Science.gov

Sample records for addition water samples

  1. Effects of atmospheric precipitation additions on phytoplankton photosynthesis in Lake Michigan water samples

    SciTech Connect

    Parker, J.I.; Tisue, G.T.; Kennedy, C.W.; Seils, C.A.

    1981-01-01

    The effects of incremental additions (0.1 to 50% v/v) of atmospheric precipitation on phytoplankton photosynthesis (/sup 14/C uptake) were tested in Lake Michigan water samples. Wet deposition was used in experiments I, III, and IV, and a melted snow core was used in experiment II. Additions of precipitation significantly reduced photosynthesis in the first three experiments, starting at about the 5 to 15% treatment level. No significant difference occurred in experiment IV, but photosynthesis was greater than in the control samples and this precipitation sample appeared to stimulate primary productivity. Soluble reactive phosphate, nitrate, and ammonia levels in the precipitation samples exceeded the lake water averages by factors of 10, 2, and 50, respectively. Silicon levels in precipitation reduced pH very little and no consistent relationship was observed with reduced photosynthesis. Alkalinity was greatly reduced in the treated samples and special precautions were required in ce, Ti, Be, Co, Cu, Mo, Ni, P,f the Pd crystals of about 30 A. Possible mechanisms are discussed for isotope exchange in CO molecules in these catalysts and for the promoting effect of Pd on the activity of CuO.

  2. Particle size distribution and chemical composition of total mixed rations for dairy cattle: water addition and feed sampling effects.

    PubMed

    Arzola-Alvarez, C; Bocanegra-Viezca, J A; Murphy, M R; Salinas-Chavira, J; Corral-Luna, A; Romanos, A; Ruíz-Barrera, O; Rodríguez-Muela, C

    2010-09-01

    Four dairy farms were used to determine the effects of water addition to diets and sample collection location on the particle size distribution and chemical composition of total mixed rations (TMR). Samples were collected weekly from the mixing wagon and from 3 locations in the feed bunk (top, middle, and bottom) for 5 mo (April, May, July, August, and October). Samples were partially dried to determine the effect of moisture on particle size distribution. Particle size distribution was measured using the Penn State Particle Size Separator. Crude protein, neutral detergent fiber, and acid detergent fiber contents were also analyzed. Particle fractions 19 to 8, 8 to 1.18, and <1.18 mm were judged adequate in all TMR for rumen function and milk yield; however, the percentage of material>19 mm was greater than recommended for TMR, according to the guidelines of Cooperative Extension of Pennsylvania State University. The particle size distribution in April differed from that in October, but intermediate months (May, July, and August) had similar particle size distributions. Samples from the bottom of the feed bunk had the highest percentage of particles retained on the 19-mm sieve. Samples from the top and middle of the feed bunk were similar to that from the mixing wagon. Higher percentages of particles were retained on >19, 19 to 8, and 8 to 1.18 mm sieves for wet than dried samples. The reverse was found for particles passing the 1.18-mm sieve. Mean particle size was higher for wet than dried samples. The crude protein, neutral detergent fiber, and acid detergent fiber contents of TMR varied with month of sampling (18-21, 40-57, and 21-34%, respectively) but were within recommended ranges for high-yielding dairy cows. Analyses of TMR particle size distributions are useful for proper feed bunk management and formulation of diets that maintain rumen function and maximize milk production and quality. Water addition may help reduce dust associated with feeding TMR. PMID

  3. Percent recoveries of anthropogenic organic compounds with and without the addition of ascorbic acid to preserve finished-water samples containing free chlorine, 2004-10

    USGS Publications Warehouse

    Valder, Joshua F.; Delzer, Gregory C.; Bender, David A.; Price, Curtis V.

    2011-01-01

    This report presents finished-water matrix-spike recoveries of 270 anthropogenic organic compounds with and without the addition of ascorbic acid to preserve water samples containing free chlorine. Percent recoveries were calculated using analytical results from a study conducted during 2004-10 for the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The study was intended to characterize the effect of quenching on finished-water matrix-spike recoveries and to better understand the potential oxidation and transformation of 270 anthropogenic organic compounds. The anthropogenic organic compounds studied include those on analytical schedules 1433, 2003, 2033, 2060, 2020, and 4024 of the USGS National Water Quality Laboratory. Three types of samples were collected from 34 NAWQA locations across the Nation: (1) quenched finished-water samples (not spiked), (2) quenched finished-water matrix-spike samples, and (3) nonquenched finished-water matrix-spike samples. Percent recoveries of anthropogenic organic compounds in quenched and nonquenched finished-water matrix-spike samples are presented. Comparisons of percent recoveries between quenched and nonquenched spiked samples can be used to show how quenching affects finished-water samples. A maximum of 18 surface-water and 34 groundwater quenched finished-water matrix-spike samples paired with nonquenched finished-water matrix-spike samples were analyzed. Percent recoveries for the study are presented in two ways: (1) finished-water matrix-spike samples supplied by surface-water or groundwater, and (2) by use (or source) group category for surface-water and groundwater supplies. Graphical representations of percent recoveries for the quenched and nonquenched finished-water matrix-spike samples also are presented.

  4. Study Design and Percent Recoveries of Anthropogenic Organic Compounds With and Without the Addition of Ascorbic Acid to Preserve Water Samples Containing Free Chlorine, 2004-06

    USGS Publications Warehouse

    Valder, Joshua F.; Delzer, Gregory C.; Price, Curtis V.; Sandstrom, Mark W.

    2008-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) began implementing Source Water-Quality Assessments (SWQAs) in 2002 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water). Finished water is the water that is treated, which typically involves, in part, the addition of chlorine or other disinfection chemicals to remove pathogens, and is ready to be delivered to consumers. Finished water is collected before the water enters the distribution system. This report describes the study design and percent recoveries of anthropogenic organic compounds (AOCs) with and without the addition of ascorbic acid to preserve water samples containing free chlorine. The percent recoveries were determined by using analytical results from a laboratory study conducted in 2004 by the USGS's National Water Quality Laboratory (NWQL) and from data collected during 2004-06 for a field study currently (2008) being conducted by the USGS's NAWQA Program. The laboratory study was designed to determine if preserving samples with ascorbic acid (quenching samples) adversely affects analytical performance under controlled conditions. During the laboratory study, eight samples of reagent water were spiked for each of five analytical schedules evaluated. Percent recoveries from these samples were then compared in two ways: (1) four quenched reagent spiked samples analyzed on day 0 were compared with four quenched reagent spiked samples analyzed on day 7 or 14, and (2) the combined eight quenched reagent spiked samples analyzed on day 0, 7, or 14 were compared with eight laboratory reagent spikes (LRSs). Percent

  5. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  6. The role of methanol addition to water samples in reducing analyte adsorption and matrix effects in liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Wei; Liu, Yucan; Duan, Jinming; Saint, Christopher P; Mulcahy, Dennis

    2015-04-10

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis coupled simply with water filtering before injection has proven to be a simple, economic and time-saving method for analyzing trace-level organic pollutants in aqueous environments. However, the linearity, precision and detection limits of such methods for late-eluting analytes were found to be much poorer than for early-eluting ones due to adsorption of the analytes in the operating system, such as sample vial, flow path and sample loop, creating problems in quantitative analysis. Addition of methanol (MeOH) into water samples as a modifier was shown to be effective in alleviating or even eliminating the negative effect on signal intensity for the late-eluting analytes and at the same time being able to reduce certain matrix effects for real water samples. Based on the maximum detection signal intensity obtained on desorption of the analytes with MeOH addition, the ratio of the detection signal intensity without addition of MeOH to the maximum intensity can be used to evaluate the effectiveness of methanol addition. Accordingly, the values of <50%, 50-80%, 80-120% could be used to indicate strong, medium and no effects, respectively. Based on this concept, an external matrix-matched calibration method with the addition of MeOH has been successfully established for analyzing fifteen pesticides with diverse physico-chemical properties in surface and groundwater with good linearity (r(2): 0.9929-0.9996), precision (intra-day relative standard deviation (RSD): 1.4-10.7%, inter-day RSD: 1.5-9.4%), accuracy (76.9-126.7%) and low limits of detection (0.003-0.028μg/L).

  7. Enantioselective Michael Addition of Water

    PubMed Central

    Chen, Bi-Shuang; Resch, Verena; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    The enantioselective Michael addition using water as both nucleophile and solvent has to date proved beyond the ability of synthetic chemists. Herein, the direct, enantioselective Michael addition of water in water to prepare important β-hydroxy carbonyl compounds using whole cells of Rhodococcus strains is described. Good yields and excellent enantioselectivities were achieved with this method. Deuterium labeling studies demonstrate that a Michael hydratase catalyzes the water addition exclusively with anti-stereochemistry. PMID:25529526

  8. Enantioselective Michael addition of water.

    PubMed

    Chen, Bi-Shuang; Resch, Verena; Otten, Linda G; Hanefeld, Ulf

    2015-02-01

    The enantioselective Michael addition using water as both nucleophile and solvent has to date proved beyond the ability of synthetic chemists. Herein, the direct, enantioselective Michael addition of water in water to prepare important β-hydroxy carbonyl compounds using whole cells of Rhodococcus strains is described. Good yields and excellent enantioselectivities were achieved with this method. Deuterium labeling studies demonstrate that a Michael hydratase catalyzes the water addition exclusively with anti-stereochemistry.

  9. Developing Water Sampling Standards

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1974

    1974-01-01

    Participants in the D-19 symposium on aquatic sampling and measurement for water pollution assessment were informed that determining the extent of waste water stream pollution is not a cut and dry procedure. Topics discussed include field sampling, representative sampling from storm sewers, suggested sampler features and application of improved…

  10. Water Sample Concentrator

    SciTech Connect

    Idaho National Laboratory

    2009-07-21

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  11. Water Sample Concentrator

    ScienceCinema

    Idaho National Laboratory

    2016-07-12

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  12. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  13. Capillary electrophoretic separation of humic substances using hydroxyethyl cellulose as a buffer additive and its application to characterization of humic substances in a river water sample.

    PubMed

    Takahashi, Toru; Kawana, Jun; Hoshino, Hitoshi

    2009-01-01

    We have developed a concise tool for the investigation of the transition of humic substances in environmental water. The separation of water-soluble humic substances was achieved rapidly and effectively by capillary electrophoresis using a polyacrylamide-coated capillary and a phosphate electrophoretic buffer solution (pH 7.0) containing hydroxyethyl cellulose. The separation mechanism was assessed using the ultrafiltration technique. The effect of the complexation of humic substances with metal ions was studied by using the proposed method. When Fe(III) ions or EDTA was added to the sample solution of fulvic acid, a distinct change in the electropherogram pattern based on the conformational change of fulvic acid was observed. The successful application of the proposed method to the characterization of humic substances in a river water sample was also demonstrated.

  14. GROUND WATER SAMPLING FOR VOCS

    EPA Science Inventory

    Sampling protocol should be dictated by the sampling objective(s). It is important to obtain representative ground water samples, regardless of the sampling objective(s). Low-flow (minimum draw-down) purging and sampling techniques are best in most instances, particularly for VOC...

  15. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Additional samples of cotton; drawing. 27.25 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore...

  16. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Additional samples of cotton; drawing. 27.25 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore...

  17. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Additional samples of cotton; drawing. 27.25 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore...

  18. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Additional samples of cotton; drawing. 27.25 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore...

  19. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Additional samples of cotton; drawing. 27.25 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore...

  20. 21 CFR 71.4 - Samples; additional information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... samples of the color additive, articles used as components thereof, or of the food, drug, or cosmetic in... additive, or articles used as components thereof, or of the food, drug, or cosmetic in which the color... respect to the safety of the color additive or the physical or technical effect it produces. The date...

  1. 21 CFR 71.4 - Samples; additional information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... samples of the color additive, articles used as components thereof, or of the food, drug, or cosmetic in... additive, or articles used as components thereof, or of the food, drug, or cosmetic in which the color... respect to the safety of the color additive or the physical or technical effect it produces. The date...

  2. Water addition, evaporation and water holding capacity of poultry litter.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis.

  3. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  4. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  5. Water sample-collection and distribution system

    NASA Technical Reports Server (NTRS)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  6. Chemical stability of preserved oligotrophic water samples

    USGS Publications Warehouse

    Adomaitis, V.A.; Shoesmith, J.A.; Swanson, G.A.

    1973-01-01

    Tests were conducted to determine whether changes that may occur in the chemical characteristics of stored oligotrophic waters collected on 15 sites in northeastern Minnesota were affected by chloroforming. Chloroform was added on site to one of each pair of samples to stabilize the organic content of the water by preventing biological decomposition. The samples were subsequently stored at 25 deg.C, and pH and specific conductivity were measured at intervals for a period of 13 months at which time nine additional chemical parameters (total dissolved solids, total alkalinity, chloride, sulfate, silica, calcium, magnesium, sodium and potassium) were measured.pH increased and specific conductivity decreased. Average changes occurring in time from the original levels were not influenced by treatment, and first differed significantly (P0.05). Sodium and potassium levels were too low to provide meaningful comparisons. It was concluded that chloroform may be advantageous in preserving oligothrophic waters with respect to total dissolved solids, sulfate and calcium.

  7. Additional sampling directions improve detection range of wireless radiofrequency probes

    PubMed Central

    Mada, Marius; Carpenter, T. Adrian; Sawiak, Stephen J.; Williams, Guy B.

    2015-01-01

    Purpose While MRI is enhancing our knowledge about the structure and function of the human brain, subject motion remains a problem in many clinical applications. Recently, the use of wireless radiofrequency markers with three one‐dimensional (1D) navigators for prospective correction was demonstrated. This method is restricted in the range of motion that can be corrected, however, because of limited information in the 1D readouts. Methods Here, the limitation of techniques for disambiguating marker locations was investigated. It was shown that including more sampling directions extends the tracking range for head rotations. The efficiency of trading readout resolution for speed was explored. Results Tracking of head rotations was demonstrated from −19.2 to 34.4°, −2.7 to 10.0°, and −60.9 to 70.9° in the x‐, y‐, and z‐directions, respectively. In the presence of excessive head motion, the deviation of marker estimates from SPM8 was reduced by 17.1% over existing three‐projection methods. This was achieved by using an additional seven directions, extending the time needed for readouts by a factor of 3.3. Much of this increase may be circumvented by reducing resolution, without compromising accuracy. Conclusion Including additional sampling directions extends the range in which markers can be used, for patients who move a lot. Magn Reson Med 76:913–918, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26418189

  8. THE FATE OF FLUOROSILICATE DRINKING WATER ADDITIVES

    EPA Science Inventory

    Periodically, the EPA reexamines its information on regulated drinking water contaminants to deterime if further study is required. Fluoride is one such contaminant undergoing review. The chemical literature indicates that some deficiencies exist in our understanding of the spe...

  9. Chapter A5. Processing of Water Samples

    USGS Publications Warehouse

    Wilde, Franceska D.; Radtke, Dean B.; Gibs, Jacob; Iwatsubo, Rick T.

    1999-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter addresses methods to be used in processing water samples to be analyzed for inorganic and organic chemical substances, including the bottling of composite, pumped, and bailed samples and subsamples; sample filtration; solid-phase extraction for pesticide analyses; sample preservation; and sample handling and shipping. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters will be announced on the USGS Home Page on the World Wide Web under 'New Publications of the U.S. Geological Survey.' The URL for this page is http:/ /water.usgs.gov/lookup/get?newpubs.

  10. Determination of dissolved aluminum in water samples

    USGS Publications Warehouse

    Afifi, A.A.

    1983-01-01

    A technique has been modified for determination of a wide range of concentrations of dissolved aluminum (Al) in water and has been tested. In this technique, aluminum is complexed with 8-hydroxyquinoline at pH 8.3 to minimize interferences, then extracted with methyl isobutyl ketone (MIBK). The extract is analyzed colorimetrically at 395 nm. This technique is used to analyze two forms of monomeric Al, nonlabile (organic complexes) and labile (free, Al, Al sulfate, fluoride and hydroxide complexes). A detection limit 2 ug/L is possible with 25-ml samples and 10-ml extracts. The detection limit can be decreased by increasing the volume of the sample and (or) decreasing the volume of the methyl isobutyl ketone extract. The analytical uncertainty of this method is approximately + or - 5 percent. The standard addition technique provides a recovery test for this technique and ensures precision in samples of low Al concentrations. The average percentage recovery of the added Al plus the amount originally present was 99 percent. Data obtained from analyses of filtered standard solutions indicated that Al is adsorbed on various types of filters. However, the relationship between Al concentrations and adsorption remains linear. A test on standard solutions also indicated that Al is not adsorbed on nitric acid-washed polyethylene and polypropylene bottle wells. (USGS)

  11. Automated storm water sampling on small watersheds

    USGS Publications Warehouse

    Harmel, R.D.; King, K.W.; Slade, R.M.

    2003-01-01

    Few guidelines are currently available to assist in designing appropriate automated storm water sampling strategies for small watersheds. Therefore, guidance is needed to develop strategies that achieve an appropriate balance between accurate characterization of storm water quality and loads and limitations of budget, equipment, and personnel. In this article, we explore the important sampling strategy components (minimum flow threshold, sampling interval, and discrete versus composite sampling) and project-specific considerations (sampling goal, sampling and analysis resources, and watershed characteristics) based on personal experiences and pertinent field and analytical studies. These components and considerations are important in achieving the balance between sampling goals and limitations because they determine how and when samples are taken and the potential sampling error. Several general recommendations are made, including: setting low minimum flow thresholds, using flow-interval or variable time-interval sampling, and using composite sampling to limit the number of samples collected. Guidelines are presented to aid in selection of an appropriate sampling strategy based on user's project-specific considerations. Our experiences suggest these recommendations should allow implementation of a successful sampling strategy for most small watershed sampling projects with common sampling goals.

  12. SAMPLING DESIGN FOR ASSESSING RECREATIONAL WATER QUALITY

    EPA Science Inventory

    Current U.S. EPA guidelines for monitoring recreatoinal water quality refer to the geometric mean density of indicator organisms, enterococci and E. coli in marine and fresh water, respectively, from at least five samples collected over a four-week period. In order to expand thi...

  13. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  14. 21 CFR 71.4 - Samples; additional information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... respect to the safety of the color additive or the physical or technical effect it produces. The date used for computing the 90-day limit for the purposes of section 721(d)(1) of the act shall be moved...

  15. 21 CFR 71.4 - Samples; additional information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... respect to the safety of the color additive or the physical or technical effect it produces. The date used for computing the 90-day limit for the purposes of section 721(d)(1) of the act shall be moved...

  16. 52 additional reference population samples for the 55 AISNP panel.

    PubMed

    Pakstis, Andrew J; Haigh, Eva; Cherni, Lotfi; ElGaaied, Amel Ben Ammar; Barton, Alison; Evsanaa, Baigalmaa; Togtokh, Ariunaa; Brissenden, Jane; Roscoe, Janet; Bulbul, Ozlem; Filoglu, Gonul; Gurkan, Cemal; Meiklejohn, Kelly A; Robertson, James M; Li, Cai-Xia; Wei, Yi-Liang; Li, Hui; Soundararajan, Usha; Rajeevan, Haseena; Kidd, Judith R; Kidd, Kenneth K

    2015-11-01

    Ancestry inference for a person using a panel of SNPs depends on the variation of frequencies of those SNPs around the world and the amount of reference data available for calculation/comparison. The Kidd Lab panel of 55 AISNPs has been incorporated in commercial kits by both Life Technologies and Illumina for massively parallel sequencing. Therefore, a larger set of reference populations will be useful for researchers using those kits. We have added reference population allele frequencies for 52 population samples to the 73 previously entered so that there are now allele frequencies publicly available in ALFRED and FROG-kb for a total of 125 population samples. PMID:26355664

  17. Approach for environmental baseline water sampling

    USGS Publications Warehouse

    Smith, K.S.

    2011-01-01

    Samples collected during the exploration phase of mining represent baseline conditions at the site. As such, they can be very important in forecasting potential environmental impacts should mining proceed, and can become measurements against which future changes are compared. Constituents in stream water draining mined and mineralized areas tend to be geochemically, spatially, and temporally variable, which presents challenges in collecting both exploration and baseline water-quality samples. Because short-term (daily) variations can complicate long-term trends, it is important to consider recent findings concerning geochemical variability of stream-water constituents at short-term timescales in designing sampling plans. Also, adequate water-quality information is key to forecasting potential ecological impacts from mining. Therefore, it is useful to collect baseline water samples adequate tor geochemical and toxicological modeling. This requires complete chemical analyses of dissolved constituents that include major and minor chemical elements as well as physicochemical properties (including pH, specific conductance, dissolved oxygen) and dissolved organic carbon. Applying chemical-equilibrium and appropriate toxicological models to water-quality information leads to an understanding of the speciation, transport, sequestration, bioavailability, and aquatic toxicity of potential contaminants. Insights gained from geochemical and toxicological modeling of water-quality data can be used to design appropriate mitigation and for economic planning for future mining activities.

  18. 10. Water treatment plant, view to S. 1965 addition is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Water treatment plant, view to S. 1965 addition is in the foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  19. Benefits of neutral electrolyzed oxidizing water as a drinking water additive for broiler chickens.

    PubMed

    Bügener, E; Kump, A Wilms-Schulze; Casteel, M; Klein, G

    2014-09-01

    In the wake of discussion about the use of drugs in food-producing farms, it seems to be more and more important to search for alternatives and supportive measures to improve health. In this field trial, the influence of electrolyzed oxidizing (EO) water on water quality, drug consumption, mortality, and performance parameters such as BW and feed conversion rate was investigated on 2 broiler farms. At each farm, 3 rearing periods were included in the study. With EO water as the water additive, the total viable cell count and the number of Escherichia coli in drinking water samples were reduced compared with the respective control group. The frequency of treatment days was represented by the number of used daily doses per population and showed lower values in EO-water-treated groups at both farms. Furthermore, the addition of EO water resulted in a lower mortality rate. In terms of analyzed performance parameters, no significant differences were determined. In this study, the use of EO water improved drinking water quality and seemed to reduce the drug use without showing negative effects on performance parameters and mortality rates. PMID:25037820

  20. Benefits of neutral electrolyzed oxidizing water as a drinking water additive for broiler chickens.

    PubMed

    Bügener, E; Kump, A Wilms-Schulze; Casteel, M; Klein, G

    2014-09-01

    In the wake of discussion about the use of drugs in food-producing farms, it seems to be more and more important to search for alternatives and supportive measures to improve health. In this field trial, the influence of electrolyzed oxidizing (EO) water on water quality, drug consumption, mortality, and performance parameters such as BW and feed conversion rate was investigated on 2 broiler farms. At each farm, 3 rearing periods were included in the study. With EO water as the water additive, the total viable cell count and the number of Escherichia coli in drinking water samples were reduced compared with the respective control group. The frequency of treatment days was represented by the number of used daily doses per population and showed lower values in EO-water-treated groups at both farms. Furthermore, the addition of EO water resulted in a lower mortality rate. In terms of analyzed performance parameters, no significant differences were determined. In this study, the use of EO water improved drinking water quality and seemed to reduce the drug use without showing negative effects on performance parameters and mortality rates.

  1. Optimization of Eosine Analyses in Water Samples

    NASA Astrophysics Data System (ADS)

    Kola, Liljana

    2010-01-01

    The fluorescence ability of Eosine enables its using as artificial tracer in the water system studies. The fluorescence intensity of fluorescent dyes in water samples depends on their physical and chemical properties, such as pH, temperature, presence of oxidants, etc. This paper presents the experience of the Center of Applied Nuclear Physics, Tirana, in this field. The problem is dealt with in relation to applying Eosine to trace and determine water movements within the karstic system and underground waters. We have used for this study the standard solutions of Eosine. The method we have elaborated to this purpose made it possible to optimize procedures we use to analyze samples for the presence of Eosine and measure its content, even in trace levels, by the means of a Perkin Elmer LS 55 Luminescence Spectrometer.

  2. 21 CFR 173.310 - Boiler water additives.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Boiler water additives. Boiler water additives may be safely used in the preparation of steam that will.... The mixture is used as an anticorrosive agent in steam boiler distribution systems, with each... nitrilotriacetate Not to exceed 5 parts per million in boiler feedwater; not to be used where steam will be...

  3. Bacterial contamination in cold water samples obtained from water dispensers.

    PubMed

    Furuhata, Katsunori; Ishizaki, Naoto; Fukuyama, Masafumi

    2015-01-01

    We carried out a basic study in order to evaluate the bacterial contamination in water dispensers. Water samples were obtained from water dispensers from October 2012 to November 2013, and standard plate counts (at 36˚C, 24 h) of the samples, as well as heterotrophic plate counts (at 25˚C, 7 d), were estimated with the standard methods for the examination of drinking water in Japan. Standard plate counts exceeding the water-quality standard (1.0×10(2) CFU/ml) were observed in 42 of the 140 samples (30.0%), with a maximum detected bacterial count of 2.1×10(5) CFU/ml. The rate of the standard plate counts exceeding the water quality standard tended to be higher when using a one-way type method or water dispensers with natural water. Ralstonia spp. was most commonly isolated, and Pseudomonas aeruginosa was isolated in a few cases. Some opportunistic pathogens were also isolated, suggesting that we should be more concerned about bacterial contamination in cold water supplied from water dispensers.

  4. Reliability of chemical analyses of water samples

    SciTech Connect

    Beardon, R.

    1989-11-01

    Ground-water quality investigations require reliable chemical analyses of water samples. Unfortunately, laboratory analytical results are often unreliable. The Uranium Mill Tailings Remedial Action (UMTRA) Project`s solution to this problem was to establish a two phase quality assurance program for the analysis of water samples. In the first phase, eight laboratories analyzed three solutions of known composition. The analytical accuracy of each laboratory was ranked and three laboratories were awarded contracts. The second phase consists of on-going monitoring of the reliability of the selected laboratories. The following conclusions are based on two years experience with the UMTRA Project`s Quality Assurance Program. The reliability of laboratory analyses should not be taken for granted. Analytical reliability may be independent of the prices charged by laboratories. Quality assurance programs benefit both the customer and the laboratory.

  5. Reduction of hexavalent chromium in water samples acidified for preservation

    USGS Publications Warehouse

    Stollenwerk, K.G.; Grove, D.B.

    1985-01-01

    Reduction of hexavalent chromium, Cr(VI), in water samples, preserved by standard techniques, was investigated. The standard preservation technique for water samples that are to be analyzed for Cr(VI) consists of filtration through a 0.45-??m membrane, acidification to a pH < 2, and storage in plastic bottles. Batch experiments were conducted to evaluate the effect of H+ concentration, NO2, temperature, and dissolved organic carbon (DOC) on the reduction of Cr(VI) to Cr(III). The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO2, DOC, H+, and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4??C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0.45-??m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr(VI) reduction has occurred needs to be considered.The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO//2, DOC, H** plus , and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4 degree C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0. 45- mu m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr

  6. A new device for collecting time-integrated water samples from springs and surface water bodies

    USGS Publications Warehouse

    Panno, S.V.; Krapac, I.G.; Keefer, D.A.

