methods of particle-size analysis for soils. Includes a variety of classification schemes. Standard methods for size distributions using pipet and hydrometer techniques are described. New laser-light scattering and related techniques are discussed. Complete with updated references.

  12. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    SciTech Connect

    Marcial, Jose; Hrma, Pavel R; Schweiger, Michael J; Swearingen, Kevin J; Tegrotenhuis, Nathan E; Henager, Samuel H

    2010-08-11

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds with 5-μm quartz particles; particles >150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles >150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.

  13. Improvement of Resistance to Slag Penetration in Magnesia-Based Refractory with Colloidal Alumina Addition II by Means of a Proper Particle Size Distribution of MgO

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Sichen, Du

    2016-06-01

    By addition of colloidal alumina, three different particle sizes of dead burnt MgO were employed as raw materials to prepare MgO-based spinel substrates at 1773 K (1500 °C). It was found that the particle size of MgO, as well as its size distribution, had substantial impact on the resistance of the refractory to the slag penetration at 1873 K (1600 °C). Using relatively small particles of MgO (<0.5 mm) can efficiently limit the slag penetration, due to the formation of solid phases (CaO·Al2O3 and CaO-MgO-Al2O3) at the grain boundaries. A particularly significant improvement against the slag penetration was found on MgO substrates with a proper particle size distribution in a size range of 0-1 mm. The improvement could be mainly related to the higher density and distribution of spinel phase in the MgO matrix, which is mostly located at the borders of large MgO particles.

  14. Effect of boron particle size on microstructure and superconducting properties of in-situ Cu addition MgB2 multifilamentary wire

    NASA Astrophysics Data System (ADS)

    Hishinuma, Y.; Kikuchi, A.; Shimada, Y.; Hata, S.; Takeuchi, T.; Yamada, S.; Sagara, A.

    2014-05-01

    In previous studies, the secondary (impurity and non-reactive) phase and voids were observed in MgB2 matrix after the heat treatment, and then these are the lowering factors of critical current density (Jc) property. In order to improve Jc property by microstructure control of MgB2 matrix, the fine elemental boron powder as the raw material was carried out using the high-speed vibrated milling with tungsten carbide (WC) jar. The average particle size of metal boron powder was decreased from 1.14 μm to 0.20 μm by the high-speed vibrated milling. The various fine particle boron powders as the function of milling time were also prepared, and in-situ Cu addition MgB2 multifilamentary wires using these fine boron powders were fabricated. Critical transition temperature (Tc) value of Cu addition MgB2 wire using fine boron powder obtained to about 37 K. No change of the Tc property by the different particle sized boron powders was confirmed. In this paper, the comparisons of microstructure and superconducting properties between the different boron particle sizes were investigated.

  15. Effects of type of additive and particle size of TiO2 raw material powder on stabilization of BaTi2O5 phase during sintering

    NASA Astrophysics Data System (ADS)

    Yamasaki, Yuuki; Ishii, Keisuke; Tashiro, Shinjiro

    2014-09-01

    BaTi2O5 (BT2) calcined powder synthesized by a solid-phase reaction decomposed into BaTiO3 (BT) and Ba6Ti17O40 (B6T17) as the firing temperature was raised. This decomposition was suppressed by adding 1 wt % SiO2 as an additive. SiO2 did not dissolve in BT2 crystal grains and segregated as a secondary phase including Ba and Ti atoms. The incorporation of Ba and Ti into SiO2 probably suppresses the decomposition of BT2. By using another TiO2 powder with small particle sizes as one of the raw material powders, perfect BT2 single-phase calcined powder was obtained. The ceramic fired from this calcined BT2 powder maintained its BT2 single phase. This is probably attributed to the non-existence of any chemical compounds other than BT2 that can be the origin of BT2 decomposition during firing. On the one hand, in the case of using 1 wt % Fe2O3 as the additive, Fe2O3 dissolved in BT2 crystal grains, and the sintered samples exhibited relaxor behavior.

  16. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  17. Recent trends in particle size analysis techniques

    NASA Technical Reports Server (NTRS)

    Kang, S. H.

    1984-01-01

    Recent advances and developments in the particle-sizing technologies are briefly reviewed in accordance with three operating principles including particle size and shape descriptions. Significant trends of the particle size analysing equipment recently developed show that compact electronic circuitry and rapid data processing systems were mainly adopted in the instrument design. Some newly developed techniques characterizing the particulate system were also introduced.

  18. A relationship between maximum packing of particles and particle size

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1979-01-01

    Experimental data indicate that the volume fraction of particles in a packed bed (i.e. maximum packing) depends on particle size. One explanation for this is based on the idea that particle adhesion is the primary factor. In this paper, however, it is shown that entrainment and immobilization of liquid by the particles can also account for the facts.

  19. Magnetic particle characterization-magnetophoretic mobility and particle size.

    PubMed

    Zhou, Chen; Boland, Eugene D; Todd, Paul W; Hanley, Thomas R

    2016-06-01

    Quantitative characterization of magnetic particles is useful for analysis and separation of labeled cells and magnetic particles. A particle velocimeter is used to directly measure the magnetophoretic mobility, size, and other parameters of magnetic particle suspensions. The instrument provides quantitative video analysis of particles and their motion. The trajectories of magnetic particles in an isodynamic magnetic field are recorded using a high-definition camera/microscope system for image collection. Image analysis software then converts the image data to the parameters of interest. The distribution of magnetophoretic mobility is determined by combining fast image analysis with velocimetry measurements. Particle size distributions have been characterized to provide a better understanding of sample quality. The results have been used in the development and operation of analyzer protocols for counting particle concentrations accurately and measuring magnetic susceptibility and size for simultaneous display for routine application to particle suspensions and magnetically labeled biological cells. © 2016 International Society for Advancement of Cytometry.

  20. Clouds of venus: particle size distribution measurements.

    PubMed

    Knollenberg, R G; Hunten, D M

    1979-02-23

    Data from the Pioneer Venus cloud particle size spectrometer experiment has revealed the Venus cloud system to be a complicated mixture of particles of various chemical composition distinguishable by their multimodal size distributions. The appearance, disappearance, growth, and decay of certain size modes has aided the preliminary identification of both sulfuric acid and free sulfur cloud regions. The discovery of large particles > 30 micrometers, significant particle mass loading, and size spectral features suggest that precipitation is likely produced; a peculiar aerosol structure beneath the lowest cloud layer could be residue from a recent shower.

  1. Bimodal colloid gels of highly size-asymmetric particles

    NASA Astrophysics Data System (ADS)

    Lee, Jooyoung; Lee, Seong Jae; Ahn, Kyung Hyun; Lee, Seung Jong

    2015-07-01

    We report a type of colloidal gel, induced by a minute incremental addition of mutually attractive small particles (size ˜12 nm) to a suspension of highly charged large particles (size ˜500 nm). The gel's morphological behavior does not follow the typical power-law scaling for fractal clusters. Its unique scaling behavior has two distinct power-law indices, based on particle volume fraction. We show the unique scaling behavior arises when nonfractal networks of large particles are bridged by small-particle clusters, which occurs between a lower and upper critical boundary of small particle volume fraction.

  2. Method for producing size selected particles

    DOEpatents

    Krumdick, Gregory K.; Shin, Young Ho; Takeya, Kaname

    2016-09-20

    The invention provides a system for preparing specific sized particles, the system comprising a continuous stir tank reactor adapted to receive reactants; a centrifugal dispenser positioned downstream from the reactor and in fluid communication with the reactor; a particle separator positioned downstream of the dispenser; and a solution stream return conduit positioned between the separator and the reactor. Also provided is a method for preparing specific sized particles, the method comprising introducing reagent into a continuous stir reaction tank and allowing the reagents to react to produce product liquor containing particles; contacting the liquor particles with a centrifugal force for a time sufficient to generate particles of a predetermined size and morphology; and returning unused reagents and particles of a non-predetermined size to the tank.

  3. Particle size distribution instrument. Topical report 13

    SciTech Connect

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  4. APSAS; an Automated Particle Size Analysis System

    USGS Publications Warehouse

    Poppe, Lawrence J.; Eliason, A.H.; Fredericks, J.J.

    1985-01-01

    The Automated Particle Size Analysis System integrates a settling tube and an electroresistance multichannel particle-size analyzer (Coulter Counter) with a Pro-Comp/gg microcomputer and a Hewlett Packard 2100 MX(HP 2100 MX) minicomputer. This system and its associated software digitize the raw sediment grain-size data, combine the coarse- and fine-fraction data into complete grain-size distributions, perform method of moments and inclusive graphics statistics, verbally classify the sediment, generate histogram and cumulative frequency plots, and transfer the results into a data-retrieval system. This system saves time and labor and affords greater reliability, resolution, and reproducibility than conventional methods do.

  5. Nozzles for size reclassification of microfog particles

    NASA Technical Reports Server (NTRS)

    Leonardi, S. J.; Shim, J.

    1969-01-01

    Modified reclassifying nozzles, commonly used with mist lubrication systems, creates larger particle sizes in the mist. The concept used involves the wetting out of particles within the nozzle with continuous reatomization of the resulting liquid film by passing gas through the nozzle.

  6. Hazards of explosives dusts: Particle size effects

    SciTech Connect

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  7. Sheathless Size-Based Acoustic Particle Separation

    PubMed Central

    Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang

    2012-01-01

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502

  8. Particle size distribution and particle size-related crystalline silica content in granite quarry dust.

    PubMed

    Sirianni, Greg; Hosgood, Howard Dean; Slade, Martin D; Borak, Jonathan

    2008-05-01

    Previous studies indicate that the relationship between empirically derived particle counts, particle mass determinations, and particle size-related silica content are not constant within mines or across mine work tasks. To better understand the variability of particle size distributions and variations in silica content by particle size in a granite quarry, exposure surveys were conducted with side-by-side arrays of four closed face cassettes, four cyclones, four personal environmental monitors, and a real-time particle counter. In general, the proportion of silica increased as collected particulate size increased, but samples varied in an inconstant way. Significant differences in particle size distributions were seen depending on the extent of ventilation and the nature and activity of work performed. Such variability raises concerns about the adequacy of silica exposure assessments based on only limited numbers of samples or short-term samples.

  9. Particle size distribution of indoor aerosol sources

    SciTech Connect

    Shah, K.B.

    1990-10-24

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  10. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution

    NASA Astrophysics Data System (ADS)

    Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; Martins dos Santos, Sebastiao; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred

    2016-04-01

    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5-3 µm

  11. Guest Editorial Particle Sizing And Spray Analysis

    NASA Astrophysics Data System (ADS)

    Chigier, Norman; Stewart, Gerald

    1984-10-01

    The measurement of particle size and velocity in particle laden flows is a subject of interest in a variety of industrial applications. In combustion systems for electricity generation, industrial processes and heating, and transportation, where liquid and solid fuels are injected into air streams for burning in furnaces, boilers, and gas turbine and diesel engines, the initial size and velocity distributions of particles are determining factors in the overall combustion efficiency and the emission of pollutants and particulates. In the design of injectors and burners for the atomization of liquid fuels, a great deal of attention is being focused on developing instrumentation for the accurate measurement of size and velocity distributions in sprays as a function of space and time. Most recent advances in optical engineering techniques using lasers for particle measurement have focused on detailed spray characterization, where there is a major concern with spherical liquid droplets within the size range of 1 to 500 μm in diameter, with droplet velocities within the range of 1 to 100 m/s, and the requirement for making in situ measurements of moving particles by nonintrusive optical probes. The instruments being developed for spray analysis have much wider applications. These include measurement in particle laden flows encountered in a variety of industrial processes with solid particles in gas and liquid streams and liquid particles in gas streams. Sprays used in agriculture, drying, food processing, coating of materials, chemical processing, clean rooms, pharmaceuticals, plasma spraying, and icing wind tunnels are examples of systems for which information is being sought on particle and fluid dynamic interactions in which there is heat, mass, and momentum transfer in turbulent reacting flows.

  12. Particle size characterization by quadruple-detector hydrodynamic chromatography.

    PubMed

    Brewer, Amandaa K; Striegel, André M

    2009-01-01

    Particle size and shape and their distribution directly influence a variety of end-use material properties related to packing, mixing, and transport of powders, solutions, and suspensions. Many of the techniques currently employed for particle size characterization have found limited applicability for broadly polydisperse and/or nonspherical particles. Here, we introduce a quadruple-detector hydrodynamic chromatography (HDC) method utilizing static multiangle light scattering (MALS), quasi-elastic light scattering (QELS), differential viscometry (VISC), and differential refractometry (DRI), and apply the technique to characterizing a series of solid and hollow polystyrene latexes with diameters in the approximate range of 40-400 nm. Using HDC/MALS/QELS/VISC/DRI, we were able to determine a multiplicity of size parameters and their polydispersity and to monitor the size of the particles across the elution profile of each sample. Using self-similarity scaling relationships between the molar mass and the various particle radii, we were also able to ascertain the shape of the latexes and the shape constancy as a function of particle size. The particle shape for each latex was confirmed by the dimensionless ratio rho identical with R (G,z )/R (H,z ) which, in addition, provided information on the structure (compactness) of the latexes as a function of particle size. Solid and hollow polystyrene latex samples were also differentiable using these methods. Extension of this method to nonspherical, fractal objects should be possible.

  13. Particle size distributions of several commonly used seeding aerosols

    NASA Technical Reports Server (NTRS)

    Crosswy, F. L.

    1985-01-01

    During the course of experimentation, no solid particle powder could be found which produced an aerosol with a narrow particle size distribution when fluidization was the only flow process used in producing the aerosol. The complication of adding particle size fractionation processes to the aerosol generation effort appears to be avoidable. In this regard, a simple sonic orifice is found to be effective in reducing the percentage of agglomerates in the several metal oxide powders tested. Marginally beneficial results are obtained for a 0.5/99.5 percent by weight mixture of the flow agent and metal oxide powder. However, agglomeration is observed to be enhanced when the flow agent percentage is increased to 5 percent. Liquid atomization using the Collison nebulizer as well as a version of the Laskin nozzle resulted in polydispersed aerosols with particle size distributions heavily weighted by the small particle end of the size spectrum. The aerosol particle size distributions produced by the vaporization/condensation seeder are closer to the ideal monodispersed aerosol than any of the other aerosols tested. In addition, this seeding approach affords a measure of control over particle size and particle production rate.

  14. Measurement of nonvolatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2016-01-01

    An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA

  15. Calibration of optical particle-size analyzer

    DOEpatents

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  16. Particle Size Distributions in Atmospheric Clouds

    NASA Technical Reports Server (NTRS)

    Paoli, Roberto; Shariff, Karim

    2003-01-01

    In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.

  17. Particle Size Distribution in Aluminum Manufacturing Facilities

    PubMed Central

    Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2015-01-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760

  18. [Soil particle size fractionation with centrifugation method].

    PubMed

    Wu, Tianyun; Schoenau, Jeff J; Li, Fengmin; Qian, Peiyuan; Wang, Fang; Malhi, Sukhadev S

    2004-03-01

    According to the rotor size of Mandal RC5C and Stoks' law, a segregation procedure for soil particle size fractionation was designed, and used for the particle separation of Huangmian soil(Calcaric cambisols, FAO), Huihe soil (Haplic greyxems, FAO), and Helu soil(Calcic kastanozems, FAO) in the Loess Plateau of China, and of Orthic Brown Chernozem, and Orthic Black Chernozem in Canadian Prairie. The fractionation results of the 5 soils by using this procedure were in line with those of the standard pipette method. PMID:15228001

  19. Cataclasis and processes of particle size reduction

    NASA Astrophysics Data System (ADS)

    Blenkinsop, Tom G.

    1991-05-01

    The particle size distribution (P.S.D.) of fragmented geological materials is affected by the fragmentation process, initial size distribution, number of fracturing events, energy input, strain, and confining pressure. A summary of literature shows that the fractal dimension ( D) of the P.S.D. is increased by the number of fracturing events, energy input, strain, and confining pressure. Cenozoic cataclasis of granite, granodiorites, gneisses and arkose seen in cores from the Cajon Pass drillhole, southern California, produced P.S.D.s with values of D that varied from 1.88 to 3.08. Each rock type has a characteristic and more limited range of D. Areas of dilatant texture and mode I fracture-fillings have low average values (2.32 and 2.37) compared to an average value of 2.67 in shear fracture-fillings D has a good inverse correlation with average particle size. Data from fault rocks in the San Gabriel fault zone, southern California ( Anderson et al., 1983) have been reanalyzed to show that values of D are higher (2.10 5.52) and average particle size is lower than the Cajon Pass samples, but the ranges of values overlap, and the inverse correlation between D and average particle size is extended. Microstructural observations combined with these results suggest that three processes contributed to particle size reduction during cataclasis. The first process of feldspar alteration, which leads to low values of D, has not been previously recognized. The second process is probably constrained comminution ( Sammis et al., 1987), since the average D in shear fracture-fillings is close to the value of 2.58 predicted by this theory. A further stage of particle size reduction is demonstrated by an increase of D with cataclasis. This third process is selective fracture of larger particles, which may also operate during localization and the cataclastic flow-to-faulting transition as observed in experiments. A transition from constrained comminution to selective fracture of

  20. Particle size reduction of propellants by cryocycling

    SciTech Connect

    Whinnery, L.; Griffiths, S.; Lipkin, J.

    1995-05-01

    Repeated exposure of a propellant to liquid nitrogen causes thermal stress gradients within the material resulting in cracking and particle size reduction. This process is termed cryocycling. The authors conducted a feasibility study, combining experiments on both inert and live propellants with three modeling approaches. These models provided optimized cycle times, predicted ultimate particle size, and allowed crack behavior to be explored. Process safety evaluations conducted separately indicated that cryocycling does not increase the sensitivity of the propellants examined. The results of this study suggest that cryocycling is a promising technology for the demilitarization of tactical rocket motors.

  1. Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system

    SciTech Connect

    Bilici, Mihai A.; Toth, Joseph R.; Sankaran, R. Mohan; Lacks, Daniel J.

    2014-10-15

    Fundamental studies of triboelectric charging of granular materials via particle-particle contact are challenging to control and interpret because of foreign material surfaces that are difficult to avoid during contacting and measurement. The measurement of particle charge itself can also induce charging, altering results. Here, we introduce a completely integrated fluidized bed and electrostatic separator system that charges particles solely by interparticle interactions and characterizes their charge on line. Particles are contacted in a free-surface fluidized bed (no reactor walls) with a well-controlled fountain-like flow to regulate particle-particle contact. The charged particles in the fountain are transferred by a pulsed jet of air to the top of a vertically-oriented electrostatic separator consisting of two electrodes at oppositely biased high voltage. The free-falling particles migrate towards the electrodes of opposite charge and are collected by an array of cups where their charge and size can be determined. We carried out experiments on a bidisperse size mixture of soda lime glass particles with systematically varying ratios of concentration. Results show that larger particles fall close to the negative electrode and smaller particles fall close to the positive electrode, consistent with theory and prior experiments that larger particles charge positively and smaller particles charge negatively. The segregation of particles by charge for one of the size components is strongest when its collisions are mostly with particles of the other size component; thus, small particles segregate most strongly to the negative sample when their concentration in the mixture is small (and analogous results occur for the large particles). Furthermore, we find additional size segregation due to granular flow, whereby the fountain becomes enriched in larger particles as the smaller particles are preferentially expelled from the fountain.

  2. Cytotoxicity of Metal and Ceramic Particles in Different Sizes

    NASA Astrophysics Data System (ADS)

    Yoshida, Kazuhiro; Morita, Masafumi; Mishina, Hiroshi

    The wear debris caused by joint prosthesis is well known to induce an inflammation in the peripheral tissue. The authors carried out two kinds of experiments, to clarify the phagocytable size of wear particles and the cytotoxicity of macrophage related to the size and materials. The test materials were Al2O3, SiO2, TiO2 fine particles and Ti-6Al-4V, Co-28Cr-6Mo wear particles. The results showed that the phagocytable particle size was less than 11.9±11.2µm. It appears that the cytotoxicity did not depend on the particle size, even if the particles were phagocytable size. In the relationship between material type and inflammation, damage levels were found to be different between SiO2 and TiO2 particles, even if neither material released metal ions. The cells were damaged more severely by SiO2 particles than by Co-28Cr-6Mo for which the eluted ion could not be ignored (damage levels; SiO2>Co-28Cr-6Mo>Ti-6Al-4V>Al2O3≧TiO2). For these reasons, it was confirmed that there was a factor in addition to the toxicity of the eluted metal ion (i. e., the implant material's corrosion resistance ability), which influenced the inflammation.

  3. Particle size dependent response of aerosol counters

    NASA Astrophysics Data System (ADS)

    Ankilov, A.; Baklanov, A.; Colhoun, M.; Enderle, K.-H.; Gras, J.; Julanov, Yu.; Kaller, D.; Lindner, A.; Lushnikov, A. A.; Mavliev, R.; McGovern, F.; O'Connor, T. C.; Podzimek, J.; Preining, O.; Reischl, G. P.; Rudolf, R.; Sem, G. J.; Szymanski, W. W.; Vrtala, A. E.; Wagner, P. E.; Winklmayr, W.; Zagaynov, V.

    During an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (IAMAS-IUGG), 10 instruments for aerosol number concentration measurement were studied, covering a wide range of methods based on various different measuring principles. In order to investigate the detection limits of the instruments considered with respect to particle size, simultaneous number concentration measurements were performed for monodispersed aerosols with particle sizes ranging from 1.5 to 50 nm diameter and various compositions. The instruments considered show quite different response characteristics, apparently related to the different vapors used in the various counters to enlarge the particles to an optically detectable size. A strong dependence of the 50% cutoff diameter on the particle composition in correlation with the type of vapor used in the specific instrument was found. An enhanced detection efficiency for ultrafine hygroscopic sodium chloride aerosols was observed with water operated systems, an analogous trend was found for n-butanol operated systems with nonhygroscopic silver and tungsten oxide particles.

  4. Acoustical concept for measuring particle size distributions

    SciTech Connect

    Mahler, D.S.; Kaufman, M.

    1981-02-01

    A new concept is investigated for measuring particle size and distribution for air pollution control applications. This study illustrates that the proposed device--the Acoustic Particulate Monitor (APM)--can measure total mass loading, mean particle diameter, and width of particle size distributions on an in-situ basis. The concept for such an instrument is based upon experimental and theoretical observations that the presence of dust in air causes a reduction in the speed of sound as a function of the transmitted frequency. These percentage reductions in the speed of sound are small and the research results illustrate how the accompanying shift in the acoustical phase is a highly sensitive method for detecting such effects. The magnitudes of the phase shift are related to mass loading. The frequency associated with the maximum phase shift is defined as the acoustic frequency, fA. Experimentally determining fA provides a measure of the mean particle size of the distribution. The detailed shape of the phase shift as a function of frequency is a measure of the spread in the size distribution of the entrained particulate. Experiments were performed using several configurations. Results were verified using direct mass measurements and microphotographs.

  5. PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL

    EPA Science Inventory

    The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...

  6. Remote Laser Diffraction Particle Size Distribution Analyzer

    SciTech Connect

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  7. Size control and structure features of spherical calcium carbonate particles

    NASA Astrophysics Data System (ADS)

    Trushina, D. B.; Sulyanov, S. N.; Bukreeva, T. V.; Kovalchuk, M. V.

    2015-07-01

    The size of porous spherical calcium carbonate particles obtained by precipitation from a supersaturated solution has been controlled using bovine serum albumin as an organic additive and ethylene glycol and glycerol as cosolvents of the reaction mixture. The structural aspects of the formation of these particles, which affect the possibility of controlling their sizes, are considered. Highly porous vaterite particles with an average size of about 500 nm have been obtained by adding ethylene glycol and glycerol to the reaction mixture and agitation for no less than 30 min. It is shown that particles are formed as a result of the attachment of vaterite nanocrystallites, the shape of which is anisotropic and can be described by a biaxial ellipsoid.

  8. Photographic techniques for characterizing streambed particle sizes

    USGS Publications Warehouse

    Whitman, M.S.; Moran, E.H.; Ourso, R.T.

    2003-01-01

    We developed photographic techniques to characterize coarse (>2-mm) and fine (???2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wade-able and contained gravel - cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.

  9. Electrical Sizing of Particles in Suspensions

    PubMed Central

    Grover, N. B.; Naaman, J.; Ben-Sasson, S.; Doljanski, F.

    1972-01-01

    The processes involved during the passage of a suspended particle through a small cylindrical orifice across which exists an electric field are investigated experimentally for an approximate prolate spheroid in the form of two tangent, rigid spheres (ragweed pollen particles) and for fresh, human red blood cells. Oscillograms of current pulses produced by both types of particles are presented and discussed in terms of particle shape and orientation and the effects of the hydrodynamic field. It is concluded that all the particles enter the orifice with their major axes aligned parallel to the orifice axis (electric field), but that during their passage some are rotated by the hydrodynamic field. Cells with their equatorial plane perpendicular to a radius of the orifice change their orientation with respect to the electric field as they are rotated, the others do not; only in the former case is there any deformation. It is shown that the bimodal or skewed size distributions can be explained on this basis, and that size (shape factor × volume) is actually a normally distributed variable (P > 95%). The average size of samples from 10 healthy adults was found to be 102.7 μ3 with a coefficient of variation of 1.8%. For a volume of 87 μ3, this corresponds to a shape factor of 1.18, an axial ratio (assuming a perfect oblate spheroid) of 0.26, and an equivalent major axis of 8.6 μ. The effect of high electric fields on red cell size distributions is mentioned. ImagesFIGURE 2FIGURE 5 PMID:5056957

  10. Optical Sizing of Ultrafine Metallic Particles: Retrieval of Particle Size Distribution from Spectral Extinction Measurements.

    PubMed

    Oshchepkov; Sinyuk

    1998-12-01

    The inverse problem of optical sizing of ultrafine metallic particles from the spectral extinction measurements in the visible range is investigated. Solving the inverse problem becomes possible due to the strong size effect which in the framework of classical electrodynamics can be described by the dependence of complex refractive index on the particle size. It is shown that the size effect leads to the considerable increase of information content of spectral extinction data with respect to desired size composition of the particles. This makes it possible to retrieve the size distribution of ultrafine metallic particles with reasonably high accuracy, including the Rayleigh size region. The analysis is performed mainly within the framework of numerical tests by the typical example of ultrafine silver particles in a gelatin matrix. The results in retrieving of size distribution from experimentally measured extinction spectra are also presented. Calculations of spectral extinction coefficient are made by means of Mie theory. In so doing, the dielectric function of particles is modified by using the electron's mean free path limitation model. Copyright 1998 Academic Press.

  11. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    PubMed

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online

  12. Synthesis and magnetorheology of suspensions of submicron-sized cobalt particles with tunable particle size.

    PubMed

    López-López, M T; Kuzhir, P; Meunier, A; Bossis, G

    2010-08-18

    Different samples of cobalt powder were synthesized. Particle size and shape were characterized using electron microscopy and light scattering. These measurements showed that the synthesized powders consisted of monodisperse spheres with average diameters ranging between 63 and 760 nm. These powders were used for the preparation of magnetorheological (MR) fluids by dispersing them in silicone oil. The MR properties of these MR fluids were investigated. It was found that particle size did not have much influence on the MR response of MR fluids, for average particle diameters larger than 100 nm. On the other hand, the MR response decreased appreciably when the average particle diameter was diminished below 100 nm; a theory based on the change of the shape of the aggregates with the size of the particles could explain these observations. PMID:21386482

  13. Method of producing submicron size particles and product produced thereby

    DOEpatents

    Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

    1988-05-11

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

  14. Method of producing non-agglomerating submicron size particles

    DOEpatents

    Bourne, Roy S.; Eichman, Clarence C.; Welbon, William W.

    1989-01-01

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in "metallic inks".

  15. Method for determining aerosol particle size device for determining aerosol particle size

    DOEpatents

    Novick, Vincent J.

    1998-01-01

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.

  16. Spontaneous formation of small sized albumin/acacia coacervate particles.

    PubMed

    Burgess, D J; Singh, O N

    1993-07-01

    Microgel coacervate particles form spontaneously on mixing aqueous solutions of oppositely charged albumin and acacia, under specific conditions of pH, ionic strength, and polyion concentration, close to but not at the optimum conditions for maximum coacervate yield. The mean particle diameter of these coacervate particles is approximately 6 microns when suspended in aqueous media, as determined by HIAC/Royco particle analysis. The geometric standard deviation of the particles falls in the range 1.2-1.9 microns. The particle size was not dependent on the method of emulsification of the coacervate in the equilibrium phase, or on the stirring speed applied during the manufacturing process. The microgel particles were stable on storage, for periods up to forty-six days, without the addition of a chemical cross-linking agent, or the application of heat. Stability was measured with respect to the change in particle size of samples stored at different temperatures. The non-cross-linked microcapsules were also shown to be stable on pH change, to pH values outside the coacervation pH range. At the optimum conditions for maximum coacervate yield the albumin/acacia system formed a very viscous coacervate phase, which was unsuitable for microcapsule preparation. The rheological properties of albumin/acacia and gelatin/acacia complex coacervates optimized for maximum coacervate yield were compared. The albumin/acacia coacervate was shown to be three orders of magnitude more viscous than the gelatin/acacia system.

  17. Comparative measurements using different particle size instruments

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    This paper discusses the measurement and comparison of particle size and velocity measurements in sprays. The general nature of sprays and the development of standard, consistent research sprays are described. The instruments considered in this paper are: pulsed laser photography, holography, television, and cinematography; laser anemometry and interferometry using visibility, peak amplitude, and intensity ratioing; and laser diffraction. Calibration is by graticule, reticle, powders with known size distributions in liquid cells, monosize sprays, and, eventually, standard sprays. Statistical analyses including spatial and temporal long-time averaging as well as high-frequency response time histories with conditional sampling are examined. Previous attempts at comparing instruments, the making of simultaneous or consecutive measurements with similar types and different types of imaging, interferometric, and diffraction instruments are reviewed. A program of calibration and experiments for comparing and assessing different instruments is presented.

  18. Determining Sizes of Particles in a Flow from DPIV Data

    NASA Technical Reports Server (NTRS)

    Wernet, M. P.; Mielke, A.; Cadambi, J. R.

    2004-01-01

    A proposed method of measuring the size of particles entrained in a flow of a liquid or gas would involve utilization of data from digital particle-image velocimetry (DPIV) of the flow. That is to say, with proper design and operation of a DPIV system, the DPIV data could be processed according to the proposed method to obtain particle sizes in addition to particle velocities. As an additional benefit, one could then compute the mass flux of the entrained particles from the particle sizes and velocities. As in DPIV as practiced heretofore, a pulsed laser beam would be formed into a thin sheet to illuminate a plane of interest in a flow field and the illuminated plane would be observed by means of a charge-coupled device (CCD) camera aimed along a line perpendicular to the illuminated plane. Unlike in DPIV as practiced heretofore, care would be taken to polarize the laser beam so that its electric field would lie in the illuminated plane, for the reason explained in the next paragraph. The proposed method applies, more specifically, to transparent or semitransparent spherical particles that have an index of refraction different from that of the fluid in which they are entrained. The method is based on the established Mie theory, which describes the scattering of light by diffraction, refraction, and specular reflection of light by such particles. In the case of a particle illuminated by polarized light and observed in the arrangement described in the preceding paragraph, the Mie theory shows that the image of the particle on the focal plane of the CCD camera includes two glare spots: one attributable to light reflected toward the camera and one attributable to light refracted toward the camera. The distance between the glare spots is a known function of the size of the particle, the indices of refraction of the particle material, and design parameters of the camera optics. Hence, the size of a particle can be determined from the distance between the glare spots. The

  19. Method for determining aerosol particle size, device for determining aerosol particle size

    DOEpatents

    Novick, V.J.

    1998-10-06

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data. 2 figs.

  20. Variable-cut particle-size classification by opposing jets.

    PubMed

    Pavlik, R E; Willeke, K

    1978-12-01

    A new technique of aerodynamic particle-size classification has been developed utilizing axisymmetrically-opposed air jets. For a fixed geometry the cut size can be varied from 0.8 to 3.6 micrometer by changing the jet flow rates. Future designs are expected to extend the useful particle-size range. Particles remain airborne after size separation, permitting the use of continuous, automated methods for analyzing the particle concentration and chemical compositon.

  1. Ham particle size influences saltiness perception in flans.

    PubMed

    Emorine, M; Septier, C; Thomas-Danguin, T; Salles, C

    2014-04-01

    One major issue of the food industry is reducing sodium content while maintaining food acceptability and liking. Despite extensive research in this field, little has been published on real complex food products. The aim of this study was to investigate whether the size of particles, a parameter easily adjusted in food processing, could influence the salty taste of low-salt food product. We thus evaluated the effect of ham particle sizes (4 levels, including a zero level) on salt perception and the consumer liking of flans varying in their overall salt concentrations (low- and high-salt content). Two consumer panels, composed of 107 and 77 subjects, rated, respectively, the saltiness of and liking for the developed flans (8 samples). The outcomes of this study indicated first, that the addition of ham to flans increased the salty taste perception and second, that a decrease in ham particle size (ground ham) increased the perceived saltiness. Moreover, low- and high-salt flans were equally liked, demonstrating that food manufacturers could reduce the salt contents (here, by over 15%) while maintaining consumer acceptability through the manipulation of the size of the salt-providing particles.

  2. The determination and optimization of (rutile) pigment particle size distributions

    NASA Technical Reports Server (NTRS)

    Richards, L. W.

    1972-01-01

    A light scattering particle size test which can be used with materials having a broad particle size distribution is described. This test is useful for pigments. The relation between the particle size distribution of a rutile pigment and its optical performance in a gray tint test at low pigment concentration is calculated and compared with experimental data.

  3. Control over Particle Size Distribution by Autoclaving Poloxamer-Stabilized Trimyristin Nanodispersions.

    PubMed

    Göke, Katrin; Roese, Elin; Arnold, Andreas; Kuntsche, Judith; Bunjes, Heike

    2016-09-01

    Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bloodstream. Consequently, small particles with a narrow particle size distribution are desired. Hitherto, there are, however, only limited possibilities for the preparation of monodisperse, pharmaceutically relevant dispersions. In this work, the effect of autoclaving at 121 °C on the particle size distribution of lipid nanoemulsions and -suspensions consisting of the pharmaceutically relevant components trimyristin and poloxamer 188 was studied. Additionally, the amount of emulsifier needed to stabilize both untreated and autoclaved particles was assessed. In our study, four dispersions of mean particle sizes from 45 to 150 nm were prepared by high-pressure melt homogenization. The particle size distribution before and after autoclaving was characterized using static and dynamic light scattering, differential scanning calorimetry, and transmission electron microscopy. Asymmetrical flow field-flow fractionation was used for particle size distribution analyses and for the determination of free poloxamer 188. Upon autoclaving, the mean particle size increased to up to 200 nm, but not proportionally to the initial size. At the same time, the particle size distribution width decreased remarkably. Heat treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones.

  4. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    NASA Astrophysics Data System (ADS)

    Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi; Kim, Taesung

    2016-04-01

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution by analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.

  5. Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure

    NASA Astrophysics Data System (ADS)

    Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team

    Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.

  6. The size dependence of sublimation rates for interplanetary ice particles

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Rupprecht, G.

    1975-01-01

    The sublimation rates for water ice have been computed as a function of particle size for various solar distances. Because of the size dependence of the absorption and emission properties of the particles, a sublimation-rate minimum evolves whose depth and position are sensitive to the spectral-absorption properties of the particle in combination with the spectral distribution of solar radiation. As a consequence, a quasistable size of interplanetary ice particles is predicted which is independent of solar distance.

  7. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles

    NASA Astrophysics Data System (ADS)

    Chakraborti, Subhadip; Mishra, Shradha; Pradhan, Punyabrata

    2016-05-01

    Using an additivity property, we study particle-number fluctuations in a system of interacting self-propelled particles, called active Brownian particles (ABPs), which consists of repulsive disks with random self-propulsion velocities. From a fluctuation-response relation, a direct consequence of additivity, we formulate a thermodynamic theory which captures the previously observed features of nonequilibrium phase transition in the ABPs from a homogeneous fluid phase to an inhomogeneous phase of coexisting gas and liquid. We substantiate the predictions of additivity by analytically calculating the subsystem particle-number distributions in the homogeneous fluid phase away from criticality where analytically obtained distributions are compatible with simulations in the ABPs.

  8. Size distribution analysis of influenza virus particles using size exclusion chromatography.

    PubMed

    Vajda, Judith; Weber, Dennis; Brekel, Dominik; Hundt, Boris; Müller, Egbert

    2016-09-23

    Size exclusion chromatography is a standard method in quality control of biopharmaceutical proteins. In contrast, vaccine analysis is often based on activity assays. The hemagglutination assay is a widely accepted influenza quantification method, providing no insight in the size distribution of virus particles. Capabilities of size exclusion chromatography to complement the hemagglutination assay are investigated. The presented method is comparatively robust regarding different buffer systems, ionic strength and additive concentrations. Addition of 200mM arginine or sodium chloride is necessary to obtain complete virus particle recovery. 0.5 and 1.0M arginine increase the hydrodynamic radius of the whole virus particles by 5nm. Sodium citrate induces virus particle aggregation. Results are confirmed by dynamic light scattering. Retention of a H1N1v strain correlates with DNA contents between 5ng/mL and 670ng/mL. Quantitative elution of the virus preparations is verified on basis of hemagglutination activity. Elution of hemagglutination inducing compounds starts at a flow channel diameter of 7000nm. The universal applicability is demonstrated with three different influenza virus samples, including an industrially produced, pandemic vaccine strain. Size distribution of the pandemic H1N1v 5258, H1N1 PR/8/34, and H3N2 Aichi/2/68 preparations spreads across inter- and intra-particle volume and extends to the secondary interaction dominated range. Thus, virus particle debris seems to induce hemagglutination. Fragments generated by 0.5% Triton™ X-100 treatment increase overall hemagglutination activity. PMID:27578410

  9. Particle capture by aquatic vegetation modeled in flume experiments: the effects of particle size, stem density, biofilm, and flow velocity

    NASA Astrophysics Data System (ADS)

    Kerwin, R.; Fauria, K.; Nover, D.; Schladow, G.

    2014-12-01

    Vegetated floodplains and wetlands can trap and remove particles from suspension thereby affecting water quality, land accretion, and wetland functioning. However, the rate of particle removal by vegetation remains poorly characterized, especially for fine particles. In this study, we monitored particle concentration and size distribution (1.25 - 250 µm diameter suspended road dust) in a laboratory flume as flow velocity, plant stem density, initial particle concentration, and the presence of biofilm on vegetation were varied. We characterized change in particle concentration through time by calculating decay constants, termed capture rates. Based on our experiments, we found that suspended particle concentration decayed more rapidly in the presence, rather than in the absence, of vegetation. Additionally, particle capture rates increased with stem density, particle size, and the presence of biofilm, while decreasing with flow velocity. These results demonstrate that low flow velocities and the presence of biofilm optimize particle capture by vegetation. Our results are relevant to floodplain and wetland restoration efforts.

  10. Thermal levitation of 10 um size particles in low vacuum

    NASA Astrophysics Data System (ADS)

    Fung, Long Fung Frankie; Kowalski, Nicholas; Parker, Colin; Chin, Cheng

    2016-05-01

    We report on experimental methods for trapping 10 micron-sized ice, glass, ceramic and polyethylene particles with thermophoresis in medium vacuum, at pressures between 5 Torr and 25 Torr. Under appropriate conditions particles can launch and levitate robustly for up to an hour. We describe the experimental setup used to produce the temperature gradient necessary for the levitation, as well as our procedure for generating and introducing ice into the experimental setup. In addition to analyzing the conditions necessary for levitation, and the dependence of levitation on the experimental parameters, we report on the behavior of particles during levitation and ejection, including position and stability, under different pressures and temperatures. We also note a significant discrepancy between theory and data, suggesting the presence of other levitating forces.

  11. Knife mill operating factors effect on switchgrass particle size distributions

    SciTech Connect

    Bitra, V.S.P.; Womac, A.R.; Yang, Y.T.; Igathinathane, C.; Miu, P.I; Chevanan, Nehru; Sokhansanj, Shahabaddine

    2009-06-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin Rammler function fit the chopped switchgrass size distribution data with an R2 > 0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced strongly fine skewed mesokurtic particles with 12.7 25.4 mm screens and fine skewed mesokurtic particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions.

  12. Knife mill operating factors effect on switchgrass particle size distributions.

    PubMed

    Bitra, Venkata S P; Womac, Alvin R; Yang, Yuechuan T; Igathinathane, C; Miu, Petre I; Chevanan, Nehru; Sokhansanj, Shahab

    2009-11-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin-Rammler function fit the chopped switchgrass size distribution data with an R(2)>0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced 'strongly fine skewed mesokurtic' particles with 12.7-25.4 mm screens and 'fine skewed mesokurtic' particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions.

  13. Counting Particles Emitted by Stratospheric Aircraft and Measuring Size of Particles Emitted by Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    There were two principal objectives of the cooperative agreement between NASA and the University of Denver. The first goal was to modify the design of the ER-2 condensation nuclei counter (CNC) so that the effective lower detection limit would be improved at high altitudes. This improvement was sought because, in the instrument used prior to 1993, diffusion losses prevented the smallest detectable particles from reaching the detection volume of the instrument during operation at low pressure. Therefore, in spite of the sensor's ability to detect particles as small as 0.008 microns in diameter, many of these particles were lost in transport to the sensing region and were not counted. Most of the particles emitted by aircraft are smaller than 0.1 micron in diameter. At the start date of this work, May 1990, continuous sizing techniques available on the ER-2 were only capable of detecting particles larger than 0.17 micron. Thus, the second objective of this work was to evaluate candidate sizing techniques in an effort to gain additional information concerning the size of particles emitted by aircraft.

  14. The effect of particle size on the rheological properties of polyamide 6/biochar composites

    NASA Astrophysics Data System (ADS)

    Huber, Tim; Misra, Manjusri; Mohanty, Amar K.

    2015-05-01

    To assess the potential of biochar as filler for thermoplastic materials and to optimize its processing conditions, composites of polyamide 6 and biochar were produced by extrusion followed by injection moulding. Biochar was prepared by grinding and ball-milling, respectively before addition to the polymer. The different biochar treatments resulted in strong differences in the mean particle size as well as the particle size distribution. The size of the filler particle significantly influences the flow behaviour of the melt.

  15. Relationship between regolith particle size and porosity on small bodies

    NASA Astrophysics Data System (ADS)

    Kiuchi, M.; Nakamura, A.

    2014-07-01

    Small planetary bodies are covered by a particle layer called the regolith. The particle size and porosity of the regolith surface of the small bodies are important physical properties. The responses of the surface to solar irradiation depend on the particle size and porosity. The particle size and porosity have influences on the dynamic responses of the surface, such as cratering efficiency. In previous studies, these two quantities were measured or estimated by various methods. Here we propose a semi-empirical relationship between the particle size and porosity for small bodies' surfaces. An empirical relationship between the porosity of granular materials in loose packing state under 1G and the ratio of the magnitudes of the interparticle force and gravity which act on a particle was presented in a previous study [1]. In this study, we assume that the van der Waals force F_{V} is predominant in the interparticle forces and adopt a model formula [2] which is different from that adopted in the previous study [1]: F_{V} = {AS^{2}}/{48Ω ^{2}}r, where A is the Hamaker constant, r is the particle radius, Ω is the diameter of an O^{-2} ion, and S is the cleanliness ratio which shows the smallness of a number of the adsorbate molecules [2]. It was shown that the cleanliness ratio S is approximately 0.1 on the Earth, and is almost unity in the interplanetary space. In addition to the data of the several previous studies, our own measurement result for micron-sized fly-ash particles in atmospheric conditions is used in the present analysis. We calculate F_{V} using Eq. (1), and obtain a relationship between porosity and the ratio R_{F} = F_{V}/F_{g}, where F_{g} is gravity. An empirical formula used in the previous study [1], p = p_{0}+(1-p_{0})exp(-m{R_{F}}^{-n}), is applied to fit the data, where p is the porosity and p_{0}, m and n are constants. We assume that p_{0} is 0.36. By substituting Eq. (1) to Eq. 2, we obtain p = p_{0}+(1-p_{0})exp {-m({AS^{2}}/{64πΩ ^{2

  16. Bulk particle size distribution and magnetic properties of particle-sized fractions from loess and paleosol samples in Central Asia

    NASA Astrophysics Data System (ADS)

    Zan, Jinbo; Fang, Xiaomin; Yang, Shengli; Yan, Maodu

    2015-01-01

    studies demonstrate that particle size separation based on gravitational settling and detailed rock magnetic measurements of the resulting fractionated samples constitutes an effective approach to evaluating the relative contributions of pedogenic and detrital components in the loess and paleosol sequences on the Chinese Loess Plateau. So far, however, similar work has not been undertaken on the loess deposits in Central Asia. In this paper, 17 loess and paleosol samples from three representative loess sections in Central Asia were separated into four grain size fractions, and then systematic rock magnetic measurements were made on the fractions. Our results demonstrate that the content of the <4 μm fraction in the Central Asian loess deposits is relatively low and that the samples generally have a unimodal particle distribution with a peak in the medium-coarse silt range. We find no significant difference between the particle size distributions obtained by the laser diffraction and the pipette and wet sieving methods. Rock magnetic studies further demonstrate that the medium-coarse silt fraction (e.g., the 20-75 μm fraction) provides the main control on the magnetic properties of the loess and paleosol samples in Central Asia. The contribution of pedogenically produced superparamagnetic (SP) and stable single-domain (SD) magnetic particles to the bulk magnetic properties is very limited. In addition, the coarsest fraction (>75 μm) exhibits the minimum values of χ, χARM, and SIRM, demonstrating that the concentrations of ferrimagnetic grains are not positively correlated with the bulk particle size in the Central Asian loess deposits.

  17. Electrical Sizing of Particles in Suspensions

    PubMed Central

    Grover, N. B.; Naaman, J.; Ben-Sasson, S.; Doljanski, F.

    1969-01-01

    The processes involved during the passage of a suspended particle through a small cylindrical orifice across which exists an electric field are considered in detail. Expressions are derived for the resulting change in current in terms of the ratios of particle to orifice volume and particle to suspending fluid resistivity, and particle shape. Graphs are presented of the electric field and of the fluid velocity as functions of position within the orifice, and of the shape factor of spheroids as a function of their axial ratio and orientation in the electric field. The effects of the electric and hydrodynamic fields on the orientation of nonspherical particles and on the deformation of nonrigid spheres is treated, and the migration of particles towards the orifice axis is discussed. Oscillograms of current pulses produced by rigid, nonconducting spheres in various orifices are shown and compared with the theoretical predictions. ImagesFigure 5 PMID:5353144

  18. Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay.

    PubMed

    Pamme, Nicole; Koyama, Ryuji; Manz, Andreas

    2003-08-01

    A microfluidic device for counting and sizing particles and particle agglomerates based on laser light scattering is demonstrated. The particles were confined hydrodynamically and passed through a focused laser beam. Scattering at two different angles, 15 degree and 45 degree, was detected. At an acquisition rate of 10 kHz, a throughput of 150 particles s(-1) was achieved. Scattering intensity was found to depend on particle volume for 2 to 9 microm diameter particles. Size discrimination of particles with a diameter ratio of 1: 2 was accomplished. In addition, the scattering signals of particle agglomerates formed in a particle-enhanced immunoassay for C-reactive protein (CRP) were measured. Scattering intensity was found to be dependent on the CRP concentration, 100 ng CRP per mL could be detected. The particle counting method presented is generic and can be employed in a wide variety of assays as well as for cell counting and particle counting.

  19. Evaluation of process for sludge particle size reduction

    SciTech Connect

    Precechtel, D.R.; Packer, M.J., Fluor Daniel Hanford

    1997-03-18

    This document evaluates the available technology for K Basin sludge particle size. The results can be used to demonstrate the sensitivity or lack thereof, of K Basin sludge to available reduction processes and TWRS proposed particle acceptance criteria.

  20. Process for preparation of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Kornfeld, D. M. (Inventor)

    1981-01-01

    Monodisperse latexes having a particle size in the range of 2 to 40 microns are prepared by seeded emulsion polymerization in microgravity. A reaction mixture containing smaller monodisperse latex seed particles, predetermined amounts of monomer, emulsifier, initiator, inhibitor and water is placed in a microgravity environment, and polymerization is initiated by heating. The reaction is allowed to continue until the seed particles grow to a predetermined size, and the resulting enlarged particles are then recovered. A plurality of particle-growing steps can be used to reach larger sizes within the stated range, with enlarge particles from the previous steps being used as seed particles for the succeeding steps. Microgravity enables preparation of particles in the stated size range by avoiding gravity related problems of creaming and settling, and flocculation induced by mechanical shear that have precluded their preparation in a normal gravity environment.

