Science.gov

Sample records for addition raman spectra

  1. [Raman spectra of monkey cerebral cortex tissue].

    PubMed

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  2. Investigation of Raman spectra of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Zhu, Changjun; Tong, Na; Song, Lixin; Zhang, Guoqing

    2015-08-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1750 cm-1, while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1750 cm-1 and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated.

  3. Micro-Raman spectra of ugrandite garnet.

    PubMed

    Moroz, T; Ragozin, A; Salikhov, D; Belikova, G; Puchkov, V; Kagi, H

    2009-08-01

    The natural garnets from chromite ores associated with pegmatoid pyroxenites of Sangalyk area (Uchaly ore district, southern Urals, Russia) were studied by means of micro-Raman spectroscopy. The compositions of these garnets were close to ugrandite, an isomorphous intermediate group of uvarovite-grossularite-andradite, X(3)Y(2)(SiO(4))(3), X = Ca(2+), Y = Al(3+), Fe(3+), Cr(3+), according to Raman spectra and X-ray microprobe analyses. An assignment of most of the observed bands in visible and near infrared Raman spectra is reported.

  4. Micro-Raman spectra of ugrandite garnet

    NASA Astrophysics Data System (ADS)

    Moroz, T.; Ragozin, A.; Salikhov, D.; Belikova, G.; Puchkov, V.; Kagi, H.

    2009-08-01

    The natural garnets from chromite ores associated with pegmatoid pyroxenites of Sangalyk area (Uchaly ore district, southern Urals, Russia) were studied by means of micro-Raman spectroscopy. The compositions of these garnets were close to ugrandite, an isomorphous intermediate group of uvarovite-grossularite-andradite, X 3Y 2(SiO 4) 3, X = Ca 2+, Y = Al 3+, Fe 3+, Cr 3+, according to Raman spectra and X-ray microprobe analyses. An assignment of most of the observed bands in visible and near infrared Raman spectra is reported.

  5. [Raman spectra of YBCO superconductor with hot ultrapressing treatment].

    PubMed

    Yang, Hai-feng; Wei, Le-han; Cao, Xiao-wei

    2002-02-01

    Laser Raman spectra of YBCO oxide superconductor with hot ultrapressing and annealing treatment are reported. In addition to improving physical properties, the spectra data show that the processing can also perfect orthorhombie phase and enhance lattice on orientation trend as well as is good for formation of two dimension CuO2 net. The relation between structure and the superconductivity has been discussed.

  6. Molecular dynamics and spectra. II. Diatomic Raman

    NASA Astrophysics Data System (ADS)

    Berens, Peter H.; White, Steven R.; Wilson, Kent R.

    1981-07-01

    This paper and paper I in this series [P.H. Berens and K.R. Wilison, J. Chem. Phys. 74, 4872 (1981)] indicate that infrared and Raman rotational and fundamental vibrational-rotational spectra of dense systems (high pressure gases, liquids, and solids) are essentially classical, in that they can be computed and understood from a basically classical mechanical viewpoint, with some caveats for features in which anharmonicity is important, such as the detailed shape of Q branches. It is demonstrated here, using the diatomic case as an example, that ordinary, i.e., nonresonant, Raman band contours can be computed from classical mechanics plus simple quantum corrections. Classical versions of molecular dynamics, linear response theory, and ensemble averaging, followed by straightforward quantum corrections, are used to compute the pure rotational and fundamental vibration-rotational Raman band contours of N2 for the gas phase and for solutions of N2 in different densities of gas phase Ar and in liquid Ar. The evolution is seen from multiple peaked line shapes characteristic of free rotation in the gas phase to single peaks characteristic of hindered rotation in the liquid phase. Comparison is made with quantum and correspondence principle classical gas phase spectral calculations and with experimental measurements for pure N2 and N2 in liquid Ar. Three advantages are pointed out for a classical approach to infrared and Raman spectra. First, a classical approach can be used to compute the spectra of complex molecular systems, e.g., of large molecules, clusters, liquids, solutions, and solids. Second, this classical approach can be extended to compute the spectra of nonequilibrium and time-dependent systems, e.g., infrared and Raman spectra during the course of chemical reactions. Third, a classical viewpoint allows experimental infrared and Raman spectra to be understood and interpreted in terms of atomic motions with the considerable aid of classical models and of our

  7. ProRaman: a program to classify Raman spectra.

    PubMed

    de Paula, Alderico Rodrigues; Silveira, Landulfo; Pacheco, Marcos Tadeu Tavares

    2009-06-01

    The program ProRaman, developed for the Matlab platform, provides an interactive and flexible graphic interface to develop efficient algorithms to classify Raman spectra into two or three different classes. A set of preprocessing algorithms to decrease the variable dimensionality and to extract the main features which improve the correct classification ratio was implemented. The implemented classification algorithms were based on the Mahalanobis distance and neural network. To verify the functionality of the developed program, 72 spectra from human artery samples, 36 of which had been histopathologically diagnosed as non-diseased and 36 as having an atherosclerotic lesion, were processed using a combination of different preprocessing and classification techniques. The best result was accomplished when the variables were selected from the Raman spectrum shift range from 1200 to 1700 cm(-1), then preprocessed using wavelets for compression and principal component analysis for feature extraction and, finally, classified by a multilayer perceptron with one hidden layer with eight neurons.

  8. Raman spectra of carotenoids in natural products

    NASA Astrophysics Data System (ADS)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  9. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  10. Automatic Spike Removal Algorithm for Raman Spectra.

    PubMed

    Tian, Yao; Burch, Kenneth S

    2016-11-01

    Raman spectroscopy is a powerful technique, widely used in both academia and industry. In part, the technique's extensive use stems from its ability to uniquely identify and image various material parameters: composition, strain, temperature, lattice/excitation symmetry, and magnetism in bulk, nano, solid, and organic materials. However, in nanomaterials and samples with low thermal conductivity, these measurements require long acquisition times. On the other hand, charge-coupled device (CCD) detectors used in Raman microscopes are vulnerable to cosmic rays. As a result, many spurious spikes occur in the measured spectra, which can distort the result or require the spectra to be ignored. In this paper, we outline a new method that significantly improves upon existing algorithms for removing these spikes. Specifically, we employ wavelet transform and data clustering in a new spike-removal algorithm. This algorithm results in spike-free spectra with negligible spectral distortion. The reduced dependence on the selection of wavelets and intuitive wavelet coefficient adjustment strategy enables non-experts to employ these powerful spectra-filtering techniques.

  11. AB initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, D. R.; Komornicki, A.; White, S. R.; Wilson, K. R.

    1982-08-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schroedinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques, are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules.

  12. Multiconfigurational Effects in Theoretical Resonance Raman Spectra

    PubMed Central

    Ma, Yingjin

    2017-01-01

    Abstract We analyze resonance Raman spectra of the nucleobase uracil in the short‐time approximation calculated with multiconfigurational methods. We discuss the importance of static electron correlation by means of density‐matrix renormalization group self‐consistent field (DMRG‐SCF) calculations. Our DMRG‐SCF results reveal that a minimal active orbital space that leads to a qualitatively correct description of the resonance Raman spectrum of uracil should encompass parts of the σ/σ* bonding/anti‐bonding orbitals of the pyrimidine ring. We trace these findings back to the considerable entanglement between the σ/σ* bonding/anti‐bonding as well as valence π/π* orbitals in the excited‐state electronic structure of uracil, which indicates non‐negligible non‐dynamical correlation effects that are less pronounced in the electronic ground state. PMID:27933695

  13. [Study on Raman Spectra of Some Clinical Medicine].

    PubMed

    Dong, He; Liu, Chuan; Dai, Chang-Jian

    2016-01-01

    Aiming at the shortage of the Raman spectra of drugs and the current situation of drug testing, we have applied Raman spectroscopic technique to several kinds of medicine, such as antibiotics, antihistamine, hemocoagulase and antiemetics. The spectral properties for the samples with high Raman activity are investigated by observing their Raman spectra to yield the shift, intensity, and line width of the Raman peaks, as well as the line shape of Raman envelope. For those samples with weak Raman activity or complex structures that are hard to be identified, we have also made some tentative measurements or raise some suggestions for future measurement. Comparing the similarities or differences among many Raman spectra of drugs, it is evident that drugs with small molecule have apparent spectral characteristics, by which to recognize them is very feasible, while those with large molecule usually have weak peaks or complex envelope in their spectra, leading to a difficult recognition and uncertain peak positions. This work not only proposes to identify chemical ingredients of drugs by observing and analyzing their Raman spectra, but also provides experimental evidences for medical workers doing so. The present results lay the foundation for establish the database of Raman spectra for drugs, and point out the prospect for rapid identification and detection of drugs, promoting the application of Raman spectroscopy technology on drug detection to a certain extent.

  14. [Near infrared Raman spectra analysis of rhizoma dioscoreae].

    PubMed

    Lin, Wen-Shuo; Chen, Rong; Li, Yong-Zeng; Feng, Shang-Yuan; Huang, Zu-Fang; Xie, Bing-Xian

    2008-05-01

    A novel and compact near-infrared (NIR) Raman system was developed using 785 nm diode laser, volume-phase technology holographic system, and NIR intensified charge-coupled device (CCD). The Raman spectra and first derivative spectra of rhizoma dioscoreae were obtained. The Raman spectra of rhizoma dioscoreae showed three strong characteristic peaks at 477, 863 and 936 cm(-1), respectively. The major ingredients are protein, amino acid, starch, polysaccharides and so on, matching the known basic biochemical composition of rhizoma dioscoreae. In the first derivative spectra of rhizoma dioscoreae, the distinguishing characteristic peaks appeared at 467, 484, 870 and 943 cm(-1). Contrasted with rhizoma dioscoreae Raman spectra in the ranges of 600 to 800 cm(-1) and 1 000 to 1 400 cm(-1), the changes in rhizoma dioscoreae Raman first derivative spectra are represented more clearly than the rhizoma dioscoreae Raman spectra. So the rhizoma dioscoreae Raman first derivative spectra can be an accurate supplementary analysis method to the rhizoma dioscoreae Raman spectra.

  15. Ab initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.

    1983-06-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum

  16. Resonant Femtosecond Stimulated Raman Spectra: Theory and Simulations.

    PubMed

    Rao, B Jayachander; Gelin, Maxim F; Domcke, Wolfgang

    2016-05-19

    We present a description of resonant femtosecond stimulated Raman spectra, which is based on the solution of the nonperturbative equation of motion of the chromophore in the laser fields. The theory is applicable for arbitrary shapes and durations of the Raman pulses, accounts for excited-state absorption, and describes nonstationary preparation of the system by an actinic pulse. The method is illustrated by the calculation of femtosecond stimulated Raman spectra of a model system with a conical intersection.

  17. [Raman spectra of fossil dinosaurs from different regions].

    PubMed

    Yang, Qun; Wang, Yi-lin

    2007-12-01

    Raman microscopic spectra in the higher wave number region were obtained from 7 fossil dinosaurs specimens from different regions. The specimens of fossil dinosaurs are different parts of bone. The Raman spectra of fossil dinosaurs indicate the high similarity among peak positions of different fossil dinosaurs; but important differences exist in the spectral peak figures. In the wave number region of 1000-1800 cm(-1) the Raman spectra of the same bone part fossils from different regions are very similar, example similarities between spectra of Lufeing backbone head and Yua nmou backbone head; Lufeng limb bone and Wuding limb bone. There are relations between the same bone part spectra of different fossil dinosaurs. The characteristic does not relate to regions. Raman spectra of fossil dinosaurs cannot be used to distinguish fossil source, although the part of bone can be used as an indicator to narrow the range of possible geographical origins.

  18. [The analysis and identification of fritillaria cirrhosa by Raman spectra].

    PubMed

    Wang, Wen-Na; Chen, Di-Ling; Zhu, Mei-Fang; Zhang, He-Ming

    2013-08-01

    Laser Raman spectrum technology was used to distinguish fritillaria cirrhosa from its adulterants rapidly and accurately. The study is based on that different traditional Chinese medicine contains different chemical compositions, and the differences could be displayed in Raman spectra. The Raman spectra of fritillaria cirrhosas shows that several characteristic strong peaks could be found at 442, 480, 863, 941, 1 083, 1 129, 1 342, 1 463 and 2 910 cm(-1), and a few obvious peaks appear at 111, 302, 360, 409, 527, 579, 618, 718, 767, 1 052, 1 083, 1 207 and 1 261 cm(-1). According to the Raman spectra, a Raman fingerprint of fritillaria cirrhosa was set up, which could be used to distinguish its adulterants. This analysis could be used in identifying fritillaria cirrhosa rapidly, accurately and nondestructively.

  19. Raman intensity and spectra predictions for cylindrical viruses

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Sankey, Otto F.; Tsen, Kong-Thon

    2007-07-01

    A theoretical framework for predicting low frequency Raman vibrational spectra of viral capsids is presented and applied to the M13 bacteriophage. The method uses a continuum elastic theory for the vibrational modes and a bond-charge polarizability model of an amorphous material to roughly predict the Raman intensities. Comparison is made to experimental results for the M13 bacteriophage virus.

  20. [Vibrational assignment analysis of Raman spectra of fatty alcohols].

    PubMed

    Zou, Qiao; Du, Xian-Yuan; Zhang, Chen; Li, Xing-Chun; Li, Yu

    2013-01-01

    In the present research, Raman spectra of 31 fatty alcohols were calculated by B3LYP/6-31G (d) and verified by taking methanol for example. The study results indicate that B3LYP/6-31G (d) is an effective approach for the fatty alcohols Raman spectra calculated. The vibrational assignment and Raman spectra features of 6 unbranched alcohols were discussed and the vibrating peaks derived from stretching vibration by C-O were chosen as the research target selection, and the multiple principal component regression models were established and validated with the parameters including polarizability, thermodynamic and energy parameters of the above unbranched alcohols. There exists significant correlation between the vibrating peaks derived from stretching vibration by C-O of fatty alcohols and the parameters (sig. = 0.015). This study will benefit the Raman spectra research of homologs.

  1. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation.

    PubMed

    Chen, Shuo; Lin, Xiaoqian; Yuen, Clement; Padmanabhan, Saraswathi; Beuerman, Roger W; Liu, Quan

    2014-05-19

    Raman spectroscopy is a powerful non-destructive technique for qualitatively and quantitatively characterizing materials. However, noise often obscures interesting Raman peaks due to the inherently weak Raman signal, especially in biological samples. In this study, we develop a method based on spectral reconstruction to recover Raman spectra with low signal-to-noise ratio (SNR). The synthesis of narrow-band measurements from low-SNR Raman spectra eliminates the effect of noise by integrating the Raman signal along the wavenumber dimension, which is followed by spectral reconstruction based on Wiener estimation to recover the Raman spectrum with high spectral resolution. Non-negative principal components based filters are used in the synthesis to ensure that most variance contained in the original Raman measurements are retained. A total of 25 agar phantoms and 20 bacteria samples were measured and data were used to validate our method. Four commonly used de-noising methods in Raman spectroscopy, i.e. Savitzky-Golay (SG) algorithm, finite impulse response (FIR) filtration, wavelet transform and factor analysis, were also evaluated on the same set of data in addition to the proposed method for comparison. The proposed method showed the superior accuracy in the recovery of Raman spectra from measurements with extremely low SNR, compared with the four commonly used de-noising methods.

  2. [Study on Raman Spectra of Some Animal and Plant Oils].

    PubMed

    Wang, Xiang; Dai, Chang-jian

    2015-04-01

    The spectral characteristics of different kinds of oil, either from plant seeds or animal fat, were studied with Raman spectroscopy. The experimental data were processed with the adaptive iteratively reweighted penalized least squares method to realize baseline correction, and provide evident information about their microscopic world. The spectra were analyzed and compared with each other in three parts: the Raman spectra comparison among different samples of plant oils, the analysis of the animal fat and the comparison between plant oils and the animal fat. The differences among the oils were observed in the analysis, including Raman shift and Raman intensity differences. This study not only yields the spectral basis for distinguishing or recognizing the different edible oils, but also confirms that Raman spectroscopy is an effective tool for identifying different oils.

  3. Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane for combustion applications

    NASA Astrophysics Data System (ADS)

    Magnotti, G.; KC, U.; Varghese, P. L.; Barlow, R. S.

    2015-09-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  4. Cancer detection based on Raman spectra super-paramagnetic clustering

    NASA Astrophysics Data System (ADS)

    González-Solís, José Luis; Guizar-Ruiz, Juan Ignacio; Martínez-Espinosa, Juan Carlos; Martínez-Zerega, Brenda Esmeralda; Juárez-López, Héctor Alfonso; Vargas-Rodríguez, Héctor; Gallegos-Infante, Luis Armando; González-Silva, Ricardo Armando; Espinoza-Padilla, Pedro Basilio; Palomares-Anda, Pascual

    2016-08-01

    The clustering of Raman spectra of serum sample is analyzed using the super-paramagnetic clustering technique based in the Potts spin model. We investigated the clustering of biochemical networks by using Raman data that define edge lengths in the network, and where the interactions are functions of the Raman spectra's individual band intensities. For this study, we used two groups of 58 and 102 control Raman spectra and the intensities of 160, 150 and 42 Raman spectra of serum samples from breast and cervical cancer and leukemia patients, respectively. The spectra were collected from patients from different hospitals from Mexico. By using super-paramagnetic clustering technique, we identified the most natural and compact clusters allowing us to discriminate the control and cancer patients. A special interest was the leukemia case where its nearly hierarchical observed structure allowed the identification of the patients's leukemia type. The goal of this study is to apply a model of statistical physics, as the super-paramagnetic, to find these natural clusters that allow us to design a cancer detection method. To the best of our knowledge, this is the first report of preliminary results evaluating the usefulness of super-paramagnetic clustering in the discipline of spectroscopy where it is used for classification of spectra.

  5. [Raman spectra calculation and analysis of plasticizer dioctyl phthalate].

    PubMed

    Liu, Yu; Wang, Hu; Wang, Yan; Guo, Mo-ran; Shi, Jing; Feng, Shi-qi; Song, Wei; Zhai Rui-zhi; Cai, Hong-xing

    2015-01-01

    In recent years, with frequent domestic food safety incidents related to the plasticizing agent, the detection of plasticizers in food research becomes increasingly urgent. DEHP is one of the plasticizer. In the present paper, theoretical Raman spectrum and experimental Raman spectrum of DEHP were given. DEHP molecular structure was optimized by DFT(B3LYP) method. DEHP molecular Raman spectra and infrared spectra were calculated with. HF theory and DFT theory based on 3-2G level. The analytical reagent level DEHP Raman spectra was measured, and was compared with theoretical spectra, and good agreements were obtained between the theoretical and experimental results. Because of different calculation methods, we can see that both the wave number and relative intensity of peaks have small differences. DEHP structure parameters were also given in the paper including bond lengths and bond angles etc. Vibrational modes were assigned to all bands between 400 and 3 500 cm-1. Raman spectroscopy study of the commonly used plasticizer dioctyl phthalate was reported in this paper for the first time. This effort will contribute to the research and application of Raman spectroscopy in the field of food testing.

  6. Analytic calculations of anharmonic infrared and Raman vibrational spectra.

    PubMed

    Cornaton, Yann; Ringholm, Magnus; Louant, Orian; Ruud, Kenneth

    2016-02-07

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used.

  7. Analytic calculations of anharmonic infrared and Raman vibrational spectra

    PubMed Central

    Louant, Orian; Ruud, Kenneth

    2016-01-01

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives—that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree–Fock and Kohn–Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673

  8. Detection of high-resolution Raman spectra in short oligonucleotides

    NASA Astrophysics Data System (ADS)

    Bairamov, F. B.; Poloskin, E. D.; Chernev, A. L.; Toporov, V. V.; Dubina, M. V.; Lahderanta, E.; Lipsanen, H.; Bairamov, B. Kh.

    2014-06-01

    High-resolution spectra of single-chain short oligonucleotides d(20G, 20T), where d is a deoxyribonucleoside, G is guanine, and T is thymine, have been obtained by the highly sensitive nonresonant Raman scattering method of biomacromolecules. In addition to their own multifunctional significance, short oligonucleotides attract interest as ideal model objects for revealing poorly studied peculiarities of tertiary and quaternary structures of DNA. The detection of narrow spectral lines has allowed determining the characteristic time scale and makes it possible to study the dynamics of fast relaxation processes of vibrational motions of atoms in biomacromolecules. It has been found that the FWHM of the narrowest 1355.4 cm-1 spectral line attributed to the vibrations of the dT methyl group is 14.6 cm-1. The corresponding lifetime is 0.38 ps.

  9. Pre-processing of ultraviolet resonance Raman spectra.

    PubMed

    Simpson, John V; Oshokoya, Olayinka; Wagner, Nicole; Liu, Jing; JiJi, Renee D

    2011-03-21

    The application of UV excitation sources coupled with resonance Raman have the potential to offer information unavailable with the current inventory of commonly used structural techniques including X-ray, NMR and IR analysis. However, for ultraviolet resonance Raman (UVRR) spectroscopy to become a mainstream method for the determination of protein secondary structure content and monitoring protein dynamics, the application of multivariate data analysis methodologies must be made routine. Typically, the application of higher order data analysis methods requires robust pre-processing methods in order to standardize the data arrays. The application of such methods can be problematic in UVRR datasets due to spectral shifts arising from day-to-day fluctuations in the instrument response. Additionally, the non-linear increases in spectral resolution in wavenumbers (increasing spectral data points for the same spectral region) that results from increasing excitation wavelengths can make the alignment of multi-excitation datasets problematic. Last, a uniform and standardized methodology for the subtraction of the water band has also been a systematic issue for multivariate data analysis as the water band overlaps the amide I mode. Here we present a two-pronged preprocessing approach using correlation optimized warping (COW) to alleviate spectra-to-spectra and day-to-day alignment errors coupled with a method whereby the relative intensity of the water band is determined through a least-squares determination of the signal intensity between 1750 and 1900 cm(-1) to make complex multi-excitation datasets more homogeneous and usable with multivariate analysis methods.

  10. Method for automatically identifying spectra of different wood cell wall layers in Raman imaging data set.

    PubMed

    Zhang, Xun; Ji, Zhe; Zhou, Xia; Ma, Jian-Feng; Hu, Ya-Hong; Xu, Feng

    2015-01-20

    The technique of Raman spectroscopic imaging is finding ever-increasing applications in the field of wood science for its ability to provide spatial and spectral information about the sample. On the basis of the acquired Raman imaging data set, it is possible to determine the distribution of chemical components in various wood cell wall layers. However, the Raman imaging data set often contains thousands of spectra measured at hundreds or even thousands of individual frequencies, which results in difficulties accurately and quickly extracting all of the spectra within a specific morphological region of wood cell walls. To address this issue, the authors propose a new method to automatically identify Raman spectra of different cell wall layers on the basis of principal component analysis (PCA) and cluster analysis. A Raman imaging data set collected from a 55.5 μm × 47.5 μm cross-section of poplar tension wood was analyzed. Several thousand spectra were successfully classified into five groups in accordance with different morphological regions, namely, cell corner (CC), compound middle lamella (CML), secondary wall (SW), gelatinous layer (G-layer), and cell lumen. Their corresponding average spectra were also calculated. In addition, the relationship between different characteristic peaks in the obtained Raman spectra was estimated and it was found that the peak at 1331 cm(-1) is more related to lignin rather than cellulose. Not only can this novel method provide a convenient and accurate procedure for identifying the spectra of different cell wall layers in a Raman imaging data set, but it also can bring new insights into studying the morphology and topochemistry in wood cell walls.

  11. Raman spectra of olivine measured in different planetary environments

    NASA Astrophysics Data System (ADS)

    Weber, I.; Böttger, U.; Pavlov, S.; Grunow, D.; Jessberger, E. K.; Hübers, H.-W.

    2012-09-01

    Missions to bodies of our solar system are coming up and imply new instrumentation to be applied remotely and in situ. In ESA's ExoMars mission the Raman Laser Spectrometer (RLS) will identify minerals and organic compounds in Martian surface rocks and soils. Here we present the results of a Raman study of different olivines with variable Fo and Fa contents. We chose olivine because it is a rock forming mineral and is found as an abundant mineral in Martian meteorites. We determined the Raman spectra in different environmental conditions that include vacuum, 8mbar CO2 atmosphere and temperatures between room temperature and 10K. These environmental conditions resemble those on asteroids as well as on Mars and Moon. Thus our study investigates the influence of these varying conditions on the position and band width of the Raman lines, which is to be known when such investigations are performed in future space missions.

  12. Low-Cost Elimination of Plasma Lines in Raman Spectra.

    ERIC Educational Resources Information Center

    Behlow, Herbert W., Jr.; Petersen, John D.

    1985-01-01

    Describes a low-cost ($120) device which eliminates plasma lines in Raman spectra. The device consists of two prisms and two mirrors which are held in a symmetrical relationship to one another so that a particular position will allow only one wavelength to pass through on a given axis. (JN)

  13. Anomalous Raman spectra from La2CuO4

    NASA Astrophysics Data System (ADS)

    Burns, Gerald; Dacol, F. H.

    1990-03-01

    We show that some published Raman spectra from the superconductors (La2-xSrx)CuO4 and La2NiO4 are incorrect. We believe that these spectra were obtained when the samples were ``burnt'' by the focused laser beam and were actually due to La2O3. Similar anomalous results can be obtained when starting with Nd2CuO4 where the spectra come from Nd2O3. A spectrum distinctly different from those of La2O3 or Nd2O3 is obtained from Y2O3.

  14. The minimizing of fluorescence background in Raman optical activity and Raman spectra of human blood plasma.

    PubMed

    Tatarkovič, Michal; Synytsya, Alla; Šťovíčková, Lucie; Bunganič, Bohuš; Miškovičová, Michaela; Petruželka, Luboš; Setnička, Vladimír

    2015-02-01

    Raman optical activity (ROA) is inherently sensitive to the secondary structure of biomolecules, which makes it a method of interest for finding new approaches to clinical applications based on blood plasma analysis, for instance the diagnostics of several protein-misfolding diseases. Unfortunately, real blood plasma exhibits strong background fluorescence when excited at 532 nm; hence, measuring the ROA spectra appears to be impossible. Therefore, we established a suitable method using a combination of kinetic quenchers, filtering, photobleaching, and a mathematical correction of residual fluorescence. Our method reduced the background fluorescence approximately by 90%, which allowed speedup for each measurement by an average of 50%. In addition, the signal-to-noise ratio was significantly increased, while the baseline distortion remained low. We assume that our method is suitable for the investigation of human blood plasma by ROA and may lead to the development of a new tool for clinical diagnostics.

  15. [Raman spectra analysis of Nd : YAG single crystal and its nano-powder].

    PubMed

    Su, Jing; Zhang, Qing-Li; Yin, Shao-Tang; Sun, Dun-Lu; Shao, Shu-Fang

    2009-06-01

    In the present paper, the authors measured the Raman spectra of YAG/Nd : YAG single crystal, Nd : YAG precursor and the powder sintered at different temperatures. The bands of these Raman spectra were assigned and analyzed. The results show that there is a structure transformation process in the course of sintering Nd : YAG precursor. The powder sintered at 700 degrees C was amorphous and it is of AlO4 tetrahedron structure. With the increase in sintering temperatures, the Raman spectra varied mainly in two respects. One is the decrease in FWHM with the increase in the bands intensity; the other is the bands shift. These should be due to the increase in the order degree of the interface component. Additionally, the difference in the lattice vibration modes between the powders sintered at 800 degrees C and the Nd : YAG single crystal powder was caused by the contribution of the interface component.

  16. [Raman spectra of PAN-based carbon fibers during surface treatment].

    PubMed

    Cao, Wei-wei; Zhu, Bo; Jing, Min; Wang, Cheng-guo

    2008-12-01

    Laser Raman spectroscopy was employed to characterize the microstructure changes of PAN based carbon fibers among different surface treatments, and the characteristics of first-order Raman spectra of carbon fibers during surface treatment were investigated in the present paper. The results show that the variety of carbon fibers' phase structures can be represented by Raman spectroscopy parameters, such as the Raman frequency shifts of main D and G bands, FWHMs and additive bands' area ratios at the positions of different Raman frequency shifts. During different surface treatment, some changes in the first-order Raman spectroscopy parameters of PAN based carbon fibers were observed, the Raman frequency shifts of D and G bands moved toward higher wavenumber, and the values of R(I(D)/I(G)) also improved, which can be used to measure the graphite crystallite size of carbon fiber. It is suggested that the graphite microstructure of carbon fibers is decomposed during surface treatment, the crystallite size is reduced, and the activity of the graphite crystallite boundary is improved. Moreover, the full-widths at half maximum (FWHM) of D and G bands both decrease, which can give information on the order of graphite microstructure and the quantity of defects in carbon fibers, and the relative bands' areas of A and D" bands also decrease, which can be attributed to the structure of amorphous carbon or some kinds of organic functional groups in carbon fibers. These differences among the spectra demonstrate that the structure of amorphous carbon in carbon fibers is easier to oxidize or decompose than multilayer graphite structure, so the relative proportion of amorphous carbon decreases during surface treatment. The conclusions obtained by Raman spectra are basically in agreement with the improvement of apparent crystallization degrees of carbon fibers during surface treatment, which were calculated by X-ray diffraction method. So the variety rules of carbon fibers' phase

  17. Genesis of enhanced Raman bands in SERS spectra of 2-mercaptoimidazole: FTIR, Raman, DFT, and SERS.

    PubMed

    Chandra, Subhendu; Chowdhury, Joydeep; Ghosh, Manash; Talapatra, G B

    2012-11-15

    The surface enhanced Raman scattering (SERS) spectra of biologically and industrially significant, 2-mercaptoimidazole (2-MI) molecule have been investigated. The SERS spectra of the molecule at different concentrations of the adsorbate are compared with its Fourier transform infrared (FTIR) and normal Raman spectra (NRS) in varied environments. The optimized molecular structures and vibrational wavenumbers of the various forms (ca. cationic, neutral, ylidic, anionic) of the molecule have been estimated from the density functional theory (DFT). The vibrational signatures of the molecule have been assigned for the first time from the potential energy distributions (PEDs). The analyses of the Raman vibrational signatures reveal the coexistence of all the different forms of the molecule in the solid state and in aqueous solution. Concentration dependent SERS spectra of the molecule at neutral pH of the medium together with the multivariate data analyses techniques also suggest the concomitance of all the probable forms of the molecule in the surface adsorbed state. The genesis of selective enhancements of the Raman bands in the SERS spectra emanating from the cationic, neutral, ylidic and anionic forms of the molecule have been divulged from the view of the Albretcht's "A" and Herzberg-Teller (HT) charge transfer (CT) contribution.

  18. Raman spectra and optical coherent tomography images of skin

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Delgado-Atencio, J. A.; Vazquez-Villa, A.

    2011-03-01

    The optical coherence tomography images are useful to see the internal profile and the structure of material samples. In this work, OCT images were recorded in 10 volunteers with different skin tone which were related to Raman spectra. The areas where we obtained OCT images and Raman spectra were a) index finger nail, b) between index finger and middle finger, c) middle finger tip, d) half of middle finger, e) the thumb finger tip and f) between index finger and thumb, areas measured were for the purpose of finding extracellular fluids with contain triglycerides, cholesterol and glucose that are reported in the literature. The excitation wavelength used for this work was 785 nm, a spectrometer of 6 cm-1 resolution. The spectral region used ranges from 300 to 1800 cm-1. We use an OCT with 930 nm of Central Wavelength, 1.6 mm of Image Depth, 6 mm of image width and 6.2 μm of axial resolution.

  19. Processing Raman Spectra of High-Pressure Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    The Raman Code automates the analysis of laser-Raman-spectroscopy data for diagnosis of combustion at high pressure. On the basis of the theory of molecular spectroscopy, the software calculates the rovibrational and pure rotational Raman spectra of H2, O2, N2, and H2O in hydrogen/air flames at given temperatures and pressures. Given a set of Raman spectral data from measurements on a given flame and results from the aforementioned calculations, the software calculates the thermodynamic temperature and number densities of the aforementioned species. The software accounts for collisional spectral-line-broadening effects at pressures up to 60 bar (6 MPa). The line-broadening effects increase with pressure and thereby complicate the analysis. The software also corrects for spectral interference ("cross-talk") among the various chemical species. In the absence of such correction, the cross-talk is a significant source of error in temperatures and number densities. This is the first known comprehensive computer code that, when used in conjunction with a spectral calibration database, can process Raman-scattering spectral data from high-pressure hydrogen/air flames to obtain temperatures accurate to within 10 K and chemical-species number densities accurate to within 2 percent.

  20. Raman spectra of solid benzene under high pressure

    NASA Technical Reports Server (NTRS)

    Thiery, M.-M.; Kobashi, K.; Spain, I. L.

    1985-01-01

    Raman spectra of solid benzene have been measured at room temperature up to about 140 kbar, using the diamond anvil cell. Effort has been focused upon the lattice vibration spectra at pressures above that of phase II. It is found that a change in slopes occurs in the frequency-pressure curves at about 40 kbar. Furthermore, a new band appears above 90 kbar. These features probably correspond respectively to the II-III phase transition, which has been reported previously, and a III-IV phase transition, reported here for the first time.

  1. IR and Raman spectra of liquid water: theory and interpretation.

    PubMed

    Auer, B M; Skinner, J L

    2008-06-14

    IR and Raman (parallel- and perpendicular-polarized) spectra in the OH stretch region for liquid water were measured some years ago, but their interpretation is still controversial. In part, this is because theoretical calculation of such spectra for a neat liquid presents a formidable challenge due to the coupling between vibrational chromophores and the effects of motional narrowing. Recently we proposed an electronic structure/molecular dynamics method for calculating spectra of dilute HOD in liquid D(2)O, which relied on ab initio calculations on clusters to provide a map from nuclear coordinates of the molecules in the liquid to OH stretch frequencies, transition dipoles, and polarizabilities. Here we extend this approach to the calculation of couplings between chromophores. From the trajectories of the fluctuating local-mode frequencies, transition moments, and couplings, we use our recently developed time-averaging approximation to calculate the line shapes. Our results are in good agreement with experiment for the IR and Raman line shapes, and capture the significant differences among them. Our analysis shows that while the coupling between chromophores is relatively modest, it nevertheless produces delocalization of the vibrational eigenstates over up to 12 chromophores, which has a profound effect on the spectroscopy. In particular, our results demonstrate that the peak in the parallel-polarized Raman spectrum at about 3250 wavenumbers is collective in nature.

  2. Efficacious calculation of Raman spectra in high pressure hydrogen

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; Magdau, I. B.

    2014-04-01

    We present and evaluate an efficient method for simulating Raman spectra from molecular dynamics calculations without defining normal modes. We apply the method to high pressure hydrogen in the high-temperature "Phase IV": a plastic crystal in which the conventional picture of fixed phonon eigenmodes breaks down. Projecting trajectories onto in-phase molecular stretches is shown to be many orders of magnitude faster than polarisability calculations, allowing statistical averaging at high-temperature. The simulations are extended into metastable regimes and identify several regimes associated with symmetry-breaking on different timescales, which are shown to exhibit features in the Raman spectra at the current experimental limit of resolvability. In this paper we have concentrated on the methodology, a fuller description of the structure of Phase IV hydrogen is given in a previous paper [Magdau IB, Ackland GJ. Identification of high-pressure phases III and IV in hydrogen: simulating Raman spectra using molecular dynamics. Phys Rev B. 2013;87:174110].

  3. [Raman spectra of carbon fibers during electrochemical treatment].

    PubMed

    Zhang, Min; Zhu, Bo; Wang, Cheng-guo; Wei, Han-xing

    2010-01-01

    Laser Raman spectroscopy was employed to characterize the microstructure variations of polyacrylonitrile-based carbon fibers during electrochemical treatment, and the characteristics of first-order Raman spectra of carbon fibers with different treatment time were investigated in the present paper. The results indicate that the Raman spectra of the carbon fibers can be fitted into four bands, named as D (or D1) band, G band, D2 band and D3 band, respectively. The Raman parameters to characterize surface microstructure variations of carbon fibers mainly include R(I(D2)) / I(G), area ratio of D band and G band), I(D2) / I(G) (area ratio of D2 band and G band), I(D3) / I(G) (area ratio of D3 band and G band), and I(D(S))/ I(G) (area ratio of all the disordered structure and G band). The peak separation between D band and G band becomes large after electrochemical treatment. R increases, which indicates that the surface disordered degree of carbon fibers increases. I(D3) / I(G) increases, which is caused by organic molecules, fragments or functional groups; decreases which is caused by the break of the aliphatic structures. With increasing treatment time, I(D(S)) / I(G) increases continuously, and the change trend of l(D(S)) / I(G) is consistent with that of R value, which can be used to comprehensively explain the variation of the surface structure of carbon fibers. So, the variety rules of the structure of carbon fibers can be investigated by laser Raman spectroscopy during electrochemical treatment.

  4. Surface-enhanced Raman scattering spectra of tomato epidermis on gold/ silver sol active substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Chen, Zhenyi; Chen, Na; Hu, Ling; Zhu, Hongfei; Liu, Shupeng; Guo, Qiang

    2011-12-01

    In this paper, tomato epidermis' surface-enhanced Raman scattering spectra were measured on gold and silver active substrates and analyzed. Preparing and using gold sol and silver sol in similar particle diameters (about 50-60nm), three comparable Raman spectra were obtained. Silver sol and gold sol can both increase Raman scattering signal of tomato epidermis. Through the Raman spectra, silver sol has greater enhancement ability than gold sol to tomato epidermis.

  5. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  6. Complete analytic anharmonic hyper-Raman scattering spectra.

    PubMed

    Cornaton, Yann; Ringholm, Magnus; Ruud, Kenneth

    2016-08-10

    We present the first computational treatment of the complete second-order vibrational perturbation theory applied to hyper-Raman scattering spectroscopy. The required molecular properties are calculated in a fully analytic manner using a recently developed program [Ringholm, Jonsson and Ruud, J. Comp. Chem., 2014, 35, 622] that utilizes recursive routines. For some of the properties, these calculations are the first analytic calculations of their kind at their respective levels of theory. We apply this approach to the calculation of the hyper-Raman spectra of methane, ethane and ethylene and compare these to available experimental data. We show that the anharmonic corrections have a larger effect on the vibrational frequencies than on the spectral intensities, but that the inclusion of combination and overtone bands in the anharmonic treatment can improve the agreement with the experimental data, although the quality of available experimental data limits a detailed comparison.

  7. Model investigation of the Raman spectra of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Marinov, M.; Zotov, N.

    1997-02-01

    A model for calculating the first-order Raman spectra of amorphous silicon (a-Si) without adjustable parameters is proposed. Calculations on the original 216-atom model of a-Si, generated by the algorithm of Wooten, Winer, and Weaire (WWW) are in very good agreement with experimental spectra and give further indication that the WWW cluster is a realistic model of moderately disordered a-Si. The TA-TO assignment of the low and high frequency bands is supported by direct numerical calculations of the phase quotient and the stretching character of the vibrational modes. The calculated participation ratios and correlation lengths of the vibrational modes indicate that the high-frequency TO-like modes are strongly localized on defects. The relative intensities of the TA-, LA-, and LO-like bands depend on the intermediate-range order, while that of the TO-like band mainly on the short-range order.

  8. Raman spectra of amorphous carbon films deposited by SWP

    NASA Astrophysics Data System (ADS)

    Xu, Junqi; Liu, Weiguo; Hang, Lingxia; Su, Junhong; Fan, Huiqing

    2010-10-01

    Amorphous carbon film is one of the most important anti-reflection protective films coated on infrared optical components. In this paper, hydrogen-free amorphous carbon films were deposited by new type surface-wave-sustained plasma (SWP) source with a graphite target at various experiment parameters. The laser Raman spectroscopy at wavelength of 514 nm was used to investigate the structure and bonding of these carbon films. The results showed consanguineous correlations between the intensity ratio ID/IG and the experiment parameters such as microwave power, target voltage and gas pressure applied to the SWP source. Raman spectra proved the structure of these carbon films prepared by SWP technique is typical diamond-like carbon (DLC). The analysis on G peak position and intensity ratio ID/IG indicated that Raman shifts moves to low wavenumber and ID/IG decreases with the increasing of microwave power from 150 W to 330 W. These results means the formation of sp3 bond prefers higher microwave power. DLC films prepared at target voltage of -200 V have higher sp3 content than that of -350 V, moreover, an increase of gas pressure during experiments yields higher sp3 content at the microwave power below 270 W, whereas the change of sp3 content is slight with the various conditions when microwave power exceeds 270 W.

  9. Raman and infrared spectra of stibnite, Sb2S3

    NASA Astrophysics Data System (ADS)

    Ilinca, G.; Caracas, R.

    2006-12-01

    Stibnite, Sb2S3 is a small-gap quasi-one-dimensional semiconductor (PhChMin, 32, 295-300, 2005) and a structural archetype for a variety of sulfide and sulfosalt minerals. Despite its widespread natural occurrence and its mineralogical importance, the physical properties are barely studied. Here, we combine experimental and theoretical approaches to analyze its zone-center dynamical properties. We measure the powder infrared reflectivity spectra and the powder Raman spectra under ambient conditions of pressure and temperature. We calculate the normal mode frequencies within the density functional perturbation theory, as implemented in the ABINIT package. With 20 atoms in the unit cell, stibnite has 60 normal modes, which according to the group theory decompose in Gamma as 10A_g+5B1g+10B2g+5B3g + 5A_u+10B1u+5B2u+10B3u. The acoustic modes have characters B1u+B2u+B3u. The Au modes are silent whereas all the other modes are active. The optical modes are distributed over a narrow 0-350 cm-1 frequency range. The infrared reflectivity spectrum shows a multitude of peaks, which are poorly differentiated and highly overlapping. The Raman spectrum is better differentiated, with five main peaks. The main infrared mode lays around 246 cm-1 and represents a superposition of at least one B3u and one B1u modes.

  10. Temperature dependence of resonance Raman spectra of carotenoids

    NASA Astrophysics Data System (ADS)

    Andreeva, A.; Apostolova, I.; Velitchkova, M.

    2011-04-01

    To understand the mechanism of the photoprotective and antioxidative functions of carotenoids, it is essential to have a profound knowledge of their excited electronic and vibronic states. In the present study we investigate the most powerful antioxidants: β-carotene and lutein by means of resonance Raman spectroscopy. The aim was to study in detail their Raman spectra in solution at room temperature and their changes as a function of temperature. To measure the spectra in their natural environment pyridine has been used as a solvent. It has been chosen because of its polarizability ( n = 1.5092) which is close to that of membrane lipids and proteins. The temperature dependence of the most intensive ν1 band in the range from 77 K to 295 K at 514.5 nm excitation has been obtained. It was found that in pyridine the C dbnd C stretching frequency, its intensity, line shape, and line width are very sensitive to the temperature (the sensitivity being different for the two studied carotenoids). The observed linear temperature dependence of the C dbnd C stretching frequency is explained by a mechanism involving changes of the vibronic coupling and the extent of π-electron delocalization. The different behavior of the temperature-induced broadening of the ν1 band and its intensity for the two studied carotenoids can be associated with the different nature of their solid matrices: glassy for β-carotene and crystalline-like for lutein, owing to their different chemical structures.

  11. A COMPARISON OF FAR INFRARED AND RAMAN SPECTRA OF SOME RARE EARTH GARNET SINGLE CRYSTALS,

    DTIC Science & Technology

    RARE EARTH COMPOUNDS, *INFRARED SPECTRA), (*GARNET, RARE EARTH COMPOUNDS), (* RAMAN SPECTROSCOPY, RARE EARTH COMPOUNDS), SINGLE CRYSTALS, ALUMINATES...PHONONS, YTTRIUM COMPOUNDS, YTTERBIUM COMPOUNDS, TERBIUM COMPOUNDS, DYSPROSIUM COMPOUNDS, CANADA

  12. Quantum spectra of Raman photon pairs from a mesoscopic particle

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond; Loh, W. M. Edmund; Kam, C. H.

    2015-06-01

    Quantum Langevin formalism with noise operators is used to provide quantum descriptions of photon pairs (the Stokes and anti-Stokes fields) emitted by a mesoscopic spherical particle composed of quantum particles in a double Raman configuration. The spectra of the fields obtained are sensitive to the dimension of the microsphere and can be controlled by pump and control laser fields. Spectral peaks due to quantum coherence are Stark shifted by the laser fields experiencing autofocusing inside the spherical particle, causing broadening of peaks as the size of the microsphere increases. The antinormal-order spectrum is found to be identical to the normal-order spectrum. The anti-Stokes spectrum is identical to the Stokes spectrum when the linear dispersion is neglected. Frequency-dependent dielectric functions of the Stokes and anti-Stokes spectra corresponding to the linear dispersions of the particle yield narrow morphology-dependent resonance gain peaks at certain frequencies of the Stokes and anti-Stokes spectra that depend not only on the particle size but also on the angle of observation.

  13. Effects of pathology dyes on Raman bone spectra

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Esmonde-White, Francis W. L.; Morris, Michael D.; Roessler, Blake J.

    2013-05-01

    We report an overlooked source of artifacts for clinical specimens, where unexpected and normally negligible contaminants can skew the interpretation of results. During an ongoing study of bone fragments from diabetic osteomyelitis, strong Raman signatures were found, which did not correspond with normal bone mineral or matrix. In a bone biopsy from the calcaneus of a patient affected by diabetic osteomyelitis, Raman microspectroscopic analysis revealed regions with both abnormal mineral and degraded collagen in addition to normal bone. Additional bands indicated a pathological material. Stenotrophomonas maltophilia was identified in the wound culture by independent microbiologic examination. We initially assigned the unusual bands to xanthomonadin, a bacterial pigment from S. maltophilia. However, the same bands were also found more than a year later on a second specimen that had been noticeably contaminated with pathology marking dye. Drop deposition/Raman spectroscopy of commonly used pathology dyes revealed that a blue tissue-marking dye was responsible for the unusual bands in both specimens, even in the first specimen where there was no visible evidence of contamination.

  14. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    PubMed

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.

  15. Raman spectra of probably shock-metamorphosed zircon in structures of the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Kaulina, Tatiana; Nerovich, Luidmila; Lialina, Luidmila; Il'chenko, Vadim; Bocharov, Vladimir; Kunakkuzin, Evgeny

    2016-04-01

    Zircon crystals were studied by means of Raman spectroscopy from certain structures of the Kola Peninsula, for which impact events are expected according to geological and geochemical data: circular structure in Javrozersky area of the Tanaelv belt and granophyres of Jarva-Varaka layered massif of the Monchegorsky ore district. Zircons from anorthosites of the Javrozersky area showed some features of impact zircons: wavy extinction, blurred "aurora-like" CL image and a presence of additional bands in the Raman spectrum, which may indicate the presence of ZrSiO4 with the scheelite-type structure (reidite) surrounded by zircon material. Zircon crystals of Yavra-Varaka granophyres showed variation of Raman spectra from the core part of crystals with typical zircon Raman pattern to complete absence of spectral bands in the marginal parts and rims. There was also a transition zone between cores and marginal parts of crystals, where the Raman spectrum is "blurred". Such pattern may be associated with the transformation of crystalline zircon to diaplectic glass under the influence of shock metamorphism, since the Jarva-Varaka massif according to geological and geochemical data is compared with the Sudbury structure, for which impact origin is assumed. The work is supported by RSF grant N 16-17-10051.

  16. [Raman and infrared spectra of non-stoichiometry uranium oxides].

    PubMed

    Lü, Jun-Bo; Li, Gan; Guo, Shu-Lan

    2014-02-01

    Both of Raman and infrared spectra of seven non-stoichiometry and threestoichiometry uranium oxides, including UO2, U3O7 and UO(2+x) (0spectra of UO(2+x) in the stoichiometry range, U3O7 to U3O8, were first obtained and reported. Three typical peaks were observed at 445, 578 and 1150 cm(-1) in the Raman spectrum of uranium dioxide. The intensities of the peaks at 578 and 1151 cm(-1) decrease quickly with increasing x value of UO(2+x), and while x=0.19, the two peaks disappear. Such peaks can therefore be considered as a fin-gerprint of the quasi-perfect UO2 fluorite structure. The peak at 445 cm(-1) tends to weaken, broaden and shift to higher wavenumber in more oxidised samples. When x=0.32, this peak is shifted to the 459 cm(-1) and a weak peak at about 630 cm(-1) appears. The two new peaks are typical of the tetragonal U3O7. While x> or =0.39, the peak at 459 cm(-1) further splits into separate components. Two peaks at 235 and 754 cm(-1) appear for UO(2.39) and are visible with increased intensity as the oxygen-uranium ratio is increased. And the Raman spectra of UO(2+x) are gradually close to U3O8 in the alpha-phase, which has an orthorhombic unit cell. But several strongest features of the alpha-U3O8 specturm at 333, 397, 483 and 805 cm(-1) are still not outstanding even in UO(2.60). The main feature of the UO2 infrared spectrum shows a very broad and strong adsorption band at 400-570 cm(-1) and another feature is a weak adsorption peak at about 700 cm(-1). The 400-570 cm(-1) band undergoes a progressive splitting into two new peaks at approximately 421 and approximately 515 cm(-1) through increasing incorporation of oxygen into UO2. The weak peak at about 700 cm(-1) disappears and a new weak peak appears at about 645 cm(-1). The three new peaks are the infrared absorption features of U3O7. An absorption peak at 744 cm(-1) which is the strongest feature of alpha-U3O8 infrared spectrum appears for UO(2.39) and is

  17. Peculiarities in the Raman spectra of ZrB{sub 12} and LuB{sub 12} single crystals

    SciTech Connect

    Werheit, H. . E-mail: helmut.werheit@koeln.de; Paderno, Yu.; Filippov, V.; Paderno, V.; Pietraszko, A.; Armbruester, M.; Schwarz, U.

    2006-09-15

    We have measured Raman spectra of high-quality Zr{sup nat}B{sub 12}, Lu{sup nat}B{sub 12} and Lu{sup 11}B{sub 12} single crystals with high resolution, and the observed strong peaks are attributed to specific vibration modes. Besides, there are a number of additional Raman peaks in spectral ranges, where only Raman-inactive vibrations of the atomic arrangement are expected. Accordingly, it is assumed, that the investigated crystals contain intrinsic structural imperfections or distortions in sufficient concentration and efficiency to initiate the observed breaking of phonon selection rules. We suppose boron vacancies, boron isotope effects and displacements of the metal atoms to be reasons for such imperfections. - Graphical abstract: Raman spectra of Lu{sup nat}B{sub 12}, Lu{sup 11}B{sub 12} and Zr{sup nat}B{sub 12}.

  18. Spectrometer calibration protocol for Raman spectra recorded with different excitation wavelengths.

    PubMed

    Bocklitz, T W; Dörfer, T; Heinke, R; Schmitt, M; Popp, J

    2015-01-01

    The combination of Raman spectroscopy with chemometrics has gained significant importance within the last years to address a broad variety of biomedical and life science questions. However, the routine application of chemometric models to analyze Raman spectra recorded with Raman devices different from the device used to establish the model is extremely challenging due to Raman device specific influences on the recorded Raman spectra. Here we report on the influence of different non-resonant excitation wavelengths on Raman spectra and propose a calibration routine, which corrects for the main part of the spectral differences between Raman spectra recorded with different (non-resonant) excitation wavelengths. The calibration routine introduced within this contribution is an improvement to the known 'standard' calibration routines and is a starting point for the development of a calibration protocol to generate spectrometer independent Raman spectra. The presented routine ensures that a chemometric model utilizes only Raman information of the sample and not artifacts from small shifts in the excitation wavelength. This is crucial for the application of Raman-spectroscopy in real-world-settings, such as diagnostics of diseases or identification of bacteria.

  19. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  20. Infrared and Raman spectra, conformations, ab initio calculations and spectral assignments of ethylmethyldichlorogermane

    NASA Astrophysics Data System (ADS)

    Klaeboe, Peter; Nielsen, Claus J.; Horn, Anne; Guirgis, Gamil A.; Wurrey, Charles J.

    2010-07-01

    Raman spectra of ethylmethyldichlorogermane (CH 3CH 2GeCl 2CH 3) as a liquid were recorded at 293 K and polarization data were obtained. Additional Raman spectra were recorded at various temperatures between 293 and 154 K, and intensity changes of certain bands with temperature were detected. The sample was also investigated as amorphous and crystalline solids on a cold finger of copper at 78 K. The infrared spectra have been studied as a vapour in the 4000-400 and 500-100 cm -1 regions and as amorphous and crystalline solids at 78 K. No Raman or infrared bands present in the liquid seemed to vanish completely upon crystallization, but considerable intensity changes were observed, indicating a partly crystallization. The compound exists a priori in two conformers, anti and gauche, and the experimental results suggest an equilibrium in which the anti conformer has 0.6 kJ mol -1 lower enthalpy than gauche in the liquid. In the partly crystalline solid, however, the results indicate gauche to be preferred in the crystal lattice. DFT/B3LYP, CBS-QB3 and G2 calculations were carried out indicating a conformational enthalpy difference Δ H( gauche- anti) between 0.8 and 1.5 kJ mol -1, somewhat higher than the experimental value. Vibrational frequencies, infrared and Raman intensities, and polarization ratios for the anti and gauche conformers were calculated. Anharmonic vibrational wavenumbers were derived in B3LYP/cc-pVTZ. In most cases these values gave a good agreement with the experimental results for the anti and gauche conformers.

  1. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    PubMed

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  2. Unusual Raman spectra of para-nitroaniline by sequential Fermi resonances.

    PubMed

    Xia, Jiarui; Zhu, Ling; Feng, Yanting; Li, Yongqing; Zhang, Zhenglong; Xia, Lixin; Liu, Liwei; Ma, Fengcai

    2014-01-01

    In this communication, we report the unusual Raman spectra of para-nitroaniline (PNA) by sequential Fermi resonances. The combinational mode 1292 cm(-1) in the experimental Raman spectrum indirectly gains the initial spectral weight at 1392 cm(-1) by three sequential Fermi resonances. These Fermi resonances result in the strong interaction between the donor group of NH2 and the acceptor group of NO2. Our theoretical calculations provide reasonable interpretation for the abnormal Raman spectra of PNA. Experimental surface enhanced Raman scattering (SERS) spectrum of PNA further confirmed our conclusion, where the strongest Raman peak at 1292 cm(-1) is very weak, while the Raman peak at 1392 cm(-1) becoming the strongest Raman peak, which is consistent with the theoretical simulations.

  3. Consistency analysis of plastic samples based on similarity calculation from limited range of the Raman spectra

    NASA Astrophysics Data System (ADS)

    Lai, B. W.; Wu, Z. X.; Dong, X. P.; Lu, D.; Tao, S. C.

    2016-07-01

    We proposed a novel method to calculate the similarity between samples with only small differences at unknown and specific positions in their Raman spectra, using a moving interval window scanning across the whole Raman spectra. Two ABS plastic samples, one with and the other without flame retardant, were tested in the experiment. Unlike the traditional method in which the similarity is calculated based on the whole spectrum, we do the calculation by using a window to cut out a certain segment from Raman spectra, each at a time as the window moves across the entire spectrum range. By our method, a curve of similarity versus wave number is obtained. And the curve shows a large change where the partial spectra of the two samples is different. Thus, the new similarity calculation method identifies samples with tiny difference in their Raman spectra better.

  4. AGNs with composite spectra. II. Additional data

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Véron-Cetty, M.-P.; Véron, P.

    1999-03-01

    In a previous paper \\cite[(Véron et al. 1997)]{ver97} we presented medium resolution (3.4 Angstroms FWHM) spectroscopic observations of 15 ``transition objects'', selected for having an ambiguous location in the \\cite[Veilleux & Osterbrock (1987)]{vei87} diagnostic diagrams, and showed that most of them were in fact ``composite'', this being due to the simultaneous presence on the slit of both a Seyfert or Liner nucleus and a H Ii region. Here, we report new spectroscopic observations of 53 emission-line galaxies with a ``transition'' spectrum, bringing up to 61 the total number of observed objects in an unbiased sample of 88 ``transition objects''. Almost all of the observed galaxies have a ``composite" nature, confirming the finding that true ``transition'' spectra may not exist at all. By eliminating ``composite objects'' from the diagnostic diagrams, a clear separation between the different classes of nuclear emission-line regions (Seyfert 2s, Liners and H Ii regions) becomes apparent; by restricting the volume occupied by the different line-emitting regions in the 3-dimensional diagnostic diagrams, we are also restricting the range of possible physical parameters in these regions. There seems to be no continuity between Seyfert 2s and Liners, the two classes occupying distinct volumes in the 3-dimensional space defined by lambda 6300/Hα ii, lambda 6583/Hα , and lambda 6300/Hα . Based on observations collected at the Observatoire de Haute-Provence (CNRS), France, and Hubble Space Telescope (HST) data obtained from the Space Telescope European Coordinating Facility (ST-ECF) archive. Tables 5 and 6 are also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  5. An improved algorithm to remove cosmic spikes in Raman spectra for online monitoring.

    PubMed

    Li, Sheng; Dai, Liankui

    2011-11-01

    Raman spectral analysis integrated with multivariate calibration is a fast and effective solution to monitor chemical product properties. However, Raman instruments utilizing charge-coupled device (CCD) detectors suffer from occasional spikes caused by cosmic rays. Cosmic spikes can disturb or even destroy the meaningful chemical information expressed by normal Raman spectra. In online monitoring, some cosmic spikes have intensity and bandwidth similar to normal Raman peaks of chemical components when a low resolution and cost-effective Raman instrument is used. Moreover, the online Raman spectra always contain variations of strong Raman peaks and fluorescence. Current spike-removal methods seem to have difficulty detecting and recovering cosmic spikes in these online Raman spectra. Therefore, an improved algorithm is proposed. In this algorithm, a new scheme composed of intensity identification and local moving window correlation analysis is introduced for cosmic spike detection; intensity identification based on derivative spectra and local linear fitting approximation are used for the recovery of cosmic spikes. The algorithm is proved to be simple and effective and has been applied in an online Raman instrument installed at a continuous catalytic reforming unit in a refinery.