    1998-01-01

    A new device termed the 'seepage sampler' was developed to collect representative water samples from springs, streams, and other surface-water bodies. The sampler collects composite, time-integrated water samples over short (hours) or extended (weeks) periods without causing significant changes to the chemical composition of the samples. The water sample within the sampler remains at the ambient temperature of the water body and does not need to be cooled. Seepage samplers are inexpensive to construct and easy to use. A sampling program of numerous springs and/or streams can be designed at a relatively low cost through the use of these samplers. Transient solutes migrating through such flow systems, potentially unnoticed by periodic sampling, may be detected. In addition, the mass loading of solutes (e.g., agrichemicals) may be determined when seepage samplers are used in conjunction with discharge measurements.

  7. Fire extinct experiments with water mist by adding additives

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Zhao, Jianbo

    2011-12-01

    The effects of fire extinguishment with water mist by adding different additives were studied. Tens of chemical substances (including alkali metal salt, dilution agent and surface active agent) were selected as additives due to their different extinct mechanisms. At first the performance of fire extinguishment with single additive was studied, then the effects of the same kinds of chemical substances under the same mass fraction were compared to study their influences on the fire extinguishment factors, including extinct time, fire temperature and oxygen concentration from which the fire extinct mechanism with additives could be concluded. Based on this the experiments were conducted to study the cooperate effect of the complexity of different additives. It indicated the relations between different firefighting mechanisms and different additives were competitive. From a large number of experiments the extinct mechanism with water mist by adding additives was concluded and an optimal compounding additive was selected.

  8. Ground Water Sampling at ISCO Sites - Residual Oxidant Impact on Sample Quality and Sample Preservation Guideline

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the delivery of a chemical oxidant into the subsurface where oxidative reactions transform ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...

  9. Persistence of Nontuberculous Mycobacteria in a Drinking Water System after Addition of Filtration Treatment

    PubMed Central

    Hilborn, Elizabeth D.; Covert, Terry C.; Yakrus, Mitchell A.; Harris, Stephanie I.; Donnelly, Sandra F.; Rice, Eugene W.; Toney, Sean; Bailey, Stephanie A.; Stelma, Gerard N.

    2006-01-01

    There is evidence that drinking water may be a source of infections with pathogenic nontuberculous mycobacteria (NTM) in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular colonization of protozoa. Our goal was to determine whether we could detect a reduction in the prevalence of NTM recovered from an unfiltered surface drinking water system after the addition of ozonation and filtration treatment and to characterize NTM isolates by using molecular methods. We sampled water from two initially unfiltered surface drinking water treatment plants over a 29-month period. One plant received the addition of filtration and ozonation after 6 months of sampling. Sample sites included those at treatment plant effluents, distributed water, and cold water taps (point-of-use [POU] sites) in public or commercial buildings located within each distribution system. NTM were recovered from 27% of the sites. POU sites yielded the majority of NTM, with >50% recovery despite the addition of ozonation and filtration. Closely related electrophoretic groups of Mycobacterium avium were found to persist at POU sites for up to 26 months. Water collected from POU cold water outlets was persistently colonized with NTM despite the addition of ozonation and filtration to a drinking water system. This suggests that cold water POU outlets need to be considered as a potential source of chronic human exposure to NTM. PMID:16957205

  10. Construction Site Storm Water Sampling California's New Construction Sampling and Analysis Requirements

    SciTech Connect

    Forrest, C.L.; Mathews, S.

    2002-04-02

    The California State Water Resources Control Board (State Board) originally issued a National Pollutant Discharge System (NPDES) permit for storm water discharges associated with construction activities in 1992. This NPDES permit was issued as a general permit, applicable throughout the state (with certain exceptions). The general construction permit was made site-specific by a discharger-developed Storm Water Pollution Prevention Plan (SWPPP). As with most NPDES construction storm water permits, monitoring requirements were limited to inspections. Sampling and analysis of discharges was not specifically required, but a Regional Water Quality Control Board (Regional Board) could require additional monitoring. In 1999, the State -Board revised and reissued its construction general permit. While the 1999 permit significantly enhanced the erosion and sediment control descriptions and requirements, and expanded the inspection program, sampling and analysis was still not required. Environmental advocacy groups took exception to the absence of sampling requirements and sought relief in court to add sampling and analysis. In 2001, the State Board in response to the court order adopted a resolution requiring sampling and analysis of construction site runoff under two conditions. Turbidity and/or sediment sampling is required when construction site runoff enters water bodies determined to impaired for sediment or turbidity. Sampling for non-visible pollutants is required when construction operations expose materials to storm water. Sampling construction site runoff is relatively new concept for NPDES permits. Only a few permits throughout the country require sampling and analysis for sediment-related pollutants, and California is one of the only permitting entities to require sampling for non-visible pollutants in construction site runoff. The added complexity of sampling runoff requires construction operators and erosion and sediment control professionals to expand their

  11. Continuous water sampling and water analysis in estuaries

    USGS Publications Warehouse

    Schemel, L.E.; Dedini, L.A.

    1982-01-01

    Salinity, temperature, light transmission, oxygen saturation, pH, pCO2, chlorophyll a fluorescence, and the concentrations of nitrate, nitrite, dissolved silica, orthophosphate, and ammonia are continuously measured with a system designed primarily for estuarine studies. Near-surface water (2-m depth) is sampled continuously while the vessel is underway; on station, water to depths of 100 m is sampled with a submersible pump. The system is comprised of commercially available instruments, equipment, and components, and of specialized items designed and fabricated by the authors. Data are read from digital displays, analog strip-chart recorders, and a teletype printout, and can be logged in disc storage for subsequent plotting. Data records made in San Francisco Bay illustrate physical, biological, and chemical estuarine processes, such as mixing and phytoplankton net production. The system resolves large- and small-scale events, which contributes to its reliability and usefulness.

  12. Claisen-type addition of glycine to pyridoxal in water.

    PubMed

    Toth, Krisztina; Amyes, Tina L; Richard, John P; Malthouse, J Paul G; NíBeilliú, Máire E

    2004-09-01

    The reaction between 5'-deoxypyridoxal and glycine in D2O buffered at pD 7.0 does not result in significant formation of the expected products of pyridoxal-catalyzed transamination or deuterium exchange of the alpha-amino protons of glycine, but rather gives a quantitative yield of the two diastereomeric products of the formal Claisen-type addition of glycine to 5'-deoxypyridoxal. The unexpected extensive formation of these products reflects the extraordinary selectivity of the 5'-deoxypyridoxal-stabilized glycine enolate toward addition to the carbonyl group of 5'-deoxypyridoxal in the protic solvent water.

  13. 49 CFR 199.111 - Retention of samples and additional testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Retention of samples and additional testing. 199... SAFETY DRUG AND ALCOHOL TESTING Drug Testing § 199.111 Retention of samples and additional testing. (a... period, the employee or the employee's representative, the operator, the Administrator, or, if...

  14. 21 CFR 173.310 - Boiler water additives.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...), pp. 744-745, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Boiler water additives. 173.310 Section...

  15. 21 CFR 173.310 - Boiler water additives.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), pp. 744-745, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Boiler water additives. 173.310 Section...

  16. 21 CFR 173.310 - Boiler water additives.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), pp. 744-745, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Boiler water additives. 173.310 Section...

  17. 21 CFR 173.310 - Boiler water additives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), pp. 744-745, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Boiler water additives. 173.310 Section...

  18. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment

    NASA Astrophysics Data System (ADS)

    Chikoski, Jennifer M.; Ferguson, Steven H.; Meyer, Lense

    2006-09-01

    We investigated the effect of water addition and season on soil arthropod abundance and soil characteristics (%C, %N, C:N, moisture, pH). The experimental design consisted of 24 groups of five boxes distributed within a small aspen stand in Saskatchewan, Canada. The boxes depressed the soil to create a habitat with suitable microclimate for soil arthropods, and by overturning boxes we counted soil arthropods during weekly surveys from April to September 1999. Soil samples were collected at two-month intervals and water was added once per week to half of the plots. Of the eleven recognizable taxonomic units identified, only mites (Acari) and springtails (Collembola) responded to water addition by increasing abundance, whereas ants decreased in abundance with water addition. During summer, springtail numbers increased with water addition, whereas pH was a stronger determinant of mite abundance. In autumn, springtails were positively correlated with water and negatively correlated with mites, whereas mite abundance was negatively correlated with increasing C:N ratio, positively correlated to water addition, and negatively correlated with springtail abundance. Although both mite and springtail numbers decreased in autumn with a decrease in soil moisture, mites became more abundant than springtails suggesting a predator-prey (mite-springtail) relationship. Water had a significant effect on both springtails and mites in summer and autumn supporting the assertion that prairie soil communities are water limited.

  19. Chapter 5: Surface water quality sampling in streams and canals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  20. Possibilities of obtaining an additional water supply near Hingham, Massachusetts

    USGS Publications Warehouse

    Brashears, M.L.

    1942-01-01

    In February 1942 the War Production Board requested the U.S. Geological Survey to furnish information on the possibilities of obtaining additional water supply near the shore at Hingham, Mass. It was estimated that 300,000 to 500,000 gallons a day was needed. On February 25 and 26, 1942, a brief field study of the ground-water conditions was made in an area about 2 miles wide along the shore of Hingham Bay at Hingham, Mass. Most of this area is shown on the topographic map of the Weymouth Quadrangle, Mass., surveyed by the U.S. Geological Survey in 1936. The field work of the ground-water study consisted mainly of surface transverses and the examination of road cuts and gravel pits. In addition, well records and other data were collected from well drillers and public officials. Acknowledgement is made to H. B. Kinnison, district engineer, U.S. Geological Survey, at Boston, Mass., for his assistance and suggestions.

  1. UMTRA water sampling and analysis plan, Green River, Utah

    SciTech Connect

    Papusch, R.

    1993-12-01

    The purpose of this water sampling and analysis plan (WSAP) is to provide a basis for groundwater and surface water sampling at the Green River Uranium Mill Tailing Remedial Action (UMTRA) Project site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations.

  2. ACQUISITION OF REPRESENTATIVE GROUND WATER QUALITY SAMPLES FOR METALS

    EPA Science Inventory

    R.S. Kerr Environmental Research Laboratory (RSKERL) personnel have evaluated sampling procedures for the collection of representative, accurate, and reproducible ground water quality samples for metals for the past four years. Intensive sampling research at three different field...

  3. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  4. Silicone rubber selection for passive sampling of pesticides in water.

    PubMed

    Martin, A; Margoum, C; Randon, J; Coquery, M

    2016-11-01

    Silicone rubber can extract organic compounds with a broad range of polarities (logKow>2-3) from aqueous samples. Such compounds include substances of major concern in the protection of aquatic ecosystems and human health, e.g. pesticides. Silicone rubbers (SRs) with various characteristics have been successfully used in sorptive methods for water sample extraction in the laboratory (SPME, SBSE), and for passive sampling in aquatic environments. However, only few studies have evaluated variability in organic compound sorption due to the origin of SRs, particularly for pesticides. The aim of this study was to select an SR for the extraction of pesticides from water samples by passive sampling. To this end we measured the impact of seven SR formulations on sorption capacity, defined by the partition coefficient (Ksw). Kinetic experiments and sorption isotherms were performed to determine extraction recovery as a selection criterion for SRs, and pesticide partition coefficients. Very large differences in affinity for pesticides were found between two kinds of SRs: "Polymerized SR kits" and "Manufactured SRs". One SR was chosen among the "Manufactured SRs", and the Ksw values of 21 pesticides were determined, filling a gap in the literature (1.50additional economic and technical factors, we suggest using SR from Goodfellow in future work to reduce the variability of Ksw literature values. PMID:27591618

  5. Methods for collection and analysis of water samples

    USGS Publications Warehouse

    Rainwater, Frank Hays; Thatcher, Leland Lincoln

    1960-01-01

    This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.

  6. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  7. Study of Cloud Water Samples Collected over Northern Poland.

    PubMed

    Polkowska, Ż; Błaś, M; Lech, D; Namieśnik, J

    2014-01-01

    The paper gives the results of the first studies on the chemistry of cloud water collected during 3 mo (Aug.-Oct. 2010) in the free atmosphere over the area to the south of the Tri-City (Gdansk-Sopot-Gdynia) conurbation on the Gulf of Gdansk, Poland. Taken from cumulus, stratus, and stratocumulus clouds by means of an aircraft-mounted collector, the water samples were analyzed for the following contaminants: anions (chlorides, fluorides, nitrates, sulfates, and phosphates), cations (lithium, sodium, potassium, ammonium, calcium, and magnesium), and trace metals. In addition, pH values were measured, and the type and composition of suspended particulate matter was determined. We discuss the relationship between the concentration of inorganic ions and the type of cloud from which water was sampled. The chemistry is also likely related to the circulation pattern and inflow of clean air masses from the Baltic Sea. Moreover, a relationship was found between the composition of the samples examined and the location of pollutant emission sources.

  8. 49 CFR 199.111 - Retention of samples and additional testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY DRUG AND ALCOHOL TESTING Drug Testing § 199.111 Retention of samples and additional testing. (a) Samples that yield positive results on confirmation must be retained by the laboratory in properly...

  9. 40 CFR 80.8 - Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. To enforce any edition other than... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Sampling methods for gasoline, diesel... Provisions § 80.8 Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels....

  10. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods.

    PubMed

    Coes, Alissa L; Paretti, Nicholas V; Foreman, William T; Iverson, Jana L; Alvarez, David A

    2014-03-01

    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19-23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.

  11. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods

    USGS Publications Warehouse

    Coes, Alissa L.; Paretti, Nicholas V.; Foreman, William T.; Iverson, Jana L.; Alvarez, David A.

    2014-01-01

    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19–23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.

  12. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods.

    PubMed

    Coes, Alissa L; Paretti, Nicholas V; Foreman, William T; Iverson, Jana L; Alvarez, David A

    2014-03-01

    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19-23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method. PMID:24419241

  13. UMTRA Project water sampling and analysis plan, Slick Rock, Colorado

    SciTech Connect

    Not Available

    1994-08-01

    This water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the proposed Burro Canyon disposal site near Slick Rock, Colorado for the upcoming year. It identifies and justifies the sampling locations, analytical parameters, and sampling frequencies. The WSAP bridges water quality characterization and data collection objectives for the surface remediation program (Subpart A) and the ground water compliance program (Subpart B) identified in 40 CFR Part 192 (1994).

  14. Experiment 2030. EE-2 Temperature Log and Downhole Water Sample

    SciTech Connect

    Grigsby, Charles O.

    1983-07-29

    A temperature log and downhole water sample run were conducted in EE-2 on July 13, 1983. The temperature log was taken to show any changes which had occurred in the fracture-to-wellbore intersections as a result of the Experiment 2020 pumping and to locate fluid entries for taking the water sample. The water sample was requested primarily to determine the arsenic concentration in EE-2 fluids (see memo from C.Grigsby, June 28, 1983 concerning arsenic in EE-3 samples.) The temperature log was run using the thermistor in the ESS-6 water samples.

  15. LABORATORY ANALYSES: WATER AND ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    To be presented at the Workshop for Improving the Recognition, Investigation, and Reporting of Waterborne Disease Outbreaks Associated with Drinking, Recreational and Other Waters in Nashville, TN, May 29 - June 1, 2007

  16. Par Pond refill water quality sampling

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column.

  17. UMTRA project water sampling and analysis plan, Gunnison, Colorado

    SciTech Connect

    Not Available

    1994-06-01

    This water sampling and analysis plan summarizes the results of previous water sampling activities and the plan for water sampling activities for calendar year 1994. A buffer zone monitoring plan is included as an appendix. The buffer zone monitoring plan is designed to protect the public from residual contamination that entered the ground water as a result of former milling operations. Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually in 1994 at the Gunnison processing site (GUN-01) and disposal site (GUN-08). Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer (Tertiary gravels) at the Gunnison disposal site. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted at least semiannually during and one year following the period of construction activities, to comply with the ground water protection strategy discussed in the remedial action plan (DOE, 1992a).

  18. Analysis of zinc in biological samples by flame atomic absorption spectrometry: use of addition calibration technique.

    PubMed

    Dutra, Rosilene L; Cantos, Geny A; Carasek, Eduardo

    2006-01-01

    The quantification of target analytes in complex matrices requires special calibration approaches to compensate for additional capacity or activity in the matrix samples. The standard addition is one of the most important calibration procedures for quantification of analytes in such matrices. However, this technique requires a great number of reagents and material, and it consumes a considerable amount of time throughout the analysis. In this work, a new calibration procedure to analyze biological samples is proposed. The proposed calibration, called the addition calibration technique, was used for the determination of zinc (Zn) in blood serum and erythrocyte samples. The results obtained were compared with those obtained using conventional calibration techniques (standard addition and standard calibration). The proposed addition calibration was validated by recovery tests using blood samples spiked with Zn. The range of recovery for blood serum and erythrocyte samples were 90-132% and 76-112%, respectively. Statistical studies among results obtained by the addition technique and conventional techniques, using a paired two-tailed Student's t-test and linear regression, demonstrated good agreement among them. PMID:16943611

  19. Nano-porous pottery using calcined waste sediment from tap water production as an additive.

    PubMed

    Sangsuk, Supin; Khunthon, Srichalai; Nilpairach, Siriphan

    2010-10-01

    A suspension of sediment from a lagoon in a tap water production plant was collected for this experiment. The suspension was spray dried and calcined at 700 °C for 1 h. After calcining, 30 wt.% of the sediment were mixed with pottery clay. Samples with and without calcined sediment were sintered at 900, 1000 and 1100 °C. The results show that calcined sediment can be used as an additive in pottery clay. The samples with calcined sediment show higher porosity, water absorption and flexural strength, especially for 900 and 1000 °C. At 900 °C, samples with calcined sediment show a porosity of 50% with an average pore size of 68 nm, water absorption of 31% and flexural strength of 12.61 MPa.

  20. Bubble formation in water with addition of a hydrophobic solute.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2015-07-01

    We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium. PMID:26142694

  1. UMTRA project water sampling and analysis plan -- Shiprock, New Mexico

    SciTech Connect

    Not Available

    1994-02-01

    Water sampling and analysis plan (WSAP) is required for each U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site to provide a basis for ground water and surface water sampling at disposal and former processing sites. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring stations at the Navaho Reservation in Shiprock, New Mexico, UMTRA Project site. The purposes of the water sampling at Shiprock for fiscal year (FY) 1994 are to (1) collect water quality data at new monitoring locations in order to build a defensible statistical data base, (2) monitor plume movement on the terrace and floodplain, and (3) monitor the impact of alluvial ground water discharge into the San Juan River. The third activity is important because the community of Shiprock withdraws water from the San Juan River directly across from the contaminated alluvial floodplain below the abandoned uranium mill tailings processing site.

  2. Visualizing Water Quality Sampling-Events in Florida

    NASA Astrophysics Data System (ADS)

    Bolt, M. D.

    2015-07-01

    Water quality sampling in Florida is acknowledged to be spatially and temporally variable. The rotational monitoring program that was created to capture data within the state's thousands of miles of coastline and streams, and millions of acres of lakes, reservoirs, and ponds may be partly responsible for inducing the variability as an artifact. Florida's new dissolved-oxygen-standard methodology will require more data to calculate a percent saturation. This additional data requirement's impact can be seen when the new methodology is applied retrospectively to the historical collection. To understand how, where, and when the methodological change could alter the environmental quality narrative of state waters requires addressing induced bias from prior sampling events and behaviors. Here stream and coastal water quality data is explored through several modalities to maximize understanding and communication of the spatiotemporal relationships. Previous methodology and expected-retrospective calculations outside the regulatory framework are found to be significantly different, but dependent on the spatiotemporal perspective. Data visualization is leveraged to demonstrate these differences, their potential impacts on environmental narratives, and to direct further review and analysis.

  3. Evaluation of activated carbon fiber filter for sampling of organochlorine pesticides in environmental water samples.

    PubMed

    Murayama, Hitoshi; Moriyama, Noboru; Mitobe, Hideko; Mukai, Hiroyuki; Takase, Yuuya; Shimizu, Ken ichi; Kitayama, Yoshie

    2003-08-01

    A simple method for quantitative analyses of organic chlorine pesticides (OCPs) in environmental water samples such as rainwater, river water and seawater using activated carbon fiber filters (ACFF) is described. ACFF was used as adsorbent to collect the chemicals in water samples. The collection of OCPs was completed almost for one day by stirring the mixture of the sample and the ACFF chips at room temperature. The adsorbed OCPs on the ACFF could be extracted easily with toluene-ethanol (4:1) mixed solvent. The purified extract by a florisil column chromatograph was followed by the analysis using high-resolution gas chromatograph/high-resolution mass spectrometer. Recoveries of OCPs spiked to actual samples such as rainwater, river water and seawater samples were approximately more than 80%, and the coefficients of variations were within 10%. This method was applied to the actual samples and was confirmed to be applicable for monitoring sub-ng/l level OCPs in environmental water samples.

  4. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    SciTech Connect

    Katz, B.G.; Berndt, M.P.; Bullen, T.D.; Hansard, P.

    1999-07-01

    This report presents results of detailed statistical analyses of total and dissolved Pb concentrations in water samples collected from the major aquifer systems in Florida for the FGWQMN [Florida Ground Water Quality Monitoring Network] to determine the influence of anthropogenic factors on elevated Pb concentrations. In addition, Pb isotopic data are presented for water samples collected from a subset of 13 wells in the monitoring network, samples of aquifer material, rainfall, and Pb counterweights. The Pb-isotope data provide a better understanding of the relative contributions of anthropogenic and natural sources of Pb in ground water samples from Florida`s major aquifer systems.

  5. Modeling complexometric titrations of natural water samples.

    PubMed

    Hudson, Robert J M; Rue, Eden L; Bruland, Kenneth W

    2003-04-15

    Complexometric titrations are the primary source of metal speciation data for aquatic systems, yet their interpretation in waters containing humic and fulvic acids remains problematic. In particular, the accuracy of inferred ambient free metal ion concentrations and parameters quantifying metal complexation by natural ligands has been challenged because of the difficulties inherent in calibrating common analytical methods and in modeling the diverse array of ligands present. This work tests and applies a new method of modeling titration data that combines calibration of analytical sensitivity (S) and estimation of concentrations and stability constants for discrete natural ligand classes ([Li]T and Ki) into a single step using nonlinear regression and a new analytical solution to the one-metal/two-ligand equilibrium problem. When applied to jointly model data from multiple titrations conducted at different analytical windows, it yields accurate estimates of S, [Li]T, Ki, and [Cu2+] plus Monte Carlo-based estimates of the uncertainty in [Cu2+]. Jointly modeling titration data at low-and high-analytical windows leads to an efficient adaptation of the recently proposed "overload" approach to calibrating ACSV/CLE measurements. Application of the method to published data sets yields model results with greater accuracy and precision than originally obtained. The discrete ligand-class model is also re-parametrized, using humic and fulvic acids, L1 class (K1 = 10(13) M(-1)), and strong ligands (L(S)) with K(S) > K1 as "natural components". This approach suggests that Cu complexation in NW Mediterranean Sea water can be well represented as 0.8 +/- 0.3/0.2 mg humic equiv/L, 13 +/- 1 nM L1, and 2.5 +/- 0.1 nM L(S) with [CU]T = 3 nM. In coastal seawater from Narragansett Bay, RI, Cu speciation can be modeled as 0.6 +/- 0.1 mg humic equiv/L and 22 +/- 1 nM L1 or approximately 12 nM L1 and approximately 9 nM L(S), with [CU]T = 13 nM. In both waters, the large excess

  6. Additive quantification on polymer thin films by ToF-SIMS: aging sample effects

    NASA Astrophysics Data System (ADS)

    Poleunis, Claude; Médard, Nicolas; Bertrand, Patrick

    2004-06-01

    Thin films (150 nm) of an amorphous polyester (polyethylene(terephthalate-isophthalate)) containing variable concentrations of an antioxidant (Irgafos™ 168) and a UV-stabilizer (Hostavin™ N30) have been prepared by spin-coating. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) results showed, in the case of a single additive system (antioxidant), that the additive intensity increased on the polymer surface during the first five aging days (exudation phenomenon), followed by an intensity decrease, which was related to the adsorption of hydrocarbon contaminations on the sample surface. This kinetic competition was observed whatever the used additive concentration. In the case of the binary additive system (antioxidant and UV-stabilizer), the antioxidant behavior was similar to the single additive system, whereas, the UV-stabilizer evolution corresponded to an additive depletion, followed by an exudation. These results indicate that it is necessary to be very careful when comparing ToF-SIMS data for additive quantification on polymer surfaces. It is strongly recommended to compare samples having the same aging time, because the surface composition was seen to be strongly dependent of the aging time.

  7. 31. VIEW FROM SOUTHWEST TO CORNER WHERE SAMPLING/CRUSHING ADDITIONS ABUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW FROM SOUTHWEST TO CORNER WHERE SAMPLING/CRUSHING ADDITIONS ABUT CRUSHED OXIDIZED ORE BIN. INTACT BARREN SOLUTION TANK VISIBLE IN FRONT OF CRUSHED ORE BIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  8. Studies of levels of biogenic amines in meat samples in relation to the content of additives.

    PubMed

    Jastrzębska, Aneta; Kowalska, Sylwia; Szłyk, Edward

    2016-01-01

    The impact of meat additives on the concentration of biogenic amines and the quality of meat was studied. Fresh white and red meat samples were fortified with the following food additives: citric and lactic acids, disodium diphosphate, sodium nitrite, sodium metabisulphite, potassium sorbate, sodium chloride, ascorbic acid, α-tocopherol, propyl 3,4,5-trihydroxybenzoate (propyl gallate) and butylated hydroxyanisole. The content of spermine, spermidine, putrescine, cadaverine, histamine, tyramine, tryptamine and 2-phenylethylamine was determined by capillary isotachophoretic methods in meat samples (fresh and fortified) during four days of storage at 4°C. The results were applied to estimate the impact of the tested additives on the formation of biogenic amines in white and red meat. For all tested meats, sodium nitrite, sodium chloride and disodium diphosphate showed the best inhibition. However, cadaverine and putrescine were characterised by the biggest changes in concentration during the storage time of all the additives. Based on the presented data for the content of biogenic amines in meat samples analysed as a function of storage time and additives, we suggest that cadaverine and putrescine have a significant impact on meat quality. PMID:26515667

  9. Studies of levels of biogenic amines in meat samples in relation to the content of additives.

    PubMed

    Jastrzębska, Aneta; Kowalska, Sylwia; Szłyk, Edward

    2016-01-01

    The impact of meat additives on the concentration of biogenic amines and the quality of meat was studied. Fresh white and red meat samples were fortified with the following food additives: citric and lactic acids, disodium diphosphate, sodium nitrite, sodium metabisulphite, potassium sorbate, sodium chloride, ascorbic acid, α-tocopherol, propyl 3,4,5-trihydroxybenzoate (propyl gallate) and butylated hydroxyanisole. The content of spermine, spermidine, putrescine, cadaverine, histamine, tyramine, tryptamine and 2-phenylethylamine was determined by capillary isotachophoretic methods in meat samples (fresh and fortified) during four days of storage at 4°C. The results were applied to estimate the impact of the tested additives on the formation of biogenic amines in white and red meat. For all tested meats, sodium nitrite, sodium chloride and disodium diphosphate showed the best inhibition. However, cadaverine and putrescine were characterised by the biggest changes in concentration during the storage time of all the additives. Based on the presented data for the content of biogenic amines in meat samples analysed as a function of storage time and additives, we suggest that cadaverine and putrescine have a significant impact on meat quality.