  1. Computer measurement of particle sizes in electron microscope images

    NASA Technical Reports Server (NTRS)

    Hall, E. L.; Thompson, W. B.; Varsi, G.; Gauldin, R.

    1976-01-01

    Computer image processing techniques have been applied to particle counting and sizing in electron microscope images. Distributions of particle sizes were computed for several images and compared to manually computed distributions. The results of these experiments indicate that automatic particle counting within a reasonable error and computer processing time is feasible. The significance of the results is that the tedious task of manually counting a large number of particles can be eliminated while still providing the scientist with accurate results.

  2. Uncertainty in particle counting and sizing procedures.

    PubMed

    Leith, D; First, M W

    1976-02-01

    A method is described for calculating confidence intervals for particle or fiber concentration, and for dust collector penetration. The span of the interval depends upon the value of fiber concentration or collector penetration reported and upon the number of particles or fibres counted.

  3. The biological response to nanometre-sized polymer particles.

    PubMed

    Liu, Aiqin; Richards, Laura; Bladen, Catherine L; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2015-09-01

    Recently, nanometre-sized UHMWPE particles generated from hip and knee replacements have been identified in vitro and in vivo. UHMWPE particles in the 0.1-1.0μm size range have been shown to be more biologically active than larger particles, provoking an inflammatory response implicated in late aseptic loosening of total joint replacements. The biological activity of nanometre-sized particles has not previously been studied. The biological response to clinically-relevant UHMWPE wear particles including nanometre-sized and micrometre-sized, along with polystyrene particles (FluoSpheres 20nm, 60nm, 200nm and 1.0μm), and nanometre-sized model polyethylene particles (Ceridust 3615®), was determined in terms of osteolytic cytokine release from primary human peripheral blood mononuclear cells (PBMNCs). Nanometre-sized UHMWPE wear particles, nanometre-sized Ceridust 3615® and 20nm FluoSpheres had no significant effect on TNF-α, IL-1β, IL-6 and IL-8 release from PBMNCs at a concentration of 100μm(3) particles per cell after 12 and 24h. The micrometre-size UHMWPE wear particles (0.1-1.0μm) and 60nm, 200nm and 1.0μm FluoSpheres caused significantly elevated osteolytic cytokine release from PBMNCs. These results indicated that particles below circa 50nm fail to activate PBMNCs and that particle size, composition and morphology played a crucial role in cytokine release by particle stimulated macrophages. PMID:26004221

  4. The biological response to nanometre-sized polymer particles

    PubMed Central

    Liu, Aiqin; Richards, Laura; Bladen, Catherine L.; Ingham, Eileen; Fisher, John; Tipper, Joanne L.

    2015-01-01

    Recently, nanometre-sized UHMWPE particles generated from hip and knee replacements have been identified in vitro and in vivo. UHMWPE particles in the 0.1–1.0 μm size range have been shown to be more biologically active than larger particles, provoking an inflammatory response implicated in late aseptic loosening of total joint replacements. The biological activity of nanometre-sized particles has not previously been studied. The biological response to clinically-relevant UHMWPE wear particles including nanometre-sized and micrometre-sized, along with polystyrene particles (FluoSpheres 20 nm, 60 nm, 200 nm and 1.0 μm), and nanometre-sized model polyethylene particles (Ceridust 3615®), was determined in terms of osteolytic cytokine release from primary human peripheral blood mononuclear cells (PBMNCs). Nanometre-sized UHMWPE wear particles, nanometre-sized Ceridust 3615® and 20 nm FluoSpheres had no significant effect on TNF-α, IL-1β, IL-6 and IL-8 release from PBMNCs at a concentration of 100 μm3 particles per cell after 12 and 24 h. The micrometre-size UHMWPE wear particles (0.1–1.0 μm) and 60 nm, 200 nm and 1.0 μm FluoSpheres caused significantly elevated osteolytic cytokine release from PBMNCs. These results indicated that particles below circa 50 nm fail to activate PBMNCs and that particle size, composition and morphology played a crucial role in cytokine release by particle stimulated macrophages. PMID:26004221

  5. Asymmetric Colloidal Janus Particle Formation Is Core-Size-Dependent.

    PubMed

    Landon, Preston B; Mo, Alexander H; Printz, Adam D; Emerson, Chris; Zhang, Chen; Janetanakit, Woraphong; Colburn, David A; Akkiraju, Siddhartha; Dossou, Samuel; Chong, Baxi; Glinsky, Gennadi; Lal, Ratnesh

    2015-08-25

    Colloidal particles with asymmetric surface chemistry (Janus particles) have unique bifunctional properties. The size of these particles is an important determinant for their applications in diverse fields from drug delivery to chemical catalysis. The size of Janus particles, with a core surface coated with carboxylate and a partially encapsulating silica shell, depends upon several factors, including the core size and the concentration of carboxylate coating. The role of the carboxylate coating on the Janus particle size is well-understood; however, the role of the core size is not well defined. The role of the carboxylated polystyrene (cPS) core size on the cPS-silica Janus particle morphology (its size and shape) was examined by testing two different silica sizes and five different cPS core sizes. Results from electron microscopy (EM) and dynamic light scattering (DLS) analysis indicate that the composite cPS-silica particle acquires two distinct shapes: (i) when the size of the cPS core is much smaller than the non-cPS silica (b-SiO2) sphere, partially encapsulated Janus particles are formed, and (ii) when the cPS core is larger than or equal to the b-SiO2 sphere, a raspberry-like structure rather than a Janus particle is formed. The cPS-silica Janus particles of ∼100-500 nm size were obtained when the size of the cPS core was much smaller than the non-cPS silica (b-SiO2) sphere. These scalable nanoscale Janus particles will have wide application in a multifunctional delivery platform and catalysis. PMID:26244597

  6. Particle size dependent chemistry from laser ablation of brass.

    PubMed

    Liu, Chunyi; Mao, Xianglei; Mao, Sam S; Greif, Ralph; Russo, Richard E

    2005-10-15

    The proportion of zinc and copper in particles formed by laser ablation of brass was found to vary with the particle diameter. Energy-dispersive X-ray analysis showed that smaller particles were zinc enhanced while larger particles were composed mostly of copper. A model based on condensation of vapor onto large droplets ejected from a melted liquid layer is proposed to describe the change in particle composition versus size. PMID:16223257

  7. Improved particle size estimation in digital holography via sign matched filtering.

    PubMed

    Lu, Jiang; Shaw, Raymond A; Yang, Weidong

    2012-06-01

    A matched filter method is provided for obtaining improved particle size estimates from digital in-line holograms. This improvement is relative to conventional reconstruction and pixel counting methods for particle size estimation, which is greatly limited by the CCD camera pixel size. The proposed method is based on iterative application of a sign matched filter in the Fourier domain, with sign meaning the matched filter takes values of ±1 depending on the sign of the angular spectrum of the particle aperture function. Using simulated data the method is demonstrated to work for particle diameters several times the pixel size. Holograms of piezoelectrically generated water droplets taken in the laboratory show greatly improved particle size measurements. The method is robust to additive noise and can be applied to real holograms over a wide range of matched-filter particle sizes.

  8. Seed particle response and size characterization in high speed flows

    NASA Technical Reports Server (NTRS)

    Rudoff, Roger C.; Bachalo, William D.

    1991-01-01

    The response of seed particles ranging between 0.7 and 8.7 micron is determined using a phase Doppler particle analyzer which simultaneously measures particle size and velocity. The stagnant seed particles are entrained into a high speed free jet at velocities ranging from 40 to 300 m/s. The size-mean axial velocity correlation and size-rms velocity correlations are used to determine the particle response to the sudden acceleration. It was determined that at the lower speeds, seed particles up to approximately 5 microns are adequate, but as velocities approach 300 m/s only particles on the order of one micron are suitable. The ability to determine size and velocity simultaneously is essential if seeding with polydispersions is used since it allows the rejection of data which will not accurately represent the flow field.

  9. Selective follicular targeting by modification of the particle sizes.

    PubMed

    Patzelt, Alexa; Richter, Heike; Knorr, Fanny; Schäfer, Ulrich; Lehr, Claus-Michael; Dähne, Lars; Sterry, Wolfram; Lademann, Juergen

    2011-02-28

    Hair follicles represent interesting target sites for topically applied substances such as topical vaccinations or agents used in the field of regenerative medicine. In recent years, it could be shown that particles penetrate very effectively into the hair follicles. In the present study, the influence of particle size on the follicular penetration depths was examined. The penetration depths of two different types of particles sized 122 to 1000 nm were determined in vitro on porcine skin. The results revealed that the particles of medium size (643 and 646 nm, respectively) penetrated deeper into the porcine hair follicles than smaller or larger particles. It was concluded that by varying the particle size, different sites within the porcine hair follicle can be targeted selectively. For the human terminal hair follicle, the situation can be expected to be similar due to a similar size ratio of the hair follicles. PMID:21087645

  10. Selective follicular targeting by modification of the particle sizes.

    PubMed

    Patzelt, Alexa; Richter, Heike; Knorr, Fanny; Schäfer, Ulrich; Lehr, Claus-Michael; Dähne, Lars; Sterry, Wolfram; Lademann, Juergen

    2011-02-28

    Hair follicles represent interesting target sites for topically applied substances such as topical vaccinations or agents used in the field of regenerative medicine. In recent years, it could be shown that particles penetrate very effectively into the hair follicles. In the present study, the influence of particle size on the follicular penetration depths was examined. The penetration depths of two different types of particles sized 122 to 1000 nm were determined in vitro on porcine skin. The results revealed that the particles of medium size (643 and 646 nm, respectively) penetrated deeper into the porcine hair follicles than smaller or larger particles. It was concluded that by varying the particle size, different sites within the porcine hair follicle can be targeted selectively. For the human terminal hair follicle, the situation can be expected to be similar due to a similar size ratio of the hair follicles.

  11. Particle size distributions of polyaniline-silica colloidal composites

    SciTech Connect

    Gill, M.; Armes, S.P. ); Fairhurst, D. ); Emmett, S.N. ); Idzorek, G.; Pigott, T. )

    1992-09-01

    We have characterized a new polyaniline-silica composite colloid by various particle sizing techniques. Our transmission electron microscopy studies have confirmed for the first time an unusual raspberry morphology, with the small silica particles held together by the polyaniline [open quotes]binder[close quotes]. These particles have average diameters in the size range 150-500 nm. Charge-velocity analysis experiments indicated a number-average particle diameter of 300 [plus minus] 80 nm, but only poor statistics were obtained (172 particles counted). Photon correlation spectroscopy studies suggested an intensity-average particle diameter of 380 nm. Disk centrifuge photosedimentometry (DCP) turned out to be our preferred sizing technique for the polyaniline-silica colloids, since it was both quick and reliable and, more importantly, produced the true particle size distribution (PSD) curve with excellent statistics. The DCP data indicated a weight-average and number-average particle diameter of 330 [plus minus] 70 nm and 280 [plus minus] 70 nm, respectively, and moreover confirmed the PSD to be both broad and unimodal. Finally, these colloidal composites were sized using the Malvern Aerosizer. Using this instrument in conjunction with a nebulizer attachment (which allowed particle sizing of the [open quotes]wet[close quotes] dispersion) rather than in the conventional [open quotes]dry powder[close quotes] mode, we obtained particle size data which were in reasonable agreement with the DCP results. 31 refs., 5 figs., 1 tab.

  12. Size Effects on the Magnetic Properties of Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Chen, Jianping

    Finite size effects on the magnetic properties of nanoscale particles have been studied in this work. The first system studied was MnFe_2O _4 prepared by coprecipitation followed by digestion. The particles were single crystals with an average diameter controllable from 5 nm to 25 nm. These particles have a higher inversion degree of metal ion distribution between the tetrahedral sites and octahedral sites of the spinel structure than those synthesized with ceramic methods. This higher inversion leads to a higher Curie temperature. We found that the structure of the particles can be varied by heat treatment. The Curie temperature of the particles decreased after heat treatment in inert gas, however, it increased after heat treatment in air. The size effects show in two aspects on the MnFe_2O _4 particles. First, the Curie temperature decreased as particles size was reduced, which was explained by finite size scaling. Second, the saturation magnetization decreased as particle size decreased because of the existence of a nonmagnetic layer on the surface of MnFe_2 O_4 particles. The second system studied was Co particles synthesized with an inverse micelle technique. The particles were small (1-5 nm) and had a narrow size distribution. The Co particles were superparamagnetic at room temperature and showed a set of consistent magnetic data in magnetic moment per particle, coercivity, and blocking temperature. We found the anisotropy constant and saturation magnetization of Co particles had a strong size dependence. The anisotropy constant was above the bulk value of Co and increased as particle size decreased. The saturation magnetization increased as the particle became smaller. The magnetic properties of Co particles also strongly suggested a core/shell structure in each particle. But no physical inhomogeneity was observed. We have also studied ligand effects on the magnetic properties of Co particles. The magnetization of the Co particles was quenched by 36%, 27

  13. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    PubMed

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'.

  14. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    PubMed

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'. PMID:26323505

  15. Chemically generated convective transport of micron sized particles

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman

    2015-11-01

    A variety of chemical and biological applications require manipulation of micron sized objects like cells, viruses, and large molecules. Increasing the size of particles up to a micron reduces performance of techniques based on diffusive transport. Directional transport of cargo toward detecting elements reduces the delivery time and improves performance of sensing devices. We demonstrate how chemical reactions can be used to organize fluid flows carrying particles toward the assigned destinations. Convection is driven by density variations caused by a chemical reaction occurring at a catalyst or enzyme-covered target site. If the reaction causes a reduction in fluid density, as in the case of catalytic decomposition of hydrogen peroxide, then fluid and suspended cargo is drawn toward the target along the bottom surface. The intensity of the fluid flow and the time of cargo delivery are controlled by the amount of reagent in the system. After the reagent has been consumed, the fluid pump stops and particles are found aggregated on and around the enzyme-coated patch. The pumps are reusable, being reactivated upon injection of additional reagent. The developed technique can be implemented in lab-on-a-chip devices for transportation of micro-scale object immersed in solution.

  16. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  17. Particle Size Influences Fibronectin Internalization and Degradation by Fibroblasts

    NASA Astrophysics Data System (ADS)

    Bozavikov, Peter

    Particle size is a crucial factor that influences the fate and biological impact of particles and their surface proteins upon internalization. Here, using fibronectin-coated polystyrene nanoparticles and microparticles we examined the effect of particle size on degradation of fibronectin. Microparticle uptake depended primarily on beta1 integrins and actin filaments, while nanoparticle uptake relied mainly on lipid rafts and specifically on clathrin-mediated endocytosis. Further, biotinylated fibronectin when coated on microparticles underwent more intracellular processing than fibronectin coated on to nanoparticles. Thus, particle size affects actin and clathrin- dependent internalization, which in turn regulates intracellular fibronectin degradation.

  18. Hydrodynamic model for particle size segregation in granular media

    NASA Astrophysics Data System (ADS)

    Trujillo, Leonardo; Herrmann, Hans J.

    2003-12-01

    We present a hydrodynamic theoretical model for “Brazil nut” size segregation in granular materials. We give analytical solutions for the rise velocity of a large intruder particle immersed in a medium of monodisperse fluidized small particles. We propose a new mechanism for this particle size-segregation due to buoyant forces caused by density variations which come from differences in the local “granular temperature”. The mobility of the particles is modified by the energy dissipation due to inelastic collisions and this leads to a different behavior from what one would expect for an elastic system. Using our model we can explain the size ratio dependence of the upward velocity.

  19. Flue gas conditioning for improved particle collection in electrostatic precipitators. First topical report, Results of laboratory screening of additives

    SciTech Connect

    Durham, M.D.

    1993-04-16

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of {le} 10 {mu}m dia.

  20. Stability and size of particle pairs in complex plasmas

    SciTech Connect

    Nosenko, V.; Ivlev, A. V.; Kompaneets, R.; Morfill, G.

    2014-11-15

    Particle pairing in a complex plasma was experimentally studied with the emphasis on pair spatial extent and stability. Micron-size particles were suspended in the (pre)sheath area above the lower electrode in a capacitively coupled radio-frequency discharge in argon. They formed vertical pairs due to the ion wakes created by the flow of ions past particles. We discuss the confinement mechanism for the lower particle, resulting from a combination of the wake field and the field of non-uniform sheath. A model of particle pairs is proposed, which provides good description for the dependence of pair size and stability on experimental parameters.

  1. A hybrid mathematical model for controlling particle size, particle size distribution, and color properties of toner particles

    NASA Astrophysics Data System (ADS)

    Ataeefard, Maryam; Shadman, Alireza; Saeb, Mohammad Reza; Mohammadi, Yousef

    2016-08-01

    A mathematical modeling approach was proposed combining the capabilities of response surface methodology (RSM) and desirability function (DF) and implemented successfully in production of printing toner particles. Toner powders were systematically synthesized through suspension copolymerization process. Applying RSM, a series of experiments were designed and toner particles were prepared and the effects of monomer ratio, colorant and surfactant content on the particle size (PS), particle size distribution (PSD), thermal and colorimetric properties (∆ E) of the resulting toner were monitored and discussed. The second-order models corresponding to each target characteristic, i.e., PS, PSD, and ∆ E of different types of toner powders, were obtained by individual optimization to express variation of each property in terms of polymerization parameters. Applying statistical calculations, the best reduced models were identified to be fed in the second step of optimization. Since toners with appropriate PS, PSD, and CP were needed, we applied multi-objective optimization based on DF approach. The results show that exact tuning of toner properties is closely possible with the aid of hybrid mathematical model developed in this work. Noticeably, desirabilities are very close to 100 %.

  2. Experimental study of the relationship between local particle-size distributions and local ordering in random close packing.

    PubMed

    Kurita, Rei

    2015-12-01

    We experimentally study the structural properties of a sediment of size distributed colloids. By determining each particle size using a size estimation algorithm, we are able to investigate the relationship between local environment and local ordering. Our results show that ordered environments of particles tend to generate where the local particle-size distribution is within 5%. In addition, we show that particles whose size is close to the average size have 12 coordinate neighbors, which matches the coordination number of the fcc and hcp crystals. On the other hand, bcc structures are observed around larger particles. Our results represent experiments to show a size dependence of the specific ordering in colloidal systems.

  3. Influence of particle size on diffusion-limited aggregation.

    PubMed

    Tan, Z J; Zou, X W; Zhang, W B; Jin, Z Z

    1999-11-01

    The influence of particle size on diffusion-limited aggregation (DLA) has been investigated by computer simulations. For DLA clusters consisting of two kinds of particles with different sizes, when large particles are in the minority, the patterns of clusters appear asymmetrical and nonuniform, and their fractal dimensions D(f) increase compared with one-component DLA. With increasing size of large particles, D(f) increases. This increase can be attributed to two reasons: one is that large particles become new growth centers; the other is the big masses of large particles. As the concentration ratio x(n) of large particles increases, D(f) will reach a maximum value D(f(m)) and then decrease. When x(n) exceeds a certain value, the morphology and D(f) of the two-component DLA clusters are similar to those of one-component DLA clusters. PMID:11970534

  4. Noninvasive particle sizing using camera-based diffuse reflectance spectroscopy.

    PubMed

    Abildgaard, Otto Højager Attermann; Frisvad, Jeppe Revall; Falster, Viggo; Parker, Alan; Christensen, Niels Jørgen; Dahl, Anders Bjorholm; Larsen, Rasmus

    2016-05-10

    Diffuse reflectance measurements are useful for noninvasive inspection of optical properties such as reduced scattering and absorption coefficients. Spectroscopic analysis of these optical properties can be used for particle sizing. Systems based on optical fiber probes are commonly employed, but their low spatial resolution limits their validity ranges for the coefficients. To cover a wider range of coefficients, we use camera-based spectroscopic oblique incidence reflectometry. We develop a noninvasive technique for acquisition of apparent particle size distributions based on this approach. Our technique is validated using stable oil-in-water emulsions with a wide range of known particle size distributions. We also measure the apparent particle size distributions of complex dairy products. These results show that our tool, in contrast to those based on fiber probes, can deal with a range of optical properties wide enough to track apparent particle size distributions in a typical industrial process. PMID:27168301

  5. The vibratory consolidation of particle size fractions of powders.

    PubMed

    Woodhead, P J; Chapman, S R; Newton, J M

    1983-10-01

    The use of controlled sinusoidal vibration as a means of consolidating packings of lactose within small containers has been examined. Vertical vibration was found significantly more effective and reproducible than horizontal vibration in terms of the degree of consolidation achieved. An optimum frequency range was identified within which the densification was greatest, and this range was largely independent of particle size for particle size fractions of mean volume diameters ranging from 15.6 to 155 micrometers. The consolidation increased with increasing vibration acceleration up to a level beyond which no further decrease in porosity resulted. Typical effective vibration conditions were characterized by amplitudes of an order of magnitude similar to the particle sizes studied. For particle size fractions of mean diameters 17.8, 37.5 and 80.8 micrometers, there is evidence that an optimum particle size range exists, within which energy requirements for consolidation are at a minimum.

  6. Planar particle/droplet size measurement technique using digital particle image velocimetry image data

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P. (Inventor); Mielke, Amy F. (Inventor); Kadambi, Jaikrishnan R. (Inventor)

    2005-01-01

    A method for determining a mass flux of an entrained phase in a planar two-phase flow records images of particles in the two-phase flow. Respective sizes of the particles (the entrained phase) are determined as a function of a separation between spots identified on the particle images. Respective velocities of the particles are determined. The mass flux of the entrained phase is determined as a function of the size and velocity of the particles.

  7. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  8. Simultaneous velocity and particle size measurement in two phase flows by Laser Anemometry

    NASA Technical Reports Server (NTRS)

    Ungut, A.; Yule, A. J.; Taylor, D. S.; Chigier, N. A.

    1978-01-01

    A technique for particle size measurement by using Laser Doppler Anemometry is discussed. An additional gate photomultiplier has been introduced at right angles to the optical axis in order to select only those particles passing through the central region of the measurement control volume. Particle sizing measurements have been made in sprays of glass particles using the modified Laser Anemometry system. Measurements in fuel sprays are also reported and compared with the results obtained by a photographic technique. The application of the particle sizing technique to opaque particles is investigated and suitable optical arrangements are suggested. Light scattering characteristics of Laser Anemometry systems for different optical geometries are calculated to select the optimum optical arrangement for the particle sizing measurements.

  9. Reduction of glycine particle size by impinging jet crystallization.

    PubMed

    Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-01-15

    The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization.

  10. Particle Size: A sediment tracing challenge or opportunity?

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Evrard, Olivier

    2016-04-01

    Tracing sediment back to their sources with biogeochemical fingerprints involves multiple assumptions. One of the most fundamental assumptions is the conservative behavior of tracer properties during sediment generation, transportation, and deposition processes. Essentially, the biogeochemical fingerprints used to trace sediment must remain constant, or conservative, during these erosion processes, or they must vary in a predictable way. At the core of this assumption of conservative behavior are potential particle size impacts. Owing to the significance of particle size for sediment tracing research, we believe it is important to present an overview of past and present techniques used to address particle size, along with possibilities for future research. The two primary approaches utilized to address particle size impacts are fractionation (e.g., <10μm and <63μm fractions) and corrections (e.g. specific surface area), with both approaches often used simultaneously. The effectiveness of fractionation and corrections to address particle size has received increasing attention, testing fundamental assumptions central to the applicability of sediment tracing and fingerprinting. Alternative approaches to addressing particle size have also been presented. For example, researchers applying the tributary tracing approach or sampling sediment generated directly on hillslopes may potentially address particle size impacts in their sampling design. Although these approaches have been presented in the literature, their effectiveness has yet to be determined. For the future, we boldly suggest that there are likely situations where particle size may be potentially used as a fingerprint in and of itself. Indeed, potential particle size impacts are directly related to the biogeochemical fingerprints used to trace sediments and we believe that there is a fantastic opportunity to obtain further sediment source information through comprehensively investigating and unravelling

  11. Effect of UV radiations to control particle size of Mn-Zn spinel ferrite nano-particles

    NASA Astrophysics Data System (ADS)

    Ameen Ramiza, F.; Ajmal, S. K.; Khan, M. B.; Nasim, A.; Jamil, Y.; Kashif, K.; Amira, S.

    2016-08-01

    MnxZn1-xFe2O4 (0.0 < x < 1.0) ferrite nano particles were synthesized for concentration varying from 0.27 to 0.87 to obtain chemically homogenous powder for obtaining fine particle size by co precipitation technique. Keeping in view the interest of scientists for particle size, the present work focus on the impact of UV radiation to control the particle size of prepared fine magnetic particles. The particles were digested for ninety minutes at a temperature of 90oC. The samples were divided into four equal quantities and were subjected to different doses of UV radiation. The chemically produced samples of Mn-Zn ferrite nano particles were analyzed by XRD which confirmed cubic spinel structure of the material. The average crystallite size (t), lattice parameter (a) and other structural parameters of UV-irradiated MnxZni-xFe2O4 spinel ferrite were calculated from XRD data. The spinel peak of the irradiated sample when compared with the control sample, shifted from 35.38 to 35.15. In few samples, additional peaks supporting the ferrite structure were also observed. The variation in the particle sizes observed for various doses of UV irradiation were in the range of 17.6 to 6.2 nm, whereas the particle size of the control was 8.82nm. The experiment was repeated for different concentrations, at the same digestion temperature and time revealed the similar results indicating that UV radiations can have a remarkable effect to control the phase and size of nano size fine magnetic ferrite particles. The present work successfully document the impact of UV to control the particle size.

  12. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  13. Effect of starting material particle size on its agglomeration behavior in high shear wet granulation.

    PubMed

    Badawy, Sherif I Farag; Hussain, Munir A

    2004-05-11

    The effect of anhydrous lactose particle size distribution on its performance in the wet granulation process was evaluated. Three grades of anhydrous lactose were used in the study: "as is" manufacturer grade and 2 particle size fractions obtained by screening of the 60M lactose. Particle growth behavior of the 3 lactose grades was evaluated in a high shear mixer. Compactibility and porosity of the resulting granules were also evaluated. A uniaxial compression test on moist agglomerates of the 3 lactose grades was performed in an attempt to explain the mechanism of particle size effect observed in the high shear mixer. Particle growth of anhydrous lactose in the high shear mixer was inversely related to the particle size of the starting material. In addition, granulation manufactured using the grade with the smallest particle size was more porous and demonstrated enhanced compactibility compared with the other grades. Compacts with similar porosity and low liquid saturation demonstrated brittle behavior and their breakage strength was inversely related to lactose particle size in the uniaxial compression test, suggesting that material with smaller particle size may exhibit more pronounced nucleation behavior during wet granulation. On the other hand, compacts prepared at higher liquid saturation and similar compression force exhibited more plastic behavior and showed lower yield stress for the grade with smallest particle size. The lower yield stress of compacts prepared with this grade may indicate a higher coalescence tendency for its granules during wet granulation. PMID:15760071

  14. The Size of Gelatin Sponge Particles: Differences with Preparation Method

    SciTech Connect

    Katsumori, Tetsuya Kasahara, Toshiyuki

    2006-12-15

    Purpose. To assess whether the size distribution of gelatin sponge particles differed according to the method used to make them and the type of original sheet. Methods. Gelatin sponge particles of approximately 1-1.5 x 1-1.5 x 2 mm were made from either Spongel or Gelfoam sheets by cutting with a scalpel and scissors. Particles were also made of either Spongel or Gelfoam sheets by pumping with two syringes and a three-way stopcock. The size distribution of the particles in saline was compared among the groups. Results. (1) Cutting versus pumping: When Spongel was used, cutting produced lower rates of smaller particles {<=}500 {mu}m and larger particles >2000 {mu}m compared with pumping back and forth 30 times (1.1% vs 37.6%, p < 0.0001; 2.2% vs 14.4%, p = 0.008). When Gelfoam was used, cutting produced lower rates of smaller and larger particles compared with pumping (8.5% vs 20.4%, p = 0.1809; 0% vs 48.1%, p < 0.0001). (2) Spongel versus Gelfoam: There was no significant difference in the size distribution of the particles between Spongel and Gelfoam (p = 0.2002) when cutting was used. Conclusion. The size distribution of gelatin sponge particles differed according to the method used to make them. More uniform particle sizes can be achieved by cutting than by pumping.

  15. Particle size and velocity measurement by laser anemometry

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Chigier, N. A.; Atakan, S.; Ungut, A.

    1977-01-01

    The use of a forward scattering Laser Anemometer system for the measurement of particle diameters larger than the fringe spacing is investigated. A systematic calibration experiment demonstrates a direct relationship between signal amplitude and particle diameter for transparent particles between 30 microns and 240 microns in diameter. A light scattering analysis confirms these measurements and indicates how the range of particles which can be measured using the peak (mean) signal depends on the optical arrangement and particle properties. On the basis of this work a real time Laser Anemometer signal processor is modified so that the peak of the mean of each signal can be measured. A method of correcting data for the effect of particles which do not go through the center of the measurement volume is derived. Good agreement is found between particle size distributions measured in sprays by using the Laser Anemometer and size distributions measured by collecting the particles on a slide and using an image analysis computer.

  16. Apollo 14 soils - Size distribution and particle types.

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Heiken, G. H.; Taylor, R. M.; Clanton, U. S.; Morrison, D. A.; Ladle, G. H.

    1972-01-01

    Particle size characteristics are discussed together with particle types, abundances, variation in the soils, questions of soil maturity, coarse fines, and ropy glasses. It is found that agglutinates are formed primarily by micrometeorite impact into lunar soil. Agglutinates appear to be the major particle type now being formed on the lunar surface. Agglutinate content of a soil increases with particle track densities and with surface exposure time.

  17. Effects of particle size distribution in thick film conductors

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1983-01-01

    Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.

  18. Particle size and particle-particle interactions on tensile properties and reinforcement of corn flour particles in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewable corn flour has a significant reinforcement effect in natural rubber. The corn flour was hydrolyzed and microfluidized to reduce its particle size. Greater than 90% of the hydrolyzed corn flour had an average size of ~300 nm, a reduction of 33 times compared to unhydrolyzed corn flour. Comp...

  19. Size Limit for Particle-Stabilized Emulsion Droplets under Gravity

    NASA Astrophysics Data System (ADS)

    Tavacoli, J. W.; Katgert, G.; Kim, E. G.; Cates, M. E.; Clegg, P. S.

    2012-06-01

    We demonstrate that emulsion droplets stabilized by interfacial particles become unstable beyond a size threshold set by gravity. This holds not only for colloids but also for supracolloidal glass beads, using which we directly observe the ejection of particles near the droplet base. The number of particles acting together in these ejection events decreases with time until a stable acornlike configuration is reached. Stability occurs when the weight of all remaining particles is less than the interfacial binding force of one particle. We also show the importance of the curvature of the droplet surface in promoting particle ejection.

  20. Size limit for particle-stabilized emulsion droplets under gravity.

    PubMed

    Tavacoli, J W; Katgert, G; Kim, E G; Cates, M E; Clegg, P S

    2012-06-29

    We demonstrate that emulsion droplets stabilized by interfacial particles become unstable beyond a size threshold set by gravity. This holds not only for colloids but also for supracolloidal glass beads, using which we directly observe the ejection of particles near the droplet base. The number of particles acting together in these ejection events decreases with time until a stable acornlike configuration is reached. Stability occurs when the weight of all remaining particles is less than the interfacial binding force of one particle. We also show the importance of the curvature of the droplet surface in promoting particle ejection.

  1. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.

    PubMed

    Cheng, Yung Sung; Kenoyer, Judson L; Guilmette, Raymond A; Parkhurst, Mary Ann

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 microm and a large size mode between 2 and 15 microm. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 microm shortly after perforation to around 1 microm at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles. PMID:19204485

  2. Particle size and shape distributions of hammer milled pine

    SciTech Connect

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke; Ryan, John Chadron Benjamin

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  3. Packing fraction of particles with lognormal size distribution.

    PubMed

    Brouwers, H J H

    2014-05-01

    This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  4. Sonochemical synthesis of silica particles and their size control

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan

    2016-09-01

    Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  5. Control over Particle Size Distribution by Autoclaving Poloxamer-Stabilized Trimyristin Nanodispersions.

    PubMed

    Göke, Katrin; Roese, Elin; Arnold, Andreas; Kuntsche, Judith; Bunjes, Heike

    2016-09-01

    Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bloodstream. Consequently, small particles with a narrow particle size distribution are desired. Hitherto, there are, however, only limited possibilities for the preparation of monodisperse, pharmaceutically relevant dispersions. In this work, the effect of autoclaving at 121 °C on the particle size distribution of lipid nanoemulsions and -suspensions consisting of the pharmaceutically relevant components trimyristin and poloxamer 188 was studied. Additionally, the amount of emulsifier needed to stabilize both untreated and autoclaved particles was assessed. In our study, four dispersions of mean particle sizes from 45 to 150 nm were prepared by high-pressure melt homogenization. The particle size distribution before and after autoclaving was characterized using static and dynamic light scattering, differential scanning calorimetry, and transmission electron microscopy. Asymmetrical flow field-flow fractionation was used for particle size distribution analyses and for the determination of free poloxamer 188. Upon autoclaving, the mean particle size increased to up to 200 nm, but not proportionally to the initial size. At the same time, the particle size distribution width decreased remarkably. Heat treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones. PMID:27463039

  6. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    NASA Astrophysics Data System (ADS)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  7. Sound absorption by suspensions of nonspherical particles: measurements compared with predictions using various particle sizing techniques.

    PubMed

    Richards, Simon D; Leighton, Timothy G; Brown, Niven R

    2003-10-01

    Knowledge of the particle size distribution is required in order to predict ultrasonic absorption in polydisperse particulate suspensions. This paper shows that the method used to measure the particle size distribution can lead to important differences in the predicted absorption. A reverberation technique developed for measuring ultrasonic absorption by suspended particles is used to measure the absorption in suspensions of nonspherical particles. Two types of particulates are studied: (i) kaolin (china clay) particles which are platelike in form; and (ii) calcium carbonate particles which are more granular. Results are compared to theoretical predictions of visco-inertial absorption by suspensions of spherical particles. The particle size distributions, which are required for these predictions, are measured by laser diffraction, gravitational sedimentation and centrifugal sedimentation, all of which assume spherical particles. For a given sample, each sizing technique yields a different size distribution, leading to differences in the predicted absorption. The particle size distributions obtained by gravitational and centrifugal sedimentation are reinterpreted to yield a representative size distribution of oblate spheroids, and predictions for absorption by these spheroids are compared with the measurements. Good agreement between theory and measurement for the flat kaolin particles is obtained, demonstrating that these particles can be adequately represented by oblate spheroids. PMID:14587585

  8. Space Shuttle exhausted aluminum oxide - A measured particle size distribution

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Purgold, G. C.; Edahl, R. A.; Winstead, E. L.

    1991-01-01

    Aluminum oxide (A2O3) particles were collected from the Space Shuttle exhaust plume immediately following the launch of STS-34 on October 18, 1989. A2O3 samples were obtained at 2.4, 3.0, 3.2, and 7.4 km in altitude. The samples were analyzed using SEM to develope particle size distributions. There were no indications that the particle size distribution changed as a function of altitude. The particle number concentrations per cubic meter of air sampled for the four collections was found to fit an exponential expression.

  9. Saturn's rings - Particle size distributions for thin layer model

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Marouf, E. A.; Tyler, G. L.

    1985-01-01

    A model incorporating limited interaction between the incident energy and particles in the ring is considered which appears to be consistent with the multiple scattering process in Saturn's rings. The model allows for the small physical thickness of the rings and can be used to relate Voyager 1 observations of 3.6- and 13-cm wavelength microwave scatter from the rings to the ring particle size distribution function for particles with radii ranging from 0.001 to 20 m. This limited-scatter model yields solutions for particle size distribution functions for eight regions in the rings, which exhibit approximately inverse-cubic power-law behavior.

  10. Backscattering measurements of micron-sized spherical particles.

    PubMed

    Heffernan, Brendan M; Heinson, Yuli W; Maughan, Justin B; Chakrabarti, Amitabha; Sorensen, Christopher M

    2016-04-20

    An apparatus was designed and assembled to measure scattered light in the range of 180°±6° where enhanced backscattering, the cause of a glory, occurs. The apparatus was calibrated and tested using Fraunhofer circular aperture diffraction, angle of incidence correction, and a diffuse reflector. Theory indicates that backscattering is strongly dependent on particle size, refractive index, and shape. Experimental measurements from polystyrene latex spheres of two sizes and water droplets showed good agreement with Mie theory, but also indicated the extreme sensitivity of the backscattering to particle parameters. The results presented should have use in the fields of particle scattering, particle metrology, and LIDAR. PMID:27140090

  11. Particle sizing experiments with the laser Doppler velocimeter: Final report

    SciTech Connect

    Giel, T.V. Jr.; Son, J.Y.

    1988-06-01

    Measurement techniques for in-situ simultaneous measurements of particle size distributions and particle velocities using the dual beam laser Doppler velocimeter (LV) were analytically and experimentally investigated. This investigation examined the different signal characteristics of the LV for determination of particle size and particle velocity, simultaneously. The different size related signal components were evaluated not only singularly but also as simultaneous measurements to determine which characteristic, or combination of characteristics, provided the best measure of particle size. The evaluation concentrated on the 0.5 to 5 ..mu..m particle size range, in which the LV light scattering characteristics are complex often non-monotonic functions of the particle size as well as functions of index of refraction, the laser light wavelength, laser intensity and polarization, and the location and response characteristics of the detector. Different components of the LV signal were considered, but analysis concentrated on Doppler phase, visibility and scatter-intensity because they show the greatest promise. These signals characteristics were initially defined analytically for numerous optical configurations over the 0.5 to 5 ..mu..m diameter range with 0.1 ..mu..m segmentation, for refractive index values from 1.0 to 3.0 with absorptive (imaginary) components varied form 0 to 1.0. Collector orientation and effective f/No., as well as fringe spacing, beam polarization and wavelength, were varied in this analytical evaluation. 18 refs., 42 figs., 5 tabs.

  12. Evaluation of the Malvern optical particle monitor. [Volumetric size distribution

    SciTech Connect

    Anderson, R. J.; Johnson, E.

    1983-07-01

    The Malvern 2200/3300 Particle Sizer is a laser-based optical particle sizing device which utilizes the principle of Fraunhofer Diffraction as the means of particle size measurement. The instrument is designed to analyze particle sizes in the range of 1 to 1800 microns diameter through a selection of lenses for the receiving optics. It is not a single-particle counter but rather an ensemble averager over the distribution of particles present in the measuring volume. Through appropriate measurement techniques, the instrument can measure the volumetric size distribution of: solids in gas or liquid suspension; liquid droplets in gas or other immiscible liquids; and, gas bubbles in liquid. (Malvern Handbook, Version 1.5). This report details a limited laboratory evaluation of the Malvern system to determine its operational characteristics, limitations, and accuracy. This investigation focused on relatively small particles in the range of 5 to 150 microns. Primarily, well characterized particles of coal in a coal and water mixture were utilized, but a selection of naturally occurring, industrially generated, and standard samples (i.e., glass beads) wer also tested. The characteristic size parameter from the Malvern system for each of these samples was compared with the results of a Coulter particle counter (Model TA II) analysis to determine the size measurement accuracy. Most of the particulate samples were suspended in a liquid media (water or isoton, plus a dispersant) for the size characterization. Specifically, the investigations contained in this report fall into four categories: (a) Sample-to-lense distance and sample concentration studies, (b) studies testing the applicability to aerosols, (c) tests of the manufacturer supplied software, and (d) size measurement comparisons with the results of Coulter analysis. 5 references, 15 figures, 2 tables.

  13. Particle size distributions in the Eastern Mediterranean troposphere

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-11-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm 10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1 1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  14. Particle size distributions in the Eastern Mediterranean troposphere

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-04-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm-10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1-1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  15. Experimental analysis of particle sizes for PIV measurements

    NASA Astrophysics Data System (ADS)

    van Overbrüggen, Timo; Klaas, Michael; Soria, Julio; Schröder, Wolfgang

    2016-09-01

    The right choice of seeding particles strongly influences the outcome of a particle-image velocimetry (PIV) measurement. Particles have to scatter enough light to be seen by cameras and follow the flow faithfully. As the flow following behavior depends on the inertia and therefore the size of the particle, smaller particles are desirable. Unfortunately, larger particles possess better light scattering behavior, which is especially important for volumetric PIV measurements. In this paper, the particle response of two exemplary solid particles to an oscillatory air flow created by a piston movement is analyzed and compared to analytic results by Hjelmfelt and Mockros (1966 Appl. Sci. Res. 16 149-61) concerning phase lag and amplitude ratio between particle movement and flow field. To achieve realistic experimental boundary conditions, polydispersed particles are used for the analysis. The analytic results show a strong dependence on the diameter. That is, using the volumetric mean diameter an overestimation of the phase lag of the particles is determined, whereas an underestimation of phase lag is computed for the number mean diameter. Hence, for polydispersed particles a more general analysis than that based on the particle mean diameter is required to determine in detail the particle following behavior.

  16. Experimental analysis of particle sizes for PIV measurements

    NASA Astrophysics Data System (ADS)

    van Overbrüggen, Timo; Klaas, Michael; Soria, Julio; Schröder, Wolfgang

    2016-09-01

    The right choice of seeding particles strongly influences the outcome of a particle-image velocimetry (PIV) measurement. Particles have to scatter enough light to be seen by cameras and follow the flow faithfully. As the flow following behavior depends on the inertia and therefore the size of the particle, smaller particles are desirable. Unfortunately, larger particles possess better light scattering behavior, which is especially important for volumetric PIV measurements. In this paper, the particle response of two exemplary solid particles to an oscillatory air flow created by a piston movement is analyzed and compared to analytic results by Hjelmfelt and Mockros (1966 Appl. Sci. Res. 16 149–61) concerning phase lag and amplitude ratio between particle movement and flow field. To achieve realistic experimental boundary conditions, polydispersed particles are used for the analysis. The analytic results show a strong dependence on the diameter. That is, using the volumetric mean diameter an overestimation of the phase lag of the particles is determined, whereas an underestimation of phase lag is computed for the number mean diameter. Hence, for polydispersed particles a more general analysis than that based on the particle mean diameter is required to determine in detail the particle following behavior.

  17. Effect of Cobalt Particle Size on Acetone Steam Reforming

    SciTech Connect

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen D.; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  18. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    EPA Science Inventory

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  19. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.

    2012-03-01

    when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.

  20. Ultrafine particle size as a tracer for aircraft turbine emissions

    NASA Astrophysics Data System (ADS)

    Riley, Erin A.; Gould, Timothy; Hartin, Kris; Fruin, Scott A.; Simpson, Christopher D.; Yost, Michael G.; Larson, Timothy

    2016-08-01

    Ultrafine particle number (UFPN) and size distributions, black carbon, and nitrogen dioxide concentrations were measured downwind of two of the busiest airports in the world, Los Angeles International Airport (LAX) and Hartsfield-Jackson International Airport (ATL - Atlanta, GA) using a mobile monitoring platform. Transects were located between 5 km and 10 km from the ATL and LAX airports. In addition, measurements were taken at 43 additional urban neighborhood locations in each city and on freeways. We found a 3-5 fold increase in UFPN concentrations in transects under the landing approach path to both airports relative to surrounding urban areas with similar ground traffic characteristics. The latter UFPN concentrations measured were distinct in size distributional properties from both freeways and across urban neighborhoods, clearly indicating different sources. Elevated concentrations of Black Carbon (BC) and NO2 were also observed on airport transects, and the corresponding pattern of elevated BC was consistent with the observed excess UFPN concentrations relative to other urban locations.

  1. Particle size concentration distribution and influences on exhaled breath particles in mechanically ventilated patients.

    PubMed

    Wan, Gwo-Hwa; Wu, Chieh-Liang; Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan

    2014-01-01

    Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47-2,554.04 particles/breath (0.001-4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH₂O) clearly exceeded those in patients with low PEEP (≤ 5 cmH₂O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration.

  2. A system for aerodynamically sizing ultrafine environmental radioactive particles

    SciTech Connect

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  3. Novel magnetic Fe onion-like fullerene micrometer-sized particles of narrow size distribution

    NASA Astrophysics Data System (ADS)

    Snovski, Ron; Grinblat, Judith; Margel, Shlomo

    2012-01-01

    Magnetic polydivinylbenzene (PDVB)/magnetite micrometer-sized particles of narrow size distribution were prepared by entrapping Fe(CO)5 within the pores of uniform porous PDVB particles, followed by the thermal decomposition of the encapsulated Fe(CO)5 at 300 °C in a sealed cell under inert atmosphere. Magnetic Fe onion-like fullerene micrometer-sized particles of narrow size distribution have been prepared by the thermal decomposition of the PDVB/magnetite magnetic microspheres at 1100 °C under inert atmosphere. The graphitic coating protects the elemental iron particles from oxidation and thereby preserves their very high magnetic moment for at least a year. Characterization of these unique magnetic carbon graphitic particles was also performed.

  4. Comparison of optical particle sizing and cascade impaction for measuring the particle size of a suspension metered dose inhaler.

    PubMed

    Pu, Yu; Kline, Lukeysha C; Khawaja, Nazia; Van Liew, Melissa; Berry, Julianne

    2015-05-01

    Optical techniques for the particle size characterization of metered dose inhaler (MDI) suspensions have been developed as an alternative to the labor-intensive and time-consuming impaction method. In this study, a laser diffraction (LD) apparatus with a liquid cell ("wet cell" method) and a "time-of-flight" apparatus named aerodynamic particle sizer (APS) were utilized to assess MDI suspensions with varied formulation compositions and storage conditions. The results were compared with the conventional Anderson cascade impaction (ACI) data. The two optical methods were able to detect the changes in particle size distributions between formulations, yet to a lesser extent than those observed using the cascade impaction methodology. The median aerodynamic particle size measured by the APS method and the median geometric particle size obtained from the LD method were linearly correlated with the corresponding ACI results in the range of 2-5 µm. It was also found that the APS measurement was biased towards the finer particle size region and resulted in overestimated fine particle fraction (FPF) values which were 2-3 times folds of the ACI results. In conclusion, the optical particle sizing techniques may, under some circumstances, be viable techniques for the rapid assessment of MDI suspensions. The "wet cell" LD method, in particular, is found to be a valuable means of detecting active pharmaceutical ingredient (API) particle size changes in an MDI suspension. Using both the LD and the APS methods in early formulation screening followed by a final assessment with cascade impaction analysis can improve the efficiency of MDI formulation development.

  5. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties

    PubMed Central

    2011-01-01

    Characterizing nanoparticle dispersions and understanding the effect of parameters that alter dispersion properties are important for both environmental applications and toxicity investigations. The role of particle surface area, primary particle size, and crystal phase on TiO2 nanoparticle dispersion properties is reported. Hydrodynamic size, zeta potential, and isoelectric point (IEP) of ten laboratory synthesized TiO2 samples, and one commercial Degussa TiO2 sample (P25) dispersed in different solutions were characterized. Solution ionic strength and pH affect titania dispersion properties. The effect of monovalent (NaCl) and divalent (MgCl2) inert electrolytes on dispersion properties was quantified through their contribution to ionic strength. Increasing titania particle surface area resulted in a decrease in solution pH. At fixed pH, increasing the particle surface area enhanced the collision frequency between particles and led to a higher degree of agglomeration. In addition to the synthesis method, TiO2 isoelectric point was found to be dependent on particle size. As anatase TiO2 primary particle size increased from 6 nm to 104 nm, its IEP decreased from 6.0 to 3.8 that also results in changes in dispersion zeta potential and hydrodynamic size. In contrast to particle size, TiO2 nanoparticle IEP was found to be insensitive to particle crystal structure. PMID:27502650

  6. Characterization of Nanoparticle Tracking Analysis for Quantification and Sizing of Submicron Particles of Therapeutic Proteins.