  6. Effect of hormonal variation on in vivo high wavenumber Raman spectra improves cervical precancer detection

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, A.; Huang, Zhiwei

    2012-03-01

    Raman spectroscopy is a unique analytical probe for molecular vibration and is capable of providing specific spectroscopic fingerprints of molecular compositions and structures of biological tissues. The aim of this study is to improve the classification accuracy of cervical precancer by characterizing the variations in the normal high wavenumber (HW - 2800-3700cm-1) Raman spectra arising from the menopausal status of the cervix. A rapidacquisition near-infrared (NIR) Raman spectroscopic system was used for in vivo tissue Raman measurements at 785 nm excitation. Individual HW Raman spectrum was measured with a 5s exposure time from both normal and precancer tissue sites of 15 patients recruited. The acquired Raman spectra were stratified based on the menopausal status of the cervix before the data analysis. Significant differences were noticed in Raman intensities of prominent band at 2924 cm-1 (CH3 stretching of proteins) and the broad water Raman band (in the 3100-3700 cm-1 range) with a peak at 3390 cm-1 in normal and dysplasia cervical tissue sites. Multivariate diagnostic decision algorithm based on principal component analysis (PCA) and linear discriminant analysis (LDA) was utilized to successfully differentiate the normal and precancer cervical tissue sites. By considering the variations in the Raman spectra of normal cervix due to the hormonal or menopausal status of women, the diagnostic accuracy was improved from 71 to 91%. By incorporating these variations prior to tissue classification, we can significantly improve the accuracy of cervical precancer detection using HW Raman spectroscopy.

  7. Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification.

    PubMed

    Schie, Iwan W; Kiselev, Roman; Krafft, Christoph; Popp, Jürgen

    2016-11-14

    Raman spectroscopy has previously been used to identify eukaryotic and prokaryotic cells. While prokaryotic cells are small in size and can be assessed by a single Raman spectrum, the larger size of eukaryotic cells and their complex organization requires the acquisition of multiple Raman spectra to properly characterize them. A Raman spectrum from a diffraction-limited spot at an arbitrary location within a cell results in spectral variations that affect classification approaches. To probe whole cells with Raman imaging at high spatial resolution is time consuming, because a large number of Raman spectra need to be collected, resulting in low cell throughput and impairing statistical analysis due to low cell numbers. Here we propose a method to overcome the effects of cellular heterogeneity by acquiring integrated Raman spectra covering a large portion of a cell. The acquired spectrum represents the mean macromolecular composition of a cell with an exposure time that is comparable to acquisition of a single Raman spectrum. Data sets were collected from T lymphocyte Jurkat cells, and pancreatic cell lines Capan1 and MiaPaca2. Cell classification by support vector machines was compared for single spectra, spectra of images and integrated Raman spectra of cells. The integrated approach provides better and more stable prediction for individual cells, and in the current implementation, the mean macromolecular information of a cell can be acquired faster than with the acquisition of individual spectra from a comparable region. It is expected that this approach will have a major impact on the implementation of Raman based cell classification.

  8. Raman spectra of high- κ dielectric layers investigated with micro-Raman spectroscopy comparison with silicon dioxide.

    PubMed

    Borowicz, P; Taube, A; Rzodkiewicz, W; Latek, M; Gierałtowska, S

    2013-01-01

    Three samples with dielectric layers from high- κ dielectrics, hafnium oxide, gadolinium-silicon oxide, and lanthanum-lutetium oxide on silicon substrate were studied by Raman spectroscopy. The results obtained for high- κ dielectrics were compared with spectra recorded for silicon dioxide. Raman spectra suggest the similarity of gadolinium-silicon oxide and lanthanum-lutetium oxide to the bulk nondensified silicon dioxide. The temperature treatment of hafnium oxide shows the evolution of the structure of this material. Raman spectra recorded for as-deposited hafnium oxide are similar to the results obtained for silicon dioxide layer. After thermal treatment especially at higher temperatures (600°C and above), the structure of hafnium oxide becomes similar to the bulk non-densified silicon dioxide.

  9. Background photobleaching in raman spectra of aqueous solutions of plant toxins

    NASA Astrophysics Data System (ADS)

    Brandt, Nikolai N.; Chikishev, Andrey Y.; Tonevitsky, Alexander G.

    2002-05-01

    Kinetics of background photobleaching in Raman spectra of aqueous solutions of ricin, ricin agglutinin and ricin binding subunit were measured. It was found that the spectrum of Raman background changes upon laser irradiation. Background intensity is lower for the samples with lower molecular weight. Photobleaching is characterized by oscillations in the multi exponentially decaying intensity.

  10. Resonance Raman spectra of the anion and cation radicals of bacterial photosynthetic pigments

    SciTech Connect

    Diers, J.R.; Bocian, D.F. )

    1994-12-08

    Resonance Raman (RR) spectra are reported for the radical ions of the bacterial photosynthetic pigments bacteriochlorophyll a (BCh) and its metal-free analog bacteriopheophytin a (BPh). The radical anions, BCh[sup [minus

  11. [Raman spectra of different kinds of thalassemia erythrocytes with the effect of pH].

    PubMed

    Wu, Zheng-Jie; Wang, Cheng; Lin, Zheng-Chun

    2013-04-01

    Thalassemia is a kind of blood diseases which has high morbidity and large influence. Previous methods for diagnosis are all very cumbersome and time consuming. By comparing Raman spectra of different kinds of thalassemia and normal erythrocytes at acid or alkaline pH, it was found that beta-thalassemia and alpha-thalassemia erythrocytes have dissimilar Raman spectra in the acidic environment, such as the Raman spectra of beta-thalassemia erythrocytes showed higher intensity at the characteristic bands assigned to oxyhemoglobin, and the characteristic bands assigned to deoxyhemoglobin were even completely replaced; beta-thalassemia erythrocytes membrane has a smaller chain interaction between the transverse order parameters than normal erythrocytes, and the S(lat) values are different for different stages of anemia, while the S(lat) values are similar between alpha-thalassemia and normal erythrocytes, indicating that based on the effect of pH it is possible to diagnose thalassemia more quickly by using Raman spectra.

  12. Infrared absorption and Raman scattering spectra of water under pressure via first principles molecular dynamics.

    PubMed

    Ikeda, Takashi

    2014-07-28

    From both the polarized and depolarized Raman scattering spectra of supercritical water a peak located at around 1600 cm(-1), attributed normally to bending mode of water molecules, was experimentally observed to vanish, whereas the corresponding peak remains clearly visible in the measured infrared (IR) absorption spectrum. In this computational study a theoretical formulation for analyzing the IR and Raman spectra is developed via first principles molecular dynamics combined with the modern polarization theory. We demonstrate that the experimentally observed peculiar behavior of the IR and Raman spectra for water are well reproduced in our computational scheme. We discuss the origins of a feature observed at 1600 cm(-1) in Raman spectra of ambient water.

  13. Effect of Grain Size and Grain Orientation on the Raman Spectra of Minerals

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Chio, C. H.; Deb, P.; Lucey, P. G.; Domergue-Schmidt, N.; Horton, K. A.

    2000-01-01

    We have examined effects of grain size and grain orientation on the Raman spectra of quartz and olivine to evaluate the effect of these parameters on in situ and remote analysis of planetary surface rocks.

  14. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    PubMed

    Jovan Jose, K V; Raghavachari, Krishnan

    2016-02-09

    We present an efficient method for the calculation of the Raman optical activity (ROA) spectra for large molecules through the molecules-in-molecules (MIM) fragment-based method. The relevant higher energy derivatives from smaller fragments are used to build the property tensors of the parent molecule to enable the extension of the MIM method for evaluating ROA spectra (MIM-ROA). Two factors were found to be particularly important in yielding accurate results. First, the link-atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, yielding a mathematically rigorous method. Second, the long-range interactions between fragments are taken into account by using a less computationally expensive lower level of theory. The performance of the MIM-ROA model is calibrated on the enantiomeric pairs of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and ROA intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-ROA method is employed to predict the ROA spectra of d-maltose, α-D-cyclodextrin, and cryptophane-A, yielding spectra in excellent agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-ROA model for exploring ROA spectra of large molecules.

  15. The VA, VCD, Raman and ROA spectra of tri-L-serine in aqueous solution.

    PubMed

    Jürgensen, V Würtz; Jalkanen, K

    2006-02-22

    The structures of one conformer of the nonionic neutral and zwitterionic species of L-serinyl L-serinyl L-serine (SSS or tri-L-serine), together with its cationic and anionic species and the capped N-acetyl tri-L-serine N'-methylamide analog were optimized with density functional theory with the Becke 3LYP hybrid exchange correlation (XC) functional and the PW91 GGA XC functional and the 6-31G* and aug-cc-pVDZ basis sets. Subsequently, the vibrational absorption, vibrational circular dichroism, Raman and Raman optical activity spectra were simulated in order to compare them to experimentally measured spectra. In addition, we compare to previously reported studies for both structural determination and spectral simulations and measurements. A comparison of the various ways to treat the effects of the environment and solvation on both the structure and the spectral properties is thoroughly investigated for one conformer, with the goal to determine which level of theory is appropriate to use in the systematic search of the conformational space. In addition, the effects of the counterion, here Cl- anion, are also investigated. Here we present the current state of the art in nanobiology, where the latest methods in experimental and theoretical vibrational spectroscopy are used to gain useful information about the coupling of the nuclear, electronic and magnetic degrees of freedom and structure of tri-L-serine and its capped peptide analog with the environment.

  16. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  17. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra*

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Brunger, Michael J.; Wang, Feng

    2013-11-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations dominate the VOA spectra (i.e., VCD and ROA) > 3000 cm-1 reflecting the side chain structures of the amino acids. Finally the carboxyl and the C(2)H modes of aliphatic amino acids, together with the side chain vibrations, are very active in the VCD/IR and ROA/Raman spectra, which makes such the vibrational spectroscopic methods a very attractive means to study biomolecules.

  18. Laser-induced alteration of Raman spectra for micron-sized solid particles

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Pavlov, S. G.; Deßmann, N.; Hanke, F.; Weber, I.; Fritz, J.; Hübers, H.-W.

    2017-04-01

    The Raman Laser Spectrometer (RLS) instrument on board of the future ESAs ExoMars mission will analyze micron-sized powder samples in a low pressure atmosphere. Such micron-sized polycrystalline solid particles might be heated by the laser during the Raman measurements. Here, we report on the temperature-induced alteration of Raman spectra from micron-sized polycrystalline solid particles by comparing Raman spectra on silicon and the rock forming minerals olivine and pyroxene taken at different laser intensities and different ambient temperatures. Our analyses indicate that laser-induced heating results in both broadening and shifting of characteristic Raman lines in the Stokes and anti-Stokes spectral regions. For elementary crystalline silicon a significant local temperature increase and relevant changes in Raman spectra have been observed in particles with median sizes below 250 μm. In comparison, significantly weaker laser-induced Raman spectral changes were observed in more complex rock-forming silicate minerals; even for lower grain sizes. Laser power densities realized in the RLS ExoMars instrument should cause only low local heating effects and, thus, negligible frequency shifts of the major Raman lines in common silicate minerals such as olivine and pyroxene.

  19. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.

    PubMed

    Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C

    2012-09-27

    Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.

  20. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    NASA Astrophysics Data System (ADS)

    Ringholm, Magnus; Bast, Radovan; Oggioni, Luca; Ekström, Ulf; Ruud, Kenneth

    2014-10-01

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  1. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients.

    PubMed

    Ringholm, Magnus; Bast, Radovan; Oggioni, Luca; Ekström, Ulf; Ruud, Kenneth

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  2. Real-Time Analysis of Raman Spectra for Temperature Field Characterization in Aircraft Exhaust Noise Studies

    NASA Astrophysics Data System (ADS)

    Wormhoudt, J.; Nelson, D. D.; Annen, K.; Locke, R. J.; Wernet, M.

    2009-06-01

    Raman scattering has long been used as a non-intrusive diagnostic of temperatures in combustion exhaust flows, using a variety of spectral analysis techniques. As part of their ongoing program of experiments to support development of computer codes that calculate exhaust flow fields and predict jet noise, NASA Glenn Research Center is developing a laser Raman diagnostic system that will measure mean temperatures and temperature fluctuations in hot and cold jet flows. We describe a software package, ART (Analysis for Raman Temperatures), that analyzes Raman spectra of air for temperature and density using vibrational or resolved or unresolved rotational bands, presenting results in a variety of real-time displays. Each analysis technique presents its own challenges in obtaining the most precise and accurate values, and we will comment on these issues by exhibiting example spectra of each type. The ART program is closely related to another Aerodyne software package (TDLWintel) which automates the acquisition and analysis of tunable laser absorption spectra.

  3. Standardization of Raman spectra for transfer of spectral libraries across different instruments.

    PubMed

    Rodriguez, Jason D; Westenberger, Benjamin J; Buhse, Lucinda F; Kauffman, John F

    2011-10-21

    In this paper we evaluate methods for standardization of Raman spectra that are required to improve spectral correlation computations between spectra measured on different instruments. Five commercially-available 785 nm Raman spectrometers from different vendors were included in the study. These spectrometers have diverse specifications and performance levels and range in size from laboratory-based instruments to field-deployable portable and handheld platforms. Since each Raman spectrometer has different characteristics, spectra obtained on one instrument cannot readily be compared to a library acquired on a different instrument without performing various types of spectral corrections (standardization). We outline a procedure that combines previously established Raman shift and intensity correction protocols with a resolution matching step to facilitate the comparison of a centralized master library with spectra acquired on different geographically distributed Raman spectrometers. The standardization procedure is effective in reducing the inherent instrument-to-instrument variability so that spectra from different spectrometers can be compared and reliable results obtained using library-based spectral correlation methods. The findings have important implications for the ability to transfer Raman spectral libraries between instruments.

  4. Hydrogen bonding effects on infrared and Raman spectra of drug molecules

    NASA Astrophysics Data System (ADS)

    Bondesson, Laban; Mikkelsen, Kurt V.; Luo, Yi; Garberg, Per; Ågren, Hans

    2007-02-01

    Infrared and Raman spectra of three drug molecules, aspirin, caffeine and ibuprofen, in gas phase and in aqueous solution have been simulated using hybrid density functional theory. The long range solvent effect is modelled by the polarizable continuum model, while the short range hydrogen bonding effects are taken care of by the super-molecular approach with explicit inclusion of water molecules. The calculated spectra are found to compare well with available experimental results. The agreement obtained make grounds for proposing theoretical modeling as a tool for characterizing changes in the bonding environments of drug molecules in terms of particular variations in their IR and Raman spectra.

  5. Interpretation of the resonance Raman spectra of linear tetrapyrroles based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Kneip, Christa; Hildebrandt, Peter; Németh, Károly; Mark, Franz; Schaffner, Kurt

    1999-10-01

    Raman spectra of linear methine-bridged tetrapyrroles in different conformational and protonation states were calculated on the basis of scaled force fields obtained by density functional theory. Results are reported for protonated phycocyanobilin in the extended ZZZasa configuration, as it is found in C-phycocyanin of cyanobacteria. The calculated spectra are in good agreement with experimental spectra of the protein-bound chromophore in the α-subunit of C-phycocyanin and allow a plausible and consistent assignment of most of the observed resonance Raman bands in the region between 1000 and 1700 cm -1.

  6. Pollen Raman spectra database: application to the identification of airborne pollen.

    PubMed

    Guedes, A; Ribeiro, H; Fernández-González, M; Aira, M J; Abreu, I

    2014-02-01

    Raman microspectroscopy allows a non-destructive identification of airborne particles. However, the identification of particles such as pollen is hindered by the absence of a spectral library. Although reference spectra of pollen have been published before, they have always been limited to a certain number of species. In this work, Raman spectra of 34 pollen types are presented and were used to build a pollen spectra primary library. Afterward, the applicability of this database for detecting and identifying pollen in airborne samples was tested. Airborne pollen samples collected during April, May and August were compared with blank pollen spectra by means of Hit Quality Index. Although a much larger library would be required, our results showed that all first hits correspond to the same blank pollen species of the questioned sample from the air. This possibility is an innovative idea and a promising line of investigation for future RAMAN technology development in the area of aerobiology.

  7. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil

    PubMed Central

    2016-01-01

    Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule–nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved. PMID:28077982

  8. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    SciTech Connect

    Schloesser, M.; Pakari, O.; Rupp, S.; Mirz, S.; Fischer, S.

    2015-03-15

    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  9. Raman spectra of normal and cancerous mouse mammary gland tissue using near infrared excitation energy

    NASA Astrophysics Data System (ADS)

    Naik, Vaman; Serhatkulu, G. K.; Dai, H.; Shukla, N.; Weber, R.; Thakur, J. S.; Freeman, D. C.; Pandya, A. K.; Auner, G. W.; Naik, R.; Miller, R. F.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra of normal mammary gland tissues, malignant mammary gland tumors, and lymph nodes have been recorded using fresh tissue from mice. Tumors were induced in mice by subcutaneously injecting 4T1 BALB/c mammary tumor (a highly malignant) cell line. The Raman spectra were collected using the same tissues that were examined by histopathology for determining the cancerous/normal state of the tissue. Differences in various peak intensities, peak shifts and peak ratios were analyzed to determine the Raman spectral features that differentiate mammary gland tumors from non-tumorous tissue. Tissues that were confirmed by pathology as cancerous (tumors) show several distinctive features in the Raman spectra compared to the spectra of the normal tissues. For example, the cancerous tissues show Raman peaks at 621, 642, 1004, 1032, 1175 and 1208 cm-1 that are assignable to amino acids containing aromatic side-chains such as phenylalanine, tryptophan and tyrosine. Further, the cancerous tissues show a greatly reduced level of phospholipids compared to the normal tissues. The Raman spectral regions that are sensitive to pathologic alteration in the tissue will be discussed.

  10. Raman spectra of heterogeneous nanostructures based on organosilicon films

    NASA Astrophysics Data System (ADS)

    Vlasukova, L. A.; Komarov, F. F.; Leontyev, A. V.; Parkhomenko, I. N.

    2013-01-01

    We studied the effect of ion bombardment on the structure of SOG (spin-on-glass) films. We used IR and Raman spectroscopy and plan-view transmission electron microscopy to study the characteristic features of the structural transformation in organosilicon films when bombarded by nitrogen ions. We show that they are heterogeneous and we establish the presence of inclusions of nanocrystalline graphite.

  11. Models and methods for quantitative analysis of surface-enhanced Raman spectra.

    PubMed

    Li, Shuo; Nyagilo, James O; Dave, Digant P; Gao, Jean

    2014-03-01

    The quantitative analysis of surface-enhanced Raman spectra using scattering nanoparticles has shown the potential and promising applications in in vivo molecular imaging. The diverse approaches have been used for quantitative analysis of Raman pectra information, which can be categorized as direct classical least squares models, full spectrum multivariate calibration models, selected multivariate calibration models, and latent variable regression (LVR) models. However, the working principle of these methods in the Raman spectra application remains poorly understood and a clear picture of the overall performance of each model is missing. Based on the characteristics of the Raman spectra, in this paper, we first provide the theoretical foundation of the aforementioned commonly used models and show why the LVR models are more suitable for quantitative analysis of the Raman spectra. Then, we demonstrate the fundamental connections and differences between different LVR methods, such as principal component regression, reduced-rank regression, partial least square regression (PLSR), canonical correlation regression, and robust canonical analysis, by comparing their objective functions and constraints.We further prove that PLSR is literally a blend of multivariate calibration and feature extraction model that relates concentrations of nanotags to spectrum intensity. These features (a.k.a. latent variables) satisfy two purposes: the best representation of the predictor matrix and correlation with the response matrix. These illustrations give a new understanding of the traditional PLSR and explain why PLSR exceeds other methods in quantitative analysis of the Raman spectra problem. In the end, all the methods are tested on the Raman spectra datasets with different evaluation criteria to evaluate their performance.

  12. Contrastive analysis of the Raman spectra of polychlorinated benzene: hexachlorobenzene and benzene.

    PubMed

    Zhang, Xian; Zhou, Qin; Huang, Yu; Li, Zhengcao; Zhang, Zhengjun

    2011-01-01

    Detection of persistent pollutants such as polychlorinated benzene in environment in trace amounts is challenging, but important. It is more difficult to distinguish homologues and isomers of organic pollutantd when present in trace amounts because of their similar physical and chemical properties. In this work we simulate the Raman spectra of hexachlorobenzene and benzene, and figure out the vibration mode of each main peak. The effect on the Raman spectrum of changing substituents from H to Cl is analyzed to reveal the relations between the Raman spectra of homologues and isomers of polychlorinated benzene, which should be helpful for distinguishing one kind of polychlorinated benzene from its homologues and isomers by surface enhanced Raman scattering.

  13. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT.

    PubMed

    Furer, V L; Vandyukov, A E; Majoral, J P; Caminade, A M; Kovalenko, V I

    2016-09-05

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614cm(-1) in the experimental IR spectrum and by bands at 3327, 3241cm(-1) in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular NH⋯S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer.

  14. Pre-resonance Raman spectra of some simple gases. [sulfur oxides, hydrogen sulfide, and nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Low, P. W.

    1974-01-01

    The pre-resonance Raman spectra of SO2, N2O, and H2S were investigated using the 4880 A, 4727 A, and 4579 A lines of the argon ion laser. Although these molecules have electronic absorption bands in the near ultraviolet, none exhibit any pre-resonance enhancement within our experimental error of + or - 10%. Possible explanations taking into account the current theories for resonance Raman are discussed.

  15. Fourier-transform Raman spectra of ivory. III: Identification of mammalian specimens.

    PubMed

    Edwards, H G; Farwell, D W; Holder, J M; Lawson, E E

    1997-11-01

    The FT-Raman spectra of six mammalian ivories, other than elephant and mammoth, are presented and spectral differences formulated into a protocol for the identification of animal species from the ivory samples. In this study, sperm whale, walrus, wart hog, narwhal, hippopotamus and domestic pig are considered. The results, which are obtained non-destructively from a variety of specimens, suggest that FT-Raman spectroscopy provides a potentially useful method for the identification of mammalian ivory.

  16. Fourier-transform Raman spectra of ivory III: identification of mammalian specimens

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Farwell, D. W.; Holder, J. M.; Lawson, E. E.

    1997-11-01

    The FT-Raman spectra of six mammalian ivories, other than elephant and mammoth, are presented and spectral differences formulated into a protocol for the identification of animal species from the ivory samples. In this study, sperm whale, walrus, wart hog, narwhal, hippopotamus and domestic pig are considered. The results, which are obtained non-destructively from a variety of specimens, suggest that FT-Raman spectroscopy provides a potentially useful method for the identification of mammalian ivory.

  17. Adapting Raman Spectra from Laboratory Spectrometers to Portable Detection Libraries

    SciTech Connect

    Weatherall, James; Barber, Jeffrey B.; Brauer, Carolyn S.; Johnson, Timothy J.; Su, Yin-Fong; Ball, Christopher D.; Smith, Barry; Cox, Rick; Steinke, Robert; McDaniel, Patricia; Wasserzug, Louis

    2013-02-01

    Raman spectral data collected with high-resolution laboratory spectrometers are processed into a for- mat suitable for importing as a user library on a 1064nm DeltaNu rst generation, eld-deployable spectrometer prototype. The two laboratory systems used are a 1064nm Bruker spectrometer and a 785nm Kaiser spectrometer. The steps taken to compensate for device-dependent spectral resolution, wavenumber shifts between instruments, and wavenumber sensitivity variation are described.

  18. Simulation of the resonance Raman spectra for 5-halogenated (F, Cl, and Br) uracils.

    PubMed

    Sun, Shuai; Brown, Alex

    2015-04-30

    The resonance Raman spectra of the 5-halogenated (F, Cl, and Br) uracils are simulated via the Herzberg-Teller (HT) short-time dynamics formalism. The gradient of the S1 excited state is computed at the CAMB3LYP/aug-cc-pVTZ level of theory in the conductor-like polarizable continuum model for water (C-PCM, H2O), based on the equilibrium geometry determined using PBE0/aug-cc-pVTZ in H2O (C-PCM). The simulated resonance Raman spectra show good agreement with the experimental spectra in terms of both peak positions and intensities. The differences between the resonance Raman spectra of the three 5-halogenated uracils, caused by the effect of halogen substitution, are examined in terms of ground-state normal-mode eigenvectors and excited-state Cartesian gradients, according to the HT formalism. The differences in the normal-mode eigenvectors and excited-state Cartesian gradients between 5-fluorouracil and 5-chlorouracil are used to interpret the dissimilarity between their resonance Raman spectra. Meanwhile, the similarity between the spectra of 5-chlorouracil and 5-bromouracil is explained by the correspondence between their normal modes and excited-state gradients.

  19. Theoretical study of the resonance Raman spectra for meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin.

    PubMed

    Zheng, Ren-hui; Wei, Wen-mei; Zhu, Li-li; Shi, Qiang

    2014-12-10

    Applying time-dependent density functional theory (TDDFT), we study the resonance Raman spectra for the Q and B bands of the meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin (H2TBPP) molecule including both Raman A term (Franck-Condon term) and Raman B term (Herzberg-Teller term) contributions. It is found that Raman B term can be one order of magnitude larger than Raman A term and dominates resonance Raman for the Q band resonance. In comparison with the recent experimental Raman spectra of H2TBPP with incident light frequency 532nm, we predict the absence of 1580cm(-1) band in the resonance Raman spectra which agrees well with the experimental results, whereas the previous theoretical calculation using non-resonance strategy failed to do so.

  20. Raman spectra and electron-phonon coupling in disordered graphene with gate-tunable doping

    SciTech Connect

    Childres, Isaac; Jauregui, Luis A.; Chen, Yong P.

    2014-12-21

    We report a Raman spectroscopy study of graphene field-effect transistors with a controlled amount of defects introduced in graphene by exposure to electron-beam irradiation. Raman spectra are taken at T = 8 K over a range of back gate voltages (V{sub g}) for various irradiation dosages (R{sub e}). We study effects in the Raman spectra due to V{sub g}-induced doping and artificially created disorder at various R{sub e}. With moderate disorder (irradiation), the Raman G peak with respect to the graphene carrier density (n{sub FE}) exhibits a minimum in peak frequency and a maximum in peak width near the charge-neutral point (CNP). These trends are similar to those seen in previous works on pristine graphene and have been attributed to a reduction of electron-phonon coupling strength (D) and removal of the Kohn anomaly as the Fermi level moves away from the CNP. We also observe a maximum in I{sub 2D}/I{sub G} and weak maximum in I{sub D}/I{sub G} near the CNP. All the observed dependences of Raman parameters on n{sub FE} weaken at stronger disorder (higher R{sub e}), implying that disorder causes a reduction of D as well. Our findings are valuable for understanding Raman spectra and electron-phonon physics in doped and disordered graphene.

  1. Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kavelin, V.; Fesenko, O.; Dubyna, H.; Vidal, C.; Klar, T. A.; Hrelescu, C.; Dolgov, L.

    2017-03-01

    Sulfonated Zn phthalocyanine, as a prospective photosensitizer in the photodynamic therapy of tumors, is investigated by means of Raman, infrared, and fluorescence spectroscopies. Conventional and surface-enhanced spectra from this photosensitizer are obtained and compared. Gold nano-islands attached to silica cores (Au-SiO2) are proposed as nanostructures providing plasmonically enhanced signals. Pronounced enhancement of Raman and infrared spectral bands from sulfonated Zn phthalocyanine allows their more convenient assignment with vibrational modes of sulfonated Zn phthalocyanine. In comparison to Raman and IR, the fluorescence is less enhanced by Au-SiO2 particles.

  2. Experimental and theoretical investigation of pressure-dependent Raman spectra of triaminotrinitrobenzene (TATB) at high pressures

    NASA Astrophysics Data System (ADS)

    Landerville, Aaron C.; Crowhurst, Jonathan C.; Grant, Christian D.; Zaug, Joseph M.; Oleynik, Ivan

    2017-01-01

    The experimental pressure dependent Raman spectra of triamino-trinitrobenzene (TATB) are determined up to 24.5 GPa, and compared with those obtained using density functional theory (DFT) up to 27 GPa. The density functional theory calculations include the Grimme empirical van der Waals correction, as well as corrections for both thermal and zero-point energy contributions to pressure. DFT-predicted crystal structure of TATB at ambient conditions, the equation of state, and Raman spectra up to 24.5 GPa are in good agreement with experiment. Pressure-dependence of specific vibrational modes is discussed in detail. Further, the comparison of experimental and calculated Raman spectra of TATB offers evidence that no first-order polymorphic phase transition occurs at least up to 27 GPa.

  3. Identifying the lineages of individual cells in cocultures by multivariate analysis of Raman spectra.

    PubMed

    Ilin, Yelena; Kraft, Mary L

    2014-05-07

    The cellular and matrix cues that induce stem cell differentiation into distinct cell lineages must be identified to permit the ex vivo expansion of desired cell populations for clinical applications. Combinatorial biomaterials enable screening multiple different microenvironments while using small numbers of rare stem cells. New methods to identify the phenotypes of individual cells in cocultures with location specificity would increase the efficiency and throughput of these screening platforms. Here, we demonstrate that partial least-squares discriminant analysis (PLS-DA) models of calibration Raman spectra from cells in pure cultures can be used to identify the lineages of individual cells in more complex culture environments. The calibration Raman spectra were collected from individual cells of four different lineages, and a PLS-DA model that captured the Raman spectral profiles characteristic of each cell line was created. The application of these models to Raman spectra from test sets of cells indicated individual, fixed and living cells in separate monocultures, as well as those in more complex culture environments, such as cocultures, could be identified with low error. Cells from populations with very similar biochemistries could also be identified with high accuracy. We show that these identifications are based on reproducible cell-related spectral features, and not spectral contributions from the culture environment. This work demonstrates that PLS-DA of Raman spectra acquired from pure monocultures provides an objective, noninvasive, and label-free approach for accurately identifying the lineages of individual, living cells in more complex coculture environments.

  4. Wave packet theory of dynamic stimulated Raman spectra in femtosecond pump-probe spectroscopy.

    PubMed

    Sun, Zhigang; Jin, Zhongqi; Lu, J; Zhang, Dong H; Lee, Soo-Y

    2007-05-07

    The quantum theory for stimulated Raman spectroscopy from a moving wave packet using the third-order density matrix and polarization is derived. The theory applies, in particular, to the new technique of femtosecond broadband stimulated Raman spectroscopy (FSRS). In the general case, a femtosecond actinic pump pulse first prepares a moving wave packet on an excited state surface which is then interrogated with a coupled pair of picosecond Raman pump pulse and a femtosecond Raman probe pulse and the Raman gain in the direction of the probe pulse is measured. It is shown that the third-order polarization in the time domain, whose Fourier transform governs the Raman gain, is given simply by the overlap of a first-order wave packet created by the Raman pump on the upper electronic state with a second-order wave packet on the initial electronic state that is created by the coupling of the Raman pump and probe fields acting on the molecule. Calculations are performed on model potentials to illustrate and interpret the FSRS spectra.

  5. Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina.

    PubMed

    Pezzotti, Giuseppe; Zhu, Wenliang

    2015-01-28

    A method of Raman spectroscopic analysis has been proposed for evaluating tensorial stress fields stored in alumina polycrystals with a corundum structure (α-Al2O3). Raman selection rules for all the vibrational modes of the structure were expanded into explicit functions of both 3 Euler angles in space and 4 Raman tensor elements (RTE) of corundum. A theoretical treatment was then worked out according to the phonon deformation potential (PDP) formalism, which explicitly expressed the changes in force constants under stress in matricial form. Close-form solutions could be obtained for the matrix eigenvalues as a function of 9 unknown variables, namely 6 independent stress tensor components and 3 Euler angles in space, the latter parameters being representatives of local crystal orientation. Successively, two separate sets of Raman calibration experiments were performed for the determination of both RTE and PDP constants of the corundum structure of alumina. Calibration experiments provided a quantitative frame to the newly developed Raman formalism. Polarized Raman spectra were systematically recorded in both single-crystalline and polycrystalline samples, with both A1g and Eg vibrational bands being characterized. Regarding polycrystalline samples, a validation of the proposed Raman method could be done through a comparison between Raman and fluorescence data collected at the same locations across an alumina/metal interface embedded in a steeply graded residual stress field.

  6. [Surface-enhanced Raman spectra analysis of trace degradation products from goat horn].

    PubMed

    Pan, Yan-Ting; Ao, Ning-Jian; Shan, Guang-Hua; Zhang, Gang-Ping; Zhang, Quan-Bin; Yang, Ji-Wang; He, Chun-Lan; Huang, Yao-Xiong

    2014-04-01

    Nano-silver colloid was synthesized by using microwave method on the mixtures of sodium citrate solution and silver nitrate solution. The method has advantages of fast heating speed, uniform temperature distribution and easily controlled reaction conditions. The sizes and size distributions of the silver particles were characterized by means of quasi-elastic laser scattering (QLS). The average particles size was (53.27 +/- 2.65) nm and the size of the particles was mainly distributed around 56 nm. Surface-enhanced Raman spectra of the degradation products from goat horn were obtained with silver colloid as active substrate. It was observed that the Raman signal of SERS was enhanced significantly compared with that of regular Raman spectrum, especially at the Raman bands of 659, 830, 850, 929, 999, 1 028, 1 280, 1 439 and 1 599 cm(-1) which reflect the biochemical components in degradation products. The characteristic Raman bands of degradation products from goat horn were preliminary assigned. The assignments showed that the main constituents of the degradation products from goat horn were amino acids and polypeptides. It was for the first time that Surface-enhanced Raman spectroscopy was used to detect trace degradation products from the horns. Raman signal enhancement can be obtained with high sensitivity for the trace concentrations as low as ppm level. It is concluded that surface-enhanced Raman spectroscopy can provide a fast, direct and precise detecting method for the detection of trace degradation solution from horns.

  7. Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Harmonic and anharmonic vibrational frequencies, as well as infrared and Raman intensities, are calculated for MgSO4.nH20 (n=1-3). Electronic structure theory at the second order Moller-Plesset perturbation theory (MP2) level with a triple-zeta + polarization (TZP) basis set is used to determine the geometry, properties, and vibrational spectra of pure and hydrated MgSO4 salts. The direct vibrational self-consistent field (VSCF) method and its correlation corrected (CC-VSCF) extension are used to determine anharmonic corrections to vibrational frequencies and intensities for the pure MgSO4 and its complex with one water molecule. Very significant differences are found between vibrational of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies are shifted to the red very significantly (by up to 1500-2000/cm) upon complexation with magnesium sulfate. They should be observed between 1700 and 3000/cm in a region very different from the corresponding O-H stretch frequency region of pure water (3700-3800/cm). In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. They can serve as unique identifiers for the presence of sulfate salts. The predicted infrared and Raman spectra should be of valuable help in the design of future missions and analysis of observed data from the ice surface of Jupiter's moon Europa that possibly contains hydrated MgSO4 salts.

  8. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm-1 and 820-980 cm-1. On the other hand, Raman spectra regions between 250-550 cm-1 and 1000-1250 cm-1 are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm-1 related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  9. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition.

    PubMed

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm(-1) and 820-980 cm(-1). On the other hand, Raman spectra regions between 250-550 cm(-1) and 1000-1250 cm(-1) are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm(-1) related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  10. Broadband coherent Raman spectroscopy running at 24,000 spectra per second

    PubMed Central

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-01-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s – more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique’s strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200–1500 cm−1) with spectral resolution of 10 cm−1 at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging. PMID:26875786

  11. Broadband coherent Raman spectroscopy running at 24,000 spectra per second.

    PubMed

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-02-15

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s - more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique's strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200-1500 cm(-1)) with spectral resolution of 10 cm(-1) at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging.

  12. Broadband coherent Raman spectroscopy running at 24,000 spectra per second

    NASA Astrophysics Data System (ADS)

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-02-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s – more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique’s strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200–1500 cm‑1) with spectral resolution of 10 cm‑1 at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging.

  13. Comparative study of resonance Raman and surface-enhanced resonance Raman chlorophyll a spectra using soret and red excitation

    SciTech Connect

    Thomas, L.L.; Kim, Jaeho; Cotton, T.M. )

    1990-12-05

    Surface-enhanced resonance Raman scattering (SERRS) spectra are reported for chlorophyll a adsorbed on a silver electrode at 298 and 77 K with 406.7-, 457.9-, 514.5-, and 647.1-nm excitation. Submerging the electrode in degassed water at 298 K was found to improve the spectral quality by minimizing sample heating and photooxidation. Spectral intensities and peak resolutions were greater at all excitation wavelengths at liquid nitrogen temperature. Most significantly, roughened silver at the low temperature quenched the fluorescence accompanying red excitation and minimized sample photooxidation, resulting in richly detailed SERRS spectra of chlorophyll a. The close correspondence between chlorophyll a resonance Raman (RR) and SERRS spectra suggests that an electromagnetic mechanism is the major source of the surface enhancement, rather than a chemical mechanism (e.g. a charge-transfer complex between chlorophyll a and the metal). The spectral similarities, together with the presence of the MgN{sub 4} vibration band in the SERRS spectra, also provide evidence that structural alterations (e.g. cleavage of ring V or loss of Mg) do not occur in chlorophyll a after adsorption at the electrode surface. A distinctive SERRS spectrum was obtained for each excitation wavelength. Selective excitation within the various electronic transitions can thus be utilized to verify assignments of the vibrational modes of chlorophyll a and to monitor its interactions and photochemical behavior in biomimetic systems.

  14. Raman spectra of adsorbed layers on space shuttle and AOTV thermal protection system surface

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1987-01-01

    Surfaces of interest to space vehicle heat shield design were struck by a 2 W argon ion laser line while subjected to supersonic arc jet flow conditions. Emission spectra were taken at 90 deg to the angle of laser incidence on the test object. Results showed possible weak Raman shifts which could not be directly tied to any particular parameter such as surface temperature or gas composition. The investigation must be considered exploratory in terms of findings. Many undesirable effects were found and corrected as the project progressed. For instance, initial spectra settings led to ghosts which were eliminated by closing the intermediate of filter slit of the Spex from 8 to 3 mm. Further, under certain conditions, plasma lines from the laser were observed. Several materials were also investigated at room temperature for Raman shifts. Results showed Raman shifts for RCC and TEOS coated materials. The HRSI materials showed only weak Raman shifts, however, substantial efforts were made in studying these materials. Baseline materials showed the technique to be sound. The original goal was to find a Raman shift for the High-temperature Reusable Surface Insulation (HRSI) Reaction Cured borosilicate Glass (RCG) coated material and tie the amplitude of this peak to Arc jet conditions. Weak Raman shifts may be present, however, time limitations prevented confirmation.

  15. A rapidly modulated multifocal detection scheme for parallel acquisition of Raman spectra from a 2-D focal array.

    PubMed

    Kong, Lingbo; Chan, James

    2014-07-01

    We report the development of a rapidly modulated multifocal detection scheme that enables full Raman spectra (~500-2000 cm(-1)) from a 2-D focal array to be acquired simultaneously. A spatial light modulator splits a laser beam to generate an m × n multifocal array. Raman signals generated within each focus are projected simultaneously into a spectrometer and imaged onto a TE-cooled CCD camera. A shuttering system using different masks is constructed to collect the superimposed Raman spectra of different multifocal patterns. The individual Raman spectrum from each focus is then retrieved from the superimposed spectra with no crosstalk using a postacquisition data processing algorithm. This system is expected to significantly improve the speed of current Raman-based instruments such as laser tweezers Raman spectroscopy and hyperspectral Raman imaging.

  16. Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane

    SciTech Connect

    Aleksa, V. Ozerenskis, D.; Pucetaite, M.; Sablinskas, V.; Cotter, C.; Guirgis, G. A.

    2015-03-30

    Raman spectra of germacyclohexane in liquid and solid states were recorded and depolarization data obtained. Infrared absorption spectra of the vapor and liquid have been studied. The wavenumbers of the vibrational modes were derived in the harmonic and anharmonic approximation in B3LYP/ccpVTZ calculations. According to the calculations, germacyclohexane exists in the stable chair conformation, whereas a possible twist form should have more than 15 kJ·mol{sup -1} higher enthalpy of formation what makes this conformer experimentally not observable. The 27 A' and 21 A'' fundamentals were assigned on the basis of the calculations and infrared and Raman band intensities, contours of gas phase infrared spectral bands and Raman depolarization measurements. An average discrepancy of ca. 0.77 % was found between the observed and the calculated anharmonic wavenumbers for the 48 modes. Substitution of carbon atom with Ge atom in the cyclohexane ring is reasoning flattening of the ring.

  17. Resonance Raman Spectra of Hemoglobin and Cytochrome c: Inverse Polarization and Vibronic Scattering

    PubMed Central

    Spiro, Thomas G.; Strekas, Thomas C.

    1972-01-01

    Resonance Raman spectra of hemoglobin and cytochrome c in dilute solution contain prominent bands that exhibit inverse polarization, i.e., the polarization vector of the incident radiation is rotated through 90° for 90° scattering, giving infinite depolarization ratios. This phenomenon is shown to require an antisymmetric molecular-scattering tensor. The antisymmetry, which is characteristic of resonance scattering, is associated with the form of a particular class of vibrations, A20, of the tetragonal heme chromophores. The dependence of the resonance Raman spectra on the wavelength of the exciting radiation, as well as their polarization properties, demonstrates that the prominent bands correspond to vibronically active modes of the first electronic transition of the heme proteins, and provide confirmation of Albrecht's vibronic theory of Raman intensities. PMID:4506783

  18. Effect of disordering in rare earth titanates on their Raman spectra

    SciTech Connect

    Mel'nik, N.N.; Tsapenko, L.M.

    1986-09-01

    The authors study the rare earth titanates obtained by quenching from the melt using Raman spectroscopy. Secimens with the general formula Ln/sub 2/Ti/sub 2/O/sub 7/ and Ln/sub 2/TiO/sub 5/ (Ln = La to Lu, Y) were prepared by melting the initial oxides on a Uran beam-heating unit, followed by quenching on a cooled substrate. The Raman spectra were excited by an argon laser and recorded by means of a double monochromator in the photon counting regime. With an increase in the rate of quenching the structure was altered for certain specimens, this being established from the x-ray diffraction patterns and the Raman spectra.

  19. Probabilistic partial least squares regression for quantitative analysis of Raman spectra.

    PubMed

    Li, Shuo; Nyagilo, James O; Dave, Digant P; Wang, Wei; Zhang, Baoju; Gao, Jean

    2015-01-01

    With the latest development of Surface-Enhanced Raman Scattering (SERS) technique, quantitative analysis of Raman spectra has shown the potential and promising trend of development in vivo molecular imaging. Partial Least Squares Regression (PLSR) is state-of-the-art method. But it only relies on training samples, which makes it difficult to incorporate complex domain knowledge. Based on probabilistic Principal Component Analysis (PCA) and probabilistic curve fitting idea, we propose a probabilistic PLSR (PPLSR) model and an Estimation Maximisation (EM) algorithm for estimating parameters. This model explains PLSR from a probabilistic viewpoint, describes its essential meaning and provides a foundation to develop future Bayesian nonparametrics models. Two real Raman spectra datasets were used to evaluate this model, and experimental results show its effectiveness.

  20. Analyses of the Raman Spectra of the Incommensurate Ferroelectrices RB(2)ZNCL(4) and K(2)SEO(4).

    DTIC Science & Technology

    1986-06-30

    SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD ROP SUB- GROUP Raman Spectra, Ferroelectrics, Potassium Selenate...6 III RESULTS . . . . ... . . . . . . . .. A. Group Theoretical Analysis . . . .. . . . . . . . 11 B. Raman Spectra Of The...structure to be slightly deviated from the inversion symmetry of the Pnam space group as a result of small rotations (both static and dynamic) of the

  1. A study on bovine erythrocyte superoxide dismutase by controlled potential electrolysis and Raman spectra.

    PubMed

    Wang, Zhi-Lin; Luo, Qin-Hui; Qian, Wen; Shen, Meng-Chang

    2004-08-01

    The electrochemical behavior of Cu(2)Zn(2)SOD on mercury electrodes was studied by controlled potential electrolysis. By comparison of UV, Raman spectra and activity of Cu(2)Zn(2)SOD before electrochemical reduction and after re-oxidation, it is proved that the conformation and activity are not changed.

  2. [Qualitative analysis of Raman spectra based on pulse coupled neural network].

    PubMed

    Wang, Cheng; Li, Shao-fa; Wu, Zheng-jie; He, Kai; Huang, Yao-xiong

    2010-09-01

    By studying on pulse coupled neural network (PCNN) and Raman spectra qualitative analysis, a method based on PCNN for Raman spectra qualitative analysis was proposed. After encoding the Raman spectra by using PCNN neurons' characteristics of fatigue and refractory period, the improved Horspool algorithm was used to match the code corresponding to the detected sample with all of the base code in the database one by one, and then their matching similarity was acquired to determine the sample type. Experimental results and analysis of data proved that the method proposed in this paper is accurate and effective for Raman spectra qualitative analysis. Meanwhile, traditional qualitative analysis method based on spectral template has some deficiencies, like that it is difficult to determine the characteristic peak of the detected sample and the matching analysis process has a high degree of redundancy. While our proposed method not only can avoid these deficiencies very well, but also needs a small amount of data storage. The requirement of the storage space was only 5.8% of that used in the traditional qualitative analysis method based on spectral template.

  3. Roto-translational Raman spectra of pairs of hydrogen molecules from first principles.

    PubMed

    Gustafsson, Magnus; Frommhold, Lothar; Li, Xiaoping; Hunt, K L C

    2009-04-28

    We calculate the collision-induced, roto-translational, polarized, and depolarized Raman spectra of pairs of H(2) molecules. The Schrodinger equation of H(2)-H(2) scattering in the presence of a weak radiation field is integrated in the close-coupled scheme. This permits the accounting for the anisotropy of the intermolecular potential energy surface and thereby it includes mixing of polarizability components. The static polarizability invariants, trace and anisotropy, of two interacting H(2) molecules were obtained elsewhere [Li et al., J. Chem. Phys. 126, 214302 (2007)] from first principles. Here we report the associated spherical tensor components which, along with the potential surface, are input in the calculation of the supramolecular Raman spectra. Special attention is paid to the interferences in the wings of the rotational S(0)(0) and S(0)(1) lines of the H(2) molecule. The calculated Raman pair spectra show reasonable consistency with existing measurements of the polarized and depolarized Raman spectra of pairs of H(2) molecules.

  4. Detection of Chemicals in Mixed, Two-Dimensional Raman Spectra

    DTIC Science & Technology

    2010-03-18

    pure’ components may be written (at least approximately) as a linear sum of the spectra of the individual components. Over the last several years , a...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,4555 Overlook Ave SW...Washington,DC,20706 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S

  5. Detection of Chemicals in Mixed, Two-Dimensional Raman Spectra

    DTIC Science & Technology

    2011-02-08

    PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...approximately) as a linear sum of the spectra of the individual components. Over the last several years , a wide variety of different ‘target detection... low -dimensional space (that can be determined via singular value decomposition, or SVD). We take this subspace to be the target / background

  6. Calculation of Raman optical activity spectra for vibrational analysis.

    PubMed

    Mutter, Shaun T; Zielinski, François; Popelier, Paul L A; Blanch, Ewan W

    2015-05-07

    By looking back on the history of Raman Optical Activity (ROA), the present article shows that the success of this analytical technique was for a long time hindered, paradoxically, by the deep level of detail and wealth of structural information it can provide. Basic principles of the underlying theory are discussed, to illustrate the technique's sensitivity due to its physical origins in the delicate response of molecular vibrations to electromagnetic properties. Following a short review of significant advances in the application of ROA by UK researchers, we dedicate two extensive sections to the technical and theoretical difficulties that were overcome to eventually provide predictive power to computational simulations in terms of ROA spectral calculation. In the last sections, we focus on a new modelling strategy that has been successful in coping with the dramatic impact of solvent effects on ROA analyses. This work emphasises the role of complementarity between experiment and theory for analysing the conformations and dynamics of biomolecules, so providing new perspectives for methodological improvements and molecular modelling development. For the latter, an example of a next-generation force-field for more accurate simulations and analysis of molecular behaviour is presented. By improving the accuracy of computational modelling, the analytical capabilities of ROA spectroscopy will be further developed so generating new insights into the complex behaviour of molecules.

  7. [Raman spectra of endospores of Bacillus subtilis by alkali stress].

    PubMed

    Dong, Rong; Lu, Ming-qian; Li, Feng; Shi, Gui-yu; Huang, Shu-shi

    2013-09-01

    To research the lethal mechanism of spores stressed by alkali, laser tweezers Raman spectroscopy (LTRS) combined with principal components analysis (PCA) was used to study the physiological process of single spore with alkali stress. The results showed that both spores and germinated spores had tolerance with alkali in a certain range, but the ability of spores was obviously lower than that of spores due to the release of their Ca2+ -DPA which plays a key role in spores resistance as well as spores resistance to many stresses; A small amount of Ca2+ -DPA of spores was observed to release after alkali stress, however, the behavior of release was different with the normal Ca2+ -DPA release behavior induced by L-alanine; The data before and after alkali stress of the spores and g. spores with PCA reflected that alkali mainly injured the membrane of spores, and alkali could be easily enter into the inner structure of spores to damage the structure of protein backbone and injure the nucleic acid of spores. We show that the alkali could result in the small amount of Ca2+ -DPA released by destroying the member channel of spores.

  8. Temperature effects in low-frequency Raman spectra of corticosteroid hormones

    NASA Astrophysics Data System (ADS)

    Minaeva, V. A.; Minaev, B. F.; Baryshnikov, G. V.; Surovtsev, N. V.; Cherkasova, O. P.; Tkachenko, L. I.; Karaush, N. N.; Stromylo, E. V.

    2015-02-01

    Experimental Raman spectra of the corticosteroid hormones corticosterone and desoxycorticosterone are recorded at different temperatures (in the range of 30-310 K) in the region of low-frequency (15-120 cm-1) vibrations using a solid-state laser at 532.1 nm. The intramolecular vibrations of both hormones are interpreted on the basis of Raman spectra calculated by the B3LYP/6-31G(d) density functional theory method. The intermolecular bonds in tetramers of hormones are studied with the help of the topological theory of Bader using data of X-ray structural analysis for crystalline samples of hormones. The total energy of intermolecular interactions in the tetramer of desoxycorticosterone (-49.1 kJ/mol) is higher than in the tetramer of corticosterone (-36.9 kJ/mol). A strong intramolecular hydrogen bond O21-H⋯O=C20 with an energy of -42.4 kJ/mol was revealed in the corticosterone molecule, which is absent in the desoxycorticosterone molecule. This fact makes the Raman spectra of both hormones somewhat different. It is shown that the low-frequency lines in the Raman spectra are associated with skeletal vibrations of molecules and bending vibrations of the substituent at the C17 atom. The calculated Raman spectrum of the desoxycorticosterone dimer allows one to explain the splitting and shift of some lines and to interpret new strong lines observed in the spectra at low temperatures, which are caused by the intermolecular interaction and mixing of normal vibrations in a crystal cell. On the whole the calculated frequencies are in a good agreement with the experimental results.

  9. Ensemble multivariate analysis to improve identification of articular cartilage disease in noisy Raman spectra.

    PubMed

    Richardson, Wade; Wilkinson, Dan; Wu, Ling; Petrigliano, Frank; Dunn, Bruce; Evseenko, Denis

    2015-07-01

    The development of new methods for the early diagnosis of cartilage disease could offer significant improvement in patient care. Raman spectroscopy is an emerging biomedical technology with unique potential to recognize disease tissues, though difficulty in obtaining the samples needed to train a diagnostic and excessive signal noise could slow its development into a clinical tool. In the current report we detail the use of principal component analysis--linear discriminant analysis (PCA-LDA) on spectra from pairs of materials modeling cartilage disease to create multiple spectral scoring metrics, which could limit the reliance on primary training data for identifying disease in low signal-to-noise-ratio (SNR) Raman spectra. Our proof-of-concept experiments show that combinations of these model-metrics has the potential to improve the classification of low-SNR Raman spectra from human normal and osteoarthritic (OA) cartilage over a single metric trained with spectra from the same healthy and OA tissues. Scatter plot showing the PCA-LDA derived human-disease-metric scores versus rat-model-metric scores for 7656 low signal-to-noise spectra from healthy (blue) and osteoarthritic (red) cartilage. Light vertical and horizontal lines represent the optimized single metric classification boundary. Dark diagonal line represents the classification of boundary resulting from the optimized combination of the two metrics.

  10. Infrared, Polarized Raman, and SERS Spectra of Betaine Hydrogen Oxalate Monohydrate

    NASA Astrophysics Data System (ADS)

    Philip, Daizy; Aruldhas, G.

    1995-01-01

    Infrared and polarized Raman spectra of betaine hydrogen oxalate monohydrate are recorded and analyzed. The observed bands are assigned on the basis of vibrations due to oxalic acid, betaine, and water molecules. In the crystal it is found that oxalic acid molecules occupy a lower site and that betaine exists in zwitterionic form. Oxalic acid and water molecules are involved in strong hydrogen bending. Band assignments are confirmed by deuteration. Surface enhanced Raman scattering (SERS) spectra recorded in two silver colloids reveal chemisorption through different adsorption sites. The observed SERS spectra are interpreted on the basis of different adsorption sites, geometries, and adsorbate conformation/orientation. The change of the SERS spectrum with time is due to the different stabilities of the adsorbed states. The oxalic acid molecules of the compound are likely to be in a tilted orientation with respect to the silver surface.

  11. Wavelet data analysis of micro-Raman spectra for follow-up monitoring in oral pathologies

    NASA Astrophysics Data System (ADS)

    Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; Lepore, M.

    2008-02-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra from human biological samples. In particular, measurements have been performed on some samples of oral tissue and blood serum from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. The disease is characterized histologically by intradermal blisters and immunopathologically by the finding of tissue bound and circulating immunoglobulin G (IgG) antibody directed against the cell surface of keratinocytes. More than 150 spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. The results indicate that appropriate data processing can contribute to enlarge the medical applications of micro-Raman spectroscopy.

  12. First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Lv, Chao-Jia; Zhuang, Chun-Qiang; Yi, Li; Liu, Hong; Du, Jian-Guo

    2015-12-01

    The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si-O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507-511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177-212]. The most striking changes are of inter-tetrahedral O-O distances and Si-O-Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si-O-Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dνi/dP) of the 12 Raman frequencies are obtained at 0 GPa-5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. Project supported by the Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant No. 2012IES010201) and the National Natural Science Foundation of China (Grant Nos. 41174071 and 41373060).

  13. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  14. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    SciTech Connect

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-02-16

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N{sup +} and C{sup 4+} ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C{sup 4+} irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes.

  15. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  16. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions

    NASA Astrophysics Data System (ADS)

    McCann, Kathleen; Laane, Jaan

    2008-11-01

    The Raman and infrared spectra of dipicolinic acid (DPA) and dinicotinic acid (DNic) and their salts (CaDPA, Na 2DPA, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Because of extensive intermolecular hydrogen bonding in the crystals of these molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. Theoretical calculations were also carried out for DPA dimers and DPA·2H 2O to better understand the intermolecular interactions. The spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic.

  17. Chemical composition of matrix-embedded ternary II-VI nanocrystals derived from first- and second-order Raman spectra

    NASA Astrophysics Data System (ADS)

    Azhniuk, Yu. M.; Hutych, Yu. I.; Lopushansky, V. V.; Prymak, M. V.; Gomonnai, A. V.; Zahn, D. R. T.

    2016-12-01

    A one- and multiphonon Raman scattering study is performed for an extensive set of CdS1-xSex, Cd1-yZnyS, Cd1-yZnySe, and CdSe1-xTex nanocrystals to investigate the applicability of first- and second-order Raman spectra for the determination of the matrix-embedded ternary nanocrystal composition. For one-mode ternary systems both the LO and 2LO phonon frequencies in the Raman spectra are shown to be a good measure of the nanocrystal composition. For two-mode systems, the approaches based on the difference of the LO phonon frequencies (first-order Raman spectra) or double LO overtone and combination tone frequencies (second-order Raman spectra) as well as on the LO phonon band intensity ratios are analysed. The weak electron-phonon coupling in the II-VI nanocrystals and the polaron constant values for the nanocrystal sublattices are discussed.

  18. Modeling of the fundamental Raman and infrared CH stretching spectra of CHD{sub 2} picolines

    SciTech Connect

    Lapouge, C.; Cavagnat, D.

    1996-12-31

    The quasi-free internal rotation of the methyl group in the {alpha}, {Beta} and {gamma} CHD{sub 2} picolines leads to complex features observed in the Raman and infrared CH stretching spectra. A quantum theory has been developed to model these spectra, taking explicitly into account the coupling between the slow internal motion and the much faster CH stretching vibration. In the ground vibrational state (v=0), the effective potential of internal rotation is calculated by adding to the methyl rotation potential energy, the variation of the zero point vibrational energy during the internal motion, determined by ab-initio. In the CH stretching excited state, this effective potential is added to the CH stretching vibrational contribution, determined from the conformational dependence of the CH bond length. The CH transitions between the effective potentials in the ground (v=0) and the first excited (v=1) CH stretching states are then calculated to reconstruct the fundamental Raman and IR spectra. The Raman intensities are determined from simple Franck-Condom factors, and the IR intensities are calculated from dipole moment derivatives determined by ab-initio. The so calculated spectra agree well with the experimental ones.