  10. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    SciTech Connect

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  11. Sample preparation techniques in trace element analysis of water

    NASA Astrophysics Data System (ADS)

    Nagj, Marina; Jakšić, M.; Orlić, I.; Valković, V.

    1985-06-01

    Sample preparation techniques for the analysis of water for trace elements using X-ray emission spectroscopy are described. Fresh water samples for the analysis of transition metals were prepared by complexation with ammonium-pyrrolidine-dithiocarbamate (APDC) and filtering through a membrane filter. Analyses of water samples for halogenes was done on samples prepared by precipitation with AgNO 3 and subsequent filtration. Two techniques for seawater preparation for uranium determination are described, viz. precipitation with APDC in the presence of iron (II) as a carrier and complexation with APDC followed with adsorption on activated carbon. In all cases trace element levels at 10 -3 μg/g were measured.

  12. Quantifying variability within water samples: the need for adequate subsampling.

    PubMed

    Donohue, Ian; Irvine, Kenneth

    2008-01-01

    Accurate and precise determination of the concentration of nutrients and other substances in waterbodies is an essential requirement for supporting effective management and legislation. Owing primarily to logistic and financial constraints, however, national and regional agencies responsible for monitoring surface waters tend to quantify chemical indicators of water quality using a single sample from each waterbody, thus largely ignoring spatial variability. We show here that total sample variability, which comprises both analytical variability and within-sample heterogeneity, of a number of important chemical indicators of water quality (chlorophyll a, total phosphorus, total nitrogen, soluble molybdate-reactive phosphorus and dissolved inorganic nitrogen) varies significantly both over time and among determinands, and can be extremely high. Within-sample heterogeneity, whose mean contribution to total sample variability ranged between 62% and 100%, was significantly higher in samples taken from rivers compared with those from lakes, and was shown to be reduced by filtration. Our results show clearly that neither a single sample, nor even two sub-samples from that sample is adequate for the reliable, and statistically robust, detection of changes in the quality of surface waters. We recommend strongly that, in situations where it is practicable to take only a single sample from a waterbody, a minimum of three sub-samples are analysed from that sample for robust quantification of both the concentrations of determinands and total sample variability. PMID:17706740

  13. UMTRA project water sampling and analysis plan, Grand Junction, Colorado

    SciTech Connect

    Not Available

    1994-07-01

    Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

  14. Decontaminating materials used in ground water sampling devices: Organic contaminants

    SciTech Connect

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.

  15. Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2009-04-01

    In this study, we investigated the feasibility of using sludge water from a ready-mixed concrete plant as mixing water in concrete containing either fly ash as an additive or a superplasticizer admixture based on sulfonated naphthalene-formaldehyde condensates (SNF). The chemical and physical properties of the sludge water and the dry sludge were investigated. Cement pastes were mixed using sludge water containing various levels of total solids content (0.5, 2.5, 5, 7.5, 10, 12.5, and 15%) in order to determine the optimum content in the sludge water. Increasing the total solids content beyond 5-6% tended to reduce the compressive strength and shorten the setting time. Concrete mixes were then prepared using sludge water containing 5-6% total solids content. The concrete samples were evaluated with regard to water required, setting time, slump, compressive strength, permeability, and resistance to acid attack. The use of sludge water in the concrete mix tended to reduce the effect of both fly ash and superplasticizer. Sludge water with a total solids content of less than 6% is suitable for use in the production of concrete with acceptable strength and durability.

  16. July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect

    2011-01-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

  17. Monitoring of fluoride in water samples using a smartphone.

    PubMed

    Levin, Saurabh; Krishnan, Sunderrajan; Rajkumar, Samuel; Halery, Nischal; Balkunde, Pradeep

    2016-05-01

    In several parts of India, groundwater is the only reliable, year round source for drinking water. Prevention of fluorosis, a chronic disease resulting from excess intake of fluoride, requires the screening of all groundwater sources for fluoride in endemic areas. In this paper, the authors present a field deployable colorimetric analyzer based on an inexpensive smartphone embedded with digital camera for taking photograph of the colored solution as well as an easy-fit, and compact sample chamber (Akvo Caddisfly). Phones marketed by different smartphone makers were used. Commercially available zirconium xylenol orange reagent was used for determining fluoride concentration. A software program was developed to use with the phone for recording and analyzing the RGB color of the picture. Linear range for fluoride estimation was 0-2mgl(-1). Around 200 samples, which consisted of laboratory prepared as well as field samples collected from different locations in Karnataka, India, were tested with Akvo Caddisfly. The results showed a significant positive correlation between Ion Selective Electrode (ISE) method and Akvo Caddisfly (Phones A, B and C), with correlation coefficient ranging between 0.9952 and 1.000. In addition, there was no significant difference in the mean fluoride content values between ISE and Phone B and C except for Phone A. Thus the smartphone method is economical and suited for groundwater fluoride analysis in the field. PMID:26874766

  18. UMTRA Project water sampling and analysis plan, Falls City, Texas

    SciTech Connect

    Not Available

    1994-02-01

    Surface remedial action will be completed at the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site in the spring of 1994. Results of water sampling activity from 1989 to 1993 indicate that ground water contamination occurs primarily in the Deweesville/Conquista aquifer (the uppermost aquifer) and that the contamination migrates along four distinct contaminant plumes. Contaminated ground water from some wells in these regions has significantly elevated levels of aluminum, arsenic, cadmium, manganese, molybdenum, selenium, sulfate, and uranium. Contamination in the Dilworth aquifer was identified in monitor well 977 and in monitor well 833 at the southern edge of former tailings pile 4. There is no evidence that surface water quality in Tordilla and Scared Dog Creeks is impacted by tailings seepage. The following water sampling activities are planned for calendar year 1994: (1) Ground water sampling from 15 monitor wells to monitor the migration of the four major contaminant plumes within the Deweesville/Conquista aquifer. (2) Ground water sampling from five monitor wells to monitor contaminated and background ground water quality conditions in the Dilworth aquifer. Because of disposal cell construction activities, all plume monitor wells screened in the Dilworth aquifer were abandoned. No surface water locations are proposed for sampling. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the Deweesville/Conquista aquifer downgradient of the disposal cell. The list of analytes has been modified with time to reflect constituents currently related to uranium processing activities and natural uranium mineralization. Water sampling is normally conducted biannually in late summer and midwinter.

  19. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  20. Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge

    NASA Astrophysics Data System (ADS)

    Ma, Y. C.; Liu, H. Y.; Yan, S. B.; Yang, Y. H.; Yang, M. W.; Li, J. M.; Tang, J.

    2013-05-01

    This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency.

  1. The stability of chlorofluorocarbons (CFCs) in ground-water samples archived in borosilicate ampoules

    USGS Publications Warehouse

    Shapiro, Stephanie Dunkle; Busenberg, Eurybiades; Plummer, L. Niel

    2005-01-01

    The U.S. Geological Survey (USGS) Chlorofluorocarbon (CFC) Laboratory in Reston, Va., has been measuring concentrations of CFCs in ground-water samples since 1989 to estimate the year that a water sample was recharged to a ground-water flow system. The water samples have been collected in flame-sealed borosilicate ampoules. Typically for each site, three samples were analyzed within days to a few months after collection, and additional samples were archived for extended periods of time (up to four years). The stability of CFC concentrations in the archived water samples from the USGS CFC Laboratory was investigated by analyzing the CFC concentrations in archived water samples and comparing them with the CFC concentrations that were obtained soon after the samples were collected. The archived samples selected for analysis were chosen from sites with a wide variety of hydrogeologic and geochemical conditions. For CFC-11 and CFC-12 concentrations, approximately 14% and 10.5%, respectively, of the archived samples were statistically different (both higher and lower) from the concentrations obtained from analyses conducted soon after the sample collection. Most of the extraneous values were attributed to natural variability of CFC concentrations originally in the water discharged from wells, rather than to microbial degradation within the ampoule on storage.

  2. The influence of compost addition on the water repellency of brownfield soils

    NASA Astrophysics Data System (ADS)

    Whelan, Amii; Kechavarzi, Cedric; Sakrabani, Ruben; Coulon, Frederic; Simmons, Robert; Wu, Guozhong

    2010-05-01

    Compost application to brownfield sites, which can facilitate the stabilisation and remediation of contaminants whilst providing adequate conditions for plant growth, is seen as an opportunity to divert biodegradable wastes from landfill and put degraded land back into productive use. However, although compost application is thought to improve soil hydraulic functioning, there is a lack of information on the impact of large amounts of compost on soil water repellency. Water repellency in soils is attributed to the accumulation of hydrophobic organic compounds released as root exudates, fungal and microbial by-products and decomposition of organic matter. It has also been shown that brownfield soils contaminated with petroleum-derived organic contaminants can exhibit strong water repellency, preventing the rapid infiltration of water and leading potentially to surface run off and erosion of contaminated soil. However, hydrophobic organic contaminants are known to become sequestrated by partitioning into organic matter or diffusing into nano- and micropores, making them less available over time (ageing). The effect of large amounts of organic matter addition through compost application on the water repellency of soils contaminated with petroleum-derived organic contaminants requires further investigation. We characterised the influence of compost addition on water repellency in the laboratory by measuring the Water Drop Penetration Time (WDPT), sorptivity and water repellency index through infiltration experiments on soil samples amended with two composts made with contrasting feedstocks (green waste and predominantly meat waste). The treatments consisted of a sandy loam, a clay loam and a sandy loam contaminated with diesel fuel and aged for 3 years, which were amended with the two composts at a rate equivalent to 750t/ha. In addition core samples collected from a brownfield site, amended with compost at three different rates (250, 500 and 750t/ha) in 2007, were

  3. Turbulent flow of oil-water emulsions with polymer additives

    NASA Astrophysics Data System (ADS)

    Manzhai, V. N.; Monkam Clovis Le Grand, Monkam; Abdousaliamov, A. V.

    2014-08-01

    The article outlines direct and reverse oil-water emulsions. Microphotography study of these emulsions was carried out. The effect of water-soluble and oil soluble polymers on the emulsion structure and their turbulent flow velocity in cylindrical channel was investigated. It has been experimentally proven that if the fluid being transported is not homogeneous, but a two-phase oil-water emulsion, only the polymer that is compatible with dispersion medium and capable of dissolving in this medium can reduce the hydrodynamic resistance of the fluid flow. Thus, the resistance in direct emulsions can be reduced by water- soluble polyacrylamide, while oil-soluble polyhexene can be applied for reverse emulsions.

  4. Water-soluble fluorochemical surfactant well stimulation additives

    SciTech Connect

    Clark, H.B.; Pike, M.T.; Rengel, G.L.

    1982-07-01

    Water-soluble fluorochemical surfactants have been used in the oilfield since the early 1970's as surface tension depressants in a variety of aqueous stimulation fluids for low-permeability oil and gas wells. A discussion is presented of a laboratory study of the behavior of water-soluble fluorochemical surfactants relative to their oilfield use. Data are presented on surface tension depression, thermal stability, adsorption, fluid removal from sandpacks, flow rates, and emulsification tendencies. 7 refs.

  5. Isolation of Legionella from water samples using various culture methods.

    PubMed

    Kusnetsov, J M; Jousimies-Somer, H R; Nevalainen, A I; Martikainen, P J

    1994-02-01

    The efficacy of a non-selective medium and two selective media were compared for the isolation of legionellas from water samples. The effect of acid wash treatment for decontamination of the water samples on the isolation frequency of legionellas was also studied. The 236 samples were taken from cooling, humidifying and drinking water systems; 21% were legionella-positive when inoculated directly on modified Wadowsky-Yee (MWY) medium and 26% were positive when concentrated (x 200) before cultivation on MWY or CCVC media. Inoculation on MWY medium after concentration followed by decontamination by the acid-wash technique gave the highest isolation frequency (31%). The lowest frequency (8%) was found with the non-selective BCYE alpha medium. An isolation frequency of 28% was achieved with the BCYE alpha medium after concentration and acid-wash treatment of the samples. Forty per cent of the samples were positive for legionellas when the results from all the culture methods were combined. Not all the legionella-positive samples were identified by a single culture method. Ninety-three of the 95 positive samples were detected with the two best combinations of three culture methods. The best culture method for detecting legionellas depended on the source of the water sample. Some water quality characteristics, like temperature and organic matter content, affected the isolation frequency of Legionella spp.

  6. Implications of heterogeneous distributions of organisms on ballast water sampling.

    PubMed

    Costa, Eliardo G; Lopes, Rubens M; Singer, Julio M

    2015-02-15

    Ballast water sampling is one of the problems still needing investigation in order to enforce the D-2 Regulation of the International Convention for the Control and Management of Ship Ballast Water and Sediments. Although statistical "representativeness" of the sample is an issue usually discussed in the literature, neither a definition nor a clear description of its implications are presented. In this context, we relate it to the heterogeneity of the distribution of organisms in ballast water and show how to specify compliance tests under different models based on the Poisson and negative binomial distributions. We provide algorithms to obtain minimum sample volumes required to satisfy fixed limits on the probabilities of Type I and II errors. We show that when the sample consists of a large number of aliquots, the Poisson model may be employed even under moderate heterogeneity of the distribution of the organisms in the ballast water tank. PMID:25510550

  7. 4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER TOWER, AND OFFICE BUILDING. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  8. 10. VIEW TO SOUTHEAST, SAMPLING BUILDING, FOUNDATION, WATER TOWER, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW TO SOUTHEAST, SAMPLING BUILDING, FOUNDATION, WATER TOWER, AND SKINNER SALT ROASTERS. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  9. 5. VIEW TO SOUTH, SAMPLING BUILDING AND WATER TOWER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW TO SOUTH, SAMPLING BUILDING AND WATER TOWER. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  10. Exfoliated MoS2 in Water without Additives

    PubMed Central

    Forsberg, Viviane; Zhang, Renyun; Bäckström, Joakim; Dahlström, Christina; Andres, Britta; Norgren, Magnus; Andersson, Mattias; Hummelgård, Magnus; Olin, Håkan

    2016-01-01

    Many solution processing methods of exfoliation of layered materials have been studied during the last few years; most of them are based on organic solvents or rely on surfactants and other funtionalization agents. Pure water should be an ideal solvent, however, it is generally believed, based on solubility theories that stable dispersions of water could not be achieved and systematic studies are lacking. Here we describe the use of water as a solvent and the stabilization process involved therein. We introduce an exfoliation method of molybdenum disulfide (MoS2) in pure water at high concentration (i.e., 0.14 ± 0.01 g L−1). This was achieved by thinning the bulk MoS2 by mechanical exfoliation between sand papers and dispersing it by liquid exfoliation through probe sonication in water. We observed thin MoS2 nanosheets in water characterized by TEM, AFM and SEM images. The dimensions of the nanosheets were around 200 nm, the same range obtained in organic solvents. Electrophoretic mobility measurements indicated that electrical charges may be responsible for the stabilization of the dispersions. A probability decay equation was proposed to compare the stability of these dispersions with the ones reported in the literature. Water can be used as a solvent to disperse nanosheets and although the stability of the dispersions may not be as high as in organic solvents, the present method could be employed for a number of applications where the dispersions can be produced on site and organic solvents are not desirable. PMID:27120098

  11. Preparation of water samples for carbon-14 dating

    USGS Publications Warehouse

    Feltz, H.R.; Hanshaw, Bruce B.

    1963-01-01

    For most natural water, a large sample is required to provide the 3 grams of carbon needed for a carbon-14 determination. A field procedure for isolating total dissolved-carbonate species is described. Carbon dioxide gas is evolved by adding sulfuric acid to the water sample; the gas is then collected in a sodium hydroxide trap by recycling in a closed system. The trap is then transported to the dating laboratory where the carbon-14 is counted.

  12. Optimization of enrichment processes of pentachlorophenol (PCP) from water samples.

    PubMed

    Li, Ping; Liu, Jun-xin

    2004-01-01

    The method of enriching PCP(pentachlorophenol) from aquatic environment by solid phase extraction(SPE) was studied. Several factors affecting the recoveries of PCP, including sample pH, eluting solvent, eluting volume and flow rate of water sample, were optimized by orthogonal array design(OAD). The optimized results were sample pH 4; eluting solvent, 100% methanol; eluting solvent volume, 2 ml and flow rate of water sample, 4 ml/min. A comparison is made between SPE and liquid-liquid extraction(LLE) method. The recoveries of PCP were in the range of 87.6%-133.6% and 79%-120.3% for SPE and LLE, respectively. Important advantages of the SPE compared with the LLE include the short extraction time and reduced consumption of organic solvents. SPE can replace LLE for isolating and concentrating PCP from water samples.

  13. Sampling and Analysis Plan for the 105-N Basin Water

    SciTech Connect

    R.O. Mahood

    1997-12-31

    This sampling and analysis plan defines the strategy, and field and laboratory methods that will be used to characterize 105-N Basin water. The water will be shipped to the 200 Area Effluent Treatment Facility for treatment and disposal as part of N Reactor deactivation. These analyses are necessary to ensure that the water will meet the acceptance criteria of the ETF, as established in the Memorandum of Understanding for storage and treatment of water from N-Basin (Appendix A), and the characterization requirements for 100-N Area water provided in a letter from ETF personnel (Appendix B)

  14. Sparse Sampling of Water Density Fluctuations in Interfacial Environments.

    PubMed

    Xi, Erte; Remsing, Richard C; Patel, Amish J

    2016-02-01

    The free energetics of water density fluctuations near a surface, and the rare low-density fluctuations in particular, serve as reliable indicators of surface hydrophobicity; the easier it is to displace the interfacial waters, the more hydrophobic the underlying surface is. However, characterizing the free energetics of such rare fluctuations requires computationally expensive, non-Boltzmann sampling methods like umbrella sampling. This inherent computational expense associated with umbrella sampling makes it challenging to investigate the role of polarizability or electronic structure effects in influencing interfacial fluctuations. Importantly, it also limits the size of the volume, which can be used to probe interfacial fluctuations. The latter can be particularly important in characterizing the hydrophobicity of large surfaces with molecular-level heterogeneities, such as those presented by proteins. To overcome these challenges, here we present a method for the sparse sampling of water density fluctuations, which is roughly 2 orders of magnitude more efficient than umbrella sampling. We employ thermodynamic integration to estimate the free energy differences between biased ensembles, thereby circumventing the umbrella sampling requirement of overlap between adjacent biased distributions. Further, a judicious choice of the biasing potential allows such free energy differences to be estimated using short simulations, so that the free energetics of water density fluctuations are obtained using only a few, short simulations. Leveraging the efficiency of the method, we characterize water density fluctuations in the entire hydration shell of the protein, ubiquitin, a large volume containing an average of more than 600 waters.

  15. The initiation of subduction: criticality by addition of water?

    PubMed

    Regenauer-Lieb, K; Yuen, D A; Branlund, J

    2001-10-19

    Subduction is a major process of plate tectonics; however, its initiation is not understood. We used high-resolution (less than 1 kilometer) finite-element models based on rheological data of the lithosphere to investigate the role played by water on initiating subduction. A solid-fluid thermomechanical instability is needed to drive a cold, stiff, and negatively buoyant lithosphere into the mantle. This instability can be triggered slowly by sedimentary loading over a time span of 100 million years. Our results indicate that subduction can proceed by a double feedback mechanism (thermoelastic and thermal-rheological) promoted by lubrication due to water.

  16. Impact of Oxidant Residuals on Ground Water Samples at ISCO Sites: Recommended Guidelines for Sample Preservation

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...

  17. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  18. GROUND WATER PURGING AND SAMPLING METHODS: HISTORY VS. HYSTERIA

    EPA Science Inventory

    It has been over 10 years since the low-flow ground water purging and sampling method was initially reported in the literature. The method grew from the recognition that well purging was necessary to collect representative samples, bailers could not achieve well purging, and high...

  19. RAPID DETERMINATION OF {sup 210} PO IN WATER SAMPLES

    SciTech Connect

    Maxwell, S.

    2013-05-22

    A new rapid method for the determination of {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of {sup 210}Po in water samples have typically involved spontaneous auto-deposition of {sup 210}Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin, often in combination with 210Pb analysis. A new rapid method for {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin (N,N,N,N-tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of {sup 210}Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate {sup 210} Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid

  20. Nitrification in lake sediment with addition of drinking water treatment residuals.

    PubMed

    Wang, Changhui; Liu, Juanfeng; Wang, Zhixin; Pei, Yuansheng

    2014-06-01

    Drinking water treatment residuals (WTRs), non-hazardous by-products generated during potable water production, can effectively reduce the lake internal phosphorus (P) loading and improve water quality in lakes. It stands to reason that special attention regarding the beneficial reuse of WTRs should be given not only to the effectiveness of P pollution control, but also to the effects on the migration and transformation of other nutrients (e.g., nitrogen (N)). In this work, based on laboratory enrichment tests, the effects of WTRs addition on nitrification in lake sediment were investigated using batch tests, fluorescence in situ hybridization, quantitative polymerase chain reaction and phylogenetic analysis techniques. The results indicated that WTRs addition had minor effects on the morphologies of AOB and NOB; however, the addition slightly enhanced the sediment nitrification potential from 12.8 to 13.2 μg-N g(-1)-dry sample h(-1) and also increased the ammonia oxidation bacteria (AOB) and nitrite oxidizing bacteria (NOB) abundances, particularly the AOB abundances (P < 0.05), which increased from 1.11 × 10(8) to 1.31 × 10(8) copies g(-1)-dry sample. Moreover, WTRs addition was beneficial to the enrichment of Nitrosomonas and Nitrosospira multiformis and promoted the emergence of a new Nitrospira cluster, causing the increase in AOB and NOB diversities. Further analysis showed that the variations of nitrification in lake sediment after WTRs addition were primarily due to the decrease of bioavailable P, the introduction of new nitrifiers and the increase of favorable carriers for microorganism attachment in sediments. Overall, these results suggested that WTRs reuse for the control of lake internal P loading would also lead to conditions that are beneficial to nitrification.

  1. Oxygen Isotopic Analyses of Water Extracted from Lunar Samples

    NASA Astrophysics Data System (ADS)

    Nunn Martinez, M.; Thiemens, M. H.

    2014-12-01

    Oxygen exists in lunar materials in distinct phases having unique sources and equilibration histories. The oxygen isotopic composition (δ17O, δ18O) of various components of lunar materials has been studied extensively, but analyses of water in these samples are relatively sparse [1-3]. Samples collected on the lunar surface reflect not only the composition of their source reservoirs but also contributions from asteroidal and cometary impacts, interactions with solar wind and cosmic radiation, among other surface processes. Isotopic characterization of oxygen in lunar water could help resolve the major source of water in the Earth-Moon system by revealing if lunar water is primordial, asteroidal, or cometary in origin [1]. Methods: A lunar rock/soil sample is pumped to high vacuum to remove physisorbed water before heating step-wise to 50, 150, and 1000°C to extract extraterrestrial water without terrestrial contamination. The temperature at which water is evolved is proportional to the strength with which the water is bound in the sample and the relative difficulty of exchanging oxygen atoms in that water. This allows for the isolated extraction of water bound in different phases, which could have different source reservoirs and/or histories, as evidenced by the mass (in)dependence of oxygen compositions. A low blank procedure was developed to accommodate the low water content of lunar material [4]. Results: Oxygen isotopic analyses of lunar water extracted by stepwise heating lunar basalts and breccias with a range of compositions, petrologic types, and surface exposure ages will be presented. The cosmic ray exposure age of these samples varies by two orders of magnitude, and we will consider this in discussing the effects of solar wind and cosmic radiation on the oxygen isotopic composition (Δ17O). I will examine the implications of our water analyses for the composition of the oxygen-bearing reservoir from which that water formed, the effects of surface

  2. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    NASA Technical Reports Server (NTRS)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  3. Multiplex short tandem repeat amplification of low template DNA samples with the addition of proofreading enzymes.

    PubMed

    Davis, Carey P; Chelland, Lynzee A; Pavlova, Victoria R; Illescas, María J; Brown, Kelly L; Cruz, Tracey Dawson

    2011-05-01

    With <100 pg of template DNA, routine short tandem repeat (STR) analysis often fails, resulting in no or partial profiles and increased stochastic effects. To overcome this, some have investigated preamplification methods that include the addition of proofreading enzymes to the PCR cocktail. This project sought to determine whether adding proofreading polymerases directly in the STR amplification mixture would improve the reaction when little template DNA is available. Platinum Taq High Fidelity and GeneAmp High Fidelity were tested in Profiler Plus™ STR reactions alone and in combination with AmpliTaq(®) Gold. All reactions included the additional step of a post-PCR purification step. With both pristine low template DNA and casework samples, the addition of these polymerases resulted in comparable or no improvement in the STR amplification signal. Further, stochastic effects and artifacts were observed equally across all enzyme conditions. Based on these studies, the addition of these proofreading enzymes to a multiplex STR amplification is not recommended for low template DNA work.

  4. Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13

    NASA Technical Reports Server (NTRS)

    Straub, John E. II; Plumlee, Deborah K.; Schultz, John R.

    2007-01-01

    The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12- months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11. The number and sensitivity of the chemical analyses performed on this sample were limited due to low sample volume. Shuttle flights STS-121 (ULF1.1) and STS-115 (12A) docked with the ISS in July and September of 2006, respectively. These flights returned to Earth with eight chemical archive potable water samples that were collected with U.S. hardware during Expedition 13. The average collected volume increased for these samples, allowing full chemical characterization to be performed. This paper presents a discussion of the results from chemical analyses performed on Expeditions 12 and 13 archive potable water samples. In addition to the results from the U.S. samples analyzed, results from pre-flight samples of Russian potable water delivered to the ISS on Progress vehicles and in-flight samples collected with Russian hardware during Expeditions 12 and 13 and analyzed at JSC are also discussed.

  5. Chapter A3. Cleaning of Equipment for Water Sampling

    USGS Publications Warehouse

    Wilde, Franceska D.; Radtke, Dean B.; Gibs, Jacob; Iwatsubo, Rick T.