    PubMed

    Zhou, Chen; Krueger, Aaron B; Barnard, James G; Qi, Wei; Carpenter, John F

    2015-08-01

    Submicron particles may play important roles in therapeutic protein product quality, stability, and adverse effects in patients. However, quantitation of these particles has been challenging. Nanoparticle tracking analysis (NTA) is capable of both sizing and counting submicron particles. We investigated the effects of product and instrument parameters on NTA results for nanoparticle standards and therapeutic protein samples. To obtain proper particle size distributions, complete tracking numbers of at least 200 and 400 were required for latex nanobeads and protein nanoparticles, respectively. In addition, when set at suboptimal values, the minimum expected particle size parameter led to inaccurate sizing and counting for all particles types investigated. A syringe pump allowed for higher sampling volumes, and results were reproducible for nanoparticle sizing and counts at flow rates ≤7 μL/min. Finally, because therapeutic protein products are being formulated at relatively high protein concentrations, we investigated the effects of protein concentration on nanoparticle characterization. With high protein concentrations, nanoparticle sizing was not affected, whereas particle concentrations were significantly reduced. Linear relationships between particle count and dilution factor were obtained when a high protein concentration formulation was diluted into particle-free solutions at the same protein concentrations, but not when dilutions were made into buffer.

  7. Dust particle size measurement by the multi-channel laser light scattering method

    NASA Astrophysics Data System (ADS)

    Choe, W.; Seon, C. R.; Chai, K. B.; Park, H. Y.; Shin, Y. H.; Chung, K. H.

    2006-10-01

    The measurement of the spatial distribution of dust particle size was performed by the multi-channel laser light scattering method. To self-consistently determine the time evolution of the particle size, in-situ polarization-sensitive laser light scattering was used using a 30 mW He-Ne laser. Polarization light intensities (incident and scattered light intensities with the same polarization) were measured at 71 . Before applying the method to the dusty plasmas, the measurement accuracy was confirmed using a distilled water solution of the size-known particles. In addition, the size-known particles were injected into the argon plasma, and the particles trapped inside the plasma were used for the accurate measurement of the light scattering angle. The measured size of the dust particles in an argon diluted silane capacitively-coupled plasma at 160 mTorr, 150 W, (11.4-11.8) s after the plasma on was (80-110) nm. In comparison, the scanning electron microscope photographs of the fallout particles showed (90-100) nm spherical particles under the similar experimental condition. The time evolution of the spatially distributed particle size at various plasma conditions was studied by using a 2-dimensional 16 channel photomultiplier tube as a detector of scattered laser light.

  8. Modeling photoacoustic spectral features of micron-sized particles.

    PubMed

    Strohm, Eric M; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C

    2014-10-01

    The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a

  9. Determining size-specific emission factors for environmental tobacco smoke particles

    SciTech Connect

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  10. Particle size and surfactant effects on chemical mechanical polishing of glass using silica-based slurry

    SciTech Connect

    Zhang Zefang; Liu Weili; Song Zhitang

    2010-10-01

    This study explores the effect of particle size and surfactant on the chemical mechanical polishing (CMP) of glass using colloidal silica-based slurry. It was found that the material removal rate strongly depends on the particle size and the types of surfactants and that the rms roughness was independent of particle size and correlated to surfactants. On the basis of polishing results, it was concluded that the main polishing mechanism was changed from indentation mechanism to surface-area mechanism, with the variation of particle size. In addition, the molecular structure, charge type, and lubricating effect of the surfactants play an important role in the dispersion of abrasive particles and in the CMP performance.

  11. Finite size effect of harmonic measure estimation in a DLA model: Variable size of probe particles

    NASA Astrophysics Data System (ADS)

    Menshutin, Anton Yu.; Shchur, Lev N.; Vinokour, Valery M.

    2008-11-01

    A finite size effect in the probing of the harmonic measure in simulation of diffusion-limited aggregation (DLA) growth is investigated. We introduce a variable size of probe particles, to estimate harmonic measure and extract the fractal dimension of DLA clusters taking two limits, of vanishingly small probe particle size and of infinitely large size of a DLA cluster. We generate 1000 DLA clusters consisting of 50 million particles each, using an off-lattice killing-free algorithm developed in the early work. The introduced method leads to unprecedented accuracy in the estimation of the fractal dimension. We discuss the variation of the probability distribution function with the size of probing particles.

  12. Domain and droplet sizes in emulsions stabilized by colloidal particles

    NASA Astrophysics Data System (ADS)

    Frijters, Stefan; Günther, Florian; Harting, Jens

    2014-10-01

    Particle-stabilized emulsions are commonly used in various industrial applications. These emulsions can present in different forms, such as Pickering emulsions or bijels, which can be distinguished by their different topologies and rheology. We numerically investigate the effect of the volume fraction and the uniform wettability of the stabilizing spherical particles in mixtures of two fluids. For this, we use the well-established three-dimensional lattice Boltzmann method, extended to allow for the added colloidal particles with non-neutral wetting properties. We obtain data on the domain sizes in the emulsions by using both structure functions and the Hoshen-Kopelman (HK) algorithm, and we demonstrate that both methods have their own (dis)advantages. We confirm an inverse dependence between the concentration of particles and the average radius of the stabilized droplets. Furthermore, we demonstrate the effect of particles detaching from interfaces on the emulsion properties and domain-size measurements.

  13. Coalbed methane adsorption and desorption characteristics related to coal particle size

    NASA Astrophysics Data System (ADS)

    Yan-Yan, Feng; Wen, Yang; Wei, Chu

    2016-06-01

    Effects of particle size on CH4 and CO2 adsorption and desorption characteristics of coals are investigated at 308 K and pressures up to 5.0 MPa. The gas adsorption and desorption isotherms of coals with particle sizes ranging from 250 μm to 840 μm are measured via the volumetric method, and the Langmuir model is used to analyse the experimental results. Coal particle size is found to have an obvious effect on the coal pore structure. With the decrease of coal particle size in the process of grinding, the pore accessibility of the coal, including the specific surface area and pore volume, increases. Hence, coal with smaller particle size has higher specific surface area and higher pore volume. The ability of adsorption was highly related to the pore structure of coal, and coal particle size has a significant influence on coal adsorption/desorption characteristics, including adsorption capacity and desorption hysteresis for CH4 and CO2, i.e., coal with a smaller particle size achieves higher adsorption capacity, while the sample with a larger particle size has lower adsorption capacity. Further, coal with larger particle size is also found to have relatively large desorption hysteresis. In addition, dynamic adsorption performances of the samples are carried out at 298 K and at pressures of 0.1 MPa and 0.5 MPa, respectively, and the results indicate that with the increase of particle size, the difference between CO2 and CH4 adsorption capacities of the samples decreases. Project supported by the National Basic Research Program of China (Grant No. 2011CB201202).

  14. Influences of Substrate Adhesion and Particle Size on the Shape Memory Effect of Polystyrene Particles.

    PubMed

    Cox, Lewis M; Killgore, Jason P; Li, Zhengwei; Long, Rong; Sanders, Aric W; Xiao, Jianliang; Ding, Yifu

    2016-04-19

    Formulations and applications of micro- and nanoscale polymer particles have proliferated rapidly in recent years, yet knowledge of their mechanical behavior has not grown accordingly. In this study, we examine the ways that compressive strain, substrate surface energy, and particle size influence the shape memory cycle of polystyrene particles. Using nanoimprint lithography, differently sized particles are programmed into highly deformed, temporary shapes in contact with substrates of differing surface energies. Atomic force microscopy is used to obtain in situ measurements of particle shape recovery kinetics, and scanning electron microscopy is employed to assess differences in the profiles of particles at the conclusion of the shape memory cycle. Finally, finite element models are used to investigate the growing impact of surface energies at smaller length scales. Results reveal that the influence of substrate adhesion on particle recovery is size-dependent and can become dominating at submicron length scales.

  15. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  16. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  17. Spray pattern analysis for metered dose inhalers I: Orifice size, particle size, and droplet motion correlations.

    PubMed

    Smyth, H; Hickey, A J; Brace, G; Barbour, T; Gallion, J; Grove, J

    2006-10-01

    Factors that influence spray pattern measurements of pressurized, metered-dose inhalers have been evaluated. Spray patterns were correlated with changes in actuator orifice diameter, particle size profiles, and calculated estimates of particle-size dynamics of plumes during a spray. Spray patterns, regardless of actuator orifice size, were ellipsoid in the vertical direction. Measures of elliptical ratio, major axis, and minor axis were significantly influenced by orifice size in a non-linear fashion over the range of orifice sizes investigated. Spray patterns also correlated with particle size profile and spray geometry measurements. Spray distribution asymmetry may be related to droplet evaporation and sedimentation processes. However, the spray patterns did not appear sensitive to changes in gravitational force acting on the plume. Instead, it is postulated that elliptical spray patterns may have dependence on fluid dynamic processes within the inhaler actuator. Developing an understanding of these processes may provide a basis for developing spray pattern tests with relevance to product performance.

  18. Enhanced size-dependent trapping of particles using microvortices

    PubMed Central

    Zhou, Jian; Kasper, Susan; Papautsky, Ian

    2013-01-01

    Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by developing a model of selective particle trapping. Design and operational parameters including flow conditions, size of the trapping region, and target particle concentration are explored to elucidate their influence on trapping behavior. Our results show that the size dependence of trapping is characterized by a threshold Reynolds number, which governs the selective entry of particles into microvortices from the main flow. We show that concentration enhancement on the order of 100,000× and isolation of targets at concentrations in the 1/mL is possible. Ultimately, the insights gained from our systematic investigation suggest optimization solutions that enhance device performance (efficiency, size selectivity, and yield) and are applicable to selective isolation and trapping of large rare cells as well as other applications. PMID:24187531

  19. Nano-sized and micro-sized polystyrene particles affect phagocyte function

    PubMed Central

    Prietl, B.; Meindl, C.; Roblegg, E.; Pieber, T. R.; Lanzer, G.; Fröhlich, E.

    2015-01-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes. PMID:24292270

  20. Airborne particle sizes and sources found in indoor air

    NASA Astrophysics Data System (ADS)

    Owen, M. K.; Ensor, D. S.; Sparks, L. E.

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the mechanics of deposition in the lungs and the aerosol dynamics that influence particles at all times. This discussion shows that the particle diameters must be known to predict dose or soiling and to determine efficient mitigation techniques. The particle sizes produced by the various indoor sources, as well as unusual aspects of each type of source, must be known so that this process may begin. This paper summarizes the results of a literature search into the sources, sizes and concentrations of indoor particles. There are several types of indoor particles: plant and animal bioaerosols and mineral, combustion and home/personal care aerosols. These types may be produced indoors or outdoors, entering through building openings. The sources may be short term, seasonal or continuous. Particle sizes produced vary from submicrometer to larger than 10 μm. The particles may be toxic or allergenic. This information is presented in a summary table and is discussed in the text.

  1. [Theory and practice of electrospray crystallization in particle size reduction].

    PubMed

    Szunyogh, Tímea; Ambrus, Rita; Szabóné Révész, Piroska

    2015-01-01

    Nowdays, one of the most challenges for the researchers is the formulation of poorly water soluble drugs. Reduction of particle size of active agents to submicron range could result in a faster dissolution rate and higher bioavailability. Integration as crystallization process is an often used particle size decreasing technique. The aim of this study was to show the theoretical background and practical application of the electros pray crystallization as an innovative particle size decreasing technique. Our model drug was the niflumic acid (NIF), which belongs to the BCS Class II. After the optimization of the process parameters, the physico-chemical properties of the samples were characterized. Particle size and shape were visualized by scanning electron microscopy (SEM). Crystalline state of NIF and the samples were investigated using differential scanning calorimetry (DSC) and X-ray powder diffraction. Physico-chemical properties were determined using dissolution test from simulated media. The electrospray crytallization resulted in particle size reduction but the aggregation of nanonized NIF crystals (NIF-nano) could not avoid without excipient. Aggregates with poor secondary forces are suitable for production of the interactive physical mixture. It was found that NIF-nano could be well distributed on the surface of the mannitol as carrier and the Poloxamer R protected the NIF-nano crystals (320 nm)from aggregation. Consequently, the physical mixture resulted in product with higher polarity, better wettability and faster dissolution rate of NIF as raw NIF or NIF-nano.

  2. [Theory and practice of electrospray crystallization in particle size reduction].

    PubMed

    Szunyogh, Tímea; Ambrus, Rita; Szabóné Révész, Piroska

    2015-01-01

    Nowdays, one of the most challenges for the researchers is the formulation of poorly water soluble drugs. Reduction of particle size of active agents to submicron range could result in a faster dissolution rate and higher bioavailability. Integration as crystallization process is an often used particle size decreasing technique. The aim of this study was to show the theoretical background and practical application of the electros pray crystallization as an innovative particle size decreasing technique. Our model drug was the niflumic acid (NIF), which belongs to the BCS Class II. After the optimization of the process parameters, the physico-chemical properties of the samples were characterized. Particle size and shape were visualized by scanning electron microscopy (SEM). Crystalline state of NIF and the samples were investigated using differential scanning calorimetry (DSC) and X-ray powder diffraction. Physico-chemical properties were determined using dissolution test from simulated media. The electrospray crytallization resulted in particle size reduction but the aggregation of nanonized NIF crystals (NIF-nano) could not avoid without excipient. Aggregates with poor secondary forces are suitable for production of the interactive physical mixture. It was found that NIF-nano could be well distributed on the surface of the mannitol as carrier and the Poloxamer R protected the NIF-nano crystals (320 nm)from aggregation. Consequently, the physical mixture resulted in product with higher polarity, better wettability and faster dissolution rate of NIF as raw NIF or NIF-nano. PMID:26390735

  3. Measurement of dust particle size and density by a laser light scattering and extinction method

    NASA Astrophysics Data System (ADS)

    Seon, Changrae; Chai, Kilbyoung; Park, Hoyong; Shin, Yonghyun; Chung, Kwanghwa; Choe, Wonho

    2006-10-01

    The measurement of dust particle density was performed using the laser light extinction method. Using two spherical mirrors, a multi-pass setup was used for lowering the measurement limit of the system. In parallel, the particle size was measured using the laser light scattering method. To self-consistently determine the time evolution of the particle size, in-situ polarization-sensitive laser light scattering was used. Polarization light intensities (incident and scattered light intensities with the same polarization) were measured at 71 . Before applying the method to the dusty plasmas, the measurement accuracy was confirmed using a distilled water solution of the size-known particles. In addition, the size-known particles were injected into the argon plasma, and the particles trapped inside the plasma were used for the accurate measurement of the light scattering angle. The measured size of the dust particles in a Ar+SiH4 (5%) 13.56 MHz capacitively-coupled plasma (160 mTorr, 150 W, 10 s after plasma on) was about 118 nm, which was also confirmed by scanning electron microscope photographs. The time evolution of the particle size and its number density was studied by both methods.

  4. Particle-Size-Distribution of Nevada Test Site Soils

    SciTech Connect

    Spriggs, G; Ray-Maitra, A

    2007-09-17

    The amount of each size particle in a given soil is called the particle-size distribution (PSD), and the way it feels to the touch is called the soil texture. Sand, silt, and clay are the three particle sizes of mineral material found in soils. Sand is the largest sized particle and it feels gritty; silt is medium sized and it feels floury; and clay is the smallest and if feels sticky. Knowing the particle-size distribution of a soil sample helps to understand many soil properties such as how much water, heat, and nutrients the soil will hold, how fast water and heat will move through the soil, and what kind of structure, bulk density and consistence the soil will have. Furthermore, the native particle-size distribution of the soil in the vicinity of ground zero of a nuclear detonation plays a major role in nuclear fallout. For soils that have a high-sand content, the near-range fallout will be relatively high and the far-range fallout will be relatively light. Whereas, for soils that have a high-silt and high-clay content, the near-range fallout will be significantly lower and the far-range fallout will be significantly higher. As part of a program funded by the Defense Threat Reduction Agency (DTRA), the Lawrence Livermore National Laboratory (LLNL) has recently measured the PSDs from the various major areas at the Nevada Test Site where atmospheric detonations and/or nuclear weapon safety tests were performed back in the 50s and 60s. The purpose of this report is to document those results.

  5. Measurement of non-volatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2015-06-01

    An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type

  6. Particle size measurement for the control of industrial crystallizers

    NASA Astrophysics Data System (ADS)

    Boxman, A.

    1992-01-01

    The need for on-line sensors to monitor particulate processes is rapidly increasing. Such systems are a necessity to understand the complex phenomena of particle formation, growth, and breakage. Some aspects of the design of an on-line sensor for particle size analysis are discussed. The technique used is based on forward light scattering, which covers a size range from about 1 to 2,000 micrometers. The observations are used to develop a physical model and subsequently an effective control strategy for a 970 liter continuous crystallizer. The purpose of the controller is to manipulate the dynamics of the size distribution. Therefore, a firm relation between process inputs and outputs (i.e., the crystal size distribution) must first be established. Secondly, an intelligent interpretation of the recorded data, in this case a light scattering pattern, is required. Chapter headings include the following: Validation of Light Scattering Models for Polydisperse Particle Systems; Deconvolution Algorithm for the Recovery of Particle Size Distributions; Automated Measurement and Interpretation of Scattering Patterns; On-line Measurement of Crystal Size Distribution in Industrial Crystallizers.

  7. The Influence of Particle Size on Infrared Reflectance Spectra

    SciTech Connect

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Johnson, Timothy J.; Richardson, Robert L.

    2014-06-13

    Reflectance spectra of solids are influenced by the absorption coefficient as well as the particle size and morphology. In the infrared, spectral features may be observed as either maxima or minima: in general, the upward-going peaks in the reflectance spectrum result from surface scattering, which are rays that have reflected from the surface without penetration, whereas downward-going peaks result from either absorption or volume scattering, i.e. rays that have penetrated into the sample or refracted into the sample interior and are not reflected. The light signal reflected from solids usually encompasses all these effects which include dependencies on particle size, morphology and sample density. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. The bulk materials were ground with a mortar and pestle and then sieved to separate the samples into various size fractions: 0-45, 45-90, 90-180, 180-250, 250-500, and >500 microns. The directional-hemispherical spectra were recorded using a Fourier transform infrared spectrometer equipped with an integrating sphere to measure the reflectance for all of the particle-size fractions. We have studied both organic and inorganic materials, but this paper focuses on inorganic salts, NaNO3 in particular. Our studies clearly show that particle size has an enormous influence on the measured reflectance spectra for bulk materials and that successful identification requires sufficient representative reflectance data so as to include the particle size(s) of interest. Origins of the effects are discussed.

  8. Impact of controlled particle size nanofillers on the mechanical properties of segmented polyurethane nanocomposites

    SciTech Connect

    Finnigan, Bradley; Casey, Phil; Cookson, David; Halley, Peter; Jack, Kevin; Truss, Rowan; Martin, Darren

    2008-04-02

    The impact of average layered silicate particle size on the mechanical properties of thermoplastic polyurethane (TPU) nanocomposites has been investigated. At fixed addition levels (3 wt% organosilicate), an increase in average particle size resulted in an increase in stiffness. Negligible stiffening was observed for the smallest particles (30 nm) due to reduced long-range intercalation and molecular confinement, as well as ineffective stress transfer from matrix to filler. At low strain ({le}100%), an increase in filler particle size was associated with an increase in the rate of stress relaxation, tensile hysteresis, and permanent set. At high strain (1200%), two coexisting relaxation processes were observed. The rate of the slower (long-term) relaxation process, which is believed to primarily involve the hard segment rich structures, decreased on addition of particles with an average diameter of 200 nm or less. At high strain the tensile hysteresis was less sensitive to particle size, however the addition of particles with an average size of 200 nm or more caused a significant increase in permanent set. This was attributed to slippage of temporary bonds at the polymer-filler interface, and to the formation of voids at the sites of unaligned tactoids. Relative to the host TPU, the addition of particles with an average size of 30 nm caused a reduction in permanent set. This is a significant result because the addition of fillers to elastomers has long been associated with an increase in hysteresis and permanent set. At high strain, well dispersed and aligned layered silicates with relatively small interparticle distances and favourable surface interactions are capable of imparting a resistance to molecular slippage throughout the TPU matrix.

  9. STREAMBED PARTICLE SIZE FROM PEBBLE COUNTS USING VISUALLY ESTIMATED SIZE CLSASES: JUNK OR USEFUL DATA?

    EPA Science Inventory

    In large-scale studies, it is often neither feasible nor necessary to obtain the large samples of 400 particles advocated by many geomorphologists to adequately quantify streambed surface particle-size distributions. Synoptic surveys such as U.S. Environmental Protection Agency...

  10. Nanosize cobalt boride particles: Control of the size and properties

    NASA Astrophysics Data System (ADS)

    Petit, C.; Pileni, M. P.

    1997-02-01

    Cobalt boride is obtained by the reduction of cobalt (2-ethyl hexyl) sulfosuccinate, Co(AOT) 2, by sodium borohydride either in reverse micelles or in a diphasic system. In Co(AOT) 2/Na(AOT)/H 2O reverse micellar solution, the size and polydispersity of the Co 2B particles is controlled by the size of the water droplets, which increases from 4 to 7.5 nm by increasing the water content. In a diphasic system of Co(AOT) 2/isooctane and sodium borohydride in aqueous solution, large and polydisperse particles of cobalt boride are formed (˜ 10 nm), and their magnetization properties are presented. The smallest particles are in a superparamagnetic regime at room temperature, whereas the largest particles show ferromagnetic behavior.

  11. Rapid determination of particle size distribution of microbead catalysts

    SciTech Connect

    Mirshii, Y.V.; Goos, T.V.; Kaviev, V.M.; Kazahov, G.I.; Klimov, A.V.; Nesmeyanova, T.S.

    1986-05-01

    The authors have developed a rapid method for the determination of the particle size distribution of microbead catalysts by a photosedimentation method. This method is based on a determination of the settling velocity of the particles according to the change in optical density of the suspension as the particles settle. The design of the instrument was modified for application to the analysis of microbead cracking catalysts and microbead zeolites; it was originally developed for studies of particle size distribution in other materials. The measuring part of the AFS-2M photosedimentograph is shown schematically. For the high-zeolite catalysts, the results obtained by photosedimenation analysis are somewhat different from those obtained by the pipette method. The photosedimentation method can also be used in the analysis of microbead zeolites that are intended for use in the fluid-bed recovery of liquid paraffins.

  12. Ultrafine particle size distributions near freeways: Effects of differing wind directions on exposure

    PubMed Central

    Kozawa, Kathleen H.; Winer, Arthur M.; Fruin, Scott A.

    2013-01-01

    High ambient ultrafine particle (UFP) concentrations may play an important role in the adverse health effects associated with living near busy roadways. However, UFP size distributions change rapidly as vehicle emissions dilute and age. These size changes can influence UFP lung deposition rates and dose because deposition in the respiratory system is a strong function of particle size. Few studies to date have measured and characterized changes in near-road UFP size distributions in real-time, thus missing transient variations in size distribution due to short-term fluctuations in wind speed, direction, or particle dynamics. In this study we measured important wind direction effects on near-freeway UFP size distributions and gradients using a mobile platform with 5-s time resolution. Compared to more commonly measured perpendicular (downwind) conditions, parallel wind conditions appeared to promote formation of broader and larger size distributions of roughly one-half the particle concentration. Particles during more parallel wind conditions also changed less in size with downwind distance and the fraction of lung-deposited particle number was calculated to be 15% lower than for downwind conditions, giving a combined decrease of about 60%. In addition, a multivariate analysis of several variables found meteorology, particularly wind direction and temperature, to be important in predicting UFP concentrations within 150 m of a freeway (R2 = 0.46, p = 0.014). PMID:24415904

  13. Particle counting and sizing with LDV for automotive air- filters

    NASA Astrophysics Data System (ADS)

    Liang, Faqiu

    Scope of study. Flow non-uniformity in the automotive filter has a great impact on the filter performance. Therefore, study of the flow distribution as well as the dust particle concentration in the filter housing is very important for improvement of automotive filter design. This study focuses on particle counting and sizing techniques with Laser Doppler Velocimetry (LDV) and their application to automotive air filter measurement. The Purolator X13192 filter was tested in both the SAE J726 standard test housing and a newly designed diffuser housing with water and polystyrene latex (PSL) particles. Velocity and particle number density were measured at different levels above and below the filter with variable flow rates and particle sizes. Filter local efficiency and overall efficiency were analyzed based on the particle counting data. The effect of dirt accumulation on the performance of the filter was also investigated. Findings and conclusions. The 'swept volume technique' was developed for particle counting, while a method which utilizes the Doppler signal and particle trajectory analysis was created for sizing particles from submicron to about one hundred microns. Both techniques were calibrated with PSL particles and were fairly accurate in measurement (average errors were within 20%). A variety of velocity and particle number density profiles were obtained at different levels (12.7 mm above the filter, and 64 mm below the filter). These profiles may be useful either in the industrial design of new filters or in future research as benchmarks. For particles with diameters of 0.966 μm, the measured overall efficiency, ranging from 5% to 65% depending on the flow rate, was much higher than that widely assumed or theoretically predicted (less than 5%). However, for particles with diameters of 5.3 μm, the measured overall efficiency, varying from 65% to 85%, was much lower than that widely assumed or theoretically predicted (more than 90%). The distribution of

  14. Investigation of particles size effects in Dissipative Particle Dynamics (DPD) modelling of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Mai-Duy, N.; Phan-Thien, N.; Khoo, B. C.

    2015-04-01

    In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative size ratio (colloidal/solvent). We propose a mechanism of adjusting the DPD parameters to properly model the solvent phase (the solvent here is supposed to have the same isothermal compressibility to that of water).

  15. Particle sizing in rocket motor studies utilizing hologram image processing

    NASA Technical Reports Server (NTRS)

    Netzer, David; Powers, John

    1987-01-01

    A technique of obtaining particle size information from holograms of combustion products is described. The holograms are obtained with a pulsed ruby laser through windows in a combustion chamber. The reconstruction is done with a krypton laser with the real image being viewed through a microscope. The particle size information is measured with a Quantimet 720 image processing system which can discriminate various features and perform measurements of the portions of interest in the image. Various problems that arise in the technique are discussed, especially those that are a consequence of the speckle due to the diffuse illumination used in the recording process.

  16. Rock sampling. [method for controlling particle size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  17. Critical Bottleneck Size for Jamless Particle Flows in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Masuda, Takumi; Nishinari, Katsuhiro; Schadschneider, Andreas

    2014-04-01

    We propose a simple microscopic model for arching phenomena at bottlenecks. The dynamics of particles in front of a bottleneck is described by a one-dimensional stochastic cellular automaton on a semicircular geometry. The model reproduces oscillation phenomena due to the formation and collapsing of arches. It predicts the existence of a critical bottleneck size for continuous particle flows. The dependence of the jamming probability on the system size is approximated by the Gompertz function. The analytical results are in good agreement with simulations.

  18. The effect of particle size on absorption of inhaled lead.

    PubMed

    Rendall, R E; Baily, P; Soskolne, C L

    1975-03-01

    Baboons were exposed to dust clouds of Ph3O4 of different size distribution but of the same total gravimetric concentration. Blood samples were taken immediately after each exposure of 4 hours and the total blood lead was determined. The exposure to the lead-bearing dust was stopped after four weeks, but the blood sampling continued for another six weeks. Graphs are presented comparing the patterns of lead absorption obtained with different sized lead particles. The coarser lead particles resulted in a higher blood lead concentration than the finer.

  19. Particle size and velocity measurement in flames by laser anemometer

    NASA Technical Reports Server (NTRS)

    Chigier, N. A.; Ungut, A.; Yule, A. J.

    1979-01-01

    Simultaneous droplet size and velocity measurements by a particle counting Laser Doppler Anemometer (LDA) in kerosene fuel sprays under burning and non-burning conditions are presented. Particle sizes are derived from pulse height analysis of the mean LDA signals and velocities are simultaneously determined by measuring Doppler shift frequencies. The measurements show that droplet velocity is a function of droplet diameter for burning and non-burning conditions, and spatially averaged size distributions are derived from velocity data. A comparison of results obtained under burning and non-burning conditions show changes in size distribution due to preferential vaporization of small droplets, acceleration due to thermal expansion of gases, and corresponding changes in droplet momentum.

  20. Electromechanical characterization of individual micron-sized metal coated polymer particles

    NASA Astrophysics Data System (ADS)

    Bazilchuk, Molly; Pettersen, Sigurd Rolland; Kristiansen, Helge; Zhang, Zhiliang; He, Jianying

    2016-06-01

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  1. Size, composition, and mixing state of individual aerosol particles in a South China coastal city.

    PubMed

    Li, Weijun; Shao, Longyi; Wang, Zhishi; Shen, Rongrong; Yang, Shusheng; Tang, Uwa

    2010-01-01

    Aerosol samples were collected in summer in Macao, a coastal city of the Pearl River Delta Region in China. Morphology, size, elemental composition, and mixing state of individual aerosol particles were determined by scanning electron microscopy coupled energy dispersive X-ray (SEM/EDX) and transmission electron microscopy (TEM). Based on the morphologies of 5711 aerosol particles, they consist of soot (32%), mineral (17%), secondary (22%), and unknown fine particles (29%). The sizes of these particles were mostly distributed between 0.1 and 0.4 microm. Compositions of 202 mineral particles were obtained by SEM/EDX. Mineral particles were mainly classified into three types: Si-rich, Ca-rich, and Na-rich. The compositions of typical mineral particles can indicate their sources in sampling location. For example, mineral particles, collected along the main street, were associated with trace amounts of heavy metals, such as Zn, Ti, Mn, Ba, Pb, and As. TEM observations indicate that most Na-rich particles were aged sea salt particles (e.g., Na2SO4 and NaNO3) which formed through heterogeneous chemical reactions between sea salt and acidic gases. Additionally, aging time of soot was short in Macao due to high humidity, high temperature, and high levels of sunlight in Macao. Most of soot and fine mineral dust particles were internally mixed with secondary particles.

  2. Particle Size Distribution in Saturn’s Ring C

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; Wong, K.; French, R.; Rappaport, N.

    2012-10-01

    Information about particle sizes in Saturn’s rings is provided by two complementary types of Cassini radio occultation measurements. The first is differential extinction of three coherent sinusoidal signals transmitted by Cassini through the rings back to Earth (wavelength = 0.94, 3.6, and 13 cm, respectively). The differential measurements strongly constraint three parameters of an assumed power-law size distribution n(a) = n0 (a/a0)q, amin ≤ a ≤ amax: namely, the power law index q, the minimum radius amin, and reference abundance n0 at reference radius a0. The differential measurements are particularly sensitive to radii in the range 0.1 mm < a < 1 m. Complementing this capability, is a second type of measurements that is particularly sensitive to the larger radii 1 m < a < 20 m and their abundance. Signature of the collective near-forward scattering by these particles is captured in power spectrum measurements as broadened component of width, shape, and strength that depend on ring particle sizes, their spatial distribution, and observation geometry. Contributions of ring features of width as small several hundred kilometers can be identified and isolated in the measured spectra for a small subset of Cassini orbits of favorable geometry. We use three inverse scattering algorithms (Bayes, constrained linear inversion, generalized singular-value-decomposition) to recover the size distribution of particles of resolved ring features over the size range 1 m < a < 20 m without assuming an explicit size distribution model. We also investigate consistency of the results with a single power-law model extending over 0.1 mm < a < 20 m and implications to the spatial distribution of ring particles normal to the ring plane (vertical ring thickness). We present example results for selected features across Saturn’s Ring C where little evidence for gravitational wakes is present, hence the approaches above are applicable.

  3. Experimental effects on IR reflectance spectra: particle size and morphology

    NASA Astrophysics Data System (ADS)

    Beiswenger, Toya N.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Ertel, Alyssa B.; Tonkyn, Russell G.; Szecsody, James E.; Johnson, Timothy J.; Smith, Milton O.; Lanker, Cory L.

    2016-05-01

    For geologic and extraterrestrial samples it is known that both particle size and morphology can have strong effects on a species' infrared reflectance spectra. Due to such effects, the reflectance spectra cannot be predicted from the absorption coefficients alone. This is because reflectance is both a surface as well as a bulk phenomenon, incorporating both dispersion as well as absorption effects. The same spectral feature can even be observed as either a maximum or minimum. The complex effects depend on particle size and preparation, as well as the relative amplitudes of the optical constants n and k, i.e. the real and imaginary components of the complex refractive index. While somewhat oversimplified, upward-going amplitude in the reflectance spectrum usually results from surface scattering, i.e. rays that have been reflected from the surface without penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. While the effects are known, we report seminal measurements of reflectance along with quantified particle size of the samples, the sizing obtained from optical microscopy measurements. The size measurements are correlated with the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size. We report results for both anhydrous sodium sulfate Na2SO4 as well as ammonium sulfate (NH4)2SO4; the optical constants have been measured for (NH4)2SO4. To go a step further from the laboratory and into the field we explore our understanding of particle size effects on reflectance spectra using standoff detection at distances of up to 160 meters in a field experiment. The studies have shown that particle size has a strong influence on the measured reflectance spectra of such

  4. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    PubMed

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (<0.25 µm). Comparing the efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. PMID:27268595

  5. Particle size distributions in and exhausted from a poultry house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we describe a study looking at the full particulate size range of particles in a poultry house. Agricultural particulates are typically thought of as coarse mode dust. But recent emphasis of PM2.5 regulations on pre-cursors such as ammonia and volatile organic compounds increasingly makes it ne...

  6. Tracing Particle Size Distribution Curves Using an Analogue Circuit.

    ERIC Educational Resources Information Center

    Bisschop, F. De; Segaert, O.

    1986-01-01

    Proposes an analog circuit for use in sedimentation analysis of finely divided solid materials. Discusses a method of particle size distribution analysis and provides schematics of the circuit with list of components as well as a discussion about the operation of the circuit. (JM)

  7. Online submicron particle sizing by dynamic light scattering using autodilution

    NASA Technical Reports Server (NTRS)

    Nicoli, David F.; Elings, V. B.

    1989-01-01

    Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.

  8. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  9. Comparison of ice particle size variations across Ganymede and Callisto

    NASA Astrophysics Data System (ADS)

    Stephan, Katrin; Hoffmann, Harald; Hibbitts, Karl; Wagner, Roland; Jaumann, Ralf

    2016-04-01

    Ratios of band depths of different H2O ice absorptions as measured by the Near Infrared Spectrometer NIMS onboard the Galileo spacecraft [1] have been found to be semi-quantitative indicator of changes in the particle size of ice across the surfaces of the Jovian satellite Ganymede [2]. This method is now applied to Ganymede's neighboring satellite Callisto. On Ganymede, sizes reach from 1 μm near the poles to 1 mm near the equator [2]. Smallest particles occur at latitudes higher than ±30° where the closed magnetic field lines of Ganymede's magnetic field change into open ones and Ganymede's polar caps become apparent. Thus, the formation of these polar caps has often been attributed to brightening effects due to plasma bombardment of the surface [3,4]. Callisto, which does not exhibit an intrinsic magnetic field, however, also shows the same trend as observed on Ganymede with slightly larger particle sizes on Callisto than on Ganymede at low and mid latitude but similar particle sizes in the polar regions. Similar trends in the particle size variations on Callisto and on Ganymede imply that these variations are caused by similar surface processes. Our measurements rather point to a continuous decreasing of ice particle sizes toward the poles on both satellites related to changes of the surface temperatures [5]. Maximum temperatures during the day reach 150 K and 165 K near the equator of Ganymede and Callisto [6, 7], respectively and sublimation of ice particles and crystal growth [8] is expected to be the dominant surface process in these regions. In contrast, polar temperatures do not exceed 80 ± 5 K [5]. Larger particles in the equatorial region of Callisto than on Ganymede could be explained due to the slight higher maximum temperature but also a longer Callistoan day (Callisto: ~ 17 Earth days; Ganymede: ~ 7 Earth days). References: [1] Carlson et al.. (1999) Science 274, 385-388, 1996; [2] Stephan et al., 2009, EPSC, Abstract #EPSC2009-633; [3] Johnson

  10. Evolution of Particle Size Distributions in Fragmentation Over Time

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under

  11. Entropic control of particle sizes during viral self-assembly

    NASA Astrophysics Data System (ADS)

    Castelnovo, M.; Muriaux, D.; Faivre-Moskalenko, C.

    2013-03-01

    Morphologic diversity is observed across all families of viruses. However, these supra-molecular assemblies are produced most of the time in a spontaneous way through complex molecular self-assembly scenarios. The modeling of these phenomena remains a challenging problem within the emerging field of physical virology. We present in this work a theoretical analysis aiming at highlighting the particular role of configuration entropy in the control of viral particle size distribution. Specializing this model to retroviruses such as HIV-1, we predict a new mechanism of entropic control of both RNA uptake into the viral particle and of the particle's size distribution. Evidence of this peculiar behavior has recently been reported experimentally.

  12. Top-Down Particle Fabrication: Control of Size and Shape for Diagnostic Imaging and Drug Delivery

    PubMed Central

    Canelas, Dorian A.; Herlihy, Kevin P.; DeSimone, Joseph M.

    2009-01-01

    This review discusses rational design of particles for use as therapeutic vectors and diagnostic imaging agent carriers. The emerging importance of both particle size and shape is considered, and the adaptation and modification of soft lithography methods to produce nanoparticles is highlighted. To this end, studies utilizing particles made via a process called Particle Replication In Non-wetting Templates (PRINT™) are discussed. In addition, insights gained into therapeutic cargo and imaging agent delivery from related types of polymer-based carriers are considered. PMID:20049805

  13. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    NASA Astrophysics Data System (ADS)

    Pacakova, B.; Mantlikova, A.; Niznansky, D.; Kubickova, S.; Vejpravova, J.

    2016-05-01

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ({{E}\\text{d-\\text{d}}} ) scaled with each other and increased with increasing {{≤ft({{d}\\text{XRD}}/r\\right)}3} , where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of {{E}\\text{d-\\text{d}}} acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  14. Ultrasonic cavitation for obtainment of nanometric sized particles

    NASA Astrophysics Data System (ADS)

    Santos, A.; Guzmán, R.; Espinosa, J.; Estrada, J.

    2016-02-01

    This project aims to determine the possibility of obtaining nanometric size particles of aluminium oxide (Al2O3) and titanium dioxide (TiO2) from commercial micron-sized powders, through the physical principle of ultrasonic cavitation, in order to be used as supply material in coatings made through a process of thermal spray by flame. The tests are performed on a Hielscher UIP 1000hd Ultrasonics equipment, in a 20 micron wave amplitude and in times of 6, 8, 12, 18 and 24 hours. The determination of the particle size is done through image processing using ImageJ software, obtained by the technique of scanning electron microscopy (SEM); while the elemental composition of the processed samples is analyzed through the technique of energy dispersing spectroscopy (EDS). The results show that Al2O3 and TiO2 have a reduction behaviour of the particles size after being subjected to ultrasonic cavitation, however is only reached the nanometric size in the TiO2 samples.

  15. Diffusion of finite-size particles in confined geometries.

    PubMed

    Bruna, Maria; Chapman, S Jonathan

    2014-04-01

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined.

  16. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  17. Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany

    PubMed Central

    Yue, Wei; Stölzel, Matthias; Cyrys, Josef; Pitz, Mike; Heinrich, Joachim; Kreyling, Wolfgang G.; Wichmann, H.-Erich; Peters, Annette; Wang, Sheng; Hopke, Philip K.

    2008-01-01

    Particle size distribution data collected between September 1997 and August 2001 in Erfurt, Germany were used to investigate the sources of ambient particulate matter by positive matrix factorization (PMF). A total of 29,313 hourly averaged particle size distribution measurements covering the size range of 0.01 to 3.0 μm were included in the analysis. The particle number concentrations (cm−3) for the 9 channels in the ultrafine range, and mass concentrations (ng m−3) for the 41 size bins in the accumulation mode and particle up to 3 μm in aerodynamic diameter were used in the PMF. The analysis was performed separately for each season. Additional analyses were performed including calculations of the correlations of factor contributions with gaseous pollutants (O3, NO, NO2, CO and SO2) and particle composition data (sulfate, organic carbon and elemental carbon), estimating the contributions of each factor to the total number and mass concentration, identifying the directional locations of the sources using the conditional probability function, and examining the diurnal patterns of factor scores. These results were used to assist in the interpretation of the factors. Five factors representing particles from airborne soil, ultrafine particles from local traffic, secondary aerosols from local fuel combustion, particles from remote traffic sources, and secondary aerosols from multiple sources were identified in all seasons. PMID:18433834

  18. Rain water transport and storage in a model sandy soil with hydrogel particle additives.

    PubMed

    Wei, Y; Durian, D J

    2014-10-01

    We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.

  19. Particle Sizes in Saturn's Rings from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; Wong, K. K.; French, R. G.; Rappaport, N. J.

    2013-12-01

    Information about particle sizes in Saturn's rings is provided by differential extinction of three coherent sinusoidal radio signals transmitted by Cassini through the rings back to Earth (wavelength = 0.94, 3.6, and 13 cm, respectively). The measurements are particularly sensitive to radii in the range ~0.1 mm < a < ~1 m. Complementary information is provided by measurements of collective near-forward scattering by the particles. The latter is captured in spectrograms of the received signals. Contributions of ring features of width as small several hundred kilometers can be identified and isolated in the measured spectra for a small subset of Cassini orbits of favorable geometry. Spectrograms measurements are sensitive to particles in the radius range ~1 m < a < ~20 m and to spatially correlated aggregates of such particles (gravitational wakes). We use both inverse scattering and modeling techniques to recover the particle size distribution of 57 sub-regions of Saturn's Ring C. Power-law models of maximum particle radius a_max ~ 5 to 6 m, and power-law index 3.15 ≤ q ≤ 3.35 characterize the Ring C background structure, with some subtle variations in the wavy region. Larger a_max ~ 9 m and smaller q ~3.15 characterize the outer ramp region. Surprisingly, even larger sizes amax ~ 25 m appear to populate 4 of the Ring C 'plateaus,' possibly in aggregates form rather than as individual particles. In sharp contrast, particles of comparatively smaller maximum size appear to populate a fifth plateau region. In almost all Ring C regions, the minimum radius a_min consistently falls in the few millimeters range. In ring regions where gravitational wakes are know to be present, such as Rings A and B, the measured spectrograms show evidence for a strong forward scattering component consistent with scattering by spatially correlated and canted 'cylindrical' structures. We constrain the aggregate sizes, their canting angle, and other physical properties using comparisons

  20. Design of a Particle Shadow-graph Velocimetry and Size (PSVS) System to Determine Particle Size and Density Distributions in Hanford Nuclear Tank Wastes - 12280

    SciTech Connect

    Fountain, M.S.; Blanchard, J.; Erikson, R.L.; Kurath, D.E.; Howe, D.T.; Adkins, H.; Jenks, J.

    2012-07-01

    Accurate particle size and density distributions for nuclear tank waste materials are essential information that helps determine the engineering requirements for a host of waste management unit operations (e.g., tank mixing, pipeline transport, and filtration). The most prevalent approach for determining particle size and density distribution is highly laborious and involves identifying individual particles using scanning electron microscope/x-ray diffraction and then acquiring the density of the materials from the technical literature. Other methods simply approximate individual particle densities by assuming chemical composition, rather than obtaining actual measurements of particle density. To overcome these limitations, a Particle Shadow-graph Velocimetry and Size (PSVS) system has been designed to simultaneously obtain particle size and density distributions for a broad range of Hanford tank waste materials existing as both individual particles and agglomerates. The PSVS system uses optical hardware, a temperature-controlled settling column, and particle introduction chamber to accurately and reproducibly obtain images of settling particles. Image analysis software provides a highly accurate determination of both particle terminal velocity and equivalent spherical particle diameter. The particle density is then calculated from Newton's terminal settling theory. The PSVS system was designed to accurately image particle/agglomerate sizes between 10 and 1000 μm and particle/agglomerate densities ranging from 1.4 to 11.5 g/cm{sup 3}, where the maximum terminal velocity does not exceed 10 cm/s. Preliminary testing was completed with standard materials and results were in good agreement with terminal settling theory. Recent results of this method development are presented, as well as experimental design. The primary goal of these PSVS system tests was to obtain accurate and reproducible particle size and velocity measurements to estimate particle densities within

  1. Particle size reduction during initial mastication of forages by dairy cattle.

    PubMed

    Bailey, A T; Erdman, R A; Smith, L W; Sharma, B K

    1990-07-01

    Four experiments were conducted with dairy cattle to determine the effects of initial feed particle size and moisture content on particle size of ingested masticates. Three mature Holstein cows were used in either latin square or Youden square designs. Samples of masticated and ingested boli were collected at the cardiac opening through a ruminal fistula between 0 and 5, 5 and 10 and 10 and 15 min after meal initiation. In Exp. 1, masticate log mean particle sizes (LMPS) (ln microns, log normal distribution) were 3.50, 3.53 and 3.50 for corn silage, fine-chopped alfalfa haylage and coarse-chopped alfalfa haylage, respectively. In Exp. 2, boli LMPS for ground, chopped and long alfalfa hay were 3.11, 3.76 and 4.09, respectively. Boli LMPS in Exp. 3 for ground, chopped and long timothy hay were 2.93, 3.12 and 3.03, respectively. Exp. 4 compared the effect of addition of water to produce 30%, 47%, 64% and 82% DM in chopped alfalfa hay. Boli LMPS were 3.66, 3.56, 3.64 and 3.68 for the respective alfalfa hay DM contents. Feed LMPS was not reduced during mastication in Exp. 4, nor were there differences in LMPS due to time after feeding. Boli LMPS was affected by feed particle size of alfalfa hay, but there was no effect of feed particle size on masticate particle size in timothy hay. The magnitude of particle size reduction during mastication appears to be dependent on forage type and is not dependent totally on initial feed particle size and DM content of forages. PMID:2384400

  2. Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Cai, J.; Benson, D. J.; Nesterenko, V. F.

    2007-12-01

    Recent investigations of the dynamic compressive strength of cold isostatically pressed composites of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) powders show significant differences depending on the size of metallic particles. The addition of W increases the density and changes the overall strength of the sample depending on the size of W particles. To investigate relatively large deformations, multi-material Eulerian and arbitrary Lagrangian-Eulerian methods, which have the ability to efficiently handle the formation of free surfaces, were used. The calculations indicate that the increased sample strength with fine metallic particles is due to the dynamic formation of force chains. This phenomenon occurs for samples with a higher porosity of the PTFE matrix compared to samples with larger particle size of W and a higher density PTFE matrix.

  3. Particle size dependent rheological property in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2016-06-01

    The influence of the particle size on the rheological property of magnetic fluid was studied both by the experimental and computer simulation methods. Firstly, the magnetic fluids were prepared by dispersing Fe3O4 nanospheres with size varied from 40 nm to 100 nm and 200 nm in the solution. Then, the rheological properties were investigated and it was found that the relative magnetorheological effects increased with increasing the particle size. Finally, the molecular dynamic simulation was used to analyze the mechanical characteristics of the magnetic fluid and the chain-like model agreed well with the experimental result. The authentic chain-like structure observed by a microscope agreed with the simulation results. The three particles composed of the similar cluster nanostructure, thus they exhibited similar magnetic property. To this end, the unique assembling microstructures was the origination of the mechanical difference. And it was found that the higher MR (magnetorheological) effects of the large particle based magnetic fluid was originated from the stronger assembling microstructure under the applying magnetic field.

  4. Phytoplankton appearance in particle size spectra - deriving conversion functions between microscopic and particle counter measurements.

    PubMed

    Rolinski, Susanne; Pätz, Patricia; Papendick, Katrin; Jähnichen, Sabine; Scheifhacken, Nicole

    2013-04-01

    Analysis of aquatic field samples by particle counters are a widespread method but the representation of phytoplankton abundance and of size classes in which phytoplankton appears in the resulting size spectra is not well studied. To address this gap, two freshwater phytoplankton species were analysed in a particle counter and using a microscope: the colony forming Asterionella formosa (Bacillariophyceae) and the single-celled Microcystis aeruginosa (Cyanobacteria). Field samples, growth experiments and model approaches were used to study the image of phytoplankton derived by two different commonly used and standardized counting methods. In our results, the colony forming A. formosa had to be considered in units of colonies because the counting device enumerated only 23% of the single cells but 85% of the colonies that were determined under the microscope. Furthermore, the size class representation in the particle counter of both taxa appeared in much smaller ranges than expected from microscopic size measurements. Model simulations of movements and rotations of phytoplankton in the measuring device can explain half of the size shift. We deduce that about 86% of the cell areas of both studied species are transparent from two approaches. First, areas derived from simulations of rotated phytoplankton colonies equal the measured particle spectra of the laboratory cultures when the shadow areas are reduced to 14%. Secondly, field counts of A. formosa can be integrated into particle size spectra of the total particulate material when the same reduction factor is applied. For the considered optical counting device, field samples of A. formosa can be detected in particle size spectra when colony sizes as well as transparency of the cells and reduction of cell sizes by rotations are taken into account.