  19. Femtosecond Raman spectra of cis-stilbene and trans-stilbene with isotopomers in solution.

    PubMed

    Dobryakov, A L; Ioffe, I; Granovsky, A A; Ernsting, N P; Kovalenko, S A

    2012-12-28

    Femtosecond stimulated Raman spectra of trans-stilbene (D0), its isotopomers D2, D10, D12, (13)C2 and of cis-stilbene in hexane are measured in the ground (S(0)) and excited (S(1)) electronic states. The ground (13)C2 and excited D12 spectra are presented for the first time; the excited cis-spectra differ substantially from previously published ones. S(1) Raman bands of trans-stilbene are 20 cm(-1) wide corresponding to ~1 ps vibrational dephasing. For cis-stilbene the bands are broadened to 40 cm(-1) reflecting a short excited-state lifetime of 0.3 ps, in agreement with transient absorption data. From a dynamic shift of the 1569 cm(-1) band, pump-induced intramolecular cooling is estimated to be less than 20 K. Many S(1) Raman lines are detected for the first time. Vibrational spectra are calculated at MP2/cc-pVTZ (for S(0)) and XMCQDPT2/cc-pVTZ (for S(1)) levels of theory. Experimental and computational results can be used for a re-evalution of Rice-Ramsberger-Kassel-Marcus (RRKM) predictions for this famous photoisomeration reaction.

  20. Femtosecond Raman spectra of cis-stilbene and trans-stilbene with isotopomers in solution

    NASA Astrophysics Data System (ADS)

    Dobryakov, A. L.; Ioffe, I.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2012-12-01

    Femtosecond stimulated Raman spectra of trans-stilbene (D0), its isotopomers D2, D10, D12, 13C2 and of cis-stilbene in hexane are measured in the ground (S0) and excited (S1) electronic states. The ground 13C2 and excited D12 spectra are presented for the first time; the excited cis-spectra differ substantially from previously published ones. S1 Raman bands of trans-stilbene are 20 cm-1 wide corresponding to ˜1 ps vibrational dephasing. For cis-stilbene the bands are broadened to 40 cm-1 reflecting a short excited-state lifetime of 0.3 ps, in agreement with transient absorption data. From a dynamic shift of the 1569 cm-1 band, pump-induced intramolecular cooling is estimated to be less than 20 K. Many S1 Raman lines are detected for the first time. Vibrational spectra are calculated at MP2/cc-pVTZ (for S0) and XMCQDPT2/cc-pVTZ (for S1) levels of theory. Experimental and computational results can be used for a re-evalution of Rice-Ramsberger-Kassel-Marcus (RRKM) predictions for this famous photoisomeration reaction.

  1. Digital dewaxing of Raman signals: discrimination between nevi and melanoma spectra obtained from paraffin-embedded skin biopsies.

    PubMed

    Tfayli, Ali; Gobinet, Cyril; Vrabie, Valeriu; Huez, Regis; Manfait, Michel; Piot, Olivier

    2009-05-01

    Malignant melanoma (MM) is the most severe tumor affecting the skin and accounts for three quarters of all skin cancer deaths. Raman spectroscopy is a promising nondestructive tool that has been increasingly used for characterization of the molecular features of cancerous tissues. Different multivariate statistical analysis techniques are used in order to extract relevant information that can be considered as functional spectroscopic descriptors of a particular pathology. Paraffin embedding (waxing) is a highly efficient process used to conserve biopsies in tumor banks for several years. However, the use of non-dewaxed formalin-fixed paraffin-embedded tissues for Raman spectroscopic investigations remains very restricted, limiting the development of the technique as a routine analytical tool for biomedical purposes. This is due to the highly intense signal of paraffin, which masks important vibrations of the biological tissues. In addition to being time consuming and chemical intensive, chemical dewaxing methods are not efficient and they leave traces of the paraffin in tissues, which affects the Raman signal. In the present study, we use independent component analysis (ICA) on Raman spectral images collected on melanoma and nevus samples. The sources obtained from these images are then used to eliminate, using non-negativity constrained least squares (NCLS), the paraffin contribution from each individual spectrum of the spectral images of nevi and melanomas. Corrected spectra of both types of lesion are then compared and classified into dendrograms using hierarchical cluster analysis (HCA).

  2. Calorimetry-Derived Composition Vectors to Resolve Component Raman Spectra in Phospholipid Phase Transitions.

    PubMed

    Kitt, Jay P; Bryce, David A; Harris, Joel M

    2016-07-01

    Multidimensional least squares analysis is a well-established technique for resolving component vibrational spectra from mixed samples or systems. Component resolution of temperature-dependent vibrational spectra is challenging, however, due to the lack of a suitable model for the variation in sample composition with temperature. In this work, analysis of temperature-dependent Raman spectra of lipid membranes is accomplished by using "concentration" vectors independently derived from enthalpy changes determined by differential scanning calorimetry. Specifically, the lipid-bilayer phase transitions of DMPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) are investigated through Raman spectra acquired from individual, optically trapped vesicles in suspension as a function of temperature. Heat capacity profiles of the same vesicle suspension are measured using differential scanning calorimetry and numerically integrated to generate enthalpy change curves of each phase transition, which are in turn used to construct composition vectors. Multidimensional least squares analysis optimized for a fit to these composition vectors allows resolution of the component spectra corresponding to gel, ripple, and liquid-crystalline phases of the DMPC. The quality of fit of the calorimetry-derived results is confirmed by unstructured residual differences between the data and the model, and a composition variation predicted by the resolved spectra that matches the calorimetry results. This approach to analysis of temperature-dependent spectral data could be readily applied in other areas of materials characterization, where one is seeking to learn about structural changes that occur through temperature-dependent phase transitions.

  3. Fluorescence and Raman spectra on surface of K9 glass by high fluence ultraviolet laser irradiation at 355 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Huang, Jin; Geng, Feng; Zhou, Xiaoyan; Feng, Shiquan; Ren, Dahua; Cheng, Xinlu; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo; Tang, Yongjian

    2013-11-01

    In order to explore the damage mechanisms of K9 glass irradiated by high energy density ultraviolet laser, laser-induced fluorescence and Raman spectra were investigated. Compared the fluorescence spectra of damaged area, undamaged area and sub-damaged area, it can be conclude that the fluorescence spectrum of sub-damaged area is different from the structure of the other two areas. Especially, the main peak of the spectra at 415 nm reveals the unique characteristics of K9 glass. The structure at the sub-damaged area enhances intensity of the Raman scattering spectra. Three peaks of the spectra at about 500 nm and two characteristic peaks at about 550 nm exhibit the characterization of damaged area. A peak of the Raman scattering spectra at 350 nm which related to water can be observed. The relationship between intensity of Raman scattering and laser intensity at 355 nm is investigated by confocal Raman microscopy. At sub-damage area, signal of Raman scattering is rather high and decreased dramatically with respect to energy density. The major band at about 1470 cm-1 sharpened and moved to higher frequency with densification. These phenomena demonstrate that the structure of sub-damaged area has some characterization compared with the damaged area. The investigation of defect induced fluorescence and Raman spectra on surface of K9 glass is important to explore the damage mechanisms of optical materials irradiated by ultraviolet laser irradiation at 355 nm.

  4. An investigation of FT-Raman spectroscopy for quantification of additives to milk

    NASA Astrophysics Data System (ADS)

    Cheng, Yuche; Qin, Jianwei; Lim, Jongguk; Chan, Diane E.; Kim, Moon S.; Chao, Kuanglin

    2012-05-01

    In this research, four chemicals, urea, ammonium sulfate, dicyandiamide, and melamine, were mixed into liquid nonfat milk at concentrations starting from 0.1% to a maximum concentration determined for each chemical according to its maximum solubility, and two Raman spectrometers-a commercial Nicolet Raman system and an in-house Raman Chemical Imaging (RCI) system-were used to acquire Raman shift spectra for these mixture samples. These chemicals are potential adulterants that could be used to artificially elevate protein measurements of milk products evaluated by the Kjeldahl method. Baseline subtraction was employed to eliminate milk intensity, and the normalized Raman intensity was calculated from the specific Raman shift from the spectrum of solid chemical. Linear relationships were found to exist between the normalized Raman intensity and chemical concentrations. The linear regression coefficients (R2) ranged from 0.9111 to 0.998. Although slightly higher R2 values were calculated for regressions using spectral intensities measured by the Nicolet system compared to those using measurements from the RCI system, the results from the two systems were similar and comparable. A very low concentration of melamine (400 ppm) in milk was also found to be detectable by both systems. Raman sensitivity of Nicolet Raman system was estimated from normalized Raman intensity and slope of regression line in this study. Chemicals (0.2%) were dissolved in milk and detected the normalized Raman intensity. Melamine was found to have the highest Raman sensitivity, with the highest values for normalized Raman intensity (0.09) and regression line slope (57.04).

  5. [Raman spectra and its application of graphite enclaves in nephrite-jades in Xiuyan, Liaoning].

    PubMed

    Qiu, Zhi-li; Jiang, Qi-yun; Luo, Han; Qin, She-cai; Li, Liu-fen

    2010-11-01

    Xiuyan, Liaoning was an important locality of jade material of the Red Mountain Culture in the Neolithic Age in Chinese history where there are two types of raw material of nephrite jades, namely gravel nephrite jade (Hemo Yu in Chinese) and old nephrite jade (Lao Yu in Chinese). In the present paper, Laser Raman spectrum technique was applied to analyze the graphite enclaves in the nephrite jades of the two types of materials. The results show that the graphite enclaves in the two types of jades have different characteristics of Raman spectra, indicating that they probably were formed under different geological conditions, or originated from different ore-forming periods or were exploited from different section of ore body. Hence, laser Raman spectrum technique could be used as a supplementary measure for nondestructive detection to determine the occurrence of jades.

  6. Hyper Raman spectra calculated in a time-dependent Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdelsalam; Ågren, Hans; Ringholm, Magnus; Thorvaldsen, Andreas J.; Ruud, Kenneth

    2012-10-01

    Hyper Raman scattering (HRS) of the benzonitrile (BN) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) molecules is studied by means of ab initio calculations. The computational procedure employs a recently developed methodology for the analytic calculations of frequency-dependent polarizability gradients of arbitrary order, including perturbation dependent basis sets. The result are compared to normal Raman scattering (NRS) and coherent anti-Stokes Raman scattering (CARS) that previously have been studied using the same technology. It is found that some suppressed or silent modes in CARS and NRS spectra are clearly seen in HRS, and that although under general excitation conditions the HRS intensities are much lower than for CARS and NRS, HRS provides complementary information useful for target identification.

  7. DFT simulations and vibrational analysis of FTIR and FT-Raman spectra of 2-amino-4-methyl benzonitrile.

    PubMed

    Dheivamalar, S; Silambarasan, V

    2012-10-01

    This work deals with the vibrational spectroscopy of 2-amino-4-methyl benzonitrile (AMB) by means of quantum chemical calculations. The mid and far FTIR and FT-Raman spectra were measured in the condensed state. Hartree-Fock (HF/6-31G(*)) and density functional theory (DFT, B3LYP/6-31G(*)) ab initio methods have been performed to interpret the observed vibrational spectra. The vibrational spectra were interpreted with the aid of normal coordinate analysis based on scaled density functional force field. The results of the calculations were applied to simulated infrared and Raman spectra of the title compound, which showed excellent agreement with the observed spectra.

  8. [Study on the frontier orbital and Raman spectra of Aflatoxin B1 and isomer].

    PubMed

    Li, Tao; Tang, Yan-lin; Ling, Zhi-gang; Long, Zheng-wen

    2014-08-01

    Through computation, this paper obtained Aflatoxin B1 and its trans-isomer molecules stable structure which was rarely reported by the density functional theory(DFT) with B3LYP complex function and 6-311 + g(d, p) basis set. Through a single point calculations and geometry analysis, we know that the cis-structure is more stable than trans-structure. On the basis of this, Raman spectra of two molecules are calculated by the same method and basis set. compared with the Aflatoxin B1 cis-structure powder experimental Raman spectra, it was informed that numerical results with experimental results combined with a better. While 1582, 3065, 1626 means to take the strongest of the three peaks of cis-structure raman characteristics, 1616, 3065, 1659 cm(-1) is indicated for the strongest of the three peaks of trans-structure raman characteristics. Use the Hirshfeld atom division method combined with Multiwfn software to analyze the composition of frontier orbital based on optimization calculation, and it was informed that the electrophilic ability of two monlecules was stronger than the nucleophilic ability. The proportion of C1 atoms in LUMO orbital are respectively 21.48 percent, 20.62 percent by calculating, thus it is predicted that C1 atom is most main position spot depriving of the electronic in DNA to cause cancer. The above-mentioned research has certain theoretical directive significance in detection, transformation and toxicity inhibition of the cis-trans isomers.

  9. [Research on Raman spectra of oxalic acid during decarboxylation under high temperature and high pressure].

    PubMed

    Wang, Hui-yuan; Zheng, Hai-fei

    2012-03-01

    The present research studied the thermal stability of oxalic acid under high temperature and pressure and its in-situ transformation by Raman spectroscopy using a hydrothermal diamond anvil cell. Raman spectra allow the detection of ionic and covalent atomic aggregates through the acquisition of vibrational spectra that are characteristic of their structures and molecular bond types. The result showed that there was no change in characteristic vibrational Raman peaks of oxalic acid in the low-temperature stage. With the increase in temperature and pressure, the characteristic vibrational Raman peaks of oxalic acid became weaker and the peaks disappeared at a certain high temperature, and decarboxylation happened. Oxalic acid decomposes to produce CO2 and H2, according to the reaction: C2 H2O4-2CO2 + H2. It was found that the decarboxylation was highly related with pressure and that the decarboxylation would be hindered at high pressure. Decarboxylation of oxalic acid under high temperature and pressure showed a linear relationship between temperature and pressure. The data fitting generated the formula: P(MPa) = 12. 839T(K)-5 953.7, R2 = 0.99. The molar volume change of decarboxylation of oxalic acid can be described by deltaV(cm(-3) x mol(-1)) = 16.69-0.002P (MPa) + 0.005 2T(K), R = 0.99.

  10. [Raman Spectra Study on Topochemistry in Miscanthus × giganteus Cell Walls During Dilute Acid Pretreatment].

    PubMed

    He, Chuan; Zhou, Xia; Yao, Chun-li; Xu, Feng

    2015-09-01

    Confocal Raman microspectroscopy (CRM) represents a powerful technique that can provide insights into topochemistry in lignocellulosic biomass cell wall. In this work, CRM was used to explore the impact of dilute acid (DA) pretreatment on the topochemistry of lignin and hydroxycinnamic acid (HCA) in the-fiber cell walls of Miscanthus × giganteus internode. Raman spectra extracted from different morphological regions of untreated fiber cell walls indicated the heterogeneous concentration of lignin and HCA. There is a companied trend between them, that is, regions where there is the higher lignin concentration have the higher concentration of HCA. When treated with DA, it was found that the intensity of 1600 cm(-1) (lignin) and 1170 cm(-1) (HCA) were decreased, which could be contributed to the partially removal of lignin and HCA. The removal rate in different morphological areas followed the decreasing order: secondary cell wall (SW) > compound middle lamella (CML) > cell corner middle lamella (CCML). The increase of the Raman band intensity ratio (1170/1600) indicated the preferential removal of lignin in the SW and CML as a result of DA pretreatment, while the constant of the ratio meant there is no preference between lignin and HCA in the CCML. The research will provide the deep understanding of the topochemistry of lignin and HCA at sub-cellular level during DA pretreatment, meanwhile, it also expands the application of Raman spectra in the research area of plant cell wall.

  11. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.

    PubMed

    Chen, Teng; Madey, John M J; Price, Frank M; Sharma, Shiv K; Lienert, Barry

    2007-06-01

    This report describes a mobile Raman lidar system that has been developed for spectral measurements of samples located remotely at ranges of hundreds of meters. The performance of this system has been quantitatively verified in a lidar calibration experiment using a hard target of standardized reflectance. A new record in detection range was achieved for remote Raman systems using 532 nm laser excitation. Specifically, Raman spectra of liquid benzene were measured with an integration time corresponding to a single 532 nm laser pulse at a distance of 217 meters. The single-shot Raman spectra at 217 meters demonstrated high signal-to-noise ratio and good resolution sufficient for the unambiguous identification of the samples of interest. The transmitter consists of a 20 Hz Nd:YAG laser emitting at 532 nm and 1064 nm and a 178 mm telescope through the use of which allows the system to produce a focused beam at the target location. The receiver consists of a large custom telescope (609 mm aperture) and a Czerny-Turner monochromator equipped with two fast photomultiplier tubes.

  12. Pressure dependent Raman spectra used to validate DFT EOS of hexanitrostilbene (HNS)

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Alam, Kathy; Martin, Laura; Wixom, Ryan

    2017-01-01

    Due to its thermal stability and low vapor pressure, Hexanitrostilbene (HNS) is often used in high-temperature or vacuum applications as a detonator explosive or in mild detonating fuse. Toward improving the accuracy of the equation of state used in hydrodynamic simulations of the performance of HNS, we have measured the spe ctra of this material under static pressure in a diamond anvil cell. Density functional theory calculations were used to simulate the pressure dependence of the Raman spectra along the Hugoniot and 300K isotherm for comparison and to aid in interpreting the data. We discuss changes in vibrational signatures of HNS under pressure, comparison with simulated spectra, and using this data as a basis for understanding future pulsed Raman measurements on dynamically compressed HNS samples.

  13. Spectral Signatures for the Classification of Microbial Species using Raman Spectra

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Bailey, Vanessa L.; Fansler, Sarah J.; Wilkins, Michael J.; Hess, Nancy J.

    2012-06-14

    In general, classification-based methods based on Confocal Raman microscopy are focused on targeted studies under which the spectral libraries are collected under controlled instrument parameters, which facilitate analyses via standard multivariate data analysis methods and cross-validation. We develop and compare approaches to combine spectra collected at different times and varying levels of spectral resolution into a single spectral library. We demonstrate these approaches on a relevant test case; the identification of microbial species from a natural environment.

  14. Low-frequency Raman spectra and fragility of imidazolium ionic liquids

    SciTech Connect

    Ribeiro, Mauro C. C.

    2010-07-14

    Raman spectra within the 5-200 cm{sup -1} range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.

  15. Continuous cell sorting in a flow based on single cell resonance Raman spectra.

    PubMed

    McIlvenna, David; Huang, Wei E; Davison, Paul; Glidle, Andrew; Cooper, Jon; Yin, Huabing

    2016-04-21

    Single cell Raman spectroscopy measures a spectral fingerprint of the biochemistry of cells, and provides a powerful method for label-free detection of living cells without the involvement of a chemical labelling strategy. However, as the intrinsic Raman signals of cells are inherently weak, there is a significant challenge in discriminating and isolating cells in a flowing stream. Here we report an integrated Raman-microfluidic system for continuous sorting of a stream of cyanobacteria, Synechocystis sp. PCC6803. These carotenoid-containing microorganisms provide an elegant model system enabling us to determine the sorting accuracy using the subtly different resonance Raman spectra of microorganism cultured in a (12)C or (13)C carbon source. Central to the implementation of continuous flow sorting is the use of "pressure dividers" that eliminate fluctuations in flow in the detection region. This has enabled us to stabilise the flow profile sufficiently to allow automated operation with synchronisation of Raman acquisition, real-time classification and sorting at flow rates of ca. <100 μm s(-1), without the need to "trap" the cells. We demonstrate the flexibility of this approach in sorting mixed cell populations with the ability to achieve 96.3% purity of the selected cells at a speed of 0.5 Hz.

  16. Residual stress and Raman spectra of laser deposited highly-tetrahedral-coordinated-amorphous-carbon films

    SciTech Connect

    Friedmann, T.A.; Siegal, M.P.; Tallant, D.R.; Simpson, R.L.; Dominguez, F.

    1994-05-01

    We are studying carbon thin films by using a pulsed excimer laser to ablate pyrolytic graphite targets to form highly tetrahedral coordinated amorphous carbon ({alpha}t-C) films. These films have been grown on room temperature p-type Si (100) substrates without the intentional incorporation of hydrogen. In order to understand and optimize the growth of {alpha}t-C films, parametric studies of the growth parameters have been performed. We have also introduced various background gases (H{sub 2}, N{sub 2} and Ar) and varied the background gas pressure during deposition. The residual compressive stress levels in the films have been measured and correlated to changes in the Raman spectra of the {alpha}t-C band near 1565 cm{sup {minus}1}. The residual compressive stress falls with gas pressure, indicating a decreasing atomic sp{sup 3}-bonded carbon fraction. We find that reactive gases such as hydrogen and nitrogen significantly alter the Raman spectra at higher pressures. These effects are due to a combination of chemical incorporation of nitrogen and hydrogen into the film as well as collisional cooling of the ablation plume. In contrast, films grown in non-reactive Ar background gases show much less dramatic changes in the Raman spectra at similar pressures.

  17. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    SciTech Connect

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-03-31

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  18. Effect of Principal Component Analysis Centering and Scaling on Classification of Mycobacteria from Raman Spectra.

    PubMed

    Hanson, Cynthia; Sieverts, Michael; Vargis, Elizabeth

    2016-11-25

    Raman spectroscopy has been used for decades to detect and identify biological substances as it provides specific molecular information. Spectra collected from biological samples are often complex, requiring the aid of data truncation techniques such as principal component analysis (PCA) and multivariate classification methods. Classification results depend on the proper selection of principal components (PCs) and how PCA is performed (scaling and/or centering). There are also guidelines for choosing the optimal number of PCs such as a scree plot, Kaiser criterion, or cumulative percent variance. The goal of this research is to evaluate these methods for best implementation of PCA and PC selection to classify Raman spectra of bacteria. Raman spectra of three different isolates of mycobacteria (Mycobacterium sp. JLS, Mycobacterium sp. KMS, Mycobacterium sp. MCS) were collected and then passed through PCA and linear discriminant analysis for classification. Principal component analysis implementation as well as PC selection was evaluated by comparing the highest possible classification accuracies against accuracies determined by PC selection methods for each centering and scaling option. Centered and unscaled data provided the best results when selecting PCs based on cumulative percent variance.

  19. Structural properties and FTIR-Raman spectra of the anti-hypertensive clonidine hydrochloride agent and their dimeric species

    NASA Astrophysics Data System (ADS)

    Romano, Elida; Davies, Lilian; Brandán, Silvia Antonia

    2017-04-01

    The structural and vibrational properties of the α-adrenergic agonist clonidine hydrochloride agent and their anionic and dimeric species were studied combining the experimental FT-IR and Raman spectra in solid phase with ab-initio calculations based on the density functional theory (DFT). All the calculations were performed by using the hybrid B3LYP with the 6-31G* and 6-311++G** basis sets. The structural properties for those species were studied employing the Natural Bond Orbital (NBO), Atoms in Molecules theory (AIM) and frontier orbitals calculations. The complete assignments of the FTIR and Raman spectra were performed combining the DFT calculations with the Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology. Very good concordances between the theoretical and experimental spectra were found. In addition, the force constants for those three species were computed and compared with the values reported for similar antihypertensive agents. The ionic nature of the H→Cl bond and the high value of the LP(1)N4 → LP*(1)H18 charge transfer could explain the high reactivity of clonidine hydrochloride in relation to other antihypertensive agent and the strong shifthing of the band assigned to the Nsbnd H stretching mode linked to the Hsbnd Cl bond toward lower wavenumbers.

  20. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    NASA Astrophysics Data System (ADS)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  1. Characterisation of Raman spectra of high purity olivine as a function of temperature and shock history.

    NASA Astrophysics Data System (ADS)

    Hibbert, R.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2014-04-01

    ExoMars' Raman Laser Spectrometer (RLS, [1], [2]) will be the first Raman spectrometer deployed on another planetary body. It is probable the rover will land on the ancient terrain (TBD) within transverse distance to several impact craters where the rocks are estimated to be >3 billion years old. These ancient terrains have been subjected to impacts, and work at Kent has shown such impacts result in modification of minerals and organics [3, 4] and can induce a loss of volatiles [5, 6, 7]. This highlights some problematic scenarios for the interpretation of Raman spectra collected by ExoMars: i) The spectra of impact generated minerals may be misinterpreted since their signatures have not been systematically characterised; ii) The materials produced by the degradation of organic (biologically significant) compounds during impact are unknown, and consequently may be overlooked as evidence for life; iii) Shocked hydrated minerals may be erroneously identified as anhydrous, since it is currently unknown whether there is a spectral difference between volatile rich minerals that have been shocked and their anhydrous counterparts. Our primary goal is therefore to study impact modification. Using the Light Gas Gun at Kent [8], we have shocked minerals under Martian conditions and compared their Raman spectra from before and after impact. Thus far, we have conducted experiments by a firing a buckshot of ~50 μm molybdenum spheres onto gem quality olivine (peridots, which have a very clean and consistent composition) and analysing the impact craters on the surface of the sample using Raman spectroscopy. Raman spectroscopy is generally regarded as a nondestructive technique, however, concentrated laser power can generate localised heating leading to devolatisation, crystalline changes, and even melting of the sample. This can lead to misinterpretation of spectral data (such as incorrect mineralogical composition). Therefore, we have also set out to study and quantify any

  2. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    NASA Astrophysics Data System (ADS)

    Sahu, Nityananda; Gadre, Shridhar R.

    2016-03-01

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm-1 is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  3. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach.

    PubMed

    Sahu, Nityananda; Gadre, Shridhar R

    2016-03-21

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm(-1) is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  4. [Study on the modified surface layers of the CIGS thin films by Raman spectra].

    PubMed

    Liu, Wei; Sun, Yun; Li, Feng-Yan; He, Qing; Li, Chang-Jian; Tian, Jian-Guo

    2007-04-01

    In the present paper, the properties of Cu(In(1-x) Ga(x)) Se2 (CIGS) thin film absorber materials for the solar cells obtained by selenization of the precursors with In-rich or CuGa-rich surface layers were studied by XRD, SEM and Raman spectra. The photovoltaic devices based on the absorbers were measured and analyzed by illuminated J-V curve subsequently. The performance of the device constructed by the absorbers obtained by selenization of the precursors with CuGa-rich surface layer was improved greatly compared to that with In-rich surface layer. Through Raman spectra measurement, it was found that the Raman peak of the A1 mode was shifted for the CuGa-rich one, which is verified that the band gap of the surface layers was elevated. Moreover the value of increased Ga contents within the surface region of films were calculated by the relation between the Raman shifts and the Ga contents. As a result, the devices based on the thin films with the elevated surface energy band by selenizing the precursors with the CuGa-rich surface layer improved further the V(oc) and FF by about 74 mV and 8% respectively compared to that of corresponding to the one with In-rich surface layers, so that the conversion efficiency of the photovoltaic devices based on these thin films with CuGa-rich surface layer was improved by up to 9.4%. Meanwhile Raman scattering spectroscopy has proven to be a very powerful and useful technique for the surface analysis of such thin film solar cell semiconducuor materials.

  5. Principal component analysis and analysis of variance on the effects of Entellan New on the Raman spectra of fibers.

    PubMed

    Yu, Marcia M L; Sandercock, P Mark L

    2012-01-01

    During the forensic examination of textile fibers, fibers are usually mounted on glass slides for visual inspection and identification under the microscope. One method that has the capability to accurately identify single textile fibers without subsequent demounting is Raman microspectroscopy. The effect of the mountant Entellan New on the Raman spectra of fibers was investigated to determine if it is suitable for fiber analysis. Raman spectra of synthetic fibers mounted in three different ways were collected and subjected to multivariate analysis. Principal component analysis score plots revealed that while spectra from different fiber classes formed distinct groups, fibers of the same class formed a single group regardless of the mounting method. The spectra of bare fibers and those mounted in Entellan New were found to be statistically indistinguishable by analysis of variance calculations. These results demonstrate that fibers mounted in Entellan New may be identified directly by Raman microspectroscopy without further sample preparation.

  6. Theoretical and experimental IR, Raman and NMR spectra in studying the electronic structure of 2-nitrobenzoates

    NASA Astrophysics Data System (ADS)

    Świsłocka, R.; Samsonowicz, M.; Regulska, E.; Lewandowski, W.

    2007-05-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-nitrobenzoic acid (2-NBA) was studied. Optimized geometrical structures of studied compounds were calculated by HF, B3PW91, B3LYP methods using 6-311++G ∗∗ basis set. The theoretical IR and NMR spectra were obtained. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-nitrobenzoic acid salts of alkali metals were also recorded. The assignment of vibrational spectra was done. Characteristic shifts of band wavenumbers and changes in band intensities along the metal series were observed. Good correlation between the wavenumbers of the vibrational bands in the IR and Raman spectra for 2-nitrobenzoates (2-NB) and ionic potential, electronegativity, atomic mass and affinity of metals were found. The chemical shifts of protons and carbons ( 1H, 13C NMR) in the series of studied alkali metal 2-nitrobenzoates were observed too. The calculated parameters were compared to experimental characteristic of studied compounds.

  7. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals

    NASA Astrophysics Data System (ADS)

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  8. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals.

    PubMed

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  9. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. V. Spectra of protiated and partially deuterated magnesium ammonium arsenate hexahydrate (arsenstruvite)

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Šoptrajanov, B.; Najdoski, M.; Engelen, B.; Lutz, H. D.

    2008-01-01

    The Fourier transform infrared and Raman spectra of magnesium ammonium arsenate hexahydrate, MgNH 4AsO 4 · 6H 2O (arsenstruvite) and of its deuterated analogues were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). Not surprisingly, the spectra show pronounced similarities with the corresponding spectra of the previously studied magnesium potassium phosphate hexahydrate and magnesium ammonium phosphate hexahydrate with the expected differences in the regions of the arsenate vibrations. The main contribution to the intensity of the complex feature in the X-H stretching region (X being O or N) comes from the stretching vibrations of the water molecules, whereas the vibrations of the ammonium ions are less important as long as the intensity is concerned. This is due not only to the fact that four crystallographically different water molecules of crystallization exist in the structure (as compared with a single type of ammonium ions) but also because the hydrogen bonds formed by the water molecules are much stronger than those in which the ammonium ions take part. Difference infrared spectra were obtained by subtracting the properly normalized spectrum of the protiated compound from the spectrum of a deuterated analogue with low deuterium content. As evidenced by the spectra of the partially deuterated analogues and by the difference spectra, vibrational interactions are present in the crystal. Probably the most dramatic is the result of such an interaction producing a deep Evans-type hole in the stretching region of the difference spectrum but additional cases of vibrational mixing are found in the low-frequency region.

  10. Surface-enhanced Raman spectra of hemoglobin for esophageal cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Diao, Zhenqi; Fan, Chunzhen; Guo, Huiqiang; Xiong, Yang; Tang, Weiyue

    2014-03-01

    Surface-enhanced Raman scattering (SERS) spectra of hemoglobin from 30 esophageal cancer patients and 30 healthy persons have been detected and analyzed. The results indicate that, there are more iron ions in low spin state and less in high for the hemoglobin of esophageal cancer patients than normal persons, which is consistent with the fact that it is easier to hemolyze for the blood of cancer patients. By using principal component analysis (PCA) and discriminate analysis, we can get a three-dimensional scatter plot of PC scores from the SERS spectra of healthy persons and cancer patients, from which the two groups can be discriminated. The total accuracy of this method is 90%, while the diagnostic specificity is 93.3% and sensitivity is 86.7%. Thus SERS spectra of hemoglobin analysis combined with PCA may be a new technique for the early diagnose of esophageal cancer.

  11. Influence of the coordination number Z on the micro-Raman spectra of ternary chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Iovu, M. S.; Iaseniuc, O. V.; Dinescu, D.; Enachescu, M.

    2016-12-01

    Chalcogenide glasses are attractive materials due to its application in photonics and optoelectronics. Chalcogenide glasses GexAsxSe1-2x (average coordination number Z=2.15÷2.90) and (As4S3Se3)1-xSnx (average coordination number Z=2.4÷2.56), which contain elements of IV group of the Periodic Table, such as Ge and Sn are important for a wide range of technical applications, such as infrared optical elements, acousto-optic and alloptical switching devices, holographic recording media, diffractive optics, photonic crystals, etc. [1, 2]. Raman spectroscopy is an efficient method for obtaining information on the local structure of the disordered material, especially when the composition is varied. In this paper are reported the Micro-Raman spectra of GexAsxSe1-2x and (As4S3Se3)1-xSnx bulk glasses and amorphous thin films. The Micro-Raman spectra of bulk glasses and thermally deposited amorphous (As4S3Se3)1-xSnx thin films consist of two broad bands located at around ν=236 cm-1 and ν=345 cm-1, which corresponds to the symmetric stretching vibration modes of AsSe3/2 and AsS3/2 pyramids, respectively. Tin impurities didn't change the shape of Micro-Raman spectra, but shift the both bands to low frequency region. The Micro-Raman spectra of bulk glasses and thermally deposited amorphous (GexAsxSe1-2x thin films consist of one main vibration band located at around ν=246 cm-1 for lower concentration of Ge and As, and is attributed to (AsSe1/2)3 pyramidal units. With increasing of Ge and As concentrations this band shifts to lower frequency region up to ν=236 cm-1 for x=0.30. The vibration band situated around ν=205 cm-1 is attributed to Ge(Se1/2)4 tetrahedral units and increase in the intensity with increasing of Ge and As concentrations. Some shoulders in high frequency regions at ν=365-390 cm-1 and ν=500-530 cm-1, caused by the presence of As-Se bands and Se-Se chains also was observed.

  12. Effects of heat treatment on Raman spectra of two-layer 12C/13C graphene.

    PubMed

    Kalbac, Martin; Frank, Otakar; Kavan, Ladislav

    2012-10-22

    The Raman spectra of two-layered graphene on a silicon substrate were studied in the temperature range from 298 to 1073 K in an inert atmosphere. Isotopic engineering was used to fabricate two-layer graphene specimens containing (13)C atoms in the top layer and (12)C atoms in the bottom layer, which allowed the behavior of each particular layer to be distinguished as a function of temperature. It is demonstrated that the top layer exhibits much lower Raman temperature coefficients than the bottom one for both the G and the G' modes. We suggest that the changes in the Raman spectra of graphene observed during thermal cycling are predominantly caused by a superposition of two effects, namely, the mechanical stress in graphene exerted by the substrate and the intrinsic changes in the graphene lattice caused by the temperature itself. The top graphene layer is proposed to be more relaxed than the bottom graphene layer and thus reflects almost exclusively the temperature variations as a freestanding graphene layer would.

  13. Comparison between IR absorption and raman scattering spectra of liquid and supercritical 1-butanol.

    PubMed

    Sokolova, Maia; Barlow, Stephen J; Bondarenko, Galina V; Gorbaty, Yuri E; Poliakoff, Martyn

    2006-03-23

    Raman spectra of 1-butanol have been obtained at a constant pressure of 500 bar up to 350 degrees C and along isotherms 250, 300, and 350 degrees C up to 600 bar. The purpose of the experiment was to compare responses of Raman and IR absorption spectroscopy to the forming of O-H...O bonds in alcohols. As a result, some important inferences were drawn from the experiment. In particular, it has been estimated quantitatively how the intensity of Raman scattering in the region of the OH band depends on the extent of hydrogen bonding. As might be expected, the dependence is much weaker than in the case of the IR absorption. As was shown, the ratio of integrated intensities of bonded molecules in the absorption and scattering spectra is a constant and does not depend on temperature and density. The effect of cooperativity of hydrogen bonds is confirmed. It was also found that even at high pressures, a noticeable amount of nonbonded molecules exists at room temperature.

  14. Microwave spectra and conformational studies of ethylamine from temperature dependent Raman spectra of xenon solutions and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Darkhalil, Ikhlas D.; Nagels, Nick; Herrebout, Wouter A.; van der Veken, Benjamin J.; Gurusinghe, Ranil M.; Tubergen, Michael J.; Durig, James R.

    2014-06-01

    FT-microwave spectroscopy was carried out where the trans conformer was identified to be the most stable conformer. Variable temperature (-60 to -100 °C) studies of the Raman spectra (4000-50 cm-1) of ethylamine, CH3CH2NH2 dissolved in liquefied xenon have been carried out. From these data both conformers have been identified and their relative stabilities obtained. The enthalpy difference has been determined to be 62 ± 6 cm-1 (0.746 ± 0.072 kJ mol-1) with the trans conformer the more stable form. The percentage of the gauche conformer is estimated to be 60% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations with the Møller-Plesset perturbation method to the second order (MP2(full)) and the fourth order (MP4(SDTQ)) as well as with density functional theory by the B3LYP method by utilizing a variety of basis sets. Vibrational assignments have been made for the observed bands which have been predicted by MP2(full)/6-31G(d) ab initio calculations which includes harmonic force fields, frequencies, infrared intensities, Raman activities and depolarization ratios for both conformers. The results are discussed and compared to the corresponding properties of some similar molecule.

  15. Evaluation of the state of active ingredients in pharmaceutical preparations using fourier transform-Raman difference spectra.

    PubMed

    Mifune, Masaki; Iwasaki, Toshinobu; Kozaki, Yukari; Tsukamoto, Ikuko; Saito, Madoka; Kitamura, Youji; Yamaguchi, Toshikazu; Saito, Yutaka

    2006-12-01

    To examine the pharmaceutical application of Fourier transform (FT)-Raman spectroscopy, the state of active pharmaceutical ingredients (APIs) in a preparation of several forms was evaluated by investigating the Raman difference spectra between the preparation and excipient. The difference spectra indicated that APIs in alacepril tablets, caffeine sustained-release granules, and quinidine sulfate granules remained unchanged after the manufacturing process. However, the state of sparfloxacin in nanoparticles changed, although it remained unchanged in tablets or powders. These results show that the FT-Raman difference spectrum is expected to be utilized in the field of quality control of crystalline pharmaceutical preparations.

  16. Raman spectra of biomarkers of relevance to analytical astrobiological exploration: hopanoids, sterols and steranes.

    PubMed

    Edwards, H G M; Herschy, B; Page, K; Munshi, T; Scowen, I J

    2011-01-01

    The aim of this work is to investigate the viability and potential of three groups of organic compounds as biomarkers in a future robotic analytical exploration of Mars. The three compounds have been identified as suitable candidates for potential biomarkers for extant or extinct life from the terrestrial fossil record. The three groups of compound were all similar in structure, being either tetra- or penta-cyclic compounds. The limits of detection for a sample were also tested to estimate what concentrations it would still be amenable to Raman spectroscopic investigation. This was investigated using both solid mixtures and liquid solutions. The spectra of these compounds are characterised so that they can be added to the Raman database for future Mars missions. This involved identifying functional group characteristics, assigning peaks for each individual sample and characteristic features which would categorise the samples.

  17. Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments

    NASA Astrophysics Data System (ADS)

    Khare, Ankur; Himmetoglu, Burak; Johnson, Melissa; Norris, David J.; Cococcioni, Matteo; Aydil, Eray S.

    2012-04-01

    The electronic structure, lattice dynamics, and Raman spectra of the kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures of Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) were calculated using density functional theory (DFT). Differences in longitudinal and transverse optical (LO-TO) splitting in kesterite, stannite, and PMCA structures can be used to differentiate them. The Γ-point phonon frequencies, which give rise to Raman scattering, exhibit small but measurable shifts, for these three structures. Experimentally measured Raman scattering from CZTS and CZTSe thin films were examined in light of DFT calculations and deconvoluted to explain subtle shifts and asymmetric line shapes often observed in CZTS and CZTSe Raman spectra. Raman spectroscopy in conjunction with ab initio calculations can be used to differentiate between kesterite, stannite, and PMCA structures of CZTS and CZTSe.

  18. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-01

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.

  19. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    PubMed

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.

  20. Phase Transition in all-trans-β-Carotene Crystal: Temperature-Dependent Raman Spectra.

    PubMed

    da Silva, Kleber J R; Paschoal, Waldomiro; Belo, Ezequiel A; Moreira, Sanclayton G C

    2015-09-24

    In this study, we studied the stability of an all-trans-β-carotene single crystal using Raman spectroscopy with line excitation at 632.8 nm, in the temperature range 20–300 K. The Raman spectra exhibit clear modifications in the spectral range of the lattice and internal vibrational modes. The temperature dependence of the most intense vibrational modes ν1 (1511 cm(–1)) and ν2 (1156 cm(–1)) that are related to the C═C and C—C stretching vibrations of the polyene chain, respectively, shows an upward shift on the Raman modes. This behavior is similar to that stated in the theoretical work of Wei-Long Liu et al. We conclude that the all-trans-β-carotene crystal undergoes a temperature-induced phase transition at approximately 219 K. This transition is interpreted as a rotation experienced by β-ring groups at each end of the all-trans-β-carotene molecule around the dihedral angle. At low temperatures, the new molecular configuration affects the sliding plane of the space group C2h(5)(P2(1)/n), and the phase transition leads to an unchanged monoclinic structure; however, the original space group is possibly lowered to the space group C2. In the temperature range 200–220 K, the spectral ratio (S) of the integrated intensities of the spectral modes around the symmetric and asymmetric stretching wavenumbers of the methyl group (CH3) changes as a function of temperature in agreement with the phase transition. Furthermore, according to phase transition undergone by the all-trans-β-carotene, the thermal results obtained by differential scanning calorimetry show an exothermic process that occurs near the transition temperature assigned by the Raman spectra.

  1. Raman spectra from Symmetric Hydrogen Bonds in Water by High-intensity Laser-induced Breakdown

    PubMed Central

    Men, Zhiwei; Fang, Wenhui; Li, Dongfei; Li, Zhanlong; Sun, Chenglin

    2014-01-01

    Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 1012 W/cm2 optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm−1 appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model. PMID:24709652

  2. Sensitivity of Raman spectra excited at 325 nm to surface treatments of undoped polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Ghodbane, S.; Deneuville, A.; Tromson, D.; Bergonzo, P.; Bustarret, E.; Ballutaud, D.

    2006-08-01

    About 20 m thick films were deposited in the same run by MPCVD at 900 °C on Si substrates and then hydrogenated in situ during 30 min with a hydrogen plasma at the same temperature. Their surfaces were kept as prepared or more or less strongly oxidized by annealing at 600 °C under ambient atmosphere or by sulphochromic acid or aqua regia treatments. Raman spectra were excited at 325 and 632.8 nm. Spectra of the as-prepared sample exhibit structures around 2835 and 2895 cm-1 from monohydride carbon-hydrogen ascribed to the atomically flat (111) and (100) areas, respectively, on the facets of the sample surface crystallites. The decrease of these structures in the normalized spectra after the various oxidation treatments confirms these assignments. The decrease is smaller for the aqua regia treatment than for the two other treatments which give similar effects. Other Raman signals from sp2 C around 1589 cm-1 and CHx bonds around 2930, 2952, 3025 and 3050 cm-1 originate from species at the surface and within the films. Their variation with the oxidizing treatments indicates a significant contribution from the surface species.

  3. Kernel principal component analysis residual diagnosis (KPCARD): An automated method for cosmic ray artifact removal in Raman spectra.

    PubMed

    Li, Boyan; Calvet, Amandine; Casamayou-Boucau, Yannick; Ryder, Alan G

    2016-03-24

    A new, fully automated, rapid method, referred to as kernel principal component analysis residual diagnosis (KPCARD), is proposed for removing cosmic ray artifacts (CRAs) in Raman spectra, and in particular for large Raman imaging datasets. KPCARD identifies CRAs via a statistical analysis of the residuals obtained at each wavenumber in the spectra. The method utilizes the stochastic nature of CRAs; therefore, the most significant components in principal component analysis (PCA) of large numbers of Raman spectra should not contain any CRAs. The process worked by first implementing kernel PCA (kPCA) on all the Raman mapping data and second accurately estimating the inter- and intra-spectrum noise to generate two threshold values. CRA identification was then achieved by using the threshold values to evaluate the residuals for each spectrum and assess if a CRA was present. CRA correction was achieved by spectral replacement where, the nearest neighbor (NN) spectrum, most spectroscopically similar to the CRA contaminated spectrum and principal components (PCs) obtained by kPCA were both used to generate a robust, best curve fit to the CRA contaminated spectrum. This best fit spectrum then replaced the CRA contaminated spectrum in the dataset. KPCARD efficacy was demonstrated by using simulated data and real Raman spectra collected from solid-state materials. The results showed that KPCARD was fast (<1 min per 8400 spectra), accurate, precise, and suitable for the automated correction of very large (>1 million) Raman datasets.

  4. "Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination".

    PubMed

    Oshokoya, Olayinka O; JiJi, Renee D

    2015-09-10

    Protein secondary structural analysis is important for understanding the relationship between protein structure and function, or more importantly how changes in structure relate to loss of function. The structurally sensitive protein vibrational modes (amide I, II, III and S) in deep-ultraviolet resonance Raman (DUVRR) spectra resulting from the backbone C-O and N-H vibrations make DUVRR a potentially powerful tool for studying secondary structure changes. Experimental studies reveal that the position and intensity of the four amide modes in DUVRR spectra of proteins are largely correlated with the varying fractions of α-helix, β-sheet and disordered structural content of proteins. Employing multivariate calibration methods and DUVRR spectra of globular proteins with varying structural compositions, the secondary structure of a protein with unknown structure can be predicted. A disadvantage of multivariate calibration methods is the requirement of known concentration or spectral profiles. Second-order curve resolution methods, such as parallel factor analysis (PARAFAC), do not have such a requirement due to the "second-order advantage." An exceptional feature of DUVRR spectroscopy is that DUVRR spectra are linearly dependent on both excitation wavelength and secondary structure composition. Thus, higher order data can be created by combining protein DUVRR spectra of several proteins collected at multiple excitation wavelengths to give multi-excitation ultraviolet resonance Raman data (ME-UVRR). PARAFAC has been used to analyze ME-UVRR data of nine proteins to resolve the pure spectral, excitation and compositional profiles. A three factor model with non-negativity constraints produced three unique factors that were correlated with the relative abundance of helical, β-sheet and poly-proline II dihedral angles. This is the first empirical evidence that the typically resolved "disordered" spectrum represents the better defined poly-proline II type structure.

  5. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances.

    PubMed

    Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf

    2014-12-13

    Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars.

  6. Collision-induced Raman spectra of Hg-rare gas Van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Borysow, A.; Grycuk, T.

    1982-10-01

    An absolute differential scattering cross section is calculated for the Hg-rare gas and pure Hg Van der Waals quasimolecules, taking into account both the free state and bound state contributions to the depolarized Raman spectra of these systems. The calculations are performed using the Maitland-Smith (MS) potential function fitted to available experimental data and assuming the simple dipole-induced dipole (DID) model of anisotropy of the polarizability tensor of a collisional atomic pair. The obtained cross sections are about 100 times greater than those for the pure rare gas calculated and measured by Frommhold et al.

  7. Absorption and resonance Raman spectra of Pb2, Pb3 and Pb4 in xenon matrices

    NASA Technical Reports Server (NTRS)

    Stranz, D. D.; Khanna, R. K.

    1980-01-01

    Lead metal was vaporized and trapped in solid xenon at 12K. Electronic absorption and resonance Raman spectra were recorded of the resulting matrix, which was shown to contain Pb2, Pb3, and possibly Pb4 molecular species. The vibrational frequency for Pb2 is determined to be 108/cm for the ground state, with a dissociation energy of 82000/cm. Ad3h symmetry is indicated for the Pb3 species, with nu sub 1=117/cm and nu sub 2 = 96 /cm. The existence of Pb4 is suggested by a fundamental and overtone of 111/cm spacing.

  8. Influence of SOP modes on Raman spectra of ZnO(Fe) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hadžić, B.; Romčević, N.; Romčević, M.; Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Narkiewicz, U.; Sibera, D.

    2015-04-01

    Nanocrystaline samples of ZnO(Fe) were synthesized by traditional wet chemical method followed by calcinations. Samples were characterized by X-ray diffraction to determine composition of the samples (ZnO, ZnFe2O4 and Fe2O3) and the mean crystalline size (from 8 to 51 nm). In this paper we report the experimental spectra of Raman scattering (from 200 to 1600 cm-1) with surface optical phonons (SOP) in range of 500-550 cm-1. The phonon of registered phase's exhibit effects connected to phase concentration, while the SOP phonon mode exhibit significant confinement effect.

  9. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra.

    PubMed

    Luce, Robert; Hildebrandt, Peter; Kuhlmann, Uwe; Liesen, Jörg

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.

  10. FT-IR and FT-Raman spectra of cimetidine and its metallocomplexes

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Proniewicz, L. M.

    1999-11-01

    We present vibrational spectra of three stable, well-reproducible, polymorphic forms of cimetidine ( cim), a drug which is a powerful histamine H 2-receptor antagonist used in the treatment of peptic ulcer and the Zollinger-Ellison syndrome. Assignments of Raman and IR bands are made using semiempirical methods: MNDO, AM1 and PM3. We also describe the synthesis of Me( cim) 2(ClO 4) 2, where Me=Cu(II), Cd(II), Co(II) and Ni(II), and present their vibrational data. We show that the obtained complexes are isostructural, however a metal ion that occupies a center of octahedral unit introduces some distortions that can be seen in the spectra. We also make tentative assignment of metal-ligand stretching modes observed in low frequency range.

  11. Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids

    NASA Astrophysics Data System (ADS)

    Koczoń, P.; Dobrowolski, J. Cz.; Lewandowski, W.; Mazurek, A. P.

    2003-07-01

    The experimental and theoretical (B3PW91/6-311++G**) vibrational (IR and Raman) spectra of picolinic, nicotinic and isonicotinic acids (pyridine-2-, -3-, and -4-carboxylic acid, respectively) were studied. Three stable calculated structures were found for picolinic acid: the structure with intramolecular hydrogen COOH⋯N bond, and the two without hydrogen bond. For the nicotinic acid two stable theoretical structures differ in orientation of the COOH group with respect to the nitrogen atom, whereas for the isonicotinic acid only one form was stable. The theoretical vibrational spectra of the three acids were interpreted by means of potential energy distributions (PEDs) using VEDA 3 program. Next, selected experimental bands were assigned based on the scaled theoretical wavenumbers. Finally, the wavenumbers and intensities for the three isomeric acids were compared and discussed in terms of location of the carboxylic group.

  12. Raman spectra of gases. XVI - Torsional transitions in ethanol and ethanethiol

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Bucy, W. E.; Wurrey, C. J.; Carreira, L. A.

    1975-01-01

    The Raman spectra of gaseous ethanol and ethanethiol have been investigated. Thiol torsional fundamentals for the gauche conformer of EtSH and EtSD have been observed and the asymmetric potential function for this vibration has been calculated. Methyl torsional transitions and overtones have also been observed for both of these molecules. Barriers to internal rotation for the methyl top are calculated to be 3.77 and 3.84 kcal/mol for the EtSH and EtSD compounds, respectively. Hydroxyl torsional fundamentals were observed at 207 and 170 per cm in the EtOH and EtOD spectra, respectively. Overtones of the methyl torsion in both molecules yield a barrier to internal rotation of 3.62 kcal/mol for the gauche conformer.

  13. Geometry and Raman spectra of P.R. 255 and its furo-furanone analogue

    NASA Astrophysics Data System (ADS)

    Luňák, Stanislav, Jr.; Frumarová, Božena; Vyňuchal, Jan; Hrdina, Radim

    2009-05-01

    Fourier transform Raman spectra of two π-isoelectronic compounds 3,6-diphenyl-2,5-dihydro-pyrrolo-[3,4-c]pyrrole-1,4-dione (BPPB, C.I. Pigment Red 255) and 3,6-diphenyl-2,5-dihydro-furo-[3,4-c]furanone (BFFB) with the same 1,4-diphenyl-buta-1,3-diene (DPB) backbone were first time measured in polycrystalline phase. The ground state geometry and vibrational frequencies together with Raman intensities were computed by density functional theory (DFT: B3LYP/6-311G++(d,p)). All intensive observed Raman frequencies were identified as totally symmetric. The difference of carbon-carbon bond lengths of BPPB and BFFB compared to DPB, relating very well with the shifts of C dbnd C and C-C stretching modes frequencies, was explained by aromatization of central butadiene unit bounded in diketo-pyrrolo-pyrrole and furo-furanone heterocycles. A strong coupling of modes was observed for BFFB enhancing selectively the intensity of one peak 1593 cm -1 in C dbnd C stretching region and one peak 1372 cm -1 in C-C stretching region. C dbnd O stretching and N-H bending modes of BPPB are significantly affected by intermolecular hydrogen bonding.

  14. [Research on Raman spectra of isooctane at ambient temperature and ambient pressure to 1. 2 GPa].

    PubMed

    Zhang, Fei-fei; Zheng, Hai-fei

    2012-03-01

    The experimental study of the Raman spectral character for liquid isooctane (2,2,4-trimethylpentane, ATM) was con ducted by moissanite anvil cell at the pressure of 0-1.2 GPa and the ambient temperature. The results show that the Raman peaks of the C-H stretching vibration shift to higher frenquencies with increasing pressures. The relations between the system pressure and peaks positions is given as following: v2 873 = 0.002 8P+2 873.3; v2 905 = 0.004 8P+2 905.4; v2 935 = 0.002 7P+ 2 935.0; v2 960 = 0.012P+2 960.9. The Raman spectra of isooctane abruptly changed at the pressure about 1.0 GPa and the liquid-solid phase transition was observed by microscope. With the freezing pressure at ambient temperature and the melting temperature available at 1 atm, the authors got the liquid-solid phase diagram of isooctane. According to Clapeyron equation, the authors obtained the differences of volume and entropy for the liquid-solid phase transition of isooctane: deltaV(m) = 4.46 x 10(-6) m3 x mol-1 and deltaS = -30.32 J x K(-1) x mol(-1).

  15. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    PubMed

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline.

  16. Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells

    NASA Astrophysics Data System (ADS)

    Notingher, Ioan; Jell, Gavin; Notingher, Petronela L.; Bisson, Isabelle; Tsigkou, Olga; Polak, Julia M.; Stevens, Molly M.; Hench, Larry L.

    2005-06-01

    Understanding the biochemical and biophysical properties of live cells is fundamental for unravelling the secrets of many diseases and developing new therapies. Raman micro-spectroscopy is a powerful non-invasive technique that allows in vitro studies of individual living cells or groups of cells without the use of any labels or contrast enhancing chemicals. We describe the use of various multivariate statistical methods, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Classical Least Square (CLS) fitting, to extract biochemical information related to various cellular events. Such methods are required because of the high complexity of the Raman spectra obtained from living cells. PCA and LDA are used to discriminate between healthy and tumor cells. A leave-one-out cross-validation method indicated high prediction accuracy (95%) in identification of tumorogenic bone cells. The CLS fitting method using commercially available biopolymers makes it possible to monitor biochemical changes during the differentiation of embryonic stem cells and foetal bone cells. The results suggest that in both cases differentiated cells are characterised by lower concentrations of RNA compared to undifferentiated cells. These studies suggest that Raman micro-spectroscopy could become an invaluable tool for in vitro cellular biochemistry studies.

  17. NIR Raman spectra of whole human blood: effects of laser-induced and in vitro hemoglobin denaturation.

    PubMed

    Lemler, P; Premasiri, W R; DelMonaco, A; Ziegler, L D

    2014-01-01

    Care must be exercised in the use of Raman spectroscopy for the identification of blood in forensic applications. The Raman spectra of dried whole human blood excited at 785 nm are shown to be exclusively due to oxyhemoglobin or related hemoglobin denaturation products. Raman spectra of whole blood are reported as a function of the incident 785-nm-laser power, and features attributable to heme aggregates are observed for fluences on the order of 10(4) W/cm(2) and signal collection times of 20 s. In particular, the formation of this local-heating-induced heme aggregate product is indicated by a redshifting of several heme porphyrin ring vibrational bands, the appearance of a large broad band at 1,248 cm(-1), the disappearance of the Fe-O2 stretching and bending bands, and the observation of a large overlapping fluorescence band. This denaturation product is also observed in the low-power-excitation Raman spectrum of older ambient-air-exposed bloodstains (2 weeks or more). The Raman spectrum of methemoglobin whole blood excited at 785 nm is reported, and increasing amounts of this natural denaturation product can also be identified in Raman spectra of dried whole blood particularly when the blood has been stored prior to drying. These results indicate that to use 785-nm-excitation Raman spectra as an identification method for forensic applications to maximum effect, incident laser powers need to be kept low to eliminate variable amounts of heme aggregate spectral components contributing to the signal and the natural aging process of hemoglobin denaturation needs to be accounted for. This also suggests that there is a potential opportunity for 785-nm-excitation Raman spectra to be a sensitive indicator of the age of dried bloodstains at crime scenes.

  18. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    SciTech Connect

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  19. Lidar-measured atmospheric N₂ vibrational-rotational Raman spectra and consequent temperature retrieval.

    PubMed

    Liu, Fuchao; Yi, Fan

    2014-11-17

    We have built a spectrally resolved Raman lidar to measure atmospheric N₂ Stokes vibrational-rotational Raman spectra. The lidar applies a double-grating polychromator with a reciprocal linear dispersion of ~0.12 nm mm(-1) for the wavelength separation and a 32-channel linear-array photomultiplier tube for sampling the spectral signals. The lidar can together measure the individual S- and O-branch line signals from J = 0 (2) through 14 (16). A comparison shows an excellent agreement between the lidar-measured and theoretically-calculated spectra. Based on the signal ratio of two individual lines (e.g., S-branch J = 6 and 12), the atmospheric temperature profiles are derived without requiring a calibration from another reference temperature. In terms of the envelope shape of an even-J section of the measured S-branch lines, we have also developed a new temperature retrieval approach without needing a calibration from reference temperature data. Both the approaches can give rise to reasonable temperature profiles comparable to that from local radiosonde.