    1998-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. Chapter A3 describes procedures for cleaning the equipment used to collect and process samples of surface water and ground water and procedures for assessing the efficacy of the equipment-cleaning process. This chapter is designed for use with the other chapters of this field manual. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters will be posted on the USGS page 'National Field Manual for the Collection of Water-Quality Data.' The URL for this page is http://pubs.water.usgs.gov/twri9A/ (accessed September 20, 2004).

  6. Water Imbibition into Rock as Affected by Sample Shape, Pore, Conductivity, and Antecedent Water Content

    SciTech Connect

    R.P. Ewing

    2005-08-29

    Infiltration is often presumed to follow Philip's equation, I = st{sup 1/2}, where I is cumulative infiltration, s is sorptivity, and t is time. This form of the equation is appropriate for short times, and/or for negligible gravitational effects. For a uniform soil, this equation describes a plot of log(mass imbibed) versus log(time), with a slope (imbibition exponent) of 1/2. The equation has also been applied to low-porosity rocks, where the extremely small pores render gravitational forces negligible. Experiments recently performed on a wide variety of rocks produced imbibition exponents from 0.2 to 0.5. Many rock types showed initial imbibition proceeding as I {approx} t{sup 1/4}, then later switched to ''normal'' (t{sup 1/2}) behavior. The distance to the wetting front that corresponds to this cross-over behavior was found to be related to the sample shape: tall thin samples are more likely to exhibit the exponent 1/4, and to cross over to 1/2-type behavior later, while short, squat samples are less likely to display the 1/4-type behavior at all. Additionally, the exponents are sensitive to antecedent water content, with initially wetter samples having smaller values. In this study, we present the experimental data, and provide a consistent and physically-based explanation using percolation theory. The analogy between imbibition and diffusion is used to model imbibition into samples with low pore connectivity, with the exponents and their crossover behavior emerging from a random walk process. All laboratory phenomena--different exponents, crossover behavior, and effects of sample shape and antecedent water content--are reproduced by the model, with similar patterns across experiment and simulation. We conclude both that diffusion is a useful and powerful conceptual model for understanding imbibition, and also that imbibition experiments, being simpler than diffusion measurements, can be used to examine diffusive behavior in rock.

  7. Compositing water samples for analysis of volatile organic compounds

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Maluk, T.L.

    2000-01-01

    Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Researchers are able to derive

  8. Additional studies for the spectrophotometric measurement of iodine in water

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Previous work in iodine spectroscopy is briefly reviewed. Continued studies of the direct spectrophotometric determination of aqueous iodine complexed with potassium iodide show that free iodine is optimally determined at the isosbestic point for these solutions. The effects on iodine determinations of turbidity and chemical substances (in trace amounts) is discussed and illustrated. At the levels tested, iodine measurements are not significantly altered by such substances. A preliminary design for an on-line, automated iodine monitor with eventual capability of operating also as a controller was analyzed and developed in detail with respect single beam colorimeter operating at two wavelengths (using a rotating filter wheel). A flow-through sample cell allows the instrument to operate continuously, except for momentary stop flow when measurements are made. The timed automatic cycling of the system may be interrupted whenever desired, for manual operation. An analog output signal permits controlling an iodine generator.

  9. RAPID ANALYSIS OF EMERGENCY URINE AND WATER SAMPLES

    SciTech Connect

    Maxwell, S

    2007-02-26

    There is a need for fast, reliable methods for the determination of actinides and Sr-89/90 analysis on environmental and bioassay samples in response to an emergency radiological incident. The SRS (Savannah River Site) Environmental Bioassay Laboratory participated in the National Institute of Standards and Technology Radiochemistry Intercomparison Program (NRIP-06) and analyzed water and urine samples within 8 hours of receipt. The SRS Environmental Laboratory was the only lab that participated in the program that analyzed these samples for both actinides and Sr-89/90 within the requested 8 hour turnaround time. A new, rapid actinide and strontium 89/90 separation method was used for both urine and water samples. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and Sr-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), and americium (Am), curium (Cm) and thorium (Th) using a single multi-stage column combined with alpha spectrometry. By using vacuum box cartridge technology and stacked cartridges with rapid flow rates, sample preparation time was minimized. This paper discusses the technology and conditions employed for both water and urine samples and presents the SRS performance data on the NRIP-06 samples.

  10. Adsorption of Water on JSC-1A Lunar Simulant Samples

    NASA Technical Reports Server (NTRS)

    Goering, John; Sah, Shweta; Burghaus, Uwe; Street, Kenneth W.

    2008-01-01

    Remote sensing probes sent to the moon in the 1990s indicated that water may exist in areas such as the bottoms of deep, permanently shadowed craters at the lunar poles, buried under regolith. Water is of paramount importance for any lunar exploration and colonization project which would require self-sustainable systems. Therefore, investigating the interaction of water with lunar regolith is pertinent to future exploration. The lunar environment can be approximated in ultra-high vacuum systems such as those used in thermal desorption spectroscopy (TDS). Questions about water dissociation, surface wetting, degree of crystallization, details of water-ice transitions, and cluster formation kinetics can be addressed by TDS. Lunar regolith specimens collected during the Apollo missions are still available though precious, so testing with simulant is required before applying to use lunar regolith samples. Hence, we used for these studies JSC-1a, mostly an aluminosilicate glass and basaltic material containing substantial amounts of plagioclase, some olivine and traces of other minerals. Objectives of this project include: 1) Manufacturing samples using as little raw material as possible, allowing the use of surface chemistry and kinetics tools to determine the feasibility of parallel studies on regolith, and 2) Characterizing the adsorption kinetics of water on the regolith simulant. This has implications for the probability of finding water on the moon and, if present, for recovery techniques. For condensed water films, complex TDS data were obtained containing multiple features, which are related to subtle rearrangements of the water adlayer. Results from JSC-1a TDS studies indicate: 1) Water dissociation on JSC-1a at low exposures, with features detected at temperatures as high as 450 K and 2) The formation of 3D water clusters and a rather porous condensed water film. It appears plausible that the sub- m sized particles act as nucleation centers.

  11. Sampling and quantifying invertebrates from drinking water distribution mains.

    PubMed

    van Lieverloo, J Hein M; Bosboom, Dick W; Bakker, Geo L; Brouwer, Anke J; Voogt, Remko; De Roos, Josje E M

    2004-03-01

    Water utilities in the Netherlands aim at controlling the multiplication of (micro-) organisms by distributing biologically stable water through biologically stable materials. Disinfectant residuals are absent or very low. To be able to assess invertebrate abundance, methods for sampling and quantifying these animals from distribution mains were optimised and evaluated. The presented method for collecting invertebrates consists of unidirectionally flushing a mains section with a flow rate of 1 ms(-1) and filtering the flushed water in two separate flows with 500 microm and 100 microm mesh plankton gauze filters. Removal efficiency from mains was evaluated in nine experiments by collecting the invertebrates removed from the mains section by intensive cleaning immediately subsequent to sampling. Of 12 taxa distinguished, all except case-building Chironomidae larvae (2%) and Oligochaeta (30%) were removed well (51-75%). Retention of invertebrates in 100 microm filters was evaluated by filtering 39 filtrates using 30 microm filters. Except for flexible and small invertebrates such as Turbellaria (13%), Nematoda (11%) and Copepoda larvae (24%), most taxa were well retained in the 100 microm filters (53-100%). During sample processing, the method for taking sub-samples with a 10 ml pipette from the suspension of samples with high sediment concentrations was found to perform well in 75% of the samples. During a 2-year national survey in the Netherlands and consecutive investigations, the method appeared to be very suitable to assess the abundance of most invertebrate taxa in drinking water distribution systems and to be practicable for relatively inexperienced sampling and lab technicians. Although the numbers of small, less abundant or sessile taxa were not accurately assessed using the method, these taxa probably should not be the primary focus of monitoring by water utilities, as consumer complaints are not likely to be caused by these invertebrates. The accuracy of

  12. Trichomonas vaginalis: in vitro survival in swimming pool water samples.

    PubMed

    Pereira-Neves, Antonio; Benchimol, Marlene

    2008-03-01

    In this work it is shown that Trichomonas vaginalis remains viable and infective in swimming pool water samples for several hours. After survival, trichomonad cytotoxicity was tested on primary cultures of epithelial cells. It demonstrates that the some trichomonad strains are able to survive in water pools and survival time is dependent on the degree of strain infectivity and also if it is a long term cultured or fresh isolate. PMID:17949719

  13. Gas-driven pump for ground-water samples

    USGS Publications Warehouse

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  14. Isotope evidence of hexavalent chromium stability in ground water samples.

    PubMed

    Čadková, Eva; Chrastný, Vladislav

    2015-11-01

    Chromium stable isotopes are of interest in many geochemical studies as a tool to identify Cr(VI) reduction and/or dilution in groundwater aquifers. For such studies the short term stability of Cr(VI) in water samples is required before the laboratory analyses can be carried out. Here the short term stability of Cr(VI) in groundwater samples was studied using an isotope approach. Based on commonly available methods for Cr(VI) stabilization, water samples were filtered and the pH value was adjusted to be equal to or greater than 8 before Cr isotope analysis. Based on our Cr isotope data (expressed as δ(53)CrNIST979), Cr(VI) was found to be unstable over short time periods in anthropogenically contaminated groundwater samples regardless of water treatment (e.g., pH adjustment, different storage temperatures). Based on our laboratory experiments, δ(53)CrNIST979 of the Cr(VI) pool was found to be unstable in the presence of dissolved Fe(II), Mn(IV) and/or SO2. Threshold concentrations of Fe(II) causing Cr(VI) reduction range between 10 mg L(-1) and 100 mg L(-1)and less than 1 mg L(-1) for Mn. Hence our isotope data show that water samples containing Cr(VI) should be processed on-site through anion column chemistry to avoid any isotope shifts.

  15. Profile sampling to characterize particulate lead risks in potable water.

    PubMed

    Clark, Brandi; Masters, Sheldon; Edwards, Marc

    2014-06-17

    Traditional lead (Pb) profiling, or collecting sequential liters of water that flow from a consumer tap after a stagnation event, has recently received widespread use in understanding sources of Pb in drinking water and risks to consumer health, but has limitations in quantifying particulate Pb risks. A new profiling protocol was developed in which a series of traditional profiles are collected from the same tap at escalating flow rates. The results revealed marked differences in risks of Pb exposure from one consumer home to another as a function of flow rate, with homes grouped into four risk categories with differing flushing requirements and public education to protect consumers. On average, Pb concentrations detected in water at high flow without stagnation were at least three to four times higher than in first draw samples collected at low flow with stagnation, demonstrating a new "worst case" lead release scenario, contrary to the original regulatory assumption that stagnant, first draw samples contain the highest lead concentrations. Testing also revealed that in some cases water samples with visible particulates had much higher Pb than samples without visible particulates, and tests of different sample handling protocols confirmed that some EPA-allowed methods would not quantify as much as 99.9% of the Pb actually present (avg. 27% of Pb not quantified).

  16. Supplement to the UMTRA project water sampling and analysis plan, Slick Rock, Colorado

    SciTech Connect

    1995-09-01

    The water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the Burro Canyon disposal site near Slick Rock, Colorado. The initial WSAP was finalized in August 1994 and will be completely revised in accordance with the WSAP guidance document (DOE, 1995) in late 1996. This version supplements the initial WSAP, reflects only minor changes in sampling that occurred in 1995, covers sampling scheduled for early 1996, and provides a preliminary projection of the next 5 years of sampling and monitoring activities. Once surface remedial action is completed at the former processing sites, additional and more detailed hydrogeologic characterization may be needed to develop the Ground Water Program conceptual ground water model and proposed compliance strategy. In addition, background ground water quality needs to be clearly defined to ensure that the baseline risk assessment accurately estimated risks from the contaminants of potential concern in contaminated ground water at the UC and NC sites.

  17. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  18. UMTRA project water sampling and analysis plan, Durango, Colorado

    SciTech Connect

    Not Available

    1994-01-01

    Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.

  19. An evaluation of drinking water samples treated with alternative disinfectants

    SciTech Connect

    Patterson, K.S.; Lykins, B.W. Jr.; Garner, L.M.

    1995-10-01

    Due to concern over potential human health risks associated with the use of chlorine (Cl{sub 2}) for disinfection of drinking water, many utilities are considering alternative disinfectants. An evaluation is thus needed of the potential risks associated with the use of alternative disinfectants relative to those posed by Cl{sub 2}. At a pilot-scale drinking water plant in Jefferson Parish, LA., two studies were conducted in which clarified and sand filtered Mississippi River water was treated with either ozone (O{sub 3}), monochloramine (NH{sub 2}Cl), Cl{sub 2} or was not disinfected. Ozonated water was also post-disinfected with either NH{sub 2}Cl or Cl{sub 2}, to provide a disinfectant residual. For each treatment stream total organic carbon (TOC), total organic halide (TOX) and microbiological contaminants were determined. XAD resin concentrates were also prepared for mutagenicity testing in the Ames Salmonella assay. Water samples disinfected with O{sub 3} alone had low levels of mutagenic activity, the same as the non-disinfected water. The level of mutagenicity observed following chlorination was approximately twice that observed following treatment with NH{sub 2}Cl. Disinfection with O{sub 3} prior to treatment with either Cl{sub 2} or NH{sub 2}Cl resulted in a significantly lower level of mutagenicity than when either disinfectant was used alone. The concentrations of TOX present in the water samples showed a pattern similar to that of the mutagenicity data. The levels of TOC, by contrast, were similar for all the treatment streams. No significant baterial contamination was observed in water samples treated with either Cl{sub 2} or NH{sub 2}Cl alone or in combination with O{sub 3}, as determined by heterotrophic plate counts. However, O{sub 3} alone did not insure an acceptable level of disinfection at the end of the treatment stream.

  20. A water soluble additive to suppress respirable dust from concrete-cutting chainsaws: a case study.

    PubMed

    Summers, Michael P; Parmigiani, John P

    2015-01-01

    Respirable dust is of particular concern in the construction industry because it contains crystalline silica. Respirable forms of silica are a severe health threat because they heighten the risk of numerous respirable diseases. Concrete cutting, a common work practice in the construction industry, is a major contributor to dust generation. No studies have been found that focus on the dust suppression of concrete-cutting chainsaws, presumably because, during normal operation water is supplied continuously and copiously to the dust generation points. However, there is a desire to better understand dust creation at low water flow rates. In this case study, a water-soluble surfactant additive was used in the chainsaw's water supply. Cutting was performed on a free-standing concrete wall in a covered outdoor lab with a hand-held, gas-powered, concrete-cutting chainsaw. Air was sampled at the operator's lapel, and around the concrete wall to simulate nearby personnel. Two additive concentrations were tested (2.0% and 0.2%), across a range of fluid flow rates (0.38-3.8 Lpm [0.1-1.0 gpm] at 0.38 Lpm [0.1 gpm] increments). Results indicate that when a lower concentration of additive is used exposure levels increase. However, all exposure levels, once adjusted for 3 hours of continuous cutting in an 8-hour work shift, are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 5 mg/m(3). Estimates were made using trend lines to predict the fluid flow rates that would cause respirable dust exposure to exceed both the OSHA PEL and the American Conference of Governmental Industrial Hygienists (ACGIH®) threshold limit value (TLV).

  1. THE EMPACT BEACHES: A CASE STUDY IN RECREATIONAL WATER SAMPLING

    EPA Science Inventory

    Various chapters describe sample and experimental design, use of a geometric mean or an arithmetic mean, modeling and forecasting, and risk assessment in relation to monitoring recreational waters for fecal indicators. All of these aspects of monitoring are dependent on the spat...

  2. Filtration recovery of extracellular DNA from environmental water samples

    EPA Science Inventory

    qPCR methods are able to analyze DNA from microbes within hours of collecting water samples, providing the promptest notification and public awareness possible when unsafe pathogenic levels are reached. Health risk, however, may be overestimated by the presence of extracellular ...

  3. Stability of low levels of perchlorate in drinking water and natural water samples

    USGS Publications Warehouse

    Stetson, S.J.; Wanty, R.B.; Helsel, D.R.; Kalkhoff, S.J.; Macalady, D.L.

    2006-01-01

    Perchlorate ion (ClO4-) is an environmental contaminant of growing concern due to its potential human health effects, impact on aquatic and land animals, and widespread occurrence throughout the United States. The determination of perchlorate cannot normally be carried out in the field. As such, water samples for perchlorate analysis are often shipped to a central laboratory, where they may be stored for a significant period before analysis. The stability of perchlorate ion in various types of commonly encountered water samples has not been generally examined-the effect of such storage is thus not known. In the present study, the long-term stability of perchlorate ion in deionized water, tap water, ground water, and surface water was examined. Sample sets containing approximately 1000, 100, 1.0, and 0.5 ??g l-1 perchlorate ion in deionized water and also in local tap water were formulated. These samples were analyzed by ion chromatography for perchlorate ion concentration against freshly prepared standards every 24 h for the first 7 days, biweekly for the next 4 weeks, and periodically after that for a total of 400 or 610 days for the two lowest concentrations and a total of 428 or 638 days for the high concentrations. Ground and surface water samples containing perchlorate were collected, held and analyzed for perchlorate concentration periodically over at least 360 days. All samples except for the surface water samples were found to be stable for the duration of the study, allowing for holding times of at least 300 days for ground water samples and at least 90 days for surface water samples. ?? 2006 Elsevier B.V. All rights reserved.

  4. Determination of estrogenic potential in waste water without sample extraction.

    PubMed

    Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester

    2013-09-15

    This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was

  5. Total Water Content Measurements with an Isokinetic Sampling Probe

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.

    2010-01-01

    The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.

  6. 75 FR 22589 - Preliminary Listing of an Additional Water to Wisconsin's 2008 List of Waters Under Section 303(d...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... AGENCY Preliminary Listing of an Additional Water to Wisconsin's 2008 List of Waters Under Section 303(d) of the Clean Water Act AGENCY: Environmental Protection Agency (EPA). ACTION: Notice and request for comments. SUMMARY: This notice announces the availability of EPA's decision identifying one water...

  7. Investigations of Sample Stability in Water Chemistry Samples: Implications for the National Aquatic Resource Surveys

    EPA Science Inventory

    Water samples collected for the EPA's National Aquatic Resource Surveys (NARS) typically arrive at an analytical laboratory 2 or 3 days after collection (longer if collected from a remote location), at which point they are stabilized (filtration and/or acid preservation) until an...

  8. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  9. Standard reference water samples for rare earth element determinations

    USGS Publications Warehouse

    Verplanck, P.L.; Antweiler, R.C.; Nordstrom, D.K.; Taylor, H.E.

    2001-01-01

    Standard reference water samples (SRWS) were collected from two mine sites, one near Ophir, CO, USA and the other near Redding, CA, USA. The samples were filtered, preserved, and analyzed for rare earth element (REE) concentrations (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by inductively coupled plasma-mass spectrometry (ICP-MS). These two samples were acid mine waters with elevated concentrations of REEs (0.45-161 ??g/1). Seventeen international laboratories participated in a 'round-robin' chemical analysis program, which made it possible to evaluate the data by robust statistical procedures that are insensitive to outliers. The resulting most probable values are reported. Ten to 15 of the participants also reported values for Ba, Y, and Sc. Field parameters, major ion, and other trace element concentrations, not subject to statistical evaluation, are provided.

  10. Ground-water sample collection and analysis plan for the ground-water surveillance project

    SciTech Connect

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy`s (DOE`s) Hanford Site in support of DOE`s environmental surveillance responsibilities. The purpose of this document is to translate DOE`s General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

  11. Ground-water sample collection and analysis plan for the ground-water surveillance project

    SciTech Connect

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

  12. A Small Diameter Rosette for Sampling Ice Covered Waters

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Smethie, W. M.; Perry, R. S.; Schlosser, P.; Friedrich, R.

    2011-12-01

    A gas tight, small diameter, lightweight rosette, supporting equipment and an effective operational protocol has been developed for aircraft supported sampling of sea water across the Lincoln Sea. The system incorporates a commercial off the shelf CTD electronics (SBE19+ sensor package and SBE33 deck unit) to provide real-time measurement data at the surface. We designed and developed modular water sample units and custom electronics to decode the bottle firing commands and close the sample bottles. For a typical station, we land a ski-equipped deHaviland Twin Otter (DHC-6) aircraft on a suitable piece of sea-ice, drill a 12" diameter hole through the ice next to the cargo door and set up a tent to provide a reasonable working environment over the hole. A small winch with 0.1" diameter single conductor cable is mounted in the aircraft by the cargo door and a tripod supports a sheave above the hole. The CTD module is connected to the end of the wire and the water sampling modules are stacked on top as the system is lowered. For most stations, three sample modules are used to provide 12 four (4) liter sample bottles. Data collected during the down-cast is used to formulate the sampling plan which is executed on the up-cast. The system is powered by a 3,700 Watt, 120VAC gasoline generator. After collection, the sample modules are stored in passively temperature stabilized ice chests during the flight back to the logistics facility at Alert where a broad range of samples are drawn and stored for future analysis. The transport mechanism has a good track record of maintaining water samples within about two degrees of the original collection temperature which minimizes out-gassing. The system has been successfully deployed during a field program each spring starting in 2004 along a transect between the north end of Ellesmere Island (Alert, Nunavut) and the North Pole. During the eight field programs we have taken 48 stations with twelve bottles at most stations (eight at

  13. A new method of snowmelt sampling for water stable isotopes

    USGS Publications Warehouse

    Penna, D.; Ahmad, M.; Birks, S. J.; Bouchaou, L.; Brencic, M.; Butt, S.; Holko, L.; Jeelani, G.; Martinez, D. E.; Melikadze, G.; Shanley, J.B.; Sokratov, S. A.; Stadnyk, T.; Sugimoto, A.; Vreca, P.

    2014-01-01

    We modified a passive capillary sampler (PCS) to collect snowmelt water for isotopic analysis. Past applications of PCSs have been to sample soil water, but the novel aspect of this study was the placement of the PCSs at the ground-snowpack interface to collect snowmelt. We deployed arrays of PCSs at 11 sites in ten partner countries on five continents representing a range of climate and snow cover worldwide. The PCS reliably collected snowmelt at all sites and caused negligible evaporative fractionation effects in the samples. PCS is low-cost, easy to install, and collects a representative integrated snowmelt sample throughout the melt season or at the melt event scale. Unlike snow cores, the PCS collects the water that would actually infiltrate the soil; thus, its isotopic composition is appropriate to use for tracing snowmelt water through the hydrologic cycle. The purpose of this Briefing is to show the potential advantages of PCSs and recommend guidelines for constructing and installing them based on our preliminary results from two snowmelt seasons.

  14. Determination of rare earth elements in natural water samples - A review of sample separation, preconcentration and direct methodologies.

    PubMed

    Fisher, Andrew; Kara, Derya

    2016-09-01

    This review discusses and compares the methods given for the determination of rare earth elements (REE) in natural water samples, including sea, river, lake, tap, ground and waste waters as well as Antarctic ice. Since REE are at very low concentrations in natural waters, numerous different preconcentration methods have been proposed to enable their measurement. These include liquid liquid extraction, dispersive liquid-liquid micro-extraction and solidified floating drop micro-extraction. In addition to liquid-liquid extraction methods, solid phase extraction using commercial resins, resins made in-house, silica-based exchange materials and other solid media is also discussed. These and other techniques such as precipitation/co-precipitation and flotation are compared in terms of speed, preconcentration factors achieved, precision, accuracy and limits of detection (LOD). Some papers have discussed the direct determination of REE in these sample types. Some have used specialised sample introduction systems such as ultrasonic nebulization whereas others have used a standard sample introduction system coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection. These direct methods have also been discussed and compared. PMID:27543012

  15. Determination of rare earth elements in natural water samples - A review of sample separation, preconcentration and direct methodologies.

    PubMed

    Fisher, Andrew; Kara, Derya

    2016-09-01

    This review discusses and compares the methods given for the determination of rare earth elements (REE) in natural water samples, including sea, river, lake, tap, ground and waste waters as well as Antarctic ice. Since REE are at very low concentrations in natural waters, numerous different preconcentration methods have been proposed to enable their measurement. These include liquid liquid extraction, dispersive liquid-liquid micro-extraction and solidified floating drop micro-extraction. In addition to liquid-liquid extraction methods, solid phase extraction using commercial resins, resins made in-house, silica-based exchange materials and other solid media is also discussed. These and other techniques such as precipitation/co-precipitation and flotation are compared in terms of speed, preconcentration factors achieved, precision, accuracy and limits of detection (LOD). Some papers have discussed the direct determination of REE in these sample types. Some have used specialised sample introduction systems such as ultrasonic nebulization whereas others have used a standard sample introduction system coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection. These direct methods have also been discussed and compared.

  16. Spectral analysis of water samples using modulated resonance features for monitoring of public water resources

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Yapijakis, C.; Aiken, D.; Shabaev, A.; Ramsey, S.; Peak, J.

    2015-05-01

    Hyperspectral analysis of water samples taken from public water resources in the New York City metro area has demonstrated the potential application of this type of analysis for water monitoring, treatment and evaluation prior to filtration. Hyperspectral monitoring of contaminants with respect to types and relative concentrations requires tracking statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared, which are associated with specific water resources. To achieve this, it is necessary to establish correlation between hyperspectral signatures and types of contaminants to be found within specific water resources. Correlation between absorption spectra and changes in chemical and physical characteristics of contaminants requires sufficient sensitivity. The present study examines the sensitivity of modulated resonance features with respect to characteristics of water contaminants for hyperspectral analysis of water samples.

  17. Interstitial water studies on small core samples, Leg 9

    USGS Publications Warehouse

    Sayles, F.L.; Waterman, L.S.; Manheim, F. T.

    1972-01-01

    The chemistry of the pore fluids obtained on Leg 9 is remarkable primarily in its constancy. Excepting silicon and strontium, only at one site do the concentrations of the major and minor constituents deviate notably from sea water concentrations (see Tables 1 and 2). The trends, or lack of them, seen in these samples have been discussed previously and only references will be given here. The constancy of composition and similarity to sea water is particularly noteworthy, as the sediments at all of the 9 sites are thought to be intruded by the basal basalt. The pore fluid chemistry exhibits no evidence of intrusion except possibly at Site 84.

  18. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  19. RAPID SEPARATION METHOD FOR EMERGENCY WATER AND URINE SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.

    2008-08-27

    The Savannah River Site Environmental Bioassay Lab participated in the 2008 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2008. A new rapid column separation method was used for analysis of actinides and {sup 90}Sr the NRIP 2008 emergency water and urine samples. Significant method improvements were applied to reduce analytical times. As a result, much faster analysis times were achieved, less than 3 hours for determination of {sup 90}Sr and 3-4 hours for actinides. This represents a 25%-33% improvement in analysis times from NRIP 2007 and a {approx}100% improvement compared to NRIP 2006 report times. Column flow rates were increased by a factor of two, with no significant adverse impact on the method performance. Larger sample aliquots, shorter count times, faster cerium fluoride microprecipitation and streamlined calcium phosphate precipitation were also employed. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and {sup 90}Sr analyses for NRIP 2008 emergency urine samples. High levels of potential matrix interferences may be present in emergency samples and rugged methods are essential. Extremely high levels of {sup 210}Po were found to have an adverse effect on the uranium results for the NRIP-08 urine samples, while uranium results for NRIP-08 water samples were not affected. This problem, which was not observed for NRIP-06 or NRIP-07 urine samples, was resolved by using an enhanced {sup 210}Po removal step, which will be described.