  5. Aspects of droplet and particle size control in miniemulsions

    NASA Astrophysics Data System (ADS)

    Saygi-Arslan, Oznur

    Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a

  6. THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES

    SciTech Connect

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of μm-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ∼210 K), μm-sized water-ice particles stick below a threshold velocity of 9.6 m s{sup –1}, which is approximately 10 times higher than the sticking threshold of μm-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s{sup –1}. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  7. Counting particles emitted by stratospheric aircraft and measuring size of particles emitted by stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    The ER-2 condensation nuclei counter (CNC) has been modified to reduce the diffusive losses of particles within the instrument. These changes have been successful in improving the counting efficiency of small particles at low pressures. Two techniques for measuring the size distributions of particles with diameters less than 0.17 micrometers have been evaluated. Both of these methods, the differential mobility analyzer (DMA) and the diffusion battery, have fundamental problems that limit their usefulness for stratospheric applications. We cannot recommend either for this application. Newly developed, alternative methods for measuring small particles include inertial separation with a low-loss critical orifice and thin-plate impactor device. This technique is now used to collect particles in the multisample aerosol collector housed in the ER-2 CNC-2, and shows some promise for particle size measurements when coupled with a CNC as a counting device. The modified focused-cavity aerosol spectrometer (FCAS) can determine the size distribution of particles with ambient diameters as small as about 0.07 micrometers. Data from this instrument indicates the presence of a nuclei mode when CNC-2 indicates high concentrations of particles, but cannot resolve important parameters of the distribution.

  8. Simultaneous In-Situ Measurement of Local Particle Size, Particle Concentration, and Velocity of Aerosols.

    PubMed

    Weber; Schweiger

    1999-02-01

    Photon correlation spectroscopy has been applied to the characterization of (quasi-)monodisperse aerosols. The experiments were carried out with an experimental standard pin hole setup on laminar flowing aerosols of the submicrometer particle size range. It is shown that beside local mean particle size and local aerosol velocity simultaneously the local particle number concentration may be obtained from a single measured autocorrelation function. The proposed procedure does not require calibration. It is pointed out that measurement conditions can be adapted to the properties of the aerosol to be characterized, thus allowing characterization of aerosols over a wide parameter range, e.g., it is not restricted to the case of low particle concentration. The experimental results are compared to data from literature, data from reference measurements and data from a theoretical model, respectively. The method can also be usefull for characterization of other fluid-particle systems as hydrosols. Copyright 1999 Academic Press.

  9. Integral inversion to Fraunhofer diffraction for particle sizing.

    PubMed

    Cao, Zhang; Xu, Lijun; Ding, Jie

    2009-09-01

    A new solution to the inversion of Fraunhofer diffraction for particle sizing was introduced. Compared with the well-known Chin-Shifrin inversion, it is an inversion of the form of integral transform and less sensitive to noise. Simulation results with noise-contaminated data were obtained and showed that the new inversion is better than the Chin-Shifrin inversion. Especially when the particle diameter was small, the new inversion still performed well, whereas the Chin-Shifrin inversion did not converge.

  10. Infrared reflectance spectra: effects of particle size, provenance and preparation

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, J. E.; Johnson, Timothy J.

    2014-10-01

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  11. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    SciTech Connect

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  12. Gaining fluid bed process understanding by in-line particle size analysis.

    PubMed

    Närvänen, Tero; Lipsanen, Tanja; Antikainen, Osmo; Räikkönen, Heikki; Heinämäki, Jyrki; Yliruusi, Jouko

    2009-03-01

    Different process phenomena and process failure modes could be monitored using the in-line particle size data measured by spatial filtering technique (SFT). In addition to the real-time granule growth monitoring, other events, such as the blocking of filter bags and the distributor plate, could be observed. SFT was used off-line, at-line and in-line in 14 differently manufactured granulation batches. No significant fouling occurred during the manufacturing due to the appropriate positioning of the probe. The off-line SFT results correlated well (R(2) = 0.97) with the sieve analysis results. It was also found that size segregation influenced both the in-line and at-line particle size results during the fluidization: in-line method underestimated and at-line method overestimated the final particle size.

  13. Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    NASA Astrophysics Data System (ADS)

    Herbold, Eric; Cai, Jing; Benson, David; Nesterenko, Vitali

    2007-06-01

    Recent investigations of the dynamic compressive strength of cold isostatically pressed (CIP) composites of polytetrafluoroethylene (PTFE), tungsten and aluminum powders show significant differences depending on the size of metallic particles. PTFE and aluminum mixtures are known to be energetic under dynamic and thermal loading. The addition of tungsten increases density and overall strength of the sample. Multi-material Eulerian and arbitrary Lagrangian-Eulerian methods were used for the investigation due to the complexity of the microstructure, relatively large deformations and the ability to handle the formation of free surfaces in a natural manner. The calculations indicate that the observed dependence of sample strength on particle size is due to the formation of force chains under dynamic loading in samples with small particle sizes even at larger porosity in comparison with samples with large grain size and larger density.

  14. Current Development Status of a Particle Size Analyzer for Coated Particle Fuel

    SciTech Connect

    Nelson, Andrew T; Hunn, John D; Karnowski, Thomas Paul

    2007-08-01

    Work was performed to develop a prototype Particle Size Analyzer (PSA) for application to coated particle fuel characterization. This system was based on a light obscuration method and targeted towards high throughput analysis. Although never matured to the point of replacing existing lower throughput optical microscopy shadowgraph methods, the system was successfully applied to automating the counting of large particle samples for increased accuracy in calculating mean particle properties based on measurements of multiparticle samples. The measurement of particle size with the PSA was compared to current shadowgraph techniques and found to result in considerably greater throughput at the cost of larger measurement uncertainty. The current algorithm used by the PSA is more sensitive to particle shape and this is a likely cause of the greater uncertainty when attempting to measure average particle diameter. The use of the PSA to measure particle shape will require further development. Particle transport through the PSA and stability of the light source/detector are key elements in the successful application of this technique. A number of system pitfalls were studied and addressed.

  15. Effects of particle size and cohesive properties on mixing studied by non-contact NIR.

    PubMed

    Bellamy, Luke J; Nordon, Alison; Littlejohn, David

    2008-09-01

    A scaled-down convective blender was used along with non-invasive NIR spectrometry to study the mixing of citric acid, aspirin, aspartame or povidone with microcrystalline cellulose. NIR mixing profiles were generated in real time using measurements at the 2nd overtone wavelength of the added compounds. Trends demonstrated previously for aspirin were confirmed for additions of citric acid: the magnitude of the 2nd overtone NIR measurements is less affected by changes in particle size than that of the 1st overtone; the peak-to-peak noise of the 2nd overtone NIR mixing profile increases with the particle size of the added compound. The study has demonstrated the usefulness of continuous NIR measurements for rapid evaluation of the mixing process when deciding the best particle size of microcrystalline cellulose to mix with compounds of different particle shape and cohesive properties. Smaller particle sizes of microcrystalline cellulose (53-106 microm) were better for aspirin (212-250 microm), whereas larger particles (212-250 microm) were better for aspartame (212-250 microm). The characteristics of the compounds also need to be considered when deciding the order of addition of secondary compounds when mixed with microcrystalline cellulose. The time required to achieve a uniform mixture was much less when povidone was added before aspirin, rather than vice versa.

  16. Simulation of random packing of spherical particles with different size distributions

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Zhang, Yuwen

    2008-08-01

    A numerical model for a loose packing process of spherical particles is presented. The simulation model starts with randomly choosing a sphere according to a pregenerated continuous particle-size distribution, and then dropping the sphere into a dimension-specified box, and obtaining its final position by using dropping and rolling rules which are derived from a similar physical process of spheres dropping in the gravitational field to minimize its gravity potential. Effects of three different particle-size distributions on the packing structure were investigated. Analysis on the physical background of the powder-based manufacturing process is additionally applied to produce optimal packing parameters of bimodal and Gaussian distributions to improve the quality of the fabricated parts. The results showed that higher packing density can be obtained using bimodal size distribution with a particle-size ratio from 1.5 to 2.0 and the mixture composition around n 2: n 1=6:4. For particle size with a Gaussian distribution, the particle radii should be limited in a narrow range around 0.67 to 1.5.

  17. Size segregation in bedload sediment transport at the particle scale

    NASA Astrophysics Data System (ADS)

    Frey, P.; Martin, T.

    2011-12-01

    Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles

  18. Coagulation-flocculation of beech condensate: particles size distribution.

    PubMed

    Irmouli, Mohammed; Haluk, Jean Pierre

    2002-05-01

    Beech wood (Fagus sylvatica L.) condensate from a steaming operation was studied. The objective of our work was to study the precipitation of these wood extracts in presence of calcium ion after autoxidation at basic pH (8). The autoxidation was carried out at 250 rpm for 30 min, and flocculation was followed up for 30 min. An investigation with a laser sizer Mastersizer of Malvern has been done in order to study the influence of the agitation on the state of aggregation of the condensate. A negative correlation was observed between the mean size of particles and the agitation rate. Without stirring, flocculation rapidly occurred and the mean size of particles was high. Calcium-induced aggregation of the condensate was also found to be reversible toward agitation. PMID:16290593

  19. Inversion method based on stochastic optimization for particle sizing.

    PubMed

    Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix

    2016-08-01

    A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem. PMID:27505357

  20. Particle size and pathogenicity in the respiratory tract

    PubMed Central

    Thomas, Richard James

    2013-01-01

    Particle size dictates where aerosolized pathogens deposit in the respiratory tract, thereafter the pathogens potential to cause disease is influenced by tissue tropism, clearance kinetics and the host immunological response. This interplay brings pathogens into contact with a range of tissues spanning the respiratory tract and associated anatomical structures. In animal models, differential deposition within the respiratory tract influences infection kinetics for numerous select agents. Greater numbers of pathogens are required to infect the upper (URT) compared with the lower respiratory tract (LRT), and in comparison the URT infections are protracted with reduced mortality. Pathogenesis in the URT is characterized by infection of the URT lymphoid tissues, cervical lymphadenopathy and septicemia, closely resembling reported human infections of the URT. The olfactory, gastrointestinal, and ophthalmic systems are also infected in a pathogen-dependent manner. The relevant literature is reviewed with respect to particle size and infection of the URT in animal models and humans. PMID:24225380

  1. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size.

  2. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. PMID:23266761

  3. Multiple-Instrument Analyses of Single Micron-Size Particles

    NASA Astrophysics Data System (ADS)

    Admon, Uri; Donohue, David; Aigner, Helmut; Tamborini, Gabriele; Bildstein, Olivier; Betti, Maria

    2005-08-01

    Physical, chemical, and isotopic analyses of individual radioactive and other particles in the micron-size range, key tools in environmental research and in nuclear forensics, require the ability to precisely relocate particles of interest (POIs) in the secondary ion mass spectrometer (SIMS) or in another instrument, after having been located, identified, and characterized in the scanning electron microscope (SEM). This article describes the implementation, testing, and evaluation of the triangulation POIs re-location method, based on microscopic reference marks imprinted on or attached to the sample holder, serving as an inherent coordinate system. In SEM-to-SEM and SEM-to-SIMS experiments re-location precision better than 10 [mu]m and 20 [mu]m, respectively, is readily attainable for instruments using standard specimen stages. The method is fast, easy to apply, and facilitates repeated analyses of individual particles in different instruments and laboratories.

  4. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions.

    PubMed

    Yu, Weili; Muteki, Koji; Zhang, Lin; Kim, Gloria

    2011-01-01

    The purpose of this study is to establish a modeling approach that can be used to predict bulk powder flowability of pharmaceutical materials from their particle size and shape distributions. To build and validate the model, 23 commonly used pharmaceutical excipients and 38 binary blends were fully characterized for their particle size and shape distributions. The particle size and shape of each sample was characterized by multiple descriptors to fully reflect their morphological characteristics. The flow properties of these materials were analyzed using the Schulze Ring Shear Tester at a fixed humidity condition. A partial least squares (PLS) approach was used to build the mathematical model. Several different modeling approaches were attempted and the best method was identified as using a combination of formulation composition and particle size and shape distributions of single-component powder systems. The PLS model was shown to provide excellent predictions of powder flow function coefficient (FFC) of up to approximately 20. The results also revealed that both particle size and shape play an important role in determining the powder flow behavior.

  5. Growth and wetting of water droplet condensed between micron-sized particles and substrate

    NASA Astrophysics Data System (ADS)

    Quang, Tran Si Bui; Leong, Fong Yew; An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter

    2016-08-01

    We study heterogeneous condensation growth of water droplets on micron-sized particles resting on a level substrate. Through numerical simulations on equilibrium droplet profiles, we find multiple wetting states towards complete wetting of the particle. Specifically, a partially wetting droplet could undergo a spontaneous transition to complete wetting during condensation growth, for contact angles above a threshold minimum. In addition, we find a competitive wetting behavior between the particle and the substrate, and interestingly, a reversal of the wetting dependence on contact angles during late stages of droplet growth. Using quasi-steady assumption, we simulate a growing droplet under a constant condensation flux, and the results are in good agreement with our experimental observations. As a geometric approximation for particle clusters, we propose and validate a pancake model, and with it, show that a particle cluster has greater wetting tendency compared to a single particle. Together, our results indicate a strong interplay between contact angle, capillarity and geometry during condensation growth.

  6. Light scattering by lunar-like particle size distributions

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1991-01-01

    A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.

  7. Particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  8. Packing fraction of particles with a Weibull size distribution.

    PubMed

    Brouwers, H J H

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ_{1}, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1-φ_{1})β as function of φ_{1} is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data. PMID:27575204

  9. Packing fraction of particles with a Weibull size distribution

    NASA Astrophysics Data System (ADS)

    Brouwers, H. J. H.

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.

  10. Size distribution of particles in Saturn’s rings from aggregation and fragmentation

    PubMed Central

    Brilliantov, Nikolai; Krapivsky, P. L.; Bodrova, Anna; Spahn, Frank; Hayakawa, Hisao; Stadnichuk, Vladimir; Schmidt, Jürgen

    2015-01-01

    Saturn’s rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ∼r−q with q≈3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75≤q≤3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn’s rings. PMID:26183228

  11. Production of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. L.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.

    1984-01-01

    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization.

  12. Comprehensive understanding of nano-sized particle separation processes using nanoparticle tracking analysis.

    PubMed

    Lawler, Desmond F; Youn, Sungmin; Zhu, Tongren; Kim, Ijung; Lau, Boris L T

    2015-01-01

    The understanding of nano-sized particle separation processes has been limited by difficulties of nanoparticle characterization. In this study, nanoparticle tracking analysis (NTA) was deployed to evaluate the absolute particle size distributions in laboratory scale flocculation and filtration experiments with silver nanoparticles. The results from NTA were consistent with standard theories of particle destabilization and transport. Direct observations of changes in absolute particle size distributions from NTA enhance both qualitative and quantitative understanding of particle separation processes of nano-sized particles.

  13. The effects of ferrocene addition on soot particle inception and growth in premixed ethylene flames

    SciTech Connect

    Ritrievi, K.E.; Longwell, J.P.; Sarofim, A.F.

    1987-10-01

    The effects of the addition of dicyclopentadienyl iron, ferrocene, on soot particle inception and growth were studied in atmospheric pressure, premixed ethylene flames with C/O = 0.71-0.83 at 0.015-0.46% ferrocene by weight of the fuel. The rate of surface growth of soot in undoped and doped flames was measured using laser light scattering and light extinction techniques to determine the particle size and number density as a function of residence time in the flame. The final soot yields in the ferrocene doped flames were enhanced by factors of 13.5-1.2 over the range of flame C/O ratios studied. This enhancement decreased with increasing C/O ratio for the same concentration of iron in the flames. The spatial distribution of the elements iron and carbon in the particles was determined with Auger spectroscopy. The iron was found to be concentrated in the cores of the particles. The results of a steady-state one-dimensional nucleation model which indicated that the iron oxide particles would nucleate well in advance of the soot inception time were consistent with this elemental stratification and the observation of the onset of carbon deposition in doped flames at earlier residence times than in undoped flames of the same C/O ratio. The iron oxide particle sizes and number densities predicted from the model indicated that these particles were both numerous and small enough to be seed particles on which carbon deposition could take place. The importance of the activity of the surfaces of the solid in determining the rate of surface growth of soot was investigated.

  14. Saturn's Rings Particle and Clump Sizes from Cassini UVIS Occultation Statistics (Invited)

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Cooney, J.; Esposito, L. W.; Sremcevic, M.

    2013-12-01

    particles than the remainder of the B1 region of the B ring. The Cassini Division 'ramp' has particle sizes similar to the inner A ring and unlike that of the rest of the Cassini Division. The high resolution of the data also enables us to extract information on particle sizes within the peaks and troughs of strong density waves in the rings. For all density waves where we can resolve the peaks and troughs, we find that the effective particle size is smaller in the density peaks of the waves, and larger in the density troughs. We interpret this as the release of small particles and the disruption of self-gravity wakes in the vigorous collisions and compression of particles in the peaks, leading to a smaller effective particle size in those regions, and the reassembly of particles into larger clumps in the low-density troughs. The data thus show clump formation and disaggregation on the orbital timescale, as particles move through the wave pattern on this timescale. In addition we find a decrease in particle size in the 'halo' regions surrounding the strong density waves in the A ring that are associated with more pure water ice. This supports the hypothesis of disruption of particle clumps in the density waves and diffusion of the smaller, brighter particles away from the density wave regions.

  15. [Impacts of Sediment Disturbance on the Distribution of Suspended Particle Size and Phosphorus].

    PubMed

    Guo, Jun-rui; Li, Da-peng; Liu, Yan-jian

    2016-04-15

    To clarify the influence of the sediments disturbance on the particle size distribution of suspended solids, and the influence of particle distribution on the forms of dissolved phosphorous in the overlaying water, the sediments and overlying water from Meiliang Bay, Taihu Lake, were used to conduct the indoor simulation experiments to investigate the particle size of suspended solids according to the Ubbelobde particle size criteria and the distribution of phosphorus compounds in the overlying water under the disturbance circumstances. The results indicated that the average proportions of small (0-10 microm), middle (10-20 microm) and large (> or = 20 microm) diameter particles presented different trends of increasing, decreasing and staying stable, respectively. It indicated the possible transformation of particle size of suspended solids from small-middle diameter to large diameter. In addition, the data of DTP/TP and DIP/TP showed a periodical variation with the corresponding periodical variety of particle diameter in suspended solids, while ns obvious variety of DTP and DIP was observed. It suggested that disturbance enhanced the ability of phosphorus immobilization by suspended solids. On the other band, the percentages of DTP in TP and DIP in TP were 19% and 13% under the disturbance, respectively, and they were obviously lower than those (DTP/TP, 80% and DIP/TP, 69% ) in the control. It indicated that tbs transformation of particle size of suspended solids from small-middle diameter to large diameter due to disturbance was in favor of tbe adsorption and sedimentation of dissolved phosphorus. Accordingly, the formation of particle phosphorus was enhanced. Therefore, it delayed the development of eutrophication in the water body. PMID:27548964

  16. [Impacts of Sediment Disturbance on the Distribution of Suspended Particle Size and Phosphorus].

    PubMed

    Guo, Jun-rui; Li, Da-peng; Liu, Yan-jian

    2016-04-15

    To clarify the influence of the sediments disturbance on the particle size distribution of suspended solids, and the influence of particle distribution on the forms of dissolved phosphorous in the overlaying water, the sediments and overlying water from Meiliang Bay, Taihu Lake, were used to conduct the indoor simulation experiments to investigate the particle size of suspended solids according to the Ubbelobde particle size criteria and the distribution of phosphorus compounds in the overlying water under the disturbance circumstances. The results indicated that the average proportions of small (0-10 microm), middle (10-20 microm) and large (> or = 20 microm) diameter particles presented different trends of increasing, decreasing and staying stable, respectively. It indicated the possible transformation of particle size of suspended solids from small-middle diameter to large diameter. In addition, the data of DTP/TP and DIP/TP showed a periodical variation with the corresponding periodical variety of particle diameter in suspended solids, while ns obvious variety of DTP and DIP was observed. It suggested that disturbance enhanced the ability of phosphorus immobilization by suspended solids. On the other band, the percentages of DTP in TP and DIP in TP were 19% and 13% under the disturbance, respectively, and they were obviously lower than those (DTP/TP, 80% and DIP/TP, 69% ) in the control. It indicated that tbs transformation of particle size of suspended solids from small-middle diameter to large diameter due to disturbance was in favor of tbe adsorption and sedimentation of dissolved phosphorus. Accordingly, the formation of particle phosphorus was enhanced. Therefore, it delayed the development of eutrophication in the water body.

  17. Comparison of methods for developing contaminant-particle size distributions for suspended sediment

    SciTech Connect

    Moore, T.D.; Burgoa, B.B.; Fontaine, T.A.

    1994-10-01

    Relationships between contaminant concentration and particle size distribution are required for modeling the transport of contaminated sediment. Standard methods, including the pipette and bottom withdrawal techniques, are unsatisfactory because of the lack of homogeneous separations of each size fraction, which results in uncertainty in the contaminant-particle size relation. In addition, the size fractions produced with these techniques do not contain enough mass for accurate contaminant analyses. To avoid these problems, an alternative method using a settling column and withdrawal times based on Stokes Law has been developed. Tests have been conducted using sediment samples contaminated with Cs-137 from a waste area at Oak Ridge National Laboratory. The samples were separated into sand, coarse and fine silt, and clay-sized particles. The results for particle size distribution and associated contaminant concentrations were evaluated for the settling column, pipette, and bottom withdrawal methods. The settling column method provides homogeneous size fractions, larger aliquots of sediment for contaminant analysis, and is quicker in some cases and less complicated to perform than the other two methods.

  18. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  19. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  20. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    EPA Science Inventory

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  1. Decrease of calorific value and particle size in coal stockpiles

    SciTech Connect

    Sensogut, C.; Ozdeniz, A.H.

    2008-07-01

    During storage of excess amount of coal, they lose both their economical value and cause environmental problems. In this work, two industrial-sized stockpiles were constituted at a coal stockyard of Western Lignite Corporation (WLC) in Tuncbilek, Turkey. The size of the stockpiles, formed as triangle prisms, was about 10 m x 5 m wide with a height of 3 m; each mass being approximately 120 tons of coal in total. Some of the parameters that were effective on the stockpiles were measured in a continuous manner during this experimental work. The calorific losses and the decreases that occurred in particle size due to atmospheric conditions were also examined and detailed as the result of this work.

  2. Development of methanogenic consortia in fluidized-bed batches using sepiolite of different particle size.

    PubMed

    Sánchez, J M; Rodríguez, F; Valle, L; Muñoz, M A; Moriñigo, M A; Borrego, J J

    1996-09-01

    The addition of support materials, such as sepiolite, to fluidized-bed anaerobic digesters enhances the methane production by increasing the colonization by syntrophic microbiota. However, the efficiency in the methanogenesis depends on the particle size of the support material, the highest level of methane production being obtained by the smaller particle size sepiolite. Because of the porosity and physico-chemical characteristics of these support materials, the anaerobic microbial consortia formed quickly (after one week of incubation). The predominant methanogenic bacteria present in the active granules, detected both by immunofluorescence using specific antibodies and by scanning electron microscopy, were acetoclastic methanogens, mainly Methanosarcina and Methanosaeta.

  3. Effects of Anatomy and Particle Size on Nasal Sprays and Nebulizers

    PubMed Central

    Frank, Dennis O.; Kimbell, Julia S.; Pawar, Sachin; Rhee, John S.

    2013-01-01

    Objective To study the effects of nasal deformity on aerosol penetration past the nasal valve (NV) for varying particle sizes using sprays or nebulizers. Study Design Computed mathematical nasal airway model. Setting Department computer lab Subjects and Methods Particle deposition was analyzed using a computational fluid dynamics model of the human nose with leftward septal deviation and compensatory right inferior turbinate hypertrophy. Sprays were simulated for 10µm, 20µm, 50µm, or particle sizes following a Rosin Rammler Particle Size Distribution (10–110µm), at speeds of 1m/s, 3m/s, or 10m/s. Nebulization was simulated for 1µm, 3.2µm, 6.42µm, or 10µm particles. Steady state inspiratory airflow was simulated at 15.7L/min. Results Sprays predicted higher NV penetration on the right side for particle sizes >10µm, with comparable penetration on both sides at 10µm. Nearly 100% deposited in the nasal passages for all spray characteristics. Nebulizer predictions showed nearly 100% of particles <6.42µm and over 50% of 6.42µm bypassing both sides of the nose without depositing. Of the nebulized particles that deposited, penetration was higher on the right at 10µm, with comparable penetration on both sides at 6.42µm. Spray penetration was highest at 10µm, with over 96% penetrating on both sides at 1 and 3m/s. Nebulization penetration was also highest at 10µm (40% on the left, >90% on the right). Conclusion In the presence of a septal deviation, sprays or nebulizers containing 10µm particles may have good penetration beyond the NV. Nebulized particles <10µm are likely to be respirable. Additionally, spray speeds above 3m/s may limit penetration. PMID:22049020

  4. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration. PMID:25518646

  5. Feed preference in pigs: relationship with feed particle size and texture.

    PubMed

    Solà-Oriol, D; Roura, E; Torrallardona, D

    2009-02-01

    In previous studies, we observed important differences in the feed preferences of pigs resulting from changes in only 1 dietary ingredient. The present experiment was conducted to study the relationship between the feed preference values of feeds reported previously and their particle size and texture characteristics. The effect of individual feed ingredients was studied when added to a common basal diet. In addition to the basal diet, which included rice, a soybean meal product containing 56% CP, sunflower oil, and wheat bran, a total of 126 diets were studied. Of these, 63 were prepared by replacing the rice in the basal diet with another cereal, 29 by replacing the soybean product with different protein sources, 19 by replacing the sunflower oil with different lipid sources, and 6 by replacing the wheat bran with different fiber sources. Cereals were studied at inclusion rates of 150, 300, and 600 g x kg(-1); protein sources were studied at 50, 100, and 200 g x kg(-1); lipids were studied at 15, 30, and 100 g x kg(-1); and fiber sources were studied at 65 and 130 g x kg(-1). The particle size profile of all the diets was determined by using a 9-screen sieve shaker. The geometric mean particle size, particle size uniformity, number of particles per gram, surface area (cm(2) x g(-1)), and percentage of fine (passing through a 250-microm sieve) and coarse particles (remaining in a 2,000-microm sieve) were calculated. The texture properties (hardness, fragility, chewing work, and adhesiveness) of the feeds were also determined by using a texture analyzer. The Pearson correlation coefficients of these variables with feed preference were as follows: geometric mean particle size (r = 0.07; P = 0.45), particle size uniformity (r = 0.16; P = 0.07), number of particles per gram (r = -0.05; P = 0.61), surface area (r = -0.07; P = 0.46), percentage of coarse particles (r = 0.04; P = 0.65), percentage of fine particles (r = -0.12; P = 0.19), hardness (r = -0.21; P = 0

  6. A method for generating uniform size-segregated pyrite particle fractions

    PubMed Central

    Wolfe, Amy L; Liu, Ran; Stewart, Brian W; Capo, Rosemary C; Dzombak, David A

    2007-01-01

    Background Standardized sample preparation techniques allow comparison of pyrite dissolution experiments under diverse conditions. Our objective was to assess dry and wet sieving preparation methodologies, and to develop a reproducible technique that yields uniformly size-distributed material within a limited size range of interest. Results Here, we describe a wet sieving preparation method that successfully concentrates pyrite particles within a 44–75 μm diameter range. In addition, this technique does not require a post-processing cleanup step to remove adhering particles, as those particles are removed during the procedure. We show that sample preparation methods not only affect the pyrite size distribution, but also apparent dissolution rates. Conclusion The presented methodology is non-destructive to the sample, uses readily available chemical equipment within the laboratory, and could be applied to minerals other than pyrite. PMID:17927834

  7. Particle size distribution of brown and white rice during gastric digestion measured by image analysis.

    PubMed

    Bornhorst, Gail M; Kostlan, Kevin; Singh, R Paul

    2013-09-01

    The particle size distribution of foods during gastric digestion indicates the amount of physical breakdown that occurred due to the peristaltic movement of the stomach walls in addition to the breakdown that initially occurred during oral processing. The objective of this study was to present an image analysis technique that was rapid, simple, and could distinguish between food components (that is, rice kernel and bran layer in brown rice). The technique was used to quantify particle breakdown of brown and white rice during gastric digestion in growing pigs (used as a model for an adult human) over 480 min of digestion. The particle area distributions were fit to a Rosin-Rammler distribution function. Brown and white rice exhibited considerable breakdown as the number of particles per image decreased over time. The median particle area (x(50)) increased during digestion, suggesting a gastric sieving phenomenon, where small particles were emptied and larger particles were retained for additional breakdown. Brown rice breakdown was further quantified by an examination of the bran layer fragments and rice grain pieces. The percentage of total particle area composed of bran layer fragments was greater in the distal stomach than the proximal stomach in the first 120 min of digestion. The results of this study showed that image analysis may be used to quantify particle breakdown of a soft food product during gastric digestion, discriminate between different food components, and help to clarify the role of food structure and processing in food breakdown during gastric digestion.

  8. A real-time monitoring system for airborne particle shape and size analysis

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Alexander-Buckley, K.; Hirst, E.; Saunders, S.; Clark, J. M.

    1996-08-01

    This paper describes a new instrument for the study of airborne particles. The instrument performs a rapid analysis of the transient spatial intensity distribution of laser-light scattered by individual aerosol particles drawn from an ambient environment and uses this to characterize the particles in terms of both size and shape parameters. Analyses are carried out at peak particle throughput rates of up to 10,000 particles per second, and semiquantitative data relating to the size and shape (or more correctly asymmetry) spectra of the sampled particles are provided to the user via a graphical display which is refreshed or updated at 5-s intervals. In addition to the real-time display of data, continuous data recording allows subsequent replay of measurements at either normal or high speed. Preliminary experimental results are given for aerosols of both spherical and nonspherical particle types, and these suggest the instrument may find use in environmental monitoring of aerosols or clouds where some real-time semiquantitative assessment of particulate size and shape spectra may be desirable as an aid to characterizing the aerosol and its constituent particulate species.

  9. Stratospheric aerosol particle size information in Odin-OSIRIS limb scatter spectra

    NASA Astrophysics Data System (ADS)

    Rieger, L. A.; Bourassa, A. E.; Degenstein, D. A.

    2014-02-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) onboard the Odin satellite has now taken over a decade of limb scatter measurements that have been used to retrieve the version 5 stratospheric aerosol extinction product. This product is retrieved using a representative particle size distribution to calculate scattering cross sections and scattering phase functions for the forward model calculations. In this work the information content of OSIRIS measurements with respect to stratospheric aerosol is systematically examined for the purpose of retrieving particle size information along with the extinction coefficient. The benefit of using measurements at different wavelengths and scattering angles in the retrieval is studied, and it is found that incorporation of the 1530 nm radiance measurement is key for a robust retrieval of particle size information. It is also found that using OSIRIS measurements at the different solar geometries available on the Odin orbit simultaneously provides little additional benefit. Based on these results, an improved aerosol retrieval algorithm is developed that couples the retrieval of aerosol extinction and mode radius of a log-normal particle size distribution. Comparison of these results with coincident measurements from SAGE III shows agreement in retrieved extinction to within approximately 10% over the bulk of the aerosol layer, which is comparable to version 5. The retrieved particle size, when converted to Ångström coefficient, shows good qualitative agreement with SAGE II measurements made at somewhat shorter wavelengths.

  10. Composition and Particle Size Retrievals for Homogeneous Binary Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Argon, P.; Bejcek, L.

    2014-12-01

    Tropospheric aerosols have widely varying compositions, shapes, and sizes. The ability to measure these physical characteristics, coupled with knowledge about their optical properties, can provide insight as to how these particles might participate in atmospheric processes, including their interaction with light. Over the past several years, our laboratory has been involved in developing methods to determine basic physical properties of laboratory-generated particles based on the analysis of infrared extinction spectra of multi-component aerosols. Here we report the results of a complete study on the applicability of well-known refractive index mixing rules to homogeneous binary liquid organic aerosols in an effort to yield in situ measurements of particle size and composition. In particular, we present results for terpenoid (carvone/nopinone) and long-chain hydrocarbon (squalane/squalene) mixtures. The included image shows model carvone/nopinone extinction spectra that were computed using the Lorentz-Lorenz mixing rule on complex refractive index data for the pure components.

  11. Depositing nanometer-sized particles of metals onto carbon allotropes

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Fallbach, Michael J. (Inventor); Ghose, Sayata (Inventor); Smith, Joseph G. (Inventor); Delozier, Donavon M. (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  12. Measurements of size-segregated emission particles by a sampling system based on the cascade impactor

    SciTech Connect

    Janja Tursic; Irena Grgic; Axel Berner; Jaroslav Skantar; Igor Cuhalev

    2008-02-01

    A special sampling system for measurements of size-segregated particles directly at the source of emission was designed and constructed. The central part of this system is a low-pressure cascade impactor with 10 collection stages for the size ranges between 15 nm and 16 {mu}m. Its capability and suitability was proven by sampling particles at the stack (100{sup o}C) of a coal-fired power station in Slovenia. These measurements showed very reasonable results in comparison with a commercial cascade impactor for PM10 and PM2.5 and with a plane device for total suspended particulate matter (TSP). The best agreement with the measurements made by a commercial impactor was found for concentrations of TSP above 10 mg m{sup -3}, i.e., the average PM2.5/PM10 ratios obtained by a commercial impactor and by our impactor were 0.78 and 0.80, respectively. Analysis of selected elements in size-segregated emission particles additionally confirmed the suitability of our system. The measurements showed that the mass size distributions were generally bimodal, with the most pronounced mass peak in the 1-2 {mu}m size range. The first results of elemental mass size distributions showed some distinctive differences in comparison to the most common ambient anthropogenic sources (i.e., traffic emissions). For example, trace elements, like Pb, Cd, As, and V, typically related to traffic emissions, are usually more abundant in particles less than 1 {mu}m in size, whereas in our specific case they were found at about 2 {mu}m. Thus, these mass size distributions can be used as a signature of this source. Simultaneous measurements of size-segregated particles at the source and in the surrounding environment can therefore significantly increase the sensitivity of the contribution of a specific source to the actual ambient concentrations. 25 refs., 3 figs., 2 tabs.

  13. Screen bowl centrifuge: a high-efficiency particle size separator

    SciTech Connect

    Mohanty, M.K.; Zhang, B.; Khanna, N.; Palit, A.; Dube, B.

    2008-05-15

    Over the years, screen bowl centrifuges have been widely used for dewatering fine coal in coal preparation plants in the United States and elsewhere. It is generally recognized in the engineering and scientific communities that screen bowl centrifuges provide some degree of particle size separation while dewatering fine coal in a common application. However, the extent of differential partitioning of coarse and fine particles achievable by a screen bowl centrifuge has not been systematically studied in the past. The present investigation was aimed at conducting a parametric study using a statistically designed experimental program to better understand and optimize the size classification performance of a screen bowl centrifuge. A continuously operating screen bowl centrifuge having a bowl diameter of 0.5 m was used for this study at the Illinois Coal Development Park. Three key operating parameters, i.e., feed flow rate, feed solid content and pool depth, were varied to conduct a total of 17 experiments using a three-level factorial test matrix. Some of the best size separation performances achieved in this study may be described as having an imperfection value of 0.13 at an effective separation size (d(50c)) of 38 mu m and an imperfection value of 0.27 at an effective separation size (d(50c)) of 2.8 mu m. Due to an effective separation of ultrafine high ash materials, the ash content of the screen bowl feed was reduced from 22.3% to a minimum of 8.84% with a combustible recovery of 84.1% and an ash rejection of 71.6%. A higher combustible recovery of 92.1% was achieved at a product ash content of 12.5% with a d(50c) of 2.8 mu m and imperfection of 0.27.

  14. Residual Particle Sizes of Evaporating Droplets: Ammonium Sulfate and Aldehydes

    NASA Astrophysics Data System (ADS)

    Sedehi, N.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    The reactions of carbonyls like glyoxal, methylglyoxal, and glycolaldehyde, with ammonium salts have been proposed as significant sources of atmospheric organic aerosol. Aerosol containing these compounds was generated in the laboratory using the Vibrating Orifice Aerosol Generator (VOAG). The particles were completely dried before they were measured using a SMPS system. The nonvolatile fraction of the resulting aerosol was measured. The drying times were varied between two and twenty minutes, and for ammonium sulfate and glyoxal reactions, minimum residual particle sizes were reached after 3.5 minutes. Reactions of glyoxal, glycolaldehyde, and methylglyoxal with ammonium sulfate appeared to have lower non-volatile fractions remaining at higher starting concentrations, suggesting that a constant 'excess volume,' likely water, was present in the residual particles that could not be evaporated even after 20 minutes of drying. These excess volumes were not observed in our previous experiments with aldehydes but no ammonium sulfate present. At the highest concentrations tested (100 uM), non-volatile fractions of aldehydes present in residual particles were 16 (±17) %, 41 (±28) %, and 17(±32) % for glyoxal, glycolaldehyde, and methylglyoxal, respectively.

  15. Shape, size, and distribution of magnetic particles in Bjurbole chondrules

    NASA Technical Reports Server (NTRS)

    Nava, David F.

    1994-01-01

    Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.

  16. Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames

    SciTech Connect

    Singh, Jasdeep; Patterson, Robert I.A.; Kraft, Markus; Wang, Hai

    2006-04-15

    In this paper, the prediction of a soot model [J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136] is compared to a recently published set of highly detailed soot particle size distributions [B. Zhao, Z. Yang, Z. Li, M.V. Johnston, H. Wang, Proc. Combust. Inst. 30 (2005)]. A stochastic approach is used to obtain soot particle size distributions (PSDs). The key features of the measured and simulated particle size distributions are identified and used as a simple way of comparing PSDs. The sensitivity of the soot PSDs to the parameters defining parts of the soot model, such as soot inception, particle and PAH collision efficiency and enhancement, and surface activity is investigated. Incepting soot particle size is found to have a very significant effect on the small-size end of the PSDs, especially the position of the trough for a bimodal soot PSDs. A new model for the decay in the surface activity is proposed in which the activity of the soot particle depends only on the history of that particle and the local temperature in the flame. This is a first attempt to use local flame variables to define the surface aging which has major impact on the prediction of the large-size end of the PSDs. Using these modifications to the soot model it is possible to improve the agreement between some of the points of interest in the simulated and measured PSDs. The paper achieves the task to help advance the soot models to predict soot PSD in addition to soot volume fraction and number density, which has been the focus of the literature. (author)

  17. Size measurement of plutonium particles from internal sputtering into air

    NASA Astrophysics Data System (ADS)

    Cheng, Yung-Sung; Holmes, Thomas D.; George, Timothy G.; Marlow, William H.

    2005-06-01

    During the past century, the results of spontaneous translocation of radioactivity in air, biological media and groundwater have been reported. Here, we report the first measurements of the size characteristics in air of the particles participating in this translocation phenomenon. For the plutonium material powering radioisotope thermal generators, we find two narrow, well-separated fractions, one corresponding to particles below a nanometer and one at or below 10 nm. These results are interpreted as a gas-phase nucleation phenomenon arising from internal sputtering. They suggest fruitful directions for further research with immediate implications for accounting for the effects of radiological terrorism, for identifying new signatures for nuclear materials of possible use in antiterrorism and other covert nuclear materials operations, for radioactive and mixed materials storage handling, for reactor safety and source term modeling and for other materials processes.

  18. Nano to micro particle size distribution measurement in the fluid by interactive force apparatus for fine particle processing.

    PubMed

    Fujita, Toyohisa; Dodbiba, Gjergj; Okaya, Katsunori; Matsuo, Seiji; Wang, Li Pang; Onda, Kana; Otsuki, Akira

    2013-12-01

    The direct measurement of fine particles size distribution of dispersions or coagulations in liquid is important for water purification, fine particles separation for recycling and mineral processing, as well as the new material production. The nano to micro particle size is usually measured by light scattering method; however, it is difficult to measure at high concentration of suspension. Here, a novel dynamical method by using the interactive force measurement between particles in liquid under electric field is used for measuring distribution of fine particle. Three types of nano to submicron particles, that is well-dispersed nano particles, coagulated nano particles and settled submicron particles, have been measured by interactive force measurement method. The particle size distributions are compered with the size distributions of dried particles measured by TEM or SEM. The well-dispersed nano particle size distribution by interactive force measurement is influenced by the nano size surfactant micelles. The size distribution of coagulated nano particles in water is larger than the result by TEM. On the other hand, the submicron nickel particle size distribution is similar with the one analyzed by SEM.

  19. Nano to micro particle size distribution measurement in the fluid by interactive force apparatus for fine particle processing.

    PubMed

    Fujita, Toyohisa; Dodbiba, Gjergj; Okaya, Katsunori; Matsuo, Seiji; Wang, Li Pang; Onda, Kana; Otsuki, Akira

    2013-12-01

    The direct measurement of fine particles size distribution of dispersions or coagulations in liquid is important for water purification, fine particles separation for recycling and mineral processing, as well as the new material production. The nano to micro particle size is usually measured by light scattering method; however, it is difficult to measure at high concentration of suspension. Here, a novel dynamical method by using the interactive force measurement between particles in liquid under electric field is used for measuring distribution of fine particle. Three types of nano to submicron particles, that is well-dispersed nano particles, coagulated nano particles and settled submicron particles, have been measured by interactive force measurement method. The particle size distributions are compered with the size distributions of dried particles measured by TEM or SEM. The well-dispersed nano particle size distribution by interactive force measurement is influenced by the nano size surfactant micelles. The size distribution of coagulated nano particles in water is larger than the result by TEM. On the other hand, the submicron nickel particle size distribution is similar with the one analyzed by SEM. PMID:24266212

  20. Size-Resolved Source Emission Rates of Indoor Ultrafine Particles Considering Coagulation.

    PubMed

    Rim, Donghyun; Choi, Jung-Il; Wallace, Lance A

    2016-09-20

    Indoor ultrafine particles (UFP, <100 nm) released from combustion and consumer products lead to elevated human exposure to UFP. UFP emitted from the sources undergo aerosol transformation processes such as coagulation and deposition. The coagulation effect can be significant during the source emission due to high concentration and high mobility of nanosize particles. However, few studies have estimated size-resolved UFP source emission strengths while considering coagulation in their theoretical and experimental research work. The primary objective of this study is to characterize UFP source strength by considering coagulation in addition to other indoor processes (i.e., deposition and ventilation) in a realistic setting. A secondary objective is to test a hypothesis that size-resolved UFP source emission rates are unimodal and log-normally distributed for three common indoor UFP sources: an electric stove, a natural gas burner, and a paraffin wax candle. Experimental investigations were performed in a full-scale test building. Size- and time-resolved concentrations of UFP ranging from 2 to 100 nm were monitored using a scanning mobility particle sizer (SMPS). Based on the temporal evolution of the particle size distribution during the source emission period, the size-dependent source emission rate was determined using a material-balance modeling approach. The results indicate that, for a given UFP source, the source strength varies with particle size and source type. The analytical model assuming a log-normally distributed source emission rate could predict the temporal evolution of the particle size distribution with reasonable accuracy for the gas stove and the candle. Including the effect of coagulation was found to increase the estimates of source strengths by up to a factor of 8. This result implies that previous studies on indoor UFP source strengths considering only deposition and ventilation might have largely underestimated the true values of UFP source

  1. Size-Resolved Source Emission Rates of Indoor Ultrafine Particles Considering Coagulation.

    PubMed

    Rim, Donghyun; Choi, Jung-Il; Wallace, Lance A

    2016-09-20

    Indoor ultrafine particles (UFP, <100 nm) released from combustion and consumer products lead to elevated human exposure to UFP. UFP emitted from the sources undergo aerosol transformation processes such as coagulation and deposition. The coagulation effect can be significant during the source emission due to high concentration and high mobility of nanosize particles. However, few studies have estimated size-resolved UFP source emission strengths while considering coagulation in their theoretical and experimental research work. The primary objective of this study is to characterize UFP source strength by considering coagulation in addition to other indoor processes (i.e., deposition and ventilation) in a realistic setting. A secondary objective is to test a hypothesis that size-resolved UFP source emission rates are unimodal and log-normally distributed for three common indoor UFP sources: an electric stove, a natural gas burner, and a paraffin wax candle. Experimental investigations were performed in a full-scale test building. Size- and time-resolved concentrations of UFP ranging from 2 to 100 nm were monitored using a scanning mobility particle sizer (SMPS). Based on the temporal evolution of the particle size distribution during the source emission period, the size-dependent source emission rate was determined using a material-balance modeling approach. The results indicate that, for a given UFP source, the source strength varies with particle size and source type. The analytical model assuming a log-normally distributed source emission rate could predict the temporal evolution of the particle size distribution with reasonable accuracy for the gas stove and the candle. Including the effect of coagulation was found to increase the estimates of source strengths by up to a factor of 8. This result implies that previous studies on indoor UFP source strengths considering only deposition and ventilation might have largely underestimated the true values of UFP source

  2. Effects of particle size and velocity on burial depth of airborne particles in glass fiber filters

    SciTech Connect

    Higby, D.P.

    1984-11-01

    Air sampling for particulate radioactive material involves collecting airborne particles on a filter and then determining the amount of radioactivity collected per unit volume of air drawn through the filter. The amount of radioactivity collected is frequently determined by directly measuring the radiation emitted from the particles collected on the filter. Counting losses caused by the particle becoming buried in the filter matrix may cause concentrations of airborne particulate radioactive materials to be underestimated by as much as 50%. Furthermore, the dose calculation for inhaled radionuclides will also be affected. The present study was designed to evaluate the extent to which particle size and sampling velocity influence burial depth in glass-fiber filters. Aerosols of high-fired /sup 239/PuO/sub 2/ were collected at various sampling velocities on glass-fiber filters. The fraction of alpha counts lost due to burial was determined as the ratio of activity detected by direct alpha count to the quantity determined by photon spectrometry. The results show that burial of airborne particles collected on glass-fiber filters appears to be a weak function of sampling velocity and particle size. Counting losses ranged from 0 to 25%. A correction that assumes losses of 10 to 15% would ensure that the concentration of airborne alpha-emitting radionuclides would not be underestimated when glass-fiber filters are used. 32 references, 21 figures, 11 tables.

  3. Arterial Stiffness, Lipoprotein Particle Size, and Lipoprotein Particle Concentration in Children with Type 1 Diabetes

    PubMed Central

    Gallo, Lisa M; Silverstein, Janet H.; Shuster, Jonathan J; Haller, Michael J.

    2013-01-01

    OBJECTIVE To determine if lipoprotein particle abnormalities correlate with arterial stiffness in children with type 1 diabetes (T1D). STUDY DESIGN In this case-control study, we evaluated 70 children, 35 with T1D and 35 controls, ages 10–18 years, matched for age, sex, race, and BMI. Arterial stiffness was assessed by radial tonometry (AI75) and blood was collected for lipoprotein subclass analysis. RESULTS T1D subjects had increased AI75, decreased small LDL particle concentration (P=0.0067), increased large LDL particle concentration (P=0.007), increased large HDL particle concentration (P=0.0012), increased mean LDL particle size (P=0.0028), and increased mean HDL particle size (P<0.0001) compared to controls. No significant correlations were found between lipoprotein subclasses and arterial stiffness in T1D subjects. CONCLUSIONS T1D subjects have increased arterial stiffness when compared to controls, despite a less pro-atherogenic lipoprotein profile, indicating the need to identify other risk factors that correlate with arterial stiffness in T1D youth. PMID:20857838

  4. Photonic nanojet effect in multilayer micrometre-sized spherical particles

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A; Panina, E K

    2011-06-30

    The spatial and amplitude characteristics of photonic nanojets from micrometre-sized composite particles consisting of a nucleus and several shells with different refractive indices were considered. We investigated the longitudinal and transverse dimensions of the photon jet as well as the dependence of its peak intensity on the optical contrast of the shells. It was shown that, by varying the refractive index of the neighbouring shells in composite spherical microparticles, it is possible to manipulate the photonic nanojet parameters, in particular, increase its length or raise the peak intensity of the photon flux. (interaction of laser radiation with matter. laser plasma)

  5. Preparation of large-particle-size monodisperse polystyrene latexes in microgravity

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.; Kornfeld, D. M.; Vicente, F. A.