  20. Importance of backbone angles versus amino acid configurations in peptide vibrational Raman optical activity spectra

    NASA Astrophysics Data System (ADS)

    Herrmann, Carmen; Ruud, Kenneth; Reiher, Markus

    2008-01-01

    In this work, we investigate whether the differential scattering of right- and left-circularly polarized light in peptide Raman optical activity spectra are uniquely dominated by the backbone conformation, or whether the configurations of the individual amino acid also play a significant role. This is achieved by calculating Raman optical activity spectra using density functional theory for four structurally related peptides with a common backbone conformation, but with different sequences of amino acid configurations. Furthermore, the ROA signals of the amide normal modes are decomposed into contributions from groups of individual atoms. It is found that the amino acid configuration has a considerable influence on the ROA peaks in the amide I, II, and III regions, although the local decomposition reveals that the side-chain atoms only contribute to those peaks directly in the case of the amide II vibrations. Furthermore, small changes in the amide normal modes may lead to large and irregular modifications in the ROA intensity differences, making it difficult to establish transferable ROA intensity differences even for structurally similar vibrations.

  1. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker

    NASA Astrophysics Data System (ADS)

    Tan, Pingheng; Hu, Chengyong; Dong, Jian; Shen, Wanci; Zhang, Baofa

    2001-12-01

    The Raman spectra of a new type of graphite whiskers have been measured in the range of 150-7800 cm-1. The intensity of the overtone (2D) located at ~2700 cm-1 is found to be about 10 times stronger than that of the C-C stretching mode (G) at 1582 cm-1. Because of the peculiar enhancement of the 2D mode, high-order Raman bands up to fifth order at ~7500 cm-1 have been observed. Polarized micro-Raman spectroscopy has been performed on an individual graphite whisker, and angular-dependent intensity measurements of all Raman modes in the VV and HV geometries are in agreement with the theoretical calculated results. Laser-energy-dependent dispersion effects and the frequency discrepancy of Raman modes between their Stokes and anti-Stokes lines in graphite whiskers are also carefully investigated. The energy dispersion of the D mode and G mode is very similar to that of highly oriented pyrolytic graphite (HOPG). In contrast to the Raman spectra of HOPG and other graphite materials, two laser-energy-dependent Raman lines are revealed in the low-frequency region of the Raman spectra of graphite whiskers, which are believed to be the resonantly enhanced phonons in the transverse-acoustic and longitudinal-acoustic phonon branches. Moreover, the obvious energy dispersion of the D' mode at ~1620 cm-1 is observed in graphite whiskers. The results clearly reveal how strongly the peak parameters of Raman modes of graphite materials are dependent on their structural geometry. The Stokes and anti-Stokes scattering experiments show that the frequency discrepancy between the Stokes and anti-Stokes sides of a Raman mode in graphite materials is equal to the frequency value covered by the one-phonon energy of this Raman mode in its frequency versus laser energy curve, which is the product of the one-phonon energy of this mode (Eωs) and the value of its laser-energy dispersions (∂Eωs/∂ɛL).

  2. [Raman spectra and structure analysis of 2,6-pyridine dicarboxylic acid in different states and single Bacillus spore].

    PubMed

    Huang, Rong-shao; Huang, Xi; Xu, Lan-lan; Li, Yong-qing; Huang, Shu-shi

    2011-03-01

    The Raman spectra of 2,6-pyridine dicarboxylic acid (DPA) and their calcium salts(Ca-DPA) in different states and the Ca-DPA in a single bacterial spore have been recorded by laser tweezers Raman system (LTRS) and the spectra have been assigned. Raman spectra of different states of DPA and Ca-DPA are different evidently. Analysis leading to differences in the structure of spectrum may be due to that the Raman spectra of DPA crystalline reflected more precise characteristics information compared to DPA powder, in which the laser can penetrate through DPA crystalline and the Raman scatter from the crystalline interior is greater than that from DPA powder. The second reason is that DPA powder and Ca-DPA crystalline contain water molecules, and the intermolecular hydrogen bonding in the crystals of these molecules is extensive. The presence of calcium ions would affect the pyridine ring so that both sides of the carboxyl pyridine ring have a certain geometric deformation and the hydroxy carboxylic was damaged. The DPA2-anion is principal in Ca-DPA and the DPA solution. The calcium ion affects the stability of the pyridine ring structure in the Ca-DPA solution. The result from the spectra also showed that the DPA in single spores present Ca-DPA crystal state.

  3. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate ( struvite) and its isomorphous analogues. I. Spectra of protiated and partially deuterated magnesium potassium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Šoptrajanov, B.; Spirovski, F.; Kuzmanovski, I.; Lutz, H. D.; Engelen, B.

    2004-02-01

    The Fourier transform infrared and Raman spectra of magnesium potassium phosphate hexahydrate and a series of its deuterated analogues were recorded and analyzed. By comparing the spectra recorded at room temperature with those obtained at the boiling temperature of liquid nitrogen and by studying the spectra of the series of partially deuterated MgKPO 4·H 2O an assignment was proposed for the observed bands. The unusual behavior for bands originating from the ν4 modes of PO 43- ions in the Raman spectra of partially deuterated analogues of MgKPO 4·6H 2O was explained by coupling and mixing of the ν4(PO 4) mode and D 2O librations.

  4. Vibrational features of confined water in nanoporous TiO2 by Raman spectra

    NASA Astrophysics Data System (ADS)

    Xin, Gao; Qiang, Wang; Gang, Sun; Chen-Xi, Li; Lin, Hu

    2016-02-01

    Raman spectra of confined water adsorbed in nanoporous TiO2 are obtained in experiment. TiO2 samples with different pore diameters under different humidity conditions are investigated. The results indicate that the symmetric vibrational mode of water molecule is destroyed when relative humidity decreases. This indicates that the interaction between water molecules and surface of TiO2 becomes stronger when the distance between water molecules and surface turns smaller, and the interaction plays a major role in depressing the symmetric vibrational peak. The spectra of confined water in TiO2 and Vycor are compared. When filling fractions are the same, their spectra show distinctions no matter whether they are in partial filling condition or in full filling condition. The spectra of HDO confined in TiO2 with different filling fractions are compared with each other. There is no clear distinction among their vibrational peaks, and the peaks mainly relate to asymmetric vibration. Therefore, the interaction between water molecules and the wall of pore decouples the symmetric vibrational mode only, and the influences on asymmetric vibrational mode show little differences among different filling fractions. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304049 and 11264006), the Guizhou Provincial Science and Technology Foundation, China (Grant No. J[2010]2132), and the Doctor Funds of Guizhou University, China (Grant No. [2012] 020).

  5. Multivariate statistical analysis of Raman spectra to distinguish normal, tumor, lymph nodes and mastitis in mouse mammary tissues

    NASA Astrophysics Data System (ADS)

    Dai, H.; Thakur, J. S.; Serhatkulu, G. K.; Pandya, A. K.; Auner, G. W.; Naik, R.; Freeman, D. C.; Naik, V. M.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra ( > 680) of normal mammary gland, malignant mammary gland tumors, and lymph node tissues from mice injected with 4T1 tumor cells have been recorded using 785 nm excitation laser. The state of the tissues was confirmed by standard pathological tests. The multivariate statistical analysis methods (principle component analysis and discriminant functional analysis) have been used to categorize the Raman spectra. The statistical algorithms based on the Raman spectral peak heights, clearly separated tissues into six distinct classes, including mastitis, which is clearly separated from normal and tumor. This study suggests that the Raman spectroscopy can possibly perform a real-time analysis of the human mammary tissues for the detection of cancer.

  6. NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation

    PubMed Central

    Lemler, P.; Premasiri, W. R.; DelMonaco, A.; Ziegler, L. D.

    2013-01-01

    Care must be exercised in the use of Raman spectroscopy for the identification of blood in forensic applications. The 785 nm excited Raman spectra of dried whole human blood are shown to be exclusively due to oxyhemoglobin (oxyHb) or related hemoglobin denaturation products. Raman spectra of whole blood are reported as a function of incident 785 nm laser power and features attributable to heme aggregates are observed for fluences on the order of 104 W/cm2 and 20 sec signal collection times. In particular, the formation of this local heating induced heme aggregate product is indicated by a red-shifting of several heme porphyrin ring vibrational bands, the appearance of a large broad band at 1248 cm−1, the disappearance of the Fe-O2 stretching and bending bands, and the observation of a large overlapping fluorescence. This denaturation product is also observed in the low power excited Raman spectrum of older ambient air exposed bloodstains (≥ two weeks). The 785 nm excited Raman spectrum of methemoglobin whole blood is reported and increasing amounts of this natural denaturation product can also be identified in dried whole blood Raman spectra particularly when the blood has been stored prior to drying. These results indicate that to use 785 nm excited Raman spectra as an identification methodology for forensic applications to maximum effectiveness, incident laser powers need to be kept low to eliminate variable amounts of heme aggregate spectral components contributing to the signal and the natural aging process of hemoglobin denaturation needs to be accounted for. This also suggests that there is a potential opportunity for 785 nm excited Raman to be a sensitive indicator of dried bloodstain age at crime scenes. PMID:24162820

  7. Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection

    NASA Astrophysics Data System (ADS)

    Bergholt, Mads Sylvest; Zheng, Wei; Lin, Kan; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; So, Jimmy Bok Yan; Huang, Zhiwei

    2011-03-01

    Raman spectroscopy is an optical vibrational technology capable of probing biomolecular changes of tissue associated with cancer transformation. This study aimed to characterize in vivo Raman spectroscopic properties of tissues belonging to different anatomical regions in the upper gastrointestinal (GI) tract and explore the implications for early detection of neoplastic lesions during clinical gastroscopy. A novel fiber-optic Raman endoscopy technique was utilized for real-time in vivo tissue Raman measurements of normal esophageal (distal, middle, and proximal), gastric (antrum, body, and cardia) as well as cancerous esophagous and gastric tissues from 107 patients who underwent endoscopic examinations. The non-negativity-constrained least squares minimization coupled with a reference database of Raman active biochemicals (i.e., actin, histones, collagen, DNA, and triolein) was employed for semiquantitative biomolecular modeling of tissue constituents in the upper GI. A total of 1189 in vivo Raman spectra were acquired from different locations in the upper GI. The Raman spectra among the distal, middle, and proximal sites of the esophagus showed no significant interanatomical variability. The interanatomical variability of Raman spectra among normal gastric tissue (antrum, body, and cardia) was subtle compared to cancerous tissue transformation, whereas biomolecular modeling revealed significant differences between the two organs, particularly in the gastroesophageal junction associated with proteins, DNA, and lipids. Cancerous tissues can be identified across interanatomical regions with accuracies of 89.3% [sensitivity of 92.6% (162/175) specificity of 88.6% (665/751)], and of 94.7% [sensitivity of 90.9% (30/33) specificity of 93.9% (216/230)] in the gastric and esophagus, respectively, using partial least squares-discriminant analysis together with the leave-one tissue site-out, cross validation. This work demonstrates that Raman endoscopy technique has

  8. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens.

    PubMed

    Kurouski, Dmitry; Postiglione, Thomas; Deckert-Gaudig, Tanja; Deckert, Volker; Lednev, Igor K

    2013-03-21

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) are modern spectroscopic techniques, which are becoming widely used and show a great potential for the structural characterisation of biological systems. Strong enhancement of the Raman signal through localised surface plasmon resonance enables chemical detection at the single-molecule scale. Enhanced Raman spectra collected from biological specimens, such as peptides, proteins or microorganisms, were often observed to lack the amide I band, which is commonly used as a marker for the interpretation of the secondary protein structure. The cause of this phenomenon was unclear for many decades. In this work, we investigated this phenomenon for native insulin and insulin fibrils using both TERS and SERS and compared these spectra to the spectra of well-defined homo peptides. The results indicate that the appearance of the amide I Raman band does not correlate with the protein aggregation state, but is instead determined by the size of the amino acid side chain. For short model peptides, the absence of the amide I band in TERS and SERS spectra correlates with the presence of a bulky side chain. Homo-glycine and -alanine, which are peptides with small side chain groups (H and CH(3), respectively), exhibited an intense amide I band in almost 100% of the acquired spectra. Peptides with bulky side chains, such as tyrosine and tryptophan, exhibited the amide I band in 70% and 31% of the acquired spectra, respectively.

  9. Raman spectra and vibrational analysis of BaFe{sub 12}O{sub 19} hexagonal ferrite

    SciTech Connect

    Kreisel, J.; Lucazeau, G.; Vincent, H.

    1998-04-01

    This paper reports on the first Raman spectra of barium hexaferrite, BaFe{sub 12}O{sub 19}, as a member of the magnetoplumbite-type structure. The spectra, recorded from 150 to 1,000 cm{sup {minus}1} at room and liquid nitrogen temperature, are analyzed on the basis of D{sub 6h} factor group selection rules. The iron atom on the bi-pyramidal site is discussed with regard to its particular dynamics. The distribution of normal modes in BaFe{sub 12}O{sub 19} is examined on the basis of the Raman spectra of {beta}-alumina and a series of ferrites. Emphasis has been put on the factors influencing the Raman frequencies, namely the value of the coordination number, the degree of connection of a coordinated group, and the mass effect.

  10. Predicting Raman Spectra of Aqueous Silica and Alumina Species in Solution From First Principles

    NASA Astrophysics Data System (ADS)

    Hunt, J. D.; Schauble, E. A.; Manning, C. E.

    2006-12-01

    Dissolved silica and alumina play an important role in lithospheric fluid chemistry. Silica concentrations in aqueous fluids vary over the range of crustal temperatures and pressures enough to allow for significant mass transport of silica via fluid-rock interaction. The polymerization of silica, and the possible incorporation of alumina into the polymer structure, could afford crystal-like or melt-like sites to otherwise insoluble elements such as titanium, leading to enhanced mobility. Raman spectroscopy in a hydrothermal diamond anvil cell (HDAC) has been used to study silica polymerization at elevated pressure and temperature [Ref. 1, 2], but Raman spectra of expected solutes are not fully understood. We calculated Raman spectra of H4SiO4 monomers, H6Si2O7 dimers, and H6SiAlO_7^- dimers, from first principles using hybrid density functional theory (B3LYP). These spectra take into account the variation in bridging angle (Si-O-Si and Si-O-Al angles) that the dimers will have at a given temperature by calculating a potential energy surface of the dimer as the bridging angle varies, and using a Boltzmann distribution at that temperature to determine relative populations at each geometry. Solution effects can be incorporated by using a polarizable continuum model (PCM), and a potential energy surface has been constructed for the silica dimer using a PCM. The bridging angle variation explains the broadness of the 630 cm^-^1 silica dimer peak observed in HDAC experiments [Ref. 1, 2] at high temperatures. The silica-alumina dimer bridging angle is shown to be stiffer than the silica dimer bridging angle, which results in a much narrower main peak. The synthetic spectrum obtained for the silica-alumina dimer suggests that there may be a higher ratio of complexed alumina to free alumina in solution at highly basic pH than previously estimated [Ref. 3]. References: 1. Zotov, N. and H. Keppler, Chemical Geology, 2002. 184: p. 71-82. 2. Zotov, N. and H. Keppler, American

  11. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra

    PubMed Central

    Leray, Aymeric; Brulé, Thibault; Buret, Mickael; Colas des Francs, Gérard; Bouhelier, Alexandre; Dereux, Alain; Finot, Eric

    2016-01-01

    Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method. PMID:26833130

  12. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra

    NASA Astrophysics Data System (ADS)

    Leray, Aymeric; Brulé, Thibault; Buret, Mickael; Colas Des Francs, Gérard; Bouhelier, Alexandre; Dereux, Alain; Finot, Eric

    2016-02-01

    Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method.

  13. Wavelet data processing of micro-Raman spectra of biological samples

    NASA Astrophysics Data System (ADS)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  14. Theoretical study the surface-enhanced Raman scattering spectra of Thiophenol absorbed on Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Han, Yu; Liu, Chengyou; Jiang, Chengguo

    2016-10-01

    Surface-Enhanced Raman Scattering (SERS) is a powerful spectroscopic technique for highly sensitive molecular detection. It effectively improves the defect of low sensitivity of normal Raman spectra. So it is widely used in the area of surface science, analytical science, biological science and so on. Using Density Functional Theory (DFT) and Time- Dependent density functional theory (TD-DFT), the SERS spectrum has been simulated for biphenyl l-4, 4'-dithiol (BPDT, HS-(C6H4)2-SH), p-terphenyl-4, 4″-dithiol (TPDT, HS - (C6H4)3-SH )1, 4-benzenedithiol (BDT) absorbed on AuNPs and AgNPs. The SERS which aroused by C-C stretching mode is increasing with the benzene ring. Whereas, for the SERS of S-H bending vibrational mode, changing the position of S atom have little effect. The C-S stretching mode and S-H stretching mode are also little effect by the insert number.

  15. Raman spectra and ab initio calculation of a structure of aqueous solutions of methanol

    NASA Astrophysics Data System (ADS)

    Hushvaktov, H. A.; Tukhvatullin, F. H.; Jumabaev, A.; Tashkenbaev, U. N.; Absanov, A. A.; Hudoyberdiev, B. G.; Kuyliev, B.

    2017-03-01

    Small amount of low molecular weight alcohols leads to appearance of some special properties of alcohol-water solutions. In the literature it is associated with structural changes in solution with changing concentration. However, the problem special properties and structure of solutions at low concentration of alcohol is not very clear. Accordingly, we carried out quantum-chemical calculations and experimental studies of aqueous solutions of methyl alcohol. The calculations performed for ten molecular alcohol-water mixtures showed that with a low concentration of methyl alcohol in water the solubility of alcohol is poor: the alcohol molecules are displaced from the water structure and should form a particular structure. Thus, with low concentration of alcohol in the aqueous solution there are two types of structures: the structure of water and the structure of alcohol that should lead to the presence of specific properties. At high concentration of alcohol the structure of water is destroyed and there is just the structure made of alcohol-water aggregates. This interpretation is consistent with the experimental data of Raman spectroscopy. The band of Csbnd O vibrations of alcohol is detected to be of complex character just in the region of the presence of specific properties. Formation of intermolecular H-bonds also complicates the Raman spectra of Osbnd H or O-D vibrations of pure alcohol: a non-coincidence of peak frequencies, a shift of the band towards low-frequency region, a strong broadening of the band.

  16. Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation†

    PubMed Central

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien

    2015-01-01

    Computation of full infrared (IR) and Raman spectra (including absolute intensities and transition energies) for medium- and large-sized molecular systems beyond the harmonic approximation is one of the most interesting challenges of contemporary computational chemistry. Contrary to common beliefs, low-order perturbation theory is able to deliver results of high accuracy (actually often better than those issuing from current direct dynamics approaches) provided that anharmonic resonances are properly managed. This perspective sketches the recent developments in our research group toward the development a robust and user-friendly virtual spectrometer rooted into the second-order vibrational perturbation theory (VPT2) and usable also by non-specialists essentially as a black-box procedure. Several examples are explicitly worked out in order to illustrate the features of our computational tool together with the most important ongoing developments. PMID:24346191

  17. [Surface-enhanced Raman spectra of oxidation damnification of fetal bovine serum by ozone].

    PubMed

    Zou, Zu-Quan; Liu, Yan-Nan; Wu, Ying; Li, Qi-Nan; Chen, Mei-Zong; Sun, Hai-Ying; Lee, Imshik

    2007-06-01

    Fetal bovine serum was treated by ozone for 1 hour and 3 hours before getting its surface-enhanced Raman spectra from 200 to 1 800 cm(-1). Treated with ozone for 1 hour, it shows a significant decrease in band intensity. Treated with ozone for 3 hours, the band intensity has a further decrease but not so obviously, which means that oxidation of ozone is short lived. Treated with ozone, the orderly conformations of main chains in protein such as alpha-helix, beta-sheet and beta-corner are damaged seriously. Aromatic side chains and C-S of Cys and Met also are damnified greatly. All this means that strong oxidation of ozone results in denaturation, conformational changes and even degradation in protein.

  18. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    SciTech Connect

    Xia Minggang; Su Zhidan; Zhang Shengli

    2012-09-15

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  19. Predicted infrared and Raman spectra for neutral Ti{sub 8}C{sub 12} isomers

    SciTech Connect

    Baruah, Tunna; Pederson, Mark R.; Lyn, M.L.; Castleman, A.W. Jr.

    2002-11-01

    Using a density-functional based algorithm, the full infrared and Raman spectra are calculated for the neutral Ti{sub 8}C{sub 12} cluster assuming geometries of T{sub h}, T{sub d}, D{sub 2d}, and C{sub 3v} symmetry. The T{sub h} pentagonal dodecahedron is found to be dynamically unstable. The calculated properties of the relaxed structure having C{sub 3v} symmetry are found to be in excellent agreement with experimental gas-phase infrared results, ionization potential and electron affinity measurements. Consequently, the results presented may be used as a reference for further experimental characterization using vibrational spectroscopy.

  20. Raman scattering and fluorescence spectra of water from the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Fadeev, V. V.; Burikov, S. A.; Volkov, P. A.; Lapshin, V. B.; Syroeshkin, A. V.

    2009-04-01

    The Raman scattering and fluorescence spectra were first obtained for the water of sea surface microlayers (SML) of 1 and 0.2 mm thickness (sampled with a Garrett net and a Lapshin capillary sampler, respectively). For reference, samples of water below the SML (from the layer of 0.5 m) were also taken. Substantial differences were found for the values of the normalized intensity of the fluorescence (the number of photons from the volume unit in response to a unit of excitation) between the aqueous humic substances and, presumably, oil hydrocarbons and proteins. Some slight but analyzable differences in the shapes and location of spectral bands were also found. These latter allow one to determine the content of salts and the characteristics of complicated organic compounds in the SML and to compare them to those within the water volume.

  1. Raman spectra of aligned carbon micro-coils and their impedance characteristics under loads

    SciTech Connect

    Tao, Wang; Yabo, Zhu Heliang, Fan; Zhicheng, Ju; Lei, Chen; Zhengyuan, Wang

    2014-02-21

    Scanning and transmission electron microscopy were used to characterize the morphology of the carbon microcoils (CMCs). The Raman spectra showed that CMCs had local regular structure as I{sub D}/I{sub G} = 0.841. Then, aligned CMCs/silicone–rubber composites (5 × 5 × 1 mm{sup 3}) were fabricated by coating of silicone rubber on the CMCs. Their alternating current impedance characteristics were measured as a function of applied load and the pressure sensitivity was discussed. The results showed that the impedance decreased as the increasing applied load, and the sample with less CMCs owned high pressure sensitivity, which indicated a novel composite film could act as an alternative of tactile sensor.

  2. Solvent effects on the resonance Raman spectra of bacteriochlorophyll a cation radical

    NASA Astrophysics Data System (ADS)

    Misono, Yasuhito; Nishizawa, Ei-ichi; Limantara, Leenawaty; Koyama, Yasushi; Itoh, Koichi

    1995-04-01

    Resonance Raman (RR) spectra were measured for the cation radical of bacteriochlorophyll a in acetone, methanol, dichloromethane and mixed solvents of acetone and methanol. The ring-breathing (C a-C m stretching) frequency of the radical (abbreviated as vr+) was observed at 1601 cm -1 in acetone (forming a penta-coordinated monomer), at 1587 cm -1 in a methanol (forming a hexa-coordinated monomer) and at 1600 cm -1 in dichloromethane (forming a penta-coordinated aggregate). The RR spectrum of the radical in dichloromethane is almost identical to the transient RR spectrum ascribed to 'the aggregated T 1 species of Bchl a' formed in the particular solvent by Nishizawa, Limantara, Nanjou, Nagae, Kakuno and Koyama, indicating that their interpretation needs to be revised.

  3. FTIR and Raman spectra, electronic spectra and normal coordinate analysis of N,N-dimethyl-3-phenyl-3-pyridin-2-yl-propan-1-amine by DFT method

    NASA Astrophysics Data System (ADS)

    Renuga, S.; Karthikesan, M.; Muthu, S.

    2014-06-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N,N-dimethyl-3-phenyl-3-pyridin-2-yl-propan-1-amine have been recorded in the range 4000-500 cm-1 and 4000-50 cm-1 respectively. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FT-IR and FT Raman data. The vibrational frequencies experimentally determined, was compared with the theoretical frequencies computed by DFT gradient calculations (B3LYP method) employing the 6-31+G(d, p) basis set for the optimized geometry of the compound. The geometry and normal modes of vibration obtained from the DFT method are in good agreement with the experimental data. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The calculated infrared and Raman spectra of the title compounds were also stimulated utilizing the scaled force fields and the computed dipole derivatives for IR intensities and polarizability derivatives for Raman intensities. The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyper conjugation of hydrogen-bonded interaction. The electronic spectrum determined by TD-DFT method is compared with the observed electronic spectrum.

  4. FTIR and Raman spectra, electronic spectra and normal coordinate analysis of N,N-dimethyl-3-phenyl-3-pyridin-2-yl-propan-1-amine by DFT method.

    PubMed

    Renuga, S; Karthikesan, M; Muthu, S

    2014-06-05

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N,N-dimethyl-3-phenyl-3-pyridin-2-yl-propan-1-amine have been recorded in the range 4000-500cm(-1) and 4000-50cm(-1) respectively. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FT-IR and FT Raman data. The vibrational frequencies experimentally determined, was compared with the theoretical frequencies computed by DFT gradient calculations (B3LYP method) employing the 6-31+G(d,p) basis set for the optimized geometry of the compound. The geometry and normal modes of vibration obtained from the DFT method are in good agreement with the experimental data. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The calculated infrared and Raman spectra of the title compounds were also stimulated utilizing the scaled force fields and the computed dipole derivatives for IR intensities and polarizability derivatives for Raman intensities. The change in electron density (ED) in the σ(*) and π(*) antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyper conjugation of hydrogen-bonded interaction. The electronic spectrum determined by TD-DFT method is compared with the observed electronic spectrum.

  5. Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bichara, Laura C.; Alvarez, Patricia E.; Fiori Bimbi, María V.; Vaca, Hugo; Gervasi, Claudio; Brandán, Silvia Antonia

    2016-05-01

    In this work, pectin isolated from citrus peel with a degree of esterification of 76% was characterized by Fourier Transform Infrared (FTIR) and Fourier Transform Raman (FT-Raman) spectroscopies. Structural studies were carried out taking into account their partial degree of esterification and considering the polygalacturonic acid chain as formed by two different subunits, one with both COOH and COOsbnd CH3 groups (Ac) and the other one as constituted by two subunits with two COOsbnd CH3 groups (Es). Their structural properties, harmonic frequencies, force fields and force constants in gas and aqueous solution phases were calculated by using the hybrid B3LYP/6-31G∗ method. Then, their complete vibrational analyses were performed by using the IR and Raman spectra accomplished with the scaled quantum mechanical (SQM) methodology. Reactivities and behaviors in both media were predicted for Ac and Es by using natural bond orbital (NBO), atoms in molecules (AIM), and frontier orbitals calculations. We report for first time the complete assignments of those two different units of polygalacturonic acid chain which are the 132 normal vibration modes of Ac and the 141 normal vibration modes of Es, combining the normal internal coordinates with the SQM methodology. In addition, three subunits were also studied. Reasonable correlations between the experimental and theoretical spectra were obtained. Thus, this work would allow the quick identification of pectin by using infrared and Raman spectroscopies and also provides new insight into the interactions that exist between subunits of a large pectin chain.

  6. Time-dependent wave packet averaged vibrational frequencies from femtosecond stimulated Raman spectra

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.

    2016-02-01

    Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | , that is prepared on the lower electronic e1 PES by a broadband (fs) probe pulse, Epr(t), acting on the first-order wave packet. In off-resonant FSRS, |" separators=" Ψ2 ( 1 ) ( p u , t ) > resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | will oscillate along those coordinates thus giving rise to similar oscillations in P(3)(t) with the frequencies of the reporter modes. So, by recovering P(3)(t) from the FSRS spectrum, we are able to deduce information on the time-dependent quantum-mechanical wave packet averaged frequencies, ω ¯ j ( t ) , of the reporter modes j along the trajectory of |" separators=" Ψ1 ( 0 ) ( t ) > . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational

  7. Time-dependent wave packet averaged vibrational frequencies from femtosecond stimulated Raman spectra.

    PubMed

    Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y

    2016-02-07

    Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |Ψ2(1)(pu,t)>, prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, <Ψ1(2)(pr(∗),pu,t)|, that is prepared on the lower electronic e1 PES by a broadband (fs) probe pulse, Epr(t), acting on the first-order wave packet. In off-resonant |FSRS, Ψ2(1)(pu,t)> resembles the zeroth order wave packet |Ψ1(0)(t)> on the lower PES spatially, but with a force on |Ψ2(1)(pu,t)> along the coordinates of the reporter modes due to displacements in the equilibrium position, so that <Ψ1(2)(pr(∗),pu,t)| will oscillate along those coordinates thus giving rise to similar oscillations in P(3)(t) with the frequencies of the reporter modes. So, by recovering P(3)(t) from the FSRS spectrum, we are able to deduce information on the time-dependent quantum-mechanical wave packet averaged frequencies, ω̄j(t), of the reporter modes j along the trajectory of |Ψ1 (0)(t)>. The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω̄j(t). We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational frequency up-shift time constants for the C12-H wagging mode at 216 fs and for the C10-H wagging mode at 161 fs which are larger than for the C11-H wagging mode at 127 fs, i.e., the C11-H

  8. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring.

    PubMed

    Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria

    2008-06-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.

  9. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring

    PubMed Central

    Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria

    2008-01-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications. PMID:27879899

  10. Accurate Simulation of Resonance-Raman Spectra of Flexible Molecules: An Internal Coordinates Approach.

    PubMed

    Baiardi, Alberto; Bloino, Julien; Barone, Vincenzo

    2015-07-14

    The interpretation and analysis of experimental resonance-Raman (RR) spectra can be significantly facilitated by vibronic computations based on reliable quantum-mechanical (QM) methods. With the aim of improving the description of large and flexible molecules, our recent time-dependent formulation to compute vibrationally resolved electronic spectra, based on Cartesian coordinates, has been extended to support internal coordinates. A set of nonredundant delocalized coordinates is automatically generated from the molecular connectivity thanks to a new general and robust procedure. In order to validate our implementation, a series of molecules has been used as test cases. Among them, rigid systems show that normal modes based on Cartesian and delocalized internal coordinates provide equivalent results, but the latter set is much more convenient and reliable for systems characterized by strong geometric deformations associated with the electronic transition. The so-called Z-matrix internal coordinates, which perform well for chain molecules, are also shown to be poorly suited in the presence of cycles or nonstandard structures.

  11. Spectra of spontaneous Raman scattering in taper-drawn micro/nano-fibers

    NASA Astrophysics Data System (ADS)

    Xu, Yingxin; Cui, Liang; Li, Xiaoying; Guo, Cheng; Li, Yuhang; Xu, Zhongyang; Wang, Lijun; Fang, Wei

    2016-12-01

    We study the spontaneous Raman scattering (RS) in taper-drawn micro/nano-fibers (MNFs) by employing the photon counting technique. The spectra of RS in five MNFs, which are fabricated by using different heating flames (hydrogen flame or butane flame) and with different diameters, are measured within a frequency shift range of 1435 cm-1-3200 cm-1. From the measured spectra, we observe the RS peaks originated from silica and a unique RS peak with a frequency shift of ˜2905 cm-1 (˜87.2 THz). Unlike the former ones, the latter one is not observable in conventional optical fibers. Furthermore, the unique peak becomes obvious and starts to rapidly increase with the decrease of the diameter of MNFs when the diameter is smaller than 2 μm, and the intensity of the unique peak significantly depends on the heating flame used in the fabricating process. Our investigation is useful for the entanglement generation or optical sensing using taper-drawn MNFs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304222 and 11527808) and the State Key Development Program for Basic Research of China (Grant No. 2014CB340103).

  12. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  13. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  14. FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin.

    PubMed

    Rodrigues Júnior, Paulo Henrique; de Sá Oliveira, Kamila; de Almeida, Carlos Eduardo Rocha; De Oliveira, Luiz Fernando Cappa; Stephani, Rodrigo; Pinto, Michele da Silva; de Carvalho, Antônio Fernandes; Perrone, Ítalo Tuler

    2016-04-01

    FT-Raman spectroscopy has been explored as a quick screening method to evaluate the presence of lactose and identify milk powder samples adulterated with maltodextrin (2.5-50% w/w). Raman measurements can easily differentiate samples of milk powder, without the need for sample preparation, while traditional quality control methods, including high performance liquid chromatography, are cumbersome and slow. FT-Raman spectra were obtained from samples of whole lactose and low-lactose milk powder, both without and with addition of maltodextrin. Differences were observed between the spectra involved in identifying samples with low lactose content, as well as adulterated samples. Exploratory data analysis using Raman spectroscopy and multivariate analysis was also developed to classify samples with PCA and PLS-DA. The PLS-DA models obtained allowed to correctly classify all samples. These results demonstrate the utility of FT-Raman spectroscopy in combination with chemometrics to infer about the quality of milk powder.

  15. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2.

    PubMed

    Lee, Dong Su; Riedl, Christian; Krauss, Benjamin; von Klitzing, Klaus; Starke, Ulrich; Smet, Jurgen H

    2008-12-01

    Raman spectra were measured for mono-, bi-, and trilayer graphene grown on SiC by solid state graphitization, whereby the number of layers was preassigned by angle-resolved ultraviolet photoemission spectroscopy. It was found that the only unambiguous fingerprint in Raman spectroscopy to identify the number of layers for graphene on SiC(0001) is the line width of the 2D (or D*) peak. The Raman spectra of epitaxial graphene show significant differences as compared to micromechanically cleaved graphene obtained from highly oriented pyrolytic graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not exhibit any obvious shoulder structures, but it is much broader and almost resembles a single-peak even for multilayers. Flakes of epitaxial graphene were transferred from SiC onto SiO2 for further Raman studies. A comparison of the Raman data obtained for graphene on SiC with data for epitaxial graphene transferred to SiO2 reveals that the G peak blue-shift is clearly due to the SiC substrate. The broadened 2D peak however stems from the graphene structure itself and not from the substrate.

  16. DFT study of Raman spectra of phosphorus-containing dendrons built from cyclotriphosphazene core with terminal carbamate and ester groups.

    PubMed

    Furer, V L; Vandyukov, A E; Fuchs, S; Majoral, J P; Caminade, A M; Kovalenko, V I

    2014-01-01

    The FT Raman spectra of the zero (Gv0) and first generations (Gv1) of phosphorus-containing dendrons with terminal carbamate groups and one ester function and [2-(4-hydroxyphenyl)ethyl]-carbamic acid tert-butyl ester (C) have been recorded and analyzed. The lines of free ν(C=O) bonds are not observed in the experimental Raman spectrum of C and thus association of carbamate groups by hydrogen bonds occur. The frequencies of ν(C=O) lines in the experimental Raman spectrum reveal the presence of the different types of H-bonds in the amorphous state of Gv0. Density functional theory (DFT) calculations of C gave geometrical parameters for the t-g-, g-g-, tg-, gg-conformers. The most stable is the gg-conformer. The structural optimization and normal mode analysis were performed for dendrons on the basis of the DFT. The calculated geometrical parameters, harmonic vibrational frequencies and Raman intensities are predicted in a good agreement with the experimental data. The experimental Raman spectra of dendrons were interpreted by means of potential energy distribution. Relying on DFT calculations the lines of a core, repeating units and terminal groups of dendrons were assigned. The polarizabilities and lipophilicity of dendrons were estimated.

  17. Pressure-tuning micro-Raman spectra of artists' pigments: α- and β-copper phthalocyanine polymorphs.

    PubMed

    Beaulieu-Houle, Guillaume; Gilson, Denis F R; Butler, Ian S

    2014-01-03

    The two polymorphs of copper phthalocyanine, α- and β-CuPc, have been examined by micro-Raman spectroscopy at pressures approaching 5.0 GPa. The metastable α-polymorph does not exhibit any structural changes, while the more thermodynamically stable β-polymorph does exhibit a reversible phase transition at 2.0 GPa. The pressure dependences (dν/dP) for a selected number of vibrational modes are reported. Two regions of the Raman spectra, 800-900 cm(-1) and 1100-1200 cm(-1), are sensitive to pressure such that they can be used as indicators of the polymorphic form.

  18. Measurement and Simulation of Spontaneous Raman Scattering Spectra in High-Pressure, Fuel-Rich H2-Air Flames

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.

  19. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    SciTech Connect

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.

  20. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.

    PubMed

    Burris, Paul C; Laage, Damien; Thompson, Ward H

    2016-05-21

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.

  1. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    DOE PAGES

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less

  2. Raman and IR studies and DFT calculations of the vibrational spectra of 2,4-Dithiouracil and its cation and anion.

    PubMed

    Singh, R; Yadav, R A

    2014-09-15

    Raman and FTIR spectra of solid 2,4-Dithiouracil (DTU) at room temperature have been recorded. DFT calculations were carried out to compute the optimized molecular geometries, GAPT charges and fundamental vibrational frequencies along with their corresponding IR intensities, Raman activities and depolarization ratios of the Raman bands for the neutral DTU molecule and its cation (DTU+) and anion (DTU-) using the Gaussian-03 software. Addition of one electron leads to increase in the atomic charges on the sites N1 and N3 and decrease in the atomic charges on the sites S8 and S10. Due to ionization of DTU molecule, the charge at the site C6 decreases in the cationic and anionic radicals of DTU as compared to its neutral species. As a result of anionic radicalization, the C5C6 bond length increases and loses its double bond character while the C4C5 bond length decreases. In the case of the DTU+ ion the IR and Raman band corresponding to the out-of-phase coupled NH stretching mode is strongest amongst the three species. The anionic DTU radical is found to be the most stable. The two NH out-of-plane bending modes are found to originate due to out-of-phase and in-phase coupling of the two NH bonds in the anion and cation contrary to the case of the neutral DTU molecule in which the out-of-plane bending motions of the two NH bonds are not coupled.

  3. Raman spectra of lithium niobate crystals heavily doped with zinc and magnesium

    NASA Astrophysics Data System (ADS)

    Sidorov, N. V.; Palatnikov, M. N.

    2016-12-01

    We have examined the Raman spectra of heavily doped lithium niobate single crystals (at close-to-threshold concentrations of doping cations): LiNbO3:Zn (4.5 mol % ZnO), LiNbO3:Mg (5.01 mol %):Fe (0.005 mol %), LiNbO3:Mg (5.1 mol %), and LiNbO3:Mg (5.3 mol % MgO). Low-intensity lines with frequencies at 209, 230, 298, 694, and 880 cm-1 have been revealed for the first time. Analysis of the data from the literature on lattice dynamics calculations from first principles (ab initio) does not make it possible to unambiguously state that these lines correspond to fundamental vibrations of the A2 symmetry species, which are forbidden for the C3 V 6 ( R3c) space group. At the same time, ab initio calculations unambiguously indicate that the experimentally observed low-intensity "superfluous" lines with the frequencies at 104 and 119 cm-1 cannot correspond to vibrations of the A2 symmetry species. It is most likely that they correspond to two-particle states of acoustic phonons with a total wave vector equal to zero.

  4. Effect of annealing on Raman spectra of monolayer graphene samples gradually disordered by ion irradiation

    NASA Astrophysics Data System (ADS)

    Zion, E.; Butenko, A.; Kaganovskii, Yu.; Richter, V.; Wolfson, L.; Sharoni, A.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2017-03-01

    Raman scattering spectra (RS) of two series of monolayer graphene samples irradiated with various doses of C + and Xe + ions were measured after annealing in a high vacuum and in forming gas (95%Ar + 5%H2). It is shown that annealing below 500 °C leads to a significant decrease in both the D-line, associated with defects, and the 2D-line, associated with the intact lattice structure. This can be explained by annealing-induced enhanced doping. Further annealing in a vacuum up to 1000 °C leads to a significant increase in the 2D-line together with a continuous decrease in the D-line. This gives evidence for the partial removal of the defects and restoration of the damaged lattice. Annealing in forming gas is less effective in this sense. A blue shift of all lines is observed after annealing. It is shown that below 500 °C, unintentional doping is the main origin of the shift. At higher annealing temperatures, the blue shift is mainly due to lattice strain arising because of mismatch between the thermal expansion coefficients of graphene and the substrate. Inhomogeneous distribution of stress and doping across the samples lead to the correlated variation of the height and peak position of RS lines.

  5. Infrared and polarized Raman spectra of tetramethyl ammonium cerium(III) bis(sulfate) trihydrate

    SciTech Connect

    Jayasree, R.S.; Nayar, V.U.; Jordanovska, V.

    1996-11-15

    Infrared and polarized Raman spectra of (CH{sub 3}){sub 4}NCe(SO{sub 4}){sub 2}{center_dot}3H{sub 2}O are recorded and analyzed. Bands are assigned on the basis on (CH{sub 3}){sub 4}N{sup +}, SO{sub 4}{sup 2-}, and H{sub 2}O vibrations. Methyl rotational modes and tetramethyl skeletal bending modes are not observed in the IR spectrum confirming the X-ray data that the tetramethyl ammonium ion retains its T{sub d} symmetry in the crystal. Small splitting observed in the nondegenerate modes of SO{sub 4}{sup 2-} ions implies slight distortion of the anions in the crystal. The existence of two types of SO{sub 4}{sup 2-} ions cannot be confirmed. The shifting of the stretching and bending vibrations of the water molecules from the free state value confirms the formation of hydrogen bonds of varying strengths in the crystal.

  6. Glue function of optimally and overdoped cuprates from inversion of the Raman spectra

    NASA Astrophysics Data System (ADS)

    Fanfarillo, L.; Mori, M.; Campetella, M.; Grilli, M.; Caprara, S.

    2016-02-01

    We address the issue of identifying the mediators of effective interactions in cuprates superconductors. Specifically, we use inversion theory to analyze Raman spectra of optimally and over-doped La2-x Sr x CuO4 samples. This allows us to extract the so-called glue function without making any a priori assumption based on any specific model. We use instead two different techniques, namely the singular value decomposition and a multi-rectangle decomposition. With both techniques we find consistent results showing that: (i) two distinct excitations are responsible for the glue function, which have completely different doping dependence. One excitation becomes weak above optimal doping, where on the contrary the other keeps (or even slightly increases) its strength; (ii) there is a marked temperature dependence on the weight and spectral distribution of these excitations, which therefore must have a somewhat critical character. It is quite natural to identify and characterize these two distinct excitations as damped antiferromagnetic spin waves and damped charge density waves, respectively. This sets the stage for a scenario in which superconductivity is concomitant and competing with a charge ordering instability.

  7. Glue function of optimally and overdoped cuprates from inversion of the Raman spectra.

    PubMed

    Fanfarillo, L; Mori, M; Campetella, M; Grilli, M; Caprara, S

    2016-02-17

    We address the issue of identifying the mediators of effective interactions in cuprates superconductors. Specifically, we use inversion theory to analyze Raman spectra of optimally and over-doped La2-x Sr x CuO4 samples. This allows us to extract the so-called glue function without making any a priori assumption based on any specific model. We use instead two different techniques, namely the singular value decomposition and a multi-rectangle decomposition. With both techniques we find consistent results showing that: (i) two distinct excitations are responsible for the glue function, which have completely different doping dependence. One excitation becomes weak above optimal doping, where on the contrary the other keeps (or even slightly increases) its strength; (ii) there is a marked temperature dependence on the weight and spectral distribution of these excitations, which therefore must have a somewhat critical character. It is quite natural to identify and characterize these two distinct excitations as damped antiferromagnetic spin waves and damped charge density waves, respectively. This sets the stage for a scenario in which superconductivity is concomitant and competing with a charge ordering instability.

  8. Ultranarrow resonance peaks in the transmission and reflection spectra of a photonic crystal cavity with Raman gain

    SciTech Connect

    Arkhipkin, V. G.; Myslivets, S. A.

    2009-12-15

    The Raman gain of a probe light in a three-state LAMBDA scheme placed into a defect of a one-dimensional photonic crystal is studied theoretically. We show that there exists a pump intensity range, where the transmission and reflection spectra of the probe field exhibit simultaneously occurring narrow peaks (resonances) whose position is determined by the Raman resonance. Transmission and reflection coefficients can be larger than unity at pump intensities on the order of tens of muW/cm{sup 2}. When the pump intensity is outside this region, the peak in the transmission spectrum turns into a narrow dip. The nature of narrow resonances is attributed to a drastic dispersion of the nonlinear refractive index in the vicinity of the Raman transition, which leads to a significant reduction in the group velocity of the probe wave.

  9. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra

    NASA Astrophysics Data System (ADS)

    Ando, Masahiro; Hamaguchi, Hiro-o.

    2014-01-01

    Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, time- and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell.

  10. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra.

    PubMed

    Ando, Masahiro; Hamaguchi, Hiro-o

    2014-01-01

    Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, time- and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell.

  11. Raman spectra investigation of the defects of chemical vapor deposited multilayer graphene and modified by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Li, Zongyao; Xu, Yu; Cao, Bing; Qi, Lin; He, Shunyu; Wang, Chinhua; Zhang, Jicai; Wang, Jianfeng; Xu, Ke

    2016-11-01

    Graphene, a two dimensional material, can be modified its properties by defects engineering. Here, we present Raman spectra studies of the multilayer graphene (MLG) fabricated by low-pressure chemical vapor deposition over copper foil, and report that the defects of MLG can be controlled by adjusting methane concentration. Moreover, MLG can be changed from metallic to semiconductoring properties by using oxygen plasma treatment, and we investigate the defects evolution of the graphene after exposing to oxygen plasma by Raman spectra. Our results indicate that the amount of defects in graphene can be changed by regulating the methane concentration and oxygen plasma exposure times, but the primary type of defect in MLG is still boundary-like defect. It is valuable for understanding the physics of defects evolution through artificially generated defects, and such defect engineering will greatly open up the future application of the novel material.

  12. DFT Study of Hydrogen-Bonding Interaction, Solvation Effect, and Electric-Field Effect on Raman Spectra of Hydrated Proton.

    PubMed

    Pang, Ran; Yu, Li-Juan; Zhang, Meng; Tian, Zhong-Qun; Wu, De-Yin

    2016-10-12

    Strong hydrogen-bonding interaction and Raman spectra of hydrated proton have been investigated using hybrid density functional theory method B3LYP. The solvation model of density (SMD) approach is employed in the present calculation to simulate hydrated protons in aqueous solution. Focusing on the different hydrogen-bonded Eigen-water and Zundel-water interactions, we present a better assignment of Raman signals of hydrated proton on the basis of vibrational analysis in different environments. Our results showed that B3LYP calculations could give a good prediction for characteristic vibrational frequencies of Eigen and Zundel isomers in liquid phase. The O-H stretching vibrational frequencies from Eigen and Zundel units are very sensitive to hydrogen-bonding interaction with solvent water molecules. Moreover, the solvation effect and the external electric-field effect lead to the proton deviating from the central position of Zundel structure and finally resulting in a transition to Eigen one in aqueous solution. Furthermore, by combining theoretical prediction and Raman scattering theory, we calculate absolute Raman intensities of characteristic signals based on the polarizability tensor derivatives of hydrated proton clusters. This is very helpful to infer the microstructure of hydrated protons in aqueous solution by using Raman measurements.

  13. FT-IR, Laser-Raman spectra and computational analysis of 5-Methyl-3-phenylisoxazole-4-carboxylic acid.

    PubMed

    Sert, Yusuf; Mahendra, M; Keskinoğlu, S; Chandra; Srikantamurthy, N; Umesha, K B; Çırak, Ç

    2015-03-15

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.

  14. FT-IR, Laser-Raman spectra and computational analysis of 5-Methyl-3-phenylisoxazole-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Mahendra, M.; Keskinoğlu, S.; Chandra; Srikantamurthy, N.; Umesha, K. B.; Çırak, Ç.

    2015-03-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.

  15. Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2.

    PubMed

    Stauffer, Hans U; Kulatilaka, Waruna D; Hsu, Paul S; Gord, James R; Roy, Sukesh

    2011-02-01

    We report the development and application of a simple theoretical model for extracting temperatures from picosecond-laser-based coherent anti-Stokes Raman scattering (CARS) spectra of H2 obtained using time-delayed probe pulses. This approach addresses the challenges associated with the effects of rotational-level-dependent decay lifetimes on time-delayed probing for CARS thermometry. A simple procedure is presented for accurate temperature determination based on a Boltzmann distribution using delayed-probe-pulse vibrational CARS spectra of H2; this procedure requires measurement at only a select handful of probe-pulse delays and requires no assumptions about sample environment.

  16. Influence of ageing on Raman spectra and the conductivity of monolayer graphene samples irradiated by heavy and light ions

    NASA Astrophysics Data System (ADS)

    Butenko, A.; Zion, E.; Kaganovskii, Yu.; Wolfson, L.; Richter, V.; Sharoni, A.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2016-07-01

    The influence of long-term ageing (about one year) on the Raman scattering (RS) spectra and the temperature dependence of conductivity has been studied in two series of monolayer graphene samples irradiated by different doses of C+ and Xe+ ions. It is shown that the main result of ageing consists of changes in the intensity and position of D- and G- and 2D-lines in RS spectra and in an increase of the conductivity. The observed effects are explained in terms of an increase of the radius of the "activated" area around structural defects.

  17. Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.

    2011-06-01

    Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.

  18. Quantum mechanics/molecular mechanics calculation of the Raman spectra of the phycocyanobilin chromophore in alpha-C-phycocyanin.

    PubMed

    Mroginski, Maria Andrea; Mark, Franz; Thiel, Walter; Hildebrandt, Peter

    2007-09-15

    We have established a quantum mechanics (QM)/molecular mechanics (MM) hybrid method for calculating the Raman spectra of protein-bound cofactors using the alpha-subunit of C-phycocyanin containing a phycocyanobilin (PCB) chromophore as a test case. The PCB cofactor was described with density functional theory, whereas the protein matrix was treated with the CHARMM force field. The Hessian matrix of the QM region was built by taking into account bonded and nonbonded interactions with the protein environment and projected onto the internal coordinate space. Force constants were scaled with a global set of scaling factors, and the Raman intensities were computed using a finite-field method combined with a fourth-order differentiation algorithm for the calculation of the polarizability derivatives. In general, the QM/MM results provided a substantially improved description of the experimental resonance Raman (RR) spectra of the protein-bound cofactor compared to QM calculations of isolated PCB models in vacuo. The results allow the assessment of the effect of the protein-cofactor interactions on the RR spectra and reveal the potential and limitations of QM calculations on isolated tetrapyrroles for determining the chromophore structures in the various species and states of phytochromes for which three-dimensional structures are not available.

  19. Glass formation and Raman spectra of CaO-SiO2 glasses towards the orthosilicate limit

    NASA Astrophysics Data System (ADS)

    Retsinas, A.; Kalampounias, A. G.; Papatheodorou, G. N.

    2016-12-01

    A series of silicate glasses formed in the binary system (1-X)CaO-XSiO2with silica mole fractions X ranging from 0.61to 0.38have been prepared using container-less aerodynamic levitation techniques and CO2-laser heating. Glasses with X<0.45were prepared for the first time but, no glass formation was possible at compositions X<0.38. Ambient temperature polarized and depolarized Raman spectra were measured for all these glasses. Qi-speciation analysis of the isotropic Raman spectra shows that near X∼0.38the predominant structures present are the SiO44- tetrahedra and the single bridged Q1species. Oxygen bridging was present at all compositions studied while at X<0.45 small amounts of free oxygen anions was present. The data are compared with the resent NMR measurements obtained with the same glass samples used in the present study. Stokes and anti-Stokes Raman spectra were measured in low frequencies revealing the Boson peak (BP) at ∼50 and ∼70 cm-1 for the corresponding polarized and depolarized configurations. On the Stokes side the BP frequencies exhibit a fictional shift due to contributions from the low frequency vibrational modes of the glass.

  20. Raman spectra and structures of 1-methyl-4-(4-diethylaminophenylazo)-pyridinium iodide in neutral and acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Iwase, Akitaka; Ueda, Atsushi; Kuwae, Akio; Hanai, Kazuhiko; Kunimoto, Ko-Ki

    2013-09-01

    Fourier transform (FT) and resonance Raman spectra of 1-methyl-4-(4-diethylaminophenylazo)-pyridinium iodide (MDP) and its four deuterated and three 15N stable isotopic compounds have been measured in neutral and acidic aqueous solutions, and the molecular structures have been discussed on the basis of detailed vibrational assignments using the isotope shifts. No Raman band due to the azo Ndbnd N group is observed in a neutral aqueous solution and also in the solid state of MDP; therefore, this finding suggests that double bond character of the azo group becomes weak and, consequently, the structures of both benzene and pyridinium rings are close to that of a quinoid. The Raman and the 15N NMR spectra indicate that the Nβ of the azo group is protonated in an acidic solution of MDP. Comparison of the spectra of the two solutions suggests that the benzene ring has more quinoid character in the acidic than in the neutral solution. The chromophore structures have been revealed in each of the neutral (purple) and the acidic (yellow) solution.

  1. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: Application to β-carotene

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Kröner, Dominik; Saalfrank, Peter

    2012-12-01

    The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of β-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of β-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called ν1 peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], 10.1039/b917341b, which shifts with the change in excitation wavelength.

  2. Structural properties, vibrational spectra and surface-enhanced Raman scattering of 2,4,6-trichloro- and tribromoanilines: A comparative study

    NASA Astrophysics Data System (ADS)

    Haruna, Kabiru; Saleh, Tawfik A.; Al Thagfi, Jameel; Al-Saadi, Abdulaziz A.

    2016-10-01

    A comparative electronic and spectroscopic analysis of 2,4,6-trichloroaniline (TCA) and 2,4,6-tribromoaniline (TBA) was carried out by theoretical and experimental techniques. The NH2 inversion barrier in TCA and TBA molecules was predicted to be three times less than that in aniline and 2,4,6-trifluoroaniline. The size of the halogen substituents in the ortho positions is shown by density functional theory to play an important role in determining the electronic and structural properties of the amino group in the investigated haloaniline derivatives. A thorough interpretation of the infrared and Raman spectra has been performed on the basis of the observed and calculated infrared and Raman spectra as well as calculated potential energy distribution values. In addition, the SERS spectra for both trihaloanilines were successfully collected up to a concentration of 10-6 M using aged hydroxylamine-reduced silver colloid as an active substrate for TCA and TBA. SERS intensities of several peaks were found to linearly change with concentration allowing quantitative analyses of TCA and TBA. A relatively stronger interaction in the case of TBA-silver colloids is predicted compared to the TCA analogue.

  3. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate ( struvite) and its isomorphous analogues. VII: Spectra of protiated and partially deuterated hexagonal magnesium caesium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Cahil, A.; Šoptrajanov, B.; Najdoski, M.; Spirovski, F.; Engelen, B.; Lutz, H. D.; Koleva, V.

    2009-04-01

    The Fourier transform infrared and Raman spectra of the struvite analogue, hexagonal magnesium caesium phosphate hexahydrate, MgCsPO 4·6H 2O ( hP50) and of its partially deuterated analogues were recorded from room temperature (RT) down to the boiling temperature of liquid nitrogen (LNT). The existence of strong hydrogen bonds between water molecules and PO 43- ions is supported by the appearance of a broad band from 3600 to 2200 cm -1 in the O-H stretching region of the vibrational spectra. In the region of the OD stretching vibrations of isotopically isolated HDO molecules of the analogue with a small deuterium content (≈5% D), at least two bands (from the expected three) are observed in the difference LNT infrared spectrum. In the region of ν3(PO 4) modes of the infrared spectra, a broad and asymmetric band (at around 1000 cm -1) is found, while in the region of the ν4(PO 4) bending vibration and of the external modes of the water molecules, several bands can be seen. The intense band at 945 cm -1 in the Raman spectra can with certainty be attributed to the ν1(PO 4) mode. On the basis of a careful analysis of the RT and LNT spectra of the protiated compound, as well as those of its partially deuterated analogues, the asymmetric band at around 550 cm -1 could be assigned to the components of the ν4(PO 4) mode, the bands between 470 and 430 cm -1 to the ν2(PO 4) vibrations and the remaining ones as due to pure or coupled librational and translational modes of the water molecules. The external modes of the phosphate ions and those of the water molecules are mixed.

  4. Analysis of torsional spectra of molecules with two internal C3v rotors. II - Far infrared and low frequency Raman spectra of dimethylether isotopes

    NASA Technical Reports Server (NTRS)

    Groner, P.; Durig, J. R.

    1977-01-01

    The torsional far infrared and Raman spectra of gaseous CH3OCH3, CD3OCH3, and CD3OCD3 are presented. They are analyzed using a computer program which is based on the results of an extensive investigation of the isometric groups and of the symmetry groups of the rotation-internal rotation Hamiltonians of a series of semirigid two-top models. Four or more Fourier coefficients of the potential functions in two variables could be determined for each isotope. Strong evidence was found for Fermi-resonance-type interactions with the COC bending mode.

  5. Spectra and structure of organophosphorus compounds. XII - Infrared and Raman spectra of /CH3/2PH and /CD3/2PH

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Saunders, J. E.

    1975-01-01

    The vibrational spectra of (CH3)2PH and (CD3)2PH have been studied and assignments made. In the infrared, the region between 4000 and 33 wavelength/cm was recorded for the gaseous and solid states, while Raman spectra from 3500 to 10 wavelength/cm in the gaseous, liquid and solid states were observed. There is some evidence of weak hydrogen bonding, based on the behavior of the phosphorus-hydrogen stretching and bending modes. There also appears to be considerable interaction between the methyl rocking and phosphorus-carbon stretching modes. The a double prime and a prime torsional modes appear to be accidentally degenerate at 182 and 142 wavelength/cm for the 'light' and 'heavy' compounds, respectively. This gives barriers of 2.14 and 2.30 kcal/mole, respectively.

  6. Polarized Raman spectra of the oriented NaY(WO 4) 2 and KY(WO 4) 2 single crystals

    NASA Astrophysics Data System (ADS)

    Macalik, L.; Hanuza, J.; Kaminskii, A. A.