  20. Metatranscriptome analysis of active microbial communities in produced water samples from the Marcellus Shale.

    PubMed

    Vikram, Amit; Lipus, Daniel; Bibby, Kyle

    2016-10-01

    Controlling microbial activity is a primary concern during the management of the large volumes of wastewater (produced water) generated during high-volume hydraulic fracturing. In this study we analyzed the transcriptional activity (metatranscriptomes) of three produced water samples from the Marcellus Shale. The goal of this study was to describe active metabolic pathways of industrial concern for produced water management and reuse, and to improve understanding of produced water microbial activity. Metatranscriptome analysis revealed active biofilm formation, sulfide production, and stress management mechanisms of the produced water microbial communities. Biofilm-formation and sulfate-reduction pathways were identified in all samples. Genes related to a diverse array of stress response mechanisms were also identified with implications for biocide efficacy. Additionally, active expression of a methanogenesis pathway was identified in a sample of produced water collected prior to holding pond storage. The active microbial community identified by metatranscriptome analysis was markedly different than the community composition as identified by 16S rRNA sequencing, highlighting the value of evaluating the active microbial fraction during assessments of produced water biofouling potential and evaluation of biocide application strategies. These results indicate biofouling and corrosive microbial processes are active in produced water and should be taken into consideration while designing produced water reuse strategies. PMID:27457653

  1. Leaching of additives from construction materials to urban storm water runoff.

    PubMed

    Burkhardt, M; Zuleeg, S; Vonbank, R; Schmid, P; Hean, S; Lamani, X; Bester, K; Boller, M

    2011-01-01

    Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used in construction materials, i.e., biocides in facades' render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol 1051 (all from facades) and mecoprop in storm water and receiving water exceeded the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 microg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time of rainfall and the complexity of the drainage network. Beside the amounts used, the impact of construction materials containing hazardous additives on water quality is related clearly to the age of the buildings and the separated sewer network. The development of improved products regarding release of hazardous additives is the most efficient way of reducing the pollutant load from construction materials in storm water runoff.

  2. 75 FR 41725 - Food Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate AGENCY: Food and Drug... regulations for food additives permitted in feed and drinking water of animals to provide for the safe use of ammonium formate as an acidifying agent in swine feed. This action is in response to a food...

  3. An opacity-sampled treatment of water vapor

    NASA Technical Reports Server (NTRS)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  4. Evidence That Certain Waste Tank Headspace Vapor Samples Were Contaminated by Semivolatile Polymer Additives

    SciTech Connect

    Huckaby, James L.

    2006-02-09

    Vapor samples collected from the headspaces of the Hanford Site high-level radioactive waste tanks in 1994 and 1995 using the Vapor Sampling System (VSS) were reported to contain trace levels of phthalates, antioxidants, and certain other industrial chemicals that did not have a logical origin in the waste. This report examines the evidence these chemicals were sampling artifacts (contamination) and identifies the chemicals reported as headspace constituents that may instead have been contaminants. Specific recommendations are given regarding the marking of certain chemicals as suspect on the basis they were sampling manifold contaminants.

  5. Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates.

    PubMed

    Mächler, Elvira; Deiner, Kristy; Spahn, Fabienne; Altermatt, Florian

    2016-01-01

    Accurate detection of organisms is crucial for the effective management of threatened and invasive species because false detections directly affect the implementation of management actions. The use of environmental DNA (eDNA) as a species detection tool is in a rapid development stage; however, concerns about accurate detections using eDNA have been raised. We evaluated the effect of sampled water volume (0.25 to 2 L) on the detection rate for three macroinvertebrate species. Additionally, we tested (depending on the sampled water volume) what amount of total extracted DNA should be screened to reduce uncertainty in detections. We found that all three species were detected in all volumes of water. Surprisingly, however, only one species had a positive relationship between an increased sample volume and an increase in the detection rate. We conclude that the optimal sample volume might depend on the species-habitat combination and should be tested for the system where management actions are warranted. Nevertheless, we minimally recommend sampling water volumes of 1 L and screening at least 14 μL of extracted eDNA for each sample to reduce uncertainty in detections when studying macroinvertebrates in rivers and using our molecular workflow. PMID:26560432

  6. Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates.

    PubMed

    Mächler, Elvira; Deiner, Kristy; Spahn, Fabienne; Altermatt, Florian

    2016-01-01

    Accurate detection of organisms is crucial for the effective management of threatened and invasive species because false detections directly affect the implementation of management actions. The use of environmental DNA (eDNA) as a species detection tool is in a rapid development stage; however, concerns about accurate detections using eDNA have been raised. We evaluated the effect of sampled water volume (0.25 to 2 L) on the detection rate for three macroinvertebrate species. Additionally, we tested (depending on the sampled water volume) what amount of total extracted DNA should be screened to reduce uncertainty in detections. We found that all three species were detected in all volumes of water. Surprisingly, however, only one species had a positive relationship between an increased sample volume and an increase in the detection rate. We conclude that the optimal sample volume might depend on the species-habitat combination and should be tested for the system where management actions are warranted. Nevertheless, we minimally recommend sampling water volumes of 1 L and screening at least 14 μL of extracted eDNA for each sample to reduce uncertainty in detections when studying macroinvertebrates in rivers and using our molecular workflow.

  7. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    PubMed

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-10-21

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions.

  8. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    EPA Science Inventory

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  9. 19 CFR 151.11 - Request for samples or additional examination packages after release of merchandise.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING... of this chapter. For purposes of determining admissibility, representatives of the Food and Drug Administration may obtain samples of any food, drug, device, or cosmetic, the importation of which is governed...

  10. 19 CFR 151.11 - Request for samples or additional examination packages after release of merchandise.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING... of this chapter. For purposes of determining admissibility, representatives of the Food and Drug Administration may obtain samples of any food, drug, device, or cosmetic, the importation of which is governed...

  11. 19 CFR 151.11 - Request for samples or additional examination packages after release of merchandise.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING... of this chapter. For purposes of determining admissibility, representatives of the Food and Drug Administration may obtain samples of any food, drug, device, or cosmetic, the importation of which is governed...

  12. 19 CFR 151.11 - Request for samples or additional examination packages after release of merchandise.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING... of this chapter. For purposes of determining admissibility, representatives of the Food and Drug Administration may obtain samples of any food, drug, device, or cosmetic, the importation of which is governed...

  13. Sample preservation for the analysis of antibiotics in water.

    PubMed

    Llorca, Marta; Gros, Meritxell; Rodríguez-Mozaz, Sara; Barceló, Damià

    2014-11-21

    This paper describes a stability study performed for 56 antibiotics belonging to 9 different groups--macrolides, tetracyclines, fluoroquinolones, quinolones, penicillins, cephalosporines, lincosamides, sulfonamides and nitroimidazole antibiotics--in purified water samples fortified with the selected compounds at 10 ng/ml. For this purpose, three different sample preservation modes were tested with the aim of avoiding biotic and abiotic degradation: (i) storage at -20°C, (ii) storage at -20°C with 0.1% of EDTA and (iii) pre-concentration in a solid phase extraction cartridge (SPE), which was afterwards stored at -20°C. Concentrations of antibiotics in the samples preserved using the different protocols were monitored after 0, 1, 2 and 12 weeks. The results showed that, for the accurate determination of all compounds they should be analyzed right after sampling. However, if this is not possible, most of the antibiotics can be analyzed within the 1st week after sampling and preservation at -20°C (with or without EDTA) or in a SPE cartridges at -20°C. Nonetheless, some antibiotics found extensively in the environment, such as sulfamethoxazole, ciprofloxacin, ofloxacin, erythromycin, azithromycin and clarithromycin exhibited low stability after 1 week preservation and, therefore, they should be analyzed within this time. PMID:25441070

  14. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  15. Arsenic-related water quality with depth and water quality of well-head samples from production wells, Oklahoma, 2008

    USGS Publications Warehouse

    Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.

    2010-01-01

    The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline

  16. Asotin Creek ISCO Water Sample Data Summary: Water Year 2002, Annual Report 2001-2002.

    SciTech Connect

    Peterson, Stacia

    2003-08-01

    The Pomeroy Ranger District operates 3 automated water samplers (ISCOs) in the Asotin Creek drainage in cooperation with the Asotin Model Watershed. The samplers are located on Asotin Creek: Asotin Creek at the mouth, Asotin Creek at Koch site, and South Fork Asotin Creek above the forks. At the end of Water Year (WY) 2001 we decided to sample from Oct. 1 through June 30 of each water year. This decision was based on the difficulty of obtaining good low flow samples, since the shallow depth of water often meant that instrument intakes were on the bed of the river and samples were contaminated with bed sediments. The greatest portion of suspended sediment is transported during the higher flows of fall and especially during the spring snow runoff period, and sampling the shorter season should allow characterization of the sediment load of the river. The ISCO water samplers collected a daily composite sample of 4 samples per day into one bottle at 6-hour intervals until late March when they were reprogrammed to collect 3 samples per day at 8-hour intervals. This was done to reduce battery use since battery failure had become an ongoing problem. The water is picked up on 24-day cycles and brought to the Forest Service Water Lab in Pendleton, OR. The samples are analyzed for total suspended solids (TSS), conductivity, and turbidity. A total dissolved solids value is estimated based on conductivity. The USGS gage, Asotin Creek at the mouth, No.13335050 has been discontinued and there are no discharge records available for this period.

  17. Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland

    PubMed Central

    Lü, Xiao-Tao; Dijkstra, Feike A.; Kong, De-Liang; Wang, Zheng-Wen; Han, Xing-Guo

    2014-01-01

    Increased atmospheric nitrogen (N) deposition and altered precipitation regimes have profound impacts on ecosystem functioning in semiarid grasslands. The interactions between those two factors remain largely unknown. A field experiment with N and water additions was conducted in a semiarid grassland in northern China. We examined the responses of aboveground net primary production (ANPP) and plant N use during two contrasting hydrological growing seasons. Nitrogen addition had no impact on ANPP, which may be accounted for by the offset between enhanced plant N uptake and decreased plant nitrogen use efficiency (NUE). Water addition significantly enhanced ANPP, which was largely due to enhanced plant aboveground N uptake. Nitrogen and water additions significantly interacted to affect ANPP, plant N uptake and N concentrations at the community level. Our observations highlight the important role of plant N uptake and use in mediating the effects of N and water addition on ANPP. PMID:24769508

  18. CF-IRMS method to measure the isotopic composition of very small/stratospheric water samples

    NASA Astrophysics Data System (ADS)

    Franz, P.; Roeckmann, T.

    2003-04-01

    Measurements of the isotopic composition of stratospheric water vapor are believed to provide further insight about sources of stratospheric water vapor, i.e. transport from the troposphere and in situ formation, and thus about the stratospheric water budget. Including the 17O signature in addition to the usually targeted 18O and D data is interesting, since water formed in the stratosphere may inherit a fraction of the oxygen isotope anomaly present in ozone in its photochemical production. Whereas several methods are being developed for in situ measurements with optical techniques, we attempt to obtain stratospheric water samples and analyze them in the laboratory with a novel high precision continuous-flow isotope ratio monitoring technique. The laboratory extraction and measurement parts have been setup and will be presented. For the measurement of the stable oxygen isotopes, the sample is injected into a heated tube filled with CoF_3, where water is chemically converted to oxygen. The O_2 sample is then injected into a multi-cup isotope ratio mass spectrometer, where δ17O and δ18O are determined. Due to the extremely small sample size requirement for continuous-flow isotope ratio mass spectrometry, many measurements can be made on the same sample. This is realized by flushing the sample out of its container with purified helium into a sample loop trap, and successively injecting many aliquots. Non-linearity effects and instrumental fractionation can then be taken into account by fitting an entire measurement series onto a mathematical model. At present, measurement errors are about 0.8 0/00 for δ17O and 0.5 0/00 for δ18O. Alternatively, a high temperature furnace (alumina tube filled with Ni-wires) can be used for the conversion to hydrogen gas. Carbon molecules can be deposited on the Ni by flushing the furnace with CH_4, hence allowing the later pyrolysis of water to H_2 and CO. Due to the somewhat more complicated analysis of H_2, this method has not

  19. Adsorption of Water on Simulated Moon Dust Samples

    NASA Technical Reports Server (NTRS)

    Goering, John P.; Sah, Shweta; Burghaus, Uwe; Street, Kenneth W., Jr.

    2008-01-01

    A lunar regolith simulant dust sample (JSC-1a) supported on a silica wafer (SiO2/Si(111)) has been characterized by scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), and Auger electron spectroscopy (AES). The adsorption kinetics of water has been studied primarily by thermal desorption spectroscopy (TDS) and also by collecting isothermal adsorption transients. The support has been characterized by water TDS. JSC-1a consists mostly of aluminosilicate glass and other minerals containing Fe, Na, Ca, and Mg. The particle sizes span the range from a few microns up to 100 microns. At small exposures, H2O TDS is characterized by broad (100 to 450 K) structures; at large exposures distinct TDS peaks emerge that are assigned to amorphous solid water (145 K) and crystalline ice (165 K). Water dissociates on JSC-1a at small exposures but not on the bare silica support. It appears that rather porous condensed ice layers form at large exposures. At thermal impact energies, the initial adsorption probability amounts to 0.92+/-0.05.

  20. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.

    2011-11-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present

  1. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    SciTech Connect

    1995-06-01

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site.

  2. Prototype spectral analysis of water samples for monitoring and treatment of public water resources

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Lee, M.; Yapijakis, C.; Ramsey, L. S.; Huang, L.; Shabaev, A.; Massa, L.

    2014-06-01

    Experimental measurements conducted in the laboratory, involving hyperspectral analysis of water samples taken from public water resources in the New York City metro area, have motivated a reevaluation of issues concerning the potential application of this type of analysis for water monitoring, treatment and evaluation prior to filtration. One issue concerns hyperspectral monitoring of contaminants with respect to types and relative concentrations. This implies a need for better understanding the statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared, which are associated with specific water resources. This issue also implies the need for establishing correlations between hyperspectral signatures and types of contaminants to be found within specific water resources. Another issue concerns the use of absorption spectra for determining changes in chemical and physical characteristics of contaminants after application of water treatments in order to determine levels of toxicity with respect to the environment.

  3. Methods for sampling fish communities as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Meador, M.R.; Cuffney, T.F.; Gurtz, M.E.

    1993-01-01

    Fish community structure is characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The objective of the National Water-Quality Assessment characterization of fish community structure is to relate fish community characteristics to physical, chemical, and other biological factors to assess water-quality conditions. To accomplish this, fish community structure is described at sites representing selected environmental settings. In addition, spatial and temporal patterns in fish community structure are examined at local, regional, and national levels. A representative sample of the fish community is collected by sampling a stream reach using two complementary methods. The primary collection method is electrofishing using backpack, towed, or boat-operated electrofishing gear; seining is a secondary technique. Other secondary techniques may be substituted after careful consideration of sampling efficiency and consultation with local fish ecologists. Before fish sampling is conducted, careful consideration must be given to collecting permits; protecting endangered, threatened, and special-concern species; and coordinating sampling efforts with other fish ecologists. After the sample is collected, individual fish are identified to species by ichthyologists. Length and weight measurements are taken, and the presence of external anomalies are recorded.

  4. Addition of chlorine during water purification reduces iodine content of drinking water and contributes to iodine deficiency.

    PubMed

    Samson, L; Czegeny, I; Mezosi, E; Erdei, A; Bodor, M; Cseke, B; Burman, K D; Nagy, E V

    2012-01-01

    Drinking water is the major natural source of iodine in many European countries. In the present study, we examined possible sites of iodine loss during the usual water purification process.Water samples from 6 sites during the technological process were taken and analyzed for iodine content. Under laboratory circumstances, prepared iodine in water solution has been used as a model to test the effect of the presence of chlorine. Samples from the purification sites revealed that in the presence of chlorine there is a progressive loss of iodine from the water. In the chlorine concentrations employed in the purification process, 24-h chlorine exposure eliminated more than 50% of iodine when the initial iodine concentration was 250 μg/l or less. Iodine was completely eliminated if the starting concentration was 16 μg/l.We conclude that chlorine used during water purification may be a major contributor to iodine deficiency in European communities.

  5. Analysis of native water, bed material, and elutriate samples of major Louisiana waterways, 1975

    USGS Publications Warehouse

    Demas, Charles R.

    1976-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, conducted a series of elutriate studies in selected reaches of major navigable waterways of Louisiana. As defined by the U.S. Environmental Protection Agency, an elutriate is the supernatant resulting from the vigorous 30-minute shaking of one part bottom sediment from the dredging site with four parts water (vol/vol) collected from the dredging site followed by one hour settling time and appropriate centrifugation and a 0.45-micron filtration. The elutriate studies were initiated to evaluate possible environmental effects of proposed dredging activities in selected reaches of Louisiana waterways. The waterways investigated were the Mississippi River-Gulf Outlet, Breton Sound, Mississippi River downstream from Baton Rouge, Bayou Long, Intracoastal Waterway (east and west of the Harvey Canal), Three Rivers area, Ouachita River, Barataria Bay, Houma Navigation Canal, Atchafalaya Bay (Ship Channel), Berwick Bay, Intracoastal Waterway (Port Allen to Morgan City), Petite Anse area, and Calcasieu River and Ship Channel. The Geological Survey collected 227 samples of native water and bed (bottom) material from 130 different sites. These samples (as well as elutriates prepared from mixtures of native water and bed material) were analyzed for selected metal, pesticide, nutrient, and organic constituents. An additional 116 bed samples collected at 58 sites were analyzed for selected pesticides; and 4 additional native-water samples from 2 sites were analyzed for selected metal pesticide, nutrient, and organic constituents. (Woodard-USGS)

  6. Using Absolute Humidity and Radiochemical Analyses of Water Vapor Samples to Correct Underestimated Atmospheric Tritium Concentrations

    SciTech Connect

    Eberhart, C.F.

    1999-06-01

    Los Alamos National Laboratory (LANL) emits a wide variety of radioactive air contaminants. An extensive ambient air monitoring network, known as AIRNET, is operated on-site and in surrounding communities to estimate radioactive doses to the public. As part of this monitoring network, water vapor is sampled continuously at more than 50 sites. These water vapor samples are collected every two weeks by absorbing the water vapor in the sampled air with silica gel and then radiochemically analyzing the water for tritium. The data have consistently indicated that LANL emissions cause a small, but measurable impact on local concentrations of tritium. In early 1998, while trying to independently verify the presumed 100% water vapor collection efficiency, the author found that this efficiency was normally lower and reached a minimum of 10 to 20% in the middle of summer. This inefficient collection was discovered by comparing absolute humidity (g/m{sup 3}) calculated from relative humidity and temperature to the amount of water vapor collected by the silica gel per cubic meter of air sampled. Subsequent experiments confirmed that the elevated temperature inside the louvered housing was high enough to reduce the capacity of the silica gel by more than half. In addition, their experiments also demonstrated that, even under optimal conditions, there is not enough silica gel present in the sampling canister to absorb all of the moisture during the higher humidity periods. However, there is a solution to this problem. Ambient tritium concentrations have been recalculated by using the absolute humidity values and the tritium analyses. These recalculated tritium concentrations were two to three times higher than previously reported. Future tritium concentrations will also be determined in the same manner. Finally, the water vapor collection process will be changed by relocating the sampling canister outside the housing to increase collection efficiency and, therefore

  7. Rapid and Sensitive Voltammetric Determination of Aclonifen in Water Samples.

    PubMed

    Guziejewski, Dariusz; Smarzewska, Sylwia; Skowron, Monika; Ciesielski, Witold; Nosal-Wiercinłska, Agnieszka; Skrzypek, Slawomira

    2016-01-01

    This paper presents the use of square wave voltammetry (SWV) and square wave adsorptive stripping voltammetry (SWAdSV) in conjunction with a cyclic renewable silver amalgam film electrode (Hg(Ag)FE) for the determination of aclonifen in spiked water samples. A reduction peak at -0.65 V versus Ag/AgCl was obtained in the selected buffer (borax buffer with pH 9.2), exhibiting the characteristics of an irreversible reaction. The effect of square wave (SW) frequency, SW amplitude and step potential, as well as accumulation parameters (time and potential) were studied to select the optimal experimental conditions. The calibration curve was linear in the aclonifen concentration range from 1.0×10(-7) to 1.0×10(-6) mol L(-1) and from 1.0×10(-8) to1.0×10(-7) mol L(-1) for SWV and SWAdSV, respectively. The detection and quantification limits were found to be 3.1×10(-8) mol L(-1); 1.0×10(-7) mol L(-1) and 2.9×10(-9) mol L(-1); 9.6×10(-9) mol L-1 for SWV and SWAdSV, respectively. The proposed method was applied successfully in the determination of aclonifen in spiked water samples. The developed procedure can be adequate at least for screening purposes, where positive results should be confirmed by more selective method. PMID:26970782

  8. Water column and bed-sediment core samples collected from Brownlee Reservoir near Oxbow, Oregon, 2012

    USGS Publications Warehouse

    Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.

  9. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.

    2011-06-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in

  10. Long-term nitrogen additions and the intrinsic water-use efficiency of boreal Scots pine.

    NASA Astrophysics Data System (ADS)

    Marshall, John; Wallin, Göran; Linder, Sune; Lundmark, Tomas; Näsholm, Torgny

    2015-04-01

    Nitrogen fertilization nearly always increases productivity in boreal forests, at least in terms of wood production, but it is unclear how. In a mature (80 yrs. old) Scots pine forest in northern Sweden, we tested the extent to which nitrogen fertilization increased intrinsic photosynthetic water-use efficiency. We measured δ13C both discretely, in biweekly phloem sampling, and continuously, by monitoring of bole respiration. The original experiment was designed as a test of eddy covariance methods and is not therefore strictly replicated. Nonetheless, we compared phloem contents among fifteen trees from each plot and stem respiration from four per plot. The treatments included addition of 100 kg N/ha for eight years and a control. Phloem contents have the advantage of integrating over the whole canopy and undergoing complete and rapid turnover. Their disadvantage is that some have observed isotopic drift with transport down the length of the stem, presumably as a result of preferential export and/or reloading. We also measured the isotopic composition of stem respiration from four trees on each plot using a Picarro G1101-I CRDS attached to the vent flow from a continuous gas-exchange system. We detected consistent differences in δ13C between the treatments in phloem contents. Within each treatment, the phloem δ13C was negatively correlated with antecedent temperature (R2= 0.65) and no other measured climate variable. The isotopic composition of stem CO2 efflux will be compared to that of phloem contents. However, when converted to intrinsic water-use efficiency, the increase amounted to only about 4%. This is a small relative to the near doubling in wood production. Although we were able to detect a clear and consistent increase in water-use efficiency with N-fertilization, it constitutes but a minor cause of the observed increase in wood production.

  11. Quality of nutrient data from streams and ground water sampled during water years 1992-2001

    USGS Publications Warehouse

    Mueller, David K.; Titus, Cindy J.

    2005-01-01

    Proper interpretation of water-quality data requires consideration of the effects that bias and variability might have on measured constituent concentrations. In this report, methods are described to estimate the bias due to contamination of samples in the field or laboratory and the variability due to sample collection, processing, shipment, and analysis. Contamination can adversely affect interpretation of measured concentrations in comparison to standards or criteria. Variability can affect interpretation of small differences between individual measurements or mean concentrations. Contamination and variability are determined for nutrient data from quality-control samples (field blanks and replicates) collected as part of the National Water-Quality Assessment (NAWQA) Program during water years 1992-2001. Statistical methods are used to estimate the likelihood of contamination and variability in all samples. Results are presented for five nutrient analytes from stream samples and four nutrient analytes from ground-water samples. Ammonia contamination can add at least 0.04 milligram per liter in up to 5 percent of all samples. This could account for more than 22 percent of measured concentrations at the low range of aquatic-life criteria (0.18 milligram per liter). Orthophosphate contamination, at least 0.019 milligram per liter in up to 5 percent of all samples, could account for more than 38 percent of measured concentrations at the limit to avoid eutrophication (0.05 milligram per liter). Nitrite-plus-nitrate and Kjeldahl nitrogen contamination is less than 0.4 milligram per liter in 99 percent of all samples; thus there is no significant effect on measured concentrations of environmental significance. Sampling variability has little or no effect on reported concentrations of ammonia, nitrite-plus-nitrate, orthophosphate, or total phosphorus sampled after 1998. The potential errors due to sampling variability are greater for the Kjeldahl nitrogen analytes and

  12. An experiment in representative ground-water sampling for water- quality analysis

    USGS Publications Warehouse

    Huntzinger, T.L.; Stullken, L.E.

    1988-01-01

    Obtaining a sample of groundwater that accurately represents the concentration of a chemical constituent in an aquifer is an important aspect of groundwater-quality studies. Varying aquifer and constituent properties may cause chemical constituents to move within selectively separate parts of the aquifer. An experiment was conducted in an agricultural region in south-central Kansas to address questions related to representative sample collection. Concentrations of selected constituents in samples taken from observation wells completed in the upper part of the aquifer were compared to concentrations in samples taken from irrigation wells to determine if there was a significant difference. Water in all wells sampled was a calcium bicarbonate type with more than 200 mg/L hardness and about 200 mg/L alkalinity. Sodium concentrations were also quite large (about 40 mg/L). There was a significant difference in the nitrite-plus-nitrate concentrations between samples from observation and irrigation wells. The median concentration of nitrite plus nitrate in water from observation wells was 5.7 mg/L compared to 3.4 mg/L in water from irrigation wells. The differences in concentrations of calcium, magnesium, and sodium (larger in water from irrigation wells) were significant at the 78% confidence level but not at the 97% confidence level. Concentrations of the herbicide, atrazine, were less than the detection limit of 0.1 micrograms/L in all but one well. (USGS)

  13. Analysis of Tank 43H Samples at the Conclusion of Uranyl Carbonate Addition

    SciTech Connect

    Oji, L.N.

    2002-10-15

    Tank 43H serves as the feed Tank to the 2H evaporator. In the months of July and August 2001, about 21,000 gallons of a depleted uranyl carbonate solution were added to Tank 43H and agitated with two Flygt mixers. The depleted uranium addition served to decrease the U-235 enrichment in the Tank 43H supernate so that the supernate could be evaporated with no risk of accumulating enriched uranium.