    1982-01-01

    Three large-particle-size monodisperse latexes (3.44, 4.08, and 4.98 micron diameter) were prepared in an automated four-reactor apparatus on the third orbital mission of the 'Columbia' begun on March 22. Comparison with ground-based controls showed that the 4.98 micron-size flight sample was the more uniform; the uniformity at the other two sizes was about the same. The rates of polymerization in microgravity and on earth were the same within experimental error, demonstrating that radical-initiated vinyl addition polymerizations are unaffected by the weightless environment.

  6. Size and composition of airborne particles from pavement wear, tires, and traction sanding.

    PubMed

    Kupiainen, Kaarle J; Tervahattu, Heikki; Räisänen, Mika; Mäkelä, Timo; Aurela, Minna; Hillamo, Risto

    2005-02-01

    Mineral matter is an important component of airborne particles in urban areas. In northern cities of the world, mineral matter dominates PM10 during spring because of enhanced road abrasion caused by the use of antiskid methods, including studded tires and traction sanding. In this study, factors that affect formation of abrasion components of springtime road dust were assessed. Effects of traction sanding and tires on concentrations, mass size distribution, and composition of the particles were studied in a test facility. Lowest particle concentrations were observed in tests without traction sanding. The concentrations increased when traction sand was introduced and continued to increase as a function of the amount of aggregate dispersed. Emissions were additionally affected by type of tire, properties of traction sand aggregate, and driving speed. Aggregates with high fragmentation resistance and coarse grain size distribution had the lowest emissions. Over 90% of PM10 was mineral particles. Mineralogy of the dust and source apportionment showed that they originated from both traction sand and pavement aggregates. The remaining portion was mostly carbonaceous and originated from tires and road bitumen. Mass size distributions were dominated by coarse particles. Contribution of fine and submicron size ranges were approximately 15 and 10% in PM10, respectively. PMID:15757329

  7. [Effects of the size of magnetic particles of immobilized enzyme reactors on the digestion performance].

    PubMed

    Zhang, Jiao; Zhou, Lianqi; Tian, Fang; Zhang, Yangjun; Qian, Xiaohong

    2013-02-01

    We applied immobilized enzyme reactors prepared with different sizes of magnetic particles into protein and proteome digestion. In addition, the influences of different sizes of the magnetic particles were studied on the reunion, enzyme efficiency and leakage sites. The experimental results showed that in comparison with the submicron magnetic particles, the amount of trypsin immobilized on the magnetic nanoparticles was 3. 5 times more than that of the submicron magnetic particles. However, the enzymatic efficiency was at the same level when the same amount of trypsin was used, and the reunion phenomenon was obviously improved when the size of the magnetic nanoparticles increased. Taking the immobilized enzyme reactor of 20 nm magnetic nanoparticles as an example, the digestion performance was further examined. The experimental results showed that rapid digestion could be achieved within 1 mm when the mass ratio of the trypsin and bovine serum albumin was 1:1. The peptide number of 0 missed cleavage site and the sequence coverage changed little after the protein was digested for 10 mm. It was concluded that the digestion efficiency of the immobilized enzyme reactor was much better than that of the in-solution digestion. When the immobilized enzyme reactors and the free trypsin were used for digestion, little differences of the leakage sites were found. Therefore, the immobilized enzyme reactors prepared with different sizes of magnetic particles can be applied in proteomic research for quick and efficient digestion.

  8. Properties of jet engine combustion particles during the PartEmis experiment: Particle size spectra (d > 15 nm) and volatility

    NASA Astrophysics Data System (ADS)

    Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Hitzenberger, R.; Petzold, A.; Wilson, C. W.

    2004-09-01

    Size distributions (d > 15 nm) and volatile properties of combustion particles were measured during test-rig experiments on a jet engine, consisting of a combustor and three simulated turbine stages (HES). The combustor was operated to simulate legacy (inlet temperature 300°C) and contemporary (500°C) cruise conditions, using kerosene with three different fuel sulfur contents (FSC; 50, 400 and 1300 μg g-1). Measurements found that contemporary cruise conditions resulted in lower number emission indices (EIN15) and higher geometric mean particle diameter (dG) than for legacy conditions. Increasing FSC resulted in an overall increase in EIN15 and decrease in dG. The HES stages or fuel additive (APA101) had little influence on EIN15 or dG, however, this is uncertain due to the measurement variability. EIN15 for non-volatile particles was largely independent of all examined conditions.

  9. Particle Size Effect in Granular Composite Aluminum/tungsten

    NASA Astrophysics Data System (ADS)

    Chiu, Po-Hsun; Wang, Sophia; Vitali, Efrem; Herbold, Eric B.; Benson, David J.; Nesterenko, Vitali F.

    2009-12-01

    Compressive dynamic strength and fracture pattern of Al-W granular composites with an identical weight ratio of Al (23.8 wt%) and W (76.2 wt%) with different porosities, size and shape of W component were investigated at strain rates 1000-1500 l/s. Samples were fabricated by Cold Isostatic Pressing. A dynamic strength of composites with fine W particles (100 MPa) was significantly larger than the strength of composite with the coarse W particles (75 MPa) at the same porosity 26% (samples with porosity 15% with coarse W particles exhibited a higher strength of 175 MPa). Morphology of W inclusions had a strong effect on dynamic strength. Samples with W wires arranged in axial direction (diameter 100 microns) and porosity 16%) with the same volume content of components had a dynamic strength of 350 MPa. Dynamic behavior was numerically simulated using computer code Raven, demonstrating a strain hardening effect due to in situ densification which was observed experimentally for cold isostatically pressed Al and Al-coarse W powders.

  10. Explaining millimeter-sized particles in brown dwarf disks

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Birnstiel, T.; Benisty, M.; Ricci, L.; Natta, A.; Dullemond, C. P.; Dominik, C.; Testi, L.

    2013-06-01

    Context. Planets have been detected around a variety of stars, including low-mass objects, such as brown dwarfs. However, such extreme cases are challenging for planet formation models. Recent sub-millimeter observations of disks around brown dwarf measured low spectral indices of the continuum emission that suggest that dust grains grow to mm-sizes even in these very low mass environments. Aims: To understand the first steps of planet formation in scaled-down versions of T-Tauri disks, we investigate the physical conditions that can theoretically explain the growth from interstellar dust to millimeter-sized grains in disks around brown dwarf. Methods: We modeled the evolution of dust particles under conditions of low-mass disks around brown dwarfs. We used coagulation, fragmentation, and disk-structure models to simulate the evolution of dust, with zero and non-zero radial drift. For the non-zero radial drift, we considered strong inhomogeneities in the gas surface density profile that mimic long-lived pressure bumps in the disk. We studied different scenarios that could lead to an agreement between theoretical models and the spectral slope found by millimeter observations. Results: We find that fragmentation is less likely and rapid inward drift is more significant for particles in brown dwarf disks than in T-Tauri disks. We present different scenarios that can nevertheless explain millimeter-sized grains. As an example, a model that combines the following parameters can fit the millimeter fluxes measured for brown dwarf disks: strong pressure inhomogeneities of ~40% of amplitude, a small radial extent ~15 AU, a moderate turbulence strength αturb = 10-3, and average fragmentation velocities for ices vf = 10 m s-1.

  11. Particle size distribution of suspended solids in the Chesapeake Bay entrance and adjacent shelf waters

    NASA Technical Reports Server (NTRS)

    Byrnes, M. R.; Oertel, G. F.

    1981-01-01

    Characteristics of suspended solids, including total suspended matter, total suspended inorganics, total suspended organics, particle size distribution, and the presence of the ten most prominent particle types were determined. Four research vessels simultaneously collected samples along four transects. Samples were collected within a 2-hour period that coincided with the maximum ebb penetration of Chesapeake Bay outwelling. The distribution of primary and secondary particle size modes indicate the presence of a surface or near-surface plume, possibly associated with three sources: (1) runoff, (2) resuspension of material within the Bay, and/or (3) resuspension of material in the area of shoals at the Bay mouth. Additional supportive evidence for this conclusion is illustrated with ocean color scanner data.

  12. Industrial applications of photon density wave spectroscopy for in-line particle sizing [Invited].

    PubMed

    Hass, Roland; Münzberg, Marvin; Bressel, Lena; Reich, Oliver

    2013-03-01

    Optical spectroscopy in highly turbid liquid material is often restricted by simultaneous occurrence of absorption and scattering of light. Photon Density Wave (PDW) spectroscopy is one of the very few, yet widely unknown, technologies for the independent quantification of these two optical processes. Here, a concise overview about modern PDW spectroscopy is given, including all necessary equations concerning the optical description of the investigated material, dependent light scattering, particle sizing, and PDW spectroscopy itself. Additionally, it is shown how the ambiguity in particle sizing, arising from Mie theory, can be correctly solved. Due to its high temporal resolution, its applicability to highest particle concentrations, and its purely fiber-optical probe, PDW spectroscopy possesses all fundamental characteristics for optical in-line process analysis. Several application examples from the chemical industry are presented.

  13. On-Road measurement of particulate matter emissions from vehicles: particle concentration, size distribution and morphology

    NASA Astrophysics Data System (ADS)

    Salvadori, N.; China, S.; Cook, J.; Kuhns, H. D.; Moosmuller, H.; Mazzoleni, C.

    2010-12-01

    During summer 2010, we conducted a field experiment in Southern Michigan to measure on-road vehicle emissions. During the campaign, particulate matter (PM) concentrations were monitored with a Light Detection and Ranging (Lidar) and transmissometer system. The Lidar and transmissometer system measures PM mass concentration of vehicle exhaust using backscatter and extinction of an ultraviolet laser beam directed across the road. Collocated with the Lidar system we deployed an extractive system inclusive of a LiCor 840 to monitor CO2 concentrations, a laser aerosol spectrometer to measure particle size distributions for PM with diameter larger than 0.1 µm, and a portable condensation particle counter to estimate the total particle number concentration for particles with diameters between~30nm and 1 µm. In addition, road-side vehicle exhaust particles were collected on nuclepore filters for scanning electron microscopy analysis during selected periods of time. In this study we analyze fuel-based mass and number PM emission factors from passing vehicles. The emission factors are estimated normalizing the PM data by the CO2 concentration. The morphology of the particulates is also investigated with electron microscopy analysis. Type of vehicles and traffic counts were recorded by one of the researchers during the sampling period to evaluate the influence on particle morphology due to traffic volume and fuel type. Image processing and fractal geometry are used to estimate various morphological parameters and fractal dimension. Diurnal variation of particle morphology descriptors and fractal dimension of soot particles are investigated and compared with CO2 emissions, particle size distribution and particle number concentration for selected subsets of the data. Variations of PM emission factors and PM morphology are also investigated for different traffic conditions and days of the week. The analysis of the PM data is of particular importance in monitoring vehicle

  14. Effect of Nano-Particle Addition on Grain Structure Evolution of Friction Stir-Processed Al 6061 During Postweld Annealing

    NASA Astrophysics Data System (ADS)

    Guo, Junfeng; Lee, Bing Yang; Du, Zhenglin; Bi, Guijun; Tan, Ming Jen; Wei, Jun

    2016-08-01

    The fabrication of nano-composites is challenging because uniform dispersion of nano-sized reinforcements in metallic substrate is difficult to achieve using powder metallurgy or liquid processing methods. In the present study, Al-based nano-composites reinforced with Al2O3 particles have been successfully fabricated using friction stir processing. The effects of nano-Al2O3 particle addition on grain structure evolution of friction stir-processed Al matrix during post-weld annealing were investigated. It was revealed that the pinning effect of Al2O3 particles retarded grain growth and completely prevented abnormal grain growth during postweld annealing at 470°C. However, abnormal grain growth can still occur when the composite material was annealed at 530°C. The mechanism involved in the grain structure evolution and the effect of nano-sized particle addition on the mechanical properties were discussed therein.

  15. Effect of Nano-Particle Addition on Grain Structure Evolution of Friction Stir-Processed Al 6061 During Postweld Annealing

    NASA Astrophysics Data System (ADS)

    Guo, Junfeng; Lee, Bing Yang; Du, Zhenglin; Bi, Guijun; Tan, Ming Jen; Wei, Jun

    2016-06-01

    The fabrication of nano-composites is challenging because uniform dispersion of nano-sized reinforcements in metallic substrate is difficult to achieve using powder metallurgy or liquid processing methods. In the present study, Al-based nano-composites reinforced with Al2O3 particles have been successfully fabricated using friction stir processing. The effects of nano-Al2O3 particle addition on grain structure evolution of friction stir-processed Al matrix during post-weld annealing were investigated. It was revealed that the pinning effect of Al2O3 particles retarded grain growth and completely prevented abnormal grain growth during postweld annealing at 470°C. However, abnormal grain growth can still occur when the composite material was annealed at 530°C. The mechanism involved in the grain structure evolution and the effect of nano-sized particle addition on the mechanical properties were discussed therein.

  16. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach.

    PubMed

    Midander, Klara; Elihn, Karine; Wallén, Anna; Belova, Lyuba; Karlsson, Anna-Karin Borg; Wallinder, Inger Odnevall

    2012-06-15

    Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM(10) and PM(2.5) were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison. The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm(3) (7500 to 20000 particles/cm(3)), only 190 particles/cm(3) were larger than 250 nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM(10) and PM(2.5) identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants. This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols. PMID:22551935

  17. Gas/particle Partitioning and Particle Size Distributions of Polycyclic Aromatic Hydrocarbons (pahs) in the Atmosphere.

    NASA Astrophysics Data System (ADS)

    Liu, Shi-Ping

    This study applied three different gas/particle (G/P) separation mechanisms (diffusion, filtration and impaction) to investigate G/P partitioning and particle size distributions of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. Because some PAHs such as benzo (a) pyrene have been shown to be carcinogenic to humans and persistent in the environment, it is important to have reliable methods to measure PAH G/P partitioning and particle size distributions for the purpose of understanding their atmospheric processing and their impact to environmental and human health. The objectives of this study include: (1) Development of a diffusion separator (DS) to separate a known fraction of the gas phase from the aerosol: The calibration experiment results reveal that the G/P separation performance of the DS agrees well with diffusion theory. True gas PAH concentrations are calculated by the measured PAH concentrations in the core exit of the DS and the diffusion factor at the sampling temperature. (2) Evaluation of sampling artifacts associated with high volume samplers and their effectiveness in measuring PAH G/P partitioning in the atmosphere: The comparison between the DS, a filter/adsorbent sampler (FA) and a microorifice uniform deposit impactor (MOUDI) revealed both gaseous sorption onto filters and desorption from filters of the FA sampler for most PAHs. (3) Investigation of particle size distribution of PAHs in Chicago urban and Minnesota suburban areas: The results of MOUDI sampler showed that the PAH mass median diameters (MMDs) are smaller than atmospheric particle MMDs by 0.1-0.3 μm in both areas. The calculated PAH dry deposition fluxes and Lake Michigan sediment accumulation rates indicates that the atmospheric dry deposition contributes 15-50% of PAHs to nearby Lake Michigan sediment.

  18. Degree of particle size breakdown during mastication may be a possible cause of interindividual glycemic variability.

    PubMed

    Ranawana, Viren; Monro, John A; Mishra, Suman; Henry, C Jeya K

    2010-04-01

    The degree of mastication varies significantly between individuals and may be a cause for the considerable interindividual variation observed in the glycemic response (GR) to a single food. Using rice as the model, the aim of this study was to determine if interindividual differences in mastication and resulting degree of particle breakdown affected in vitro and in vivo glycemic potency. In a randomized crossover design, using 15 subjects, the particle size distribution and in vitro digestibility of individuals' chewed rice were determined along with their in vivo blood GR. The rapidly digested starch (RDS) content in the masticated boluses, moreover, was measured during in vitro digestion. The particle size distribution of masticated rice differed significantly interindividually. In vitro digestion of rice decreased as particle size increased. The degree of particle size breakdown as a result of mastication correlated with the RDS content in the chewed food bolus and initial digestion rate in vitro. The quantity of undigested material remaining at the end of 120-minute in vitro digestion correlated significantly with the percentage of particles greater than 2000 microm in masticated rice. The percentage of particles smaller than 500 microm correlated significantly with in vivo GR at 30 minutes postingestion but not with the total incremental area under the blood glucose curve. The degree of habitual mastication may therefore potentially influence both the magnitude and pattern of the GR and may partly explain interindividual differences in it. Although the study sets the base for future research, firm conclusions can be reached only upon the completion of additional work.

  19. Direct Characterization of Airborne Particles Associated with Arsenic-rich Mine Tailings: Particle Size Mineralogy and Texture

    SciTech Connect

    M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti

    2011-12-31

    Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

  20. Effects of finite-size particles on the turbulent flows in a square duct

    NASA Astrophysics Data System (ADS)

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2015-11-01

    Fully resolved numerical simulations of the particle-laden turbulent flows in a square duct are performed with a direct-forcing fictitious domain method. The effects of the finite-size particles on the mean and root-mean-square (RMS) velocities are investigated at the friction Reynolds number of 150 (based on the friction velocity and half duct width) and the particle volume fractions ranging from 0.78% to 7.07%. For the neutrally buoyant case, our results show that the mean secondary flow is enhanced and its circulation center shifts closer to the center of the duct cross-section when the particles are added. The reason for the particle effect on the mean secondary flow is analyzed by examining the terms in the mean streamwise vorticity equation. The particles enhance the wall-tangential component of the RMS velocity (i.e. Reynolds normal stress) more than its wall-normal component in the near-wall region near the corners, resulting in the enhancement in the gradients of the normal stress difference, which we think is mainly responsible for the enhancement in the mean secondary flow. The particles accumulate preferentially in the near-corner region in the neutrally buoyant case. In addition, the effects of particle sedimentation are examined at different Shields numbers. The work was supported by the National Natural Science Foundation of China (11372275) and Research Fund for the Doctoral Program of Higher Education of China (20130101110035).

  1. A global data set of soil particle size properties

    NASA Technical Reports Server (NTRS)

    Webb, Robert S.; Rosenzweig, Cynthia E.; Levine, Elissa R.

    1991-01-01

    A standardized global data set of soil horizon thicknesses and textures (particle size distributions) was compiled. This data set will be used by the improved ground hydrology parameterization designed for the Goddard Institute for Space Studies General Circulation Model (GISS GCM) Model 3. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File, the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties.

  2. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  3. Parametric study on particle size and SOF effects on EGR cooler fouling

    NASA Astrophysics Data System (ADS)

    Hong, Kwang Seok; Lee, Kyo Seung; Song, Soonho; Chun, Kwang Min; Chung, Doyoung; Min, Sunki

    2011-10-01

    Recent diesel engine technologies, developed for enhanced regulation of exhaust emissions, are characterized by high exhaust gas recirculation (EGR) rates and high-pressure fuel injection. The use of high EGR rates, by which high temperatures can be avoided in a cylinder, is an effective method for reduction of nitrogen oxide (NOx) emissions. High-pressure fuel injection leads to smaller soot particles, which decreases mass-based soot emission. These technologies, however, also have effects on particulate matter (PM) characteristics that are closely related to EGR cooler fouling. High-pressure fuel injection, which makes smaller soot particles, increases the concentration of soot particles, and a high EGR rate, which lowers the temperature in the cylinder, increases the soluble organic fraction (SOF). In this study, we evaluated the effects of these changes in PM characteristics on EGR cooler fouling. Instead of an engine-based experiment, in which a parametric study is nearly impossible, a laboratory experiment was performed to separate variables. A soot generator was used to make model exhaust gas because the variables could be controlled separately (e.g., mean particle size and concentration of soot particles) and this improved the reproducibility of the experiments. Additionally, n-dodecane, a model compound representing diesel fuel, was vaporized and injected into the exhaust gas to test the effects of SOF on cooler fouling. For particle sizes ranging from 41 to 190 nm in diameter, the deposition fraction was inversely proportional to particle size. Thus, smaller soot particles in the exhaust gas were more likely to cause formation of thermophoretic deposits on the wall of the EGR cooler. At an EGR gas temperature of 350 °C, the deposition fraction was greatest (84%) for the smallest particle size of 41 nm, whereas the deposition fraction was least (7%) for the largest particle size, 190 nm. The performance degradation of the EGR cooler showed a similar trend

  4. Intrinsic speckle noise in in-line particle holography due to polydisperse and continuous particle sizes

    NASA Astrophysics Data System (ADS)

    Edwards, Philip J.; Hobson, Peter R.; Rodgers, G. J.

    2000-08-01

    In-line particle holography is subject to image deterioration due to intrinsic speckle noise. The resulting reduction in the signal to noise ratio (SNR) of the replayed image can become critical for applications such as holographic particle velocimetry (HPV) and 3D visualisation of marine plankton. Work has been done to extend the mono-disperse model relevant to HPV to include poly-disperse particle fields appropriate for the visualisation of marine plankton. Continuous and discrete particle fields are both considered. It is found that random walk statistics still apply for the poly-disperse case. The speckle field is simply the summation of the individual speckle patters due to each scatter size. Therefor the characteristic speckle parameter (which encompasses particle diameter, concentration and sample depth) is alos just the summation of the individual speckle parameters. This reduces the SNR calculation to the same form as for the mono-disperse case. For the continuous situation three distributions, power, exponential and Gaussian are discussed with the resulting SNR calcuated. The work presented here was performed as part of the Holomar project to produce a working underwater holographic camera for recording plankton.

  5. Ultrasonically controlled particle size distribution of explosives: a safe method.

    PubMed

    Patil, Mohan Narayan; Gore, G M; Pandit, Aniruddha B

    2008-03-01

    Size reduction of the high energy materials (HEM's) by conventional methods (mechanical means) is not safe as they are very sensitive to friction and impact. Modified crystallization techniques can be used for the same purpose. The solute is dissolved in the solvent and crystallized via cooling or is precipitated out using an antisolvent. The various crystallization parameters such as temperature, antisolvent addition rate and agitation are adjusted to get the required final crystal size and morphology. The solvent-antisolvent ratio, time of crystallization and yield of the product are the key factors for controlling antisolvent based precipitation process. The advantages of cavitationally induced nucleation can be coupled with the conventional crystallization process. This study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent antisolvent based precipitation process. CL20, a high-energy explosive compound, is a polyazapolycyclic caged polynitramine. CL-20 has greater energy output than existing (in-use) energetic ingredients while having an acceptable level of insensitivity to shock and other external stimuli. The size control and size distribution manipulation of the high energy material (CL20) has been successfully carried out safely and quickly along with an increase in the final mass yield, compared to the conventional antisolvent based precipitation process. PMID:17532248

  6. New-particle formation, growth and climate-relevant particle production in Egbert, Canada: analysis from 1 year of size-distribution observations

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Westervelt, D. M.; Atwood, S. A.; Barnes, E. A.; Leaitch, W. R.

    2014-08-01

    Aerosol particle nucleation, or new-particle formation, is the dominant contributor to particle number in the atmosphere. However, these particles must grow through condensation of low-volatility vapors without coagulating with the larger, preexisting particles in order to reach climate-relevant sizes (diameters larger than 50-100 nm), where the particles may affect clouds and radiation. In this paper, we use 1 year of size-distribution measurements from Egbert, Ontario, Canada to calculate the frequency of regional-scale new-particle-formation events, new-particle-formation rates, growth rates and the fraction of new particles that survive to reach climate-relevant sizes. Regional-scale new-particle-formation events occur on 14-31% of the days (depending on the stringency of the classification criteria), with event frequency peaking in the spring and fall. New-particle-formation rates and growth rates are similar to those measured at other midlatitude continental sites. We calculate that roughly half of the climate-relevant particles (with diameters larger than 50-100 nm) at Egbert are formed through new-particle-formation events. With the addition of meteorological and SO2 measurements, we find that new-particle formation at Egbert often occurs under synoptic conditions associated with high surface pressure and large-scale subsidence that cause sunny conditions and clean-air flow from the north and west. However, new-particle formation also occurs when air flows from the polluted regions to the south and southwest of Egbert. The new-particle-formation rates tend to be faster during events under the polluted south/southwest flow conditions.

  7. Vertical Variation of Ice Particle Size in Convective Cloud Tops

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Fridlind, Ann M.; Cairns, Brian; Ackerman, Andrew S.; Yorks, John E.

    2016-01-01

    A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops (dr(sub e)/dz) from airborne shortwave reflectance measurements and lidar. Values of dr(sub e)/dz are about -6 micrometer/km for cloud tops below the homogeneous freezing level, increasing to near 0 micrometer/km above the estimated level of neutral buoyancy. Retrieved dr(sub e)/dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases. This is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation.

  8. Influence of particle size on performance of a pilot-scale fixed-bed gasification system.

    PubMed

    Yin, Renzhan; Liu, Ronghou; Wu, Jinkai; Wu, Xiaowu; Sun, Chen; Wu, Ceng

    2012-09-01

    The effect of particle size on the gasification performance of a pilot-scale (25 kg/h) downdraft fixed bed gasification system was investigated using prunings from peach trees at five different size fractions (below 1, 1-2, 2-4, 4-6 and 6-8 cm). The gas and hydrocarbon compositions were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS), respectively. With increasing particle size, gas yield increased while tar and dust content decreased. The lower heating value of the gas decreased slightly with particle size. At a smaller particle size, more hydrocarbons were detected in the producer gas. Hydrogen and carbon dioxide contents increased with the decrease in particle size, reaching 16.09% and 14.36% at particle size below 1cm, respectively. Prunings with a particle size of 1-2 cm were favorable for gasification in the downdraft gasifier used in this study.

  9. Particle size effect of Ni-rich cathode materials on lithium ion battery performance

    SciTech Connect

    Hwang, Ilkyu; Lee, Chul Wee; Kim, Jae Chang; Yoon, Songhun

    2012-01-15

    Graphical abstract: The preparation condition of Ni-rich cathode materials was investigated. When the retention time was short, a poor cathode performance was observed. For long retention time condition, cathode performance displayed a best result at pH 12. Highlights: Black-Right-Pointing-Pointer Ni-rich cathode materials (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) were prepared by co-precipitation method using separate addition of Al salt. Black-Right-Pointing-Pointer Particle size of Ni-rich cathode materials became larger with increase of retention time and solution pH. Black-Right-Pointing-Pointer Cathode performance was poor for low retention time. Black-Right-Pointing-Pointer Optimal pH for co-precipitation was 12. -- Abstract: Herein, Ni-rich cathode materials (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) in lithium ion batteries are prepared by a separate addition of Ni/Co salt and Al sol solution using a continuously stirred tank reactor. Retention time and solution pH were controlled in order to obtain high performance cathode material. Particle size increase was observed with a higher retention time of the reactants. Also, primary and secondary particles became smaller according to an increase of solution pH, which was probably due to a decrease of growth rate. From the cathode application, a high discharge capacity (175 mAh g{sup -1}), a high initial efficiency (90%) and a good cycleability were observed in the cathode material prepared under pH 12 condition, which was attributed to its well-developed layered property and the optimal particle size. However, rate capability was inversely proportional to the particle size, which was clarified by a decrease of charge-transfer resistance measured in the electrochemical impedance spectroscopy.

  10. Comprehensive understanding of nano-sized particle separation processes using nanoparticle tracking analysis.

    PubMed

    Lawler, Desmond F; Youn, Sungmin; Zhu, Tongren; Kim, Ijung; Lau, Boris L T

    2015-01-01

    The understanding of nano-sized particle separation processes has been limited by difficulties of nanoparticle characterization. In this study, nanoparticle tracking analysis (NTA) was deployed to evaluate the absolute particle size distributions in laboratory scale flocculation and filtration experiments with silver nanoparticles. The results from NTA were consistent with standard theories of particle destabilization and transport. Direct observations of changes in absolute particle size distributions from NTA enhance both qualitative and quantitative understanding of particle separation processes of nano-sized particles. PMID:26676021

  11. Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting.

    PubMed

    Haynes, R J; Belyaeva, O N; Zhou, Y-F

    2015-01-01

    In order to better characterize mechanically shredded municipal green waste used for composting, five samples from different origins were separated into seven particle size fractions (>20mm, 10-20mm, 5-10mm, 2-5mm, 1-2mm, 0.5-1.0mm and <0.5mm diameter) and analyzed for organic C and nutrient content. With decreasing particle size there was a decrease in organic C content and an increase in macronutrient, micronutrient and ash content. This reflected a concentration of lignified woody material in the larger particle fractions and of green stems and leaves and soil in the smaller particle sizes. The accumulation of nutrients in the smaller sized fractions means the practice of using large particle sizes for green fuel and/or mulch does not greatly affect nutrient cycling via green waste composting. During a 100-day incubation experiment, using different particle size fractions of green waste, there was a marked increase in both cumulative CO2 evolution and mineral N accumulation with decreasing particle size. Results suggested that during composting of bulk green waste (with a high initial C/N ratio such as 50:1), mineral N accumulates because decomposition and net N immobilization in larger particles is slow while net N mineralization proceeds rapidly in the smaller (<1mm dia.) fractions. Initially, mineral N accumulated in green waste as NH4(+)-N, but over time, nitrification proceeded resulting in accumulation of NO3(-)-N. It was concluded that the nutrient content, N mineralization potential and decomposition rate of green waste differs greatly among particle size fractions and that chemical analysis of particle size fractions provides important additional information over that of a bulk sample. PMID:25453318

  12. The permeability of poly-disperse porous media and effective particle size

    NASA Astrophysics Data System (ADS)

    Markicevic, B. I.; Preston, C.; Osterroth, S.; Iliev, O.; Hurwitz, M.

    2015-11-01

    The interactions between the fluid and solid phases in porous media account for the openness and length of the flow path that the fluid needs to travel within. The same reasoning applies for both mono- and poly-disperse media, and is reflected in the adoption of the same permeability models. The only difference is that an effective particle size diameter has to be used for the poly-disperse samples. A filtration experiment is used to form a particle layer, filter cake, consisting of particles of different sizes. Both inflow and outflow particle size distribution are measured by particle counting method, and from their difference, the particle size distribution in the cake is determined. In a set of experiments, the filtration history is altered by changing (i) filtration medium; (ii) suspension flow rate; and (iii) particle concentration, where in all cases investigated the cake permeability remains constant. In order to predict the permeability of poly-disperse cake from the analytical models, the particle size distribution moments are calculated, and the permeability is found for each moment. Comparing the experimental to the analytical permeability values the effective particle size is found, where the permeability calculated by using the harmonic mean of the particle size distribution reproduces the permeability experimental value best. Finally, in the parametric study, reducing the cake porosity and/or lowering the particle retention shifts effective particle size used in the permeability model toward higher moments of the particle size distribution function.

  13. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Kostadinov, Tihomir S.; Milutinović, Svetlana; Marinov, Irina; Cabré, Anna

    2016-04-01

    Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ˜ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass

  14. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  15. Systems and methods of varying charged particle beam spot size

    SciTech Connect

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  16. Design of a Particle Shadowgraph Velocimetry and Size (PSVS) System to Determine Particle Size and Density Distributions (PSDD) in Hanford Nuclear Tank Wastes

    SciTech Connect

    Fountain, Matthew S.; Blanchard, Jeremy; Erikson, Rebecca L.; Kurath, Dean E.; Howe, Daniel T.; Adkins, Harold E.; Jenks, Jeromy WJ

    2012-01-10

    An accurate particle size and density distribution (PSDD) for nuclear tank wastes is an essential piece of information that helps determine the engineering requirements for a host of waste management unit operations including tank mixing, pipeline transport, and filtration. The existing approach has involved a laborious approach in which individual particles are identified using SEM/XRD methods and the density of these materials obtained from the technical literature. Further, some methods simply approximate individual particle densities by assuming chemical composition rather than actual measurements of particle density. A particle shadowgraph velocimetry and size (PSVS) system has been designed to obtain representative PSDDs for a broad range of Hanford tank waste materials existing as both individual particles and agglomerates. The PSVS utilizes optical hardware, a temperature controlled settling column, and particle introduction chamber to accurately and reproducibly obtain images of settling particles. Image analysis software then provides a highly accurate determination of both particle terminal velocity and equivalent spherical particle diameter. The particle/agglomerate density is then calculated from Newton’s terminal settling theory. The PSVS was designed to accurately image particle/agglomerate sizes between 10-1000µm and particle/agglomerate densities ranging from 1.4-11.5g/cm3 where the maximum terminal velocity does not exceed 20cm/s. Preliminary testing was completed and results were in good agreement with terminal settling theory. Recent results of this method development are presented, as well as experimental design, and future proposed work.

  17. Size, shape and flow characterization of ground wood chip and ground wood pellet particles

    DOE PAGES

    Rezaei, Hamid; Lim, C. Jim; Lau, Anthony; Sokhansanj, Shahab

    2016-07-11

    Size, shape and density of biomass particles influence their transportation, fluidization, rates of drying and thermal decomposition. Pelleting wood particles increases the particle density and reduces the variability of physical properties among biomass particles. In this study, pine chips prepared for pulping and commercially produced pine pellets were ground in a hammer mill using grinder screens of 3.2, 6.3, 12.7 and 25.4mmperforations. Pellets consumed about 7 times lower specific grinding energy than chips to produce the same size of particles. Grinding pellets produced the smaller particles with narrower size distribution than grinding chips. Derived shape factors in digital image analysismore » showed that chip particles were rectangular and had the aspect ratios about one third of pellet particles. Pellet particles were more circular shape. The mechanical sieving underestimated the actual particle size and did not represent the size of particles correctly. Instead, digital imaging is preferred. Angle of repose and compressibility tests represented the flow properties of ground particles. Pellet particles made a less compacted bulk, had lower cohesion and did flow easier in a pile of particles. In conclusion, particle shape affected the flow properties more than particle size« less

  18. Optimal Estimation Retrieval of Cloud Ice Particle Size Distributions

    NASA Astrophysics Data System (ADS)

    Griffith, B. D.; Kummerow, C.

    2006-12-01

    An optimal estimation retrieval technique has been applied to a multi-frequency airborne radar and radiometer data set from the Wakasa Bay AMSR-E validation experiment. First, airborne radar observations at 13.4, 35.6 and 94.9 GHz were integrated to retrieve all three parameters of a normalized gamma ice particle size distribution (PSD). The retrieved PSD was validated against near-simultaneous in situ cloud probe observations. The differences between the retrieved and in situ measured PSDs were explored through sensitivity analysis, and the sources of uncertainty were found to be the bulk density of the cloud ice and the aspect ratio of aspherical particles modeled as oblate spheroids. The optimal estimation technique was then applied to select an optimal density and aspect ratio for the cloud under study through integration of the in situ and radar observations. The optimal ice size-density relationship was found to be ρ(D)=0.07×D^{- 1.58} g cm-3 where the diameter, D, is in mm, and the oblate spheroid aspect ratio was found to be 0.53. The use of these optimal values, as improved assumptions in the PSD retrieval, reduced the uncertainty in the optimized forward model from ± 6 dB to ± 2 dB. Next, the retrieval technique was expanded to include passive microwave observations and retrieve a full column vertical hydrometeor profile. Eleven airborne passive microwave frequencies from 10.7 to 340 GHz were integrated with the airborne radar observations to retrieve all three parameters of a normalized gamma PSD at each vertical level in the column. The retrieved vertical profile was validated against a clear sky scene before being applied to the horizontal extent of an ice cloud. The retrieved PSD showed vertical structure consistent with cloud microphysical processes. PSDs were retrieved using both the general and improved assumption case-specific density and shape models. A comparison revealed an order of magnitude difference in ice water path between the two

  19. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.

    PubMed

    Abdulkarim, Muthanna; Agulló, Nuria; Cattoz, Beatrice; Griffiths, Peter; Bernkop-Schnürch, Andreas; Borros, Salvador Gómez; Gumbleton, Mark

    2015-11-01

    it has substantiated the pursuance of other polymer synthesis approaches (such as living free-radical polymerisation) to deliver stable, size-controlled nanoparticles possessing a uniform high density charge distribution and yielding a net neutral surface potential. Such particles will provide an additional strategy to that of PEGylated systems where the interactions of mucosally delivered nanoparticles with the mucus barrier are to be minimised.

  20. Particle size interconversion of human low density lipoproteins during incubation of plasma with phosphatidylcholine vesicles

    SciTech Connect

    Shahrokh, Z.; Nichols, A.V.

    1982-09-30

    Incubation of plasma (37/sup 0/C, 6hr) in the presence of increasing amounts of phosphatidylcholine (PC) vesicles, above a threshold concentration, results in an increase in particle diameter of LDL relative to that from nonincubated plasma. With further PC addition, the major peak of LDL in the gradient gel electrophoretic pattern is transformed, first, into a bimodal and, subsequently, into a single peak distribution. PC-induced interconversion of LDL requires factor(s) in the d > 1.20 g/ml fraction and, at PC concentrations below approximately 2 mg/ml, is not inhibited by p-chloromercuriphenylsulfonic acid. Plasma incubation with increasing PC levels also leads to characteristic particle size transformations in HDL/sub 3/ species, with the transformation products ultimately converging to form a single peak pattern within the HDL/sub 2a/ size interval. In certain subjects, incubation of plasma, in the absence of added PC, shifts the particle size distribution of LDL towards smaller species; this can be prevented by addition of PC. We propose that incubation-induced shifts of LDL towards larger or smaller species result from changes in phospholipid (PL) content of LDL.

  1. Influence of particle size on the effectiveness of beet pulp fiber.

    PubMed

    Clark, P W; Armentano, L E

    1997-05-01

    Sixteen Holstein cows in midlactation were used in a design based on a replicated 4 x 4 Latin square with the last period removed to determine the influence of particle size of beet pulp neutral detergent fiber (NDF) on its effectiveness as a replacement for alfalfa NDF. Diets were a low forage, low fiber diet [12.1 g of alfalfa NDF/100 g of dry matter (DM)], a normal forage diet (low forage plus 7.8 g of additional alfalfa NDF/100 g of DM), and two low forage diets with 5.3 g of NDF/100 g of DM from either whole or finely ground dried sugar beet pulp. Replacement of alfalfa fiber with beet pulp fiber increased milk protein yield because of the tendencies toward increased milk yield and protein concentration. However, milk fat concentration and yield were unaffected. The addition of beet pulp fiber, either whole or ground, to the basal low forage, low fiber diet did not affect yields of milk, protein, or fat, but milk protein concentration tended to be lower for cows fed the beet pulp diets than for cows fed the basal diet. Reducing the particle size of beet pulp increased DM intake but did not affect any of the milk yield measurements. Particle size reduction of beet pulp did not reduce its effectiveness as a fiber source as measured by changes in milk fat content.

  2. Influence of particle size on bioprocess induced changes on technological functionality of wheat bran.

    PubMed

    Coda, Rossana; Kärki, Ilona; Nordlund, Emilia; Heiniö, Raija-Liisa; Poutanen, Kaisa; Katina, Kati

    2014-02-01

    Wheat bran is nutritionally an important source of dietary fibre, vitamins and minerals, but its negative influence on dough rheology, texture and sensory quality of bread limits its use in bread baking. The current study aimed at improving the technological functionality of bran by bioprocessing Wheat bran of different particle size (750, 400, 160, 50 μm) was fermented 8 h or 24 h with Lactobacillus brevis E95612 and Kazachstania exigua C81116 with or without addition of enzyme mixture with various carbohydrase activities. Kinetics of growth and acidification showed that the growth of the starters was enhanced in the presence of enzymes in bran having particle size of 160 and 50 μm. Fermentation was critical to improve dough stability and volume of bran enriched breads, whereas addition of enzymes had the most significant effect in improving bread shelf-life. Wheat bread containing 160 μm bran fermented 8 h with enzymes had mild flavour, the highest volume and shelf-life. Reduction of particle size increased perceived smoothness of mouthfeel but provided darker colour in bran-containing breads. The short 8 h bioprocessing, with or without enzymes did not increase pungent flavour or bitter aftertaste in comparison with the native bran.

  3. Effect of particle size on the vibration of plates loaded with granular material

    NASA Astrophysics Data System (ADS)

    Turner, Joseph A.; Yang, Liyong; Kang, Wonmo

    2005-09-01

    Acoustic methods of landmine detection are emerging as reliable techniques that are especially well suited for non-metallic mines. These methods rely on the vibrations of the top plate of the mine as it responds to the acoustic excitation. The plate response is complicated by the interaction with the surrounding soil. If the loading soil is granular (e.g., sand), it is expected that particle size will influence the mine response. Experimental results related to this hypothesis are presented here. The first resonant frequency of a sand-loaded plate is measured as a function of sand mass for dry sand of various sizes covering a range from hundreds of microns to a few millimeters. For low values of sand mass, the plate resonance decreases and eventually reaches a minimum. In this regime, there is no dependence on particle size. After the minimum, the frequency increases with additional mass. In this regime, a particle size effect is observed. Models are also presented to support and explain experimental results. The results are expected to impact quantitative aspects of mine detection by acoustic means. [Work supported by ARL.

  4. Subcentimeter-size particle distribution functions in planetary rings from Voyager radio and photopolarimeter occultation data

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Tyler, Leonard G.; Marouf, Essam A.

    1987-01-01

    Analysis of measurements of the scattered and direct components of Voyager 1 radio occultation signals at 3.5 and 13 cm wavelengths yield estimates of the distribution functions of supracentimeter-size particles and thickness of relatively broad regions in Saturn's rings. If mearurements of signal amplitude at a shorter wavelength are combined with the previously analyzed data, the shape of the distribution functions characterizing the smaller particles can be constrained. If size distributions of arbitrary form were considered, many solutions are found that are consistent with the three available observations of signal amplitude. The best-fit power law was calculated to the three observations at three wavelengths for several of the embedded Saturn ringlets. Mie scattering theory predicts that the measured phase of the radio occultation signal is highly sensitive to particles ranging from 0.1 to 1.0 wavelengths in size, thus additional constraints on the subcentimeter-size distribution functions for both the Saturn and Uranus rings can in principle be derived from radio phase measurements.

  5. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    SciTech Connect

    Plionis, Alexander A; Peterson, Dominic S; Tandon, Lav; Lamont, Stephen P

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  6. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Kostadinov, T. S.; Milutinović, S.; Marinov, I.; Cabré, A.

    2015-05-01

    Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth System models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing algorithms to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 μm in diameter), nanophytoplankton (2-20 μm) and microphytoplankton (20-50 μm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e. oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have large biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield on average ~0.2-0.3 Gt of C, consistent with analogous estimates from two other ocean color algorithms, and several state-of-the-art Earth System models. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, because the PSD-based algorithm is not a priori empirically constrained and introduces improvement over the assumptions of the other approaches. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm

  7. Comparison of coal ash particle size distributions from Berner, and Dekati low pressure impactors

    SciTech Connect

    Wang, C.M.; Seames, W.S.; Gadgil, M.; Hrdlicka, J.; Fix, G.

    2007-12-15

    This article presents the differential mass size distributions of coal combustion particulate matter (PM) determined with the Berner low-pressure impactor (BLPI, Hauke Model 25-410.015) and a newer generation of low pressure impactor, the Dekati low-pressure impactor (DLPI, Dekati Ltd Model 6281). The collection characteristics of the BLPI and DLPI are compared and cutoff diameters are calculated. Samples were collected in the post-combustion zone of a 19 kW vertical downflow combustor from two coal types. Both BLPI and DLPI represent a tri-modal distribution and give statistically similar characterizations of the coal ash particle size distribution. Distributions generated from DLPI data have higher fractions of submicron particles compared to those generated from BLPI data. The DLPI's two additional stages may provide greater resolution in the submicron region than the BLPI.

  8. Event-based total suspended sediment particle size distribution model

    NASA Astrophysics Data System (ADS)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  9. Particle-size segregation in dense granular avalanches

    NASA Astrophysics Data System (ADS)

    Gray, John Mark Nicholas Timm; Gajjar, Parmesh; Kokelaar, Peter

    2015-01-01

    Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid-fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

  10. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES

    SciTech Connect

    Ramanathan Sampath

    2006-06-30

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period January 01, 2006 to June 30, 2006 which covers the fourth six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse completed obtaining additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in a previous reporting period. Simultaneously, REM, our subcontractor, has completed obtaining raw data for surface area, volume, and drag coefficient to mass ratio (Cd/m) information for 9 more biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated before in this project. Results of the mean mass data obtained to date are reported here, and analysis of the raw data collected by REM is in progress.

  11. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES

    SciTech Connect

    Ramanathan Sampath

    2006-01-01

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2005 to December 31, 2005 which covers the third six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse continued to obtain additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in the last reporting period. Simultaneously, REM, our subcontractor, has obtained raw data for surface area, volume, and drag coefficient to mass ratio (C{sub d}/m) information for several biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated in the last reporting period. Preliminary results of the mean mass and the shape data obtained are reported here, and more data collection is in progress.

  12. Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A.; Barnes, Rebecca T.; Gallagher, Morgan E.; Gonnermann, Helge

    2016-02-01

    The amendment of soil with biochar can sequester carbon and alter hydrologic properties by changing physical and chemical characteristics of soil. To understand the effect of biochar amendment on soil hydrology, we measured the hydraulic conductivity (K) of biochar-sand mixtures as well as dissolved organic carbon (DOC) in leachate. Specifically, we assessed the effects of biochar concentration and particle size on K and amount of DOC in the soil leachate. To better understand how physical properties influenced K, we also measured the skeletal density of biochars and sand, and the bulk density, the water saturation, and the porosity of biochar-sand mixtures. Our model soil was sand (0.251-0.853 mm) with biochar rates from 2 to 10 wt% (g biochar/g total soil × 100%). As biochar (<0.853 mm) concentration increased from 0 to 10 wt%, K decreased by 72 ± 3%. When biochar particle size was equal to, greater than, and less than particle size of sand, we found that biochar in different particle sizes have different effects on K. For a 2 wt% biochar rate, K decreased by 72 ± 2% when biochar particles were finer than sand particles, and decreased by 15 ± 2% when biochar particles were coarser than sand particles. When biochar and sand particle size were comparable, we observed no significant effect on K. We propose that the decrease of K through the addition of fine biochar was because finer biochar particles filled spaces between sand particles, which increased tortuosity and reduced pore throat size of the mixture. The decrease of K associated with coarser biochar was caused by the bimodal particle size distribution, resulting in more compact packing and increased tortuosity. The loss of biochar C as DOC was related to both biochar rate and particle size. The cumulative DOC loss was 1350% higher from 10 wt% biochar compared to pure sand. This large increase reflected the very small DOC yield from pure sand. In addition, DOC in the leachate decreased as biochar particle

  13. Determining the size distribution of core-shell spheres and other complex particles by laser diffraction.

    PubMed

    Lagasse, R R; Richards, D Wayne

    2003-11-01

    The goal of this work is to determine the size distribution of hollow glass spheres by laser diffraction, an experiment which involves measuring angle-dependent scattering of light from particles dispersed in a liquid. The proprietary software supplied with commercial instruments is not strictly applicable to our two-layer, glass-shell, hollow-core spheres because it requires that the particles have spatially homogeneous properties. We therefore developed Fortran code to compute the scattering from core-shell spherical particles. The results show that the scattering from representative hollow glass particles diverges from homogeneous sphere scattering when the radius decreases from 10 to 3 microm. Additionally, scattering measurements on two core-shell hollow glass powders were analyzed using the exact core-shell optical model and homogeneous sphere approximations. In both cases, the size distribution determined using the exact core-shell model differs from that determined using the homogeneous-sphere approximation when the distribution covers radii smaller than about 10 microm, as expected. The size distribution based on the exact core-shell optical model was determined using a new algorithm. Although the basic equations used in the algorithm have been published previously, they are developed here in a different form, which can be implemented using Fortran and MatLab routines available commercially and in the public domain. This algorithm could be used to determine the size distribution of other kinds of particles, such as cylindrical rods, as long as their angle-dependent scattering could be computed. PMID:14554168

  14. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO2 particles

    NASA Astrophysics Data System (ADS)

    Cui, Chaopeng; Gao, Yimin; Wei, Shizhong; Zhang, Guoshang; Zhou, Yucheng; Zhu, Xiangwei; Guo, Songliang

    2016-03-01

    The nano-sized ZrO2-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO2 particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO2 particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO2 particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %.

  15. The effects of particle shape, size, and interaction on colloidal glasses and gels

    NASA Astrophysics Data System (ADS)

    Kramb, Ryan C.