    2000-11-01

    Polarized Raman scattering spectra of the NaY(WO 4) 2 (NYW) single crystal have been measured. Its structure is described in the tetragonal space group isomorphic to CaWO 4 scheelite. The A g, B g and E g spectra were made and discussed in terms of factor group analysis. These spectra are compared to those of monoclinic KY(WO 4) 2 (KYW) single crystals whose structure differs from the other crystal. The NYW unit cell comprises of the isolated WO 4 tetrahedra whereas the KYW structure is built from the WO 6 octahedra joined by WO 2W double bonds and WOW single bridges. The vibrational characteristics of the bridge bond systems are proposed. On this basis, the role of the vibronic transitions for the KYW crystal doped with Eu 3+ ions is discussed.

  7. A short hydrogen bond investigation by polarized Raman spectra of Co2+ and Zn2+ salts of pyromellitic acid.

    PubMed

    Diniz, Renata; Dantas, Maria S; Fernandes, Nelson G; Sansiviero, Maria T C

    2007-06-01

    Cobalt and zinc salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C(6)H(2)(COO)(4)H(4)], have been synthesized and investigate by polarized Raman spectroscopy. These compounds present short intramolecular hydrogen bonds (SHB) between adjacent carboxyl groups. Raman spectra indicate the presence of this interaction in both salts. Three specific vibrational of SHB modes have been investigated: O-H-O symmetric [nu(sym)(OHO)] and asymmetric [nu(asym)(OHO)] stretching modes and O-H stretching mode [nu(O-H)], which they were observed around 300, 850 and 2500 cm(-1), respectively. In crystallographic point of view, the cobalt salt presents a symmetric SHB while the zinc salt presents an asymmetric SHB. In cobalt salt all three vibrational modes of O-H-O groups in polarized Raman spectra occur in A(g) orientation although in zinc salts two of them are observed in A(g) orientation and one in B(g). Spectra analysis indicate that nu(sym)(OHO) mode is observed as A(g) to cobalt salt and B(g) to zinc salt. This mode occurs in a crowded spectral region and its identification was made by deconvolution techniques. Comparing spectra of the two salts, it is observed a small difference in relative intensity and wavenumber shift of nu(sym)(OHO) (deviance of 43 cm(-1)) and nu(OH) (deviance of 21 cm(-1)) modes due probably to differences in O...O distance between salts and in orientation of pyromellitate anion in unit cell. The nu(asym)(OHO) mode does not present significant wavenumber shift due difference in SHB. The nu(OH) band presents a great potential for hydrogen bond studies due to the fact that in its vibrational region (around 2500 cm(-1)) it is not observed other vibrational modes of these compounds.

  8. A short hydrogen bond investigation by polarized Raman spectra of Co 2+ and Zn 2+ salts of pyromellitic acid

    NASA Astrophysics Data System (ADS)

    Diniz, Renata; Dantas, Maria S.; Fernandes, Nelson G.; Sansiviero, Maria T. C.

    2007-06-01

    Cobalt and zinc salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C 6H 2(COO) 4H 4], have been synthesized and investigate by polarized Raman spectroscopy. These compounds present short intramolecular hydrogen bonds (SHB) between adjacent carboxyl groups. Raman spectra indicate the presence of this interaction in both salts. Three specific vibrational of SHB modes have been investigated: O-H-O symmetric [ νsym(OHO)] and asymmetric [ νasym(OHO)] stretching modes and O-H stretching mode [ ν(O-H)], which they were observed around 300, 850 and 2500 cm -1, respectively. In crystallographic point of view, the cobalt salt presents a symmetric SHB while the zinc salt presents an asymmetric SHB. In cobalt salt all three vibrational modes of O-H-O groups in polarized Raman spectra occur in A g orientation although in zinc salts two of them are observed in A g orientation and one in B g. Spectra analysis indicate that νsym(OHO) mode is observed as A g to cobalt salt and B g to zinc salt. This mode occurs in a crowed spectral region and its identification was made by deconvolution techniques. Comparing spectra of the two salts, it is observed a small difference in relative intensity and wavenumber shift of νsym(OHO) (deviance of 43 cm -1) and ν(OH) (deviance of 21 cm -1) modes due probably to differences in O⋯O distance between salts and in orientation of pyromellitate anion in unit cell. The νasym(OHO) mode does not present significant wavenumber shift due difference in SHB. The ν(OH) band presents a great potential for hydrogen bond studies due to the fact that in its vibrational region (around 2500 cm -1) it is not observed other vibrational modes of these compounds.

  9. Libraries, classifiers, and quantifiers: a comparison of chemometric methods for the analysis of Raman spectra of contaminated pharmaceutical materials.

    PubMed

    Gryniewicz-Ruzicka, Connie M; Rodriguez, Jason D; Arzhantsev, Sergey; Buhse, Lucinda F; Kauffman, John F

    2012-03-05

    In this study, pharmaceutical grade sorbitol was used as a model system for comparison of Raman based library spectral correlation methods with more sophisticated methods of chemometric data analysis. Both crystallizing sorbitol (CS) and non-crystallizing sorbitol (NCS) from several manufacturers were examined. The Raman spectrum of each sample was collected and identified by correlation with a spectral library that included the CS spectrum but not the NCS spectrum. The average hit quality index (HQI) for the measured NCS spectra and the library CS spectrum was 0.966 whereas the average HQI for the measured CS spectra was 0.991. Both HQIs exceeded the 0.950 threshold that is commonly used for material verification. To enhance the discrimination between CS and NCS, a CS/NCS classification model was constructed using soft independent modeling of class analogies (SIMCA). SIMCA was able to positively identify CS and NCS solutions with no misclassifications. When CS was adulterated with low levels (0-5%) of ethylene glycol (EG) and diethylene glycol (DEG), the HQI values of the measured spectra and the CS library spectrum were still above 0.950. When the CS SIMCA model was applied to adulterated CS spectra, it determined that CS samples with adulterant levels as low as 2% were outside of the CS class. A quantitative PLS model was also applied to EG adulterated CS and resulted in a detection limit of 0.9% for EG. The results obtained from these studies highlight the importance of selecting an appropriate data analysis process for the detection of low level adulterants in pharmaceutical raw materials using Raman spectroscopic screening methods.

  10. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss.

    PubMed

    Schmidt, Heinar; Scheier, Rico; Hopkins, David L

    2013-01-01

    A prototype handheld Raman system was used as a rapid non-invasive optical device to measure raw sheep meat to estimate cooked meat tenderness and cooking loss. Raman measurements were conducted on m. longissimus thoracis et lumborum samples from two sheep flocks from two different origins which had been aged for five days at 3-4°C before deep freezing and further analysis. The Raman data of 140 samples were correlated with shear force and cooking loss data using PLS regression. Both sample origins could be discriminated and separate correlation models yielded better correlations than the joint correlation model. For shear force, R(2)=0.79 and R(2)=0.86 were obtained for the two sites. Results for cooking loss were comparable: separate models yielded R(2)=0.79 and R(2)=0.83 for the two sites. The results show the potential usefulness of Raman spectra which can be recorded during meat processing for the prediction of quality traits such as tenderness and cooking loss.

  11. Optical redshift in the Raman scattering spectra of Fe-doped multiwalled carbon nanotubes: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Bhalerao, G. M.; Singh, M. K.; Sinha, A. K.; Ghosh, Haranath

    2012-09-01

    Electron doping of arc-grown multiwalled carbon nanotubes coated with iron nanoparticles is established by the redshift of the graphite peak and a larger redshift of the defect peak in the Raman spectra of doped samples compared to the corresponding peak positions in undoped samples. This is unlike the blue Raman shift usually observed in defect-induced double-Raman-resonance studies. On doping, the defect peak splits into two peaks. One has approximately the same dispersion (50 cm-1 eV-1) as the defect peak of undoped samples. The other peak has a very large dispersion (110 cm-1 eV-1). We show that the above observations are consequences of drastic changes in the electronic band structure of the graphitic systems under doping. Experimental observations of the splitting of the defect peak into two and larger dispersions of one of the peaks are explained via double-Raman-resonance processes studied through detailed theoretical calculations of electronic and phonon band structures based on a first principles ab initio method.

  12. Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides.

    PubMed

    Dhakal, Ashim; Subramanian, Ananth Z; Wuytens, Pieter; Peyskens, Frédéric; Le Thomas, Nicolas; Baets, Roel

    2014-07-01

    We experimentally demonstrate the use of high contrast, CMOS-compatible integrated photonic waveguides for Raman spectroscopy. We also derive the dependence of collected Raman power with the waveguide parameters and experimentally verify the derived relations. Isopropyl alcohol (IPA) is evanescently excited and detected using single-mode silicon-nitride strip waveguides. We analyze the measured signal strength of pure IPA corresponding to an 819  cm⁻¹ Raman peak due to in-phase C-C-O stretch vibration for several waveguide lengths and deduce a pump power to Raman signal conversion efficiency on the waveguide to be at least 10⁻¹¹  per cm.

  13. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents.

    PubMed

    Christesen, Steven D; Pendell Jones, Jay; Lochner, Joseph M; Hyre, Aaron M

    2008-10-01

    Ultraviolet (UV) Raman spectroscopy is being applied to the detection of chemical agent contamination of natural and man-made surfaces. In support of these efforts, we have measured the UV Raman signatures of the G-series nerve agents GA (tabun), GB (sarin), GD (soman), GF (cyclosarin), and the agent simulant diisopropyl methylphosphonate (DIMP) at 248 nm and 262 nm, as well as taking their UV Raman and UV absorption cross-sections. Of these chemicals, only GA exhibits any significant pre-resonance enhancement. We also show that reduction of the excitation wavelength from 262 nm to 248 nm effectively shifts the Raman spectrum away from a substantial sample fluorescence background, implying a significant improvement in detection capability.

  14. Surface enhanced raman spectra of biliverdine and pyrromethenone adsorbed to silver colloids

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.

    1981-04-01

    Adsorption of certain bile pigments to silver colloids yields an enormous enhancement in Raman intensity, while fluorescence remains more or less unaffected. It is argued that this may be caused by (weak) chemisorption.

  15. Communication: three-dimensional model for phonon confinement in small particles: quantitative bandshape analysis of size-dependent Raman spectra of nanodiamonds.

    PubMed

    Korepanov, Vitaly I; Witek, Henryk; Okajima, Hajime; Ōsawa, Eiji; Hamaguchi, Hiro-o

    2014-01-28

    Raman spectroscopy of nano-scale materials is facing a challenge of developing a physically sound quantitative approach for the phonon confinement effect, which profoundly affects the phonon Raman band shapes of small particles. We have developed a new approach based on 3-dimensional phonon dispersion functions. It analyzes the Raman band shapes quantitatively in terms of the particle size distributions. To test the model, we have successfully obtained good fits of the observed phonon Raman spectra of diamond nanoparticles in the size range from 1 to 100 nm.

  16. Interpretation of FTIR spectra of polymers and Raman spectra of car paints by means of likelihood ratio approach supported by wavelet transform for reducing data dimensionality.

    PubMed

    Martyna, Agnieszka; Michalska, Aleksandra; Zadora, Grzegorz

    2015-05-01

    The problem of interpretation of common provenance of the samples within the infrared spectra database of polypropylene samples from car body parts and plastic containers as well as Raman spectra databases of blue solid and metallic automotive paints was under investigation. The research involved statistical tools such as likelihood ratio (LR) approach for expressing the evidential value of observed similarities and differences in the recorded spectra. Since the LR models can be easily proposed for databases described by a few variables, research focused on the problem of spectra dimensionality reduction characterised by more than a thousand variables. The objective of the studies was to combine the chemometric tools easily dealing with multidimensionality with an LR approach. The final variables used for LR models' construction were derived from the discrete wavelet transform (DWT) as a data dimensionality reduction technique supported by methods for variance analysis and corresponded with chemical information, i.e. typical absorption bands for polypropylene and peaks associated with pigments present in the car paints. Univariate and multivariate LR models were proposed, aiming at obtaining more information about the chemical structure of the samples. Their performance was controlled by estimating the levels of false positive and false negative answers and using the empirical cross entropy approach. The results for most of the LR models were satisfactory and enabled solving the stated comparison problems. The results prove that the variables generated from DWT preserve signal characteristic, being a sparse representation of the original signal by keeping its shape and relevant chemical information.

  17. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry

    DOE PAGES

    Feng, Yanqing; Zhou, Wei; Wang, Yaojia; ...

    2015-08-26

    Lattice structure and symmetry of two-dimensional (2D) layered materials are of key importance to their fundamental mechanical, thermal, electronic and optical properties. Raman spectroscopy, as a convenient and nondestructive tool, however has its limitations on identifying all symmetry allowing Raman modes and determining the corresponding crystal structure of 2D layered materials with high symmetry like graphene and MoS2. Due to lower structural symmetry and extraordinary weak interlayer coupling of ReS2, we successfully identified all 18 first-order Raman active modes for bulk and monolayer ReS2. Without van der Waals (vdW) correction, our local density approximation (LDA) calculations successfully reproduce all themore » Raman modes. Our calculations also suggest no surface reconstruction effect and the absence of low frequency rigid-layer Raman modes below 100 cm-1. As a result, combining with Raman and LDA thus provides a general approach for studying the vibrational and structural properties of 2D layered materials with lower symmetry.« less

  18. Multistate Mechanism of Lysozyme Denaturation through Synchronous Analysis of Raman Spectra.

    PubMed

    Xing, Lei; Lin, Ke; Zhou, Xiaoguo; Liu, Shilin; Luo, Yi

    2016-10-10

    The denaturation mechanism of hen egg lysozyme is still controversial. In this study, Raman spectroscopy was employed to study the thermal and chemical denaturation mechanisms of lysozyme. All of the Raman bands were synchronously recorded and analyzed during the denaturation process. It was found that the Raman bands of the side groups changed before the bands of skeleton groups. This directly reveals the three-state mechanism of thermal denaturation of lysozyme. The preferential change of the side groups was also observed in the chemical denaturation of lysozyme by guanidine hydrochloride. Moreover, it was found that the Raman bands of the groups on the surface of lysozyme changed before those of the other groups. This indicates that the chemical denaturants interact with the protein surface before the protein core in each step and the chemical denaturation of lysozyme conforms to the multistate and outside-in mechanisms. The synchronous Raman study not only reveals the multistate mechanism of lysozyme denaturation but also demonstrates that this synchronous Raman analysis is a powerful method to study the denaturation mechanisms of other proteins.

  19. Appearance of radial breathing modes in Raman spectra of multi-walled carbon nanotubes upon laser illumination

    NASA Astrophysics Data System (ADS)

    Rai, Padmnabh; Mohapatra, Dipti R.; Hazra, K. S.; Misra, D. S.; Ghatak, Jay; Satyam, P. V.

    2008-03-01

    The Raman spectra of the multi-walled carbon nanotubes are studied with the laser power of 5-20 mW. We observe the Raman bands at ˜1352, 1581, 1607, and 2700 cm -1 with 5 mW laser power. As the laser power is increased to 10, 15 and 20 mW, the radial breathing modes (RBMs) of the single wall carbon nanotubes (SWNTs) appear in the range 200-610 cm -1. The diameter corresponding to the highest RBM is ˜0.37 nm, the lowest reported so far. The RBMs are attributed to the local synthesis of the SWNTs at the top surface of the samples at higher laser power.

  20. Raman spectra and magnetization of all-ferromagnetic superlattices grown on (110) oriented SrTiO{sub 3}

    SciTech Connect

    Behera, B. C.; Ravindra, A. V.; Padhan, P.; Prellier, W.

    2014-03-03

    Superlattices consist of two ferromagnets La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and SrRuO{sub 3} (SRO) were grown in (110)-orientation on SrTiO{sub 3} (STO) substrates. The x-ray diffraction and Raman spectra of these superlattices show the presence of in-plane compressive strain and orthorhombic structure of less than 4 u.c. thick LSMO spacer, respectively. Magnetic measurements reveal several features including reduced magnetization, enhanced coercivity, antiferromagnetic coupling, and switching from antiferromagnetic to ferromagnetic coupling with magnetic field orientations. These magnetic properties are explained by the observed orthorhombic structure of spacer LSMO in Raman scattering which occurs due to the modification in the stereochemistry of Mn at the interfaces of SRO and LSMO.

  1. Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.

    2015-01-01

    In the present work, a detailed Raman spectroscopy investigation on the single-walled carbon nanotubes (SWCNTs) filled with praseodymium chloride, terbium chloride and thulium chloride was performed. The salts were incorporated inside the SWCNTs by a capillary filling method using melts, and the high-resolution transmission electron microscopy data proved the high filling degree of the nanotube channels. A thorough analysis of the radial breathing mode and G-band of the Raman spectra of the pristine and filled SWCNTs showed that the encapsulated salts cause acceptor doping of the host nanotubes, and the doping efficiency depends on the compound. The incorporated thulium chloride has the strongest doping effect on the SWCNTs, whereas praseodymium chloride has the weakest effect. It was found that the encapsulated salts modify more significantly the electronic structure of metallic nanotubes than semiconducting SWCNTs.

  2. Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO{sub 3} from DFT calculations

    SciTech Connect

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.; Caetano, E.W.S.; Freire, V.N.; Albuquerque, E.L.

    2011-04-15

    Orthorhombic SrSnO{sub 3} was investigated using density functional theory (DFT) considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The electronic band structure, density of states, complex dielectric function, optical absorption, and the infrared and Raman spectra were computed. Calculated lattice parameters are close to the experimental measurements, and an indirect band gap E(S{yields}{Gamma})=1.97eV (2.27 eV) was obtained within the GGA (LDA) level of calculation. Effective masses for holes and electrons were estimated, being very anisotropic in comparison with similar results for orthorhombic CaSnO{sub 3}. The complex dielectric function and the optical absorption of SrSnO{sub 3} were shown to be sensitive to the plane of polarization of the incident light. The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum of orthorhombic SrSnO{sub 3} was achieved. -- Graphical abstract: Orthorhombic SrSnO{sub 3}: a view of the unit cell (left) and plots showing the calculated and experimental Raman spectra (right). Display Omitted Research highlights: {yields} We have performed DFT calculations on orthorhombic SrSnO{sub 3} crystals, obtaining their structural, electronical and optical properties. {yields} An indirect band gap was obtained, and anisotropic effective masses were found for both electrons and holes. {yields} The complex dielectric function and the optical absorption of SrSnO{sub 3} were shown to be very sensitive to the plane of polarization of the incident light. {yields} The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum was achieved.

  3. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    PubMed

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications.

  4. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. III. Spectra of protiated and partially deuterated magnesium ammonium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Šoptrajanov, B.; Kuzmanovski, I.; Lutz, H. D.; Engelen, B.

    2005-10-01

    Magnesium ammonium phosphate hexahydrate, MgNH 4PO 4·6H 2O (synthetic struvite) is a well-known biomineral, its major biological importance being related to its presence in human urinary sediments and vesical and renal calculi. The Fourier transform infrared and Raman spectra of magnesium ammonium phosphate hexahydrate were recorded and analyzed from room temperature (RT) down to the boiling temperature of liquid nitrogen (LNT). Also recorded and analyzed were the spectra of its partially deuterated analogues. The recorded spectra were compared with the corresponding ones of the previously studied potassium analogue. On the basis of such a comparison it was concluded that the main contribution to the intensity of the broad and structured feature in the O-H/N-H stretching region comes from the bands originating from the H-O-H stretches. The location of at least some of the stretching vibrations of the ammonium ions (albeit one of its deuterated forms) is possible in the spectrum of the sample containing ≈2% deuterium. The bands at 2326 and 2277 cm -1 (and probably, at least partially, that at 2393 cm -1) can be assigned with certainty to N-D stretching vibrations of isotopically isolated NH 3D + ions. The LNT Raman bands at 1702 and 1685 cm -1 are attributed to the ν2NH4+ mode and those at 1477 and 1442 cm -1 are observed are attributed to the ν4 mode. The relatively high frequencies (1302 and 1295 cm -1) of some of the bands due to the ND bending vibrations of isotopically isolated NH 3D + ions are in line with the existence of quite strong hydrogen bonds formed by ammonium ions. The librations of the deuterated forms of water molecules may be coupled with the components of the phosphate ν4 vibration.

  5. Comparison of several chemometric methods of libraries and classifiers for the analysis of expired drugs based on Raman spectra.

    PubMed

    Gao, Qun; Liu, Yan; Li, Hao; Chen, Hui; Chai, Yifeng; Lu, Feng

    2014-06-01

    Some expired drugs are difficult to detect by conventional means. If they are repackaged and sold back into market, they will constitute a new public health challenge. For the detection of repackaged expired drugs within specification, paracetamol tablet from a manufacturer was used as a model drug in this study for comparison of Raman spectra-based library verification and classification methods. Raman spectra of different batches of paracetamol tablets were collected and a library including standard spectra of unexpired batches of tablets was established. The Raman spectrum of each sample was identified by cosine and correlation with the standard spectrum. The average HQI of the suspicious samples and the standard spectrum were calculated. The optimum threshold values were 0.997 and 0.998 respectively as a result of ROC and four evaluations, for which the accuracy was up to 97%. Three supervised classifiers, PLS-DA, SVM and k-NN, were chosen to establish two-class classification models and compared subsequently. They were used to establish a classification of expired batches and an unexpired batch, and predict the suspect samples. The average accuracy was 90.12%, 96.80% and 89.37% respectively. Different pre-processing techniques were tried to find that first derivative was optimal for methods of libraries and max-min normalization was optimal for that of classifiers. The results obtained from these studies indicated both libraries and classifier methods could detect the expired drugs effectively, and they should be used complementarily in the fast-screening.

  6. UV and VIS Raman spectra of natural lonsdaleites: towards a recognised standard.

    PubMed

    Smith, David C; Godard, Gaston

    2009-08-01

    A UV laser has now been used to measure the Raman spectrum of lonsdaleite. This mineral species is a little-known hexagonal form of carbon having no known P-T field of stability. Lonsdaleite is known to coexist with diamond and/or graphite in certain impact structures and meteorites. Its presence in microinclusions in some ultrahigh-pressure eclogites is under discussion as there is a considerable wavenumber overlap of the sp(3) Raman band of lonsdaleite in the 1200-1400 cm(-1) region with certain bands of haematite, graphite and diamond, and also with "disordered-diamond" having a downshifted wavenumber. Various incoherent previously published values of the Raman bands are briefly reviewed and an attempt is made to establish a reference spectrum. Four samples of lonsdaleite from the Zapadnaya and Popigai impact structures (Ukraine) were measured with three different laser sources (488, 514.5 and 325 nm) with two Raman spectrometers. UV-Raman was less fluorescent. All the new data were coherent in establishing an sp(3) band centred at 1324+/-4 cm(-1) with a FWHM about five times wider than that of diamond and an intensity about 500 times weaker. The presence of a second band giving a weak shoulder around 1225 cm(-1) is discussed with respect to the alternative of one continuous asymmetrical band.

  7. The effect of pressure on the Raman spectra of solids. VII. The internal Raman bands in solid and coordinated pyridine

    NASA Astrophysics Data System (ADS)

    Heyns, A. M.; Venter, M. W.

    1990-12-01

    The pressure dependences of the internal Raman-active modes of solid pyridine and pyridine-d5 in both the crystalline and glassy modifications as well as of the complexes Zn(py)2Cl2, Ni(py)2Cl2, and Ni(py)4Cl2 are reported. When pyridine is frozen by the application of pressure, some ring modes as well as those involving the hydrogen atoms reflect this transformation. Upon the coordination of pyridine to metal ions, the ring vibrations show appreciable blue shifts. The pressure dependences of ν1, the C-C stretching mode, and ν12, the in-plane ring bending mode of the pyridine rings, are discussed in detail. The unusually high d5-h5 isotopic ratio of ν12 and its contrasting pressure dependences in the liquid and condensed phases of pyridine-d5 are explained. The association of pyridine molecules in the condensed phase does not occur through hydrogen bonds and the C-H stretching modes, in particular, show that repulsive intermolecular forces become very significant at higher pressures. The ratio of the intensities Iν12/Iν1 varies linearly with the strength of the M-N bonds in a series of pyridine complexes and a correlation also exists between Iν12/Iν1 and ∂ν12/∂p. The vibrations ν1 and ν2 are coupled through Fermi resonance in pyridine and its complexes and the pressure dependence of the Fermi resonance constant W is calculated for Zn(py)2Cl2. The C-H stretching modes reflect the presence of more than one distinct pyridine group in the lattice and are of much lower intensity than in complexes where only one distinct pyridine group is found.

  8. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder

    SciTech Connect

    Martins Ferreira, E. H.; Stavale, F.; Moutinho, Marcus V. O.; Lucchese, M. M.; Capaz, Rodrigo B.; Achete, C. A.; Jorio, A.

    2010-09-15

    We report on the micro-Raman spectroscopy of monolayer, bilayer, trilayer, and many layers of graphene (graphite) bombarded by low-energy argon ions with different doses. The evolution of peak frequencies, intensities, linewidths, and areas of the main Raman bands of graphene is analyzed as function of the distance between defects and number of layers. We describe the disorder-induced frequency shifts and the increase in the linewidth of the Raman bands by means of a spatial-correlation model. Also, the evolution of the relative areas A{sub D}/A{sub G}, A{sub D}{sup '}/A{sub G}, and A{sub G}{sup '}/A{sub G} is described by a phenomenological model. The present results can be used to fully characterize disorder in graphene systems.

  9. [Application of Raman spectra to the research of jades excavated from Xue Jiagang site].

    PubMed

    Wang, Rong; Feng, Min; Wu, Wei-hong; Gao, Fei; Wang, Chang-sui

    2005-09-01

    Non-destructive analysis is always the aim in jades' research. The present article applied the Raman spectroscopy to the research on jades excavated from the Xue Jiagang site and achieved good result in the main mineral, inclusion and phenocryst. The study shows that as a non-destructive technique Raman spectroscopy can be applied to ancient jades conveniently and practically, and it can detect not only the surface information of ancient jades, but also the interior information. The technique is important to the verification and provenance of ancient jades.

  10. Far-Infrared and Raman Spectra and The Ring-Twisting Potential Energy Function of 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2001-10-01

    The nu19 (A2) ring-twisting vibration of 1,3-cyclohexadiene has been analyzed from the vapor-phase Raman and infrared spectra. The Raman spectrum shows nine ring-twisting transitions in the 116 - 199 cm-1 region. The far-infrared spectrum confirms five of these transitions, despite the fact that the vibration is infrared forbidden in the C2v (planar) approximation. Other Raman and infrared combination bands verify the assignments and provide information on the vibrational coupling. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function, which has a barrier to planarity of 1132 cm-1 and energy minima corresponding to twisting angles of 9.1º and 30.1º. Ab initio calculations were also carried out using Moller-Plesset perturbation theory (MP2) with a large number of different basis sets. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range and calculated vibrational frequencies in excellent agreement with the experimental values.

  11. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials.

    PubMed

    Rebelo, Susana L H; Guedes, Alexandra; Szefczyk, Monika E; Pereira, André M; Araújo, João P; Freire, Cristina

    2016-05-14

    Raman spectroscopy is highly sensitive to the morphology and electronic structures of graphitic materials, but a convenient interpretation model has been lacking for multiwalled carbon nanotubes (MWCNTs), in particular for the discrimination of spectral changes induced by covalent functionalization. The present work describes a systematic investigation of the Raman analysis of covalently functionalized MWCNTs by diazonium chemistry and oxidation methodologies, with typically different mechanisms and reaction sites. A multi-peak deconvolution system and spectral band assignment were proposed based on the chemical and structural modifications identified by X-ray photoelectron spectroscopy, thermogravimetry, X-ray diffraction, specific surface areas and the comparative analysis of the first and second order regions of the Raman spectra. Diazonium functionalization takes place mainly in the π-system of the external sidewall, while oxidation occurs on defects and leads to structure burning. This allowed us to distinguish between spectral features related to aromaticity disruptions within the sidewalls and spectral features related to changes within the inner tubes. The model was validated extending the studies to the functionalization of MWCNTs by the Bingel reaction.

  12. FT-IR and FT-Raman spectra of 2-hydroxyethyl methacrylate--A conformational and vibrational analysis.

    PubMed

    Belaidi, O; Adjim, M; Bouchaour, T; Maschke, U

    2015-09-05

    A conformational search of the flexible 2-hedroxyethyl methacrylate molecule by semi-empirical AM1 and B3LYP formalisms leads to six stable conformations. Four of them are in the s-trans conformation. The optimized geometries at DFT using 6-311+G(∗∗) basis set are in good agreement with experimental electron diffraction data of the methyl methacrylate molecule, thereby the s-trans is the most stable form. The harmonic frequencies at the fully optimized geometries of all conformers have been performed at the DFT//B3LYP/6-311+G(∗∗) level of theory. Infrared and Raman intensities and potential energy distributions of the scaled harmonic frequencies are used for the assignment of the observed IR and Raman bands. We noticed a good agreement between the experimental and the computed spectra. The strong band at 1081 cm(-1), in the infrared spectrum, maybe used as a characteristic band of the s-trans conformation. Henceforth, the less stable structure contribute alone for reproducing the Raman bands located at 276 (sh) and 3020 (vw) cm(-1).

  13. Identification of high-pressure phases III and IV in hydrogen: Simulating Raman spectra using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Magdău, Ioan B.; Ackland, Graeme J.

    2013-05-01

    We present a technique for extracting Raman intensities from ab initio molecular dynamics (MD) simulations at high temperature. The method is applied to the highly anharmonic case of dense hydrogen up to 500 K for pressures ranging from 180 to 300 GPa. On heating or pressurizing we find first-order phase transitions under the experimental conditions of the phase III-IV boundary. At even higher pressures, close to 350 GPa, we find a second phase transformation to the previously proposed Cmca-4. Our method enables, for the first time, a direct comparison of Raman vibrons between theory and experiment at finite temperature. This turns out to provide excellent discrimination between subtly different structures found in MD. We find candidate structures whose Raman spectra are in good agreement with experiment. The new phase obtained in high-temperature simulations adopts a dynamic, simple hexagonal structure with three layer types: freely rotating hydrogen molecules, static hexagonal trimers, and rotating hexagonal trimers. We show that previously calculated structures for phase IV are inconsistent with experiment, and their appearance in simulation is due to finite-size effects.

  14. Parametric analysis of the crystal field splitting pattern of Sm(eta(5)-C(5)Me(5))(3) derived on the basis of absorption spectra of pellets or solutions and electronic raman spectra of oriented single crystals.

    PubMed

    Amberger, Hanns-Dieter; Reddmann, Hauke; Evans, William J

    2009-11-16

    By comparing the absorption spectrum of pseudo trigonal planar Sm(eta(5)-C(5)Me(5))(3) (1) (KBr pellet, methylcyclohexane solution) with the previously assigned one of Sm(eta(5)-C(5)Me(4)H)(3) (2) a truncated experimental crystal field (CF) splitting pattern of the former compound could be derived in the NIR range. Because of its dark brown color, fluorescence is not observed from complex 1, and thus the CF splitting pattern in the low energy range could not be determined on the basis of luminescence measurements. However, comparing the FIR and MIR spectra (pellets) as well as the Raman spectra of oriented single crystals of 1 with those of La(eta(5)-C(5)Me(5))(3) (3) at least two additional CF levels could be detected. The free parameters of a phenomenological Hamiltonian were fitted to the thus extended CF splitting pattern of 1, leading to a reduced rms deviation of 15.0 cm(-1) for 21 assignments. On the basis of these phenomenological CF parameters, the global CF strength experienced by the Sm(3+) central ion was estimated, and seems to be the third largest one ever encountered in Sm(III) chemistry. The obtained Slater parameter F(2) and the spin-orbit coupling parameter zeta(4f) allow the insertion of compound 1 into empirical nephelauxetic and relativistic nephelauxetic series, respectively, of Sm(III) compounds. With its low F(2) value, complex 1 is the most covalent Sm(III) compound (considering only f electrons) found to date. The experimentally based non-relativistic molecular orbital scheme (in the f range) of complex 1 was set up and compared with the results of a previous Xalpha-SW calculation on the pseudo trigonal planar model compound Sm(eta(5)-C(5)H(5))(3). In the frame of the search for f-f and electronic Raman transitions, the vibrational spectra (FIR/MIR of pellets, Raman spectra of oriented single crystals) of compound 1 were recorded too, and partly assigned on the basis of the observed coincidences and polarizations.

  15. Detection of mercury-TpT dinucleotide binding by Raman spectra: a computational study.

    PubMed

    Benda, Ladislav; Straka, Michal; Sychrovský, Vladimír; Bouř, Petr; Tanaka, Yoshiyuki

    2012-08-16

    The Hg(2+) ion stabilizes the thymine-thymine mismatched base pair and provides new ways of creating various DNA structures. Recently, such T-Hg-T binding was detected by the Raman spectroscopy. In this work, detailed differences in vibrational frequencies and Raman intensity patterns in the free TpT dinucleotide and its metal-mediated complex (TpT·Hg)(2) are interpreted on the basis of quantum chemical modeling. The computations verified specific marker Raman bands indicating the effect of mercury binding to DNA. Although the B3LYP functional well-describes the Raman frequencies, a dispersion correction had to be added for all atoms including mercury to obtain realistic geometry of the (TpT·Hg)(2) dimer. Only then, the DFT complex structure agreed with those obtained with the wave function-based MP2 method. The aqueous solvent modeled as a polarizable continuum had a minor effect on the dispersion interaction, but it stabilized conformations of the sugar and phosphate parts. A generalized definition of internal coordinate force field was introduced to monitor covalent bond mechanical strengthening and weakening upon the Hg(2+) binding. Induced vibrational frequency shifts were rationalized in terms of changes in electronic structure. The simulations thus also provided reliable insight into the complex structure and stability.

  16. Surface-enhanced raman spectra and molecular orientation of phthalazine adsorbed on a silver electrode

    NASA Astrophysics Data System (ADS)

    Takahashi, Machiko; Fujita, Masato; Ito, Masatoki

    1984-08-01

    SERS from phthalazine adsorbed on an Ag electrode was investigated under several conditions of applied voltage and solution concentration. Spectral assignments of the Raman bands were successfully performed and two differently oriented adsorbates, i.e. flat and end-on species, were identified. The contribution of the image field to the SERS intensity was considerable.

  17. Additional Enhancement of Electric Field in Surface-Enhanced Raman Scattering due to Fresnel Mechanism

    NASA Astrophysics Data System (ADS)

    Jayawardhana, Sasani; Rosa, Lorenzo; Juodkazis, Saulius; Stoddart, Paul R.

    2013-08-01

    Surface-enhanced Raman scattering (SERS) is attracting increasing interest for chemical sensing, surface science research and as an intriguing challenge in nanoscale plasmonic engineering. Several studies have shown that SERS intensities are increased when metal island film substrates are excited through a transparent base material, rather than directly through air. However, to our knowledge, the origin of this additional enhancement has never been satisfactorily explained. In this paper, finite difference time domain modeling is presented to show that the electric field intensity at the dielectric interface between metal particles is higher for ``far-side'' excitation than ``near-side''. This is reasonably consistent with the observed enhancement for silver islands on SiO2. The modeling results are supported by a simple analytical model based on Fresnel reflection at the interface, which suggests that the additional SERS signal is caused by near-field enhancement of the electric field due to the phase shift at the dielectric interface.

  18. A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, M. J.

    2016-07-01

    Kuebler et al. (2006) identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster et al. 2013). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler et al. (2006), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo91) impacting Al foil. Powdered San Carlos olivine (grain size 1-10 μm) was fired at a range of impact speeds from 0.6 to 6.1 km s-1 (peak shock pressures 5-86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than ~5 km s-1. The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65-86 GPa). At speeds around 6 km s-1 (peak shock pressures ~86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster et al. (2013) but of twice the magnitude.

  19. Spectroscopic and structural studies on lactose species in aqueous solution combining the HATR and Raman spectra with SCRF calculations.

    PubMed

    Márquez, María Jimena; Brizuela, Alicia Beatriz; Davies, Lilian; Brandán, Silvia Antonia

    2015-04-30

    In this work, the α and β isomers, the α-lactose monohydrate and dihydrate and the dimeric species of lactose were studied from the spectroscopic point of view in gas and aqueous solution phases combining the infrared, Horizontal Attenuated Total Reflectance (HATR) and Raman spectra with the density functional theory (DFT) calculations. Aqueous saturated solutions of α-lactose monohydrate and solutions at different molar concentrations of α-lactose monohydrate in water were completely characterized by infrared, HATR and Raman spectroscopies. For all the species in solution, the solvent effects were studied using the solvation polarizable continuum (PCM) and solvation (SM) models and, then, their corresponding solvation energies were predicted. The vibrational spectra of those species in aqueous solution were completely assigned by employing the Scaled Quantum Mechanics Force Field (SQMFF) methodology and the self-consistent reaction field (SCRF) calculations. The stabilities of all those species were studied by using the natural bond orbital (NBO), and atoms in molecules (AIM) calculations.

  20. Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, J.; Iyyapushpam, S.; Nishanthi, S. T.; Malligavathy, M.; Pathinettam Padiyan, D.

    2017-03-01

    CeO2–TiO2 nanocomposites with different Ce weight percentages (2, 4, 6 and 8%) were synthesized by sol-gel method. The influence of cerium inclusion on the structural, morphological, optical properties and elemental composition has been analyzed via XRD, BET surface area analysis, UV-DRS, HR-SEM, EDAX, TEM, Raman and photoluminescence spectra. The structural study showed that all the CeO2–TiO2 nanocomposites crystallized in tetragonal structure with anatase phase. Morphological study revealed that the nanocomposites are in spherical shape with size between 13–15 nm. Raman and PL spectra confirmed the presence and influence of oxygen vacancy defects. The adsorption ability of the CeO2–TiO2 nanocomposites was investigated for congo red dye under dark condition. CeO2–TiO2 nanocomposites have enhanced adsorptive performance in comparison with bare TiO2 nanoparticles. The enhanced adsorptive activity of CeO2–TiO2 nanocomposites is due to the higher surface area of the nanocomposites and oxygen vacancies present in the surface of the nanocomposites. The pseudo second order kinetic equation fits well with higher correlation coefficient compared to the pseudo first order in explaining the reaction kinetics.

  1. Molecular structure, vibrational spectra (FTIR and FT Raman) and natural bond orbital analysis of 4-Aminomethylpiperidine: DFT study.

    PubMed

    Mahalakshmi, G; Balachandran, V

    2014-10-15

    The FT-IR and FT-Raman spectra of 4-Aminomethylpiperidine have been recorded using Perkin Elmer Spectrophotometer and Nexus 670 spectrophotometer. The equilibrium geometrical parameters, various bonding features, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated using Hartree-Fock and density functional method (B3LYP) with 6-311+G(d,p) basis set. Detailed interpretations of the vibrational spectra have been carried out with the aid of the normal coordinate analysis. The spectroscopic and natural bonds orbital (NBO) analysis confirms the occurrence of intra molecular hydrogen bonds, electron delocalization and steric effects. The changes in electron density in the global minimum and in the energy of hyperconjugative interactions of 4-Aminomethylpiperidine (4AMP) were calculated. The theoretical UV-Visible spectrum of the compound was computed in the region 200-400nm by time-dependent TD-DFT approach. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. The dipole moment (μ) and polarizability (α), anisotropy polarizability (Δα) and hyperpolarizability (β) of the molecule have been reported.

  2. The surface-enhanced Raman spectra of aflatoxins: spectral analysis, density functional theory calculation, detection and differentiation.

    PubMed

    Wu, Xiaomeng; Gao, Simin; Wang, Jia-Sheng; Wang, Hongyan; Huang, Yao-Wen; Zhao, Yiping

    2012-09-21

    High-quality surface-enhanced Raman scattering (SERS) spectra of aflatoxin (AF) B(1), B(2), G(1) and G(2) have been acquired using silver nanorod (AgNR) array substrates fabricated by oblique angle deposition method. Significant vibrational peaks are identified on the argon plasma-cleaned substrates, and those peaks agree very well with the Raman spectra calculated by density function theory (DFT). The concentration-dependent SERS detection is also explored. The relationship between the concentration (C) of different AFs and the SERS intensity (I) of the Raman peak at Δν = 1592 cm(-1) is found to follow the general relationship I = AC(α), with α ranging from 0.32 to 0.46 for the four AFs. The limits of detection (LODs) reach 5 × 10(-5) mol L(-1) for AFB(1), 1 × 10(-4) mol L(-1) for AFB(2), and 5 × 10(-6) mol L(-1) for both AFG(1) and AFG(2) in bulk solution, or 6.17 × 10(-16) mol/1.93 × 10(-4) ng of AFB(1), 1.23 × 10(-15) mol/3.88 × 10(-4) ng for AFB(2), 6.17 × 10(-17) mol/2.03 × 10(-5) ng for AFG(1), and 6.17 × 10(-17) mol/2.04 × 10(-5) ng for AFG(2) per laser spot. Principal component analysis (PCA) is used to successfully differentiate these four different kinds of AFs at different concentrations up to their detection limits. The LODs obtained from PCA agree with the LODs obtained by using peak fitting method. With such a low detection limit and outstanding differentiation ability, we prove the possibility of utilizing the SERS detection system as a platform for highly sensitive mycotoxin detection.

  3. Theoretical Study on Surface-Enhanced Raman Spectra of Water Adsorbed on Noble Metal Cathodes of Nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, De-Yin; Pang, Ran; Tian, Zhong-Qun

    2016-06-01

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures. The basis is the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. How it is not completely understood the reason why the relative Raman intensity ratio of the bending and stretching vibrations of interfacial water increases at the very negative potential region. Density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present theoretical results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, the HO-H…Ag(Au) for silver and gold. In acidic solution, a surface electron-hydronium ion-pair was proposed as an adsorption configuration of interfacial water structures on silver and gold cathodes based on density functional theory (DFT) calculations. The EHIP is in the configuration of H3O+(H2O)ne-, where the hydronium H3O+ and the surface electron is separated by water layers. The electron bound in the EHIP can first be excited under light irradiation, subsequently inducing a structural relaxation into a hydrated hydrogen atom. Thus, Raman intensities of the interfacial water in the EHIP species are signifcantly enhanced due to the cathodic polarization on silver and gold electrodes.

  4. Vibrational modes of hydrogens in the proton ordered phase XI of ice: Raman spectra above 400 cm(-1).

    PubMed

    Shigenari, Takeshi; Abe, Kohji

    2012-05-07

    Polarized Raman spectra of the proton ordered phase of ice Ih, i.e., ice XI, were measured above 400 cm(-1) in the range of librational, bending, and stretching vibrations. Vibrational modes in ice XI, of which symmetry is C(2v) (12)(Cmc2(1)), were discussed from the group theoretical point of view. In the librational mode spectra below 1200 cm(-1), several new peaks and clear polarization dependencies were observed. Assignments of the librational modes agree reasonably well with the recent MD calculations by Iwano et al. (J. Phys. Soc. Jpn. 79, 063601 (2010)). In contrast, the spectra for bands above 1200 cm(-1) show no distinct polarization dependencies and the spectra resemble those in ice Ih. In ice XI, however, fine structure composed of several weak peaks appear on the broad bending and the combination band. No direct evidence of the LO-TO splitting of the ν(3) anti-symmetric stretching mode was obtained. It is contrary to the case of the translational modes Abe and Shigenari (J. Chem. Phys. 134, 104506 (2011)). Present results suggest that the influence of the proton ordering in ice XI is weaker than the effect of inter- and intra-molecular couplings in the stretching vibrations of ice Ih.

  5. Independent component analysis-based algorithm for automatic identification of Raman spectra applied to artistic pigments and pigment mixtures.

    PubMed

    González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio

    2015-03-01

    A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.

  6. The Raman spectra and cross-sections of the ν2 band of H 2O, D 2O, and HDO

    NASA Astrophysics Data System (ADS)

    Avila, G.; Tejeda, G.; Fernández, J. M.; Montero, S.

    2004-02-01

    We report the experimental Raman spectra of the ν2 band of H 2O, D 2O, and HDO in the vapor phase at room temperature. A complete interpretation of the Raman intensities is carried out employing the variational rovibrational wavefunctions obtained from a Hamiltonian in Radau coordinates and an ab initio polarizability surface at 514.5 nm. We show the importance of the rotation-vibration coupling to obtain the correct line intensities. Several tables with the assignments of the individual rotational-vibrational transitions and their Raman scattering strengths are reported. From these tables, the ν2 Raman spectra can be simulated up to 2000 K for H 2O, and up to 300 K for D 2O and HDO.

  7. Infrared and Raman spectra of DL-aspartic acid nitrate monohydrate

    NASA Astrophysics Data System (ADS)

    Rajkumar, B. J. M.; Ramakrishnan, V.; Rajaram, R. K.

    1998-09-01

    Infrared and Raman spectral studies of DL-aspartic acid nitrate monohydrate help to determine the influence of extensive intermolecular hydrogen bonding in the aspartic acid crystal. The presence of the carbonyl rather than the carboxylic group indicates that the molecule is ionic. The shifting of several group frequencies in the molecule confirms extensive hydrogen bonding. The anion fundamentals however continue to be degenerate. This indicates that its symmetry is unaffected in the molecule.

  8. Raman Spectra of Interchanging β lactamase Inhibitor Intermediates on the Millisecond Time Scale

    PubMed Central

    Torkabadi, Hossein Heidari; Che, Tao; Shou, Jingjing; Shanmugam, Sivaprakash; Crowder, Michael W.; Bonomo, Robert A.; Pusztai-Carey, Marianne; Carey, Paul R.

    2013-01-01

    Rapid mix - rapid freeze is a powerful method to study the mechanisms of enzyme-substrate reactions in solution. Here we report a protocol that combines this method with normal (non-resonance) Raman microscopy to enable us to define molecular details of intermediates at early time points. With this combined method, SHV-1, a class A β-lactamase, and tazobactam, a commercially available β-lactamase inhibitor, were rapidly mixed on the millisecond time-scale, then were flash-frozen by injecting into an isopentane solution surrounded by liquid nitrogen. The “ice” was finally freeze-dried and characterized by Raman microscopy. We found that, in solution at 25 milliseconds, the reaction is almost complete giving rise to a major population composed of the trans-enamine intermediate. Between 25 – 500 milliseconds, minor populations of protonated imine are detected, that have previously been postulated to precede enamine intermediates. However, within 1 second, the imines are converted entirely to enamines. Interestingly, with this method, we can measure directly the turnover number of SHV-1 and tazobactam. At 1 : 4 ratio (enzyme : inhibitor) or greater, the enzyme is completely inhibited, a number that agrees with the turnover number derived from steady-state kinetic methods. This application, employing non-intensity enhanced Raman spectroscopy, provides a general and effective route to study the early events in enzyme-substrate reactions. PMID:23406484

  9. Experimental and density functional theory study of Raman and SERS spectra of 5-amino-2-mercaptobenzimidazole.

    PubMed

    Chen, Yufeng; Yang, Jin; Li, Zonglong; Li, Ran; Ruan, Weidong; Zhuang, Zhiping; Zhao, Bing

    2016-01-15

    Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulations were employed to study 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules. Ag colloids were used as SERS substrates which were prepared by using hydroxylamine hydrochloride as reducing agent. Raman vibration modes and SERS characteristic peaks of 5-A-2MBI were assigned with the aid of DFT calculations. The molecular electrostatic potential (MEP) of 5-A-2MBI was used to discuss the possible adsorption behavior of 5-A-2MBI on Ag colloids. The spectral analysis showed that 5-A-2MBI molecules were slightly titled via the sulfur atoms adhering to the surfaces of Ag substrates. The obtained SERS spectral intensity decreased when lowering the 5-A-2MBI concentrations. A final detection limit on the concentration of 5×10(-7) mol · L(-1) was gained. SERS proved to be a simple, fast and reliable method for the detection and characterization of 5-A-2MBI molecules.

  10. Classification model based on Raman spectra of selected morphological and biochemical tissue constituents for identification of atherosclerosis in human coronary arteries.

    PubMed

    Peres, Marines Bertolo; Silveira, Landulfo; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu Tavares; Pasqualucci, Carlos Augusto

    2011-09-01

    This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.

  11. Influence of the shaking time on the forensic analysis of FTIR and Raman spectra of spray paints.

    PubMed

    Muehlethaler, Cyril; Massonnet, Geneviève; Buzzini, Patrick

    2014-04-01

    In order to decide if replicated measurements of a trace fall within the intra-variability expected for reference paint samples, a forensic scientist has to understand and integrate all reasonable sources of variation. The origins of such variation in spectra can be various, but mainly include differences in components distribution (homogeneity of spraying) or differences originating from the manufacturing process (production batches). Instrumental variation can also be problematic for non-successive measurements. Infrared and Raman spectra were collected to study the homogeneity of the paint distribution after shaking a spray can for times of 0, 1, 2, 3, 4 and 5min. The results confirm that differences arise in both the spectroscopic techniques used in this study. Mainly, this survey shows that the problematic of shaking is particularly important when the pigment content can be detected from spray paint samples within the infrared domain. In these situations, the signal from the pigment might produce strong absorptions that vary with shaking time, leading to differences in relative intensities with respect to those attributed to the binder. For Raman spectroscopy, it has been shown that a gradient of pigment concentration is observable in some samples depending on the shaking time. The proportion of the signal due to the pigment increases with shaking times from 0 to 1min and diminishes afterwards, to finally reach stabilization around 3min of shaking. Not all samples are affected by these differences and it should always be evaluated on a case-by-case basis. From a statistical point-of-view, principal component analyses of the replicates show that the spectra are reproducible after 3min of shaking.

  12. Raman scattering spectra, magnetic and ferroelectric properties of BiFeO3-CoFe2O4 nanocomposite thin films structure

    NASA Astrophysics Data System (ADS)

    Tyagi, Mintu; Kumari, Mukesh; Chatterjee, Ratnamala; Sharma, Puneet

    2014-09-01

    Multiferroic (1-x)BiFeO3(BFO)-xCoFe2O4(CFO) (x=0 and 0.1) nanocomposite thin films were deposited on ITO coated glass using sol-gel spin coating technique. X-ray diffraction and transmission electron microscopy examinations confirm the coexistence of both perovskite BFO and spinel CFO phases. The effect of addition of CFO in BFO matrix has been studied on Raman spectra, magnetic and ferroelectric properties. BFO/CFO nanocomposite showed good magnetic behavior (Ms 40.3 emu/cm3, Mr 12.9 emu/cm3, Hc 90 Oe) with no change in ferroelectric properties. The strain analysis carried out by Raman spectroscopy reveals that both BFO and CFO bands are found to be strained in BFO/CFO composite nanostructure. The strain of the bands is discussed on the basis of lattice mismatch (interfacial stress) between CFO (a=0.839 nm) and BFO (a=0.396 nm) phases.

  13. Vibrational frequency analysis, FT-IR and Laser-Raman spectra, DFT studies on ethyl (2E)-2-cyano-3-(4-methoxyphenyl)-acrylate.

    PubMed

    Sert, Yusuf; Sreenivasa, S; Doğan, Hatice; Mohan, N R; Suchetan, P A; Ucun, Fatih

    2014-09-15

    The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of ethyl (2E)-2-cyano-3-(4-methoxyphenyl)-acrylate in solid phase have been recorded. Its theoretical vibrational frequencies, IR intensities, Raman activities and optimized geometric parameters (bond lengths and bond angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: the highly parameterized empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA4 software. The optimized geometric parameters and vibrational frequencies have been seen to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.

  14. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine).

    PubMed

    Singh, J S

    2015-02-25

    FT-IR (400-4000 cm(-1)) and Raman spectra (200-4000 cm(-1)) of uracil and 5-methyluracil (thymine) have been recorded and analyzed. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-methyluracil (thymine) by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, most of the B3LYP/6-311++G(∗∗) vibrational frequencies are in excellent agreement with the available experimental assignments and helped to propose in the reassignments of some missing frequencies in experimental study. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a') and non-planar (a″) for all 39 normal vibrational modes of 5-methyluracil are given by 26a'+13a″, of which 30 modes (21a'+9a″) correspond to the uracil moiety and 9 modes (5a'+4a″) to the CH3 group. Consistent assignments have been made for the internal modes of CH3 group, especially for the anti-symmetric CH3 stretching and bending modes. A possible explanation could be the planarity of pyrimidine ring and non-planarity at carbon site of methyl group which might cause the splitting of frequencies including three components due to the substitution of CH3 group at the site of C5 atom on pyrimidine ring of uracil. The three non-equivalent CH bonds of CH3 group are

  15. Electronic absorption and resonance Raman spectra of large linear carbon clusters isolated in solid argon.

    PubMed

    Szczepanski, J; Fuller, J; Ekern, S; Vala, M

    2001-03-15

    Neutral and anionic carbon clusters have been generated via a laser-induced graphite-based plasma and deposited in a solid argon matrix. Anionic clusters were formed from neutral clusters by using crossed electron/carbon cluster beams. Thermal annealing (to 36 K) resulted in the aggregation of the smaller carbon species, leading to the formation of long chain neutral and anionic clusters. Spectroscopic measurements in the ultraviolet, visible, near-infrared and infrared regions revealed a series of bands attributable to a homologous set of odd-numbered C5-C29 neutral clusters and even-numbered C6(-)-C36- anionic clusters. Good agreement is found for the band positions of carbon chains containing odd C15-C21 neutrals and even C6(-)-C22- anions, with species previously identified by Maier and coworkers using mass selection or laser vaporization, followed by neon matrix isolation. Resonance Raman frequencies for the neutral C17, C21 and C23 species are shown to be consistent with the above attributions. Density functional theory calculations agree well with the observed bands. It is found that certain low frequency Raman stretching frequencies decrease in a predictable way with increasing chain length. Comparison of the 0(0)0 absorption transitions of the even C18(-)-C36- anionic clusters with the 'unidentified' infrared (UIR) interstellar emission bands suggests that the electronic emission from specific long chain carbon anions may contribute to the some of the UIR bands.

  16. High-pressure Raman study of vibrational spectra in crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro

    1993-01-01

    We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.

  17. The 2ν{sub 3} Raman overtone of sulfur hexafluoride: Absolute spectra, pressure effects, and polarizability properties

    SciTech Connect

    Chrysos, M. Rachet, F.; Kremer, D.

    2014-03-28

    Of the six normal vibrations of SF{sub 6}, ν{sub 3} has a key role in the mechanisms of radiative forcing. This vibration, though inactive in Raman, shows up through the transition 2ν{sub 3} allowing for a complementary view on the asymmetric stretch of the molecule. Here, we look back into this topic, which has already caught some interest in the past but with some points been left out. We make a systematic incoherent-light-scattering analysis of the overtone with the use of different gas pressures and polarization orientations for the incident beam. Absolute-scale isotropic and anisotropic spectra are reported along with natural and pressure-induced widths and shifts, and other spectral features such as the peaks corresponding to the (experimentally indistinguishable) interfering channels E{sub g} and F{sub 2g} hitherto seen solely as two-photon IR-absorption features. We make the first-ever prediction of the SF{sub 6} polarizability second derivative with respect to the ν{sub 3}-mode coordinate and we develop a heuristic argument to explain why the superposition of the three degenerate stretching motions that are related to the ν{sub 3} mode cannot but generate a polarized Raman band.

  18. Phase formation, magnetic properties and Raman spectra of Co-Ti co-substitution M-type barium ferrites

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Huaiwu; Liu, Yinong; Li, Qiang; Zhou, Tingchuan; Yang, Hong

    2015-05-01

    In this paper, Co-Ti ions co-substituted M-type barium ferrite materials [Ba(CoTi)xFe12-2xO19, x = 1.15, 1.20, 1.25 and 1.30] were synthesized by solid-state reaction method. The ferrites, with sintering at 1,200 °C for 4 h, all exhibit the single phase M-type barium ferrite structure. However, there are obvious differences on properties among different amounts of Co-Ti substitution, basing on the same phase formation of M-type barium ferrites. With x increasing from 1.20 to 1.25, magnetic properties, including saturation magnetic flux density ( B s), residual magnetic flux density ( B r), initial permeability ( μ α), saturation magnetization ( M s), coercivity ( H c) and Q-factor, have an obvious change. This is attributing to that Co and Ti occupancies at different sites in the barium ferrite crystalline structure bring the change of magnetocrystalline anisotropy. The appropriate content of Co-Ti substitution makes the magnetocrystalline anisotropy transform from uniaxial to planar anisotropy. Meanwhile, this difference also is confirmed by Raman spectroscopy. The spectra are recorded from 200 to 3,200 cm-1 in the room temperature. The occupancy of Co2+ and Ti4+ ions on the Fe3+ sites causes difference in intensity and Raman bands, which also corroborate the changes of Co-Ti occupation and magnetocrystalline anisotropy from another perspective.

  19. Infrared, Raman and NMR spectra, conformational stability and vibrational assignment of 7,8-Dihydroxy-4-Methylcoumarin.

    PubMed

    Erdogdu, Yusuf; Saglam, Semran

    2014-11-11

    We report a combined some (infrared, Raman and NMR) spectroscopic and quantum chemistry study on 7,8-Dihydroxy-4-Methylcoumarin molecule (78D4MC). The Raman and IR spectra of 78D4MC molecule were recorded and analyzed in the region 3500-50 cm(-1) and 4000-400 cm(-1), respectively. Potential energy scans were performed at the MMFF level of theory. All possible conformers, which are results at the MMFF level theory, were re-computed at the B3LYP functional with cc-pVDZ basis set. The optimized geometrical parameters, harmonic vibrational wavenumbers and NMR chemical shifts of the most stable conformer were calculated at the B3LYP/6-311G(d,p), cc-pVTZ and cc-pVQZ level in the proximity of the isolated molecule. DFT calculations were combined with Pulay's scaled quantum mechanics force field (SQMFF) methodology in order to fit the theoretical wavenumbers to the experimental ones.

  20. Analysis of measured and calculated Raman spectra of indole, 3-methylindole, and tryptophan on the basis of observed and predicted isotope shifts.