  14. THE PERSISTENCE OF MYCOBACTERIUM AVIUM IN A DRINKING WATER SYSTEM AFTER THE ADDITION OF FILTRATION

    EPA Science Inventory

    Drinking water is increasingly recognized as a major source of pathogenic nontuberculous mycobacteria (NTM) associated with human infection. Our goal was to determine if the prevalence of NTM would decrease after the addition of filtration treatment to an unfiltered surface water...

  15. Standard addition flow method for potentiometric measurements at low concentration levels: application to the determination of fluoride in food samples.

    PubMed

    Galvis-Sánchez, Andrea C; Santos, João Rodrigo; Rangel, António O S S

    2015-02-01

    A standard addition method was implemented by using a flow manifold able to perform automatically multiple standard additions and in-line sample treatment. This analytical strategy was based on the in-line mixing of sample and standard addition solutions, using a merging zone approach. The flow system aimed to exploit the standard addition method to quantify the target analyte particularly in cases where the analyte concentration in the matrix is below the lower limit of linear response of the detector. The feasibility of the proposed flow configuration was assessed through the potentiometric determination of fluoride in sea salts of different origins and different types of coffee infusions. The limit of quantification of the proposed manifold was 5×10(-6) mol L(-1), 10-fold lower than the lower limit of linear response of the potentiometric detector used. A determination rate of 8 samples h(-1) was achieved considering an experimental procedure based on three standard additions per sample. The main advantage of the proposed strategy is the simple approach to perform multiple standard additions, which can be implemented with other ion selective electrodes, especially in cases when the primary ion is below the lower limit of linear response of the detector.

  16. Rain water transport and storage in a model sandy soil with hydrogel particle additives.

    PubMed

    Wei, Y; Durian, D J

    2014-10-01

    We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.

  17. Thermal behavior of water confined in micro porous of clay mineral at additional pressure.

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Takemura, T.; Fujimori, H.; Nagoe, A.; Sugimoto, T.

    2014-12-01

    Water is the most familiar substance. However water has specific properties that has a crystal structure of a dozen and density of that is maximum at 277.15 K. Therefore it understands various natural phenomena to study physical properties of water. Oodo et al study physical properties of water confined in silica gel [1]. They indicate that melting point of water confined in silica gel decrease with decreasing pore size of silica gel. Also in case that pore size is less than 2 nm, water confined in silica gel is unfreezing water at low temperature. It is considered that effect of pore size prevent crystal growth of water. Therefore we are interested in water confined in clay minerals. Clay minerals have a number of water conditions. Also it is thought that water confined in clay minerals show different physical behavior to exist the domain where change with various effect. Therefore we studied a thermal properties and phase behavior of absorption water in clay minerals. In addition, we analyzed the changes in the thermal behavior of absorption water due to the effect of earth pressure that was an environmental factor in the ground. [1] Oodo & Fujimori, J. Non-Cryst. Solids, 357 (2011) 683.

  18. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    PubMed

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-01-01

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions. PMID:26506329

  19. Toward a mechanistic understanding of the effect of biochar addition on soil water retention

    NASA Astrophysics Data System (ADS)

    Yi, S.; Chang, N.; Guo, M.; Imhoff, P. T.

    2014-12-01

    Biochar (BC) is a carbon-rich product produced by thermal degradation of biomass in an oxygen-free environment, whose application to sediment is said to improve water retention. However, BC produced from different feedstocks and pyrolyzed at different temperatures have distinct properties, which may alter water retention in ways difficult to predict a priori. Our goal is to develop a mechanistic understanding of BC addition on water retention by examining the impact of BC from two feedstocks, poultry litter (PL) and hardwood (HW), on the soil-water retention curves (SWRC) of a uniform sand and a sandy loam (SL). For experiments with sand, BC and sand were sieved to the same particle size (~ 0.547 mm) to minimize effects of BC addition on particle size distribution. Experiments with SL contained the same sieved BC. PL and HW bicohars were added at 2 and 7% (w/w), and water retention was measured from 0 to -4.38 × 106 cm-H2O. Both BCs increased porosities for sand and SL, up to 39 and 13% for sand and SL, respectively, with 7% HW BC addition. The primary cause for these increases was the internal porosity of BC particles. While the matric potential for air-entry was unchanged with BC addition, BC amendment increased water retention for sand and SL in the capillary region (0 to -15,000 cm-H2O) by an average of 26 and 33 % for 7% PL and HW BC in sand, respectively, but only 7 and 14 % for 7% PL and HW BC in SL. The most dramatic influence of BC amendment on water retention occurred in the adsorption region (< -15,000 cm-H2O), where water retention increased by a factor of 11 and 22 for 7% PL and HW BC in sand, respectively, but by 140 and 190 % for 7% PL and HW BC in SL, respectively. The impact of BC on water retention in these sediments is explained primarily by the additional surface area and internal porosity of PL and HW BC particles. van Genuchten (VG) models were fitted to the water retention data. For SL where the impact of BC addition on water retention was

  20. Aqueous solution sampling and the effects of water vapor in glow discharge mass spectrometry

    SciTech Connect

    Ratliff, P.H.

    1992-01-01

    Glow discharge mass spectrometry is a technique for the analysis of trace elements in solid materials. In this dissertation, the sampling of small volume aqueous solution samples has been explored. This method uses electrothermal vaporization of a solution residue for atomization, while a glow discharge provides the excitation and ionization. The main advantage of this technique over other glow discharge solution analysis schemes is the increase in sensitivity for a given sample since the analyte is atomized in a short time. The effects of the electrothermal filament current on the plasma processes were studied, since this could influence the discharge processes as well as ion transport to the mass spectrometer. Variables such as pressure, cathode-to-exit orifice distance, atomization current, and sample placement on the cathode were evaluated and the best parameters presented. The method was had relative standard deviations between 15--20%. Multi-element samples may be analyzed using either mass spectral scanning or separation of the elements by their vaporization temperature. The effects of water vapor on the processes of the glow discharge were investigated. Water vapor exhibits detrimental effects on both atomization and ionization in the plasma. Mass spectra taken with less than 5% water vapor resulted in ion signals primarily from H[sub 2]O, H[sub 3]O, ArH, and O[sub 2]. A liquid nitrogen coil was constructed to aid in the removal and control of water vapor in the ion source. Mass spectra obtained while cooling the source contained ion signals mainly from the cathode material. Different cathodes were investigated to observe the varying effects of the water vapor. When sputtering reactive metals the water problem may be minimized. Steady state and pulsed addition of water were examined to determine the processes occurring in the plasma.

  1. Inactivation of Geobacillus stearothermophilus in canned food and coconut milk samples by addition of enterocin AS-48.

    PubMed

    Viedma, Pilar Martínez; Abriouel, Hikmate; Ben Omar, Nabil; López, Rosario Lucas; Valdivia, Eva; Gálvez, Antonio

    2009-05-01

    The cyclic bacteriocin enterocin AS-48 was tested on a cocktail of two Geobacillus stearothermophilus strains in canned food samples (corn and peas), and in coconut milk. AS-48 (7 microg/g) reduced viable cell counts below detection levels in samples from canned corn and peas stored at 45 degrees C for 30 days. In coconut milk, bacterial inactivation by AS-48 (1.75 microg/ml) was even faster. In all canned food and drink samples inoculated with intact G. stearothermophilus endospores, bacteriocin addition (1.75 microg per g or ml of food sample) rapidly reduced viable cell counts below detection levels and avoided regrowth during storage. After a short-time bacteriocin treatment of endospores, trypsin addition markedly increased G. stearothermophilus survival, supporting the effect of residual bacteriocin on the observed loss of viability for endospores. Results from this study support the potential of enterocin AS-48 as a biopreservative against G. stearothermophilus. PMID:19269571

  2. Rapid detection of Naegleria fowleri in water distribution pipeline biofilms and drinking water samples.

    PubMed

    Puzon, Geoffrey J; Lancaster, James A; Wylie, Jason T; Plumb, Iason J

    2009-09-01

    Rapid detection of pathogenic Naegleria fowler in water distribution networks is critical for water utilities. Current detection methods rely on sampling drinking water followed by culturing and molecular identification of purified strains. This culture-based method takes an extended amount of time (days), detects both nonpathogenic and pathogenic species, and does not account for N. fowleri cells associated with pipe wall biofilms. In this study, a total DNA extraction technique coupled with a real-time PCR method using primers specific for N. fowleri was developed and validated. The method readily detected N. fowleri without preculturing with the lowest detection limit for N. fowleri cells spiked in biofilm being one cell (66% detection rate) and five cells (100% detection rate). For drinking water, the detection limit was five cells (66% detection rate) and 10 cells (100% detection rate). By comparison, culture-based methods were less sensitive for detection of cells spiked into both biofilm (66% detection for <10 cells) and drinking water (0% detection for <10 cells). In mixed cultures of N. fowleri and nonpathogenic Naegleria, the method identified N. fowleri in 100% of all replicates, whereastests with the current consensus primers detected N. fowleri in only 5% of all replicates. Application of the new method to drinking water and pipe wall biofilm samples obtained from a distribution network enabled the detection of N. fowleri in under 6 h, versus 3+ daysforthe culture based method. Further, comparison of the real-time PCR data from the field samples and the standard curves enabled an approximation of N. fowleri cells in the biofilm and drinking water. The use of such a method will further aid water utilities in detecting and managing the persistence of N. fowleri in water distribution networks.

  3. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... parameters in ground-water samples. Ground-water samples shall not be field-filtered prior to laboratory... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action §...

  4. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parameters in ground-water samples. Ground-water samples shall not be field-filtered prior to laboratory... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action §...

  5. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-water samples shall not be field-filtered prior to laboratory analysis. (c) The sampling procedures and... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water...

  6. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parameters in ground-water samples. Ground-water samples shall not be field-filtered prior to laboratory... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action §...

  7. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-water samples shall not be field-filtered prior to laboratory analysis. (c) The sampling procedures and... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water...

  8. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-water samples shall not be field-filtered prior to laboratory analysis. (c) The sampling procedures and... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water...

  9. Distribution of Cryptosporidium Genotypes in Storm Event Water Samples from Three Watersheds in New York

    PubMed Central

    Jiang, Jianlin; Alderisio, Kerri A.; Xiao, Lihua

    2005-01-01

    To assess the source and public health significance of Cryptosporidium oocyst contamination in storm runoff, a PCR-restriction fragment length polymorphism technique based on the small-subunit rRNA gene was used in the analysis of 94 storm water samples collected from the Malcolm Brook and N5 stream basins in New York over a 3-year period. The distribution of Cryptosporidium in this study was compared with the data obtained from 27 storm water samples from the Ashokan Brook in a previous study. These three watersheds represented different levels of human activity. Among the total of 121 samples analyzed from the three watersheds, 107 were PCR positive, 101 of which (94.4%) were linked to animal sources. In addition, C. hominis (W14) was detected in six samples collected from the Malcolm Brook over a 2-week period. Altogether, 22 Cryptosporidium species or genotypes were found in storm water samples from these three watersheds, only 11 of which could be attributed to known species/groups of animals. Several Cryptosporidium spp. were commonly found in these three watersheds, including the W1 genotype from an unknown animal source, the W4 genotype from deer, and the W7 genotype from muskrats. Some genotypes were found only in a particular watershed. Aliquots of 113 samples were also analyzed by the Environmental Protection Agency (EPA) Method 1623; 63 samples (55.7%) were positive for Cryptosporidium by microscopy, and 39 (78%) of the 50 microscopy-negative samples were positive by PCR. Results of this study demonstrate that molecular techniques can complement traditional detection methods by providing information on the source of contamination and the human-infective potential of Cryptosporidium oocysts found in water. PMID:16085835

  10. Evaluation of selected information on splitting devices for water samples

    USGS Publications Warehouse

    Capel, P.D.; Larson, S.J.

    1996-01-01

    Four devices for splitting water samples into representative aliquots are used by the U.S. Geological Survey's Water Resources Division. A thorough evaluation of these devices (14-liter churn, 8-liter churn, plastic cone, and Teflon cone) encompasses a wide variety of concerns, based on both chemical and physical considerations. This report surveys the existing data (as of April 1994) on cleaning efficiency and splitting capability of these devices and presents the data in a systematic framework for evaluation. From the existing data, some of these concerns are adequately or partially addressed, but the majority of concerns could not be addressed because of the lack of data. In general, the existing cleaning and transport protocols are adequate at the milligram per liter level, but the adequacy is largely unknown for trace elements and organic chemicals at lower concen- trations. The existing data indicate that better results are obtained when the splitters are cleaned in the laboratory rather than in the field. Two conclusions that can be reached on the splitting capability of solids are that more work must be done with all four devices to characterize and quantify their limitations and range of usefulness, and that the 14-liter churn (and by association, the 8-liter churn) is not useful in obtaining representative splits of sand-sized particles.

  11. A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water, sludge, recipient water and sediment from Faroe Islands, Iceland and Greenland.

    PubMed

    Huber, Sandra; Remberger, Mikael; Kaj, Lennart; Schlabach, Martin; Jörundsdóttir, Hrönn Ó; Vester, Jette; Arnórsson, Mímir; Mortensen, Inge; Schwartson, Richard; Dam, Maria

    2016-08-15

    A screening of a broad range of pharmaceuticals and additives in personal care products (PPCPs) in sub-arctic locations of the Faroe Islands (FO), Iceland (IS) and Greenland (GL) was conducted. In total 36 pharmaceuticals including some metabolites, and seven additives in personal care products were investigated in influent and effluent waters as well as sludge of waste water treatment plants (WWTPs) and in water and sediment of recipients. Concentrations and distribution patterns for PPCPs discharged via sewage lines (SLs) to the marine environment were assessed. Of the 36 pharmaceuticals or metabolites analysed 33 were found close to or above the limit of detection (LOD) in all or a part of the samples. All of the seven investigated additives in personal care products were detected above the LOD. Some of the analysed PPCPs occurred in every or almost every sample. Among these were diclofenac, ibuprofen, lidocaine, naproxen, metformin, citalopram, venlafaxine, amiloride, furosemide, metoprolol, sodium dodecyl sulphate (SDS) and cetrimonium salt (ATAC-C16). Additionally, the study encompasses ecotoxicological risk assessment of 2/3 of the analysed PPCPs in recipient and diluted effluent waters. For candesartan only a small margin to levels with inacceptable risks was observed in diluted effluent waters at two locations (FO). Chronical risks for aquatic organisms staying and/or living around WWTP effluent pipe-outlets were indicated for 17β-estradiol and estriol in the three countries. Additives in PCPs were found to pose the largest risk to the aquatic environment. The surfactants CAPB and ATAC-C16 were found in concentrations resulting in risk factors up to 375 for CAPB and 165 for ATAC-C16 in recipients for diluted effluents from Iggia, Nuuk (GL) and Torshavn (FO) respectively. These results demonstrates a potentially high ecological risk stemming from discharge of surfactants as used in household and industrial detergents as well as additives in personal care

  12. A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water, sludge, recipient water and sediment from Faroe Islands, Iceland and Greenland.

    PubMed

    Huber, Sandra; Remberger, Mikael; Kaj, Lennart; Schlabach, Martin; Jörundsdóttir, Hrönn Ó; Vester, Jette; Arnórsson, Mímir; Mortensen, Inge; Schwartson, Richard; Dam, Maria

    2016-08-15

    A screening of a broad range of pharmaceuticals and additives in personal care products (PPCPs) in sub-arctic locations of the Faroe Islands (FO), Iceland (IS) and Greenland (GL) was conducted. In total 36 pharmaceuticals including some metabolites, and seven additives in personal care products were investigated in influent and effluent waters as well as sludge of waste water treatment plants (WWTPs) and in water and sediment of recipients. Concentrations and distribution patterns for PPCPs discharged via sewage lines (SLs) to the marine environment were assessed. Of the 36 pharmaceuticals or metabolites analysed 33 were found close to or above the limit of detection (LOD) in all or a part of the samples. All of the seven investigated additives in personal care products were detected above the LOD. Some of the analysed PPCPs occurred in every or almost every sample. Among these were diclofenac, ibuprofen, lidocaine, naproxen, metformin, citalopram, venlafaxine, amiloride, furosemide, metoprolol, sodium dodecyl sulphate (SDS) and cetrimonium salt (ATAC-C16). Additionally, the study encompasses ecotoxicological risk assessment of 2/3 of the analysed PPCPs in recipient and diluted effluent waters. For candesartan only a small margin to levels with inacceptable risks was observed in diluted effluent waters at two locations (FO). Chronical risks for aquatic organisms staying and/or living around WWTP effluent pipe-outlets were indicated for 17β-estradiol and estriol in the three countries. Additives in PCPs were found to pose the largest risk to the aquatic environment. The surfactants CAPB and ATAC-C16 were found in concentrations resulting in risk factors up to 375 for CAPB and 165 for ATAC-C16 in recipients for diluted effluents from Iggia, Nuuk (GL) and Torshavn (FO) respectively. These results demonstrates a potentially high ecological risk stemming from discharge of surfactants as used in household and industrial detergents as well as additives in personal care

  13. The CERN antiproton source: Controls aspects of the additional collector ring and fast sampling devices

    NASA Astrophysics Data System (ADS)

    Chohan, V.

    1990-08-01

    The upgrade of the CERN antiproton source, meant to gain an order of magnitude in antiproton flux, required the construction of an additional ring to complement the existing antiproton accumulator (AA) and an entire rebuild of the target zone. The AA also needed major modifications to handle the increased flux and perform purely as an accumulator, preceded by collection in the collector ring (AC). The upgrade, known as the ACOL (antiproton collector) project, was approved under strict time and budgetary constraints and the existing AA control system, based on the Proton Synchrotron (PS) Divisional norms of CAMAC and Norsk-Data computers, had to be extended in the light of this. The limited (9 months) installation period for the whole upgrade meant that substantial preparatory and planning activities had to be carried out during the normal running of the AA. Advantage was taken of the upgrade to improve and consolidate the AA. Some aspects of the control system related to this upgrade are discussed together with the integration of new applications and instrumentation. The overall machine installation and running-in was carried out within the defined milestones and the project has now achieved the physics design goals.

  14. Supplement to the UMTRA Project water sampling and analysis plan, Riverton, Wyoming

    SciTech Connect

    1995-09-01

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

  15. Supplement to the UMTRA Project water sampling and analysis plan, Mexican Hat, Utah

    SciTech Connect

    1995-09-01

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Mexican Hat (DOE, 1994). Further, the supplement serves to confirm our present understanding of the site relative to the hydrogeology and contaminant distribution as well as our intention to continue to use the sampling strategy as presented in the 1994 WSAP document for Mexican Hat. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 (1991) and 60 FR 2854 (1995). Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Mexican Hat site are the Mexican Hat Long-Term Surveillance Plan (currently in progress), and the Mexican Hat Site Observational Work Plan (currently in progress).

  16. Measurement of the tritium concentration in the fractionated distillate from environmental water samples.

    PubMed

    Atkinson, Robert; Eddy, Teresa; Kuhne, Wendy; Jannik, Tim; Brandl, Alexander

    2014-09-01

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The current study investigates the relative change in vapor pressure isotope effect in the course of the distillation process, distinguishing it from and extending previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.04 ± 0.036, 1.05 ± 0.026, and 1.07 ± 0.038, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples where the first 5 mL are discarded, the tritium concentration could be underestimated by 4-7%. PMID:24814721

  17. Supplement to the UMTRA Project water sampling and analysis plan, Maybell, Colorado

    SciTech Connect

    1995-09-01

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Maybell, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Maybell (DOE, 1994a). Further, this supplement serves to confirm our present understanding of the site relative to the hydrogeology and contaminant distribution as well as our intention to continue to use the sampling strategy as presented in the 1994 WSAP document for Maybell. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 (1994) and 60 CFR 2854 (1 995). Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Maybell site are the Maybell Baseline Risk Assessment (currently in progress), the Maybell Remedial Action Plan (RAP) (DOE, 1994b), and the Maybell Environmental Assessment (DOE, 1995).

  18. Sampling and analysis for radon-222 dissolved in ground water and surface water

    USGS Publications Warehouse

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  19. Apparatus for direct addition of reagents into a nuclear magnetic resonance (NMR) sample in the NMR probe

    NASA Astrophysics Data System (ADS)

    Perrin, Charles L.; Rivero, Ignacio A.

    1999-04-01

    Nuclear magnetic resonance (NMR) is a widely used tool in chemistry and biochemistry. It is occasionally necessary to add small aliquots of solvents or reagents repeatedly into the NMR tube. Ordinarily this is accomplished only by ejecting the sample and carrying out the addition outside the probe. It would be preferable to add the aliquot directly into the sample. We have designed and implemented a delivery system to accomplish this. This apparatus is particularly applicable to a recent NMR titration method for measuring relative pK's and to experiments where temperature must also be varied. This apparatus provides a safe, simple, and inexpensive method for repeated aliquot addition directly into the sample in the NMR probe.

  20. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques.

    PubMed

    Wang, Zhendi; Li, K; Fingas, M; Sigouin, L; Ménard, L

    2002-09-20

    This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected in a bedrock aquifer exploited for drinking water purposes. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS) and capillary GC with flame-ionization detection, solid-phase microextraction and headspace GC-MS techniques. Chemical characterization results revealed the following: (1) The hydrocarbons in sample A (near-surface groundwater, 0-5 m) were clearly of two types, one being gasoline and the other a heavy petroleum product. The significant distribution of five target petroleum-characteristic alkylkated polycyclic aromatic hydrocarbon homologues and biomarkers confirmed the presence of another heavy petroleum product. The concentrations of the TPHs (total petroleum hydrocarbons) and BTEX (collective name of benzene, toluene, ethylbenzene, and p-, m-, and o-xylenes) were determined to be 1070 and 155 microg/kg of water for sample A, respectively. (2) The deepest groundwater (sample B, collected at a depth ranging between 15 and 60 m) was also contaminated, but to a much lesser degree. The concentrations of the TPH and BTEX were determined to be only 130 and 2.6 microg/kg of water for sample B, respectively. (3) The presence of a variety of volatile chlorinated compounds to the groundwater was also clearly identified. PMID:12350112

  1. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques.

    PubMed

    Wang, Zhendi; Li, K; Fingas, M; Sigouin, L; Ménard, L

    2002-09-20

    This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected in a bedrock aquifer exploited for drinking water purposes. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS) and capillary GC with flame-ionization detection, solid-phase microextraction and headspace GC-MS techniques. Chemical characterization results revealed the following: (1) The hydrocarbons in sample A (near-surface groundwater, 0-5 m) were clearly of two types, one being gasoline and the other a heavy petroleum product. The significant distribution of five target petroleum-characteristic alkylkated polycyclic aromatic hydrocarbon homologues and biomarkers confirmed the presence of another heavy petroleum product. The concentrations of the TPHs (total petroleum hydrocarbons) and BTEX (collective name of benzene, toluene, ethylbenzene, and p-, m-, and o-xylenes) were determined to be 1070 and 155 microg/kg of water for sample A, respectively. (2) The deepest groundwater (sample B, collected at a depth ranging between 15 and 60 m) was also contaminated, but to a much lesser degree. The concentrations of the TPH and BTEX were determined to be only 130 and 2.6 microg/kg of water for sample B, respectively. (3) The presence of a variety of volatile chlorinated compounds to the groundwater was also clearly identified.

  2. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya.

    PubMed

    Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu

    2013-08-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of <0.02-0.7±0.2 Bq l(-1) in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).

  3. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China.

    PubMed

    Xu, Zhuwen; Wan, Shiqiang; Ren, Haiyan; Han, Xingguo; Li, Mai-He; Cheng, Weixin; Jiang, Yong

    2012-01-01

    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.

  4. Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

    PubMed Central

    Xu, Zhuwen; Wan, Shiqiang; Ren, Haiyan; Han, Xingguo; Li, Mai-He; Cheng, Weixin; Jiang, Yong

    2012-01-01

    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change. PMID:22768119

  5. GROUND WATER SAMPLING FOR VERTICAL PROFILING OF CONTAMINANTS

    EPA Science Inventory

    Accurate delineation of plume boundaries and vertical contaminant distribution are necessary in order to adequately characterize waste sites and determine remedial strategies to be employed. However, it is important to consider the sampling objectives, sampling methods, and sampl...

  6. Effect of addition of coconut water (Cocos nucifera) to the freezing media on post-thaw viability of boar sperm.

    PubMed

    Bottini-Luzardo, María; Centurión-Castro, Fernando; Alfaro-Gamboa, Militza; Aké-López, Ricardo; Herrera-Camacho, José

    2013-01-01

    The aims of this experiment were to evaluate the addition of coconut water in natura to the freezing media, compare the effect of deionized water vs filtered water of coconut over the post-thaw seminal characteristics, and evaluate the effect of the deionized water and in natura coconut water on the seminal characteristics of boar sperm at different post-thaw times. Thirty-four ejaculates were used divided in three aliquots which received one of the following treatments (T): T1, LEY (bidistilled water, lactose, and egg yolk) and LEYGO (LEY + glycerol and Orvus ET paste); T2, LEY(A) (coconut deionized water, lactose, and egg yolk)-LEYGO(A); and T3, LEY(B) (in natura coconut water, lactose, and egg yolk)-LEYGO(B). Samples of boar semen were frozen according to the Westendorf method, thawed at 38°C, and evaluated at three incubation times (0, 30, and 60 min). Seminal characteristics assessed were motility (Mot), acrosomal integrity (AInt), membrane integrity (MInt), and mitochondrial activity (MAct). T1 showed a higher percentage of viable sperm than T3 (Mot 36.5 vs 5.4 %, AInt 61.8 vs 41.2 %, MInt 50.4 vs 41.3 %, and MAct 56.9 vs 50.5 %). T2 kept a higher percentage of viable sperm at all incubation times. In natura coconut water showed a detrimental effect over the viability of the frozen-thawed boar semen. Deionized coconut water improved the boar semen viability post-thaw, outperforming results of in natura coconut water.

  7. Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe

    PubMed Central

    Wang, Yunbo; Jiang, Qi; Yang, Zhiming; Sun, Wei; Wang, Deli

    2015-01-01

    A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation. PMID:26010888

  8. Phosphorus Concentrations in Stream-Water and Reference Samples - An Assessment of Laboratory Comparability

    USGS Publications Warehouse

    McHale, Michael R.; McChesney, Dennis

    2007-01-01

    In 2003, a study was conducted to evaluate the accuracy and precision of 10 laboratories that analyze water-quality samples for phosphorus concentrations in the Catskill Mountain region of New York State. Many environmental studies in this region rely on data from these different laboratories for water-quality analyses, and the data may be used in watershed modeling and management decisions. Therefore, it is important to determine whether the data reported by these laboratories are of comparable accuracy and precision. Each laboratory was sent 12 samples for triplicate analysis for total phosphorus, total dissolved phosphorus, and soluble reactive phosphorus. Eight of these laboratories reported results that met comparability criteria for all samples; the remaining two laboratories met comparability criteria for only about half of the analyses. Neither the analytical method used nor the sample concentration ranges appeared to affect the comparability of results. The laboratories whose results were comparable gave consistently comparable results throughout the concentration range analyzed, and the differences among methods did not diminish comparability. All laboratories had high data precision as indicated by sample triplicate results. In addition, the laboratories consistently reported total phosphorus values greater than total dissolved phosphorus values, and total dissolved phosphorus values greater than soluble reactive phosphorus values, as would be expected. The results of this study emphasize the importance of regular laboratory participation in sample-exchange programs.