    Using multiple step seeded emulsion polymerization reactions, colloid particles of tunable shape are synthesized from polystyrene. In all, four particle shapes are studied referred to as spheres (S), heteronuclear dicolloids (hDC), symmetric homonuclear dicolloids (sDC), and tricolloids (TC). Two size ranges of particles are studied with approximate diameters in the range of 200-300nm and 1.1-1.3mum. The solvent ionic strength is varied from 10 -3M to 1M resulting in particle interaction potentials that range from repulsive to attractive. The effect of anisotropic shape is found to increase the glass transition volume fraction (φg) in good agreement with activated naive Mode Coupling Theory (nMCT) calculations. Differences in φg and the linear elastic modulus (G0') due to particle shape can be understood in terms of the Random Close Packed volume fraction (φRCP ) for each shape; φRCP- φg is a constant. In addition, a reentrant phase diagram is found for S and sDC particles with a maximum in the fluid state volume fraction found at weakly attractive interaction potential, in agreement well with theoretical calculations. Nonlinear rheology and yielding behavior of repulsive and attractive spheres and anisotropic particles are examined and understood in terms of barriers constraining motion. The barriers are due to interparticle bonds or cages constraining translational or rotational motion. Yield stress has similar volume fraction dependence as G 0' and a similar framework is used to understand differences due to particle shape and interaction. For larger particles, the effects of shape and interaction are studied with respect to dynamic yielding and shear thickening. The dynamic yield stress is found to increase with volume fraction while the stress at thickening is constant. The intersection of these indicates a possible jamming point below φRCP.

  16. Growth and wetting of water droplet condensed between micron-sized particles and substrate

    PubMed Central

    Quang, Tran Si Bui; Leong, Fong Yew; An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter

    2016-01-01

    We study heterogeneous condensation growth of water droplets on micron-sized particles resting on a level substrate. Through numerical simulations on equilibrium droplet profiles, we find multiple wetting states towards complete wetting of the particle. Specifically, a partially wetting droplet could undergo a spontaneous transition to complete wetting during condensation growth, for contact angles above a threshold minimum. In addition, we find a competitive wetting behavior between the particle and the substrate, and interestingly, a reversal of the wetting dependence on contact angles during late stages of droplet growth. Using quasi-steady assumption, we simulate a growing droplet under a constant condensation flux, and the results are in good agreement with our experimental observations. As a geometric approximation for particle clusters, we propose and validate a pancake model, and with it, show that a particle cluster has greater wetting tendency compared to a single particle. Together, our results indicate a strong interplay between contact angle, capillarity and geometry during condensation growth. PMID:27487977

  17. Growth and wetting of water droplet condensed between micron-sized particles and substrate.

    PubMed

    Quang, Tran Si Bui; Leong, Fong Yew; An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter

    2016-01-01

    We study heterogeneous condensation growth of water droplets on micron-sized particles resting on a level substrate. Through numerical simulations on equilibrium droplet profiles, we find multiple wetting states towards complete wetting of the particle. Specifically, a partially wetting droplet could undergo a spontaneous transition to complete wetting during condensation growth, for contact angles above a threshold minimum. In addition, we find a competitive wetting behavior between the particle and the substrate, and interestingly, a reversal of the wetting dependence on contact angles during late stages of droplet growth. Using quasi-steady assumption, we simulate a growing droplet under a constant condensation flux, and the results are in good agreement with our experimental observations. As a geometric approximation for particle clusters, we propose and validate a pancake model, and with it, show that a particle cluster has greater wetting tendency compared to a single particle. Together, our results indicate a strong interplay between contact angle, capillarity and geometry during condensation growth. PMID:27487977

  18. High performance liquid chromatography column packings with deliberately broadened particle size distribution: relation between column performance and packing structure.

    PubMed

    Liekens, Anuschka; Billen, Jeroen; Sherant, Ron; Ritchie, Harald; Denayer, Joeri; Desmet, Gert

    2011-09-23

    The effect of the addition of 25%, 50% and 75% (weight percent, wt%) of larger particles (resp. 3 and 5 μm) to a commercial batch of 1.9 μm particles has been investigated as an academic exercise to study the effects of particle size distribution on the kinetic performance of packed bed columns in a magnified way. Comparing the performance of the different mixtures in a kinetic plot, it could be irrefutably shown that the addition of larger particles to a commercial batch of small particles cannot be expected to lead to an improved kinetic performance. Whereas the addition of 25 wt% of larger particles still only has a minor negative effect, a significantly deteriorated performance is obtained when 50 or 75 wt% of larger particles are added. In this case, separation impedance number increases up to 200% were observed. Studying the packing structure through computational packing simulations, together with the experimental determination of the external porosity, helped in understanding the obtained results. This showed that small particles tend to settle in the flow-through pores surrounding the larger particles, leading to very high packing densities (external porosities as low as 32% were observed) and also negatively influencing the column permeability as well as the band broadening (because of the broadened flow-through pore size range).

  19. Superselective Particle Embolization Enhances Efficacy of Radiofrequency Ablation: Effects of Particle Size and Sequence of Action

    SciTech Connect

    Tanaka, Toshihiro; Isfort, Peter; Braunschweig, Till Westphal, Saskia; Woitok, Anna; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2013-06-15

    Purpose. To evaluate the effects of particle size and course of action of superselective bland transcatheter arterial embolization (TAE) on the efficacy of radiofrequency ablation (RFA). Methods. Twenty pigs were divided into five groups: group 1a, 40-{mu}m bland TAE before RFA; group 1b, 40-{mu}m bland TAE after RFA; group 2a, 250-{mu}m bland TAE before RFA; group 2b, 250-{mu}m bland TAE after RFA and group 3, RFA alone. A total of 40 treatments were performed with a combined CT and angiography system. The sizes of the treated zones were measured from contrast-enhanced CTs on days 1 and 28. Animals were humanely killed, and the treated zones were examined pathologically. Results. There were no complications during procedures and follow-up. The short-axis diameter of the ablation zone in group 1a (mean {+-} standard deviation, 3.19 {+-} 0.39 cm) was significantly larger than in group 1b (2.44 {+-} 0.52 cm; P = 0.021), group 2a (2.51 {+-} 0.32 cm; P = 0.048), group 2b (2.19 {+-} 0.44 cm; P = 0.02), and group 3 (1.91 {+-} 0.55 cm; P < 0.001). The greatest volume of ablation was achieved by performing embolization with 40-{mu}m particles before RFA (group 1a; 20.97 {+-} 9.65 cm{sup 3}). At histology, 40-{mu}m microspheres were observed to occlude smaller and more distal arteries than 250-{mu}m microspheres. Conclusion. Bland TAE is more effective before RFA than postablation embolization. The use of very small 40-{mu}m microspheres enhances the efficacy of RFA more than the use of larger particles.

  20. The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries.

    PubMed

    Dasari, Rajesh K; Eric Berson, R

    2007-04-01

    The effect of varying initial particle sizes on enzymatic hydrolysis rates and rheological properties of sawdust slurries is investigated. Slurries with four particle size ranges (33 microm < x < or = 75 microm, 150 microm < x < or = 180 microm, 295 microm < x < or = 425 microm, and 590 microm < x < or = 850 microm) were subjected to enzymatic hydrolysis using an enzyme dosage of 15 filter paper units per gram of cellulose at 50 degrees C and 250 rpm in shaker flasks. At lower initial particle sizes, higher enzymatic reaction rates and conversions of cellulose to glucose were observed. After 72 h 50 and 55% more glucose was produced from the smallest size particles than the largest size ones, for initial solids concentration of 10 and 13% (w/w), respectively. The effect of initial particle size on viscosity over a range of shear was also investigated. For equivalent initial solids concentration, smaller particle sizes result in lower viscosities such that at a concentration of 10% (w/w), the viscosity decreased from 3000 cP for 150 microm < x < or = 180 microm particle size slurries to 61.4 cP for 33 microm < x < or = 75 microm particle size slurries. Results indicate particle size reduction may provide a means for reducing the long residence time required for the enzymatic hydrolysis step in the conversion of biomass to ethanol. Furthermore, the corresponding reduction in viscosity may allow for higher solids loading and reduced reactor sizes during large-scale processing. PMID:18478396

  1. Influence of feedstock particle size on lignocellulose conversion--a review.

    PubMed

    Vidal, Bernardo C; Dien, Bruce S; Ting, K C; Singh, Vijay

    2011-08-01

    Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈ 50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from <0.15 to 50 mm. Maximal sizes as defined above were dependent on the pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (<3 mm) than woody biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.

  2. Performance and operating envelope of imaging and scattering particle sizing instruments

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1987-01-01

    Scattering and imaging type particle sizing instruments are analyzed in terms of their ability to make accurate determinations of particle size distributions, number density, and total mass. Sources of counting and sizing errors are explained. Ways are described of identifying these errors and how these errors can effect the measurements.

  3. Modifying Si-based consolidants through the addition of colloidal nano-particles

    NASA Astrophysics Data System (ADS)

    Ksinopoulou, E.; Bakolas, A.; Moropoulou, A.

    2016-04-01

    The modification of silicon-based stone consolidants has been the subject of many scientific studies aiming to overcome the commonly reported drawbacks of these materials, such as the tendency to shrink and crack during drying. The addition of nano-particle dispersions into silica matrix has been found to enhance their effectiveness in several ways. Objective of the current research was to study the preparation of particle-modified consolidants (PMC), consisting of an ethyl silicate matrix (TEOS) loaded with colloidal silica (SiO2) nano-particles and oxide titania (TiO2) particles. The effect of the polyacrylic acid on the dispersion stability was also investigated, by varying its concentration into PMC samples. The prepared materials were allowed to dry in two different relative humidity environments and then evaluated based on their stability in the sol phase, the aggregation sizes, determined through dynamic light scattering, the % solids content and their morphological characteristics, observed via scanning electron microscopy (SEM-EDAX). Mercury intrusion porosimetry was also applied to investigate the microstructural characteristics and differences between the prepared consolidants. Significant role in the final form of the material is played by both the initial molar ratios in the mixtures, as well as the conditions where the drying and aging takes place. Based on the results, the three-component PMCs appear to be promising in stone consolidation, as they show a reduction in cracking and shrinkage during drying and a more porous network, compared with the siliceous material, or the two-component TEOS-SiO2 formulation.

  4. Comparison and assessment of four sediment particle-size analysis methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment particle-size analysis is a fundamental component of a wide variety of environmental disciplines such as sediment transport dynamics, subsurface and groundwater flow, lacustrine depositional history, and nutrient transport. There are several readily available methods for measuring particle ...

  5. Influence of particle size on physical and sensory attributes of mango pulp powder

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Kadam, D. M.; Chadha, S.; Wilson, R. A.; Gupta, R. K.

    2013-09-01

    The present investigation was aimed to observe the effect of particle size on physical, sensory and thermal properties of foam-mat dried mango pulp powder. Mango pulp of Dussehri variety was foam-mat dried using 3% egg white at 65ºC. Dried foam-mats were pulverized and passed through a sieve shaker for obtaining three grades of powder with 50, 60, and 85 mesh size sieves. The particle size of these samples measured using laser diffraction particle size analyzer ranged from 191.26 to 296.19 μm. The data was analysed statistically using ANOVA of SAS. There was a linear increase in lightness (`L' value) with a decrease in particle size, however, `a' value decreased with a decrease in particle size, indicating the decrease in redness. An increase in bulk density and decrease in water solubility index and water absorption index % were observed with a decrease in particle size. Particle size had a significant effect on sensory parameters. Particle size in the range of 258.01 to 264.60μmwas found most acceptable with respect to sensory characteristics. This finding can be exploited for various commercial applicationswhere powder quality is dependent on the particle size and has foremost priority for end users.

  6. Effect of silica particle size in cellulose membrane for desalination process

    NASA Astrophysics Data System (ADS)

    Nurkhamidah, Siti; Rahmawati, Yeni; Taufany, Fadlilatul; Merta, I. Made Pendi Adi; Putra, Deffry Danius Dwi; Woo, Eamor M.

    2015-12-01

    Development of desalination technologies is very important for fulfilling future water demand. The objective of this research is to synthesis membrane for desalination process from cellulose acetate (CA) by blending with polyethylene glycol (PEG) and silica resulting CA/PEG/Silica composite membrane. In this study, the synthesis and characterization of composite membrane is attempt where membrane performance is investigated for reverse osmosis desalination of saline water. CA/PEG membrane with ratio 80/20 (wt%) was modified with three different particle sizes of silica: 0.007, 0.02, and 60 µm. Composite membranes were characterized for their hydrophilicity, functional groups and permeation properties. The experiment results show that hydrophilicity of CA/PEG membrane increases after the addition of silica as shown by the decreasing of contact angle and the increasing of silanol group. Hydrophilicity of composite membrane increases with the decreasing of particle size of silica. The best performance membrane is obtained by using silica with particle size of 0.02 µm.

  7. Vertical Profiles of Aerosol Particle Sizes using MGS/TES and MRO/MCS

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clancy, R. T.; Smith, M. D.; Benson, J. L.; McConnochie, T. H.; Pankine, A.

    2012-12-01

    Vertical variations in aerosol particle sizes often have a dramatic impact on the state and evolution of the Martian atmosphere. Recent analyses of data from the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM), the Thermal Emission Spectrometer (TES), and the Mars Climate Sounder (MCS) instruments offer some long overdue progress in constraining this aspect of aerosols. However, significantly more work remains to be done along these lines in order to better constrain and inform modern dynamical simulations of the Martian atmosphere. Thus, the primary goal of our work is to perform retrievals of particle size as a function of altitude for both dust and water ice aerosols. The choice of the TES and MCS dataset, with pole-to-pole coverage over a period of nearly eight martian years, provides the crucial systematic temporal and spatial sampling. Our presentation will include: 1) A summary of our limb radiative transfer algorithms and retrieval schemes; 2) The initial results of the application of our particle size retrieval scheme to the 2001 TES and 2007 MCS observations of those planet encircling dust events; 3) Near-term plans for for additional retrievals (aphelion cloud season, lower optical depth locations and seasons, etc.); 4) Location of the archive to be used for the distribution of the derived profiles and associated retrieval metadata.

  8. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  9. Metals leachability from medical waste incinerator fly ash: A case study on particle size comparison.

    PubMed

    Sukandar, Sukandar; Yasuda, Kenji; Tanaka, Masaru; Aoyama, Isao

    2006-12-01

    This paper presents the results from a study of metals leachability of medical waste incinerator fly ash in Japan on the basis of particle size. Sequential extraction and Toxicity Characteristic Leaching Procedure (TCLP) analysis were carried out in order to quantify the leaching amount of metals in each categorized particle size. Sequential extraction was also subjected to identify the preference of binding matrix of metals. The results of sequential extraction showed an increase both exchangeable and carbonate associated chromium concentrations in the bigger particle size fractions. Likewise, concentrations of carbonate matrix of arsenic and tin tended to increase in the bigger particle size fractions. In contrast, exchangeable associated cadmium as well as both exchangeable and carbonate matrices of barium were found higher in the smaller particle size fractions. However, no correlation was found in Kendal-tau correlation analysis between particle size of the ash and metals leachability of the TCLP.

  10. Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade

    SciTech Connect

    M. Balden; N. Endstrasser; P. W. Humrickhouse; V. Rohde; M. Rasinski; U. von Toussaint; S. Elgeti; R. Neu

    2014-04-01

    The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007–2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ~50?000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B–C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG.

  11. Monte Carlo simulation of light scattering from size distributed homogenous and coated spherical particles

    NASA Astrophysics Data System (ADS)

    Gogoi, Ankur

    Light scattering is a subject of intensive research at the present time in diverse fields of research namely, physics, astronomy, meteorology, biology, nanotechnology, etc. Observation and theoretical calculation of the absorption and scattering properties of particles, whose size ranges from micrometer to nanometer, are not only essential to deduce their physical properties but also capable of giving useful information for better understanding of radiation transfer through a medium containing such scatterer. In addition to such experimental and theoretical studies on light scattering by particulate matter several other groups have been extensively using Monte Carlo (MC) method to simulate light (photon) propagation in scattering media. Importantly such methods of simulating light scattering properties of artificial particles are proving to be a very useful tool in verifying the experimental observations with real samples as well as providing new clues to improve the accuracy of the existing theoretical models. In this contribution we report a MC method developed by implementing Mie theory to simulate the light scattering pattern from size distributed homogenous and coated spherical particles in single scattering regime. The computer program was written in ANSI C-language. The accuracy, efficiency and reliability of the MC method were validated by comparing the results generated by using the MC method with other benchmark theoretical results and experimental results with standard samples. Notably the MC method reported here is found to be stable even for very large spherical particles (size parameters > 1000) with large values of real (= 10) and imaginary part (= 10) of the refractive index. The promising field of application of the reported MC method will be in simulating the light (or electromagnetic) scattering properties of different types of planetary and interplanetary dust particles.

  12. Animal Slurry Acidification Affects Particle Size Distribution and Improves Separation Efficiency.

    PubMed

    Regueiro, I; Pociask, M; Coutinho, J; Fangueiro, D

    2016-05-01

    Solid-liquid separation is performed to improve slurry management, and acidification of the slurry is used to reduce ammonia emissions. Acidification is known to affect slurry characteristics, and we hypothesized that it may affect mechanical separation. Our objective in this study was to assess the effects of slurry acidification on particle size distribution and separation efficiency. Two types of slurry, aged pig and fresh dairy, and two different acidification additives, sulfuric acid and aluminum sulfate (alum), were studied. We found that acidification with sulfuric acid promoted phosphorus (P) solubilization for both slurries, but no change was observed with alum. More ammonium was found in the acidified dairy slurry compared with raw dairy slurry, but no difference was found in aged pig slurry. Acidification before separation increased the proportion of the solid fraction in the slurries, and the effect was significantly higher with alum. When alum was used to acidify the slurries, the proportion of particles larger than 100 μm increased significantly, as did the P concentration in this particle size range. The efficiency of P separation increased markedly in both slurries when alum was used, with the removal to the solid fraction of the dairy slurry being almost complete (90%). Because the priority in mechanical separation is to increase the P content in the solid fraction, the use of alum before centrifugation may be the most suitable option for enhancing its nutrient content. We conclude that separation efficiency and particle size distribution are significantly affected by acidification, but the extent of the effects depends on slurry type and on the type of additive used for acidification. PMID:27136179

  13. Synthesis of nanocrystalline barium-hexaferrite from nanocrystalline goethite using the hydrothermal method: Particle size evolution and magnetic properties

    SciTech Connect

    Penn, R.L.; Banfield, J.F.; Voigt, J.

    1997-03-01

    To characterize particle size/magnetic property relationships, 9 to 50 nm in diameter barium hexaferrite, BaFe{sub 12}O{sub 19} (BHF), particles were prepared using a new synthesis route. By replacing the conventional 50 to 100 nm particles of goethite with nanocrystalline goethite produced via the microwave anneal method of Knight and Sylva, nanocrystalline BHF was synthesized using the hydrothermal method. Evolution of particle size and morphology with respect to concentration and heat treatment time is reported. Hysteresis properties, including coercivity (0.2--1.0 kOe), magnetization saturation (0.1--33.4 emu/g), and magnetization remanence (0.004--22.5 emu/g) are discussed as a function of particle size. The magnetization saturation and remanence of the 7 nm particles is nearly zero, suggesting the superparamagnetic threshold size for BHF is around this size. In addition, the equilibrium morphology of BHF crystals was calculated to be truncated hexagonal prisms which was verified by experiment, and the isoelectric point, pH of 4.1, was measured for 18 nm BHF particles.

  14. Particle diffusion in active fluids is non-monotonic in size.

    PubMed

    Patteson, Alison E; Gopinath, Arvind; Purohit, Prashant K; Arratia, Paulo E

    2016-02-28

    We experimentally investigate the effect of particle size on the motion of passive polystyrene spheres in suspensions of Escherichia coli. Using particles covering a range of sizes from 0.6 to 39 microns, we probe particle dynamics at both short and long time scales. In all cases, the particles exhibit super-diffusive ballistic behavior at short times before eventually transitioning to diffusive behavior. Surprisingly, we find a regime in which larger particles can diffuse faster than smaller particles: the particle long-time effective diffusivity exhibits a peak in particle size, which is a deviation from classical thermal diffusion. We also find that the active contribution to particle diffusion is controlled by a dimensionless parameter, the Péclet number. A minimal model qualitatively explains the existence of the effective diffusivity peak and its dependence on bacterial concentration. Our results have broad implications on characterizing active fluids using concepts drawn from classical thermodynamics. PMID:26797039

  15. An experimental and theoretical study of the seepage migration of suspended particles with different sizes

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Xu, Tao; Guo, Zhiguang

    2016-08-01

    This study experimentally investigates the effect of particle size, particle concentration and flow velocity on the migration of suspended particles of size 1.02-47 μm in porous media. The results show that at the same flow velocity, the peak values of the breakthrough curves decrease and corresponding pore volumes increase slightly with increasing particles size. The migration velocity of smaller suspended particles is even greater than water flow velocity, which is attributed to the size exclusion effect. With increase of the injected particle concentration, the deposition coefficients of small single particles increase at first and then tend to a steady state or even decrease slightly, explained by the maximum retention concentration. The dispersivity of small particles decreases with increasing velocity. However, at a high flow velocity, the hydrodynamic dispersivity becomes increasingly dominant with the increase of particle size. The deposition coefficients for large-sized particles are higher than those for small-sized particles, which is attributed to considerable mass removal due to straining. An analytical solution, considering the release effect of sorbed particles, is developed to account for the one-dimensional flow and dispersive effect using a source function method, and then three transport parameters—dispersivity, deposition coefficient and release coefficient—are fitted using the experimental results. Finally, suspended-particle migration is predicted by the proposed model for short-time constant-concentration injection and repeated three-pulse injection. Overall, particle size has a significant effect on the seepage migration parameters of suspended particles in porous media such as the particle velocity, dispersivity and deposition coefficient.

  16. Enhancement of hybrid rocket combustion performance using nano-sized energetic particles

    NASA Astrophysics Data System (ADS)

    Risha, Grant Alexander

    Until now, the regression rate of classical hybrid rocket engines have typically been an order of magnitude lower than solid propellant motors; thus, hybrids require a relatively large fuel surface area for a given thrust level. In addition to low linear regression rates, relatively low combustion efficiency (87 to 92%), low mass burning rates, varying oxidizer-to-fuel ratio during operation, and lack of scaling laws have been reported. These disadvantages can be ameliorated by introducing nano-sized energetic powder additives into the solid fuel. The addition of nano-sized energetic particles into the solid fuel enhances performance as measured by parameters such as: density specific impulse, mass and linear burning rates, and thrust. Thermophysical properties of the solid fuel such as density, heat of combustion, thermal diffusivity, and thermal conductivity are also enhanced. The types of nano-sized energetic particles used in this study include aluminum, boron, boron carbide, and some Viton-A coated particles. Since the combustion process of solid fuels in a hybrid rocket engine is governed by the mass flux of the oxidizer entering the combustion chamber, the rate-limiting process is the mixing and reacting of the pyrolysis products of the fuel grain with the incoming oxidizer. The overall goal of this research was to determine the relative propulsive and combustion behavior for a family of newly-developed HTPB-based solid-fuel formulations containing various nano-sized energetic particles. Seventeen formulations contained 13% additive by weight, one formulation (SF4) contained 6.5% additive by weight, and one formulation (SF19) contained 5.65% boron by weight. The two hybrid rocket engines which were used in this investigation were the Long Grain Center-Perforated (LGCP) rocket engine and the X-Ray Transparent Casing (XTC) rocket engine. The smaller scale LGCP rocket engine was used to evaluate all of the formulations because conducting experiments using the

  17. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity.

    PubMed

    Raghunathan, Vijay Krishna; Devey, Michael; Hawkins, Sue; Hails, Lauren; Davis, Sean A; Mann, Stephen; Chang, Isaac T; Ingham, Eileen; Malhas, Ashraf; Vaux, David J; Lane, Jon D; Case, Charles P

    2013-05-01

    Patients with cobalt chrome (CoCr) metal-on-metal (MOM) implants may be exposed to a wide size range of metallic nanoparticles as a result of wear. In this study we have characterised the biological responses of human fibroblasts to two types of synthetically derived CoCr particles [(a) from a tribometer (30 nm) and (b) thermal plasma technology (20, 35, and 80 nm)] in vitro, testing their dependence on nanoparticle size or the generation of oxygen free radicals, or both. Metal ions were released from the surface of nanoparticles, particularly from larger (80 nm) particles generated by thermal plasma technology. Exposure of fibroblasts to these nanoparticles triggered rapid (2 h) generation of reactive oxygen species (ROS) that could be eliminated by inhibition of NADPH oxidase, suggesting that it was mediated by phagocytosis of the particles. The exposure also caused a more prolonged, MitoQ sensitive production of ROS (24 h), suggesting involvement of mitochondria. Consequently, we recorded elevated levels of aneuploidy, chromosome clumping, fragmentation of mitochondria and damage to the cytoskeleton particularly to the microtubule network. Exposure to the nanoparticles resulted in misshapen nuclei, disruption of mature lamin B1 and increased nucleoplasmic bridges, which could be prevented by MitoQ. In addition, increased numbers of micronuclei were observed and these were only partly prevented by MitoQ, and the incidence of micronuclei and ion release from the nanoparticles were positively correlated with nanoparticle size, although the cytogenetic changes, modifications in nuclear shape and the amount of ROS were not. These results suggest that cells exhibit diverse mitochondrial ROS-dependent and independent responses to CoCr particles, and that nanoparticle size and the amount of metal ion released are influential.

  18. The effect of particle size and porosity on spectral contrast in the mid-infrared

    USGS Publications Warehouse

    Salisbury, J.W.; Eastes, J.W.

    1985-01-01

    Contrary to previous work, we find that the decreasing intensity of fundamental molecular vibration bands with decreasing particle size is due primarily to increasing porosity of the finer particle size ranges, rather than to particle size per se. This implies that laser reflectance measurements from orbiting spacecraft should avoid loss of spectral contrast for fine particulate surfaces, because such measurements near zero phase angle will benefit from the opposition effect. ?? 1985.

  19. Dissolution kinetics of sub-millimeter Composition B detonation residues: role of particle size and particle wetting.

    PubMed

    Fuller, Mark E; Schaefer, Charles E; Andaya, Christina; Lazouskaya, Volha; Fallis, Steve; Wang, Chao; Jin, Yan

    2012-07-01

    The dissolution of the 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from microscale particles (<250μm) of the explosive formulation Composition B was examined and compared to dissolution from macroscopic particles (>0.5mm). The dissolution of explosives from detonation soot was also examined. The measured mass transfer coefficients for the microscale particles were one to two orders of magnitude greater than the macroscopic particles. When normalized to particle surface area, mass transfer coefficients of microscale and macroscale particles were similar, indicating that the bulk dissolution processes were similar throughout the examined size range. However, an inverse relationship was observed between the particle diameter and the RDX:TNT mass transfer rate coefficient ratio for dry-attritted particles, which suggests that RDX may be more readily dissolved (relative to TNT) in microscale particles compared to macroscale particles. Aqueous weathering of larger Composition B residues generated particles that possessed mass transfer coefficients that were on the order of 5- to 20-fold higher than dry-attritted particles of all sizes, even when normalized to particle surface area. These aqueous weathered particles also possessed a fourfold lower absolute zeta-potential than dry-attritted particles, which is indicative that they were less hydrophobic (and hence, more wettable) than dry-attritted particles. The increased wettability of these particles provides a plausible explanation for the observed enhanced dissolution. The wetting history and the processes by which particles are produced (e.g., dry physical attrition vs. aqueous weathering) of Composition B residues should be considered when calculating mass transfer rates for fate and transport modeling. PMID:22483856

  20. Dissolution kinetics of sub-millimeter Composition B detonation residues: role of particle size and particle wetting.

    PubMed

    Fuller, Mark E; Schaefer, Charles E; Andaya, Christina; Lazouskaya, Volha; Fallis, Steve; Wang, Chao; Jin, Yan

    2012-07-01

    The dissolution of the 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from microscale particles (<250μm) of the explosive formulation Composition B was examined and compared to dissolution from macroscopic particles (>0.5mm). The dissolution of explosives from detonation soot was also examined. The measured mass transfer coefficients for the microscale particles were one to two orders of magnitude greater than the macroscopic particles. When normalized to particle surface area, mass transfer coefficients of microscale and macroscale particles were similar, indicating that the bulk dissolution processes were similar throughout the examined size range. However, an inverse relationship was observed between the particle diameter and the RDX:TNT mass transfer rate coefficient ratio for dry-attritted particles, which suggests that RDX may be more readily dissolved (relative to TNT) in microscale particles compared to macroscale particles. Aqueous weathering of larger Composition B residues generated particles that possessed mass transfer coefficients that were on the order of 5- to 20-fold higher than dry-attritted particles of all sizes, even when normalized to particle surface area. These aqueous weathered particles also possessed a fourfold lower absolute zeta-potential than dry-attritted particles, which is indicative that they were less hydrophobic (and hence, more wettable) than dry-attritted particles. The increased wettability of these particles provides a plausible explanation for the observed enhanced dissolution. The wetting history and the processes by which particles are produced (e.g., dry physical attrition vs. aqueous weathering) of Composition B residues should be considered when calculating mass transfer rates for fate and transport modeling.

  1. Gold-polyaniline composites: Part II. Effects of nanometer sized particles

    SciTech Connect

    Smith, Jon A.; Josowicz, Mira A.; Engelhard, Mark H.; Baer, Donald R.; Janata, Jiri

    2005-09-01

    The amount of electronic charge transferred between gold particles and polyaniline depends not only on the electron affinity of the two materials but also on the size of the gold particles. As measured by X-ray photoelectron spectroscopy, for particles < 5 nm the binding energy of the electrons is size dependent. This nano-effect has its origin in the electrostatics of particles. It is demonstrated as a measurable shift of the binding energy of the Au4f7/2 photoelectrons emitted from Au particles embedded in a polyaniline matrix. Gold nanoparticle size was evaluated by high resolution transmission electron microscopy.

  2. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation

    PubMed Central

    Seydoux, Emilie; Rothen-Rutishauser, Barbara; Nita, Izabela M; Balog, Sandor; Gazdhar, Amiq; Stumbles, Philip A; Petri-Fink, Alke; Blank, Fabian; von Garnier, Christophe

    2014-01-01

    Introduction Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. Methods Bone marrow–derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4+ T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. Results The frequency of PS particle–positive CD11c+/CD11b+ BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4+ T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the

  3. Method for preparing spherical thermoplastic particles of uniform size

    DOEpatents

    Day, J.R.

    1975-11-17

    Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.

  4. Calibration of single particle sizing velocimeters using photomask reticles

    NASA Technical Reports Server (NTRS)

    Hirleman, E. D.; Holve, D. J.; Hovenac, E. A.

    1988-01-01

    The development of photomask reticle calibration standards for single particle instruments is discussed. The calibration method studied involves the use of photomask reticles where the particle artifacts are actually disks of chrome thin film in the clear field reticles produced by photolithography and etching processes. Consideration is given to various aspects of theory, design, and performance.

  5. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    SciTech Connect

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-07-05

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy’s Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  6. Remote sensing retrieval of inorganic suspended particle size in the Bohai Sea

    NASA Astrophysics Data System (ADS)

    Qing, Song; Zhang, Jie; Cui, Tingwei; Bao, Yuhai

    2014-02-01

    In situ data set in the Bohai Sea of China was collected to test a previous model for surface water inorganic suspended particle size developed by Bowers et al. Based on this, a simple empirical model was then established for estimating median particle size in the Bohai Sea. The median inorganic suspended particle size was retrieved from ratio of green (560 nm) to red (665 nm) band. The model produced retrieval of particle sizes which are in good agreement with in situ measurements with the average percent difference of 27.0% (N=40, R2=0.55) and root mean squared deviation of 4.311 μm. This model was quite insensitive to input noises. Then the model was applied to MERIS Level 2 data and MODIS Level 3 data (monthly climatology) to analyze the spatio-temporal pattern and seasonal variability of inorganic suspended particle size in the Bohai Sea. The size of inorganic suspended particles was expected to be related to water turbulence. Wind was idendified as an important influencing factor of particle size distribution. There was an onshore to offshore gradient in inorganic suspended particle size in the Bohai Sea. A significant seasonal cycle exits in particle sizes (large in summer and small in winter). More independent dataset was needed for further research.

  7. Particle sizing by measurement of forward-scattered light at two angles

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1983-01-01

    Fundamental and practical limitations to particle sizing by measurement of forward scattered light are presented. Methods to minimize the limitations are described. Two types of instruments are compared.

  8. Cellulosic Biomass Pretreatment and Sugar Yields as a Function of Biomass Particle Size

    PubMed Central

    Stavila, Vitalie; Knierim, Bernhard; George, Anthe; Auer, Manfred; Adams, Paul D.; Hadi, Masood Z.

    2014-01-01

    Three lignocellulosic pretreatment techniques (ammonia fiber expansion, dilute acid and ionic liquid) are compared with respect to saccharification efficiency, particle size and biomass composition. In particular, the effects of switchgrass particle size (32–200) on each pretreatment regime are examined. Physical properties of untreated and pretreated samples are characterized using crystallinity, surface accessibility measurements and scanning electron microscopy (SEM) imaging. At every particle size tested, ionic liquid (IL) pretreatment results in greater cell wall disruption, reduced crystallinity, increased accessible surface area, and higher saccharification efficiencies compared with dilute acid and AFEX pretreatments. The advantages of using IL pretreatment are greatest at larger particle sizes (>75 µm). PMID:24971883

  9. PQRI recommendations on particle-size analysis of drug substances used in oral dosage forms.

    PubMed

    Snorek, Sharon M; Bauer, John F; Chidambaram, Nallaperumal; Doub, William H; Duffy, Eric P; Etzler, Frank M; Kelly, Richard N; Lane, Justin J; Mueller, Ronald L; Prasanna, Hullahalli R; Pujara, Chetan P; Reif, Van D; Scarlett, Brian; Stowell, Joseph G; Toma, Pascal H

    2007-06-01

    This document provides information for the Pharmaceutical Industry and the Federal Drug Administration (FDA) regarding the selection of suitable particle-size analysis techniques, development and validation of particle-size methods, and the establishment of acceptance criteria for the particle size of drug substances used in oral solid-dosage forms. The document is intended for analysts knowledgeable in the techniques necessary to conduct particle-size characterization (a table of acronyms is provided at the end of the document). It is acknowledged that each drug substance, formulation, and manufacturing process is unique and that multiple techniques and instruments are available to the analyst.

  10. Determinations of microbial loads associated with microscopic-size particles of Kennedy Space Center soil.

    PubMed

    Ruschmeyer, O R; Pflug, I J

    1977-01-01

    Plate counts for six fractions, of micrometer-size, of Kennedy Space Center soil provided estimates of aerobic, mesophilic, heterotrophic, microbial loads on single soil particles. Analyses included unheated particles, particles subjected to wet heat at 80 degrees C for 20 min, and particles subjected to dry heat at 110 degrees C for 1 hr. Unheated particles yielded mean counts ranging from 6 colonies per particle for the smallest (44-53 micrometers) soil fraction to approximately 55 colonies per particle for the largest size (105-125 micrometers) soil fraction tested. Mean counts for heat-resistant forms ranged from 2 colonies per particle for the smaller particles to 12-15 colonies for the largest particles analyzed.

  11. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants.

    PubMed

    Iyer, Vidyashankara; Cayatte, Corinne; Guzman, Bernardo; Schneider-Ohrum, Kirsten; Matuszak, Ryan; Snell, Angie; Rajani, Gaurav Manohar; McCarthy, Michael P; Muralidhara, Bilikallahalli

    2015-01-01

    Oil-in-water emulsions have gained consideration as vaccine adjuvants in recent years due to their ability to elicit a differentiated immunogenic response compared to traditional aluminum salt adjuvants. Squalene, a cholesterol precursor, is a natural product with immunostimulatory properties, making it an ideal candidate for such oil-in-water emulsions. Particle size is a key parameter of these emulsions and its relationship to stability and adjuvanticity has not been extensively studied. This study evaluates the effect of particle size on the stability and immunogenicity of squalene emulsions. We investigated the effect of formulation parameters such as surfactant concentration on particle size, resulting in particles with average diameter of 80 nm, 100 nm, 150 nm, 200 nm, or 250 nm. Emulsions were exposed to shear and temperature stresses, and stability parameters such as pH, osmolarity, size, and in-depth visual appearance were monitored over time. In addition, adjuvanticity of different particle size was assessed in a mouse model using Respiratory Syncytial Virus Fusion protein (RSV-F) as a model antigen. Temperature dependent phase separation appeared to be the most common route of degradation occurring in the higher particle sizes emulsions. The emulsions below 150 nm size maintained stability at either 5 °C or 25 °C, and the 80 nm diameter ones showed no measurable changes in size even after one month at 40 °C. In vivo studies using the emulsions as an adjuvant with RSV F antigen revealed that superior immunogenicity could be achieved with the 80 nm particle size emulsion. PMID:26090563

  12. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants.

    PubMed

    Iyer, Vidyashankara; Cayatte, Corinne; Guzman, Bernardo; Schneider-Ohrum, Kirsten; Matuszak, Ryan; Snell, Angie; Rajani, Gaurav Manohar; McCarthy, Michael P; Muralidhara, Bilikallahalli

    2015-01-01

    Oil-in-water emulsions have gained consideration as vaccine adjuvants in recent years due to their ability to elicit a differentiated immunogenic response compared to traditional aluminum salt adjuvants. Squalene, a cholesterol precursor, is a natural product with immunostimulatory properties, making it an ideal candidate for such oil-in-water emulsions. Particle size is a key parameter of these emulsions and its relationship to stability and adjuvanticity has not been extensively studied. This study evaluates the effect of particle size on the stability and immunogenicity of squalene emulsions. We investigated the effect of formulation parameters such as surfactant concentration on particle size, resulting in particles with average diameter of 80 nm, 100 nm, 150 nm, 200 nm, or 250 nm. Emulsions were exposed to shear and temperature stresses, and stability parameters such as pH, osmolarity, size, and in-depth visual appearance were monitored over time. In addition, adjuvanticity of different particle size was assessed in a mouse model using Respiratory Syncytial Virus Fusion protein (RSV-F) as a model antigen. Temperature dependent phase separation appeared to be the most common route of degradation occurring in the higher particle sizes emulsions. The emulsions below 150 nm size maintained stability at either 5 °C or 25 °C, and the 80 nm diameter ones showed no measurable changes in size even after one month at 40 °C. In vivo studies using the emulsions as an adjuvant with RSV F antigen revealed that superior immunogenicity could be achieved with the 80 nm particle size emulsion.

  13. [Mineral Spectrum Change Analysis under the Conditions of Different Particle Size].

    PubMed

    Wang, Yan-xia; Wu, Jian; Zhou, Liang-guang; Hou, Lan-gong; Wang, Dong; Cao, Min

    2015-03-01

    Mineral particle size is an important factor affecting mineral spectrum characteristics, so to explore the changes of the mineral spectrum curves under different particle sizes and the spectrum difference of different minerals under the same particle size are the keys of hyperspectral remote sensing information mineral identification and the theoretical basis of research on spectral differences of different particle -sizes. Six kinds of collected minerals were observed by spectrometer to get the reflectivity spectrum curve and first order differential spectral curve under different particle sizes, and the spectral characteristics of various kinds of minerals under different particle sizes were analyzed. At the same time, spectrum difference of different mineral under the same particle size was compared to explore possible wavelengths of hyperspectral remote sensing mineral identify. Results show that the spectrum curves of various minerals have a larger difference with the change of the particle size, but change law is not the same. The whole spectrum curve of hypersthene will be decreased with the increase of particle size, and the spectrum curve at a specific wavelength range of antigorite, hematite, kaolinite and chlorite will be decreased with the increase of particle size, and there is no direct correlation between the spectrum of olivine and the particle size. Under the same size, different mineral spectral reflectance change a lot in most band range and it provides the possibility for high precision identification of mineral. Antigorite, kaolinite and chlorite all have more absorption peaks of narrow width and smaller intensity than the other minerals. Spectrum curves of hematite, olivine and hypersthene are relatively smooth, and the number of the absorption and reflection peaks is relatively small. This study aims at providing basic data and theoretical support for mineral spectral library construction and mineral hyperspectral identification technology.

  14. Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes

    SciTech Connect

    West, R.; Tsang, Leung; Winebrenner, D.P. )

    1993-03-01

    Dense medium radiative transfer theory is applied to a three-layer model consisting of two scattering layers overlying a homogeneous half space with a size distribution of particles in each layer. A model with a distribution of sizes gives quite different results than those obtained from a model with a single size. The size distribution is especially important in the low frequency limit when scattering is strongly dependent on particle size. The size distribution and absorption characteristics also affect the extinction behavior as a function of fractional volume. Theoretical results are also compared with experimental data. The sizes, permittivities, and densities used in the numerical illustrations are typical values for snow.

  15. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    DOEpatents

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2015-11-17

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  16. A review: Different methods producing different particles size and distribution in synthesis of calcium carbonate nano particles

    NASA Astrophysics Data System (ADS)

    Sulimai, N. H.; Rusop, M.; Alrokayan, Salman A. H.; Khan, Haseeb A.

    2016-07-01

    Carbonates exist as 73 percent of world crust carbon. Abundance and bioavailability of Calcium Carbonates offer reliable resources, costs saving and environmental friendly potentials in its applications. Studies proven nano-sized Calcium Cabonate (nCC) employs a more significant characteristics compared to larger sizes. Properties of nCC is affected by the dispersion of the particles in which agglomeration occurs. It is important to gain more understanding of the conditions contributing or stunting the agglomeration to gain more control of the particles morphology and dynamic. A few recent studies with different methods to prepare calcium carbonate nanoparticles were listed in Table 1 .Particle size and dispersity of calcium carbonate are affected by different conditions of its preparation. Other factors such as mechanical aggression, concentration of solution, temperature of precipitation, pH of reaction are all contributing factors towards particle sizes and distribution.

  17. Ultrafine particle concentrations in the surroundings of an urban area: comparing downwind to upwind conditions using Generalized Additive Models (GAMs).

    PubMed

    Sartini, Claudio; Zauli Sajani, Stefano; Ricciardelli, Isabella; Delgado-Saborit, Juana Mari; Scotto, Fabiana; Trentini, Arianna; Ferrari, Silvia; Poluzzi, Vanes

    2013-10-01

    The aim of this study was to investigate the influence of an urban area on ultrafine particle (UFP) concentration in nearby surrounding areas. We assessed how downwind and upwind conditions affect the UFP concentration at a site placed a few kilometres from the city border. Secondarily, we investigated the relationship among other meteorological factors, temporal variables and UFP. Data were collected for 44 days during 2008 and 2009 at a rural site placed about 3 kilometres from Bologna, in northern Italy. Measurements were performed using a spectrometer (FMPS TSI 3091). The average UFP number concentration was 11 776 (±7836) particles per cm(3). We analysed the effect of wind direction in a multivariate Generalized Additive Model (GAM) adjusted for the principal meteorological parameters and temporal trends. An increase of about 25% in UFP levels was observed when the site was downwind of the urban area, compared with the levels observed when wind blew from rural areas. The size distribution of particles was also affected by the wind direction, showing higher concentration of small size particles when the wind blew from the urban area. The GAM showed a good fit to the data (R(2) = 0.81). Model choice was via Akaike Information Criteria (AIC). The analysis also revealed that an approach based on meteorological data plus temporal trends improved the goodness of the fit of the model. In addition, the findings contribute to evidence on effects of exposure to ultrafine particles on a population living in city surroundings. PMID:24077061

  18. To chew or not to chew: fecal particle size in herbivorous reptiles and mammals.

    PubMed

    Fritz, Julia; Hummel, Jürgen; Kienzle, Ellen; Streich, W Jürgen; Clauss, Marcus

    2010-11-01

    A major difference between reptile and mammalian herbivores is that the former do not masticate their food. Actually, food particle size reduction by chewing is usually considered one of the adaptations facilitating the higher metabolic rates of mammals. However, quantitative comparisons of ingesta particle size between the clades have, to our knowledge, not been performed so far. We measured mean fecal particle size (MPS) in 79 captive individuals of 14 reptile herbivore species (tortoises, lizards, and Corucia zebrata) by wet sieving and compared the results with a mammalian dataset. MPS increased with body mass in both clades, but at a significantly higher level in reptiles. Limited evidence in free-ranging and captive individuals of Testudo hermanni indicates that in reptiles, the ability to crop food and food particle size significantly influence fecal particle size. The opportunistic observation of a drastic particle size difference between stomach and intestinal contents corroborates findings that in reptiles, in contrast to terrestrial mammals, significant ingesta particle size reduction does occur in the gastrointestinal tract, most likely owing to microbial action during very long ingesta retention. Whether behavioral adaptations to controlling ingesta particle size, such as deliberate small bite sizes, are adaptive strategies in reptiles remains to be investigated.

  19. Dynamic Behavior of Nano-Size Dust Particles in a Magnetic Field Channel.

    PubMed

    Huang, Shan; Park, Haewoo; Jo, Youngmin

    2016-05-01

    Removal of very small dust from indoor public spaces, such as metro subway stations, is a challenge. A large proportion of subway dust, particularly that of submicron sizes, contains iron compounds. This study sought to understand the dynamic behavior of such fine iron dust in a magnetic field. The computer aided fluid dynamics (CFD) calculation revealed that the design and configuration of a rectangular flow channel with magnets determine the dynamic motion of particles. An attractive magnetic emitter arrangement produced higher magnetic flux density than a repulsive arrangement. Additional ferromagnetic wire mesh inserted into the duct channel could provide a more systematic magnetic field and collect more dust. The field gradient for 0.3 mm thick wire was more than twice that of 0.5 mm wire. The provision of a magnetic field could contribute a 20% increase in 100 nm particle collection and an increase of 5% in 10 nm. PMID:27483753

  20. Retrieval of spheroid particle size distribution from spectral extinction data in the independent mode using PCA approach

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Lin, Jian-Zhong

    2013-01-01

    An improved anomalous diffraction approximation (ADA) method is presented for calculating the extinction efficiency of spheroids firstly. In this approach, the extinction efficiency of spheroid particles can be calculated with good accuracy and high efficiency in a wider size range by combining the Latimer method and the ADA theory, and this method can present a more general expression for calculating the extinction efficiency of spheroid particles with various complex refractive indices and aspect ratios. Meanwhile, the visible spectral extinction with varied spheroid particle size distributions and complex refractive indices is surveyed. Furthermore, a selection principle about the spectral extinction data is developed based on PCA (principle component analysis) of first derivative spectral extinction. By calculating the contribution rate of first derivative spectral extinction, the spectral extinction with more significant features can be selected as the input data, and those with less features is removed from the inversion data. In addition, we propose an improved Tikhonov iteration method to retrieve the spheroid particle size distributions in the independent mode. Simulation experiments indicate that the spheroid particle size distributions obtained with the proposed method coincide fairly well with the given distributions, and this inversion method provides a simple, reliable and efficient method to retrieve the spheroid particle size distributions from the spectral extinction data.

  1. Plasma Parameter Dependence of Critical Particle Size at the Moment of Void Formation in RF Silane Plasmas

    SciTech Connect

    Seon, C. R.; Chai, K. B.; Choe, W.; Park, S.; Chung, C. W.

    2008-09-07

    Although dust-free voids are frequently observed in many dusty plasmas, experiments regarding the critical particle size for the void formation have not been reported much. In this work, the dust particle size measurement at the critical moment of the void formation was performed by the polarization-sensitive laser light scattering method (PSLLS) as the input rf power was varied in the silane plasmas in which particles were created and grown. The electron temperature and ion density were also measured by a floating probe, and the relation between the parameters was studied. The results show that the critical particle size was decreased from 50 nm to 35 nm as the rf power was increased from 30 W to 100 W. In addition, the electron temperature and ion density were increased from 4.7 eV to 6.2 eV and from 7.0x10{sup 9} cm{sup -3} to 1.4x10{sup 10} cm{sup -3}, respectively. To investigate the mechanism of the void formation, we calculated the critical particle size for the void with measured plasma parameters using a simple one-dimensional force balance equation along the horizontal direction (parallel to the electrode). Consequently, the calculated particle sizes were in good agreement with the measured ones.