    PubMed

    Dieng, Senghane D; Schelvis, Johannes P M

    2010-10-14

    The aromatic amino acid tryptophan plays an important role in protein electron-transfer and in enzyme catalysis. Tryptophan is also used as a probe of its local protein environment and of dynamic changes in this environment. Raman spectroscopy of tryptophan has been an important tool to monitor tryptophan, its radicals, and its protein environment. The proper interpretation of the Raman spectra requires not only the correct assignment of Raman bands to vibrational normal modes but also the correct identification of the Raman bands in the spectrum. A significant amount of experimental and computational work has been devoted to this problem, but inconsistencies still persist. In this work, the Raman spectra of indole, 3-methylindole (3MI), tryptophan, and several of their isotopomers have been measured to determine the isotope shifts of the Raman bands. Density functional theory calculations with the B3LYP functional and the 6-311+G(d,p) basis set have been performed on indole, 3MI, 3-ethylindole (3EI), and several of their isotopomers to predict isotope shifts of the vibrational normal modes. Comparison of the observed and predicted isotope shifts results in a consistent assignment of Raman bands to vibrational normal modes that can be used for both assignment and identification of the Raman bands. For correct assignments, it is important to determine force field scaling factors for each molecule separately, and scaling factors of 0.9824, 0.9843, and 0.9857 are determined for indole, 3MI, and 3EI, respectively. It is also important to use more than one parameter to assign vibrational normal modes to Raman bands, for example, the inclusion of isotope shifts other than those obtained from H/D-exchange. Finally, the results indicate that the Fermi doublet of indole may consist of just two fundamentals, whereas one fundamental and one combination band are identified for the Fermi resonance that gives rise to the doublet in 3MI and tryptophan.

  1. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)

    NASA Astrophysics Data System (ADS)

    Han, H. W.; Yan, X. L.; Dong, R. X.; Ban, G.; Li, K.

    2009-03-01

    In this paper, we show surface-enhanced Raman spectra (SERS) of serums from type II diabetes mellitus and diabetic complication (coronary disease, glaucoma and cerebral infarction), and analyze the SERS through the multivariate statistical methods of principal component analysis (PCA). In particular, we find that there exist many adenines in these serums, which maybe come from DNA (RNA) damage. The relative intensity of the band at 725±2 cm-1 assigned to adenine is higher for patients than for the healthy volunteers; therefore, it can be used as an important ‘fingerprint’ in order to diagnose these diseases. It is also shown that serums from type II diabetes mellitus group, diabetic complication group and healthy volunteers group can be discriminated by PCA.

  2. Effects of Er doping on Raman spectra and on the structural properties of YbMnO{sub 3}

    SciTech Connect

    Sattibabu, Bhumireddi; Bhatnagar, Anil K.

    2015-06-24

    Polycrystalline samples of Yb{sub 1-x}Er{sub x}MnO{sub 3} (x= 0, 0.1 and 0.2) were prepared by a solid state reaction procedure. Detailed crystal structure studies were performed using X-ray diffraction data obtained at room temperature. The application of the Rietveld method confirmed the reported hexagonal P6{sub 3}cm phase. Crystallographic parameters for the pure compounds are in agreement with those found in the literature. Changes in the lattice parameters, unit-cell volume, and polyhedral distortions observed in the compounds are explained as a function of x. Raman spectra show that the phonon peaks of Yb{sub 1-x}Er{sub x}MnO{sub 3} slightly shift to lower frequencies with doping.

  3. Infrared, Raman and NMR spectra, conformational stability, normal coordinate analysis and B3LYP calculations of 5-amino-4-cyano-3-(methylthio)-1H-pyrazole-1-carbothioamide

    NASA Astrophysics Data System (ADS)

    Mohamed, Tarek A.; Hassan, Ali M.; Soliman, Usama A.; Zoghaib, Wajdi M.; Husband, John; Abdelall, Mahmoud M.

    2011-01-01

    The Raman and infrared spectra of solid 5-amino-4-cyano-3-(methylthio)-1H-pyrazole-1-carbothioamide (AMPC, C 6H 7N 5S 2) were measured in the spectral range of 3700-100 cm -1 and 4000-200 cm -1 with a resolution of 4 and 0.5 cm -1, respectively. Aided by normal coordinate analysis and potential energy distributions, a confident vibrational assignment of all fundamentals is proposed herein. As a result of internal rotation around C sbnd N and/or C sbnd S bonds, 32 rotational isomers are suggested for AMPC (C s symmetry). RHF and DFT/B3LYP quantum mechanical calculations including polarization and diffusion functions up to 6-311++G(d,p) basis sets, predict that after complete relaxation of the 32 possible isomers, four structures lie within 1500 cm -1 of the lowest energy conformer. However, vibrational analysis reveals the lowest energy conformer to be the only structure giving all real frequencies. Thus, the only stable conformer of AMPC is shown to have a fully planar skeleton with the NH 2 groups trans to one another. The recorded IR and Raman spectral measurements favor the calculated structural parameters which are further supported by spectral simulation. Additional support is given by 1H and 13C NMR spectra recorded with the sample dissolved in DMSO-d 6 and by predicted chemical shifts at the B3LYP/6-311+G(2d,p) level obtained using the Gauge-Invariant Atomic Orbitals (GIAO) method with and without inclusion of solvent using the Polarizable Continuum Model (PCM). Finally, CH 3, CH 3S, and NH 2 torsional barriers to internal rotation have been investigated using the optimized structural parameters from the B3LYP method with the 6-31G(d) basis set. The results are discussed herein and compared with similar molecules whenever appropriate.

  4. Sensitive marker bands for the detection of spin states of heme in surface-enhanced resonance Raman scattering spectra of metmyoglobin.

    PubMed

    Kitahama, Yasutaka; Egashira, Masatoshi; Suzuki, Toshiaki; Tanabe, Ichiro; Ozaki, Yukihiro

    2014-12-21

    Surface-enhanced resonance Raman scattering (SERRS) spectra of myoglobin (Mb) with various ligands were measured. In the resonance Raman scattering (RRS) spectra, peaks at around 1610 and 1640 cm(-1) have so far been used to discriminate between the heme iron in a high or low spin state. In the SERRS spectra, however, the spin state cannot be distinguished by the corresponding peaks. Alternatively, the intensity ratio of the SERRS peak at 1560 cm(-1) to that at 1620 cm(-1) was applied to detect the spin states sensitively (1.5 × 10(5) times compared with the RRS); namely, a high ratio was obtained from met-Mb in the high spin state at pH ≤ 7 except for in a strong acid solution. The different marker bands between the SERRS and RRS spectra may be due to the enhancement order from the surface selection rule.

  5. Additional Enhancement of Electric Field in Surface-Enhanced Raman Scattering due to Fresnel Mechanism

    PubMed Central

    Jayawardhana, Sasani; Rosa, Lorenzo; Juodkazis, Saulius; Stoddart, Paul R.

    2013-01-01

    Surface-enhanced Raman scattering (SERS) is attracting increasing interest for chemical sensing, surface science research and as an intriguing challenge in nanoscale plasmonic engineering. Several studies have shown that SERS intensities are increased when metal island film substrates are excited through a transparent base material, rather than directly through air. However, to our knowledge, the origin of this additional enhancement has never been satisfactorily explained. In this paper, finite difference time domain modeling is presented to show that the electric field intensity at the dielectric interface between metal particles is higher for “far-side” excitation than “near-side”. This is reasonably consistent with the observed enhancement for silver islands on SiO2. The modeling results are supported by a simple analytical model based on Fresnel reflection at the interface, which suggests that the additional SERS signal is caused by near-field enhancement of the electric field due to the phase shift at the dielectric interface. PMID:23903714

  6. Raman and infrared spectra of GdTb (MoO 4) 3 single crystal in the region 250-1000 cm -1

    NASA Astrophysics Data System (ADS)

    Saleem, S. Sheik; Aruldhas, G.; Bist, H. D.

    Polarized Raman spectra (single crystal) at 300 K and infrared spectra (powder) at 300 and 85 K in the region 250-1000 cm -1 of a binary molybdate of gadolinium and terbium have been recorded. Based on C 2ν symmetry, group theoretical analysis has been carried out and vibrational assignment is proposed. The observed symmetric stretching frequencies of the MoO 2-4 ion points to the absence of resonance vibrational interaction in this system.

  7. Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data

    PubMed Central

    van de Giesen, Nick; Steele-Dunne, Susan C.; Jansen, Jop; Hoes, Olivier; Hausner, Mark B.; Tyler, Scott; Selker, John

    2012-01-01

    Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of this paper is to describe and clarify the advantages and disadvantages of double-ended calibration to achieve such accuracy under field conditions. By measuring backscatter from both ends of the fiber optic cable, one can redress the effects of differential attenuation, as caused by bends, splices, and connectors. The methodological principles behind the double-ended calibration are presented, together with a set of practical considerations for field deployment. The results from a field experiment are presented, which show that with double-ended calibration good accuracies can be attained in the field. PMID:22778596

  8. Shaping femtosecond coherent anti-Stokes Raman spectra using optimal control theory.

    PubMed

    Pezeshki, Soroosh; Schreiber, Michael; Kleinekathöfer, Ulrich

    2008-04-21

    Optimal control theory is used to tailor laser pulses which enhance a femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) spectrum in a certain frequency range. For this aim the optimal control theory has to be applied to a target state distributed in time. Explicit control mechanisms are given for shaping either the Stokes or the probe pulse in the four-wave mixing process. A simple molecule for which highly accurate potential energy surfaces are available, namely molecular iodine, is used to test the procedure. This approach of controlling vibrational motion and delivering higher intensities to certain frequency ranges might also be important for the improvement of CARS microscopy.

  9. An analytical derivative procedure for the calculation of vibrational Raman optical activity spectra

    NASA Astrophysics Data System (ADS)

    Liégeois, Vincent; Ruud, Kenneth; Champagne, Benoît

    2007-11-01

    We present an analytical time-dependent Hartree-Fock algorithm for the calculation of the derivatives of the electric dipole-magnetic dipole polarizability with respect to atomic Cartesian coordinates. Combined with analogous procedures to determine the derivatives of the electric dipole-electric dipole and electric dipole-electric quadrupole polarizabilities, it enables a fully analytical evaluation of the three frequency-dependent vibrational Raman optical activity (VROA) invariants within the harmonic approximation. The procedure employs traditional non-London atomic orbitals, and the gauge-origin dependence of the VROA intensities has, therefore, been assessed for the commonly used aug-cc-pVDZ and rDPS:3-21G basis sets.

  10. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China.

    PubMed

    Chen, Jun-Yuan; Schopf, J William; Bottjer, David J; Zhang, Chen-Yu; Kudryavtsev, Anatoliy B; Tripathi, Abhishek B; Wang, Xiu-Qiang; Yang, Yong-Hua; Gao, Xiang; Yang, Ying

    2007-04-10

    The Early Cambrian (approximately 540 million years old) Meishucun fossil assemblage of Ningqiang County (Shaanxi Province), China, contains the oldest complex skeletonized organisms known in the geological record. We here report the finding in this assemblage of an exquisitely preserved late-stage embryo of a ctenophore ("comb jelly"), its fine structure documented by confocal laser scanning microscopy and shown by Raman spectroscopy to be composed of carbonaceous kerogen permineralized in apatite. In its spheroidal morphology, the presence of eight comb rows and the absence of tentacles, this embryo resembles an adult ctenophore (Maotianoascus octonarius) known from the immediately younger Chengjiang fauna of Yunnan, China. The oldest ctenophore and the only embryonic comb jelly known from the fossil record, this exceptionally well preserved specimen provides important clues about the early evolution of the phylum Ctenophora and of metazoans in general.

  11. Raman spectra and molecular conformation of 2,4,4-trimethyl-2-pentanethiol as a model compound of a hydrophobic group of triton X-100 surfactant

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroatsu; Fukuhara, Koichi

    1986-05-01

    Raman spectra of 2,4,4-trimethyl-2-pentanethiol were measured. The spectral analysis with the normal coordinate treatment indicated that this molecule takes the gauche conformation about the CCCS bond in the solid state and the trans and gauche conformations in the liquid state. The Raman bands due to the totally symmetric C&.zdbnd;C streching vibration of the t-butyl part of the 1,1,3,3-tetramethylbutyl group were found to be important to distinguish the two conformations. These key bands were applied to the interpretation of the Raman spectra of Triton X-100 surfactant which contains the p-(1,1,3,3-tetramethylbutyl)phenoxyl group as a hydrophobic moiety. The 1,1,3,3-tetramethylbutyl group of Triton X-100 molecules is shown to be predominantly in the gauche conformation in the liquid state and in aquaeous solution.

  12. High-temperature, high-pressure Raman spectra and their intrinsic anharmonic effects in the perovskite Pb1-xLaxTiO3

    NASA Astrophysics Data System (ADS)

    Joya, Miryam R.; Barba-Ortega, J.; Pizani, P. S.

    2013-01-01

    Raman spectra of ferroelectric Pb1-xLaxTiO3, in the tetragonal phase of the material and for different La concentrations, were studied for different temperatures and pressures. While temperature was varied from 8 K to transition temperature (Tc) at atmospheric pressure, applied hydrostatic pressure was increased from zero to transition pressure (Pc) at room temperature. Isobaric and isothermal mode-Grüneisen parameters were calculated from the measured Raman spectra, and previously reported coefficients of thermal expansion [Chen et al., J. Am. Ceram. Soc. 88, 1356 (2005)] and bulk moduli. Also the coefficient of intrinsic anharmonicity was calculated. Although the absolute value of Grüneisen parameters strongly depends on the Raman mode under study, all of them grow as La concentration increases.

  13. Signs of the Biological Effect of ~2 μm Low-Intensity Laser Radiation in Raman and Absorption Spectra of Blood

    NASA Astrophysics Data System (ADS)

    Batay, L. E.; Khodasevich, I. A.; Khodasevich, M. A.; Gorbunova, N. B.; Manina, E. Yu.

    2016-09-01

    Local exposure of experimental animals to low-intensity emission from a thulium laser (λ = 1.96 μm) leads to changes in the Raman and IR absorption spectra of blood. This indicates development of systemic effects caused by direct excitation of water molecules by radiation with wavelength ~2 μm, in particular modifi cation of the hemoglobin molecule.

  14. DFT calculations of 2,6-dimethylpyrazine (26DMP) and its complex with chloranilic acid (CLA): Comparison to INS, IR and Raman vibration spectra

    NASA Astrophysics Data System (ADS)

    Pawlukojć, A.; Sobczyk, L.; Prager, M.; Bator, G.; Grech, E.; Nowicka-Scheibe, J.

    2008-12-01

    The inelastic neutron scattering (INS), infrared and Raman spectra of crystalline 2,6-dimethylpyrazine (26DMP) and its complex with chloranilic acid (26DMP·CLA) were measured. Simultaneously the DFT calculations of the molecular structures and frequencies of the normal vibrations were performed by using various functionals. The INS spectra were simulated in the energy range up to 1200 cm -1, on the basis of the calculated frequencies. A very good conformity was obtained between experimental and calculated data with respect to the structure as well as to frequencies, with exception, however, of the CH 3 torsional modes. The structural analysis based on the deviation from the sum of the van der Waals radii showed that the packing of the methyl groups in the 26DMP·CLA complex was markedly stronger than that in the neat 26DMP. However, the DFT calculations overestimated the role of this effect that may be due to a limitation of the applied methods. In addition the anharmonicity of the rotational potential led to the librational energies different from those obtained using a harmonic potential.

  15. Time-Dependent Approach to Resonance Raman Spectra Including Duschinsky Rotation and Herzberg-Teller Effects: Formalism and Its Realistic Applications.

    PubMed

    Ma, Huili; Liu, Jie; Liang, WanZhen

    2012-11-13

    Efficient quantum dynamical and electronic structure approaches are presented to calculate resonance Raman spectroscopy (RRS) with inclusion of Herzberg-Teller (HT) contribution and mode-mixing (Duschinsky) effect. In the dynamical method, an analytical expression for RRS in the time domain is proposed to avoid summation over the large number of intermediate vibrational states. In the electronic structure calculations, the analytic energy-derivative approaches for the excited states within the time-dependent density functional theory (TDDFT), developed by us, are adopted to overcome the computational bottleneck of excited-state gradient and Hessian calculations. In addition, an analytic calculation to the geometrical derivatives of the transition dipole moment, entering the HT term, is also adopted. The proposed approaches are implemented to calculate RR spectra of a few of conjugated systems, phenoxyl radical, 2-thiopyridone in water solution, and free-base porphyrin. The calculated RR spectra show the evident HT effect in those π-conjugated systems, and their relative intensities are consistent with experimental measurements.

  16. Quantum chemical calculations and analysis of FTIR, FT-Raman and UV-Vis spectra of temozolomide molecule

    NASA Astrophysics Data System (ADS)

    Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2015-11-01

    A combined experimental and theoretical study of the structure, vibrational and electronic spectra of temozolomide molecule, which is largely used in the treatment of brain tumours, is presented. FTIR (4000-400 cm-1) and FT-Raman spectra (4000‒50 cm-1) have been recorded and analysed using anharmonic frequency calculations using VPT2, VSCF and CC-VSCF levels of theory within B3LYP/6-311++G(d,p) framework. Anharmonic methods give accurate frequencies of fundamental modes, overtones as well as Fermi resonances and account for coupling of different modes. The anharmonic frequencies calculated using VPT2 and CC-VSCF methods show better agreement with the experimental data. Harmonic frequencies including solvent effects are also computed using IEF-PCM model. The magnitudes of coupling between pair of modes have been calculated using coupling integral based on 2MR-QFF approximation. Intermolecular interactions are discussed for three possible dimers of temozolomide. UV-Vis spectrum, examined in ethanol solvent, is compared with the calculated spectrum at TD-DFT/6-311++G(d,p) level of theory. The electronic properties, such as excitation energy, frontier molecular orbital energies and the assignments of the absorption bands are also discussed.

  17. Furfuryl alcohol—III. Infrared, matrix infrared and Raman spectra and ab initio and normal coordinate calculations

    NASA Astrophysics Data System (ADS)

    Strandman-Long, Liisa; Murto, Juhani

    The i.r. spectra of furfuryl alcohol have been recorded for gaseous and liquid states and in argon and nitrogen matrices, and the i.r. spectrum of the OD deuterated analogue has been recorded in an argon matrix. The Raman spectra of the compounds in the liquid state were also recorded. In particular the modes related to the OH and OD vibrations were studied and the results are discussed. Ab initio STO-3G optimizations were carried out on five conformations of furfuryl alcohol. The rotation of the side group around the CC bond seems to be almost free: an 'orthogonal' conformer being the most stable form. Normal coordinate calculations were carried out on the most stable C s conformer, using the general valence force field, and a vibrational assignment is presented. Force constants taken from the literature were employed for the in-plane vibrations of the furane ring, but for its out-of-plane modes a new force field was developed. This also gave good results for furane.

  18. Raman electron spin-lattice relaxation with the Debye-type and with real phonon spectra in crystals

    NASA Astrophysics Data System (ADS)

    Hoffmann, Stanislaw K.; Lijewski, Stefan

    2013-02-01

    Electron spin-lattice relaxation temperature dependence was measured for Ti2+ (S = 1) and for Cu2+ (S = 1/2) ions in SrF2 single crystal by electron spin echo method in temperature range 4-109 K. The spin relaxation was governed by the two-phonon Raman processes. The relaxation theory is outlined and presented in a form suitable for applying with real phonon spectra. The experimental relaxation results were described using Debye-type phonon spectrum and the real phonon spectrum of SrF2 crystal. The Debye approximation does not fit well the results for SrF2 both at low and at high temperature. The relaxation rate is faster than that predicted by Debye-type phonon spectrum at low temperatures where excess of lattice vibrations over the Debye model exists but is slower at higher temperatures (above 50 K) where density of phonon states continuously decreases when approaching to the maximal acoustic phonon frequency. The expected deviation from Debye approximation was analyzed also for Cu2+ in NaCl and MgSiO3 crystals for which phonon spectra are available. The fitting with the real phonon spectrum allowed us to calculate spin-phonon coupling parameter as 267 cm-1 for Ti2+ and 1285 cm-1 for Cu2+ in SrF2.

  19. Line mixing effects in isotropic Raman spectra of pure N2: a classical trajectory study.

    PubMed

    Ivanov, Sergey V; Boulet, Christian; Buzykin, Oleg G; Thibault, Franck

    2014-11-14

    Line mixing effects in the Q branch of pure N2 isotropic Raman scattering are studied at room temperature using a classical trajectory method. It is the first study using an extended modified version of Gordon's classical theory of impact broadening and shift of rovibrational lines. The whole relaxation matrix is calculated using an exact 3D classical trajectory method for binary collisions of rigid N2 molecules employing the most up-to-date intermolecular potential energy surface (PES). A simple symmetrizing procedure is employed to improve off-diagonal cross-sections to make them obeying exactly the principle of detailed balance. The adequacy of the results is confirmed by the sum rule. The comparison is made with available experimental data as well as with benchmark fully quantum close coupling [F. Thibault, C. Boulet, and Q. Ma, J. Chem. Phys. 140, 044303 (2014)] and refined semi-classical Robert-Bonamy [C. Boulet, Q. Ma, and F. Thibault, J. Chem. Phys. 140, 084310 (2014)] results. All calculations (classical, quantum, and semi-classical) were made using the same PES. The agreement between classical and quantum relaxation matrices is excellent, opening the way to the analysis of more complex molecular systems.

  20. Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Sankey, Otto F.

    2010-02-01

    We describe a technique for calculating the low-frequency mechanical modes and frequencies of a large symmetric biological molecule where the eigenvectors of the Hessian matrix are determined with full atomic detail. The method, which follows order N methods used in electronic structure theory, determines the subset of lowest-frequency modes while using group theory to reduce the complexity of the problem. We apply the method to three icosahedral viruses of various T numbers and sizes; the human viruses polio and hepatitis B, and the cowpea chlorotic mottle virus, a plant virus. From the normal-mode eigenvectors, we use a bond polarizability model to predict a low-frequency Raman scattering profile for the viruses. The full atomic detail in the displacement patterns combined with an empirical potential-energy model allows a comparison of the fully atomic normal modes with elastic network models and normal-mode analysis with only dihedral degrees of freedom. We find that coarse-graining normal-mode analysis (particularly the elastic network model) can predict the displacement patterns for the first few (˜10) low-frequency modes that are global and cooperative.

  1. DFT calculation of vibrational frequencies of clusters in GaAs and the Raman spectra

    NASA Astrophysics Data System (ADS)

    Radhika Devi, V.; Shrivastava, Keshav N.

    2012-09-01

    We have calculated the vibrational frequencies of clusters of Ga and As atoms from the first principles using the density-functional theory (DFT) method and the local-density approximation (LDA). We find that the calculated value of 286.2 cm-1 for a linear cluster of Ga2As2 is very near the experimental value of 292 ± 4 cm-1. The calculated value of 289.4 cm-1 for Ga2As6 (dumb bell) cluster is indeed very near the experimental value. There are strong phonon correlations so that the cluster frequency is within the dispersion relation of the crystal LO value. There is a weak line in the experimental Raman spectrum at 268 cm-1 which is very near the value of 267.3 cm-1 calculated for the Ga2As (triangular) cluster. The weak lines corresponding to the linear bonds provide the strength to the amorphous samples. There are clusters of atoms in the glassy state of GaAs.

  2. Vibrational Raman spectra of hydrogen clathrate hydrates from density functional theory

    NASA Astrophysics Data System (ADS)

    Ramya, K. R.; Venkatnathan, Arun

    2013-03-01

    Hydrogen clathrate hydrates are promising sources of clean energy and are known to exist in a sII hydrate lattice, which consists of H2 molecules in dodecahedron (512) and hexakaidecahedron (51264) water cages. The formation of these hydrates which occur in extreme thermodynamic conditions is known to be considerably reduced by an inclusion of tetrahydrofuran (THF) in cages of these hydrate lattice. In this present work, we employ the density functional theory with a dispersion corrected (B97-D) functional to characterize vibrational Raman modes in the cages of pure and THF doped hydrogen clathrate hydrates. Our calculations show that the symmetric stretch of the H2 molecule in the 51264H2.THF cage is blueshifted compared to the 51264H2 cage. However, all vibrational modes of water molecules are redshifted which suggest reduced interaction between the H2 molecule and water molecules in the 51264H2.THF cage. The symmetric and asymmetric O-H stretch of water molecules in 512H2, 51264H2, and 51264H2.THF cages are redshifted compared with the corresponding guest free cages due to interactions between encapsulated H2 molecules and water molecules of the cages. The low frequency modes contain contributions from contraction and expansion of water cages and vibration of water molecules due to hydrogen bonding and these modes could possibly play an important role in the formation of the hydrate lattice.

  3. Effect of silicate structure on thermodynamic properties of calcium silicate melts: Quantitative analysis of Raman spectra

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun

    2013-05-01

    The distribution of silicate anionic species (Qn units, n=0, 1, 2, 3) and the chemical speciation of oxygen in CaO-SiO2-MO (M=Mn and Mg) slags were investigated by micro-Raman spectroscopic analysis. Furthermore, the thermochemical properties were evaluated using a concentration of free oxygen and a degree of polymerization. A good linear relationship was obtained between sulfide capacity and concentration of free oxygen in the CaO-SiO2 (-MnO) melts at 1500 to 1600 °C. However, even though there was more abundant free oxygen in the CaO-SiO2-MgO system than in the CaO-SiO2 system, the sulfide capacity of the former was lower than the latter, indicating that the sulfur dissolution behavior in the silicate melts cannot be simply explained by the content of free oxygen, because the composition dependency of the stability ratio of oxygen and sulfide ions should be taken into account. The excess free energy of CaO, MgO and MnO linearly decreased as the ln (Q3/Q2) increased. The effect of the degree of polymerization on the excess free energy of mixing of MgO-containing slag was larger than that of MnO-containing slag, which was explained by the difference of the ionization potential between Mn2+ and Mg2+ ions.

  4. Retrieval Of Cloud Pressure And Chlorophyll Content Using Raman Scattering In GOME Ultraviolet Spectra

    NASA Technical Reports Server (NTRS)

    Atlas, Robert (Technical Monitor); Joiner, Joanna; Vasikov, Alexander; Flittner, David; Gleason, James; Bhartia, P. K.

    2002-01-01

    Reliable cloud pressure estimates are needed for accurate retrieval of ozone and other trace gases using satellite-borne backscatter ultraviolet (buv) instruments such as the global ozone monitoring experiment (GOME). Cloud pressure can be derived from buv instruments by utilizing the properties of rotational-Raman scattering (RRS) and absorption by O2-O2. In this paper we estimate cloud pressure from GOME observations in the 355-400 nm spectral range using the concept of a Lambertian-equivalent reflectivity (LER) surface. GOME has full spectral coverage in this range at relatively high spectral resolution with a very high signal-to-noise ratio. This allows for much more accurate estimates of cloud pressure than were possible with its predecessors SBUV and TOMS. We also demonstrate the potential capability to retrieve chlorophyll content with full-spectral buv instruments. We compare our retrieved LER cloud pressure with cloud top pressures derived from the infrared ATSR instrument on the same satellite. The findings confirm results from previous studies that showed retrieved LER cloud pressures from buv observations are systematically higher than IR-derived cloud-top pressure. Simulations using Mie-scattering radiative transfer algorithms that include O2-O2 absorption and RRS show that these differences can be explained by increased photon path length within and below cloud.

  5. Line mixing effects in isotropic Raman spectra of pure N2: A classical trajectory study

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergey V.; Boulet, Christian; Buzykin, Oleg G.; Thibault, Franck

    2014-11-01

    Line mixing effects in the Q branch of pure N2 isotropic Raman scattering are studied at room temperature using a classical trajectory method. It is the first study using an extended modified version of Gordon's classical theory of impact broadening and shift of rovibrational lines. The whole relaxation matrix is calculated using an exact 3D classical trajectory method for binary collisions of rigid N2 molecules employing the most up-to-date intermolecular potential energy surface (PES). A simple symmetrizing procedure is employed to improve off-diagonal cross-sections to make them obeying exactly the principle of detailed balance. The adequacy of the results is confirmed by the sum rule. The comparison is made with available experimental data as well as with benchmark fully quantum close coupling [F. Thibault, C. Boulet, and Q. Ma, J. Chem. Phys. 140, 044303 (2014)] and refined semi-classical Robert-Bonamy [C. Boulet, Q. Ma, and F. Thibault, J. Chem. Phys. 140, 084310 (2014)] results. All calculations (classical, quantum, and semi-classical) were made using the same PES. The agreement between classical and quantum relaxation matrices is excellent, opening the way to the analysis of more complex molecular systems.

  6. Quantum mechanical interpretation of intermolecular vibrational modes of crystalline poly-(R)-3-hydroxybutyrate observed in low-frequency Raman and terahertz spectra.

    PubMed

    Yamamoto, Shigeki; Morisawa, Yusuke; Sato, Harumi; Hoshina, Hiromichi; Ozaki, Yukihiro

    2013-02-21

    Low-frequency vibrational bands observed in the Raman and terahertz (THz) spectra in the region of 50-150 cm(-1) of crystalline powder poly-(R)-3-hydroxybutyrate (PHB) were assigned based on comparisons of the Raman and THz spectra, polarization directions of THz absorption spectra, and their congruities to quantum mechanically (QM) calculated spectra. This combination, Raman and THz spectroscopies and the QM simulations, has been rarely adopted in spite of its potential of reliable assignments of the vibrational bands. The QM simulation of a spectrum has already been popular in vibrational spectroscopies, but for low-frequency bands of polymers it is still a difficult task due to its large scales of systems and a fact that interactions among polymer chains should be considered in the calculation. In this study, the spectral calculations with the aid of the Cartesian-coordinate tensor transfer (CCT) method were applied successfully to the crystalline PHB, which include the explicit consideration of an intermolecular interaction among helical polymer chains. The agreements between the calculations and the experiments are good in both the Raman and THz spectra in terms of spectral shapes, frequencies, and intensities. A Raman active band at 79 cm(-1) was assigned to the intermolecular vibrational mode of the out-of-plane C═O + CH(3) vibration. A polarization state of the corresponding far-infrared absorption band at ∼82 cm(-1), perpendicular to the helix-elongation direction of PHB, was reproduced only under the explicit correction, which indicates that this polarized band originates from the interaction among the polymer chains. The calculation explored that the polarization direction of this band was along the a axis, which is consistent with the direction in which weak intermolecular hydrogen bonds are suggested between the C═O and CH(3) groups of two parallel polymer chains. The results obtained here have confirmed sensitivity of the low

  7. Infrared and Raman spectra, conformational stability, vibration assignment, and ab initio calculations for 3-bromo-3,3-difluoropropene

    NASA Astrophysics Data System (ADS)

    Shen, Shiyu; Guirgis, Gamil A.; Gao, Jian; Durig, James R.

    2001-12-01

    The infrared spectra (3200-50 cm -1) of gaseous and solid and Raman spectra (3200-10 cm -1) of the liquid with qualitative depolarization ratios and solid 3-bromo-3,3-difluoropropene CH 2CHCBrF 2 have been recorded. Both the gauche and cis conformers have been identified in the fluid phase, but the gauche conformer is thermodynamically more stable than the cis rotamer and it is the only rotamer present in the spectrum of the annealed solid. Variable temperature (-105 to -150°C) studies of the infrared spectra of the sample dissolved in liquid krypton has been carried out. From these data, the enthalpy difference has been determined to be 281±28 cm -1 (3.36±0.33 kJ mol -1), with the gauche conformer as the more stable rotamer, which is in agreement with the ab initio predictions at all levels of calculations. It is estimated that there is only 11% of the cis conformer present at an ambient temperature. A complete vibration assignment is proposed for the gauche conformer which is based on infrared band contours, depolarization values, and group frequencies which is supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G (d) calculations. The conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies which have been determined experimentally are compared to those obtained from the ab initio calculations. The results are discussed and compared with the corresponding properties of some similar molecules.

  8. FT-IR and FT-Raman spectra, normal coordinate analysis and ab initio computations of Trimesic acid.

    PubMed

    Mahalakshmi, G; Balachandran, V

    2014-04-24

    The FT-IR and FT-Raman spectra have been recorded of Trimesic acid (1,3,5-benzenetricarboxylic acid, H3BTC). The molecular structure, conformational stability, geometry optimization, vibrational frequencies have been investigated. The total energy calculations of H3BTC were tried for various possible conformers. The spectra were interpreted with the aid of normal coordinate analysis based on ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods and 6-31+G(d,p) basis set level and was scaled using scale factors yielding good agreement between observed and calculated frequencies. Vibrational assignments and Natural bonding orbital (NBO) calculations are performed on the stable monomer of H3BTC using the same level of theory. Intramolecular hydrogen bond exists via COOH group gives the evidence for the formation of dimer entities in the title molecule. UV-VIS spectral analyses of H3BTC have been researched by theoretical calculations. In order to understand electronic transitions of the compound, TD-DFT calculations on electronic absorption spectra in gas phase and solvent (DMSO and Chloroform) were performed. The calculated frontier orbital energies, absorption wavelengths (λ), oscillator strengths (ƒ) and excitation energies (E) for gas phase and solvent (DMSO and Chloroform) are also illustrated. The statistical thermodynamic functions were obtained for the range of temperature 100-1000 K. Reliable vibrational modes associated with H3BTC are made on the basis of total energy distribution (TED) results obtained from scaled quantum mechanical (SQM) method.

  9. Surface-enhanced Raman scattering (SERS) spectra of hemoglobin of mouse and rabbit with self-assembled nano-silver film.

    PubMed

    Kang, Yipu; Si, Minzhen; Zhu, Yanqing; Miao, Lei; Xu, Gang

    2013-05-01

    The nano-silver film was prepared by electrolysis method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to detect the morphology of the nano-silver particles. The SERS spectra of the hemoglobin (rabbit and mouse) on nano-silver film were gained. It could be known from the SERS spectra that the nano-silver films could enhance the Raman signal of the hemoglobin efficiently, and the sodium citrate and PBS create no influence to the SERS spectra of the hemoglobin. Using this electrolysis technique to fabricate highly bio-active, stable, reusable, and low-cost SERS substrate will be useful in the development of hemoglobin detection.

  10. The use of UV, FT-IR and Raman spectra for the identification of the newest penem analogs: solutions based on mathematic procedure and the density functional theory.

    PubMed

    Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M

    2013-02-15

    The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in.

  11. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    NASA Astrophysics Data System (ADS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-10-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.

  12. Molecular structure, natural bond analysis, vibrational and electronic spectra, surface enhanced Raman scattering and Mulliken atomic charges of the normal modes of [Mn(DDTC)2] complex.

    PubMed

    Téllez S, Claudio A; Costa, Anilton C; Mondragón, M A; Ferreira, Glaucio B; Versiane, O; Rangel, J L; Lima, G Müller; Martin, A A

    2016-12-05

    Theoretical and experimental bands have been assigned for the Fourier Transform Infrared and Raman spectra of the bis(diethyldithiocarbamate)Mn(II) complex, [Mn(DDTC)2]. The calculations have been based on the DFT/B3LYP method, second derivative spectra and band deconvolution analysis. The UV-vis experimental spectra were measured in acetonitrile solution, and the calculated electronic spectrum was obtained using the TD/B3LYP method with 6-311G(d, p) basis set for all atoms. Charge transfer bands and those d-d spin forbidden were assigned in the UV-vis spectrum. The natural bond orbital analysis was carried out using the DFT/B3LYP method and the Mn(II) hybridization leading to the planar geometry of the framework was discussed. Surface enhanced Raman scattering (SERS) was also performed. Mulliken charges of the normal modes were obtained and related to the SERS enhanced bands.

  13. Time-resolved coherent anti-Stokes Raman spectroscopy (CARS) and the measurement of vibrational spectra in shock-compressed molecular materials

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.

    1990-01-01

    We present the use of coherent anti-Stokes Raman scattering (CARS) in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N{sub 2}, O{sub 2}, CO, and their mixtures. The experimental spectra are compared to spectra calculated using a semiclassical model for CARS intensities to obtain vibrational frequencies, peak Raman susceptibilities, and linewidths. The derived spectroscopic parameters suggest thermal equilibrium of the vibrational populations is established in less than a few nanoseconds after shock passage. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. 11 refs., 5 figs.

  14. Molecular structure, natural bond analysis, vibrational and electronic spectra, surface enhanced Raman scattering and Mulliken atomic charges of the normal modes of [Mn(DDTC)2] complex

    NASA Astrophysics Data System (ADS)

    Téllez S., Claudio A.; Costa, Anilton C.; Mondragón, M. A.; Ferreira, Glaucio B.; Versiane, O.; Rangel, J. L.; Lima, G. Müller; Martin, A. A.

    2016-12-01

    Theoretical and experimental bands have been assigned for the Fourier Transform Infrared and Raman spectra of the bis(diethyldithiocarbamate)Mn(II) complex, [Mn(DDTC)2]. The calculations have been based on the DFT/B3LYP method, second derivative spectra and band deconvolution analysis. The UV-vis experimental spectra were measured in acetonitrile solution, and the calculated electronic spectrum was obtained using the TD/B3LYP method with 6-311G(d, p) basis set for all atoms. Charge transfer bands and those d-d spin forbidden were assigned in the UV-vis spectrum. The natural bond orbital analysis was carried out using the DFT/B3LYP method and the Mn(II) hybridization leading to the planar geometry of the framework was discussed. Surface enhanced Raman scattering (SERS) was also performed. Mulliken charges of the normal modes were obtained and related to the SERS enhanced bands.

  15. Raman spectra of vibrational and librational modes in methane clathrate hydrates using density functional theory

    NASA Astrophysics Data System (ADS)

    Ramya, K. R.; Pavan Kumar, G. V.; Venkatnathan, Arun

    2012-05-01

    The sI type methane clathrate hydrate lattice is formed during the process of nucleation where methane gas molecules are encapsulated in the form of dodecahedron (512CH4) and tetrakaidecahedron (51262CH4) water cages. The characterization of change in the vibrational modes which occur on the encapsulation of CH4 in these cages plays a key role in understanding the formation of these cages and subsequent growth to form the hydrate lattice. In this present work, we have chosen the density functional theory (DFT) using the dispersion corrected B97-D functional to characterize the Raman frequency vibrational modes of CH4 and surrounding water molecules in these cages. The symmetric and asymmetric C-H stretch in the 512CH4 cage is found to shift to higher frequency due to dispersion interaction of the encapsulated CH4 molecule with the water molecules of the cages. However, the symmetric and asymmetric O-H stretch of water molecules in 512CH4 and 51262CH4 cages are shifted towards lower frequency due to hydrogen bonding, and interactions with the encapsulated CH4 molecules. The CH4 bending modes in the 512CH4 and 51262CH4 cages are blueshifted, though the magnitude of the shifts is lower compared to modes in the high frequency region which suggests bending modes are less affected on encapsulation of CH4. The low frequency librational modes which are collective motion of the water molecules and CH4 in these cages show a broad range of frequencies which suggests that these modes largely contribute to the formation of the hydrate lattice.

  16. [Study on the Recognition of Liquor Age of Gujing Based on Raman Spectra and Support Vector Regression].

    PubMed

    Wang, Guo-xiang; Wang, Hai-yan; Wang, Hu; Zhang, Zheng-yong; Liu, Jun

    2016-03-01

    It is an important and difficult research point to recognize the age of Chinese liquor rapidly and exactly in the field of liquor analyzing, which is also of great significance to the healthy development of the liquor industry and protection of the legitimate rights and interests of consumers. Spectroscopy together with the pattern recognition technology is a preferred method of achieving rapid identification of wine quality, in which the Raman Spectroscopy is promising because of its little affection of water and little or free of sample pretreatment. So, in this paper, Raman spectra and support vector regression (SVR) are used to recognize different ages and different storing time of the liquor of the same age. The innovation of this paper is mainly reflected in the following three aspects. First, the application of Raman in the area of liquor analysis is rarely reported till now. Second, the concentration of studying the recognition of wine age, while most studies focus on studying specific components of liquor and studies together with the pattern recognition method focus more on the identification of brands or different types of base wine. The third one is the application of regression analysis framework, which cannot be only used to identify different years of liquor, but also can be used to analyze different storing time, which has theoretical and practical significance to the research and quality control of liquor. Three kinds of experiments are conducted in this paper. Firstly, SVR is used to recognize different ages of 5, 8, 16 and 26 years of the Gujing Liquor; secondly, SVR is also used to classify the storing time of the 8-years liquor; thirdly, certain group of train data is deleted form the train set and put into the test set to simulate the actual situation of liquor age recognition. Results show that the SVR model has good train and predict performance in these experiments, and it has better performance than other non-liner regression method such

  17. Effects of collective excitations on the G-band and RBM modes in the Raman spectra of metallic unfilled and filled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gayen, Saurabh; Behera, Surjyo; Bose, Shyamalendu

    2006-03-01

    The Raman spectra of a single-wall carbon nanotube (SWNT) consist of three types of modes; (i) the high frequency G-mode arising out of tangential oscillations of carbon atoms, (ii) D-mode due to the defects in the nanotube and (iii) the low frequency radial breathing mode (RBM) resulting out of radial oscillations of the carbon atoms. In this paper we theoretically investigate the effects of collective oscillations of electrons (plasmons) on the G and RBM modes in the Raman spectra of a filled and unfilled metallic SWNT. Inclusion of plasmon and the filling (rattler) atom produces four peaks in the Raman spectra in general. The positions and relative strengths of the Raman peaks [1] depend upon phonon frequencies of the nanotube and that of the filling atoms, the plasmon frequency, the strength of the electron-phonon interaction, strength of the interactions between the nanotube phonons and rattler phonon and radius of the nanotube [2]. Usually the intensity of the G-mode is higher than that of RBM. For heavier filling atoms the frequency of the rattler phonon is lower in value, which may broaden the peak to such an extent that it may disappear in the background spectrum altogether. 1.S.M. Bose et al., Physica B 351, 129 (2004) 2. S.M. Bose, S.Gayen and S. Behera, Phys. Rev. B 72, 153402 (2005).

  18. [Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].

    PubMed

    Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo

    2015-01-01

    Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space.

  19. State-by-state investigation of destructive interference in resonance Raman spectra of neutral tyrosine and the tyrosinate anion with the simplified sum-over-states approach.

    PubMed

    Cabalo, Jerry B; Saikin, Semion K; Emmons, Erik D; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2014-10-16

    UV resonance Raman scattering is uniquely sensitive to the molecular electronic structure as well as intermolecular interactions. To better understand the relationship between electronic structure and resonance Raman cross section, we carried out combined experimental and theoretical studies of neutral tyrosine and the tyrosinate anion. We studied the Raman cross sections of four vibrational modes as a function of excitation wavelength, and we analyzed them in terms of the contributions of the individual electronic states as well as of the Albrecht A and B terms. Our model, which is based on time-dependent density functional theory (TDDFT), reproduced the experimental resonance Raman spectra and Raman excitation profiles for both studied molecules with good agreement. We found that for the studied modes, the contributions of Albrecht's B terms in the Raman cross sections were important across the frequency range spanning the L(a,b) and B(a,b) electronic excitations in tyrosine and the tyrosinate anion. Furthermore, we demonstrated that interference with high-energy states had a significant impact and could not be neglected even when in resonance with a lower-energy state. The symmetry of the vibrational modes served as an indicator of the dominance of the A or B mechanisms. Excitation profiles calculated with a damping constant estimated from line widths of the electronic absorption bands had the best consistency with experimental results.

  20. Spin-phonon interactions of multiferroic Bi4Ti3O12-BiFeO3 ceramics: Low-temperature Raman scattering and infrared reflectance spectra investigations

    NASA Astrophysics Data System (ADS)

    Jiang, P. P.; Zhang, X. L.; Chang, P.; Hu, Z. G.; Bai, W.; Li, Y. W.; Chu, J. H.

    2014-04-01

    Optical phonons of multiferroic Bi4Ti3O12-BiFeO3 ceramic have been investigated by low temperature Raman scattering and infrared reflectance spectra. Anomalies at about 85 K can be observed from the temperature dependence of the Raman and infrared modes, which arise from spin-phonon interaction during antiferromagnetic to paramagnetic phase transition. It was found that the change of exchange interaction in magnetic phase transition can be induced by Fe-O-Fe octahedral tilting driven from the A-site atoms. Moreover, ferroelectricity-related displacement of Bismuth atoms suggests the coupling of magnetic and ferroelectric orders.

  1. Analysis of the Raman spectra of Ca(2+)-dipicolinic acid alone and in the bacterial spore core in both aqueous and dehydrated environments.

    PubMed

    Kong, Lingbo; Setlow, Peter; Li, Yong-qing

    2012-08-21

    The core of dormant bacterial spores suspended in water contains a large depot of dipicolinic acid (DPA) chelated with divalent cations, predominantly Ca(2+) (CaDPA), and surrounded by water molecules. Since the intensities of the vibration bands of CaDPA molecules depend significantly on the water content in the CaDPA's environment, the Raman spectra of CaDPA in spores may allow the determination of the spore core's hydration state. We have measured Raman spectra of single spores of three Bacillus species in different hydration states including the spores suspended in water, air-dried and vacuum-dried. As a comparison, we also measured the Raman spectra of CaDPA and DPA in different forms including in aqueous solution, and as amorphous powder and crystalline form. We also monitored changes in Raman spectra of an individual spore during dehydration under vacuum. The results indicated that (1) the state of CaDPA in the core of a spore suspended in water is close to an amorphous solid or a glassy state, but still mixed with water molecules; (2) the ratio of intensities of Raman bands at 1575 and 1017 cm(-1) (I(1575)/I(1017)) is sensitive to the water content in the CaDPA's environment; (3) variations in I(1575)/I(1017) are small (∼4%) in a population of dormant Bacillus spores suspended in water; and (4) the I(1575)/I(1017) ratio increases significantly during dehydration under vacuum. Consequently, measurement of the I(1575)/I(1017) ratio of CaDPA in spores may allow a qualitative estimation of the degree of hydration of the bacterial spore's core.

  2. High resolution infrared and Raman spectra of {sup 13}C{sup 12}CD{sub 2}: The CD stretching fundamentals and associated combination and hot bands

    SciTech Connect

    Di Lonardo, G.; Fusina, L. Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-09-07

    Infrared and Raman spectra of mono {sup 13}C fully deuterated acetylene, {sup 13}C{sup 12}CD{sub 2}, have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm{sup −1} in the region 1800–7800 cm{sup −1}. Sixty new bands involving the ν{sub 1} and ν{sub 3} C—D stretching modes also associated with the ν{sub 4} and ν{sub 5} bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν{sub 1} fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm{sup −1}. The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ{sub 4} + υ{sub 5} up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ{sub 4} = 2 and υ{sub 5} = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm{sup −1}, of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν{sub 2} manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows

  3. The biomolecule of 5-bromocytosine: FT-IR and FT-Raman spectra and DFT calculations. Identification of the tautomers in the isolated state and simulation the spectra in the solid state.

    PubMed

    Alcolea Palafox, M; Rastogi, V K; Kumar, Satendra; Joe, Hubert

    2013-07-01

    An accurate assignment of the IR spectrum in Ar matrix of 5-bromocytosine and of the IR and Raman spectra in the solid state was carried out. For this purpose Density functional calculations (DFTs) were performed to clarify wavenumber assignments of the experimental observed bands. The calculated values were scaled using scaling equations and they were compared with IR and Raman experimental data. Good reproduction of the experimental wavenumbers is obtained and the% error is very small in the majority of cases. In the isolated state all the tautomer forms of 5-bromocytosine were determined and optimized. The wavenumbers corresponding to C1 and C2b tautomers were identified and assigned in the IR experimental spectrum reported in Ar matrix. Our study confirms the existence of at least two tautomers, the amino-oxo and the amino-hydroxy in the isolated state. In the solid state the FT-IR and FT-Raman spectra of 5-bromocytosine in the powder form were recorded in the region 400-4000 cm(-1) and 50-3500 cm(-1), respectively. The unit cell found in the crystal was simulated as a tetramer form in three tautomers. Thus, it has been possible to assign all the 33 normal modes of vibration. The study indicates that the features, that are the characteristic of the vibrational spectra of cytosine, are retained by the spectra of 5-bromocytosine and it exists in the solid phase in the amino-oxo form.

  4. Gas Phase Raman Spectra of Butadiene and BUTADIENE-d_{6} and the Internal Rotation Potential Energy Function

    NASA Astrophysics Data System (ADS)

    Boopalachandran, Praveenkumar; Laane, Jaan; Craig, Norman C.

    2009-06-01

    The Raman spectrum of butadiene has been previously reported by Carreira and by Engeln and co-workers. Both studies reported a series of bands corresponding to double quantum jumps of ν_{13}, the internal rotation vibration, of the trans rotamer. Both studies also reported weaker bands assigned to the higher energy conformer. Carriera assigned these to the cis form while Engeln assigned them to the gauche form. Recent high level calculations by Feller and Craig also assign the higher energy form as gauche. In the present study we report the gas phase Raman spectrum of butadiene and its d_{6} isotopomer at both 25^°C and 260^°C. Several new spectral features in the 330 to 210 cm^{-1} region were observed and the effect of heating on the band intensities was studied. In addition, combination bands were observed in the 630 to 690 cm^{-1} (ν_{12} + ν_{13}) and 1130 to 1180 cm^{-1} (ν_{10} + ν_{13}) regions. A periodic potential energy function with V_{1}, V_{2}, V_{3}, V_{4}, and V_{6} terms was utilized to fit the data. This function was compared to the results from previous work and to the theoretical calculation. L. Carreira, J. Phys. Chem. 62, 3851 (1975). R. Engeln, D. Consalvo, and J. Reuss, J. Chem. Phys. 160, 427 (1992). D. Feller and N. C. Craig, J. Phys. Chem. 113, 1601 (2009).

  5. Simulation of the EXAFS and Raman spectra of InxGa1-xN utilizing the equation of motion routine of FEFF8.

    NASA Astrophysics Data System (ADS)

    Katsikini, M.; Pinakidou, F.; Paloura, E. C.; Arvanitidis, J.; Ves, S.; Reinholz, U.; Papadomanolaki, E.; Iliopoulos, E.

    2016-05-01

    A combined analysis of EXAFS and Raman spectra is applied for the study of InxGa1-xN alloys with 0.3Raman spectra that resemble the vibrational density of states. On the other hand, theoretical simulation of the Raman spectra using the Equation of Motion routine of FEFF8 provides the vibrational component of the Debye-Waller factor (DWF). The static disorder component of the DWFs was obtained by fitting the Ga and In K-edge EXAFS spectra. The analysis revealed that the nearest neighbor distances of the 1st and 2nd shell deviate from the values predicted by the law of Vegard and the virtual crystal approximation. The static disorder in the first nearest neighboring shell (In-N and Ga-N) is null whereas in the cation-cation neighboring shells the static component is generally smaller than the vibrational.

  6. Shift in low-frequency vibrational spectra measured in-situ at 600 °C by Raman spectroscopy of zirconia developed on pure zirconium and Zr-1%Nb alloy

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Lesniak, M.; Jadach, R.; Sitarz, M.; Jasinski, J. J.; Grosseau-Poussard, J.-L.

    2016-12-01

    In this study displacement of monoclinic bands of zirconia were investigated in the function of oxidation time using the Raman spectroscopy technique. Oxidations were performed on pure zirconium and zirconium alloy in-situ at 600 °C for 6 h. Analysis of the absolute intensities as well as the positions of the characteristic for monoclinic and tetragonal phase Raman bands were performed. Reported results has highlighted that monoclinic phase of zirconia undergoes a continuous band displacement, individual for each Raman mode. Recorded shift of low frequency vibrational spectra of monoclinic phase was employed to study stress developed in zirconia during high temperature oxidation - herein called as growing stress. In addition, based on the Raman band intensity we discuss observed transition of the metastable tetragonal phase to stable monoclinic phase. Reported results, for the first time showed that studied metals (pure zirconium and its alloy) behave similarly in terms of band shift. However the resulting value of growing stress associated to the band displacement is slightly different in regards of individual band and studied sample.

  7. A novel europium (III) nitridoborate Eu3[B3N6]: Synthesis, crystal structure, magnetic properties, and Raman spectra

    NASA Astrophysics Data System (ADS)

    Aydemir, Umut; Kokal, Ilkin; Prots, Yurii; Förster, Tobias; Sichelschmidt, Jörg; Schappacher, Falko M.; Pöttgen, Rainer; Ormeci, Alim; Somer, Mehmet

    2016-07-01

    A novel europium (III) nitridoborate, Eu3[B3N6], was successfully synthesized by oxidation of Eu3II[BN2]2 with Br2 at 1073 K. The compound crystallizes in the trigonal space group R 3 barc (No:167) with a=11.9370(4) Å, c=6.8073(4) Å, and Z=6. The crystal structure of Eu3[B3N6] consists of isolated, planar cyclic [B3N6]9- units which are charge-balanced by Eu3+ cations. The oxidation state of Eu was investigated by Mössbauer spectroscopy, electron spin resonance (ESR) spectroscopy, and quantum chemical calculations. The 151Eu Mössbauer spectroscopic measurement at 77 K reveals that the main signal at δ=0.93(7) mm/s is originating from trivalent Europium. Eu3[B3N6] showed no ESR signal in accordance with a non-magnetic (J=0) 7F0 ground state of the 4f6 configuration. Quantum chemical calculations find six electrons in the 4f subshell (4f6) of Eu indicating an oxidation state of +3. We present for the first time the vibrational spectra of a compound with cyclic trimer [B3N6]9- moieties. The Raman spectrum of Eu3[B3N6] is in good agreement with the predicted number of modes for the spectroscopically relevant cyclic [B3N6]9- group with D3h symmetry.

  8. A comparative study of the infrared and Raman spectra of aniline and o-, m-, p-phenylenediamine isomers.

    PubMed

    Badawi, Hassan M; Förner, Wolfgang; Ali, Shaikh A

    2013-08-01

    The structural stabilities of o-, m- and p-phenylenediamine (PDA) isomers were investigated by DFT-B3LYP and ab initio MP2 calculations with the 6-311G(**) basis set. From the calculations the three isomers were predicted to exist predominantly in an anti (transoid) structure. In the o-isomer, the syn (cisoid) form is calculated to turn to the anti (transoid) form with the two HNCC torsional angles of about 44 and 10° and the NH2 inversion barrier of 3-4 kcal/mol. The CCNH torsional angles in the m-PDA and p-PDA isomers were calculated to be about 25-26° as compared to 20° in aniline. A comparison of the Raman spectra of the three PDA-s with those of aniline shows the high sensitivity of the ring breathing mode to the nature of substituents in the aniline ring. The vibrational wavenumbers were computed at the DFT-B3LYP for aniline and the o-, m- and p-PDA isomers for the purpose of comparison. Complete vibrational assignments were made on the basis of normal coordinate analyses and potential energy distributions for aniline and the o-, m- and p-PDA molecules.

  9. 2D correlation analysis of the magnetic excitations in Raman spectra of HoMnO3

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Huyen; Nguyen, Thi Minh Hien; Chen, Xiang-Bai; Yang, In-Sang; Park, Yeonju; Jung, Young Mee

    2014-07-01

    2D correlation analysis is performed on the temperature-dependent Raman spectra of HoMnO3 thin films. As the temperature of the HoMnO3 thin films decrease, the depletion of the spectral weight at 336, 656, and 1304 cm-1 occurs at higher temperatures than the increase of the intensity at 508, 766, and 945 cm-1 below ∼70 K, the Néel temperature. The power spectrum asserts that all the changes in the spectral weight are strongly correlated. Most of the temperature-induced spectral changes of HoMnO3 occur at lower temperature than 70 K, while there is slight depletion of the spectral weight at 336, 656, and 1304 cm-1 even at higher temperature than 70 K. PCA scores and loading vectors plots also support these 2D correlation results. Our 2D correlation analysis supports the existence of the short range spin correlations between Mn sites in HoMnO3 even above the Néel temperature.

  10. Thermal characteristics, Raman spectra and structural properties of newlurite glasses within the Bi{sub 2}O{sub 3}-TiO{sub 2}-TeO{sub 2} systemp. 3

    SciTech Connect

    Udovic, M.; Thomas, P. . E-mail: philippe.thomas@unilim.fr; Mirgorodsky, A.; Durand, O.; Soulis, M.; Masson, O.; Merle-Mejean, T.; Champarnaud-Mesjard, J.C.

    2006-10-15

    Within the Bi{sub 2}O{sub 3}-XO{sub 2}-TeO{sub 2} (X=Ti, Zr) systems, a large glass-forming domain was found for X=Ti, but no glass formation was evidenced for X=Zr. Densities, glass transition (T {sub g}), crystallization (T {sub c}) temperatures and Raman spectra of the relevant glasses were studied as functions of the composition. The Raman spectra of the glasses were interpreted in terms of the structural transformations produced by the modifiers. It was established that the addition of Bi{sub 2}O{sub 3} and TiO{sub 2} content to TeO{sub 2} glass influences the T {sub g} temperature in a similar manner: this value progressively increases with the increase of the modifier concentration. However, the structural evolutions are different: (a) the addition of TiO{sub 2} to TeO{sub 2} glass keeps the polymerized framework structure in transforming a number of Te-O-Te bridges into the Te-O-Ti ones without producing any tellurite anions (i.e., the [TeO{sub 3}]{sup 2-} groups); (b) on the rary, the addition of Bi{sub 2}O{sub 3} destroys the glass framework by giving rise to the island-type [Te {sub n} O {sub m} ]{sup 2(m-2n)-} complex tellurites anions, thus causing a depolymerization of the glass. - Graphical abstract: Raman spectra of the titanium tellurite glasses and of the relevant crystalline compounds.