  9. Dynamic effect of sodium-water reaction in fast flux test facility power addition sodium pipes

    SciTech Connect

    Huang, S.N.; Anderson, M.J.

    1990-03-01

    The Fast Flux Facility (FFTF) is a demonstration and test facility of the sodium-cooled fast breeder reactor. A power addition'' to the facility is being considered to convert some of the dumped, unused heat into electricity generation. Components and piping systems to be added are sodium-water steam generators, sodium loop extensions from existing dump heat exchangers to sodium-water steam generators, and conventional water/steam loops. The sodium loops can be subjected to the dynamic loadings of pressure pulses that are caused by postulated sodium leaks and subsequent sodium-water reaction in the steam generator. The existing FFTF secondary pipes and the new power addition sodium loops were evaluated for exposure to the dynamic effect of the sodium-water reaction. Elastic and simplified inelastic dynamic analyses were used in this feasibility study. The results indicate that both the maximum strain and strain range are within the allowable limits. Several cycles of the sodium-water reaction can be sustained by the sodium pipes that are supported by ordinary pipe supports and seismic restraints. Expensive axial pipe restraints to withstand the sodium-water reaction loads are not needed, because the pressure-pulse-induced alternating bending stresses act as secondary stresses and the pressure pulse dynamic effect is a deformation-controlled quantity and is self-limiting. 14 refs., 7 figs., 3 tabs.

  10. Electromembrane extraction for the determination of parabens in water samples.

    PubMed

    Villar-Navarro, Mercedes; Moreno-Carballo, María Del Carmen; Fernández-Torres, Rut; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel

    2016-02-01

    To our knowledge, for the first time an electromembrane extraction combined with a high-performance liquid chromatography procedure using diode-array detection has been developed for the determination of five of the most widely used parabens: ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, butyl 4-hydroxybenzoate, isobutyl 4-hydroxybenzoate, and benzyl 4-hydroxybenzoate. Parabens were extracted from pH 4 aqueous sample solutions with use of an Accurel® S6/2 polypropylene hollow fiber that supports a liquid membrane of 1-octanol to a pH 12 aqueous acceptor solution placed inside the lumen of the hollow fiber. An electric current of 30 V was applied over the supported liquid membrane by means of platinum wires placed in the donor and acceptor phases. Parabens were extracted in 40 min with enrichment factors in the 30-49 range. The procedure has detection limits between 0.98 and 1.43 μg L(-1). The method was applied to the determination of parabens in surface environmental waters with excellent results. PMID:26753971

  11. Evaluation of methods used from 1965 through 1982 to determine inorganic constituents in water samples

    USGS Publications Warehouse

    Friedman, Linda C.; Fishman, Marvin J.

    1989-01-01

    Since 1962, the U.S. Geological Survey has prepared and distributed Standard Reference Water Samples (SRWS) to participating laboratories in order to alert them to possible analytical deficiencies. This report marks the first time that a concentrated effort has been made to examine and compare the SRWS data for each constituent by the analytical method that was used to obtain the data. Unlike laboratories that participate in interlaboratory studies that are designed to determine the precision and accuracy of a particular analytical method, laboratories that participate in the SRWS program are allowed to select the method used to analyze a reference sample and are requested to report the method used. Data for a particular method could not be compared with a 'true' value because the data were obtained from analyses of reference samples that were prepared using natural waters; however, where possible a comparison was made between the mean concentrations obtained by the various analytical methods that were used to determine each constituent. Where enough information is available, models for predicting the precisions of the methods have been developed, and the precisions have been compared. In addition to the data presented in the reports, this evaluation provides a good indication of methods that were used routinely to analyze water samples during the 18 years of study.

  12. Volatile organic compound matrix spike recoveries for ground- and surface-water samples, 1997-2001

    USGS Publications Warehouse

    Rowe, Barbara L.; Delzer, Gregory C.; Bender, David A.; Zogorski, John S.

    2005-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program used field matrix spikes (FMSs), field matrix spike replicates (FMSRs), laboratory matrix spikes (LMSs), and laboratory reagent spikes (LRSs), in part, to assess the quality of volatile organic compound (VOC) data from water samples collected and analyzed in more than 50 of the Nation's largest river basins and aquifers (Study Units). The data-quality objectives of the NAWQA Program include estimating the extent to which variability, degradation, and matrix effects, if any, may affect the interpretation of chemical analyses of ground- and surface-water samples. In order to help meet these objectives, a known mass of VOCs was added (spiked) to water samples collected in 25 Study Units. Data within this report include recoveries from 276 ground- and surface-water samples spiked with a 25-microliter syringe with a spike solution containing 85 VOCs to achieve a concentration of 0.5 microgram per liter. Combined recoveries for 85 VOCs from spiked ground- and surface-water samples and reagent water were used to broadly characterize the overall recovery of VOCs. Median recoveries for 149 FMSs, 107 FMSRs, 20 LMSs, and 152 LRSs were 79.9, 83.3, 113.1, and 103.5 percent, respectively. Spike recoveries for 85 VOCs also were calculated individually. With the exception of a few VOCs, the median percent recoveries determined from each spike type for individual VOCs followed the same pattern as for all VOC recoveries combined, that is, listed from least to greatest recovery-FMSs, FMSRs, LRSs, and LMSs. The median recoveries for individual VOCs ranged from 63.7 percent to 101.5 percent in FMSs; 63.1 percent to 101.4 percent in FMSRs; 101.7 percent to 135.0 percent in LMSs; and 91.0 percent to 118.7 percent in LRSs. Additionally, individual VOC recoveries were compared among paired spike types, and these recoveries were used to evaluate potential bias in the method. Variability associated with field

  13. Sample data processing in an additive and reproducible taxonomic workflow by using character data persistently linked to preserved individual specimens

    PubMed Central

    Kilian, Norbert; Henning, Tilo; Plitzner, Patrick; Müller, Andreas; Güntsch, Anton; Stöver, Ben C.; Müller, Kai F.; Berendsohn, Walter G.; Borsch, Thomas

    2015-01-01

    We present the model and implementation of a workflow that blazes a trail in systematic biology for the re-usability of character data (data on any kind of characters of pheno- and genotypes of organisms) and their additivity from specimen to taxon level. We take into account that any taxon characterization is based on a limited set of sampled individuals and characters, and that consequently any new individual and any new character may affect the recognition of biological entities and/or the subsequent delimitation and characterization of a taxon. Taxon concepts thus frequently change during the knowledge generation process in systematic biology. Structured character data are therefore not only needed for the knowledge generation process but also for easily adapting characterizations of taxa. We aim to facilitate the construction and reproducibility of taxon characterizations from structured character data of changing sample sets by establishing a stable and unambiguous association between each sampled individual and the data processed from it. Our workflow implementation uses the European Distributed Institute of Taxonomy Platform, a comprehensive taxonomic data management and publication environment to: (i) establish a reproducible connection between sampled individuals and all samples derived from them; (ii) stably link sample-based character data with the metadata of the respective samples; (iii) record and store structured specimen-based character data in formats allowing data exchange; (iv) reversibly assign sample metadata and character datasets to taxa in an editable classification and display them and (v) organize data exchange via standard exchange formats and enable the link between the character datasets and samples in research collections, ensuring high visibility and instant re-usability of the data. The workflow implemented will contribute to organizing the interface between phylogenetic analysis and revisionary taxonomic or monographic work

  14. Effect of dilute polymer additives on the acoustic cavitation threshold of water

    SciTech Connect

    Crum, L.A.; Brosey, J.E.

    1984-02-01

    Measurements are presented of the variation of the acoustic cavitation threshold of water with concentration of the polymer additives polyethylene oxide and guar gum. It was found that small amounts of these additives could significantly increase the cavitation threshold. A theoretical model, based upon nucleation of a gas bubble from a Harvey-type crevice in a mote or solid particle, is developed that gives good agreement with the measurements. The applicability of this approach to an explanation of cavitation index reduction in flow-generated or confined jet cavitation, when polymer additives are introduced, is discussed.

  15. Effect of ionic additive on pool boiling critical heat flux of titania/water nanofluids

    NASA Astrophysics Data System (ADS)

    Jung, Jung-Yeul; Kim, Hyungdae; Kim, Moo Hwan

    2013-01-01

    TiO2/water nanofluids were prepared and tested to investigate the effects of an ionic additive (i.e., nitric acid in this study) on the critical heat flux (CHF) behavior in pool boiling. Experimental results showed that the ionic additive improved the dispersion stability but reduced the CHF increase in the nanofluid. The additive affected the self-assembled nanoparticle structures formed on the heater surfaces by creating a more uniform and smoother structure, thus diminishing the CHF enhancement in nanofluids.

  16. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program...

  17. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must include consistent...

  18. 78 FR 42692 - Food Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 573 Food Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate AGENCY: Food and Drug Administration, HHS. ACTION: Final...

  19. Releasing-addition method for the flame-photometric determination of calcium in thermal waters

    USGS Publications Warehouse

    Rowe, J.J.

    1963-01-01

    Study of the interferences of silica and sulfate in the flame-photometric determination of calcium in thermal waters has led to the development of a method requiring no prior chemical separations. The interference effects of silica, sulfate, potassium, sodium, aluminum, and phosphate are overcome by an addition technique coupled with the use of magnesium as a releasing agent. ?? 1963.

  20. An addition at the C-terminus of water-buffalo immunoglobin lambda chains.

    PubMed

    Svasti, J

    1977-01-01

    The amino acid sequence of the C-terminal tryptic peptide of pooled water-buffalo immunoglobulin lambda chains was determined as Thr-Val-Lys-Pro-Ser-Glu-Cys-Pro-Ser. This sequence is closely homologous to equivalent sequences from other species, but shows an additional amino acid on the C-terminal side of the interchain half-cystine residue.

  1. Interstitial water studies on small core samples, Leg 15

    USGS Publications Warehouse

    Sayles, Fred L.; Manheim, Frank T.; Waterman, Lee S.

    1973-01-01

    Analyses of pore fluids from reducing environments demonstrate that reduction of SO4 is accompanied by large increases in alkalinity and strong depletion of Ca and Mg. The data are compatible with a model of replacement of Fe3+ in clay lattices by Mg from the interstitial solutions and the precipitation of pyrite. Depletions of Na in the interstitial solutions are related to Mg losses by a ratio of approximately 1:3. Pore fluids from oxidizing pelagic sediments exhibit little SO4 depletion. Losses of Mg are accompanied by the addition of Ca to the pore solutions on a nearly 1:1 basis. Strong Sr enrichment is also found in these solutions. The magnitude of the Sr increase suggests that considerable carbonate recrystallization has occurred. As part of an extensive interlaboratory and analytical calibration, the effect of squeezing sediment at different temperatures has been studied in depth. Samples of a variety of lithologies have been included. Enrichment of K by as much as 24 percent and depletion of Mg and Ca by up to 7 percent occurs during warming. However, no significant effect upon Cl and SO4 could be detected. The strongest effects are seen in the minor constituents studied. On warming, Sr, Si, and B are enriched as much as 19, 40, and 60 percent, respectively. The size of the observed concentration changes varies with the mineralogy of the sediment, but is significant in all types studied, particularly with regards to Mg and K.

  2. Sampling and Analysis for Lead in Water and Soil Samples on a University Campus: A Student Research Project.

    ERIC Educational Resources Information Center

    Butala, Steven J.; Zarrabi, Kaveh

    1995-01-01

    Describes a student research project that determined concentrations of lead in water drawn from selected drinking fountains and in selected soil samples on the campus of the University of Nevada, Las Vegas. (18 references) (DDR)

  3. Recovery of several volatile organic compounds from simulated water samples: Effect of transport and storage

    USGS Publications Warehouse

    Friedman, L.C.; Schroder, L.J.; Brooks, M.G.

    1986-01-01

    Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.

  4. Burning of suspended coal-water slurry droplet with oil as combustion additive. Final report

    SciTech Connect

    Yao, S.C.

    1984-10-01

    The combustion of single coal-water slurry droplet with oil as combustion additive (CWOM) has been studied. In this study, the droplet is suspended on a fine quartz fiber and is exposed to the hot combustion product of propane (C/sub 3/H/sub 8/) and air. The results are documented in a movie series. The combustion of CWOM with various combinations of concentrations are compared with that of coal-water slurry and water-oil mixture droplets. The combustion of coal-water slurry is enhanced significantly due to the presence of emulsified kerosene. The enhancement is also dependent upon the mixing procedure during preparation of CWOM. The presence of emulsified kerosene induces local boil-off and combustion that coal particles are splashed as fire works during the early evaporation stage of droplet heat-up. After particle splashing, blow-holes appear on the droplet surface. The popcorn and swelling phenomena usually occurred in coal-water-slurry combustion is greatly reduced. Significant combustion enhancement occurs with the use of kerosene in an amount of about 15 percent of the overall CWOM. This process of using kerosene as combustion additive may provide obvious advantage for the combustion of bituminous coal-water slurry. 4 references, 6 figures.

  5. Free energy calculation of water addition coupled to reduction of aqueous RuO4-

    NASA Astrophysics Data System (ADS)

    Tateyama, Yoshitaka; Blumberger, Jochen; Ohno, Takahisa; Sprik, Michiel

    2007-05-01

    Free energy calculations were carried out for water addition coupled reduction of aqueous ruthenate, RuO4-+H2O +e-→[RuO3(OH)2]2-, using Car-Parrinello molecular dynamics simulations. The full reaction is divided into the reduction of the tetrahedral monoanion, RuO4-+e-→RuO42-, followed by water addition, RuO42-+H2O →[RuO3(OH)2]2-. The free energy of reduction is computed from the fluctuations of the vertical energy gap using the MnO4-+e -→MnO42- reaction as reference. The free energy for water addition is estimated using constrained molecular dynamics methods. While the description of this complex reaction, in principle, involves multiple reaction coordinates, we found that reversible transformation of the reactant into the product can be achieved by control of a single reaction coordinate consisting of a suitable linear combination of atomic distances. The free energy difference of the full reaction is computed to be -0.62eV relative to the normal hydrogen electrode. This is in good agreement with the experimental value of -0.59eV, lending further support to the hypothesis that, contrary to the ruthenate monoanion, the dianion is not tetrahedral but forms a trigonal-bipyramidal dihydroxo complex in aqueous solution. We construct an approximate two-dimensional free energy surface using the coupling parameter for reduction and the mechanical constraint for water addition as variables. Analyzing this surface we find that in the most favorable reaction pathway the reduction reaction precedes water addition. The latter takes place via the protonated complex [RuO3(OH)]- and subsequent transport of the created hydroxide ion to the fifth coordination site of Ru.

  6. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011

    SciTech Connect

    2011-09-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  7. TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Atkinson, R.

    2012-07-31

    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  8. The origin of water in the primitive Moon as revealed by the lunar highlands samples

    NASA Astrophysics Data System (ADS)

    Barnes, Jessica J.; Tartèse, Romain; Anand, Mahesh; McCubbin, Francis M.; Franchi, Ian A.; Starkey, Natalie A.; Russell, Sara S.

    2014-03-01

    The recent discoveries of hydrogen (H) bearing species on the lunar surface and in samples derived from the lunar interior have necessitated a paradigm shift in our understanding of the water inventory of the Moon, which was previously considered to be a ‘bone-dry’ planetary body. Most sample-based studies have focused on assessing the water contents of the younger mare basalts and pyroclastic glasses, which are partial-melting products of the lunar mantle. In contrast, little attention has been paid to the inventory and source(s) of water in the lunar highlands rocks which are some of the oldest and most pristine materials available for laboratory investigations, and that have the potential to reveal the original history of water in the Earth-Moon system. Here, we report in-situ measurements of hydroxyl (OH) content and H isotopic composition of the mineral apatite from four lunar highlands samples (two norites, a troctolite, and a granite clast) collected during the Apollo missions. Apart from troctolite in which the measured OH contents in apatite are close to our analytical detection limit and its H isotopic composition appears to be severely compromised by secondary processes, we have measured up to ˜2200 ppm OH in the granite clast with a weighted average δD of ˜ -105±130‰, and up to ˜3400 ppm OH in the two norites (77215 and 78235) with weighted average δD values of -281±49‰ and -27±98‰, respectively. The apatites in the granite clast and the norites are characterised by higher OH contents than have been reported so far for highlands samples, and have H isotopic compositions similar to those of terrestrial materials and some carbonaceous chondrites, providing one of the strongest pieces of evidence yet for a common origin for water in the Earth-Moon system. In addition, the presence of water, of terrestrial affinity, in some samples of the earliest-formed lunar crust suggests that either primordial terrestrial water survived the aftermath

  9. The Use of Additional GPS Frequencies to Independently Determine Tropospheric Water Vapor Profiles

    NASA Technical Reports Server (NTRS)

    Herman, B.M.; Feng, D.; Flittner, D. E.; Kursinski, E. R.

    2000-01-01

    It is well known that the currently employed L1 and L2 GPS/MET frequencies (1.2 - 1.6) Ghz) do not allow for the separation of water vapor and density (or temperature) from active microwave occultation measurements in regions of the troposphere warmer than 240 K Therefore, additional information must be used, from other types of measurements and weather analyses, to recover water vapor (and temperature) profiles. Thus in data sparse regions, these inferred profiles can be subject to larger errors than would result in data rich regions. The use of properly selected additional GPS frequencies enables a direct, independent measurement of the absorption associated with the water vapor profile, which may then be used in the standard GPS/MET retrievals to obtain a more accurate determination of atmospheric temperature throughout the water vapor layer. This study looks at the use of microwave crosslinks in the region of the 22 Ghz water vapor absorption line for this purpose. An added advantage of using 22 Ghz frequencies is that they are only negligibly affected by the ionosphere in contrast to the large effect at the GPS frequencies. The retrieval algorithm uses both amplitude and phase measurements to obtain profiles of atmospheric pressure, temperature and water water vapor pressure with a vertical resolution of 1 km or better. This technique also provides the cloud liquid water content along the ray path, which is in itself an important element in climate monitoring. Advantages of this method include the ability to make measurements in the presence of clouds and the use of techniques and technology proven through the GPS/MET experiment and several of NASA's planetary exploration missions. Simulations demonstrating this method will be presented for both clear and cloudy sky conditions.

  10. Highly treated mine waters may require major ion addition before environmental release.

    PubMed

    Harford, Andrew J; Jones, David R; van Dam, Rick A

    2013-01-15

    Mining operations often use passive and/or active water treatments to improve water quality prior to environmental release. Key considerations in choosing a treatment process include the extent to which the water quality is actually improved, and the potential residual environmental risks of the release of such water. However, there are few published studies concerning the environmental impacts of treated waste waters. This study used toxicity identification evaluation (TIE) methods to quantify and identify the "toxic" constituents of a highly-treated water (distillate) produced by brine concentration of a mining process water. Exposure of five freshwater species (Chlorella sp., Lemna aequinoctialis, Hydra viridissima, Moinodaphnia macleayi and Mogurnda mogurnda) to a concentration range of the distillate (0, 25, 50 and 100%) found that it was toxic to H. viridissima (50-100% effect when exposed to 100% distillate). TIE tests demonstrated that the effect wasn't due to residual ammonia (~1 mg L(-1)N) or trace organics, and unlikely to be due to manganese (Mn; 130-230 μg L(-1)). Conversely, addition of 0.2 and 0.5 mg L(-1) calcium improved the growth rate of H. viridissima by 61 and 66%, respectively, while addition of calcium, sodium and potassium (0.5, 1.0 and 0.4 mg L(-1), respectively) to levels comparable to that in the local aquatic environment resulted in 100% recovery. Further assessment on the likelihood of residual metal toxicity indicated that Mn concentrations in the distillate were at levels that could inhibit the growth of H. viridissima. Ultimately, the results demonstrated that ion deficiency should be considered as a potential stressor in risk/impact assessments of the discharge of treated wastewaters, and these may need to be supplemented with the deficient ions to reduce environmental impacts. The findings have highlighted the need for water managers to consider the possibility of unintended environmental risks from the discharge of highly

  11. Highly treated mine waters may require major ion addition before environmental release.

    PubMed

    Harford, Andrew J; Jones, David R; van Dam, Rick A

    2013-01-15

    Mining operations often use passive and/or active water treatments to improve water quality prior to environmental release. Key considerations in choosing a treatment process include the extent to which the water quality is actually improved, and the potential residual environmental risks of the release of such water. However, there are few published studies concerning the environmental impacts of treated waste waters. This study used toxicity identification evaluation (TIE) methods to quantify and identify the "toxic" constituents of a highly-treated water (distillate) produced by brine concentration of a mining process water. Exposure of five freshwater species (Chlorella sp., Lemna aequinoctialis, Hydra viridissima, Moinodaphnia macleayi and Mogurnda mogurnda) to a concentration range of the distillate (0, 25, 50 and 100%) found that it was toxic to H. viridissima (50-100% effect when exposed to 100% distillate). TIE tests demonstrated that the effect wasn't due to residual ammonia (~1 mg L(-1)N) or trace organics, and unlikely to be due to manganese (Mn; 130-230 μg L(-1)). Conversely, addition of 0.2 and 0.5 mg L(-1) calcium improved the growth rate of H. viridissima by 61 and 66%, respectively, while addition of calcium, sodium and potassium (0.5, 1.0 and 0.4 mg L(-1), respectively) to levels comparable to that in the local aquatic environment resulted in 100% recovery. Further assessment on the likelihood of residual metal toxicity indicated that Mn concentrations in the distillate were at levels that could inhibit the growth of H. viridissima. Ultimately, the results demonstrated that ion deficiency should be considered as a potential stressor in risk/impact assessments of the discharge of treated wastewaters, and these may need to be supplemented with the deficient ions to reduce environmental impacts. The findings have highlighted the need for water managers to consider the possibility of unintended environmental risks from the discharge of highly

  12. The effect of sampling strategies on assessment of water quality criteria attainment.

    PubMed

    Wang, Yuxin; Wilson, Jessica M; VanBriesen, Jeanne M

    2015-05-01

    Sample locations for large river studies affect the representativeness of data, and thus can alter decisions made regarding river conditions and the need for interventions to improve water quality. The present study evaluated three water-quality sampling programs for Total Dissolved Solid (TDS) assessment in the Monongahela River from 2008 to 2012. The sampling plans cover the same 145 km of river but differ in frequency, sample location and type (e.g., river water sample vs drinking water plant intake sample). Differences resulting from temporal and spatial variability in sampling lead to different conclusions regarding water quality in the river (including regulatory listing decisions), especially when low flow leads to concentrations at or near the water quality criteria (500mg/L TDS). Drinking water samples exceeded the criteria 82 out of 650 samples (12.6%), while river water samples exceeded the criteria 47 out of 464 samples (10.1%). Different water sample types could provide different pictures of water quality in the river and lead to different regulatory listing decisions.

  13. Measurement of Mercury Methylation in Lake Water and Sediment Samples

    PubMed Central

    Furutani, Akira; Rudd, John W. M.

    1980-01-01

    Biological mercury methylation was assayed by a new radiochemical technique in the water column and sediments of a mercury-contaminated lake. In 24 weeks during 1979, there were three episodes of methylating activity in surface floc and in water, each lasting 3 to 5 weeks. Periods of methylation in the water column coincided with surface sediment methylation and appeared to be related to overall microbial activity. Mercury was actively methylated in the presence of bound sulfide. PMID:16345649

  14. Graphene-coated fiber for solid-phase microextraction of triazine herbicides in water samples.

    PubMed

    Wu, Qiuhua; Feng, Cheng; Zhao, Guangying; Wang, Chun; Wang, Zhi

    2012-01-01

    Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber-coating material for the solid-phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene-coated fiber coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05-0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0  ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene-coated fiber showed higher extraction efficiency.

  15. LABORATORY ANALYSIS FOR ARSENIC IN DRINKING WATER SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has established maximum contaminant levels ( MCLs ), for many inorganic contaminants found in drinking water, to protect the health of consumers. Some of these chemicals occur naturally in source waters while some are the result o...

  16. Water adsorption at high temperature on core samples from The Geysers geothermal field

    SciTech Connect

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1998-06-01

    The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal reservoir, California, was measured at 150, 200, and 250 C as a function of pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there is in general no proportionality between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The results indicate that multilayer adsorption rather than capillary condensation is the dominant water storage mechanism at high temperatures.

  17. Water adsorption at high temperature on core samples from The Geysers geothermal field

    SciTech Connect

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1998-06-01

    The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal field, California, was measured at 150, 200, and 250 C as a function of steam pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption and desorption runs were made in order to investigate the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were made on the same rock samples. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there was no direct correlation between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The hysteresis decreased significantly at 250 C. The results indicate that multilayer adsorption, rather than capillary condensation, is the dominant water storage mechanism at high temperatures.

  18. Precision of a splitting device for water samples

    USGS Publications Warehouse

    Capel, Paul D.; Nacionales, Fernando C.; Larson, Steven J.

    1995-01-01

    Two identical cone splitters, devices designed to split water and its suspended solids into equal aliquots for semi-volatile organic chemical and trace element analyses, were evaluated for their precision. The water-splitting evaluations consisted of experiments to test the effect of water volume, the effect of combining outlet ports, and the effect of different techniques of water introduction. The solids-splitting evaluations consisted of experi- ments to test the effect of particle size (nine different particle diameters ranging from very coarse sand to clay) and suspended-solids concentration. In general, water was equally split with a precision of less than 5 percent relative standard deviation. The accuracy of splitting the solids was a function of particle size. Clay, silt, and fine and medium sand were split with a precision relative standard deviation of less than 7 percent, and coarse sand was split with a relative standard deviation between 12 and 45 percent.

  19. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon

    NASA Astrophysics Data System (ADS)

    Semiletov, Igor; Pipko, Irina; Gustafsson, Örjan; Anderson, Leif G.; Sergienko, Valentin; Pugach, Svetlana; Dudarev, Oleg; Charkin, Alexander; Gukov, Alexander; Bröder, Lisa; Andersson, August; Spivak, Eduard; Shakhova, Natalia

    2016-05-01

    Ocean acidification affects marine ecosystems and carbon cycling, and is considered a direct effect of anthropogenic carbon dioxide uptake from the atmosphere. Accumulation of atmospheric CO2 in ocean surface waters is predicted to make the ocean twice as acidic by the end of this century. The Arctic Ocean is particularly sensitive to ocean acidification because more CO2 can dissolve in cold water. Here we present observations of the chemical and physical characteristics of East Siberian Arctic Shelf waters from 1999, 2000-2005, 2008 and 2011, and find extreme aragonite undersaturation that reflects acidity levels in excess of those projected in this region for 2100. Dissolved inorganic carbon isotopic data and Markov chain Monte Carlo simulations of water sources using salinity and δ18O data suggest that the persistent acidification is driven by the degradation of terrestrial organic matter and discharge of Arctic river water with elevated CO2 concentrations, rather than by uptake of atmospheric CO2. We suggest that East Siberian Arctic Shelf waters may become more acidic if thawing permafrost leads to enhanced terrestrial organic carbon inputs and if freshwater additions continue to increase, which may affect their efficiency as a source of CO2.