  2. Electrostatic respirator filter media: filter efficiency and most penetrating particle size effects.

    PubMed

    Martin, S B; Moyer, E S

    2000-08-01

    New electrostatic filter media has been developed for use in 42 CFR 84 negative pressure particulate respirator filters. This respirator filter media was not available for evaluation prior to the change from 30 CFR 11 to 42 CFR 84. Thus, characterization of this filter media is warranted. In this study, the new 42 CFR 84 electrostatic respirator filters were investigated with respect to filter penetration and most penetrating particle size. Three different models of N95 filters, along with one model each of the N99, R95, and P100 class filters were used in this study. First, three of each filter were loaded with a sodium chloride (NaCl) aerosol, and three of each filter were loaded with a dioctyl phthalate (DOP) aerosol to obtain normal background penetration results for each filter. Then, two new filters of each type were dipped in isopropanol for 15 seconds and allowed to dry. This isopropanol dip should reduce or eliminate any electrostatic charge on the fibers of each filter, as reported in the technical literature. These dipped filters, along with controls of each filter type, were tested on a TSI 8160 filter tester to determine the most penetrating particle size. These same filters were then tested against a NaCl aerosol to get final penetration values. Electret filters rely heavily on their electrostatic charge to provide adequate filter efficiencies, and correlations between penetration and a filter's electrostatic characteristics are found in the technical literature. In all six of the filter models tested, filter penetration values increased considerably and the most penetrating particle size noticeably shifted toward larger particles. These results are important in better understanding how these new filter materials perform under various conditions, and they indicate the need for additional research to define environmental conditions that may affect electrostatic filter efficiency. PMID:10957816

  3. Seasonal variations of number size distributions and mass concentrations of atmospheric particles in Beijing

    NASA Astrophysics Data System (ADS)

    Yu, Jianhua; Guinot, Benjamin; Yu, Tong; Wang, Xin; Liu, Wenqing

    2005-06-01

    Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.

  4. Control of magnetite primary particle size in aqueous dispersions of nanoclusters for high magnetic susceptibilities.

    PubMed

    Yoon, Ki Youl; Xue, Zheng; Fei, Yunping; Lee, Jae Ho; Cheng, Victoria; Bagaria, Hitesh G; Huh, Chun; Bryant, Steven L; Kong, Seong Deok; Ngo, Vincent W; Rahmani, Amir-Reza; Ahmadian, Mohsen; Ellison, Christopher J; Johnston, Keith P

    2016-01-15

    Aqueous dispersions of iron oxide nanoparticles with a high initial magnetic susceptibility (χi) are of interest as contrast agents in electromagnetic tomography. Nanoclusters composed of iron oxide primary particles were formed by co-precipitation of Fe(II) and Fe(III) chlorides at alkaline conditions and high temperature of 95°C. Two-step addition of citrate was used to produce large primary particles and then stabilize the nanoclusters. The size of the primary particles was tuned from 5nm to 15nm by varying the citrate/iron precursor ratio during the normal phase hydrolysis reaction, while the second iteration of citrate stabilized the nanoclusters with hydrodynamic diameters of 30-75nm. The crystallinity of the iron oxide nanoparticles was promoted by annealing at 95°C and systematically studied with Superconducting Quantum Interference Device (SQUID), Vibrating Sample Magnetometer (VSM), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). The dependence of χi was examined over a range of low volume fractions (0.005<θ<0.02) to understand the magnetic behavior of dispersions. The χi of the dispersions increased markedly with the size and concentration of the constituent primary particles, reaching an unusually high value of 0.85 at 1.6% v/v for 15nm primary particles, which is 2-3 times higher than that for typical commercial ferrofluids. The high χi values are favored by the high crystallinity and the large magnetic diameter of 9.3nm, indicating a relatively thin surface nonmagnetic layer where the spin orientations are disordered. PMID:26479199

  5. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion.

    PubMed

    Palanisami, Akilan; Miller, John H

    2010-10-01

    The size and surface chemistry of micron scale particles are of fundamental importance in studies of biology and air particulate pollution. However, typical electrophoretic measurements of these and other sub-micron scale particles (300 nm-1 μm) cannot resolve size information within heterogeneous mixtures unambiguously. Using optical microscopy, we monitor electrophoretic motion together with the Brownian velocity fluctuations - using the latter to measure size by either the Green-Kubo relation or by calibration from known size standards. Particle diameters are resolved to ±12% with 95% confidence. Strikingly, the size resolution improves as the particle size decreases due to the increased Brownian motion. The sizing ability of the Brownian assessed electrophoresis method described here complements the electrophoretic mobility resolution of the traditional CE. PMID:20882556

  6. Mutilocus genetic determinants of LDL particle size in coronary artery disease families

    SciTech Connect

    Rotter, J.I.; Bu, X.; Cantor, R.M.

    1996-03-01

    Recent interest in atherosclerosis has focused on the genetic determinants of low-density lipoprotein (LDL) particle size, because of (1) the association of small dense LDL particles with a three-fold increased risk for coronary artery disease (CAD) and (2) the recent report of linkage of the trait to the LDL receptor (chromosome 19). By utilizing nonparametric quantitative sib-pair and relative-pair-analysis methods in CAD families, we tested for linkage of a gene or genes controlling LDL particle sizes with the genetic loci for the major apolipoproteins and enzymes participating in lipoprotein metabolism. We confirmed evidence for linkage to the LDL receptor locus (P = .008). For six candidate gene loci, including apolipoprotein(apo)B, apoAII, apo(a), apoE-CI-CII, lipoprotein lipase, and high-density lipoprotein-binding protein, no evidence for linkage was observed by sib-pair linkage analyses (P values ranged from .24 to .81). However, in addition, we did find tentative evidence for linkage with the apoAI-CIII-AIV locus (chromosome 11) (P = .06) and significant evidence for linkage of the cholesteryl ester transfer protein locus (chromosome 16) (P = .01) and the manganese superoxide dismutase locus (chromosome 6) (P = .001), thus indicating multilocus determination of this atherogenic trait. 73 refs., 3 figs., 4 tabs.

  7. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.

    PubMed

    Ding, Feng; Rosén, Arne; Bolton, Kim

    2004-08-01

    The molecular dynamics method, based on an empirical potential energy surface, was used to study the effect of catalyst particle size on the growth mechanism and structure of single-walled carbon nanotubes (SWNTs). The temperature for nanotube nucleation (800-1100 K), which occurs on the surface of the cluster, is similar to that used in catalyst chemical vapor deposition experiments, and the growth mechanism, which is described within the vapor-liquid-solid model, is the same for all cluster sizes studied here (iron clusters containing between 10 and 200 atoms were simulated). Large catalyst particles, which contain at least 20 iron atoms, nucleate SWNTs that have a far better tubular structure than SWNTs nucleated from smaller clusters. In addition, the SWNTs that grow from the larger clusters have diameters that are similar to the cluster diameter, whereas the smaller clusters, which have diameters less than 0.5 nm, nucleate nanotubes that are approximately 0.6-0.7 nm in diameter. This is in agreement with the experimental observations that SWNT diameters are similar to the catalyst particle diameter, and that the narrowest free-standing SWNT is 0.6-0.7 nm.

  8. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Rosén, Arne; Bolton, Kim

    2004-08-01

    The molecular dynamics method, based on an empirical potential energy surface, was used to study the effect of catalyst particle size on the growth mechanism and structure of single-walled carbon nanotubes (SWNTs). The temperature for nanotube nucleation (800-1100 K), which occurs on the surface of the cluster, is similar to that used in catalyst chemical vapor deposition experiments, and the growth mechanism, which is described within the vapor-liquid-solid model, is the same for all cluster sizes studied here (iron clusters containing between 10 and 200 atoms were simulated). Large catalyst particles, which contain at least 20 iron atoms, nucleate SWNTs that have a far better tubular structure than SWNTs nucleated from smaller clusters. In addition, the SWNTs that grow from the larger clusters have diameters that are similar to the cluster diameter, whereas the smaller clusters, which have diameters less than 0.5 nm, nucleate nanotubes that are ≈0.6-0.7 nm in diameter. This is in agreement with the experimental observations that SWNT diameters are similar to the catalyst particle diameter, and that the narrowest free-standing SWNT is 0.6-0.7 nm.

  9. 'Crystal Collimator' Measurement of CESR particle-beam Source Size

    SciTech Connect

    Finkelstein, K.D.; Bazarov, Ivan; White, Jeffrey; Revesz, Peter

    2004-05-12

    We have measured electron and positron beam source size at CHESS when the Cornell Electron Storage Ring (CESR) is run dedicated for the production of synchrotron radiation. Horizontal source size at several beamlines is expected to shrink by a factor of two but synchrotron (visible) light measurements only provide the vertical size. Therefore a 'crystal collimator' using two Bragg reflection in dispersive (+,+) orientation has been built to image the horizontal (vertical) source by passing x-rays parallel to within 5 microradians to an imaging screen and camera. With the 'crystal collimator' we observe rms sizes of 1.2 mm horizontal by 0.28 mm vertical, in good agreement with the 1.27 mm size calculated from lattice functions, and 0.26 mm observed using a synchrotron light interferometer.

  10. The influence of particle size on the rheological properties of plate-like iron particle based magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Choi, Seung-Bok

    2015-01-01

    This work is devoted to the dependence of particle size on magnetorheological properties of magnetorheological fluid (MRF) consisting of plate-like iron particles suspended in a carrier liquid with two aspects. One aspect is to study the influence of the particle size on the rheological properties of the MRF, and the other is to investigate the influence of small-sized particles on the large-sized MRF. In order to achieve this goal, firstly, two different types of MR suspensions have been constituted by a plate-like iron particle; one is small with an average particle size of 2 μm in diameter, and the other is large with an average particle size of 19 μm in diameter. In this work, these are denoted as S-MRF and L-MRF, respectively. Secondly, in order to check the influence of the small particle size of the large-sized MR fluid, three different weight fractions of bidisperse MRF samples are prepared. The structural and morphology of plate-like iron particles are described in detail. The magnetic properties of these MR fluids are carried out at room temperature using the magnetometer, followed by the investigation on the field-dependent rheological properties of these MR fluids. It is observed that in both the S-MRF and L-MRF, the yield stress and viscosity is increased by the increasing particle size, which directly shows a correlation with the fluid magnetization. It is also identified from the test of the bidisperse MRF samples that the yield and viscosity depend on the weight fraction due to the magnetostatic interaction between the two different sizes of particles. Based on the rheological properties, some figures of merit are derived for the proposed MRF samples, which are important in the design of the application device. The sedimentation experiments for MRF samples are performed to check the stability of the MRF each day. With the basic rheological properties and sedimentation experiments, it is clearly demonstrated that the bidisperse MR suspension with a

  11. Variation of particle size distribution in Saturn's rings and search for density waves in Uranus rings

    SciTech Connect

    Yanamandra-Fisher, P.A.

    1988-01-01

    A bimodal size distribution for particles in Saturn's rings has been determined via an analysis of PPS, UVS and RSS occultation data. The variation of the size distribution in featureless regions indicates that the dust variation is nearly constant in the Saturn's rings and exhibits a slight anti-correlation with 1 cm sized particles. Sub-centimeter sized particles increase outward in the rings, with a maximum in the B ring, similar to the variation of 1 cm sized particles. However, the ratio of subcentimeter sized particles to 1 cm sized particles does not vary significantly in the rings. Janus 5:4 density wave differs significantly from the featureless regions. The amount of dust is greater by a factor of about 2. Both dust and sub-centimeter sized particles are strongly anti-correlated with 1 cm sized particles. Partial formation of gaps is evident for both sub- and supra-centimeter sized particles, consistent with the predictions of Goldreich and Tremaine (1978). Dust is insensitive to the gravitational torque associated with the resonance. The results are also consistent with Dones (1987). In wave regions, large particles collide and produce dust and do not break up into smaller particles. The author searched the Uranian rings, via time series analysis methods, to identify periodic phenomena in the rings. A possible wave-like feature has been identified in both the {epsilon} and the {delta} rings of Uranus. A density wave has been identified in the inner half of the {delta} ring. It implies the existence of a moonlet between the {gamma} and {delta} rings and a possible shepherd for the outer edge of the {gamma} ring and an inner shepherd for the {delta} ring. Comparison of density waves in the two ring systems are similar, indicating the similarity of the local ring environments.

  12. Restrictions on Addition: Children's Interpretation of the Focus Particles "Auch" "Also" and "Nur" "Only" in German

    ERIC Educational Resources Information Center

    Berger, Frauke; Hohle, Barbara

    2012-01-01

    Children up to school age have been reported to perform poorly when interpreting sentences containing restrictive and additive focus particles by treating sentences with a focus particle in the same way as sentences without it. Careful comparisons between results of previous studies indicate that this phenomenon is less pronounced for restrictive…

  13. Sieveless particle size distribution analysis of particulate materials through computer vision

    SciTech Connect

    Igathinathane, C.; Pordesimo, L. O.; Columbus, Eugene P; Batchelor, William D; Sokhansanj, Shahabaddine

    2009-05-01

    This paper explores the inconsistency of length-based separation by mechanical sieving of particulate materials with standard sieves, which is the standard method of particle size distribution (PSD) analysis. We observed inconsistencies of length-based separation of particles using standard sieves with manual measurements, which showed deviations of 17 22 times. In addition, we have demonstrated the falling through effect of particles cannot be avoided irrespective of the wall thickness of the sieve. We proposed and utilized a computer vision with image processing as an alternative approach; wherein a user-coded Java ImageJ plugin was developed to evaluate PSD based on length of particles. A regular flatbed scanner acquired digital images of particulate material. The plugin determines particles lengths from Feret's diameter and width from pixel-march method, or minor axis, or the minimum dimension of bounding rectangle utilizing the digital images after assessing the particles area and shape (convex or nonconvex). The plugin also included the determination of several significant dimensions and PSD parameters. Test samples utilized were ground biomass obtained from the first thinning and mature stand of southern pine forest residues, oak hard wood, switchgrass, elephant grass, giant miscanthus, wheat straw, as well as Basmati rice. A sieveless PSD analysis method utilized the true separation of all particles into groups based on their distinct length (419 639 particles based on samples studied), with each group truly represented by their exact length. This approach ensured length-based separation without the inconsistencies observed with mechanical sieving. Image based sieve simulation (developed separately) indicated a significant effect (P < 0.05) on number of sieves used in PSD analysis, especially with non-uniform material such as ground biomass, and more than 50 equally spaced sieves were required to match the sieveless all distinct particles PSD analysis

  14. COMPARISON OF TWO PARTICLE-SIZE SPECTROMETERS FOR AMBIENT AEROSOL MEASUREMENTS. (R827354C002)

    EPA Science Inventory

    There is an ongoing debate on the question which size fraction of particles in ambient air may be responsible for human health effects observed in epidemiological studies. Since there is no single instrument available for the measurement of the particle-size distribution over ...

  15. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs.

    PubMed

    Chu, Kyung Rok; Lee, Eunhee; Jeong, Seong Hoon; Park, Eun-Seok

    2012-07-01

    This study examined the effects of the particle size of various poorly water-soluble drugs on their dissolution behavior through physicochemical and mathematical analysis. As model drugs, hydrochlorothiazide, aceclofenac, ibuprofen and a discovery candidate were selected. The materials were crystallized using an evaporation method and milled without transformation behavior of crystal forms. The particles were sieved and divided into four size groups (< 45 μm, 45∼150 μm, 150∼250 μm, and 250∼600 μm). The specific surface area with regard to the particle size was measured using a BET surface area measurement. The specific surface area increased with decreasing particle size of the drug, resulting in an increase in dissolution rate. During the initial period of the dissolution study, significant differences in dissolution rate were observed according to the particle size and specific surface areas. On the other hand, in the later stages, the surface-specific dissolution rate was almost consistent regardless of the particle size. These observations were evaluated mathematically and the results suggested that the dissolution rate of poorly soluble drugs is strongly related to the particle size distribution. Moreover, physicochemical analysis helped explain the effect of particle size on the dissolution profiles. PMID:22864741

  16. Wheat bran particle size influence on phytochemical extractability and antioxidant properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is unknown if particle size plays a role in extracting health promoting compounds in wheat bran because the extraction of antioxidant and phenolic compounds with particle size reduction has not been well documented. In this study, unmilled whole bran (coarse treatment) was compared to whole bran ...

  17. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification.

    PubMed

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2007-01-01

    The influence of particle size and surface mannose modification on the uptake of liposomes by alveolar macrophages (AMs) was investigated in-vitro and in-vivo. Non-modified liposomes of five different particle sizes (100, 200, 400, 1000 and 2000 nm) and mannosylated liposomes with 4-aminophenyl-alpha-D-mannopyranoside (particle size 1000 nm) were prepared, and the uptake characteristics by rat AMs in-vitro and in-vivo were examined. The uptake of non-modified liposomes by rat AMs in-vitro increased with an increase in particle size over the range of 100-1000 nm, and became constant at over 1000 nm. The uptake of non-modified liposomes by AMs after pulmonary administration to rats in-vivo increased with an increase in particle size in the range 100-2000 nm. The uptake of mannosylated liposomes (particle size 1000 nm) by rat AMs both in-vitro and in-vivo was significantly greater than that of non-modified liposomes (particle size 1000 nm). The results indicate that the uptake of liposomes by rat AMs is dependent on particle size and is increased by surface mannose modification.

  18. Particle size distribution of hydrocyanic acid in gari, a cassava-based product.

    PubMed

    Maduagwu, E N; Fafunso, M

    1980-12-01

    A reciprocal relationship was observed between the cyanide content of gari and particle size. Hydrocyanic acid (HCN) content was positively correlated (r = 0.62) with sugar content but the correlation with starch content was poor (r = 0.33). From both the nutritional and toxicological standpoints, it would appear that larger particles size in gari is beneficial.

  19. Preparation of 1,3,5-triamo-2,4,6-trinitrobenzene of submicron particle size

    DOEpatents

    Rigdon, Lester P.; Moody, Gordon L.; McGuire, Raymond R.

    2001-05-01

    A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.

  20. Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene of submicron particle size

    DOEpatents

    Rigdon, Lester P.; Moody, Gordon L.; McGuire, Raymond R.

    2001-01-01

    A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.

  1. Estimates of the size of particles in Saturn's rings and their cosmogonic implications

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1974-01-01

    Near infrared ice band measurements, radar and radio observations, and implications of the size estimates of particles in Saturn's rings are discussed. The measurements are compared to the Poynting-Robetson effect and a possible mechanism by which the size of the particles may significantly change after the initial formulation of the material in the rings is proposed.

  2. Processing, mixing, and particle size reduction of forages for dairy cattle.

    PubMed

    Heinrichs, A J; Buckmaster, D R; Lammers, B P

    1999-01-01

    Adequate forage amounts in both physical and chemical forms are necessary for proper ruminal function in dairy cows. Under conditions in which total amounts of forage or particle size of the forage are reduced, cows spend less time ruminating and have a decreased amount of buoyant digesta in the rumen. These factors reduce saliva production and allow ruminal pH to fall, depressing activity of cellulolytic bacteria and causing a prolonged period of low ruminal pH. Insufficient particle size of the diet decreases the ruminal acetate-to-propionate ratio and reduces ruminal pH. The mean particle size of the diet, the variation in particle size, and the amount of chemical fiber (i.e., NDF or ADF) are all nutritionally important for dairy cows. Defining amounts and physical characteristics of fiber is important in balancing dairy cattle diets. Because particle size plays such an important role in digestion and animal performance, it must be an important consideration from harvest through feeding. Forages should not be reduced in particle size beyond what is necessary to achieve minimal storage losses and what can be accommodated by existing equipment. Forage and total mixed ration (TMR) particle sizes are potentially reduced in size by all phases of harvesting, storing, taking out of storage, mixing, and delivery of feed to the dairy cow. Mixing feed causes a reduction in size of all feed particles and is directly related to TMR mixing time; field studies show that the longest particles (>27 mm) may be reduced in size by 50%. Forage and TMR particle size as fed to the cows should be periodically monitored to maintain adequate nutrition for the dairy cow. PMID:10064042

  3. Improved cholesterol phenotype analysis by a model relating lipoprotein life cycle processes to particle size[S

    PubMed Central

    van Schalkwijk, Daniël B.; de Graaf, Albert A.; van Ommen, Ben; van Bochove, Kees; Rensen, Patrick C. N.; Havekes, Louis M.; van de Pas, Niek C. A.; Hoefsloot, Huub C. J.; van der Greef, Jan; Freidig, Andreas P.

    2009-01-01

    Increased plasma cholesterol is a known risk factor for cardiovascular disease. Lipoprotein particles transport both cholesterol and triglycerides through the blood. It is thought that the size distribution of these particles codetermines cardiovascular disease risk. New types of measurements can determine the concentration of many lipoprotein size-classes but exactly how each small class relates to disease risk is difficult to clear up. Because relating physiological process status to disease risk seems promising, we propose investigating how lipoprotein production, lipolysis, and uptake processes depend on particle size. To do this, we introduced a novel model framework (Particle Profiler) and evaluated its feasibility. The framework was tested using existing stable isotope flux data. The model framework implementation we present here reproduced the flux data and derived lipoprotein size pattern changes that corresponded to measured changes. It also sensitively indicated changes in lipoprotein metabolism between patient groups that are biologically plausible. Finally, the model was able to reproduce the cholesterol and triglyceride phenotype of known genetic diseases like familial hypercholesterolemia and familial hyperchylomicronemia. In the future, Particle Profiler can be applied for analyzing detailed lipoprotein size profile data and deriving rates of various lipolysis and uptake processes if an independent production estimate is given. PMID:19515990

  4. Particle sizes in Comet Bennett /1970 II/. [radiation pressure models for coma and tail

    NASA Technical Reports Server (NTRS)

    O'Dell, C. R.

    1974-01-01

    The particle size distribution in the coma and tail of Comet Bennett has been determined by several methods, each sensitive to a particular size range. It is confirmed that a minimum value of the particle density, size, and radiation pressure efficiency function exists at about .00003 to .00010 g/sq cm. The existence of such a cutoff is probably due to the decreasing radiation pressure efficiency for particles smaller than the wavelength of the light being scattered. An exact determination of this cutoff may allow identification of the particle type.

  5. Size effects in aerosol particle interactions: the van der Waals potential and collision rates

    SciTech Connect

    Marlow, W H

    1980-01-01

    Three effects which are explicitly dependent on aerosol particle size are identified and discussed. They are focussed about the particle collision rate and how it relates to the properties of the gas, the particle, and the particle's interaction potential energy which play roles in particle-particle collision rates. By incorporating the conduction electronic free path effect for conductors into the frequency-dependent dielectric constants of silver and graphite, particle size effects in the Lifshitz-van der Waals potentials for identical pairs of 1 nm and 100 nm particles are evaluated. Water and tetradecane particle interaction potentials for the same size particles are also calculated to illustrate size effects due to the retardation of the interaction. These potentials are then used to calculate the enhancement of the particle collision rates above their values in the absence of any potential at various gas pressures. The roles of the interaction potential in collision among identical pairs of particles of differing compositions is also briefly discussed.

  6. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated. PMID:23028013

  7. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  8. Particle size distribution measurements in a subscale motor for the Ariane 5 solid rocket booster

    NASA Astrophysics Data System (ADS)

    Traineau, J. C.; Kuentzmann, P.; Prevost, M.; Tarrin, P.; Delfour, A.

    1992-07-01

    An experimental determination of the combustion-chamber aluminum oxide particle-size distribution for the Ariane 5 Solid Rocket Booster is carried out. A subscale motor using a helium injection technique for quenching the reaction products is designed, manufactured and tested. A 30 percent helium-mass flow rate injection close to the head-end of the combustion chamber is found to give an exhaust aluminum oxide particle-size distribution representative of the combustion chamber distribution. A laser light-scattering technique and a particle-capturing technique are used and large particles found with both sizing techniques. A stretched particle size volume distribution with particle diameters ranging from 1 to 120 microns, with a maximum around 45 microns is demonstrated.

  9. A technique to measure the size of particles in laser Doppler velocimetry applications

    NASA Technical Reports Server (NTRS)

    Hess, C. F.

    1985-01-01

    A method to measure the size of particles in Laser Doppler Velocimeter (LDV) applications is discussed. Since in LDV the velocity of the flow is assocated with the velocity of particles to establish how well they follow the flow, in the present method the interferometric probe volume is surrounded by a larger beam of different polarization or wavelength. The particle size is then measured from the absolute intensity scattered from the large beam by particles crossing the fringes. Experiments using polystrene particles between 1.1 and 3.3 microns and larger glass beads are reported. It is shown that the method has an excellent size resolution and its accuracy is better than 10% for the particle size studied.

  10. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    PubMed Central

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236U/238U isotope ratios (i.e. 10−5). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234U/238U and 235U/238U ratios. Experimental results obtained for 236U/238U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties Uc (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234U/238U, 235U/238U and 236U/238U, respectively. PMID:22595724

  11. Direct uranium isotope ratio analysis of single micrometer-sized glass particles.

    PubMed

    Kappel, Stefanie; Boulyga, Sergei F; Prohaska, Thomas

    2012-11-01

    We present the application of nanosecond laser ablation (LA) coupled to a 'Nu Plasma HR' multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10-20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant (236)U/(238)U isotope ratios (i.e. 10(-5)). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for (234)U/(238)U and (235)U/(238)U ratios. Experimental results obtained for (236)U/(238)U isotope ratios deviated by less than -2.5% from the certified values. Expanded relative total combined standard uncertainties U(c) (k = 2) of 2.6%, 1.4% and 5.8% were calculated for (234)U/(238)U, (235)U/(238)U and (236)U/(238)U, respectively.

  12. Particle size effect of redox reactions for Co species supported on silica

    NASA Astrophysics Data System (ADS)

    Chotiwan, Siwaruk; Tomiga, Hiroki; Katagiri, Masaki; Yamamoto, Yusaku; Yamashita, Shohei; Katayama, Misaki; Inada, Yasuhiro

    2016-09-01

    Conversions of chemical states during redox reactions of two silica-supported Co catalysts, which were prepared by the impregnation method, were evaluated by using an in situ XAFS technique. The addition of citric acid into the precursor solution led to the formation on silica of more homogeneous and smaller Co particles, with an average diameter of 4 nm. The supported Co3O4 species were reduced to metallic Co via the divalent CoO species during a temperature-programmed reduction process. The reduced Co species were quantitatively oxidized with a temperature-programmed oxidation process. The higher observed reduction temperature of the smaller CoO particles and the lower observed oxidation temperature of the smaller metallic Co particles were induced by the higher dispersion of the Co oxide species, which apparently led to a stronger interaction with supporting silica. The redox temperature between CoO and Co3O4 was found to be independent of the particle size.

  13. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    PubMed

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice. PMID:26472183

  14. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    PubMed

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice.

  15. Particle size effect for cobalt Fischer-Tropsch catalysts based on in situ CO chemisorption

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Frøseth, Vidar; Chen, De; Holmen, Anders

    2016-06-01

    The cobalt particle size effect on activity and selectivity for CO hydrogenation was revisited on cobalt catalysts supported on a large variety of supports at 483 K, 1.85 bar, and H2/CO/Ar = 15/1.5/33.5 Nml/min. The size dependence of the activity and selectivity was analyzed in terms of site coverage and rate constants based on SSITKA experimental results. It was found that the Co particle size index estimated by the conventional method, namely, ex situ hydrogen chemisorption, could not correlate well the activity and selectivity as a function of the particle size index. The same holds for the site coverage of CO and intermediates leading to methane formation. However, the cobalt particle size index based on in situ CO chemisorption measured at 373 K provides a good correlation for turnover frequencies (TOFs) at reaction conditions. It was observed that TOF for CO conversion (TOFCO) increased with increasing particle size index of cobalt and SSITKA experiments showed that this was possibly due to increased site coverage of CO. The TOF for methane formation (TOFCH4) increased with particle size and remained constant at higher particle sizes possibly due to combined effect from the site coverage of intermediates leading to methane (θCHx) and the pseudo-first-order rate constant (kt). The results suggest that the support can play an important role for the size dependence of the activity and selectivity of CO hydrogenation on Co catalysts.

  16. Size control of rhodium particles of silica-supported catalysts using water-in-oil microemulsion

    NASA Astrophysics Data System (ADS)

    Kishida, Masahiro; Hanaoka, Toshiaki; Kim, Won Young; Nagata, Hideo; Wakabayashi, Katsuhiko

    1997-11-01

    Effects of components of water-in-oil microemulsions on rhodium particle sizes of silica-supported rhodium catalysts were investigated in the catalyst preparation method using microemulsion. In the case of the microemulsion of polyoxyethylene(23)dodecyl ether/ n-alcohols/RhCl 3 aq., the rhodium particle size increased from 3.4 to 5.0 nm as the specific permittivity of the organic solvent increased. The chain length of hydrophilic group of polyoxyethylene- p-nonylphenyl ether ( n = 5 to 15) employed as surfactants had an effect on the rhodium particle size where the rhodium size ranged between 2.0 and 3.6 nm. The rhodium particle size was 1.5 nm in the case of sodium bis(2-ethylhexyl) sulfocuccinate and this value was found to be the smallest. These results could be interpreted in terms of the adsorption of the surfactant on rhodium-hydrazine particle surface.

  17. The Diurnal Cycle of Particle Sizes, Compositions, and Densities observed in Sacramento, CA during CARES Field Campaign

    NASA Astrophysics Data System (ADS)

    Beránek, J.; Vaden, T.; Imre, D. G.; Zelenyuk, A.

    2010-12-01

    A central objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) was to characterize unequivocally all aspects related to organics in aerosols. To this end, a range of instruments measured loadings, size distributions, compositions, densities, CCN activities, and optical properties of aerosol sampled in Sacramento, CA over the month of June 2010. We present the results of measurements conducted by our single particle mass spectrometer, SPLAT. SPLAT was used to measure the size, composition, and density of individual particles with diameters between 50 to 2000 nm. SPLAT measured the vacuum aerodynamic diameters (dva) of more than 2 million particles and the compositions of ~350,000 particles, each day. In addition, SPLAT was used in combination with a differential mobility analyzer to measure the density, or effective density of individual particles. These measurements were typically conducted twice per day: in the morning, and mid-afternoon. Preliminary analysis of the data shows that under most conditions, the particles were relatively small (below 200 nm), and the vast majority of them were composed of oxygenated organics mixed with various amounts of sulfates. Analysis of the mass spectra shows that the oxygenated organics in these particles are the oxidized products of biogenic volatile organic precursors. In addition to particles composed of SOA mixed with sulfates, we detected and characterized fresh and processed soot particles, biomass burning aerosol, organic amines, sea salt - fresh and processed - and a small number of dust and other inorganic particles, commonly found in urban environment. SOA mixed with sulfates were the vast majority of particles at all times, while the other particle types exhibited episodic behavior. The data shows a reproducible diurnal pattern in SOA size distributions, number concentrations, and compositions. Early in the morning the particle number concentrations are relatively low, and the particle size

  18. Determination of Particle Size by Diffraction of Light

    ERIC Educational Resources Information Center

    Rinard, Phillip M.

    1974-01-01

    Describes a simplified diffraction experiment offered in a workshop with the purpose of illustrating to high school students the relation of science to society. The radii determined for cigarette smoke particles range from 0.2 to 0.5 micrometer in this experiment. Included is a description of the diffraction theory. (CC)

  19. Surface structures of cerium oxide nanocrystalline particles from the size dependence of the lattice parameters

    NASA Astrophysics Data System (ADS)

    Tsunekawa, S.; Ito, S.; Kawazoe, Y.

    2004-10-01

    Cerium oxide nanocrystalline particles are synthesized and monodispersed in the size range from 2 to 8nm in diameter. The dependence of the lattice parameters on particle size is obtained by x-ray and electron diffraction analyses. The size dependence well coincides with the estimation based on the assumption that the surface is composed of one layer of Ce2O3 and the inside consists of CeO2. The effect of particle size on lattice parameters is discussed from the differences in the fabrication method and the surface structure.

  20. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    NASA Astrophysics Data System (ADS)

    Schladitz, A.; Merkel, M.; Bastian, S.; Birmili, W.; Weinhold, K.; Löschau, G.; Wiedensohler, A.

    2013-12-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The aim of the new feature is to conduct unattended quality control experiments under field conditions at remote air quality monitoring or research stations. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter removing the diffusive particles approximately smaller than 25 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. The other feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. An exemplary one-year data set is presented for the measurement site Annaberg-Buchholz as part of the Saxon air quality monitoring network. The total particle number concentration derived from the mobility particle size spectrometer overestimates the particle number concentration by only 2% (grand average offset). Furthermore, tolerance criteria are presented to judge the performance of the mobility particle size spectrometer with respect to the particle number concentration. An upgrade of a mobility particle size spectrometer with an automated function control enhances the quality of long-term particle number size distribution measurements. Quality assured measurements are a precondition for intercomparison studies of different sites. Comparable measurements will improve cohort health and also climate-relevant research studies.

  1. Measurement of snow particle size and speed in powder snow avalanches

    NASA Astrophysics Data System (ADS)

    Ito, Yoichi; Nishimura, Kouichi; Naaim-Bouvet, Florence; Bellot, Hervé; Thibert, Emmanuel; Ravanat, Xavier; Fontaine, Firmin

    2015-04-01

    Generally snow avalanches consist a dense-flow layer at the bottom and a powder snow cloud on top. Snow particle size and speed are key parameters to describe the turbulent condition in the powder cloud, however, the information on the particles were not well investigated. In this study, we observed powder snow avalanches using a snow particle counter (SPC) to measure the particle size and speed. The SPC is an optical device consisting a laser diode and photodiode; a pulse signal proportional to its diameter is generated resulting from a snow particle passing through the sensing volume. In general use, the signals are sent to a transducer and divided into 32 size classes based on particle diameter to observe the snow particle size distribution and mass flux at 1-s intervals. In this study, the direct output signal from the transducer was also acquired at a high frequency to obtain the original pulse signal produced by each snow particle. Then the speed of each particle can be calculated using the peak of the pulse, which corresponds to particle diameter and the duration over which the particle passes through the sampling area. We also employed an ultrasonic anemometer to measure air flow speed. Both sensors were installed at the Col du Lautaret Pass in the French Alps. The results of the particle size and speed distribution were then compared with airflow movement in the powder cloud. The ratio of the particle and airflow speeds changed by the particle size distribution and the distance from the dense-flow layer.

  2. Surface Modified Particles By Multi-Step Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2006-01-17

    The present invention relates to a new class of surface modified particles and to a multi-step surface modification process for the preparation of the same. The multi-step surface functionalization process involves two or more reactions to produce particles that are compatible with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through organic linking groups.

  3. The influence of particle size in flocculation phenomena of mixed particles of quartz and fluorite in aqueous suspension

    SciTech Connect

    Sukeyuki, Mori; Tsuyoshi, Hara; Takashi, Furuyama; Yujin, Fukushima

    1995-12-31

    In mineral processing practice, flocculation is largely established as an engineering technique of waste water treatment and the study of parameters increasing the settling velocity of particles is still of great importance to improve the process. Further investigations were made using quartz (Q89) and fluorite samples (F91) which included 58.8% and 65.8% of {minus}2.3 {micro}m particles respectively. In all the experiments the flocculation phenomena were observed varying the pH value of the aqueous suspension. In contrast to quartz particles (Q89) which did not flocculate for all pH values, it was, noticed that fluorite particles (F91) flocculated in the alkaline range of pH over 11. With an aqueous suspension containing equal quantities of Q89 and F91, a hetero-flocculation of particles was observed at a range of pH below 10. In this case, the maximum floc size of the hetero-flocculation was 37.0--26.2 {micro}m. This size was about three times larger than when quartz (Q84) and fluorite particles (F85) were used with 32.4% and 40.4% of {minus}2.31 {micro}m particles respectively. Besides, in the experiments using Q89 and F91, the maximum size of hetero-flocculated single particles was found to be 6.54 {micro}m instead of 3.27 {micro}m as obtained with Q84 and F85.

  4. Particle Size Distributions During Laboratory-Scale Biomass Burns and Prescribed Burns Using Fast Response Instruments

    NASA Astrophysics Data System (ADS)

    Jung, H.; Hosseini, E.; Li, Q.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, W.; Princevac, M.; Mahalingam, S.

    2010-12-01

    Particle size distribution from biomass combustion in an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies varies not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels and compare with that from prescribed burns. The combustion laboratory at the USDA Forest Service’s Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing volume size distribution from FMPS and APS measurement ~30 % of particle volume was attributable to the particles ranging from 0.5 to 10 µm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in MCE vs geometric mean diameter from each mode of combustion than only using MCE values. Prescribed burns were carried out at wildland managed by military bases. Evolution of particle distribution in and out of the plume will be compared with particle distribution from lab scale burning.

  5. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Qi, L.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, W.; Mahalingam, S.; Princevac, M.; Jung, H.

    2010-04-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels. The combustion facility at the USDA Forest Service's Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which was attributable to dilution of the fresh smoke. Comparing volume size distribution from Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS) measurements, ~30% of particle volume was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in Modified Combustion Efficiency (MCE) vs. geometric mean diameter from each mode of combustion than only using MCE values.

  6. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    1993-01-01

    Rigorously light scattering by size-shape distributions of randomly oriented axially symmetric particles are calculated by the T-matrix method, as extended to randomly oriented scatterers. The computational scheme is described along with a newly developed convergence procedure that makes it possible to substantially reduce computer time and storage requirements. The elements of the Stokes scattering matrix for a power-law size distribution of randomly oriented moderately aspherical spheroids are shown to be much smoother than and differ substantially from those of equivalent monodisperse spheroids; averaging over orientations does not eliminate the necessity of averaging over particle sizes. The angular-scattering behavior of the ensembles of nonspherical particles is found to be significantly different from that of the equivalent polydisperse spheres.

  7. Variability of particle size distribution with respect to inherent optical properties in Poyang Lake, China.

    PubMed

    Huang, Jue; Chen, Xiaoling; Jiang, Tao; Yang, Fanlin; Chen, Liqiong; Yan, Liwen

    2016-08-01

    Suspended particulate matter plays a significant role in the studies of sediment fluxes, phytoplankton dynamics, and water optical properties. This study focuses on the relationships between particle size distribution (PSD), water's inherent optical properties (IOPs), and water constituents. We investigated the complex waters of Poyang Lake, the largest freshwater lake in China, in wet and dry seasons during 2008-2011. Because of the distinct temporal-spatial variation of Poyang Lake, these parameters and relationships also demonstrate seasonal and regional variability. The variation range of the concentration of suspended particulate matter is 0.32-69.08  mg/l, with a mean value of 22.21  mg/l. The median particle size in the dry season is much larger than that of the wet season. The Junge distribution fits the PSD of Poyang Lake very well in the scope of 6.21-331 μm. Furthermore, the slopes of the PSD range from 3.54 to 4.69, with a mean value of 4.11, with the steepest slopes (>4.5) occurring in the waters around Songmen Mountain Island and the northern waterway. A negative correlation was found between median particle size (Dv50) and the mass-specific absorption coefficient at 443 nm [apm(443)] for both wet and dry seasons. Identical to analogous waters, the spectral slopes of the PSD correlate well with the spectral slopes of the attenuation coefficient, but with different fitted formulas. In the dry season, the particle size can better explain the variability of the scattering coefficient, while the mass-specific scattering coefficient is better explained by the apparent density. However, no similar results were found for the wet season. In addition, the spectral slopes of the backscattering coefficient correlated well with the PSD slope, and the bulk refractive index calculated from the backscattering ratio and PSD slope can indicate the particle composition of Poyang Lake. Overall, the knowledge on the PSD and IOPs gained in this study

  8. Effect of colloidal particle size on adsorbed monodisperse and bidisperse monolayers.

    PubMed

    Rosenberg, Rachel T; Dan, Nily

    2011-07-19

    Coating hydrogel films or microspheres by an adsorbed colloidal shell is one synthesis method for forming colloidosomes. The colloidal shell allows control of the release rate of encapsulated materials, as well as selective transport. Previous studies found that the packing density of self-assembled, adsorbed colloidal monolayers is independent of the colloidal particle size. In this paper we develop an equilibrium model that correlates the packing density of charged colloidal particles in an adsorbed shell to the particle dimensions in monodisperse and bidisperse systems. In systems where the molar concentration in solution is fixed, the increase in adsorption energy with increasing particle size leads to a monotonic increase in the monolayer packing density with particle radius. However, in systems where the mass fraction of the particles in the adsorbing solutions is fixed, increasing particle size also reduces the molar concentration of particles in solution, thereby reducing the probability of adsorption. The result is a nonmonotonic dependence of the packing density in the adsorbed layer on the particle radius. In bidisperse monolayers composed of two particle sizes, the packing density in the layer increases significantly with size asymmetry. These results may be utilized to design the properties of colloidal shells and coatings to achieve specific properties such as transport rate and selectivity.

  9. A method of simultaneously measuring particle shape parameter and aerodynamic size

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Zhang, JinBi; Zheng, HaiYang; Wang, YingPing; Fang, Li

    2016-08-01

    For the purpose of classification of airborne particles, this paper describes an experimental apparatus for simultaneously measuring shape characteristics and aerodynamic size at single particle level. The shape of a particle is indicated through near forward scattering light collected by 3 PMTs placed at 120-degree offset azimuthal angles and the aerodynamic diameter is obtained by time-of-flight that a particle takes to traverse double laser beams. Laboratory experiments are performed on sampled aerosol particles in spherical, cuboid and elongated shape, and preliminary results indicate that the experimental apparatus has a good capability of discriminating between spherical and irregular particles. A variance factor of scattered light related to shape of ambient airborne particles under different conditions are also presented, which can be modeled using lognormal probability density distribution. Combined with aerodynamic size information, these results suggest potential uses in environmental aerosol monitoring for characterizing constituents of particles.

  10. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  11. Analysis of particle size reduction on overall surface area and enzymatic hydrolysis yield of corn stover.

    PubMed

    Li, Hanjie; Ye, Chenlin; Liu, Ke; Gu, Hanqi; Du, Weitao; Bao, Jie

    2015-01-01

    Particle size of lignocellulose materials is an important factor for enzymatic hydrolysis efficiency. In this study, corn stover was milled and sieved into different size fractions from 1.42, 0.69, 0.34, to 0.21 mm, and the corresponding enzymatic hydrolysis yields were 24.69, 23.96, 25.34, and 26.97 %, respectively. The results indicate that the hydrolysis yield is approximately constant with changing corn stover particle sizes in the experimental range. The overall surface area and the inner pore size measurement show that the overall specific surface area was less than 2 % with the half reduction of particle size due to the greater inner pore surface area. The scanning electron microscope photographs gave direct evidence of the much greater inner pore surface area of corn stover particles. This result provided a reference when a proper size reduction of lignocellulose materials is considered in biorefining operations.

  12. Reactive Atmospheric Plasma Spraying of AlN Coatings: Influence of Aluminum Feedstock Particle Size

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-03-01

    Feedstock powder characteristics (size distribution, morphology, shape, specific mass, and injection rate) are considered to be one of the key factors in controlling plasma-sprayed coatings microstructure and properties. The influence of feedstock powder characteristics to control the reaction and coatings microstructure in reactive plasma spraying process (RPS) is still unclear. This study, investigated the influence of feedstock particle size in RPS of aluminum nitride (AlN) coatings, through plasma nitriding of aluminum (Al) feedstock powders. It was possible to fabricate AlN-based coatings through plasma nitriding of all kinds of Al powders in atmospheric plasma spray (APS) process. The nitriding ratio was improved with decreasing the particle size of feedstock powder, due to improving the nitriding reaction during flight. However, decreasing the particle size of feedstock powder suppressed the coatings thickness. Due to the loss of the powder during the injection, the excessive vaporization of fine Al particles and the completing nitriding reaction of some fine Al particles during flight. The feedstock particle size directly affects on the nitriding, melting, flowability, and the vaporization behaviors of Al powders during spraying. It concluded that using smaller particle size powders is useful for improving the nitriding ratio and not suitable for fabrication thick AlN coatings in reactive plasma spray process. To fabricate thick AlN coatings through RPS, enhancing the nitriding reaction of Al powders with large particle size during spraying is required.

  13. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    PubMed

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior. PMID:25669282

  14. Control of particle size by feed composition in the nanolatexes produced via monomer-starved semicontinuous emulsion copolymerization.

    PubMed

    Sajjadi, Shahriar

    2015-05-01

    Conventional batch and semicontinuous emulsion copolymerizations often produce large particles whose size cannot be easily correlated with the comonomer feed compositions, and are to some degree susceptible to composition drift. In contrast, we found that copolymer nanolatexes made via semicontinuous monomer-starved emulsion copolymerizations are featured with an average nanoparticle size being controlled by the feed composition, a high conversion achieved, and a high degree of particle composition uniformity. This was achieved because the rate of particle growth, during nucleation, was controlled by the rate of comonomer addition, and the copolymer composition, surfactant parking area on the particles, and nucleation efficiency determined by the comonomer feed composition. Two model systems, methyl methacrylate/styrene and vinyl acetate/butyl acrylate, with significant differences in water solubility were studied. Monomers were added to the aqueous solution of sodium dodecylsulfate and potassium persulfate at a low rate to achieve high instantaneous conversions. PMID:25617612

  15. Intake, ingesta retention, particle size distribution and digestibility in the hippopotamidae.

    PubMed

    Clauss, M; Schwarm, A; Ortmann, S; Alber, D; Flach, E J; Kühne, R; Hummel, J; Streich, W J; Hofer, H

    2004-12-01

    Although several aspects of the digestive physiology of the hippopotamidae-non-ruminating foregut fermenters-have been described, ingesta kinetics and passage characteristics of these species are not well understood. The most outstanding feature of the hippo digestive physiology reported so far is the very long mean ingesta retention times (MRTs) measured by Foose [Foose, T., 1982. Trophic strategies of ruminant versus nonruminant ungulates. PhD dissertation, University of Chicago, Chicago.]. Since those data had been investigated with animals without water access, we intended to measure MRT in hippos which were allowed to enter water pools during the night. MRT parameters as well as dry matter (DM) digestibility were determined in four common (Hippopotamus amphibius) and four pygmy hippos (Hexaprotodon liberiensis) on two different diets each using cobalt ethylendiamintetraacetate (Co-EDTA) as a fluid, chromium (Cr)-mordanted fibre (<2 mm) as a particle and acid detergent lignin (ADL) as an internal digestibility marker. Four of the animals additionally received cerium (Ce)-mordanted fibres (2-10 mm) as particle markers. Total MRTs for fluids and particles ranged between 20-35 and 48-106 h in the common and between 13-39 and 32-107 h in the pygmy hippos. The difference between fluid and particle retention was greater than usually reported in ruminants. Excretion patterns of the markers differed from those usually observed in ruminants but resembled those reported for macropods (kangaroos), indicating a plug-flow reactor-like physiology in the hippo forestomach (FRST). This finding complements other described similarities between the macropod and the hippo forestomach. The measurements of larger particle retention profiles suggest that in the hippo, larger particles might be excreted either faster or at the same rate as smaller particles, indicating a general difference between ruminants and hippos with respect to differential particle retention. The digestive

  16. Mars Dust: Characterization of Particle Size and Electrostatic Charge Distribution

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Saini, D.; Biris, A. S.; Sriama, P. K.; Calle, C.; Buhler, C.

    2004-01-01

    Some of the latest pictures of Mars surface sent by NASA's Spirit rover in early January, 2004, show very cohesive, "mud-like" dust layers. Significant amounts of dust clouds are present in the atmosphere of Mars [1-4]. NASA spacecraft missions to Mars confirmed hypotheses from telescopic work that changes observed in the planet's surface markings are caused by wind-driven redistribution of dust. In these dust storms, particles with a wide range of diameters (less than 1 micrometer to 50 micrometers) are a serious problem to solar cells, spacecraft, and spacesuits. Dust storms may cover the entire planet for an extended period of time [5]. It is highly probable that the particles are charged electrostatically by triboelectrification and by UV irradiation.

  17. Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations

    USGS Publications Warehouse

    Gartner, J.W.; Cheng, R.T.; Wang, P.-F.; Richter, K.

    2001-01-01

    Advances in technology have resulted in a new instrument that is designed for in-situ determination of particle size spectra. Such an instrument that can measure undisturbed particle size distributions is much needed for sediment transport studies. The LISST-100 (Laser In-Situ Scattering and Transmissometry) uses the principle of laser diffraction to obtain the size distribution and volume concentration of suspended material in 32 size classes logarithmically spaced between 1.25 and 250 ??m. This paper describes a laboratory evaluation of the ability of LISST-100 to determine particle sizes using suspensions of single size, artificial particles. Findings show the instrument is able to determine particle size to within about 10% with increasing error as particle size increases. The instrument determines volume (or mass) concentration using a volume conversion factor Cv. This volume conversion factor is theoretically a constant. In the laboratory evaluation Cv is found to vary by a factor of about three over the particle size range between 5 and 200 ??m. Results from field studies in South San Francisco Bay show that values of mass concentration of suspended marine sediments estimated by LISST-100 agree favorably with estimates from optical backscatterance sensors if an appropriate value of Cv, according to mean size, is used and the assumed average particle (aggregate) density is carefully chosen. Analyses of size distribution of suspended materials in South San Francisco Bay over multiple tide cycles suggest the likelihood of different sources of sediment because of different size characteristics during flood and ebb cycles. ?? 2001 Elsevier Science B.V.