  11. An investigation of FT-Raman spectroscopy for quantification of additives to milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this research, four chemicals, urea, ammonium sulfate, dicyandiamide, and melamine, were mixed into liquid nonfat milk at concentrations starting from 0.1% to a maximum concentration determined for each chemical according to its maximum solubility, and two Raman spectrometers—a commercial Nicolet...

  12. Temperature induced changes in resonance Raman spectra intensity of all-trans-β-carotene: changes in the fundamental, combination and overtone modes.

    PubMed

    Liu, Tianyuan; Xu, Shengnan; Li, Zuowei; Wang, Mengzhou; Sun, Chenglin

    2014-10-15

    The resonance Raman spectra of the fundamental, combination and overtone modes around the CC and CC stretches of all-trans-β-carotene in 1,2-dichloroethane solution are obtained from the 293K to 83K temperature range. The results indicate that the intensity of the fundamentals in the liquid and solid phases generally increases as the temperature decreases, except for the liquid-solid phase transition, which exhibits a decreasing trend. The Raman intensities ratio between the fundamentals υ1 and υ2, combinations (overtones) and the fundamentals both increases with decreasing temperature. The Raman bandwidths of the CC bonds gradually become narrow as the temperature decreases. These varieties of relative intensity are analyzed using the coherent weakly damped electron-lattice vibration mode, the effective conjugation length mode as well as the theory of electron-phonon interaction in this work.

  13. Tautomerism, Raman, infrared and ultraviolet-visible spectra, vibrational assignments, MP2 and B3LYP calculations of dienol 3,4-dihydroxypyridine, keto-enol 3-hydroxypyridin-4-one and keto-enol dimer

    NASA Astrophysics Data System (ADS)

    Shaaban, Ibrahim A.; Mohamed, Tarek A.; Zoghaib, Wajdi M.; Wilson, Lee D.; Farag, Rabie S.; Afifi, Mahmoud S.; Badr, Yehia A.

    2013-07-01

    Raman (3500-100 cm-1) and infrared (4000-200 cm-1) spectra of 3,4-dihydroxypyridine (3,4-DHP) have been recorded in the solid phase. In addition, the UV spectrum (350-190 nm) of 3,4-DHP was measured in ethanol solution. Thirteen structures were initially proposed for 3,4-DHP as a result of keto-enol tautomerism and rotation(s) of hydroxyl group(s) around the Csbnd O bond. The conformational energies have been calculated with the methods of MP2, MP2(full) and B3LYP/DFT utilizing a variety of basis sets up to 6-311++G(d,p). Moreover, TD-DFT/B3LYP/6-311+G(d,p) computations of dienol (DHP) and keto-enol (HPO) tautomers were used to predict the electronic absorption spectra in ethanol solution utilizing a PCM. The theoretical results were compiled with infrared and Raman spectral data, favoring a mixture of dienol 3,4-dihydroxypyridine (structure 2) and keto-enol 3-hydroxypyridin-4-one (structure 9) in the solid phase. However, the keto-enol HPO tautomer is favored in solutions in agreement with the observed/calculated UV spectra. Moreover, mass spectral analysis indicates the presence of equimolar proportions of 3,4-DHP monomer and its dimer. Aided by DFT/B3LYP and ab intio/MP2(full) frequency calculations at 6-31G(d) basis set and the simulated vibrational spectra of dienol DHP and keto-enol HPO mixture, a complete vibrational assignment of the observed infrared and Raman bands has been proposed supported by normal coordinate analysis and potential energy distributions (PEDs). The results reported herein are compared with similar structural analogues whenever appropriate.

  14. In-line interferometric femtosecond stimulated Raman scattering spectroscopy.

    PubMed

    Dobner, Sven; Groß, Petra; Fallnich, Carsten

    2013-06-28

    We present in-line interferometric femtosecond stimulated Raman scattering (II-FSRS), a new method to measure the spectral Raman intensity and phase over a broad spectral range, potentially in a single shot. An analytic model is developed, that excellently reproduces the measured spectra. Additionally, the performance of II-FSRS is directly compared in experiments to two established techniques, namely femtosecond stimulated Raman scattering and femtosecond Raman induced Kerr-effect spectroscopy.

  15. Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase

    PubMed Central

    Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo

    2017-01-01

    The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature. PMID:28256639

  16. Difference in effect of temperature on absorption and Raman spectra between all-trans-β-carotene and all-trans-retinol

    NASA Astrophysics Data System (ADS)

    Qu, Guan-Nan; Li, Shuo; Sun, Cheng-Lin; Liu, Tian-Yuan; Wu, Yong-Ling; Sun, Shang; Shan, Xiao-Ning; Men, Zhi-Wei; Chen, Wei; Li, Zuo-Wei; Gao, Shu-Qin

    2012-12-01

    Temperature dependencies (81 °C-18 °C) ofvisible absorption and Raman spectra of all-trans-β-carotene and all-trans-retinol extremely diluted in dimethyl sulfoxide are investigated in order to clarify temperature effects on different polyenes. Their absorption spectra are identified to be redshifted with temperature decreasing. Moreover, all-trans-β-carotene is more sensitive to temperature due to the presence of a longer length of conjugated system. The characteristic energy responsible for the conformational changes in all-trans-β-carotene is smaller than that in all-trans-retinol. Both of the Raman scattering cross sections increase with temperature decreasing. The results are explained with electron—phonon coupling theory and coherent weakly damped electron—lattice vibrations model.

  17. Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase

    NASA Astrophysics Data System (ADS)

    Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo

    2017-03-01

    The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.

  18. Mass spectra in N=1 SQCD with additional colorless but flavored fields

    NASA Astrophysics Data System (ADS)

    Chernyak, Victor L.

    2017-01-01

    Considered is the N=1 supersymmetric QCD-like Φ -theory with SU(N_c) colors and 0< N_F<2N_c flavors of light quarks Q^i_a,{overline{Q}}^{ a}_j with equal small masses. In addition to quarks and gluons of the standard N=1 SQCD, it includes N^2_F colorless but flavored fields Φ ij, with the large mass parameter μ _{Φ } ≫ Λ _Q (Λ _Q is the scale factor of the gauge coupling), interacting with quarks through the Yukawa coupling in the superpotential. The mass spectra of this (direct) Φ -theory are first directly calculated in all vacua with the unbroken or spontaneously broken flavor symmetry U(N_F)→ U(n_1)× U(n_2) at 0spectra of both, this direct Φ -theory and its Seiberg's dual variant with SU(N_F-N_c) dual colors, the dΦ -theory, are calculated at 3N_c/2spectra of the direct Φ - and dual dΦ -theories are parametrically different, so that they are not equivalent. Besides it is shown in the direct Φ -theory that a qualitatively new phenomenon takes place: under appropriate conditions, the seemingly heavy and dynamically irrelevant fields Φ `turn back' and there appear two additional generations of light Φ -particles with small masses μ ^pole(Φ )≪ Λ _Q. Also considered is the X-theory which is the N=2 SQCD with SU(N_c) colors and 0< N_F<2N_c flavors of light quarks, broken down to N=1 by the large mass

  19. Raman Spectra, Structural Units and Durability of Nuclear Waste Glasses With Variations in Composition and Crystallization: Implications for Intermediate Order in the Glass Network

    SciTech Connect

    Raman, Swaminathan Venkat

    2002-11-01

    The Raman spectra of nuclear waste glasses are composed of large variations in half-width and intensity for the commonly observed bridging (Q0) and nonbridging (Q1 to Q4) bands in silicate structures. With increase in waste concentration in a boroaluminosilicate melt, the bands of quenched glasses are distinctly localized with half-width and intensity indicative of increase in atomic order. Since the nuclear waste glasses contain disparate components, and since the bands depart from the typical random network, a systematic study for the origin of these bands as a function of composition and crystallization was undertaken. From a comparative study of Raman spectra of boroaluminosilicate glasses containing Na2O-ZrO2, Na2O-MgO, MgO-Na2O-ZrO2, Na2O-CaO-ZrO2, Na2O-CaO, and Na2O-MgO-CaF2 component sets and orthosilicate crystals of zircon and forsterite, intermediate order is inferred. An edge-sharing polyhedral structural unit is proposed to account for narrow bandwidth and high intensity for Q2 antisymmetric modes, and decreased leaching of sodium with ZrO2 concentration in glass. The intense Q4 band in nuclear waste glass is similar to the intertetrahedral antisymmetric modes in forsterite. The Raman spectra of zircon contains intratetrahedral quartz-like peaks and intertetrahedral non-bridging silicate peaks. The quartz-like peaks nearly vanish in the background of forsterite spectrum. This difference between the Raman spectra of the two orthosilicate crystals presumably results from their biaxial and uniaxial effects on polarizability ellipsoids. The results also reveal formation of 604, 956 and 961 cm-1 defect bands with composition and crystallization.

  20. Near infrared excited micro-Raman spectra of 4:1 methanol-ethanol mixture and ruby fluorescence at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, X. B.; Shen, Z. X.; Tang, S. H.; Kuok, M. H.

    1999-06-01

    Near infrared (NIR) lasers, as a new excitation source for Raman spectroscopy, has shown its unique advantages and is being increasingly used for some special samples, such as those emitting strong fluorescence in the visible region. This article focuses on some issues related to high-pressure micro-Raman spectroscopy using NIR excitation source. The Raman spectra of 4:1 methanol-ethanol mixture (4:1 M-E) show a linear variation in both Raman shifts and linewidths under pressure up to 18 GPa. This result is useful in distinguishing Raman scattering of samples from that of the alcohol mixture, an extensively used pressure-transmitting medium. The R1 fluorescence in the red region induced by two-photon absorption of the NIR laser is strong enough to be used as pressure scale. The frequency and line width of the R1 lines are very sensitive to pressure change and the glass transition of the pressure medium. Our results manifest that it is reliable and convenient to use NIR induced two-photon excited fluorescence of ruby for both pressure calibration and distribution of pressure in the 4:1 M-E pressure transmitting medium.

  1. Surface-enhanced Raman spectra of medicines with large-scale self-assembled silver nanoparticle films based on the modified coffee ring effect

    NASA Astrophysics Data System (ADS)

    Zhou, Weiping; Hu, Anming; Bai, Shi; Ma, Ying; Su, Quanshuang

    2014-02-01

    We report here a simple and innovative method to prepare large-scale silver nanoparticle films based on the controlled coffee ring effect. It is demonstrated that the films can be used as surface-enhanced Raman scattering probes to detect low-concentration medicines. Silver nanoparticles with the average size about 70 nm were prepared by reduction of silver nitride. In our experiment, the coffee ring effect was controlled by tilting the substrates during the deposition of silver nanoparticle films. Silver nanoparticle films were spontaneously formed on the surface of silicon substrates at the temperatures about 50°C based on the solvent evaporation and the coffee ring effect. The microstructure of the films was investigated using the scanning electron microscope and atomic force microscope. The surface roughness of the films is found as small as 20 nm. Then, the films were exposed to aqueous solutions of medicine at different concentrations. A comparison with a Raman spectra measured with a conventional Raman spectrometer showed that the Raman signal can be detected in the solution with concentrations as low as 1 × 10-5 M, and the enhancement factor achieved by the silver nanoparticle film can at least reach to 1.08 × 104. Our experimental results indicate that this technique is promising in the production of large-scale silver nanoparticle films for the surface-enhanced Raman scattering. These may be utilized in biochemical and trace analytical applications.

  2. Finite temperature effects on the X-ray absorption spectra of lithium compounds: First-principles interpretation of X-ray Raman measurements

    NASA Astrophysics Data System (ADS)

    Pascal, Tod A.; Boesenberg, Ulrike; Kostecki, Robert; Richardson, Thomas J.; Weng, Tsu-Chien; Sokaras, Dimosthenis; Nordlund, Dennis; McDermott, Eamon; Moewes, Alexander; Cabana, Jordi; Prendergast, David

    2014-01-01

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N, and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole approach. Based on thermodynamic sampling via ab initio molecular dynamics simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. The excellent agreement with high-resolution XRS measurements validates the accuracy of our first-principles approach to simulating XAS, and provides both accurate benchmarks for model compounds and a predictive theoretical capability for identification and characterization of multi-component systems, such as lithium-ion batteries, under working conditions.

  3. Finite temperature effects on the X-ray absorption spectra of lithium compounds: first-principles interpretation of X-ray Raman measurements.

    PubMed

    Pascal, Tod A; Boesenberg, Ulrike; Kostecki, Robert; Richardson, Thomas J; Weng, Tsu-Chien; Sokaras, Dimosthenis; Nordlund, Dennis; McDermott, Eamon; Moewes, Alexander; Cabana, Jordi; Prendergast, David

    2014-01-21

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N, and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole approach. Based on thermodynamic sampling via ab initio molecular dynamics simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. The excellent agreement with high-resolution XRS measurements validates the accuracy of our first-principles approach to simulating XAS, and provides both accurate benchmarks for model compounds and a predictive theoretical capability for identification and characterization of multi-component systems, such as lithium-ion batteries, under working conditions.

  4. FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Sreenivasa, S.; Doğan, H.; Manojkumar, K. E.; Suchetan, P. A.; Ucun, Fatih

    2014-06-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  5. FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach.

    PubMed

    Sert, Yusuf; Sreenivasa, S; Doğan, H; Manojkumar, K E; Suchetan, P A; Ucun, Fatih

    2014-06-05

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  6. Development of program package for investigation and modeling of carbon nanostructures in diamond like carbon films with the help of Raman scattering and infrared absorption spectra line resolving

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, David B.; Hovhannisyan, Levon; Mantashyan, Paytsar A.

    2013-04-01

    The analysis of complex spectra is an actual problem for modern science. The work is devoted to the creation of a software package, which analyzes spectrum in the different formats, possesses by dynamic knowledge database and self-study mechanism, performs automated analysis of the spectra compound based on knowledge database by application of certain algorithms. In the software package as searching systems, hyper-spherical random search algorithms, gradient algorithms and genetic searching algorithms were used. The analysis of Raman and IR spectrum of diamond-like carbon (DLC) samples were performed by elaborated program. After processing the data, the program immediately displays all the calculated parameters of DLC.

  7. FT-IR, FT-Raman spectra, NBO, HOMO-LUMO and thermodynamic functions of 4-chloro-3-nitrobenzaldehyde based on ab initio HF and DFT calculations

    NASA Astrophysics Data System (ADS)

    Karunakaran, V.; Balachandran, V.

    2012-12-01

    FT-IR (4000-400 cm-1) and FT-Raman (3500-100 cm-1) spectral measurements of 4-chloro-3-nitrobenzaldehyde have been done. Ab initio (HF/6-311+G(d,p)) and DFT (B3LYP/6-311+G(d,p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, infrared intensities and Raman activities. A detailed interpretation of the FT-IR and FT-Raman spectra of 4-chloro-3-nitrobenzaldehyde are reported on the basis of the calculated potential energy distribution. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The thermodynamic functions of the title compound have been performed by HF/6-311+G(d,p) and B3LYP/6-311+G(d,p). The observed and calculated wave numbers are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed spectra. Thermodynamic functions were calculated using vibrational wave numbers for different temperatures.

  8. Enhanced Raman and luminescence spectra from co-encapsulated silicon quantum dots and Au-Ag nanoalloys.

    PubMed

    Harun, Noor Aniza; Horrocks, Benjamin R; Fulton, David A

    2014-10-21

    We report an approach to enhance simultaneously luminescence and SERS signals with a single excitation wavelength by co-encapsulating silicon quantum dots and Au-Ag alloy nanoparticles encoded with Raman reporter molecules inside polymeric nanoparticles. The SERS-luminescence enhancement exploits the large Stokes shift of silicon quantum dots, which allows 'room' for the display of a Raman spectrum.

  9. Clustering/anticlustering effects on the GeSi Raman spectra at moderate (Ge,Si) contents: Percolation scheme vs. ab initio calculations

    NASA Astrophysics Data System (ADS)

    Torres, V. J. B.; Hajj Hussein, R.; Pagès, O.; Rayson, M. J.

    2017-02-01

    We test a presumed ability behind the phenomenological percolation scheme used for the basic description of the multi-mode Raman spectra of mixed crystals at one dimension along the linear chain approximation, to determine, via the Raman intensities, the nature of the atom substitution, as to whether this is random or due to local clustering/anticlustering. For doing so, we focus on the model percolation-type GeySi1-y system characterized by six oscillators { 1 × ( G e - G e ) , 3 × ( G e - S i ) , 2 × ( S i - S i ) } and place the study around the critical compositions y ˜ (0.16, 0.71, and 0.84) corresponding to nearly matching of intensities between the like Raman modes from a given multiplet ( G e - S i triplet or S i - S i doublet). The interplay between the GeySi1-y Raman intensities predicted by the percolation scheme depending on a suitable order parameter κ of local clustering/anticlustering is found to be consistent with ab initio calculations of the GeySi1-y Raman spectra done with the Ab Initio Modeling PROgram code using large (64-, 216-, and 512-atoms) disordered cubic supercells matching the required ( y , κ ) values. The actual "percolation vs. ab initio" comparative insight at moderate/dilute-(Ge,Si) limits, with an emphasis on the κ -induced intra-bond transfer of oscillator strength, extends a pioneering one earlier achieved at an intermediate composition ( y ˜ 0.50) by using small (32-atom) supercells [O. Pagès et al., J. Appl. Phys. 114, 033513 (2013)], mainly concerned with the inter-bond transfer of oscillator strength, providing altogether a complete picture.

  10. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    NASA Astrophysics Data System (ADS)

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A. C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  11. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    PubMed Central

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A.C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-01-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section. PMID:28327648

  12. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging.

    PubMed

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A C; Huck, Christian W; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-22

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  13. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  14. [Raman spectra of single human living erythrocyte with the effect of pH and serum albumin].

    PubMed

    Wu, Zheng-Jie; Wang, Cheng; Lin, Zheng-Chun; Jiao, Qing-Ze

    2014-05-01

    In the present work, a cell environment which mimicked the real body environment according to the concentration radio between serum albumin and hemoglobin was built, and the cell morphology, the membrane deformation capacity, and the structure of intracellular hemoglobin of single human living erythrocyte under the effect of pH and serum albumin were studied. It was found that at different suspension pH, the magnitude of variations in cell shape and membrane deformation capacity changes with the structural changes of the intracellular hemoglobin. At pH 4. 14, 4. 76 and 10. 18, the loss of helical structure for hemoglobin, exposing of the hydrophobic amino acid in the globin chains, and changing of the combination of heme and globin, would completely destroy the stability of hemoglobin's structure, which seriously changes RBC's morphology and membrane deformation capacity. While at pH 6. 51 and 7. 80, the Raman spectra of erythrocytes are found to have no such changes, indicating that the structure of intracellular hemoglobin was not varied, thus the cell morphology and membrane deformation capacity are quite close to the normal values. At pH 5. 49 and 8. 76, RBC's morphology and membrane deformation capacity have different degrees of variation, but the structure of intracellular hemoglobin has not changed, suggesting that the cell morphology and membrane deformation capacity may be reversible. The results suggest that in the suspension solution containing serum albumin, erythrocytes have better ability to regulate and control the variation of the extracellular pH. In summary, upon building an environment which contains the same concentration radio of serum albumin to hemoglobin in the blood, this work performed systematic studies on the effect of pH on human erythrocytes. It can not only help to solve the problems about the mechanism of the structural and functional changes of erythrocytes induced by environmental pH, but also elucidates the possible variation of

  15. Raman spectra of ethane adn ethylene adsorbed of surface of catalyst Sm 2 O 3/MgO at high temperatures

    NASA Astrophysics Data System (ADS)

    Bobrov, A. V.; Plate, S. E.; Kadushin, A. A.; Kimel'feld, Ya. M.; Seleznev, V. A.; Tulenin, Yu. P.

    1992-03-01

    Raman spectroscopy has been applied for the investigation in situ of catalytic transformations of ethane ethylene and deuterated ethylene on the surface of catalyst Sm 2O 3/MgO at high temperatures (up to 980 K). Ethane and ethylene are the products of the oxidation dehydration of methane. For the understanding of mechanism of this process it is interesting to study of the spectra of ethane and ethylene in the conditions of the real process at high temperature. In the previous paper [1] we have shown that during the flowring of mixture methane with oxygen through the catalyst Sm 2O 3/MgO methane dissociates on CH 3 and CH 2 groups. It has been confirmed by experiment with deuterated methane. The purpose of this work is to study the interaction of ethane and ethylene with Sm 2O 3/MgO in similar conditions by Raman spectroscopy.

  16. Structural, magnetic behaviors and temperature-dependent Raman scattering spectra of Y and Zr codoped BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xie, Dan; Xu, Jianlong; Sun, Yilin; Zang, Yongyuan; Zhang, Xiaowen; Gao, Xingsen

    2015-09-01

    Multiferroic BiFeO3 (BFO) and Y, Zr codoped BFO (Bi1-xYxFe0.95Zr0.05O3) ceramics were prepared and the influence of codoping on the crystal structure and magnetic properties were investigated in this work. Confirmed by the evolution of X-ray diffraction and Raman modes, the codoping has changed the crystal structure from rhombohedral to tetragonal in bulk BFO ceramics. The enhancement of magnetic behaviors is demonstrated by the damage of space-modulated spiral spin structure, and it can be attributed to the crystal structure change and size effects. Meanwhile, Raman spectra from 300 to 800 K demonstrates that lower frequency phonon modes show rapid softening near the Neel temperature.

  17. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-halogenated uracils (5-X-uracils; X=F, Cl, Br, I).

    PubMed

    Singh, J S

    2014-01-03

    Raman (200-4000 cm(-1)) and FT-IR (400-4000 cm(-1)) spectra of uracil and 5-halogenated uracils (5-X-uracils; X=F, Cl, Br, I) have been recorded and analyzed in the range 200-4000 cm(-1). The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Ab initio and DFT calculations [using Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP)] were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-halogenated uracils by employing Gaussian-03 program. Gauss View software was used to make the vibrational analysis. Raman and IR spectra have been computed theoretically for the uracil and 5-halogenated molecules. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. Quantum chemical calculations helped in the reassignments of some fundamental vibrational modes. Most of the B3LYP/6-311++G(**) vibrational frequencies are in excellent agreement with available experimental assignments. The ring breathing and kekule stretching modes are found to lower magnitudes compared to those for uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X=F, Cl, Br, I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations.

  18. Fourier-transform infrared and Raman spectra of cysteine dichloride cadmium(II) anion DFT: B3LYP/3-21G(d) structural and vibrational calculations.

    PubMed

    Faget, Grisset; Felcman, Judith; Giannerini, Tiago; Téllez, Claudio A

    2005-07-01

    The cysteine dichloride cadmium(II) potassium was synthesized and the structural analysis was carried out through the following methods: determination of the C, H, N, S and O contents, thermogravimetry, infrared and Raman spectra. Assuming Cd-S, Cd-O (O-carboxilate) and Cd-N bonds, several hypothetical structures were calculated by means DFT: B3LYP/3-21G(d) quantum mechanical method. The calculations shows that the Cd-S and Cd-N central bonds are favoured in the anion complex formation [Cd(Cys)Cl2]-, being the stabilization energy 55.52 kcal mol(-1) lower than isotopomers with Cd-S and Cd-O central bonds. Features of the infrared and Raman spectra confirm the theoretical structural prediction. Full assignment of the vibrational spectra is proposed based on the DFT procedure, and in order to confirm the C-H, N-H, C-C, C-N, Cd-N, Cd-S and Cd-Cl stretching and the HNH and HCH bending, a normal coordinate analysis based on local symmetry force field for -SC(H2)C-, -CdN(H2)C- and -SCd(Cl2)N- fragments was carried out.

  19. DFT study of structure, IR and Raman spectra of the first generation dendron built from cyclotriphosphazene core with terminal carbamate and ester groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2012-06-01

    The FTIR and FT-Raman spectra of the first generation dendron built from the cyclotriphosphazene core, five arms sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S)rbond2 with ten carbamate terminal groups and one ester function Gv1 have been recorded. The IR and Raman spectra of the zero generation dendron Gv0 and first generation dendrimer G1 with the same core and terminal groups were also examined. The structural optimization and normal mode analysis were performed for dendron Gv1 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that Gv1 has a concave lens structure with planar sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S)rbond2 fragments and slightly non-planar cyclotriphosphazene core. The carbamate groups attached to different arms show significant deviations from a symmetrical arrangement relative to the local planes of repeating units. The experimental IR spectrum of Gv1 dendron was interpreted by means of potential energy distributions. The strong band 1604 cm-1 shows marked changes of the optical density in dependence of the carbamate, ester or azomethyne substituents in the aromatic ring. The frequencies of ν(Nsbnd H) and ν(Cdbnd O) bands in the IR spectra reveal the presence of the different types of H-bonds in the studied dendrimers.

  20. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods.

    PubMed

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2015-03-05

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100cm(-1) respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  1. Side chain dependence of intensity and wavenumber position of amide I' in IR and visible Raman spectra of XA and AX dipeptides.

    PubMed

    Measey, Thomas; Hagarman, Andrew; Eker, Fatma; Griebenow, Kai; Schweitzer-Stenner, Reinhard

    2005-04-28

    A series of AX and XA dipeptides in D2O have been investigated by FTIR, isotropic, and anisotropic Raman spectroscopy at acidic, neutral, and alkaline pD, to probe the influence of amino acid side chains on the amide I' band. We obtained a set of spectral parameters for each peptide, including intensities, wavenumbers, half-widths, and dipole moments, and found that these amide I' parameters are indeed dependent on the side chain. Side chains with similar characteristic properties were found to have similar effects on the amide I'. For example, dipeptides with aliphatic side chains were found to exhibit a downshift of the amide I' wavenumber, while those containing polar side chains experienced an increase in wavenumber. The N-terminal charge causes a substantial upshift of amide I', whereas the C-terminal charge causes a moderate decrease of the transition dipole moment. Density functional theory (DFT) calculations on the investigated dipeptides in vacuo yielded different correlations between theoretically and experimentally obtained wavenumbers for aliphatic/aromatic and polar/charged side chains, respectively. This might be indicative of a role of the hydration shell in transferring side chain-backbone interactions. For Raman bands, we found a correlation between amide I' depolarization ratio and wavenumber which reflects that some side chains (valine, histidine) have a significant influence on the Raman tensor. Altogether, the obtained data are of utmost importance for utilizing amide I as a tool for secondary structure analysis of polypeptides and proteins and providing an experimental basis for theoretical modeling of this important backbone mode. This is demonstrated by a rather accurate modeling for the amide I' band profiles of the IR, isotropic Raman, and anisotropic Raman spectra of the beta-amyloid fragment Abeta(1-82).

  2. Electronic Raman scattering with excitation between localized states observed in the zinc M{sub 2,3} soft x-ray spectra of ZnS

    SciTech Connect

    Zhou, L.; Callcott, T.A.; Jia, J.J.

    1997-04-01

    Zn M{sub 2,3} soft x-ray fluorescence (SXF) spectra of ZnS and ZnS{sub .5}Se{sub .5} excited near threshold show strong inelastic scattering effects that can be explained using a simple model and an inelastic scattering theory based on second order perturbation theory. This scattering is often called electronic resonance Raman scattering. Tulkki and Aberg have developed this theory in detail for atomic systems, but their treatment can be applied to solid systems by utilizing electronic states characteristic of solids rather than of atomic systems.

  3. Vapor-phase infrared and Raman spectra and ab-initio calculations of the axial and equatorial forms of cyclohexane-d1 and d11

    NASA Astrophysics Data System (ADS)

    Chun, Hye Jin; Ocola, Esther J.; Laane, Jaan

    2016-11-01

    The vapor-phase infrared and Raman spectra of cyclohexane-d11 in the C-H stretching region show two bands at 2891 and 2921 cm-1 corresponding to the axial and equatorial C-H stretching modes respectively. Similarly, cyclohexane-d1 has two C-D stretching modes at 2145 and 2164 cm-1 (Mátrai and Gal, 1984) corresponding to the two forms. Force constants were calculated for these vibrations and these confirm the theoretical calculations, which show the equatorial bonds to be shorter and stronger. The force constant for the equatorial C-H stretching is 2% higher than for the axial.

  4. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Jeys, T. H.

    2016-02-01

    Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact (<2'x2'x2'), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm-1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm-1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm-1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10-32 cm2/sr (3.68 ± 0.26x10-36 m2/sr), 1.37 ± 0.10x10-30 cm2/sr (1.37 ± 0.10x10-34 m2/sr), 3.25 ± 0.23x10-31 cm2/sr (3.25 ± 0.23x10-35 m2/sr), 1.63 ± 0.14x10-30 cm2/sr (1.63 ± 0.14x10-34 m2/sr), and 3.08 ± 0.22x10-30 cm2/sr (and 3.08 ± 0.22x10-34 m2/sr) were determined for the differential Raman cross section of the 967 cm-1 mode of NH3, sum of the 554, 547, and 539 cm-1 modes of Cl2, 870 cm-1 mode of H2S, 570 cm-1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10-31 cm2/sr (3.56 ± 0.14x10-35 m2/sr) for the 1285 cm-1 mode of CO2 as the reference.

  5. In situ Raman and electrochemical characterization of the role of electrolyte additives in Li/SOCl2 batteries

    NASA Astrophysics Data System (ADS)

    Kovac, M.; Milicev, S.; Kovac, A.; Pejovnik, S.

    1995-05-01

    A simple glass cell has been constructed for in situ Raman characterization of discharge products in Li/SOCl2 batteries with polyvinyl chloride (PVC) and LiAl(SO3Cl4) additives. The assembly enables the characterization of catholyte-soluble discharge products in the electrolyte as well as products on the lithium and carbon electrode surfaces. The effect of the additives was also examined by scanning electron microscopy/energy dispersive spectroscopy and impedance spectroscopy and correlated to the voltage delay in batteries. The best results, as regards to the elimination of the delay effect, were obtained with a new electrolyte consisting of LiAlCl4/SOCl2 with an admixture of PVC and LiAl(SO3Cl4).

  6. Complementing and adding to SEM performance with the addition of XRF, Raman, CL and PL spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Leroy, E.; Mamedov, S.; Teboul, E.; Whitley, A.; Meyer, D.; Casson, L.

    2010-06-01

    Electron microscopy, along with many other surface science and analytical techniques, offers an array of complementary sub-techniques that provide additional information to enhance the primary analysis or imaging mode. Most electron microscopes are built with several additional ports for the installation of complementary analysis modules. One type of analysis which is particular useful in geology and semiconductor analysis is cathodoluminescence (CL). A new technique has been developed to allow complementary optical measurements using the electron beam from the SEM, compatible with most standard commercial SEM systems. Among the optical measurements accessible using the Cathodoluminescence Universal Extension (CLUE) module are CL, Raman, PL and EDX spectroscopy and imaging. This paper shows the advantages of using these complementary techniques, and how they can be applied to analysis of geological and semiconductor materials.

  7. Analysis of torsional spectra of molecules with two internal C/3v/ rotors. III - Far-infrared and gas phase Raman spectra of dimethylamine-d0, -d3, and -d6

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Griffin, M. G.; Groner, P.

    1977-01-01

    The Raman spectra of gaseous dimethylamine-d0, -d3, and -d6 have been recorded between 0 and 4000/cm. The far-infrared spectra have been recorded between 300 and 100/cm. Considerable torsional data are reported and used to characterize the torsional potential function based on a semi-rigid model. The average effective V3 for the dimethylamines was found to be 1052 plus or minus 12/cm. The cos-cos coupling term was approximately 15% of the effective V3, whereas the sine-sine coupling term was of an order of magnitude smaller for (CH3)2NH and (CD3)2NH. However, for the mixed isotope the sine-sine term was found to be negligible and the cos-cos about one-half the value obtained for the other two isotopes.

  8. An investigations on the molecular structure, FT-IR, FT-Raman and NMR spectra of 1-(p-tolylsulfonyl) pyrrole by theoretical and experimental approach.

    PubMed

    Erdogdu, Y; Saglam, S; Gulluoglu, M T

    2015-07-05

    Fourier-Transform-Infrared, Fourier-Transform-Raman and Nuclear Magnetic Rezonans spectra of 1-(p-tolylsulfonyl) pyrrole molecule have been recorded. In the powder form, vibrational spectra of 1-(p-tolylsulfonyl) pyrrol molecule were investigated in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The conformational analysis, geometrical structure, molecular electrostatic potential map, HOMO-LUMO and vibrational spectroscopic properties of the isolated 1-(p-tolylsulfonyl) pyrrole molecule have also been carried out at the Molecular Mechanic and Density Functional Theory approaches. Density Functional Theory results have been associated with Scaled Quantum Mechanics Force Field for fitting between the theoretical and the experimental frequencies.

  9. Combined fiber probe for fluorescence lifetime and Raman spectroscopy

    PubMed Central

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-01-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. PMID:26093843

  10. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of 1,2-Dichloroethylene: A Physical Experiment

    ERIC Educational Resources Information Center

    Craig, Norman C.; Lacuesta, Nanette N.

    2004-01-01

    A study of the vibrational spectroscopy of the cis and trans isomers of 1,2-dichloroethylene provides an excellent opportunity to learn the applications group theory in laboratories. The necessity of using infrared (IR) spectroscopy and Raman spectroscopy in making full vibrational assignments is illustrated.

  11. Line Interference Effects Using a Refined Robert-Bonamy Formalism: the Test Case of the Isotropic Raman Spectra of Autoperturbed N2

    NASA Technical Reports Server (NTRS)

    Boulet, Christian; Ma, Qiancheng; Thibault, Franck

    2014-01-01

    A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, opening the way to the analysis of more complex molecular systems.

  12. The stability and Raman spectra of ikaite, CaCO3·6H2O, at high pressure and temperature

    USGS Publications Warehouse

    Shahar, Anat; Bassett, William A.; Mao, Ho-kwang; Chou, I-Ming; Mao, Wendy

    2005-01-01

    Raman analyses of single crystals of ikaite, CaCO3·6H2O, synthesized in a diamond-anvil cell at ambient temperature yield spectra from 0.14 to 4.08 GPa; the most intense peaks are at 228 and 1081 cm−1 corresponding to Eg(external) and A1g (internal) modes of vibrations in CO2− 3 ions, respectively. These are in good agreement with Raman spectra previously published for ikaite in powder form at ambient temperature and pressure. Visual observations of a sample consisting initially of a mixture of calcite + water in a hydrothermal diamond-anvil cell yielded a P-T phase diagram up to 2 GPa and 120 °C; the boundary for the reaction ikaite ↔ aragonite + water has a positive slope and is curved convexly toward the aragonite + water field similar to typical melt curves. This curvature can be explained in terms of the Clapeyron equation for a boundary between a solid phase and a more compressible liquid phase or largely liquid phase assemblage.

  13. Development and integration of block operations for data invariant automation of digital preprocessing and analysis of biological and biomedical Raman spectra.

    PubMed

    Schulze, H Georg; Turner, Robin F B

    2015-06-01

    High-throughput information extraction from large numbers of Raman spectra is becoming an increasingly taxing problem due to the proliferation of new applications enabled using advances in instrumentation. Fortunately, in many of these applications, the entire process can be automated, yielding reproducibly good results with significant time and cost savings. Information extraction consists of two stages, preprocessing and analysis. We focus here on the preprocessing stage, which typically involves several steps, such as calibration, background subtraction, baseline flattening, artifact removal, smoothing, and so on, before the resulting spectra can be further analyzed. Because the results of some of these steps can affect the performance of subsequent ones, attention must be given to the sequencing of steps, the compatibility of these sequences, and the propensity of each step to generate spectral distortions. We outline here important considerations to effect full automation of Raman spectral preprocessing: what is considered full automation; putative general principles to effect full automation; the proper sequencing of processing and analysis steps; conflicts and circularities arising from sequencing; and the need for, and approaches to, preprocessing quality control. These considerations are discussed and illustrated with biological and biomedical examples reflecting both successful and faulty preprocessing.

  14. Experimental FTIR, FT-IR (gas phase), FT-Raman and NMR spectra, hyperpolarizability studies and DFT calculations of 3,5-dimethylpyrazole.

    PubMed

    Sundaraganesan, N; Kavitha, E; Sebastian, S; Cornard, J P; Martel, M

    2009-10-15

    In the present study, structural properties of 3,5-dimethylpyrazole (3,5-DMP) have been studied extensively utilizing density functional theory (DFT) employing B3LYP exchange correlation. The Fourier transform infrared (solid phase and gas phase) and Fourier transform Raman spectra of 3,5-DMP were recorded. The Vibrational frequencies of 3,5-DMP in the ground state have been calculated by using density functional method (B3LYP) with 6-31G(d,p), 6-311G(d,p) and 6-311++G(d,p) as basis sets. Comparison of the observed fundamental vibrational frequencies of 3,5-DMP with calculated results show that 6-311++G(d,p) superior to other basis sets for molecular vibrational problems. Non linear optical NLO behavior of the examined molecule was investigated by the determination of the electric dipole moment mu, the polarizability alpha and the hyperpolarizability beta using the B3LYP/cc-pvdz method. The isotropic chemical shifts computed by (13)C and (1)H NMR analysis also show good agreement with experimental observations. The theoretically predicted FTIR and FT-Raman spectra of the title molecule have been constructed.

  15. Line interference effects using a refined Robert-Bonamy formalism: the test case of the isotropic Raman spectra of autoperturbed N2.

    PubMed

    Boulet, Christian; Ma, Qiancheng; Thibault, Franck

    2014-02-28

    A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, opening the way to the analysis of more complex molecular systems.

  16. A 2A2<--X 2B1 absorption and Raman spectra of the OClO molecule: A three-dimensional time-dependent wave packet study

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Lou, Nanquan; Nyman, Gunnar

    2005-02-01

    Time-dependent wave packet calculations of the (A 2A2←X 2B1) absorption and Raman spectra of the OClO molecule are reported. The Fourier grid Hamiltonian method in three dimensions is employed. The X 2B1 ground state ab initio potential energy surface reported by Peterson [J. Chem. Phys. 109, 8864 (1998)] is used together with his corresponding A 2A2 state surface or the revised surface of the A 2A2 state by Xie and Guo [Chem. Phys. Lett. 307, 109 (1999)]. Radau coordinates are used to describe the vibrations of a nonrotating OClO molecule. The split-operator method combined with fast Fourier transform is applied to propagate the wave function. We find that the ab initio A 2A2 potential energy surface better reproduces the detailed structures of the absorption spectrum at long wavelength, while the revised surface of the A 2A2 state, consistent with the work of Xie and Guo, better reproduces the overall shape and the energies of the vibrational levels. Both surfaces of the A 2A2 state can reasonably reproduce the experimental Raman spectra but neither does so in detail for the numerical model employed in the present work.

  17. Line interference effects using a refined Robert-Bonamy formalism: The test case of the isotropic Raman spectra of autoperturbed N2

    NASA Astrophysics Data System (ADS)

    Boulet, Christian; Ma, Qiancheng; Thibault, Franck

    2014-02-01

    A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, opening the way to the analysis of more complex molecular systems.

  18. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde.

    PubMed

    Prasad, M V S; Udaya Sri, N; Veeraiah, V

    2015-09-05

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π(∗) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data.

  19. Temperature Dependence of Low-Frequency Spectra in Molten Bis(trifluoromethylsulfonyl)amide Salts of Imidazolium Cations Studied by Femtosecond Raman-Induced Kerr Effect Spectroscopy.

    PubMed

    Shirota, Hideaki; Kakinuma, Shohei

    2015-07-30

    In this study, the temperature dependence of the low-frequency spectra of liquid bis(trifluoromethylsulfonyl)amide salts of the monocations 1-methyl-3-propylimidazolium and 1-hexyl-3-methylimidazolium and the dications 1,6-bis(3-methylimidazolium-1-yl)hexane and 1,12-bis(3-methylimidazolium-1-yl)dodecane has been investigated by means of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The intensity in the low-frequency region below 20 cm(-1) in the spectra of the four ionic liquids increases with rising temperature. From a line-shape analysis of the broadened low-frequency spectra of the ionic liquids, it is clear that the lowest-frequency component, which peaks at approximately 5 cm(-1), contributes to the temperature dependence of the spectra. This implies that the activity of the intermolecular translational vibrational motion is increasing with rising temperature. It is also possible that decoupling in the crossover process between intermolecular vibrational motion and structural relaxation occurs as a result of a deterioration of the non-Markovian feature or the loss of memory caused by the higher temperature. The peak of the highest-frequency component, which is due mainly to the imidazolium ring libration, shifts to lower frequency with increasing temperature. This is attributed to weaker interactions of the ionic liquids at higher temperatures. Temperature-dependent viscosities from 293 to 353 K of the four ionic liquids have also been characterized.

  20. Remote Pulsed-Laser Raman Spectroscopy System for Mineral Analysis

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Angel, S. M.; Ghosh, M.; Hubble, H. W.; Lucey, P. G.

    2001-01-01

    We have measured Raman spectra of carbonate, silicate, and hydrous silicate and sulfate minerals, our new remote-pulsed Raman system, indicating that it can be used to analyze the minerals on planetary surfaces to a distance of 10 to 66 meters. Additional information is contained in the original extended abstract.

  1. [The symmetric zero-area conversion adptive peak-seeking method research for LIBS/Raman spectra].

    PubMed

    Bi, Yun-Feng; Li, Ying; Zheng, Rong-Er

    2013-02-01

    Automatic peak seeking is an indispensable link for in situ and real-time spectral detection and analysis, and has important significance for application of spectral technology to such fields as long-term marine monitoring and oil mud logging. Based on some typical LIBS/Raman spectrum data obtained from lab, three kinds of symmetric zero-area transformation functions respectively constructed from Gaussian, Lorentz and Voigt function were compared, and the results show that there exists an optimal symmetrical zero-area transformation function for peak seeking, but all the transformation functions obtain the same peak position and peak width under their optimal parameters. The proposed method is free from spectrum background and baseline trend influence, adaptive to the wide range of SNR, close to or even better than artificial recognition for weak peak, and could be used in future automatic in-situ analysis of LIBS and Raman.

  2. Upper critical field and Raman spectra of MgB2 thin films irradiated with low energy oxygen ion

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhuang, C. G.; Li, J.; Wang, Y. Z.; Feng, Q. R.; Zheng, D. N.

    2009-11-01

    The structure, upper critical field, and Raman spectrum of epitaxial MgB2 thin films irradiated by 300 keV O2+ ions have been investigated. Lattice parameter c expands after irradiation. There is a significant increase in upper critical field in the moderately irradiated films, while the critical temperature is reduced slightly. The values of critical field at zero temperature exhibit a maximum for samples with a moderate irradiation level for the applied magnetic field both perpendicular and parallel to the film surface. The temperature dependence of the anisotropy parameter, which is defined as the ratio of the upper critical field with the field parallel to the film surface and perpendicular to the film surface, reveals that oxygen ion irradiation mainly affects the σ band at a low irradiation level. With increasing irradiation level, π band scattering is strongly enhanced, and finally both bands are in the dirty limit. A broad peak centered around 570 cm-1 is observed in the Raman spectrum of the unirradiated films, and the peak position has a visible redshift in the irradiated samples. In particular, high-frequency spectral structures appear and become dominant, while the E2g broad band diminishes gradually with increasing irradiation fluence. The results are discussed by considering the disorder-induced change in carrier scattering within and between the σ and π bands and a violation of the Raman selection rules due to oxygen ion irradiation.

  3. [Characteristics of Raman spectra of natural clinochlore at 200 degrees C and 0.95-7.70 GPa].

    PubMed

    Xie, Chao; Du, Jian-Guo; Li, Ying; Cui, Yue-Ju; Chen, Zhi; Li, Jing

    2010-12-01

    Variation of crystal structure of natural clinochlore with pressure was investigated by the approach of diamond anvil cell (DAC) and in situ micro-Raman spectroscopic measurement at 200 degrees C and up to 7.7 GPa. The 481 and 786 cm(-1) peaks shift towards high-frequency linearly with increasing pressure at 200 degrees C. The linear relations between Raman shift (N, cm(-1)) and pressure (P, GPa) for the two peaks are: N = 11.136P+482.6 (R2 = 0.987 4) and N = 5.055P+785.7 (R2 = 0.983 7), respectively. The 865 cm(-1) peak arising from the stretching mode of the Si-O(nb) shifts slightly because of the strong repulsion between T cations at the tetrahedral sites and M cations at the octahedral sites in the TOT layer. Raman shift of 481 cm(-1) and 786 means the shortening of the length of M-O(br) and Si-CO(br) bonds since the peaks are contributed by the stretching mode of the M-O(br) and Si-O(br) respectively. No phase transition of clinochlore under the experimental condition was found. The results indicate that chlorite minerals may be stable at least at a depth of 80-90 km in the cold subduction zones, and the fluid derived from chlorite dehydration may be an important fact for earthquake occurrence in the subduction zones.

  4. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    PubMed

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed.

  5. Anharmonic Vibrational Analysis of the Infrared and Raman Gas-Phase Spectra of s-trans- and s-gauche-1,3-Butadiene.

    PubMed

    Krasnoshchekov, Sergey V; Craig, Norman C; Boopalachandran, Praveenkumar; Laane, Jaan; Stepanov, Nikolay F

    2015-10-29

    A quantum-mechanical (hybrid MP2/cc-pVTZ and CCSD(T)/cc-pVTZ) full quartic potential energy surface (PES) in rectilinear normal coordinates and the second-order operator canonical Van Vleck perturbation theory (CVPT2) are employed to predict the anharmonic vibrational spectra of s-trans- and s-gauche-butadiene (BDE). These predictions are used to interpret their infrared and Raman scattering spectra. New high-temperature Raman spectra in the gas phase are presented in support of assignments for the gauche conformer. The CVPT2 solution is based on a PES and electro-optical properties (EOP; dipole moment and polarizability) expanded in Taylor series. Higher terms than those routinely available from Gaussian09 software were calculated by numerical differentiation of quadratic force fields and EOP using the MP2/cc-pVTZ model. The integer coefficients of the polyad quantum numbers were derived for both conformers of BDE. Replacement of harmonic frequencies by their counterparts from the CCSD(T)/cc-pVTZ model significantly improved the agreement with experimental data for s-trans-BDE (root-mean-square deviation ≈ 5.5 cm(-1)). The accuracy in predicting the rather well-studied spectrum of fundamentals of s-trans-BDE assures good predictions of the spectrum of s-gauche-BDE. A nearly complete assignment of fundamentals was obtained for the gauche conformer. Many nonfundamental transitions of the BDE conformers were interpreted as well. The predictions of multiple Fermi resonances in the complex CH-stretching region correlate well with experiment. It is shown that solving a vibrational anharmonic problem through a numerical-analytic implementation of CVPT2 is a straightforward and computationally advantageous approach for medium-size molecules in comparison with the standard second-order vibrational perturbation theory (VPT2) based on analytic expressions.

  6. The effect of aqueous solution in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Yuan, Xiaojuan; Dong, Xiao; Gu, Huaimin

    2009-08-01

    In Raman detection, the most popular solution for the samples is tri-distilled water. But the effect of aqueous solution is barely studied in Raman spectroscopy. In fact Raman spectroscopy of solid-state and liquid-state are obvious different. In addition, FWHM of Raman spectral peaks also change evidently. In this paper, several samples were selected for the experiment; including sodium nitrate, sodium nitrite, glucose and caffeine. By comparing the Raman spectroscopy of samples at different concentrations, it is found that the concentration of the sample can affect the strength of Raman spectroscopy, but it can hardly impact FWHM of Raman spectral peaks. By comparing the Raman spectroscopy of liquid-state with the Raman spectroscopy of solid-state, it is observed that the FWHM of some Raman spectral peaks varied obviously; that may be because when the sample was dissolved into the water, the crystal lattice structure was broken, and for some samples atom form became ion form in aqueous solution. Those structural variations caused the variation of the FWHM. The Raman spectroscopy of caffeine aqueous solution at very low concentration was also detected and analyzed. Compared with the Raman spectra of solid-state samples, it is found that some Raman spectral peaks disappeared when the sample was dissolved in water. It is possible that the low concentration of the sample result in the weakening of Raman signals and the disappearing of some weak Raman spectral peaks. Then Ag nanoparticles were added into the caffeine aqueous solution, the results suggest that surface enhanced Raman spectroscopy (SERS) not only can enhance the Raman spectral signal, but also can reduce the effect of aqueous solution. It is concluded that the concentration of sample only affects the strength of Raman spectroscopy; the aqueous solution can affect the FWHM of Raman spectral peaks; and SERS can reduce the effect of aqueous solution.

  7. Infrared Spectra and Structure of Poly(Vinylalcohol) Films Obtained From Aqueous Solutions with Potassium Iodide Additive

    NASA Astrophysics Data System (ADS)

    Sushko, N. I.; Zagorskaya, S. A.; Tretinnikov, O. N.

    2013-11-01

    The crystallinity and H-bonds in poly(vinylalcohol) films obtained from aqueous solutions with potassium iodide additive were investigated by IR spectroscopy. It was established that addition of KI caused the degree of polymer crystallinity to increase. The band of hydroxyl stretching vibrations (νOH) shifted toward higher frequency in spectra of films with KI additive. This indicated a change in the system of H-bonds in the polymer. The dependences of both the degree of crystallinity and the shift of the νOH band on the salt concentration were qualitatively different in shape.

  8. Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells

    PubMed Central

    Bankapur, Aseefhali; Zachariah, Elsa; Chidangil, Santhosh; Valiathan, Manna; Mathur, Deepak

    2010-01-01

    An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC) and white blood cells (WBC) under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm) is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW). Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip. PMID:20454686

  9. Spectroscopic studies of thiatri-, penta- and heptamethine cyanine dyes II. Infrared and resonance Raman spectra of thiatri-, penta- and heptamethine cyanine dyes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasuhiko; Katayama, Norihisa; Ozaki, Yukihiro; Yasui, Shigeo; Iriyama, Keiji

    1992-11-01

    Infrared (IR) and resonance Raman (RR) spectra of thiatri-, penta- and heptamethine cyanine dyes in the solid state and in solution have been measured. Most of the intense bands observed in the 1600-1100 cm -1 region of the RR spectra may be assigned to totally symmetric stretching modes of the central conjugated system of the cyanines, while most of the strong IR bands in the 1600-1300 cm -1 region are probably due to antisymmetric stretching modes. The intense RR bands do not have their counterparts in the IR spectra and vice versa. A pseudo-mutual exclusion rule seems to be operative for the cyanine vibrational spectra in the 1600-1300 cm -1 region, indicating that the central conjugated systems of the cyanines have nearly symmetrical structure, i.e. the extended all-trans forms of the methine chains and the bond orders of 1.5 of the CC and CN bonds in both the solution and solid states. The IR spectra of 3-ethyl-2-[3-(3-ethyl-2-benzothiazolinylidene)-1-propenyl]benzothiazolium iodide (NK-76) and 3-ethyl-2-[7-(3-ethyl-2-benzothiazolinylidene)-1,3,5-heptatrienyl]benzothiazolium iodide (NK-126) change little between the solid and solution states while those of 3-octadecyl-2-[3-(3-octadecyl-2-benzothiazolinylidene)-1-propenyl]benzothiazolium iodide (NK-2560) and 3-octadecyl-2-[7-(3-octadecyl-2-benzothiazolinylidene)-1,3,5-heptatrienyl]benzothiazolium perchlorate (NK-2861) alter significantly between the two states in the frequencies of bands due to the stretching modes of their central conjugated systems. The results suggest that the electronic states of the central conjugated systems of NK-2560 and NK-2861 undergo appreciable changes on going from the solid to the solution states.

  10. Infrared and Raman spectra of tris(dipivaloylmethanato) lanthanides, Ln(thd)3 (Ln = La, Nd, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu)

    NASA Astrophysics Data System (ADS)

    Belova, Natalya V.; Sliznev, Valery V.; Christen, Dines

    2017-03-01

    The infrared and Raman vibrational spectra of the series of solid tris(dipivaloylmethanato) lanthanides, Ln(thd)3 (Ln = La, Nd, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu), have been recorded at room temperature over wide ranges (4000-50 cm-1 and 3500-80 cm-1, respectively). The experimental spectra obtained in the present study were successfully assigned based on the quantum chemical calculations (DFT/PBE0) performed for the monomer Ln(thd)3 molecules. The experimental vibrational spectra for all complexes studied are rather similar as are the theoretical simulations. The data analysis shows that the main contributions to vibrational modes arise from the vibrations of the ligand possessing practically the same geometry for all complexes. According to the calculation results the structure of the coordination polyhedron is increasingly distorted in the series from La(thd)3 to Lu(thd)3. Although the contributions of the polyhedron vibrations in vibrational modes are not predominant, there is rise in the frequencies associated with vibrations of the coordination polyhedron LnO6 in this series. This increase has been explained by the concept of lanthanide contraction.

  11. Investigating the potential applications of a Raman tweezer system

    NASA Astrophysics Data System (ADS)

    Wray, John Casey

    This thesis describes the construction of an Optical Tweezer apparatus to be used in conjunction with a confocal Raman spectrometer. The tweezer utilizes an infrared (e=1064 nm) laser directed into an inverted microscope with NA=1.4 oil immersion 100x objective lens that strongly focuses the laser light into a sample to function as a single-beam gradient force trap. The long term goal of this research program is to develop a single molecule Raman tweezers apparatus that allows one to control the position of a Raman nanoplasmonic amplifier. This thesis describes the construction of the Raman tweezer apparatus along with several Raman spectra obtained from optically trapped samples of polystyrene fluorescent orange, amine-modified latex beads. In addition, I explored the Raman spectra of bulk cytochrome c mixed with or injected onto Ag aggregates for SERs enhancement.

  12. Theory of the low frequency mechanical modes and Raman spectra of the M13 bacteriophage capsid with atomic detail.

    PubMed

    Dykeman, Eric C; Sankey, Otto F

    2009-01-21

    We present a theoretical study of the low frequency vibrational modes of the M13 bacteriophage using a fully atomistic model. Using ideas from electronic structure theory, the few lowest vibrational modes of the M13 bacteriophage are determined using classical harmonic analysis. The relative Raman intensity is estimated for each of the mechanical modes using a bond polarizability model. Comparison of the atomic mechanical modes calculated here with modes derived from elastic continuum theory shows that a much richer spectrum emerges from an atomistic picture.

  13. Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

    2014-03-01

    Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

  14. Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion

    SciTech Connect

    Liu Wei; Niu Hanben

    2011-02-15

    We provide an approach to significantly break the diffraction limit in coherent anti-Stokes Raman scattering (CARS) microscopy via an additional probe-beam-induced photon depletion (APIPD). The additional probe beam, whose profile is doughnut shaped and whose wavelength is different from the Gaussian probe beam, depletes the phonons to yield an unwanted anti-Stokes signal within a certain bandwidth at the rim of the diffraction-limited spot. When the Gaussian probe beam that follows immediately arrives, no anti-Stokes signal is generated in this region, resembling stimulated emission depletion (STED) microscopy, and the spot-generating useful anti-Stokes signals by this beam are substantially suppressed to a much smaller dimension. Scanning the spot renders three-dimensional, label-free, and chemically selective CARS images with subdiffraction resolution. Also, resolution-enhanced images of the molecule, specified by its broadband even-total CARS spectral signals not only by one anti-Stokes signal for its special chemical bond, can be obtained by employing a supercontinuum source.

  15. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Kouketsu, Yui; Shimizu, Ichiko; Wang, Yu; Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko

    2017-03-01

    We analyzed micro-Raman spectra of carbonaceous materials (CM) in natural and experimentally deformed fault rocks from Longmenshan fault zone that caused the 2008 Wenchuan earthquake, to characterize degree of disordering of CM in a fault zone. Raman spectral parameters for 12 samples from a fault zone in Shenxigou, Sichuan, China, all show low-grade structures with no graphite. Low crystallinity and δ13C values (-24‰ to -25‰) suggest that CM in fault zone originated from host rocks (Late Triassic Xujiahe Formation). Full width at half maximum values of main spectral bands (D1 and D2), and relative intensities of two subbands (D3 and D4) of CM were variable with sample locations. However, Raman parameters of measured fault rocks fall on established trends of graphitization in sedimentary and metamorphic rocks. An empirical geothermometer gives temperatures of 160-230 °C for fault rocks in Shenxigou, and these temperatures were lower for highly sheared gouge than those for less deformed fault breccia at inner parts of the fault zone. The lower temperature and less crystallinity of CM in gouge might have been caused by the mechanical destruction of CM by severe shearing deformation, or may be due to mixing of host rocks on the footwall. CM in gouge deformed in high-velocity experiments exhibits slight changes towards graphitization characterized by reduction of D3 and D4 intensities. Thus low crystallinity of CM in natural gouge cannot be explained by our experimental results. Graphite formation during seismic fault motion is extremely local or did not occur in the study area, and the CM crystallinity from shallow to deep fault zones may be predicted as a first approximation from the graphitization trend in sedimentary and metamorphic rocks. If that case, graphite may lower the friction of shear zones at temperatures above 300 °C, deeper than the lower part of seismogenic zone.

  16. Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones.

    PubMed

    Maher, Jason R; Inzana, Jason A; Awad, Hani A; Berger, Andrew J

    2013-07-01

    Clinical diagnoses of bone health and fracture risk typically rely on measurements of bone density or structure, but the strength of a bone is also dependent on its chemical composition. Raman spectroscopy has been used extensively in ex vivo studies to measure the chemical composition of bone. Recently, spatially offset Raman spectroscopy (SORS) has been utilized to measure bone transcutaneously. Although the results are promising, further advancements are necessary to make noninvasive, in vivo measurements of bone with SORS that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based on fitting with spectral libraries. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both bone and soft tissue. The algorithm was utilized to transcutaneously detect biochemical differences in the tibiae of wild-type mice between 1 and 7 months of age and between the tibiae of wild-type mice and a mouse model of osteogenesis imperfecta. These results represent the first diagnostically sensitive, transcutaneous measurements of bone using SORS.