  18. The Effect of SiC Particle Addition During FSW on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Abbasi, M.; Abdollahzadeh, A.; Bagheri, B.; Omidvar, H.

    2015-12-01

    Welding and joining of magnesium alloys exert a profound effect on magnesium application expansion, especially in ground and air transportations where large-size, complex components are required. Due to specific physical properties of magnesium, its welding requires great control. In general, the solid-state nature of friction stir welding (FSW) process has been found to produce a low concentration of defects. In the current research, specimens from AZ31 magnesium alloy were welded together using the friction stir process with previously inserted SiC powder particles in the nugget zone. In other words, during the FSW process, the pre-placed SiC particles were stirred throughout the nugget zone of the weld. The results indicated that proper values of rotation and translation speeds led to good appearance of weld zone and suitable distribution of SiC particles producing increased weld strength. The comparison of the microstructures and mechanical properties of FS-welded AZ31 with those of FS-welded one using pre-placed SiC particles showed that the addition of SiC particles decreased the grain size and increased the strength and the formability index.

  19. Receptor modelling of both particle composition and size distribution from a background site in London, UK

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Harrison, R. M.; Green, D. C.; Fuller, G. W.

    2015-09-01

    Positive matrix factorisation (PMF) analysis was applied to PM10 chemical composition and particle number size distribution (NSD) data measured at an urban background site (North Kensington) in London, UK, for the whole of 2011 and 2012. The PMF analyses for these 2 years revealed six and four factors respectively which described seven sources or aerosol types. These included nucleation, traffic, urban background, secondary, fuel oil, marine and non-exhaust/crustal sources. Urban background, secondary and traffic sources were identified by both the chemical composition and particle NSD analysis, but a nucleation source was identified only from the particle NSD data set. Analysis of the PM10 chemical composition data set revealed fuel oil, marine, non-exhaust traffic/crustal sources which were not identified from the NSD data. The two methods appear to be complementary, as the analysis of the PM10 chemical composition data is able to distinguish components contributing largely to particle mass, whereas the number particle size distribution data set - although limited to detecting sources of particles below the diameter upper limit of the SMPS (604 nm) - is more effective for identifying components making an appreciable contribution to particle number. Analysis was also conducted on the combined chemical composition and NSD data set, revealing five factors representing urban background, nucleation, secondary, aged marine and traffic sources. However, the combined analysis appears not to offer any additional power to discriminate sources above that of the aggregate of the two separate PMF analyses. Day-of-the-week and month-of-the-year associations of the factors proved consistent with their assignment to source categories, and bivariate polar plots which examined the wind directional and wind speed association of the different factors also proved highly consistent with their inferred sources. Source attribution according to the air mass back trajectory showed, as

  20. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses

    PubMed Central

    Alonso, Carmen; Raynor, Peter C.; Davies, Peter R.; Torremorell, Montserrat

    2015-01-01

    When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m3 within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x102 (in particles ranging from 1.1 to 2.1μm) to 4.3x105 RNA copies/m3 in the largest particles (9.0–10.0μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1μm in quantities ranging from 6x102 (0.4–0.7μm) to 5.1x104 RNA copies/m3 (9.0–10.0μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x106 (0.4–0.7μm) to 3.5x108 RNA copies/m3 (9.0–10.0μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a wide range of

  1. Determination of particle size using measurement of scatter

    NASA Technical Reports Server (NTRS)

    Scott, R. L., Jr.

    1977-01-01

    Scatter measurements were taken from glass spheres of size 5 to 50 microns placed on a mirror to see whether such scatter data could be correlated with size. The spheres were illuminated with a laser whose wavelength was 0.62 microns. A Gonioreflectometer was used to vary the detector between the normal to the mirror and 85 deg from the normal and in the plane containing the normal to the mirror and the incident laser light. The azimuth of the detector with respect to the source was 180 deg. The light detector was driven by a step motor. The scatter was dark and bright lines. They appeared as minima and maxima on the output recorder. As the size of the beads increased the number of maxima increased.

  2. Determination of particle size using measurement of scatter

    NASA Technical Reports Server (NTRS)

    Scott, R. L., Jr.

    1976-01-01

    Scatter from glass beads placed on a mirror was measured using a quartz lamp and laser. Data were obtained in the plane containing the normal to the surface and the incident beam. For the quartz lamp the best correlation can be obtained for data measured at a zenith of 55 deg and 180 deg from the incident beam. The best correlation when the laser is used is obtained at about the same position. However, the correlation variables are angular spacing of the minimums of the data versus the size. Whereas, with the quartz lamp the correlation variables are the amount of scattered energy versus size.

  3. Inferences of Particle Size and Composition From Video-like Images Based on Acoustic Data: Grotto Plume, Main Endeavor Field

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Rona, P. A.; Santilli, K.; Dastur, J.; Silver, D.

    2004-12-01

    Optical and acoustic scattering from particles in a seafloor hydrothermal plume can be related if the particle properties and scattering mechanisms are known. We assume Rayleigh backscattering of sound and Mie forward scattering of light. We then use the particle concentrations implicit in the observed acoustic backscatter intensity to recreate the optical image a camera would see given a particular lighting level. The motivation for this study is to discover what information on particle size and composition in the buoyant plume can be inferred from a comparison of the calculated optical images (based on acoustic data) with actual video images from the acoustic acquisition cruise and the IMAX film "Volcanoes of the Deep Sea" (Stephen Low Productions, Inc.). Because the geologists, biologists and oceanographers involved in the study of seafloor hydrothermal plumes all "see" plumes in different ways, an additional motivation is to create more realistic plume images from the acoustic data. By using visualization techniques, with realistic lighting models, we can convert the plume image from mechanical waves (sound) to electromagnetic waves (light). The resulting image depends on assumptions about the particle size distribution and composition. Conversion of the volume scattering coefficients from Rayleigh to Mie scattering is accomplished by an extinction scale factor that depends on the wavelengths of light and sound and on the average particle size. We also make an adjustment to the scattered light based on the particles reflectivity (albedo) and color. We present a series of images of acoustic data for Grotto Plume, Main Endeavour Field (within the Endeavour ISS Site) using both realistic lighting models and traditional visualization techniques to investigate the dependence of the images on assumptions about particle composition and size. Sensitivity analysis suggests that the visibility of the buoyant plume increases as the intensity of supplied light increases

  4. Suppression in droplet growth kinetics by the addition of organics to sulfate particles

    NASA Astrophysics Data System (ADS)

    Wong, Jenny P. S.; Liggio, John; Li, Shao-Meng; Nenes, Athanasios; Abbatt, Jonathan P. D.

    2014-11-01

    Aerosol-cloud interactions are affected by the rate at which water vapor condenses onto particles during cloud droplet growth. Changes in droplet growth rates can impact cloud droplet number and size distribution. The current study investigated droplet growth kinetics of acidic and neutral sulfate particles which contained various amounts and types of organic compounds, from model compounds (carbonyls) to complex mixtures (α-pinene secondary organic aerosol and diesel engine exhaust). In most cases, the formed droplet size distributions were shifted to smaller sizes relative to control experiments (pure sulfate particles), due to suppression in droplet growth rates in the cloud condensation nuclei counter. The shift to smaller droplets correlated with increasing amounts of organic material, with the largest effect observed for acidic seed particles at low relative humidity. For all organics incorporated onto acidic particles, formation of high molecular weight compounds was observed, probably by acid-catalyzed Aldol condensation reactions in the case of carbonyls. To test the reversibility of this process, carbonyl experiments were conducted with acidic particles exposed to higher relative humidity. High molecular weight compounds were not measured in this case and no shift in droplet sizes was observed, suggesting that high molecular weight compounds are the species affecting the rate of water uptake. While these results provide laboratory evidence that organic compounds can slow droplet growth rates, the modeled mass accommodation coefficient of water on these particles (α > 0.1) indicates that this effect is unlikely to significantly affect cloud properties, consistent with infrequent field observations of slower droplet growth rates.

  5. A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen

    2010-01-01

    As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.

  6. Thermal properties of size-selective nanoparticles: Effect of the particle size on Einstein temperature

    NASA Astrophysics Data System (ADS)

    Li, Y.; Anderson, R. M.; Duan, Z.; Chill, S.; Crooks, R. M.; Henkelman, G.; Frenkel, A. I.

    2016-05-01

    Characterizing size related thermal properties of nanoclusters is challenging due to the requirement to accurately control both their average sizes and the size distributions. In this work, temperature-dependent Extended X-ray Absorption Fine Structure spectroscopy and the phenomenological bond-order-length-strength (BOLS) model were employed to investigate the size-dependent Einstein temperature of Au nanoclusters. Theoretical calculations of Einstein temperature and average bond distance for clusters with different sizes agree quantitatively with experiment. The BOLS model is thus useful for predictive understanding of structure and thermal properties in well-defined metal clusters.

  7. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    NASA Astrophysics Data System (ADS)

    Bastian, S.; Löschau, G.; Wiedensohler, A.

    2014-04-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The function control allows unattended quality assurance experiments at remote air quality monitoring or research stations under field conditions. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter while removing diffusive particles smaller than 20 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. Another feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. The performance of the function control is illustrated with the aid of a 1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air quality monitoring network. During the period of concern, the total particle number concentration derived from the mobility particle size spectrometer slightly overestimated the particle number concentration recorded by the condensation particle counter by 2 % (grand average). Based on our first year of experience with the function control, we developed tolerance criteria that allow a performance evaluation of a tested mobility particle size spectrometer with respect to the total particle number concentration. We conclude that the automated function control enhances the quality and reliability of unattended long-term particle number size distribution measurements. This will have beneficial effects for intercomparison studies involving different measurement sites, and help provide a higher

  8. Individual Aerosol Particles from Biomass Burning in Southern Africa. 1; Compositions and Size Distributions of Carbonaceous Particles

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  9. Impact of Volume Fraction and Size of Reinforcement Particles on the Grain Size in Metal-Matrix Micro and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Lopez, Hugo F.; Rohatgi, Pradeep K.; Cho, Kyu; Kim, Chang-Soo

    2014-08-01

    In metal-matrix micro and nanocomposites (MMCs and MMNCs), the presence and interactions of various strengthening mechanisms are not well understood, but grain boundary strengthening is considered as one of the primary means of improving the yield strength of composites. Owing to the importance of grain size on mechanical properties, it is necessary to be able to describe how incorporation of nanoparticles (NPs) in both powder metallurgy (PM) and solidification processing (SP) affects this critical property. In the present work, we provide a basis for an empirical equation that relates particle fraction and particle size to MMNC grain size for both PM and SP synthesis methods. The model suggests that NPs retard grain coarsening in PM MMNCs and also seems to describe the effect of reinforcement concentration on grain size in SP MMCs and MMNCs.

  10. Submicrometer-Sized Thermometer Particles Exploiting Selective Nucleic Acid Stability.

    PubMed

    Puddu, Michela; Mikutis, Gediminas; Stark, Wendelin J; Grass, Robert N

    2016-01-27

    Encapsulated nucleic acid selective damage quantification by real-time polymerase chain reaction is used as sensing mechanism to build a novel class of submicrometer size thermometer. Thanks to the high thermal and chemical stability, and the capability of storing the read accumulated thermal history, the sensor overcomes some of current limitations in small scale thermometry.

  11. A novel method for size uniform 200nm particles: multimetallic particles and in vitro gene delivery

    NASA Astrophysics Data System (ADS)

    Mair, Lamar; Ford, Kris; Superfine, Richard

    2008-10-01

    We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts. Metal particles evaporated on cylindrical structures 0.20μm in diameter and 0.33μm tall are released via photoresist dissolution, resulting in freely suspended, shape defined particles. These Post-Particles have highly tunable composition, as demonstrated by our deposition of five different multimetallic particle blends. We calculate the susceptibility and magnetization of 200nm Fe particles in an applied 0.081T magnetic field. In order to evaluate their usefulness as magnetofection agents an antisense oligonucleotide designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA was successfully attached to Fe Post-Particles via a polyethyleneimine linker and transfected into a modified HeLa cell line.

  12. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data

  13. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    SciTech Connect

    Zhang, Bo; Edwards, Brian J.

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  14. Influence of Particle Size on Reaction Selectivity in Cyclohexene Hydrogenation and Dehydrogenation over Silica-Supported Monodisperse Pt Particles

    SciTech Connect

    Rioux, R. M.; Hsu, B. B.; Grass, M. E.; Song, H.; Somorjai, Gabor A.

    2008-07-11

    The role of particle size during the hydrogenation/dehydrogenation of cyclohexene (10 Torr C{sub 6}H{sub 10}, 200-600 Torr H{sub 2}, and 273-650 K) was studied over a series of monodisperse Pt/SBA-15 catalysts. The conversion of cyclohexene in the presence of excess H{sub 2} (H{sub 2}:C{sub 6}H{sub 10} ratio = 20-60) is characterized by three regimes: hydrogenation of cyclohexene to cyclohexane at low temperature (< 423 K), an intermediate temperature range in which both hydrogenation and dehydrogenation occur; and a high temperature regime in which the dehydrogenation of cyclohexene dominates (> 573 K). The rate of both reactions demonstrated maxima with temperature, regardless of Pt particle size. For the hydrogenation of cyclohexene, a non-Arrhenius temperature dependence (apparent negative activation energy) was observed. Hydrogenation is structure insensitive at low temperatures, and apparently structure sensitive in the non-Arrhenius regime; the origin of the particle-size dependent reactivity with temperature is attributed to a change in the coverage of reactive hydrogen. Small particles were more active for dehydrogenation and had lower apparent activation energies than large particles. The selectivity can be controlled by changing the particle size, which is attributed to the structure sensitivity of both reactions in the temperature regime where hydrogenation and dehydrogenation are catalyzed simultaneously.

  15. Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines

    NASA Astrophysics Data System (ADS)

    Laube, Norbert; Mohr, Bernhard; Hesse, Albrecht

    2001-11-01

    The mechanisms for the formation of calcium oxalate kidney stones are not well understood. In our urological basic research study, ammonium oxalate was added to sample solutions of CaCl 2 and to artificial urines to induce the formation of calcium oxalate crystals, the most common crystals in the urinary tract. Using an in-line laser-probe we took real-time readings (4 min intervals) of the PSD evolution of particles ranging in size between 0.5 and 250 μm over a period of 1 h. Most particles were between 0.5 and 14 μm in size. The particle-size mode is approximately 2 μm. The time-dependent PSD development depends on the composition of the solution. The in-line laser-probe permits individual analysis of minute particles which fall below the lower coulter counter detection limit. As these particles form the basis of all further processes which alter the particle size, they are of paramount interest in urinary stone research.

  16. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    PubMed

    Zhang, Bo; Edwards, Brian J

    2015-06-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  17. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Edwards, Brian J.

    2015-06-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  18. Enhanced resolution particle size distributions by multiple angle photon correlation spectroscopy

    NASA Technical Reports Server (NTRS)

    Bott, Steven E.

    1989-01-01

    Photon correlation spectroscopy (PCS) has become a method of choice for measuring submicrometer particles. It is capable of rapid, accurate measurements of mean particle size. Since the measurements are nonperturbing, it is ideal for monitoring systems undergoing dynamic changes. Despite its widespread acceptance, the information content of PCS measurements for particle size distributions is low and provides limited resolution. A method is presented whereby PCS measurements made at several scattering angles plus the angular distribution of light scattered from the particles are combined in a single simultaneous analysis to effect an enhanced resolution particle size distribution. The efficacy of the method is assessed by recovering size distributions from computer simulated data and by comparisons of conventional PCS measurements of polystyrene spheres with those made by the new method.

  19. Thorium adsorption in the ocean: reversibility and distribution amongst particle sizes

    NASA Astrophysics Data System (ADS)

    Moore, Robert M.; Hunter, Keith A.

    1985-11-01

    Experiments have been carried out to determine whether the adsorption of Th by marine suspended particles is a reversible process. The results indicate reversibility on a time scale of hours. The distribution of Th between the 'dissolved' state (<0.22 μm particle size) and various particle size fractions has been compared with predictions based on a hyperbolic size distribution of marine particles assuming spherical geometry and surface adsorption. Thorium is present in small particles to a much smaller degree than such a model would predict, so that the use of 1 μm pore size filters to separate 'dissolved' and 'particulate' Th does not introduce serious errors. The implications of these results on the reversible exchange model of BACON and ANDERSON (1982) and on the settling model of TSUNOGAI and MINAGAWA (1978) are discussed.

  20. Radial particle-size segregation during packing of particulates into cylindrical containers

    USGS Publications Warehouse

    Ripple, C.D.; James, R.V.; Rubin, J.

    1973-01-01

    In a series of experiments, soil materials were placed in long cylindrical containers, using various packing procedures. Soil columns produced by deposition and simultaneous vibratory compaction were dense and axially uniform, but showed significant radial segregation of particle sizes. Similar results were obtained with deposition and simultaneous impact-type compaction when the impacts resulted in significant container "bouncing". The latter procedure, modified to minimize "bouncing" produced dense, uniform soil columns, showing little radial particle-size segregation. Other procedures tested (deposition alone and deposition followed by compaction) did not result in radial segregation, but produced columns showing either relatively low or axially nonuniform densities. Current data suggest that radial particle-size segregation is mainly due to vibration-induced particle circulation in which particles of various sizes have different circulation rates and paths. ?? 1973.

  1. Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns

    NASA Astrophysics Data System (ADS)

    Ulanowski, Z.; Hirst, E.; Kaye, P. H.; Greenaway, R.

    2012-12-01

    Scattered intensity measurement is a commonly used method for determining the size of small particles. However, it requires calibration and is subject to errors due to changes in incident irradiance or detector sensitivity. Analysis of two-dimensional scattering patterns offers an alternative approach. We test morphological image processing operations on patterns from a diverse range of particles with rough surfaces and/or complex structure, including mineral dust, spores, pollen, ice analogs and sphere clusters from 4 to 88 μm in size. It is found that the median surface area of intensity peaks is the most robust measure, and it is inversely proportional to particle size. The trend holds well for most particle types, as long as substantial roughness or complexity is present. One important application of this technique is the sizing of atmospheric particles, such as ice crystals.

  2. Relation between particle size and carotenoid bioaccessibility in carrot- and tomato-derived suspensions.

    PubMed

    Moelants, Katlijn R N; Lemmens, Lien; Vandebroeck, Marijke; Van Buggenhout, Sandy; Van Loey, Ann M; Hendrickx, Marc E

    2012-12-01

    To study the effect of particle size on the relative all-E-β-carotene and all-E-lycopene bioaccessibility in carrot- and tomato-derived suspensions, respectively, an in vitro digestion approach including oil was used. Adding olive oil (2%) during digestion, especially as an oil-in-water emulsion, resulted in a substantial increase in carotenoid uptake in the micellar phase. Carotenoid bioaccessibility decreased with average particle size. Only particles smaller than an individual cell resulted in high bioaccessibility values, pointing out the importance of the cell wall as the main barrier for carotenoid uptake. The relation obtained between particle size and bioaccessibility was used to predict the carotenoid bioaccessibility in carrot- and tomato-derived purées. These predictions indicated that carotenoid bioaccessibility in plant-based food suspensions is not only determined by the cell wall integrity (related with particle size) but is also affected by interactions between the structural compounds of the complex food matrix.

  3. Ultraviolet disinfection of fecal coliform in municipal wastewater: effects of particle size.

    PubMed

    Madge, Bethany A; Jensen, James N

    2006-03-01

    Suspended solids interfere with the efficiency of disinfection using UV radiation by decreasing the rate of disinfection and inducing tailing. However, conventional measures of solids (total suspended solids, turbidity, and UV transmittance) do not adequately predict the presence or degree of these effects. Bacteria and viruses can become associated with particles in wastewater. A fractionation technique was developed to separate particle-associated bacteria into three fractions, based on particle size. The results show that the degree to which particles interfere with UV disinfection efficiency is dependent on particle size. The small size fraction (< 5 microm) consistently produced a statistically significant faster disinfection rate than the large fraction (> 20 microm), with the unfiltered sample and the medium fraction (particles > 5 microm, but < 20 microm) between the two extremes. Tailing also was observed only in the large fraction. Correlations between the disinfection rate constant and the percentage of large fraction bacteria of a sample were good.

  4. Particle-size distribution of polybrominated diphenyl ethers (PBDEs) and its implications for health

    NASA Astrophysics Data System (ADS)

    Lyu, Y.; Xu, T.; Li, X.; Cheng, T.; Yang, X.; Sun, X.; Chen, J.

    2015-12-01

    In order better to understand the particle-size distribution of particulate PBDEs and their deposition pattern in human respiratory tract, we made an one year campaign 2012-2013 for the measurement of size-resolved aerosol particles at Shanghai urban site. The results showed that particulate PBDEs exhibited a bimodal distribution with a mode peak in the accumulation particle size range and the second mode peak in the coarse particle size ranges. As the number of bromine atoms in the molecule increased, accumulation mode peak intensity increased while coarse mode peak intensity decreased. This change was the consistent with the variation of PBDEs' sub-cooled vapor pressure. Absorption and adsorption process dominated the distribution of PBDEs among the different size particles. Evaluated deposition flux of Σ13PBDE was 26.8 pg h-1, in which coarse particles contributed most PBDEs in head and tracheobronchial regions, while fine mode particles contributed major PBDEs in the alveoli region. In associated with the fact that fine particles can penetrate deeper into the respiratory system, fine particle-bound highly brominated PBDEs can be inhaled more deeply into human lungs and cause a greater risk to human health.

  5. Size distribution of particle-associated polybrominated diphenyl ethers (PBDEs) and their implications for health

    NASA Astrophysics Data System (ADS)

    Lyu, Yan; Xu, Tingting; Li, Xiang; Cheng, Tiantao; Yang, Xin; Sun, Xiaomin; Chen, Jianmin

    2016-03-01

    In order to better understand the size distribution of particle-associated PBDEs and their deposition pattern in the human respiratory tract, we carried out a 1-year campaign during 2012-2013 for the measurement of size-resolved particles at the urban site of Shanghai. The results showed that particulate PBDEs exhibited a bimodal distribution with a mode peak in the accumulation particle size range and the second mode peak in the coarse particle size ranges. As the number of bromine atoms in the molecule increases, accumulation-mode peak intensity increased while coarse-mode peak intensity decreased. This change was consistent with the variation of PBDEs' subcooled vapor pressure. Absorption and adsorption processes dominated the distribution of PBDEs among the different size particles. The evaluated deposition flux of Σ13 PBDEs was 26.8 pg h-1, in which coarse particles contributed most PBDEs in head and tracheobronchial regions, while fine-mode particles contributed major PBDEs in the alveoli region. In association with the fact that fine particles can penetrate deeper into the respiratory system, fine-particle-bound highly brominated PBDEs can be inhaled more deeply into human lungs and cause a greater risk to human health.

  6. Kinetic plots in aqueous size exclusion chromatography of monoclonal antibodies and virus particles.

    PubMed

    Vajda, Judith; Conze, Werner; Müller, Egbert

    2015-12-24

    The growing importance of monoclonal antibodies and virus particles has led to a pressure for faster size exclusion chromatography. In recent years, numerous small particle columns for size exclusion chromatography of biologicals have been introduced. Small particles are a strategy to reduce analysis time. In the following study, opportunities of small particles in size exclusion chromatography of large biomolecules are investigated. Poppe plots reveal that the lower particle size limit depends on the size of the sample molecule. Hydrodynamic radii of monoclonal antibody monomer, aggregates and H1N1 as well as the diffusion coefficients were determined. Considering this sample compound dependency, kinetic plots referring to the resolution of a distinct compound pair instead of the plate number of a single analyte are more meaningful. Plate times were found to be equivalent with 4 and 2μm particles for a monoclonal antibody aggregate separation at resolutions smaller than 1.8. Quantification of a H1N1 in clarified cell culture can be accomplished with 17μm and 13μm particles at equal plate times at resolutions smaller than 2.5. Virus polydispersity is likely to be affected by run times of several hours at room temperature and shear forces resulting from particles smaller than 10μm. Comparatively high flow rates should be applied in size exclusion chromatography of the 100nm H1N1 virions.

  7. The Effect of Solid Constituent Particle Size Distributions on TP-H1148 Propellant Slag

    NASA Technical Reports Server (NTRS)

    May, Douglas H.; Miles, William L.; Taylor, David S.; Rackham, Jon L.

    1997-01-01

    Special aluminum and ammonium perchlorate (AP) particle size distributions were prepared for a matrix of five-inch diameter, center-perforated (CP) motor tests to measure the aluminum oxide slag response in Space Shuttle Reusable Solid Rocket Motor (RSRM) propellant. Previous tests of TP-H1148 propellant in five-inch CP spin motors have shown a correlation between aluminum particle size and generated slag. The motors for this study were cast from thirteen five-gallon propellant mixes which used five particle size levels of aluminum powder, five of unground AP and three of ground AP. Aluminum had the greatest effect on slag formation, the more coarse fractions causing greater slag quantities and larger slag particles. Unground AP had about half the effect of aluminum with the coarser fractions again producing more and larger sized slag particles. The variation in ground AP did not have a significant effect on slag formation. Quench bomb tests showed the same trends as the spin motors, that is, larger aluminum and AP particle size distributions generated larger slag particles leaving the propellant surface. Cured propellant mechanical properties were also impacted by particle size variation.

  8. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    USGS Publications Warehouse

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  9. Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Roldin, P.; Williams, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R. M.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.

    2010-12-01

    Particle mobility size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide application in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. This article results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research). Under controlled laboratory conditions, the number size distribution from 20 to 200 nm determined by mobility size spectrometers of different design are within an uncertainty range of ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. Instruments with identical design agreed within ±3% in the peak number concentration when all settings were done carefully. Technical standards were developed for a minimum requirement of mobility size spectrometry for atmospheric aerosol measurements. Technical recommendations are given for atmospheric measurements including continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyser. In cooperation with EMEP (European Monitoring and Evaluation Program), a new uniform data structure was introduced for saving and disseminating the data within EMEP. This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between

  10. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    SciTech Connect

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  11. Methane hydrate crystallization mechanism from in-situ particle sizing

    SciTech Connect

    Herri, J.M. |; Pic, J.S.; Gruy, F.; Cournil, M.

    1999-03-01

    A new experimental setup that makes possible in-situ determinations of the population density function of the methane hydrate particles during its crystallization in a pressurized reactor is used. Thanks to this equipment, new results can be obtained, in particular concerning the granular aspects of the crystallization processes and the influence of the stirring rate. These results are discussed in the framework of a model including gas absorption, primary and secondary nucleation, crystal growth, agglomeration, and breakage. From this discussion, the relevant processes and parameters of methane hydrate crystallization can be determined and quantified.

  12. Deconvolution of the particle size distribution of ProRoot MTA and MTA Angelus

    PubMed Central

    Ha, William Nguyen; Shakibaie, Fardad; Kahler, Bill; Walsh, Laurence James

    2016-01-01

    Abstract Objective Mineral trioxide aggregate (MTA) cements contain two types of particles, namely Portland cement (PC) (nominally 80% w/w) and bismuth oxide (BO) (20%). This study aims to determine the particle size distribution (PSD) of PC and BO found in MTA. Materials and methods The PSDs of ProRoot MTA (MTA-P) and MTA Angelus (MTA-A) powder were determined using laser diffraction, and compared to samples of PC (at three different particle sizes) and BO. The non-linear least squares method was used to deconvolute the PSDs into the constituents. MTA-P and MTA-A powders were also assessed with scanning electron microscopy. Results BO showed a near Gaussian distribution for particle size, with a mode distribution peak at 10.48 μm. PC samples milled to differing degrees of fineness had mode distribution peaks from 19.31 down to 4.88 μm. MTA-P had a complex PSD composed of both fine and large PC particles, with BO at an intermediate size, whereas MTA-A had only small BO particles and large PC particles. Conclusions The PSD of MTA cement products is bimodal or more complex, which has implications for understanding how particle size influences the overall properties of the material. Smaller particles may be reactive PC or unreactive radiopaque agent. Manufacturers should disclose particle size information for PC and radiopaque agents to prevent simplistic conclusions being drawn from statements of average particle size for MTA materials. PMID:27335899

  13. The impact of fuel particle size distribution on neutron transport in stochastic media

    SciTech Connect

    Liang, C.; Pavlou, A. T.; Ji, W.

    2013-07-01

    This paper presents a study of the particle size distribution impact on neutron transport in three-dimensional stochastic media. An eigenvalue problem is simulated in a cylindrical container consisting of fissile fuel particles with five different size distributions: constant, uniform, power, exponential and Gaussian. We construct 15 cases by altering the fissile particle volume packing fraction and its optical thickness, but keeping the mean chord length of the spherical fuel particle the same at different size distributions. The tallied effective multiplication factor (k{sub eff}) and flux distribution along axial and radial directions are compared between different size distributions. At low packing fraction and low optical thickness, the size distribution has a significant impact on radiation transport in stochastic media, which can cause as high as {approx}270 pcm difference in k{sub eff} value and {approx}2.6% relative error difference in peak flux. As the packing fraction and optical thickness increase, the impact gradually dissipates. (authors)

  14. Comparing nadir and limb observations of polar mesospheric clouds: The effect of the assumed particle size distribution

    NASA Astrophysics Data System (ADS)

    Bailey, Scott M.; Thomas, Gary E.; Hervig, Mark E.; Lumpe, Jerry D.; Randall, Cora E.; Carstens, Justin N.; Thurairajah, Brentha; Rusch, David W.; Russell, James M.; Gordley, Larry L.

    2015-05-01

    Nadir viewing observations of Polar Mesospheric Clouds (PMCs) from the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) spacecraft are compared to Common Volume (CV), limb-viewing observations by the Solar Occultation For Ice Experiment (SOFIE) also on AIM. CIPS makes multiple observations of PMC-scattered UV sunlight from a given location at a variety of geometries and uses the variation of the radiance with scattering angle to determine a cloud albedo, particle size distribution, and Ice Water Content (IWC). SOFIE uses IR solar occultation in 16 channels (0.3-5 μm) to obtain altitude profiles of ice properties including the particle size distribution and IWC in addition to temperature, water vapor abundance, and other environmental parameters. CIPS and SOFIE made CV observations from 2007 to 2009. In order to compare the CV observations from the two instruments, SOFIE observations are used to predict the mean PMC properties observed by CIPS. Initial agreement is poor with SOFIE predicting particle size distributions with systematically smaller mean radii and a factor of two more albedo and IWC than observed by CIPS. We show that significantly improved agreement is obtained if the PMC ice is assumed to contain 0.5% meteoric smoke by mass, in agreement with previous studies. We show that the comparison is further improved if an adjustment is made in the CIPS data processing regarding the removal of Rayleigh scattered sunlight below the clouds. This change has an effect on the CV PMC, but is negligible for most of the observed clouds outside the CV. Finally, we examine the role of the assumed shape of the ice particle size distribution. Both experiments nominally assume the shape is Gaussian with a width parameter roughly half of the mean radius. We analyze modeled ice particle distributions and show that, for the column integrated ice distribution, Log-normal and Exponential distributions better represent the range

  15. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    ERIC Educational Resources Information Center

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  16. Evaluation of particle size distributions produced during ultra-violet nanosecond laser ablation and their relative contributions to ion densities in the inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Moses, Lance M.; Farnsworth, Paul B.

    2015-11-01

    Relative contributions to ion densities in the inductively coupled plasma (ICP) of particles of various sizes produced by laser ablation (LA) were investigated. Particles generated by 266 nm, ns LA of BaF2, CaF2, and a scandium aluminum alloy, characterized using SEM, consisted of hard and soft agglomerates, spherical particles, and irregularly-shaped particles. Although soft agglomerates and spherical particles were common to aerosols generated by LA in all cases, hard agglomerates appeared to be unique to the scandium aluminum alloy, while irregularly-shaped exfoliated particles were unique to the calcium and barium fluoride windows. The spatial distributions of Ca, Ba, and Sc ions in the ICP were determined from laser-induced fluorescence images taken with filters of pore sizes from 1-8 μm added in-line to the transport tube upstream from the ICP. In all cases, a significant fraction of the ions formed in the ICP originated from micron-sized particles. Differences in the penetration depths of nanometer-sized agglomerates and micron-sized particles were about 2 mm for Ca and 1 mm for Ba. Differences in the penetration depths of nanometer and micron-sized agglomerates observed in the case of aluminum scandium were much less significant. This suggests that micron-sized hard-agglomerates and nanometer-sized soft-agglomerates experience very similar vaporization patterns. Additionally, there was evidence that flow patterns in the transport tube affect the trajectories of particles entering the plasma.

  17. Particle sizing by weighted measurements of scattered light

    NASA Technical Reports Server (NTRS)

    Buchele, Donald R.

    1988-01-01

    A description is given of a measurement method, applicable to a poly-dispersion of particles, in which the intensity of scattered light at any angle is weighted by a factor proportional to that angle. Determination is then made of four angles at which the weighted intensity is four fractions of the maximum intensity. These yield four characteristic diameters, i.e., the diameters of the volume/area mean (D sub 32 the Sauter mean) and the volume/diameter mean (D sub 31); the diameters at cumulative volume fractions of 0.5 (D sub v0.5 the volume median) and 0.75 (D sub v0.75). They also yield the volume dispersion of diameters. Mie scattering computations show that an average diameter less than three micrometers cannot be accurately measured. The results are relatively insensitive to extraneous background light and to the nature of the diameter distribution. Also described is an experimental method of verifying the conclusions by using two microscopic slides coated with polystyrene microspheres to simulate the particles and the background.

  18. [Ultrafine particle number concentration and size distribution measurements in a street canyon].

    PubMed

    Li, Xin-Ling; Huang, Zhen; Wang, Jia-Song; Tu, Xiao-Dong; Ye, Chun

    2007-04-01

    A field experiment was conducted to measure concentrations and size distributions of particle (10 nm < D(p) < 487 nm) at four heights in an asymmetric street canyon on Beijing East Road in Shanghai, China. It shows that particle number size distributions are bimodal or trimodal lognormal in form. At a certain height in the range from 1.5 to 20 m, particle number concentrations and size distributions significantly vary with the height. Particle number concentrations in nuclei mode drop significantly and the mode diameters shift to the larger diameter. The variations of particle number concentration and size distribution in accumulation mode are less significant than that in nuclei mode. Particle number concentrations and size distributions slightly change with increasing the height in the range from 20 to 38 m. Concentrations of CO and PM(2.5) were also measured. Power laws are found to be well fitted for the concentration decay of total particle number, total particle volume, CO and PM(2.5). Due to the effect of the wind speed and direction, the total particle volume, PM(2.5) and CO concentrations are lower for Test I (high wind speed and step-up street canyon) than for test II (low wind speed and wind channeling along the canyon), at the meantime, the decay rates of the total particle number, the total particle volume, CO and PM(2.5) concentrations for test I are lower than for test II . No matter how the wind direction changes, the decay rates of the total particle number concentrations are larger than those of CO and PM(2.5), which clearly shows that coagulation and deposition besides dilution processes affect the total particle number concentration.

  19. Effect of raw soya bean particle size on productive performance and digestion of dairy cows.

    PubMed

    Naves, A B; Freitas Júnior, J E; Barletta, R V; Gandra, J R; Calomeni, G D; Gardinal, R; Takiya, C S; Vendramini, T H A; Mingoti, R D; Rennó, F P

    2016-08-01

    Differing soya bean particle sizes may affect productive performance and ruminal fermentation due to the level of fatty acid (FA) exposure of the cotyledon in soya bean grain and because the protein in small particles is more rapidly degraded than the protein in large particles, which influence ruminal fibre digestion and the amounts of ruminally undegradable nutrients. The objective of this experiment was to investigate the effects of raw soya bean particle size on productive performance, digestion and milk FA profile of dairy cows. Twelve Holstein cows were assigned to three 4 × 4 Latin squares with 21-day periods. At the start of the experiment, cows were 121 days in milk (DIM) and yielded 30.2 kg/day of milk. Cows were fed 4 diets: (i) control diet (CO), without raw soya bean; (ii) whole raw soya bean (WRS); (iii) cracked raw soya bean in Wiley mill 4-mm screen (CS4); and (iv) cracked raw soya bean in Wiley mill 2-mm screen (CS2). The inclusion of soya beans (whole or cracked) was 200 g/kg on dry matter (DM) basis and partially replaced ground corn and soya bean meal. Uncorrected milk yield and composition were not influenced by experimental diets; however, fat-corrected milk (FCM) decreased when cows were fed soya bean treatments. Soya bean diets increased the intake of ether extract (EE) and net energy of lactation (NEL ), and decreased the intake of DM and non-fibre carbohydrate (NFC). Ruminal propionate concentration was lower in cows fed WRS than cows fed CS2 or CS4. Cows fed cracked raw soya bean presented lower nitrogen in faeces than cows fed WRS. The milk of cows fed WRS, CS2 and CS4 presented higher unsaturated FA than cows fed CO. The addition of raw soya bean in cow diets, regardless of the particle size, did not impair uncorrected milk yield and nutrient digestion, and increased the concentration of unsaturated FA in milk. Cows fed cracked raw soya bean presented similar productive performance to cows fed whole raw soya bean.

  20. Effects of roughage source, amount, and particle size on behavior and gastrointestinal health of veal calves.

    PubMed

    Webb, L E; Bokkers, E A M; Heutinck, L F M; Engel, B; Buist, W G; Rodenburg, T B; Stockhofe-Zurwieden, N; van Reenen, C G

    2013-01-01

    The European Union 1997 Directive, stipulating that veal calves should be fed a minimum of 50 to 250 g of fibrous feed from 8 to 20 wk of age, is vague. A fibrous feed ration maximum of 250 g has been implicated in welfare issues, namely the occurrence of abnormal oral behaviors and poor gastrointestinal health. Past research suggests that this amount is insufficient to prevent the development of abnormal oral behaviors and enabling good rumen development. Different sources and particle sizes of roughage could lead to very different welfare outcomes. In a 3×2 × 2 factorial design, 240 group-housed calves (10±1 d; 46.1±0.1 kg) were fed different roughage sources (straw, maize silage, or maize cob silage; the latter 2 were dried and provided no extra moisture compared with straw) in 2 amounts (250 or 500 g of dry matter per day), and 2 particle sizes (chopped or ground). Roughage was supplemented to milk replacer (MR) from 2 wk after arrival. In addition, 60 calves were fed 1 of 3 additional control treatments: MR only (n=20), MR plus an iron supplement (n=20), or MR plus ad libitum hay (n=20). Oral behaviors were recorded using instantaneous scan sampling at 2-min intervals for 2 h in 3 periods per day, at 12 and 22 wk of age. Calves were slaughtered at 24 wk of age and rumen and abomasal health parameters were recorded. Limited provision of straw resulted in behavior comparable with that from unlimited provision of hay, with reduced tongue playing and oral manipulation of the environment, as well as increased chewing compared with diets with no roughage supplement. Straw prevented ruminal hairballs, but impaired rumen development and increased abomasal damage. A higher ration of roughage increased chewing (12 wk), decreased oral manipulation of the trough (12 and 22 wk) and the pen (22 wk), and increased rumen weight. However, more roughage led to increased abomasal damage for certain parameters. Longer feed particles had no obvious benefits for behavior, but

  1. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    PubMed

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-01-01

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process. PMID:27104527

  2. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size

    PubMed Central

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-01-01

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of −0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process. PMID:27104527

  3. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    PubMed

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  4. Laser Particle Diffraction: A Novel Approach to Quantify In-Situ Suspended Sediment Particle Size Class Concentrations

    NASA Astrophysics Data System (ADS)

    Freeman, G. W.; Hubbart, J. A.; Chinnasamy, P.; Bulliner, E. A.; Schulz, J.

    2010-12-01

    Hydrologic modification exacted by development can variably increase or decreases diffuse pollution loads, and sediment particle class concentrations. For example, larger particle classes may originate primarily from agricultural and localized riparian development or in-stream hydrogeomorphological processes, while smaller particle size class concentrations may increase in urban environments. These distinctions are critical since fine sediments can transport greater quantities of adsorbed chemicals, nutrients and pollutants, fill interstitial spaces of gravel in spawning beds, and detrimentally affect aquatic biota (e.g. invertebrates and fish). Laser Diffraction (LD) instruments measure optical scattering with specially constructed detectors to detect light diffraction effects of particles of individual size classes. The Streamside Laser In-Situ Scattering and Transmissometry (LISST, Sequoia Scientific, Inc) LD instrument was designed for monitoring suspended sediment in shallow rivers, streams, and ponds sensing particle sizes ranging from 1.9 to 387 um (accuracy ± 10 to 20%). Multiple on-going studies in central Missouri, USA are utilizing LD instruments to better understand anthropogenic diffuse sediment pollution. Three LD units were deployed in a central Missouri stream during spring 2010. In an Urban environment, after a single precipitation event the largest particle class bin (356.79 um) comprised almost 50% of the total concentration of suspended sediments in pre-event flow conditions, whereas in the post-precipitation flow event conditions it comprised nearly 44%, a 12.5% difference. The smallest particle class (2.06 um) concentrations in pre and post-precipitation event conditions was 0.8 and 3.4% respectively reflecting more than 450% increased concentration in post flow conditions after a 13.2 mm (0.52 in) precipitation event. During the month of March 2010 average total concentration of sediment (μl/l) in forested, agricultural, and urban

  5. Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt.

    SciTech Connect

    Tritsaris, G. A.; Greeley, J.; Rossmeisl, J.; Norskov, J. K.

    2011-07-01

    We estimate the activity of the oxygen reduction reaction on platinum nanoparticles of sizes of practical importance. The proposed model explicitly accounts for surface irregularities and their effect on the activity of neighboring sites. The model reproduces the experimentally observed trends in both the specific and mass activities for particle sizes in the range between 2 and 30 nm. The mass activity is calculated to be maximized for particles of a diameter between 2 and 4 nm. Our study demonstrates how an atomic-scale description of the surface microstructure is a key component in understanding particle size effects on the activity of catalytic nanoparticles.

  6. Probing surface characteristics of diffusion-limited-aggregation clusters with particles of variable size

    NASA Astrophysics Data System (ADS)

    Menshutin, A. Yu.; Shchur, L. N.; Vinokur, V. M.

    2007-01-01

    We develop a technique for probing the harmonic measure of a diffusion-limited-aggregation (DLA) cluster surface with variable-size particles and generate 1000 clusters with 50×106 particles using an original off-lattice killing-free algorithm. Taking, in sequence, the limit of the vanishing size of the probing particles and then sending the growing cluster size to infinity, we achieve unprecedented accuracy in determining the fractal dimension D=1.7100(2) crucial to the characterization of the geometric properties of DLA clusters.

  7. Deduction of aerosol size distribution from particle sampling by whisker collectors

    NASA Astrophysics Data System (ADS)

    Schäfer, H. J.; Pfeifer, H. J.

    1983-12-01

    A method of deducing airborne particle size distributions from the deposition on a collector is described. The method basically consists in collecting submicron-sized particles on whisker filters for subsequent electron-microscopic examination. The empirical size distributions on the collectors can be approximated by log-normal functions. Moreover, it has been found that the variation in particle distribution across a four-stage whisker filter can be interpreted on the basis of a simple model of the collection process. The effective absorption coefficient derived from this modeling is used to correct the empirical data for the effect of a selective collection characteristic.

  8. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids

    PubMed Central

    2011-01-01

    We present an analysis of the dispersion characteristics and thermal conductivity performance of copper-based nanofluids. The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB). Nanofluids were prepared using water as the base fluid with copper nanoparticle concentrations of 0.55 and 1.0 vol.%. A dispersing agent, sodium dodecylbenzene sulfonate (SDBS), and subsequent ultrasonication was used to ensure homogenous dispersion of the copper nanopowders in water. Particle size distribution of the copper nanoparticles in the base fluid was determined by dynamic light scattering. We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS. In addition, a dynamic thermal conductivity setup was developed and used to measure the thermal conductivity performance of the nanofluids. The 0.55 vol.% Cu nanofluids exhibited a thermal conductivity enhancement of approximately 22%. In the case of the nanofluids prepared from the powders synthesized in the presence of CTAB, the enhancement was approximately 48% over the base fluid for the 1.0 vol.% Cu nanofluids, which is higher than the enhancement values found in the literature. These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering. PMID:21711719

  9. Values of Particle Size Particle Density & Slurry Viscosity to use in Waste Feed Delivery Transfer System Analysis

    SciTech Connect

    JEWETT, J R

    2002-01-30

    Recommended values have been developed for particle size distribution, particle density, and slurry viscosity that maybe used in slurry flow calculations that support the design of the piping system that is being modified to deliver Hanford wastes from the underground storage tanks to the planned Waste Treatment Plant for vitrification. The objective of this document is to provide recommended values for three waste properties to be used in a planned revision of the Waste Feed Delivery Transfer System Analysis. These properties are particle size distribution (PSD), particle density, and slurry viscosity. In this document, the results of laboratory and engineering studies will be collated and summarized to provide a succinct source of physical property data for use in the hydraulic analysis of the transfer system.

  10. Transport and separation of micron sized particles at isotachophoresis zone boundaries

    NASA Astrophysics Data System (ADS)

    Hardt, Steffen; Goet, Gabriele; Baier, Tobias

    2010-11-01

    Conventionally, isotachophoresis (ITP) is used for the separation of ionic samples according to their electrophoretic mobilities. At the zone boundaries large gradients in concentration and electric field occur. These gradients may be utilized to transport and separate small particles, as we demonstrate experimentally. We show that polymer beads of 5 micron diameter dispersed in a high mobility leading electrolyte are picked up and carried along by an ITP zone boundary that is formed between a low mobility trailing electrolyte and the leading electrolyte. Additionally, it is shown that different types of beads can be separated in that way. In particular, beads of 1 micron diameter are not carried along by the transition zone, so that a separation from 5 micron sized beads is feasible. We have identified two different effects that contribute to the force acting on the particles. Firstly, there is an electric dipole force due to the electric field gradient, secondly, a electro-hydrostatic force is generated that induces a pressure gradient. Therefore, the resulting protocol for particle separation bears some resemblance with dielectrophoresis that also utilizes electric dipole forces. An apparent advantage of our technique over dielectrophoresis lies in the fact that no microstructured electrodes or other types of microstructures are needed to create the electric field gradient.

  11. Values of Particle Size, Particle Density & Slurry Viscosity to use in Waste Feed Delivery Transfer System Analysis

    SciTech Connect

    JEWETT, J R

    2002-03-14

    The objective of this document is to provide recommended values for three waste properties to be used in a planned revision of the Waste Feed Delivery Transfer System Analysis (Julyk et al. 2001). These properties are particle size distribution (PSD), particle density, and slurry viscosity. In this document, the results of laboratory and engineering studies will be collated and summarized to provide a succinct source of physical property data for use in the hydraulic analysis of the transfer system.

  12. An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

    NASA Astrophysics Data System (ADS)

    Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Muller, Thomas; Conrath, Thomas; Voigtlander, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A. M.; Zahn, Andreas

    2016-05-01

    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System - Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130-1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.

  13. An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

    NASA Astrophysics Data System (ADS)

    Hermann, M.; Weigelt, A.; Assmann, D.; Pfeifer, S.; Müller, T.; Conrath, T.; Voigtländer, J.; Heintzenberg, J.; Wiedensohler, A.; Martinsson, B. G.; Deshler, T.; Brenninkmeijer, C. A. M.; Zahn, A.

    2015-11-01

    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new Optical Particle Size Spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region onboard a passenger aircraft (IAGOS-CARIBIC observatory (In-service Aircraft for a Global Observing System - Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container)). A modified "KS93 particle sensor" from RION Co., Ltd. together with a new airflow system and a dedicated data acquisition system are the key components of the CARIBIC OPSS. The instrument records individual particle pulses in the particle size range 130-1110 nm diameter (for a particle refractive index of 1.47-i0.006 for an upper tropospheric (UT) aerosol particle) and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instruments measurement performance shows no pressure dependency and no coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of two in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.