  17. Deep analysis of Raman spectra of ZnO:Mo and ZnO:In sprayed thin films along with LO and TA+LO bands investigation

    NASA Astrophysics Data System (ADS)

    Souissi, A.; Amlouk, M.; Khemakhem, H.; Guermazi, S.

    2016-04-01

    ZnO and Mo, In doped ZnO thin films with the molar ratios (Mo/Zn) and (In/Zn) were dosed at 1%, 2% and 3%, respectively. These films were deposited on amorphous SiO2 substrate at 460 °C by the spray-pyrolysis process. A useful and concise reminder of the spatial resolutions of Raman spectroscopy was presented. The vibrational responses of these films at high doping exhibited strong fluctuations that were resolved by successive digital processing, choice of the optimal profile of the baseline, suppression of fluorescence and/or photoluminescence, and noise reduction. These treated spectra have allowed to identify possible multi-modes in highly doped studied samples and revealed the presence of LO and TA+LO broad bands, whose second was at cascade and could be explored in optoelectronic and sensitive systems.

  18. Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air.

    PubMed

    Molina-Duarte, J; Espinosa-Vega, L I; Rodríguez, A G; Guirado-López, R A

    2017-03-08

    We present a combined experimental and theoretical study dedicated to analyzing the structural stability and chemical reactivity of single walled carbon nanotubes (SWCNTs) in the presence of air and nitrogen atmospheres in the temperature interval of 300-1000 K. The temperature dependence of the radial breathing mode (RBM) region of the Raman spectra is irreversible in the presence of air, but it is reversible up to 1000 K in a nitrogen atmosphere. Our density functional theory (DFT) calculations reveal that irreversibility is due to partial degradation of SWCNTs produced by dissociative chemical adsorption of molecular oxygen on intrinsic defects of the nanotube surface. Oxygen partially opens the nanotubes forming semi-tubes with a non-uniform diameter distribution observed by Raman scattering. In contrast, heating CNTs in a nitrogen atmosphere seems to lead to the formation of nitrogen-doped SWCNTs. Our DFT calculations indicate that in general the most common types of nitrogen doping (e.g., pyridinic, pyrrolic, and substitutional) modify the location of the RBM frequency, leading also to frequency shifts and intensity changes of the surrounding modes. However, by performing a systematic comparison between calculated and measured spectra we have been able to infer the possible adsorbed configurations adopted by N species on the nanotube surface. Interestingly, by allowing previously nitrogen-exposed SWCNTs to interact with air at different temperatures (up to 1000 K) we note that the RBM region remains nearly unperturbed, defining thus our nitrogen-pretreated SWCNTs as more appropriate carbon nanostructures for high temperature applications in realistic environments. We believe that we have implemented a post-growth heat-treatment process that improves the stability of carbon nanotubes preserving their diameter and inducing a defect-healing process of the carbon wall.

  19. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kose, E.; Kurt, M.; Karabacak, M.

    2015-02-01

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  20. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  1. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach.

    PubMed

    Ma, HuiLi; Zhao, Yi; Liang, WanZhen

    2014-03-07

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI(-))), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI(-) although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm(-1) agrees well with the experimental measurement.

  2. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron

    PubMed Central

    Casey, Jennifer R.; Larsen, Ross E.; Schwartz, Benjamin J.

    2013-01-01

    Most of what is known about the structure of the hydrated electron comes from mixed quantum/classical simulations, which depend on the pseudopotential that couples the quantum electron to the classical water molecules. These potentials usually are highly repulsive, producing cavity-bound hydrated electrons that break the local water H-bonding structure. However, we recently developed a more attractive potential, which produces a hydrated electron that encompasses a region of enhanced water density. Both our noncavity and the various cavity models predict similar experimental observables. In this paper, we work to distinguish between these models by studying both the temperature dependence of the optical absorption spectrum, which provides insight into the balance of the attractive and repulsive terms in the potential, and the resonance Raman spectrum, which provides a direct measure of the local H-bonding environment near the electron. We find that only our noncavity model can capture the experimental red shift of the hydrated electron’s absorption spectrum with increasing temperature at constant density. Cavity models of the hydrated electron predict a solvation structure similar to that of the larger aqueous halides, leading to a Raman O–H stretching band that is blue-shifted and narrower than that of bulk water. In contrast, experiments show the hydrated electron has a broader and red-shifted O–H stretching band compared with bulk water, a feature recovered by our noncavity model. We conclude that although our noncavity model does not provide perfect quantitative agreement with experiment, the hydrated electron must have a significant degree of noncavity character. PMID:23382233

  3. Raman tensor elements of β-Ga2O3

    PubMed Central

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-01-01

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga2O3 are investigated by experiment and theory. The low symmetry of β-Ga2O3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga2O3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations. PMID:27808113

  4. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  5. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate ( struvite) and its isomorphous analogues. IV. FTIR spectra of protiated and partially deuterated nickel ammonium phosphate hexahydrate and nickel potassium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Cahil, A.; Najdoski, M.; Stefov, V.

    2007-05-01

    The Fourier transform infrared spectra recorded from room temperature down to the boiling temperature of liquid nitrogen of two struvite analogues, nickel ammonium phosphate hexahydrate (NiNH 4PO 4·6H 2O) and nickel potassium phosphate hexahydrate (NiKPO 4·6H 2O) and their partially deuterated analogues were analyzed and compared to the previously studied spectra of struvite and its potassium analogue. In the stretching mode region of the water molecules and ammonium ions, a broad asymmetric and deuteration sensitive band appears, which is an indication for strong hydrogen bonds in the structure of NiNP. In the LNT difference spectra of samples with low deuterium content (≈2-3% D), several bands appear between 2520 and 2080 cm -1 due to vibrations of isotopically isolated HDO molecules and NH 3D + ions. The most significant difference between the two studied spectra is between 2350 and 2250 cm -1 where additional bands from ND stretching modes of isotopically isolated NH 3D + ions are expected in the spectrum of NiNP. In the region of ν3(PO 4) modes one strong, slightly asymmetric, temperature-sensitive band appears above 1000 cm -1 in both spectra. The analysis of the RT and LNT spectra of the protiated and partially deuterated compounds, the band at around 575 cm -1 is assigned to the ν4(PO 4) modes and the remaining ones as due to librational and translational modes of the water molecules.

  6. Raman spectra of oriented and non-oriented Cu hydroxy-phosphate minerals: libethenite, cornetite, pseudomalachite, reichenbachite and ludjibaite.

    PubMed

    Kharbish, Sherif; Andráš, Peter; Luptáková, Jarmila; Milovská, Stanislava

    2014-09-15

    Oriented cornetite [Cu3PO4(OH)3], libethenite [Cu2PO4(OH)] and pseudomalachite [Cu5(PO4)2(OH)4] and non-oriented reichenbachite [Cu5(PO4)2(OH)4] and ludjibaite [Cu5(PO4)2(OH)4] minerals from Ľubietová and Špania Dolina dump fields, Banská Bystrica, Slovakia were examined by polarized Raman spectroscopy. The examined minerals display the characteristic vibrational modes of PO4 and OH groups and further lattice modes. The PO4 stretching and bending vibrations of the investigated minerals occur between 1150 and 900 cm(-1) and between 700 and 350 cm(-1), respectively. On the other hand, the hydroxyl group stretching and bending modes appear above 3350 cm(-1) and between 900 and 700 cm(-1), respectively. The lattice vibrations occur below 350 cm(-1). The different bond distances of the PO4 groups readily explain the shift of the bands to higher or lower wavenumbers among the studied Cu hydroxy-phosphate minerals.

  7. Are asymmetric stretch Raman spectra by centrosymmetric molecules depolarized?: The 2ν3 overtone of CO2

    NASA Astrophysics Data System (ADS)

    Chrysos, M.; Verzhbitskiy, I. A.; Rachet, F.; Kouzov, A. P.

    2011-01-01

    Molecular vibrations that are not totally symmetrical give rise to depolarized lines [P. Atkins and J. de Paula, Atkins' Physical Chemistry (Oxford University Press, UK, 2006), p. 464]. But in the case of stretching vibrations in centrosymmetric molecules, the statement has so far not been conclusively verified. It is the purpose of this article to report a rigorous experimental and theoretical analysis of the 2ν _3 band of CO2—the first overtone of the asymmetrical stretch vibration. The anisotropic spectrum was extracted and its spectral moment calculated from light-scattering measurements, taken at room temperature and for a wide range of CO2-gas densities. Evidence for a near-entirely depolarized Raman band is provided, with integrated depolarization ratio η _{int}= 6/7.16, closely approaching the upper bound η _{max}=6/7. Agreement with theoretical predictions is found, on the basis of quality ab initio data for polarizability properties, provided that electro-optical and mechanical anharmonicity and intermode coupling effects between symmetric ν _1 and antisymmetric ν _3 stretching vibrations are incorporated.

  8. Raman spectra and DFT calculations for tetraterpene hydrocarbons from the L race of the green microalga Botryococcus braunii

    NASA Astrophysics Data System (ADS)

    Chun, Hye Jin; Waqued, Sergio; Thapa, Hem R.; Han, Arum; Yakovlev, Vladislav V.; Laane, Jaan; Devarenne, Timothy P.

    2017-02-01

    The green microalga Botryococcus braunii produces large amounts of liquid hydrocarbons that can be used as a renewable source for producing transportation fuels. In the L race of B. braunii the tetraterpene known as lycopadiene accumulates as the main hydrocarbon. Lycopadiene biosynthesis begins with the production of the eight carbon-carbon double bond (C=C) containing molecule lycopaoctaene, which is reduced to lycopadiene through four intermediates containing less C=C bonds. While the biosynthetic pathway for these hydrocarbons has recently been deciphered, a spectroscopic understanding of the molecular structure for these molecules remains to be reported. Here we describe the vibrational frequency assignments for all six L race hydrocarbons using density functional theory (DFT) calculations, showing that these molecules have between 312 and 348 vibrational frequencies. Experimental Raman spectroscopy analysis shows the regions for ν(C=C) stretch and CH2/CH3 bending vibrations offer unique spectral signatures allowing for the differentiation of several of the hydrocarbons from each other.

  9. Pre-resonance enhancement of exceptional intensity in Aggregation-Induced Raman Optical Activity (AIROA) spectra of lutein derivatives

    NASA Astrophysics Data System (ADS)

    Zajac, G.; Lasota, J.; Dudek, M.; Kaczor, A.; Baranska, M.

    2017-02-01

    Recently reported new phenomenon of Aggregation-Induced Raman Optical Activity is demonstrated here for the first time in the pre-resonance conditions for lutein diacetate and 3‧-epi-lutein supramolecular self-assembles. We demonstrate that minor alterations in the lutein structure (e.g. acetylation of hydroxyl groups or different configuration at one of the chiral center) can lead to definitely different spectral profiles and optical properties due to formation of aggregates of different structure and type. Lutein forms only H-aggregates, lutein diacetate only J-aggregates, while 3‧-epi-lutein can occur in both forms simultaneously. Variety of aggregates' structures is so large that not only the type of aggregation is different, but also their chirality. It is remarkable that even in the pre-resonance conditions, aggregation of lutein derivatives can lead to the intense ROA signal, and moreover, 3‧-epi-lutein demonstrated the highest resonance ROA CID ratio that has ever been reported.

  10. Line mixing effects in isotropic Raman spectra of pure N{sub 2}: A classical trajectory study

    SciTech Connect

    Ivanov, Sergey V.; Boulet, Christian; Buzykin, Oleg G.; Thibault, Franck

    2014-11-14

    Line mixing effects in the Q branch of pure N{sub 2} isotropic Raman scattering are studied at room temperature using a classical trajectory method. It is the first study using an extended modified version of Gordon's classical theory of impact broadening and shift of rovibrational lines. The whole relaxation matrix is calculated using an exact 3D classical trajectory method for binary collisions of rigid N{sub 2} molecules employing the most up-to-date intermolecular potential energy surface (PES). A simple symmetrizing procedure is employed to improve off-diagonal cross-sections to make them obeying exactly the principle of detailed balance. The adequacy of the results is confirmed by the sum rule. The comparison is made with available experimental data as well as with benchmark fully quantum close coupling [F. Thibault, C. Boulet, and Q. Ma, J. Chem. Phys. 140, 044303 (2014)] and refined semi-classical Robert-Bonamy [C. Boulet, Q. Ma, and F. Thibault, J. Chem. Phys. 140, 084310 (2014)] results. All calculations (classical, quantum, and semi-classical) were made using the same PES. The agreement between classical and quantum relaxation matrices is excellent, opening the way to the analysis of more complex molecular systems.

  11. Infrared, Raman and NMR spectra, conformational stability, normal coordinate analysis and B3LYP calculations of 5-Amino-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde

    NASA Astrophysics Data System (ADS)

    Bahgat, Khaled; EL-Emary, Talaat

    2013-02-01

    FT Raman and IR spectra of the crystallized biologically active molecule, 5-Amino-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (5-APHC, C11H11N3O) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies of 5-APHC have been investigated with the help of B3LYP density functional theory (DFT) method with 6-31G(d) and 6-311+G(d,p) as basis set. The calculated molecular geometry has been compared with the experimental data. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field (SQM) technique. The optimized geometry shows the co-planarity of the aldehyde group with pyrazole ring. Potential energy surface (PES) scan studies has also been carried out by ab initio calculations with B3LYP/6-311+G(d,p) basis set. The red shifting of NH2 stretching wavenumber indicates the formation of N-H⋯O hydrogen bonding. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-Vis spectrum of the compound was recorded in the region 200-400 nm and the electronic properties HOMO and LUMO energies were calculated by time-dependent TD-DFT approach. Mulliken charges of the 5-APHC molecule was also calculated and interpreted.

  12. Application of independent component analysis on Raman images of a pharmaceutical drug product: pure spectra determination and spatial distribution of constituents.

    PubMed

    Boiret, Mathieu; Rutledge, Douglas N; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel

    2014-03-01

    Independent component analysis (ICA) was used as a blind source separation method on a Raman image of a pharmaceutical tablet. Calculations were performed without a priori knowledge concerning the formulation. The aim was to extract the pure signals from the initial data set in order to examine the distribution of actives and major excipients within the tablet. As a method based on the decomposition of a matrix of mixtures of several components, the number of independent component to choose is a critical step of the analysis. The ICA_by_blocks method, based on the calculation of several models using an increasing number of independent components on initial matrix blocks, was used. The calculated ICA signals were compared with the pure spectra of the formulation compounds. High correlations between the two active principal ingredient spectra and their corresponding calculated signals were observed giving a good overview of the distributions of these compounds within the tablet. Information from the major excipients (lactose and avicel) was found in several independent components but the ICA approach provides high level of information concerning their distribution within the tablet. However, the results could vary considerably by changing the number of independent components or the preprocessing method. Indeed, it was shown that under-decomposition of the matrix could lead to better signal quality (compared to the pure spectra) but in that case the contributions due to minor components or effects were not correctly identified and extracted. On the contrary, over-decomposition of the original dataset could provide information about low concentration compounds at the expense of some loss of signal interpretability for the other compounds.

  13. Hydrogen CARS (Coherent Antistokes Raman Spectroscopy) Spectra from CH(4)/N(2)O and Nitramine Composite Flames.

    DTIC Science & Technology

    1987-05-01

    that determine the burning rate and (2) an outer flame area where NO is converted to N2 to generate the luminous flame. CARS provides the spectral...ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER Technical Report ARAED-TR-87014 ADA IfII 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Hydrogen CARS ...numbar) The hydrogen spectra from the CH(4)/N(2)0 and nitramine composite flames allow use of each of the concurrent capabilities of CARS : (1

  14. A band Lanczos approach for calculation of vibrational coupled cluster response functions: simultaneous calculation of IR and Raman anharmonic spectra for the complex of pyridine and a silver cation.

    PubMed

    Godtliebsen, Ian H; Christiansen, Ove

    2013-07-07

    We describe new methods for the calculation of IR and Raman spectra using vibrational response theory. Using damped linear response functions that incorporate a Lorentzian line-shape function from the outset, it is shown how the calculation of Raman spectra can be carried out through the calculation of a set of vibrational response functions in the same manner as described previously for IR spectra. The necessary set of response functions can be calculated for both vibrational coupled cluster (VCC) and vibrational configuration interaction (VCI) anharmonic vibrational wave-functions. For the efficient and simultaneous calculation of the full set of necessary response functions, a non-hermitian band Lanczos algorithm is implemented for VCC, and a hermitian band Lanczos algorithm is implemented for VCI. It is shown that the simultaneous calculation of several response functions is often advantageous. Sample calculations are presented for pyridine and the complex between pyridine and the silver cation.

  15. Ab Initio Calculation Of Vibrational Frequencies In AsxS1-x Glass And The Raman Spectra

    NASA Astrophysics Data System (ADS)

    Rosli, Ahmad Nazrul; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2009-06-01

    We have made many different models for the understanding of the structure of AsS glass. In particular, we made the models of AsS3 (triangular), AsS3 (pyramid), AsS4 (3S on one side, one on the other side of As, S3-As-S), AsS4 (pyramid), AsS4 (tetrahedral), AsS7, As2S6 (dumb bell), As2S3 (bipyramid), As2S3 (zig-zag), As3S2 (bipyramid), As3S2 (linear), As4S4 (cubic), As4S4 (ring), As4S (tetrahedral), As4S (pyramid), As4S3 (linear) and As6S2 (dumb bell) by using the density functional theory which solves the Schrödinger equation for the given number of atoms in a cluster in the local density approximation. The models are optimized for the minimum energy which determines the structures, bond lengths and angles. For the optimized clusters, we calculated the vibrational frequencies in each case by calculating the gradients of the first principles potential. We compare the experimentally observed Raman frequencies with those calculated so that we can identify whether the cluster is present in the glass. In this way we find that AsS4 (S3-As-S), As4S4 (ring), As2S3 (bipyramid), As4S4 (cubic), As4S3 (linear), As2S3 (zig-zag), AsS4 (Td), As2S6 (dumb bell), AsS3 (triangle) and AsS3 (pyramid) structures are present in the actual glass.

  16. The infrared and Raman spectra of the duplex of d(GGTATACC) in the crystal show bands due to both the A-form and the B-form of DNA.

    PubMed

    Liquiers, J; Taillandier, E; Peticolas, W L; Thomas, G A

    1990-10-01

    The deoxyoligonucleotide, d(GGTATACC), forms a duplex structure that crystallizes in the DNA A form. This has been shown by both X-ray diffraction studies and Raman spectroscopy (1,2). The presence of the DNA B form has been reported using diffuse X-ray scattering from a crystal of the closely related sequence d(GGBrUABrUACC)(3). In this paper the infrared spectrum of the d(GGTATACC) crystal is presented and curve resolution of both the Raman and IR spectra have been carried out. The percentage of A and B forms have been estimated. The %B form in the crystal has been estimated from the IR spectra to be about 15% and from Raman to be about 20%. Moreover the IR spectrum of the A conformation in the crystal is slightly different from the IR spectrum of the A conformation in polynucleotide fibers in particular in the region of the phosphate stretching vibrations and of the in-plane double bond vibrations of the bases. We show that it is feasible to obtain IR as well as Raman spectra of small crystals of oligonucleotides and that this is a good method of identifying all of the different conformations that may be in the crystal.

  17. C-C stretching Raman spectra and stabilities of hydrocarbon molecules in natural gas hydrates: a quantum chemical study.

    PubMed

    Liu, Yuan; Ojamäe, Lars

    2014-12-11

    The presence of specific hydrocarbon gas molecules in various types of water cavities in natural gas hydrates (NGHs) are governed by the relative stabilities of these encapsulated guest molecule-water cavity combinations. Using molecular quantum chemical dispersion-corrected hybrid density functional computations, the interaction (ΔE(host--guest)) and cohesive energies (ΔE(coh)), enthalpies, and Gibbs free energies for the complexes of host water cages and hydrocarbon guest molecules are calculated at the ωB97X-D/6-311++G(2d,2p) level of theory. The zero-point energy effect of ΔE(host-guest) and ΔE(coh) is found to be quite substantial. The energetically optimal host-guest combinations for seven hydrocarbon gas molecules (CH4, C2H6, C3H6, C3H8, C4H8, i-C4H10, and n-C4H10) and various water cavities (D, ID, T, P, H, and I) in NGHs are found to be CH4@D, C2H6@T, C3H6@T, C3H8@T, C4H8@T/P/H, i-C4H10@H, and n-C4H10@H, as the largest cohesive energy magnitudes will be obtained with these host-guest combinations. The stabilities of various water cavities enclosing hydrocarbon molecules are evaluated from the computed cohesive Gibbs free energies: CH4 prefers to be trapped in a ID cage; C2H6 prefer T cages; C3H6 and C3H8 prefer T and H cages; C4H8 and i-C4H10 prefer H cages; and n-C4H10 prefer I cages. The vibrational frequencies and Raman intensities of the C-C stretching vibrational modes for these seven hydrocarbon molecules enclosed in each water cavity are computed. A blue shift results after the guest molecule is trapped from gas phase into various water cages due to the host-guest interactions between the water cage and hydrocarbon molecule. The frequency shifts to the red as the radius of water cages increases. The model calculations support the view that C-C stretching vibrations of hydrocarbon molecules in the water cavities can be used as a tool to identify the types of crystal phases and guest molecules in NGHs.

  18. Condensing Raman spectrum for single-cell phenotype analysis

    PubMed Central

    2015-01-01

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication. PMID:26681607

  19. Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra.

    PubMed

    Mullin, Jonathan; Schatz, George C

    2012-03-01

    A multiscale method is presented that allows for evaluation of plasmon-enhanced optical properties of nanoparticle/molecule complexes with no additional cost compared to standard electrodynamics (ED) and linear response quantum mechanics (QM) calculations for the particle and molecule, respectively, but with polarization and orientation effects automatically described. The approach first calculates the total field of the nanoparticle by ED using the finite difference time domain (FDTD) method. The field intensity in the frequency domain as a function of distance from the nanoparticle is calculated via a Fourier transform. The molecular optical properties are then calculated with QM in the frequency domain in the presence of the total field of the nanoparticle. Back-coupling due to dipolar reradiation effects is included in the single-molecule plane wave approximation. The effects of polarization and partial orientation averaging are considered. The QM/ED method is evaluated for the well-characterized test case of surface-enhanced Raman scattering (SERS) of pyridine bound to silver, as well as for the resonant Raman chromophore rhodamine 6G. The electromagnetic contribution to the enhancement factor is 10(4) for pyridine and 10(2) for rhodamine 6G.

  20. Intramolecular hydrogen bonding and excited state proton transfer in hydroxyanthraquinones as studied by electronic spectra, resonance Raman scattering, and transform analysis

    NASA Astrophysics Data System (ADS)

    Marzocchi, Mario P.; Mantini, Anna R.; Casu, Maurizio; Smulevich, Giulietta

    1998-01-01

    The scheme of energy levels previously proposed to describe dual excitation and emission associated to excited state intramolecular proton transfer (ESIPT) of some hydroxyanthraquinones (HAQ's) has been made more quantitative in the present paper. The zero-point energy and the frequency of the νOH mode for the HAQ's have been calculated on the basis of the Lippincott-Schroeder double-minimum potential for the O-H⋯O hydrogen bond. The second derivative absorption (D2) spectra show that the vibrational structures of the electronic excited state of HAQ's giving rise to ESIPT are characterized by the progression of the νOH stretching mode. The νOH mode in the ground state is observed as a very strong band in the vibrational structure of the short wavelength emission for HAQ's showing ESIPT. The combined resonance Raman band assignment of four hydroxyanthraquinones and transform analysis show that the visible transition involves the hydrogen bonded cycle and induces proton transfer in the excited state in most cases. On the basis of the isotopic effects, some vibrations of the hydrogen bonded cycle, namely the νC=O, δC=O, νCOH, and δOH modes, have been identified. The transform method, including the combined analysis of the absorption and D2 spectra in terms of sum-over-states, was checked by directly deriving the displacement parameters (Franck-Condon factors) of 1,4-DHAQ from the high resolution free-jet spectrum. The values of the displacement parameters of the νOH mode are quite large for the HAQ's showing ESIPT, while are negligible for 1,4-DHAQ. High values of the displacement parameters for the other vibrations of the hydrogen bonded cycle were found for all HAQ's.

  1. FT-IR, FT-Raman, UV/Vis spectra and fluorescence imaging studies on 2-(bromoacetyl)benzo(b)furan by ab initio DFT calculations.

    PubMed

    Veeraiah, A

    2015-08-05

    The vibrational and electronic properties of 2-(bromoacetyl)benzo(b)furan have been studied in the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-31G(d,p) basis set. The theoretically calculated optimized parameters, vibrational frequencies etc., were compared with the experimental values, which yield good agreement between the observed and calculated values. The complete assignments of fundamental modes were performed on the basis of the potential energy distribution (PED). UV-visible spectrum of the compound was recorded in the region 300-600 nm and compared with the theoretical spectrum obtained from SAC-CI calculations. A good agreement is observed between the experimental and theoretical spectra. Fluorescence microscopic imaging studies proved that the compound can be used as one of the potential light sources in the yellow region with suitable excitation. Further, the predicted electronic transitions between the MOs 47→64, 52→62, 56→65, 56→72, 56→77 of the compound show a strong line at 569.8 nm.

  2. Experimental IR and Raman spectra and quantum chemical studies of molecular structures, conformers and vibrational characteristics of L-ascorbic acid and its anion and cation

    NASA Astrophysics Data System (ADS)

    Yadav, R. A.; Rani, P.; Kumar, M.; Singh, R.; Singh, Priyanka; Singh, N. P.

    2011-12-01

    IR and spectra of the L-ascorbic acid ( L-AA) also known as vitamin C have been recorded in the region 4000-50 cm -1. In order to make vibrational assignments of the observed IR and Raman bands computations were carried out by employing the RHF and DFT methods to calculate the molecular geometries and harmonic vibrational frequencies along with other related parameters for the neutral L-AA and its singly charged anionic ( L-AA -) and cationic ( L-AA +) species. Significant changes have been found for different characteristics of a number of vibrational modes. The four ν(O-H) modes of the L-AA molecule are found in the order ν(O 9-H 10) > ν(O 19-H 20) > ν(O 7-H 8) > ν(O 14-H 15) which could be due to complexity of hydrogen bonding in the lactone ring and the side chain. The C dbnd O stretching wavenumber ( ν46) decreases by 151 cm -1 in going from the neutral to the anionic species whereas it increases by 151 cm -1 in going from the anionic to the cationic species. The anionic radicals have less kinetic stabilities and high chemical reactivity as compared to the neutral molecule. It is found that the cationic radical of L-AA is kinetically least stable and chemically most reactive as compared to its neutral and anionic species.

  3. Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.

    PubMed

    Firkala, Tamás; Tálas, Emília; Mihály, Judith; Imre, Tímea; Kristyán, Sándor

    2013-11-15

    The UV-Visible and Surface Enhanced Raman Spectroscopy (SERS) behavior of silver sol (a typical SERS agent) were studied in the presence of different bifunctional thiols such as p-aminothiophenol, p-mercaptobenzoic acid, p-nitrothiophenol, p-aminothiophenol hydrochloride, and 2-mercaptoethylamine hydrochloride in diluted aqueous solution. Our results confirm that the p-aminothiophenol induced aggregation of citrate stabilized silver colloid originates from its electrostatic nature, as well as the azo-bridge formation cannot be the reason of the observed time dependent UV-Visible spectra. Based on our parallel SERS and electrospray ionization mass spectrometry measurements, we have concluded that certain amount of oxidized form of the probe molecule has to be present for the so-called b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Our findings seem to support the idea that the azo-bridge formation is responsible for the b2-mode enhancement in the SERS spectrum of p-aminothiophenol.

  4. Infrared, Raman, and ultraviolet absorption spectra and theoretical calculations and structure of 2,6-difluoropyridine in its ground and excited electronic states.

    PubMed

    Sheu, Hong-Li; Kim, Sunghwan; Laane, Jaan

    2013-12-19

    The infrared and Raman spectra of 2,6-difluoropyridine (26DFPy) along with ab initio and DFT computations have been used to assign the vibrations of the molecule in its S0 electronic ground state and to calculate its structure. The ultraviolet absorption spectrum showed the electronic transition to the S1(π,π*) state to be at 37,820.2 cm(-1). With the aid of ab initio computations the vibrational frequencies for this excited state were also determined. TD-B3LYP and CASSCF computations for the excited states were carried out to calculate the structures for the S1(π,π*) and S2(n,π*) excited states. The CASSCF results predict that the S1(π,π*) state is planar and that the S2(n,π*) state has a barrier to planarity of 256 cm(-1). The TD-B3LYP computations predict a barrier of 124 cm(-1) for the S1(π,π*) state, but the experimental results support the planar structure. Hypothetical models for the ring-puckering potential energy function were calculated for both electronic excited states to show the predicted quantum states. The changes in the vibrational frequencies in the two excited states reflect the weaker π bonding within the pyridine ring.

  5. Raman spectroscopy of natural accumulated paraffins from rocks: evenkite, ozokerite and hatchetine.

    PubMed

    Jehlicka, Jan; Edwards, Howell G M; Villar, Susana E Jorge

    2007-12-15

    Raman spectra were obtained from the natural crystalline (evenkite) and amorphous (ozokerite and hatchetin) hydrocarbons, originating from volcanic and sedimentary rocks from several sites (Merník, Evenki, Zastávka). Raman spectra of all materials investigated confirm their exclusively aliphatic character. Vibrational assignments are proposed and compared with pure synthetic compounds and the differences in Raman spectra obtained from materials from different sites are discussed. Monoclinic evenkite corresponds to n-tetratracosane (C(24)H(50)). Noncrystalline waxy ozokerite and hatchetine contain several degradation products in addition to higher paraffins.

  6. Combined fiber probe for fluorescence lifetime and Raman spectroscopy.

    PubMed

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2015-11-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. Graphical Abstract An image comparison between FLIm and Raman spectroscopy acquired with the bimodal probe onseveral tissue samples.

  7. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  8. Can We Detect Carbonate and Sulfate Minerals on the Surface of Mars by Raman Spectroscopy?

    NASA Technical Reports Server (NTRS)

    Kuebler, K. E.; Wang, A.; Abbott, K.; Haskin, L. A.

    2001-01-01

    Raman spectra of micrometer-sized grains of calcite, epsomite, quartz, and olivine show no peak shift relative to larger crystals and no peak broadening at least down to 2 micrometers, which bodes well for the Raman analysis of martian soils. Additional information is contained in the original extended abstract.

  9. The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT.

    PubMed

    Sert, Yusuf; El-Emam, Ali A; Al-Deeb, Omar A; Al-Turkistani, Abdulghafoor A; Ucun, Fatih; Cırak, Cağrı

    2014-05-21

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  10. The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; El-Emam, Ali A.; Al-Deeb, Omar A.; Al-Turkistani, Abdulghafoor A.; Ucun, Fatih; Çırak, Çağrı

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  11. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  12. Structural and spectroscopic (UV-Vis, IR, Raman, and NMR) characteristics of anisaldehydes that are flavoring food additives: A density functional study in comparison with experiments

    NASA Astrophysics Data System (ADS)

    Altun, Ahmet; Swesi, O. A. A.; Alhatab, B. S. S.

    2017-01-01

    The molecular structures, vibrational spectra (IR and Raman), electronic spectra (UV-Vis and DOS), and NMR spectra (13C and 1H) of p-anisaldehyde, m-anisaldehyde, and o-anisaldehyde have been studied by using the B3LYP density functional and the 6-311++G** basis set. While p-anisaldehyde has been found to contain two stable conformers at room temperature, m-anisaldehyde and o-anisaldehyde contain four stable conformers. In agreement with the calculated ground-state energetics and small transition barriers, the comparison of the experimental and calculated spectra of the anisaldehydes indicates equilibrium between all conformers at room temperature. However, the two conformers of o-anisaldehyde, in which the methoxy group lies out of the ring plane, are too rare at the equilibrium. The equilibrium conditions of the conformers of the anisaldehyde isomers have been shown readily accessible through UV-Vis and 13C NMR spectral studies but requiring very detailed vibrational analyses. The effect of the solvent has been found to red-shift the electronic absorption bands and to make the anisaldehydes more reactive and soft. Molecular electrostatic potential maps of the anisaldehydes show that their oxygen atoms are the sites for nucleophilic reactivity. Compared with the most sophisticated NBO method, ESP charges have been found mostly reliable while Mulliken charges fail badly with the present large 6-311++G** basis set. The present calculations reproduce not only the experimental spectral characteristics of the anisaldehydes but also reveal their several structural features.

  13. DNA origami based Au–Ag-core–shell nanoparticle dimers with single-molecule SERS sensitivity† †Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA bands, SEM images, additional AFM images, FDTD simulations, additional reference spectra for Cy3 and detailed description of EF estimation, simulated absorption and scattering spectra. See DOI: 10.1039/c5nr08674d Click here for additional data file.

    PubMed Central

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.

    2016-01-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. PMID:26892770

  14. Raman spectroscopic studies of Nd0.75Sm0.25GaO3 single crystals

    NASA Astrophysics Data System (ADS)

    Nithya, R.; Daniel, D. J.; Ravindran, T. R.

    2015-06-01

    Single crystals of Nd1-xSmxGaO3 (x= 0 and 0.25) were grown by a four mirror IR image furnace using floating zone technique. The crystals are characterized by X-ray diffraction and Raman spectroscopic measurements. NGO adopts orthorhombic structure with Pbnm symmetry and samarium substituted compound also exhibited the same structure as that of the pristine compound without secondary phases. Polarized Raman spectra are measured at ambient temperature in a back scattering geometry. Spectra exhibit low intensity first-order Raman bands. In addition, several high intensity second-order Raman bands have been observed in the frequency range 2000 to 4000 cm-1.

  15. Characterization of polysilicon films by Raman spectroscopy and transmission electron microscopy: A comparative study

    SciTech Connect

    Tallant, D.R.; Headley, T.J.; Medernach, J.W.; Geyling, F.

    1993-11-12

    Samples of chemically-vapor-deposited micrometer and sub-micrometer-thick films of polysilicon were analyzed by transmission electron microscopy (TEM) in cross-section and by Raman spectroscopy with illumination at their surface. TEM and Raman spectroscopy both find varying amounts of polycrystalline and amorphous silicon in the wafers. Raman spectra obtained using blue, green and red excitation wavelengths to vary the Raman sampling depth are compared with TEM cross-sections of these films. Films showing crystalline columnar structures in their TEM micrographs have Raman spectra with a band near 497 cm{sup {minus}1} in addition to the dominant polycrystalline silicon band (521 cm{sup {minus}1}). The TEM micrographs of these films have numerous faulted regions and fringes indicative of nanometer-scale silicon structures, which are believed to correspond to the 497cm{sup {minus}1} Raman band.

  16. [Spectra of dark green jade from Myanmar].

    PubMed

    Mao, Jian; Chai, Lin-Tao; Guo, Shou-Guo; Fan, Jian-Liang; Bao, Feng

    2013-05-01

    Chemical compositions and spectral characteristics of one type of dark green jades assumed from omphacite jadeite from Myanmar jadeite mining area were studied by X-ray powder diffraction(XRD), X-ray fluorescence spectra(XRF), Raman spectra(RM) and UV-Vis Spectroscopy, etc. Based on testing by XRD and XRF, it was shown that it belongs to iron-enriched plagioclase, including albite and anorthite. The compositions range is between Ab0.731 An0.264 Or0.004 and Ab0.693 An0.303 Or0.004. Raman spectra of samples, albite jade and anorthite were collected and analyzed. Additionally, the distributions of Si, Al in the crystal structure were also discussed. UV-Vis spectra showed that dark green hue of this mineral is associated with d--d electronic transition of Fe3+ and Cr3+.

  17. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    NASA Astrophysics Data System (ADS)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  18. Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene

    PubMed Central

    2016-01-01

    A thiol-modified carotene, 7′-apo-7′-(4-mercaptomethylphenyl)-β-carotene, was used to obtain nonresonant surface-enhanced Raman scattering (SERS) spectra of carotene at an excitation wavelength of 1064 nm, which were compared with resonant SERS spectra at an excitation wavelength of 532 nm. These spectra and surface-enhanced hyper-Raman scattering (SEHRS) spectra of the functionalized carotene were compared with the spectra of nonmodified β-carotene. Using SERS, normal Raman, and SEHRS spectra, all obtained for the resonant case, the interaction of the carotene molecules with silver nanoparticles, as well as the influence of the resonance enhancement and the SERS enhancement on the spectra, were investigated. The interaction with the silver surface occurs for both functionalized and nonfunctionalized β-carotene, but only the stronger functionalization-induced interaction enables the acquisition of nonresonant SERS spectra of β-carotene at low concentrations. The resonant SEHRS and SERS spectra are very similar. Nevertheless, the SEHRS spectra contain additional bands of infrared-active modes of carotene. Increased contributions from bands that experience low resonance enhancement point to a strong interaction between silver nanoparticles and electronic levels of the molecules, thereby giving rise to a decrease in the resonance enhancement in SERS and SEHRS. PMID:28077983

  19. Vibrational investigation on FT-IR and FT-Raman spectra, IR intensity, Raman activity, peak resemblance, ideal estimation, standard deviation of computed frequencies analyses and electronic structure on 3-methyl-1,2-butadiene using HF and DFT (LSDA/B3LYP/B3PW91) calculations

    NASA Astrophysics Data System (ADS)

    Ramalingam, S.; Jayaprakash, A.; Mohan, S.; Karabacak, M.

    2011-11-01

    FT-IR and FT-Raman (4000-100 cm -1) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities ( C) standard entropies ( S), and standard enthalpy changes ( H).

  20. FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda G.; Erdas, Dilek; Gunduz, Ilknur; Sahinturk, Ayse Erbay

    2015-01-01

    Cyproheptadine hydrochloride (CYP HCl) {4-(5H-dibenzo[a,d]-cyclohepten-5-ylidene)-1-methylpiperidine hydrochloride} is a first-generation antihistamine with additional anticholinergic, antiserotonergic, and local-anesthetic properties. The geometry optimization, Mulliken atomic charges and wavenumber and intensity of the vibrational bands of all of the possible modes of CYP HCl have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing the B3LYP functional with the 6-311G(d,p) basis set. We have compared the calculated IR and Raman wavenumbers with experimental data. Quantum-chemical calculations of the geometrical structure, energies, and molecular electrostatic potential and NBO analysis of CYP HCl have been performed using the B3LYP/6-311G(d,p) method. The electric dipole moment (μ), static polarizability (α) and the first hyperpolarizability (β) values of the title compound have been computed using HF and DFT methods. The study reveals that the antihistaminic pharmacological property of CYP HCl has a large β value and, hence, may in general have potential applications in the development of non-linear optical materials. The experimental and calculated results for CYP HCl have also been compared with those for mianserin HCl.

  1. FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl.

    PubMed

    Sagdinc, Seda G; Erdas, Dilek; Gunduz, Ilknur; Sahinturk, Ayse Erbay

    2015-01-05

    Cyproheptadine hydrochloride (CYP HCl) {4-(5H-dibenzo[a,d]-cyclohepten-5-ylidene)-1-methylpiperidine hydrochloride} is a first-generation antihistamine with additional anticholinergic, antiserotonergic, and local-anesthetic properties. The geometry optimization, Mulliken atomic charges and wavenumber and intensity of the vibrational bands of all of the possible modes of CYP HCl have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing the B3LYP functional with the 6-311G(d,p) basis set. We have compared the calculated IR and Raman wavenumbers with experimental data. Quantum-chemical calculations of the geometrical structure, energies, and molecular electrostatic potential and NBO analysis of CYP HCl have been performed using the B3LYP/6-311G(d,p) method. The electric dipole moment (μ), static polarizability (α) and the first hyperpolarizability (β) values of the title compound have been computed using HF and DFT methods. The study reveals that the antihistaminic pharmacological property of CYP HCl has a large β value and, hence, may in general have potential applications in the development of non-linear optical materials. The experimental and calculated results for CYP HCl have also been compared with those for mianserin HCl.

  2. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  3. Remote Raman System for Planetary Landers: Data Reduction and Analysis

    NASA Technical Reports Server (NTRS)

    Horton, K. A.; Domergue-Schmidt, N.; Sharma, S. K.; Deb, P.; Lucey, P. G.

    2000-01-01

    Raman spectroscopy is typically envisioned as an in situ analysis technique. Raman spectra measured remotely (10s of meters) from a planetary lander can be calibrated to spectral radiance and the Raman scattering efficiency can be determined.

  4. The V + I defects in diamond: An ab initio investigation of the electronic structure, of the Raman and IR spectra, and of their possible recombination

    NASA Astrophysics Data System (ADS)

    Salustro, S.; Nöel, Y.; Zicovich-Wilson, C. M.; Olivero, P.; Dovesi, R.

    2016-11-01

    The double defect in diamond, vacancy (V) plus <100> self-split-interstitial (V+I), is investigated at the ab initio quantum mechanical level, by considering the vicinal case VI1 (V is one of the first neighbors of one of the two C atoms constituting the I defect) and the two possible "second neighbors" cases, VI 2D , VI 2S , in which a carbon atom is a first neighbor of both V and I. The case in which the two defects are at a larger distance is simulated by considering the two isolated defects separately (VI∞). A 6-21G local Gaussian-type basis set and the B3LYP hybrid functional are used for most of the calculations; richer basis sets and other functionals (a global hybrid as PBE0, a range-separated hybrid as HSE06, LDA, PBE, and Hartree-Fock) have also been used for comparison. With this computational approach we evaluate the energy difference between the various spin states, the location of the corresponding bands in the energy gap of pristine diamond, as well as the defect formation energy of the four defects. The path for the recombination of V and I is explored for the vicinal case, by using the distinguished reaction coordinate strategy. A barrier as high as 0.75 eV is found with B3LYP between VI1 and the perfect diamond recombined structure; when other hybrids are used, as PBE0 or HSE06, the barrier increases up to 1.01 eV (pure density functional theory produces lower barriers: 0.62 and 0.67 for PBE and LDA, respectively). Such a barrier is lower than the one estimated in a very indirect way through experimental data, ranging from 1.3 to 1.7 eV. It confirms however the evidence of the extremely low recombination rate also at high temperature. The Raman (and IR) spectra of the various defects are generated, which permit one to unambiguously attribute to these defects (thanks also to the graphical animation of the modes) many of the peaks observed in damaged diamond above the dominant peak of perfect bulk. For the residual non-attributed peaks, more

  5. Electronic structures of organometallic complexes of f elements LXXXIII: First comparison of experimental and calculated (on the basis of density functional theory) polarized Raman spectra of an oriented organometallic single crystal: Tris(pentamethylcyclopentadienyl)lanthanum.

    PubMed

    Amberger, Hanns-Dieter; Reddmann, Hauke; Mueller, Thomas J; Evans, William J

    2014-10-15

    The polarized Raman spectra of an oriented La(η(5)-C5Me5)3 (1) single crystal (where the principal axes of the two molecules per unit cell are uniformly oriented) as well as the mid (ca. 90K) and far infrared spectra of pellets have been recorded. Applying the selection rules of C3h symmetry to the spectra obtained, the irreducible representations (irreps) of numerous lines/bands of intra-ligand character were derived. In the range <400cm(-1), where 28 Raman-allowed lines and 20 FIR-allowed bands of both skeletal and intra-ligand character are expected, only few assignments based on symmetry considerations were possible. In order to increase the number of identifications, model calculations on the basis of density functional theory (DFT) were performed. In the intra-ligand range >400cm(-1), the obtained results agree well with the experimental findings. Because of the strong mixing at lower wavenumbers, even the separation of calculated skeletal and intra-ligand modes and the identification of the former was only successful by comparing the calculated FIR and averaged Raman spectra of compound 1 with those of La(η(5)-C5Me4H)3 (2). Making use of both the calculated frequencies of normal modes and their polarizability tensors, the polarized Raman spectra of an oriented single crystal of 1 in the range <400cm(-1) were calculated and compared to the experimental ones. Because of an overestimation of the mixing of normal vibrations of A' symmetry, the experimental intensities of the lines of the symmetric stretch ν1(A') were not reproduced by the calculation for compound 1 but by that for Sm(η(5)-C5Me5)3 (3). Skeletal and intra-ligand modes were separated and designated. Neglecting νC-H modes, the DFT calculation for 1 achieved an r.m.s. deviation of 17.9cm(-1) for 72 assignments.

  6. Raman spectra of 2Ln/sub 2/O/sub 3/ /times/ 9TiO/sub 2/ compounds (Ln = Ce, La, Nd, Pr, Sm, Eu, Gd, Tm, Yb, Tb)

    SciTech Connect

    Mel'nik, N.N.; Tsapenko, L.M.

    1988-03-01

    This work uses Raman and x-ray phase analysis methods to investigate compounds of the type 2Ln/sub 2/O/sub 3/ /times/ 9TiO/sub 2/ (where Ln = Ce, La, Nd, Pr, Sm, Eu, Gd, Tm, and Yb). The compounds were synthesized by melting in an optical beam on a water-cooled substrate (quench rate approx. 10/sup 2/ deg/sec) and by rapid quenching of a melt cupel by slamming with water-cooled blocks quench rate approx. 10/sup 5/ - 10/sup 6/ deg/sec. The x-ray diffraction study was done on a DRON-2 diffractometer. The Raman light spectra were recorded with a DFS-24 double monochromator employing argon laser excitation.

  7. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV-vis spectra, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis, thermodynamic properties of benzophenone 2,4-dicarboxylic acid by ab initio HF and density functional method.

    PubMed

    Chaitanya, K

    2012-02-01

    The FT-IR (4000-450 cm(-1)) and FT-Raman spectra (3500-100 cm(-1)) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals.

  8. Quantitative multi-image analysis for biomedical Raman spectroscopic imaging.

    PubMed

    Hedegaard, Martin A B; Bergholt, Mads S; Stevens, Molly M

    2016-05-01

    Imaging by Raman spectroscopy enables unparalleled label-free insights into cell and tissue composition at the molecular level. With established approaches limited to single image analysis, there are currently no general guidelines or consensus on how to quantify biochemical components across multiple Raman images. Here, we describe a broadly applicable methodology for the combination of multiple Raman images into a single image for analysis. This is achieved by removing image specific background interference, unfolding the series of Raman images into a single dataset, and normalisation of each Raman spectrum to render comparable Raman images. Multivariate image analysis is finally applied to derive the contributing 'pure' biochemical spectra for relative quantification. We present our methodology using four independently measured Raman images of control cells and four images of cells treated with strontium ions from substituted bioactive glass. We show that the relative biochemical distribution per area of the cells can be quantified. In addition, using k-means clustering, we are able to discriminate between the two cell types over multiple Raman images. This study shows a streamlined quantitative multi-image analysis tool for improving cell/tissue characterisation and opens new avenues in biomedical Raman spectroscopic imaging.

  9. [Detection of Cinnabars in Mongolian Medicines Using Raman Spectroscopy].

    PubMed

    Han, Siqingaowa; Hasi, Wuliji; Lin, Xiang; Lin, Shuang; Yang, Fang; Lou, Xiu-tao; Lu, Zhi-wei

    2015-10-01

    Cinnabar could soothe the nerves and the powder of cinnabar is always added in traditional Chinese medicine or mongolian medicines. The surface-enhanced Raman spectrum of cinnabar was identified using a portable Raman spectrometer and most structure vibration information was obtained. The results show that the Raman peaks of cinnabars were located at 253, 290, 343 cm(-1) and this three Raman characteristic peaks were selected for cinnabar identification. Meanwhile, the Raman spectra of several mongolian medicines were collected. The results showed that Raman signal of cinnabar could be observed in several mongolian medicines which contain cinnabar and Raman signal of cinnabar couldn't be detected in several mongolian medicines without cinnabar. In addition, the cinnabar in the oral ulcer powder was semi-quantitative analyzed and the limit of detection could reach to 10% of mass fraction. The relationship between the doped amount of cinnabar in the oral ulcer powder and the Raman intensity of characteristic peak was fitted and the correlation coefficient (r) was 0.995 9, which validated the accuracy of the result. This Raman analysis method for cinnabar detection is rapid, simple and accurate and it can be applied widely in mongolian medicines determination.

  10. Polarized multiplex coherent anti-Stokes Raman scattering using a picosecond laser and a fiber supercontinuum.

    PubMed

    Michel, Sébastien; Courjaud, Antoine; Mottay, Eric; Finot, Christophe; Dudley, John; Rigneault, Hervé

    2011-02-01

    We perform multiplex coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy with a picosecond pulsed laser and a broadband supercontinuum (SC) generated in photonic crystal fiber. CARS signal stability is achieved using an active fiber coupler that avoids thermal and mechanical drifts. We obtain multiplex CARS spectra for test liquids in the 600-2000 cm(-1) spectral range. In addition we investigate the polarization dependence of the CARS spectra when rotating the pump beam linear polarization state relative to the linearly polarized broad stokes SC. From these polarization measurements we deduce the Raman depolarization ratio, the resonant versus nonresonant contribution, the Raman resonance frequency, and the linewidth.

  11. Polarized multiplex coherent anti-Stokes Raman scattering using a picosecond laser and a fiber supercontinuum

    NASA Astrophysics Data System (ADS)

    Michel, Sébastien; Courjaud, Antoine; Mottay, Eric; Finot, Christophe; Dudley, John; Rigneault, Hervé

    2011-02-01

    We perform multiplex coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy with a picosecond pulsed laser and a broadband supercontinuum (SC) generated in photonic crystal fiber. CARS signal stability is achieved using an active fiber coupler that avoids thermal and mechanical drifts. We obtain multiplex CARS spectra for test liquids in the 600-2000 cm-1 spectral range. In addition we investigate the polarization dependence of the CARS spectra when rotating the pump beam linear polarization state relative to the linearly polarized broad stokes SC. From these polarization measurements we deduce the Raman depolarization ratio, the resonant versus nonresonant contribution, the Raman resonance frequency, and the linewidth.

  12. Spectra-structure correlation based study of complex molecules of 1-isonicotinoyl-3-thiosemicarbazide with Ni2+, Mn2+ and Fe3+ using Raman, UV-visible and DFT techniques

    NASA Astrophysics Data System (ADS)

    Gautam, Priyanka; Prakash, Om; Dani, R. K.; Bharty, M. K.; Singh, N. K.; Singh, Ranjan K.

    2017-01-01

    In present work, we have analysed the structural property of newly synthesized ligand and its coordination complex molecules with Ni2+, Mn2+ and Fe3+. The spectroscopic techniques UV-visible, IR, Raman and DFT methods are used. The newly synthesized ligand 1-isonicotinoyl-3-thiosemicarbazide (Hintsc) has supramolecular architecture stabilized through various intermolecular interactions viz. Nsbnd H⋯O, Csbnd H⋯O, Csbnd H⋯N, Nsbnd H⋯S and Csbnd H⋯S type hydrogen bonds as observed in the single crystal of the ligand. The single crystals of the complexes could not be obtained with high degree of homogeneity from the solutions therefore plausible geometry of the complexes have been proposed on the basis of Raman spectroscopy, UV-visible and DFT methods and coordination properties of Ni2+, Mn2+ and Fe3+ with ligand (Hintsc). The ligand Hintsc contains the thiosemicarbazide (TSC) moiety through which Ni2+, Mn2+ and Fe3+ metals are coordinated. Raman spectroscopy is used to investigate the binding of Ni2+, Mn2+ and Fe3+ with ligand (Hintsc). In Raman spectra, the disappearance of Nsbnd H bending/ Nsbnd H stretching and lower wavenumber region Raman spectra clearly confirms that Ni2+ and Mn2+ metals are coordinated through sbnd N3 and sbnd O sites of thiosemicarbazide (TSC) and consequently formed the chelate ring {C6sbnd N2sbnd N3sbnd Msbnd O}, where Mdbnd Ni2+ and Mn2+. In Fe complex, Fe3+ is coordinated through sbnd N2 and sbnd S sites of TSC and formed the chelate ring {C7sbnd N3sbnd N2sbnd Fesbnd S}. The structural and molecular property of 1-isonicotinoyl-3-thiosemicarbazide (Hintsc) and its complexes with transition metals Ni2+, Mn2+, Fe3+ have also been studied by DFT technique. By means of UV-visible, Raman spectroscopy and DFT technique, it is found that Ni2+, Mn2+ and Fe3+ exhibit the octahedral coordination property with 1-isonicotinoyl-3-thiosemicarbazide (Hintsc).

  13. Surface-Enhanced Raman Scattering

    DTIC Science & Technology

    1989-12-01

    thick films of an acrylic adhesive spin-coated onto silver were identical to normal Raman spectra of salts , 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21...spectra obtained from thick films of an acrylic adhesive sin-coated onto silver were identical to normal Raman spectra of salts of saccharin, a...the sodium salt of o-benzoic sulfimide (saccharin) were also obtained from Aldrich. A model acrylic adhesive system consisting of the monomer

  14. FT-IR, FT-Raman, UV, NMR spectra, molecular structure, ESP, NBO and HOMO-LUMO investigation of 2-methylpyridine 1-oxide: a combined experimental and DFT study.

    PubMed

    Shoba, D; Periandi, S; Boomadevi, S; Ramalingam, S; Fereyduni, E

    2014-01-24

    In this paper, the equilibrium geometry, bonding features, vibrational frequencies, (1)H and (13)C chemical shift values, molecular electrostatic potential maps, HOMO-LUMO energies and several thermodynamic parameters of title compound in the ground state have been calculated by using the density functional method with 6-31G(d,p) and 6-311G(d,p) basis sets. A detailed interpretation of the infrared and Raman spectra of 2-methylpyridine 1-oxide was reported. Furthermore, natural bond orbitals were performed in this work. The theoretical results showed an excellent agreement with the experimental values.

  15. Resonance Raman microspectroscopy of myeloperoxidase and cytochrome b558 in human neutrophilic granulocytes.

    PubMed Central

    Sijtsema, N M; Otto, C; Segers-Nolten, G M; Verhoeven, A J; Greve, J

    1998-01-01

    With (resonance) Raman microscospectroscopy, it is possible to investigate the chemical constitution of a very small volume (0.5 fl) in a living cell. We have measured resonance Raman spectra in the cytoplasm of living normal, myeloperoxidase (MPO)-deficient, and cytochrome b558-deficient neutrophils and in isolated specific and azurophilic granule fractions, using an excitation wavelength of 413.1 nm. Similar experiments were performed after reduction of the redox centers by the addition of sodium dithionite. The specific and azurophilic granules in both redox states appeared to have clearly distinguishable Raman spectra when exciting at a wavelength of 413.1 nm. The azurophilic granules and the cytochrome b558-deficient neutrophils showed Raman spectra similar to that of the isolated MPO. The spectra of the specific granules and the MPO-deficient neutrophils corresponded very well to published cytochrome b558 spectra. The resonance Raman spectrum of the cytoplasmic region of normal neutrophilic granulocytes could be fitted with a combination of the spectra of the specific and azurophilic granules, which shows that the Raman signal of neutrophilic granulocytes mainly originates from MPO and cytochrome b558, at an excitation wavelength of 413.1 nm. PMID:9635778

  16. Spontaneous Raman Scattering Diagnostics for High-pressure Gaseous Flames

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Reddy, D. R. (Technical Monitor)

    2002-01-01

    A high-pressure (up to 60 atm) gaseous burner facility with optical access that provides steady, reproducible flames with high precision, and the ability to use multiple fuel/oxidizer combinations has been developed. In addition, a high-performance spontaneous Raman scattering system for use in the above facility has also been developed. Together, the two systems will be used to acquire and establish a comprehensive Raman scattering spectral database for use as a quantitative high-pressure calibration of single-shot Raman scattering measurements in high-pressure combustion systems. Using these facilities, the Raman spectra of H2-Air flames were successfully measured at pressures up to 20 atm. The spectra demonstrated clear rotational and ro-vibrational Raman features of H2, N2, and H2O. theoretical Raman spectra of pure rotational H2, vibrational H2, and vibrational N2 were calculated using a classical harmonic-oscillator model with pressure broadening effects and fitted to the data. At a gas temperature of 1889 K for a phi = 1.34 H2-Air flame, the model and the data showed good agreement, confirming a ro-vibrational equilibrium temperature.

  17. DFT studies of the vibrational spectra of salicylic acid and related compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compounds that exhibit intra- and intermolecular hydrogen bonds can have infrared and Raman spectra that show evidences of these hydrogen bonds. In modeling the vibrational spectra of such compounds, the addition of explicit hydrogen bonding species (e.g. solvent molecules) can often improve agreeme...

  18. Vibrational spectra (FT-IR and FT-Raman), molecular structure, natural bond orbital, and TD-DFT analysis of L-Asparagine Monohydrate by Density Functional Theory approach.

    PubMed

    Sylvestre, S; Sebastian, S; Edwin, S; Amalanathan, M; Ayyapan, S; Jayavarthanan, T; Oudayakumar, K; Solomon, S

    2014-12-10

    In this work we report the vibrational spectral analysis of l-Asparagine Monohydrate (LAM) molecule by using FT-IR and FT-Raman spectroscopic techniques. The equilibrium geometry, harmonic vibrational wavenumbers, various bonding features have been computed using density functional B3LYP method with 6-311G(d,p) as basis set. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in σ(*) and π(*) antibonding orbitals and second order delocalization energies E((2)) confirms the occurrence of Intramolecular Charge Transfer (ICT) within the molecule. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental spectra.

  19. Raman activated cell sorting.

    PubMed

    Song, Yizhi; Yin, Huabing; Huang, Wei E

    2016-08-01

    Single cell Raman spectra (SCRS) are intrinsic biochemical profiles and 'chemical images' of single cells which can be used to characterise phenotypic changes, physiological states and functions of cells. On the base of SCRS, Raman activated cell sorting (RACS) provides a label-free cell sorting approach, which can link single cells to their chemical or phenotypic profiles. Overcoming naturally weak Raman signals, establishing Raman biomarker as sortin