  20. Standard addition method for the determination of pharmaceutical residues in drinking water by SPE-LC-MS/MS.

    PubMed

    Cimetiere, Nicolas; Soutrel, Isabelle; Lemasle, Marguerite; Laplanche, Alain; Crocq, André

    2013-01-01

    The study of the occurrence and fate of pharmaceutical compounds in drinking or waste water processes has become very popular in recent years. Liquid chromatography with tandem mass spectrometry is a powerful analytical tool often used to determine pharmaceutical residues at trace level in water. However, many steps may disrupt the analytical procedure and bias the results. A list of 27 environmentally relevant molecules, including various therapeutic classes and (cardiovascular, veterinary and human antibiotics, neuroleptics, non-steroidal anti-inflammatory drugs, hormones and other miscellaneous pharmaceutical compounds), was selected. In this work, a method was developed using ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) and solid-phase extraction to determine the concentration of the 27 targeted pharmaceutical compounds at the nanogram per litre level. The matrix effect was evaluated from water sampled at different treatment stages. Conventional methods with external calibration and internal standard correction were compared with the standard addition method (SAM). An accurate determination of pharmaceutical compounds in drinking water was obtained by the SAM associated with UPLC-MS/MS. The developed method was used to evaluate the occurrence and fate of pharmaceutical compounds in some drinking water treatment plants in the west of France.

  1. Effect of addition of water-soluble chitin on amylose film.

    PubMed

    Suzuki, Shiho; Shimahashi, Katsumasa; Takahara, Junichi; Sunako, Michihiro; Takaha, Takeshi; Ogawa, Kozo; Kitamura, Shinichi

    2005-01-01

    Amylose films blended with chitosan, which were free from additives such as acid, salt, and plasticizer, were prepared by casting mixtures of an aqueous solution of an enzymatically synthesized amylose and that of water-soluble chitin (44.1% deacetylated). The presence of a small amount of chitin (less than 10%) increased significantly the permeability of gases (N2, O2, CO2, C2H4) and improved the mechanical parameters of amylose film; particularly, the elastic modulus and elongation of the blend films were larger than those of amylose or chitin films. No antibacterial activity was observed with either amylose or water-soluble chitin films. But amylose films having a small amount of chitin showed strong antibacterial action, suggesting a morphological change in water-soluble chitin on the film surface by blending with amylose molecule. These facts suggested the presence of a molecular complex of amylose and chitosan. PMID:16283751

  2. Trace level determination of u, zn, cd, pb and cu in drinking water samples.

    PubMed

    Kumar, Mukesh; Singh, Surinder; Mahajan, Rakesh Kumar

    2006-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 2.23+/- 0.05 to 87.05+/- 0.29 microg/L. These values are compared with safe limit values recommended for drinking water. The uranium concentration in almost all drinking water samples is found to be more than the safe limit. Analysis of some heavy metals viz. Zn, Cd, Pb and Cu in water is made. The concentration of sodium, potassium, calcium, magnesium, chlorine and total hardness along with the pH value and conductivity of the water samples are measured. Some of the samples show stunningly high values of these parameters.

  3. Rapid Recovery of Cyanobacterial Pigments in Desiccated Biological Soil Crusts following Addition of Water

    PubMed Central

    Abed, Raeid M. M.; Polerecky, Lubos; Al-Habsi, Amal; Oetjen, Janina; Strous, Marc; de Beer, Dirk

    2014-01-01

    We examined soil surface colour change to green and hydrotaxis following addition of water to biological soil crusts using pigment extraction, hyperspectral imaging, microsensors and 13C labeling experiments coupled to matrix-assisted laser desorption and ionization time of flight-mass spectrometry (MALD-TOF MS). The topsoil colour turned green in less than 5 minutes following water addition. The concentrations of chlorophyll a (Chl a), scytonemin and echinenon rapidly increased in the top <1 mm layer while in the deeper layer, their concentrations remained low. Hyperspectral imaging showed that, in both wet and dehydrated crusts, cyanobacteria formed a layer at a depth of 0.2–0.4 mm and this layer did not move upward after wetting. 13C labeling experiments and MALDI TOF analysis showed that Chl a was already present in the desiccated crusts and de novo synthesis of this molecule started only after 2 days of wetting due to growth of cyanobacteria. Microsensor measurements showed that photosynthetic activity increased concomitantly with the increase of Chl a, and reached a maximum net rate of 92 µmol m−2 h−1 approximately 2 hours after wetting. We conclude that the colour change of soil crusts to green upon water addition was not due to hydrotaxis but rather to the quick recovery and reassembly of pigments. Cyanobacteria in crusts can maintain their photosynthetic apparatus intact even under prolonged periods of desiccation with the ability to resume their photosynthetic activities within minutes after wetting. PMID:25375172

  4. Organic Matter and Water Addition Enhance Soil Respiration in an Arid Region

    PubMed Central

    Lai, Liming; Wang, Jianjian; Tian, Yuan; Zhao, Xuechun; Jiang, Lianhe; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun

    2013-01-01

    Climate change is generally predicted to increase net primary production, which could lead to additional C input to soil. In arid central Asia, precipitation has increased and is predicted to increase further. To assess the combined effects of these changes on soil CO2 efflux in arid land, a two factorial manipulation experiment in the shrubland of an arid region in northwest China was conducted. The experiment used a nested design with fresh organic matter and water as the two controlled parameters. It was found that both fresh organic matter and water enhanced soil respiration, and there was a synergistic effect of these two treatments on soil respiration increase. Water addition not only enhanced soil C emission, but also regulated soil C sequestration by fresh organic matter addition. The results indicated that the soil CO2 flux of the shrubland is likely to increase with climate change, and precipitation played a dominant role in regulating soil C balance in the shrubland of an arid region. PMID:24204907

  5. Transgenic nematodes as biosensors for metal stress in soil pore water samples.

    PubMed

    Anbalagan, Charumathi; Lafayette, Ivan; Antoniou-Kourounioti, Melissa; Haque, Mainul; King, John; Johnsen, Bob; Baillie, David; Gutierrez, Carmen; Martin, Jose A Rodriguez; de Pomerai, David

    2012-03-01

    Caenorhabditis elegans strains carrying stress-reporter green fluorescent protein transgenes were used to explore patterns of response to metals. Multiple stress pathways were induced at high doses by most metals tested, including members of the heat shock, oxidative stress, metallothionein (mtl) and xenobiotic response gene families. A mathematical model (to be published separately) of the gene regulatory circuit controlling mtl production predicted that chemically similar divalent metals (classic inducers) should show additive effects on mtl gene induction, whereas chemically dissimilar metals should show interference. These predictions were verified experimentally; thus cadmium and mercury showed additive effects, whereas ferric iron (a weak inducer) significantly reduced the effect of mercury. We applied a similar battery of tests to diluted samples of soil pore water extracted centrifugally after mixing 20% w/w ultrapure water with air-dried soil from an abandoned lead/zinc mine in the Murcia region of Spain. In addition, metal contents of both soil and soil pore water were determined by ICP-MS, and simplified mixtures of soluble metal salts were tested at equivalent final concentrations. The effects of extracted soil pore water (after tenfold dilution) were closely mimicked by mixtures of its principal component ions, and even by the single most prevalent contaminant (zinc) alone, though other metals modulated its effects both positively and negatively. In general, mixtures containing similar (divalent) metal ions exhibited mainly additive effects, whereas admixture of dissimilar (e.g. trivalent) ions often resulted in interference, reducing overall levels of stress-gene induction. These findings were also consistent with model predictions. PMID:22037694

  6. Statistical analysis of stream water-quality data and sampling network design near Oklahoma City, central Oklahoma, 1977-1999

    USGS Publications Warehouse

    Brigham, Mark E.; Payne, Gregory A.; Andrews, William J.; Abbott, Marvin M.

    2002-01-01

    The sampling network was evaluated with respect to areal coverage, sampling frequency, and analytical schedules. Areal coverage could be expanded to include one additional watershed that is not part of the current network. A new sampling site on the North Canadian River might be useful because of expanding urbanization west of the city, but sampling at some other sites could be discontinued or reduced based on comparisons of data between the sites. Additional real-time or periodic monitoring for dissolved oxygen may be useful to prevent anoxic conditions in pools behind new low-water dams. The sampling schedules, both monthly and quarterly, are adequate to evaluate trends, but additional sampling during flow extremes may be needed to quantify loads and evaluate water-quality during flow extremes. Emerging water-quality issues may require sampling for volatile organic compounds, sulfide, total phosphorus, chlorophyll-a, Esherichia coli, and enterococci, as well as use of more sensitive laboratory analytical methods for determination of cadmium, mercury, lead, and silver.

  7. Pushpoint sampling for defining spatial and temporal variations in contaminant concentrations in sediment pore water near the ground-water / surface-water interface

    USGS Publications Warehouse

    Zimmerman, Marc J.; Massey, Andrew J.; Campo, Kimberly W.

    2005-01-01

    During four periods from April 2002 to June 2003, pore-water samples were taken from river sediment within a gaining reach (Mill Pond) of the Sudbury River in Ashland, Massachusetts, with a temporary pushpoint sampler to determine whether this device is an effective tool for measuring small-scale spatial variations in concentrations of volatile organic compounds and selected field parameters (specific conductance and dissolved oxygen concentration). The pore waters sampled were within a subsurface plume of volatile organic compounds extending from the nearby Nyanza Chemical Waste Dump Superfund site to the river. Samples were collected from depths of 10, 30, and 60 centimeters below the sediment surface along two 10-meter-long, parallel transects extending into the river. Twenty-five volatile organic compounds were detected at concentrations ranging from less than 1 microgram per liter to hundreds of micrograms per liter (for example, 1,2-dichlorobenzene, 490 micrograms per liter; cis-1,2-dichloroethene, 290 micrograms per liter). The most frequently detected compounds were either chlorobenzenes or chlorinated ethenes. Many of the compounds were detected only infrequently. Quality-control sampling indicated a low incidence of trace concentrations of contaminants. Additional samples collected with passive-water-diffusion-bag samplers yielded results comparable to those collected with the pushpoint sampler and to samples collected in previous studies at the site. The results demonstrate that the pushpoint sampler can yield distinct samples from sites in close proximity; in this case, sampling sites were 1 meter apart horizontally and 20 or 30 centimeters apart vertically. Moreover, the pushpoint sampler was able to draw pore water when inserted to depths as shallow as 10 centimeters below the sediment surface without entraining surface water. The simplicity of collecting numerous samples in a short time period (routinely, 20 to 30 per day) validates the use of a

  8. Validation of a non-invasive blood-sampling technique for doubly-labelled water experiments.

    PubMed

    Voigt, Christian C; Helversen, Otto Von; Michener, Robert H; Kunz, Thomas H

    2003-04-01

    Two techniques for bleeding small mammals have been used in doubly-labeled water (DLW) studies, including vena puncture and the use of starved nymphal stages of hematophagous reduviid bugs (Reduviidae, Hemiptera). In this study, we tested the validity of using reduviid bugs in doubly-labeled water experiments. We found that the isotope enrichment in initial blood samples collected with bugs was significantly lower compared to isotope enrichment in blood samples obtained using vena puncture. We therefore used the desiccation method for estimating total body water (TBW) in DLW experiments because TBW calculated using the isotope dilution method was overestimated when blood samples were collected using reduviid bugs. In our validation experiment with nectar-feeding bats (Glossophaga soricina), we compared estimates of daily energy expenditure (DEE) using DLW with those derived from the energy balance method. We considered Speakman's equation (controlling for 25% fractionated water loss) as the most appropriate for our study animal and calculated DEE accordingly. On average, DEE estimated with DLW was not significantly different from the mean value obtained with the energy balance method (mean deviation 1.2%). We conclude that although bug hemolymph or intestinal liquids most likely contaminate the samples, estimates of DEE are still valid because the DLW method does not depend on absolute isotope enrichments but on the rate of isotope decrease over time. However, dilution of blood with intestinal liquids or hemolymph from a bug may lead to larger variation in DEE estimates. We also tested how the relative error of DLW estimates changed with varying assumptions about fractionation. We used three additional equations for calculating DEE in DLW experiments. The basic equation for DLW experiments published by Lifson and McClintock (LM-6) assumes no fractionation, resulted in an overestimate of DEE by 10%. Nagy's equation (N-2) controls for changes in body mass but not for

  9. Numerical study of the effect of water addition on gas explosion.

    PubMed

    Liang, Yuntao; Zeng, Wen

    2010-02-15

    Through amending the SENKIN code of CHEMKIN III chemical kinetics package, a computational model of gas explosion in a constant volume bomb was built, and the detailed reaction mechanism (GRI-Mech 3.0) was adopted. The mole fraction profiles of reactants, some selected free radicals and catastrophic gases in the process of gas explosion were analyzed by this model. Furthermore, through the sensitivity analysis of the reaction mechanism of gas explosion, the dominant reactions that affect gas explosion and the formation of catastrophic gases were found out. At the same time, the inhibition mechanisms of water on gas explosion and the formation of catastrophic gases were analyzed. The results show that the induced explosion time is prolonged, and the mole fractions of reactant species such as CH(4), O(2) and catastrophic gases such as CO, CO(2) and NO are decreased as water is added to the mixed gas. With the water fraction in the mixed gas increasing, the sensitivities of the dominant reactions contributing to CH(4), CO(2) are decreased and the sensitivity coefficients of CH(4), CO and NO mole fractions are also decreased. The inhibition of gas explosion with water addition can be ascribed to the significant decrease of H, O and OH in the process of gas explosion due to the water presence. PMID:19811873

  10. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.

    PubMed

    Cao, Xingyan; Ren, Jingjie; Zhou, Yihui; Wang, Qiuju; Gao, Xuliang; Bi, Mingshu

    2015-03-21

    The suppression effect of ultrafine mists on methane/air explosions with methane concentrations of 6.5%, 8%, 9.5%, 11%, and 13.5% were experimentally studied in a closed visual vessel. Ultrafine water/NaCl solution mist as well as pure water mist was adopted and the droplet sizes of mists were measured by phase doppler particle analyzer (PDPA). A high speed camera was used to record the flame evolution processes. In contrast to pure water mist, the flame propagation speed, the maximum explosion overpressure (ΔP(max)), and the maximum pressure rising rate ((dP/dt)max) decreased significantly, with the "tulip" flame disappearing and the flame getting brighter. The results show that the suppressing effect on methane explosion by ultrafine water/NaCl solution mist is influenced by the mist amount and methane concentration. With the increase of the mist amount, the pressure, and the flame speed both descended significantly. And when the mist amount reached 74.08 g/m(3) and 37.04 g/m(3), the flames of 6.5% and 13.5% methane explosions can be absolutely suppressed, respectively. All of results indicate that addition of NaCl can improve the suppression effect of ultrafine pure water mist on the methane explosions, and the suppression effect is considered due to the combination effect of physical and chemical inhibitions. PMID:25528229

  11. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.

    PubMed

    Cao, Xingyan; Ren, Jingjie; Zhou, Yihui; Wang, Qiuju; Gao, Xuliang; Bi, Mingshu

    2015-03-21

    The suppression effect of ultrafine mists on methane/air explosions with methane concentrations of 6.5%, 8%, 9.5%, 11%, and 13.5% were experimentally studied in a closed visual vessel. Ultrafine water/NaCl solution mist as well as pure water mist was adopted and the droplet sizes of mists were measured by phase doppler particle analyzer (PDPA). A high speed camera was used to record the flame evolution processes. In contrast to pure water mist, the flame propagation speed, the maximum explosion overpressure (ΔP(max)), and the maximum pressure rising rate ((dP/dt)max) decreased significantly, with the "tulip" flame disappearing and the flame getting brighter. The results show that the suppressing effect on methane explosion by ultrafine water/NaCl solution mist is influenced by the mist amount and methane concentration. With the increase of the mist amount, the pressure, and the flame speed both descended significantly. And when the mist amount reached 74.08 g/m(3) and 37.04 g/m(3), the flames of 6.5% and 13.5% methane explosions can be absolutely suppressed, respectively. All of results indicate that addition of NaCl can improve the suppression effect of ultrafine pure water mist on the methane explosions, and the suppression effect is considered due to the combination effect of physical and chemical inhibitions.

  12. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012

    SciTech Connect

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  13. METALS IN GROUND WATER: SAMPLING ARTIFACTS AND REPRODUCIBILITY

    EPA Science Inventory

    Field studies evaluated sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. esearch at three different metal-contaminated sites has shown that 0.45 tm filtration has not removed potentially mobile ...

  14. EVALUATION OF FISH SAMPLING DESIGNS FOR COASTAL WATERS

    EPA Science Inventory

    Because no objective assessment of fish sampling methodologies has been completed for Great Lakes coastal wetlands we evaluated catches from several techniques and studies to determine the most effective combinations for these habitats. Data from six underdeveloped sites in Green...

  15. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    PubMed

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  16. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution.

    PubMed

    Liu, G; Lut, M C; Verberk, J Q J C; Van Dijk, J C

    2013-05-15

    Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs

  17. Comparative study of pre-treatment procedures for (3)H monitoring in water samples from environmental protection programs.

    PubMed

    Tarancón, A; Bagán, H; Rauret, G; García, J F

    2010-04-15

    The determination of tritium activity in water samples is included in most environmental protection programs, and the recommended procedure consists of sample distillation and further measurement by liquid scintillation. Distillation is a simple but time consuming pre-treatment, especially in routine analysis. Here we evaluate alternative pre-treatments for tritium activity determination, such as filtration or the use of multiple selective ion exchange columns. 52 samples from different water sources (rain, surface, underground, sea and drinking water) in Spanish environmental protection programs, together with an IAEA reference material were analyzed. Results show that both pre-treatments can be applied as a preliminary tool to discriminate between tritium active and non active waters in environmental monitoring programs. In addition, filtration and multiple selective ion exchange column pre-treatments can be used as alternative procedures for tritium activity determination in the routine analyses of water samples with known and reproducible chemical and isotopic composition. Both methods are less time consuming than distillation and, in the case of filtration, extremely cheap. For waters with complex matrices, especially sea water, distillation is the recommended procedure due to the interference from salts contained in the sample. PMID:20167352

  18. Comparative study of pre-treatment procedures for (3)H monitoring in water samples from environmental protection programs.

    PubMed

    Tarancón, A; Bagán, H; Rauret, G; García, J F

    2010-04-15

    The determination of tritium activity in water samples is included in most environmental protection programs, and the recommended procedure consists of sample distillation and further measurement by liquid scintillation. Distillation is a simple but time consuming pre-treatment, especially in routine analysis. Here we evaluate alternative pre-treatments for tritium activity determination, such as filtration or the use of multiple selective ion exchange columns. 52 samples from different water sources (rain, surface, underground, sea and drinking water) in Spanish environmental protection programs, together with an IAEA reference material were analyzed. Results show that both pre-treatments can be applied as a preliminary tool to discriminate between tritium active and non active waters in environmental monitoring programs. In addition, filtration and multiple selective ion exchange column pre-treatments can be used as alternative procedures for tritium activity determination in the routine analyses of water samples with known and reproducible chemical and isotopic composition. Both methods are less time consuming than distillation and, in the case of filtration, extremely cheap. For waters with complex matrices, especially sea water, distillation is the recommended procedure due to the interference from salts contained in the sample.

  19. On-site spectrophotometric determination of antimony in water, soil and dust samples of Central India.

    PubMed

    Shrivas, Kamlesh; Agrawal, Kavita; Harmukh, Neetu

    2008-06-30

    A new, selective and sensitive on-site spectrophotometric method for the determination of antimony at trace level in water, soil and dust samples of Central India has been demonstrated. It is based on the color reaction of Sb(III) with I(-) ions in the presence of a cationic surfactant cetylpyridinium chloride (CPC) in acidic media, and subsequent extraction of the complex with N-phenylbenzimidoylthiourea (PBITU) into chloroform to give a yellow colored complex. The value of apparent molar absorptivity of the complex in the terms of Sb is (7.84) x 10(4)l mol(-1)cm(-1) at 440 nm. The detection limit of the method is 5 ng ml(-1). In addition, the present method is free from interferences of all metal ions that are associated during the determination of antimony in environmental samples.

  20. On-site spectrophotometric determination of antimony in water, soil and dust samples of Central India.

    PubMed

    Shrivas, Kamlesh; Agrawal, Kavita; Harmukh, Neetu

    2008-06-30

    A new, selective and sensitive on-site spectrophotometric method for the determination of antimony at trace level in water, soil and dust samples of Central India has been demonstrated. It is based on the color reaction of Sb(III) with I(-) ions in the presence of a cationic surfactant cetylpyridinium chloride (CPC) in acidic media, and subsequent extraction of the complex with N-phenylbenzimidoylthiourea (PBITU) into chloroform to give a yellow colored complex. The value of apparent molar absorptivity of the complex in the terms of Sb is (7.84) x 10(4)l mol(-1)cm(-1) at 440 nm. The detection limit of the method is 5 ng ml(-1). In addition, the present method is free from interferences of all metal ions that are associated during the determination of antimony in environmental samples. PMID:18155833

  1. Estimation of a partially linear additive model for data from an outcome-dependent sampling design with a continuous outcome.

    PubMed

    Tan, Ziwen; Qin, Guoyou; Zhou, Haibo

    2016-10-01

    Outcome-dependent sampling (ODS) designs have been well recognized as a cost-effective way to enhance study efficiency in both statistical literature and biomedical and epidemiologic studies. A partially linear additive model (PLAM) is widely applied in real problems because it allows for a flexible specification of the dependence of the response on some covariates in a linear fashion and other covariates in a nonlinear non-parametric fashion. Motivated by an epidemiological study investigating the effect of prenatal polychlorinated biphenyls exposure on children's intelligence quotient (IQ) at age 7 years, we propose a PLAM in this article to investigate a more flexible non-parametric inference on the relationships among the response and covariates under the ODS scheme. We propose the estimation method and establish the asymptotic properties of the proposed estimator. Simulation studies are conducted to show the improved efficiency of the proposed ODS estimator for PLAM compared with that from a traditional simple random sampling design with the same sample size. The data of the above-mentioned study is analyzed to illustrate the proposed method.

  2. Estimation of a partially linear additive model for data from an outcome-dependent sampling design with a continuous outcome.

    PubMed

    Tan, Ziwen; Qin, Guoyou; Zhou, Haibo

    2016-10-01

    Outcome-dependent sampling (ODS) designs have been well recognized as a cost-effective way to enhance study efficiency in both statistical literature and biomedical and epidemiologic studies. A partially linear additive model (PLAM) is widely applied in real problems because it allows for a flexible specification of the dependence of the response on some covariates in a linear fashion and other covariates in a nonlinear non-parametric fashion. Motivated by an epidemiological study investigating the effect of prenatal polychlorinated biphenyls exposure on children's intelligence quotient (IQ) at age 7 years, we propose a PLAM in this article to investigate a more flexible non-parametric inference on the relationships among the response and covariates under the ODS scheme. We propose the estimation method and establish the asymptotic properties of the proposed estimator. Simulation studies are conducted to show the improved efficiency of the proposed ODS estimator for PLAM compared with that from a traditional simple random sampling design with the same sample size. The data of the above-mentioned study is analyzed to illustrate the proposed method. PMID:27006375

  3. Reconnaissance water sampling for radium-226 in central and northern Florida, December 1974-March 1976

    USGS Publications Warehouse

    Irwin, G.A.; Hutchinson, C.B.

    1976-01-01

    Analyses of 115 water samples collected from December 1974 through March 1976 in eight Florida Counties indicated that 22 samples (19 percent) had radium-226 activities equal to or in excess of 3 piC/liter (picocuries per liter), the concentration limit recommended for drinking water by the U.S. Public Health Service. The maximum radium-226 activity was 90 piC/liter in water from a shallow well in Polk County. The sampling reconnaissance was generally limited to areas of active phosphate mining and areas of undisturbed phosphate deposits. Most of the sampling was from water wells. Thirteen surface-water samples were collected in the Peace River drainage basin. The maximum radium-226 detected in surface-water samples was 3.6 piC/liter in Little Charlie Creek at State Road 664A in Hardee County. (Woodard-USGS)

  4. Improvement of pattern collapse issue by additive-added D.I. water rinse process

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Naito, Ryoichiro; Kitada, Tomohiro; Kiba, Yukio; Yamada, Yoshiaki; Kobayashi, Masakazu; Ichikawa, Hiroyuki

    2003-06-01

    Reduction of critical dimension in lithography technology is aggressively promoted. At the same time, further resist thickness reduction is being pursued to increase the resolution capabilities of resist. However, thin film has its limitation because of etch requirements etc. As that result, the promotion of reduction results in increasing the aspect ratio, which leads to pattern collapse. It is well known that at drying step in developing process the capillary effect operates the photoresist pattern. If the force of the capillary effect is greater than the aggregation force of the resist pattern, the pattern collapse is generated. And the key parameters of the capillary effect are the space width between patterns, the aspect ratio, the contact angle of the D.I water rinse and the surface tension of rinse solution. Among these parameters the surface tension of rinse solution can be controlled by us. On the other hand, we've already reported that the penetration of TMAH and D.I water into the resist plays an important role on the lithographic latitude. For example, when we use the resist which TMA ion can be easily diffuse into, D.I water and TMA ion which are penetrated in the resist decreases the aggregation force of resist pattern and causes the pattern collapse even by the weak force against resist pattern. These results indicate that the swelling of photoresist by TMA ion and water is very important factor for controlling the pattern collapse. Currently, two methods are mainly tried to reduce the surface tension of rinse solution: SCF (Super Critical Fluid) and addition of additive to D.I water rinse. We used the latter method this time, because this technique has retrofittability and not special tool. And in this evaluation, we found that the degree of suppressing pattern collapse depends on the additive chemistry or formulation. With consideration given to process factors such as above, we investigated what factors contribute to suppressing pattern collapse

  5. Odour and flavour thresholds of gasoline additives (MTBE, ETBE and TAME) and their occurrence in Dutch drinking water collection areas.

    PubMed

    van Wezel, Annemarie; Puijker, Leo; Vink, Cees; Versteegh, Ans; de Voogt, Pim

    2009-07-01

    The use of ETBE (ethyl-tert-butylether) as gasoline additive has recently grown rapidly. Contamination of aquatic systems is well documented for MTBE (methyl-tert-butylether), but less for other gasoline additives. Due to their mobility they may easily reach drinking water collection areas. Odour and flavour thresholds of MTBE are known to be low, but for ETBE and TAME (methyl-tert-amylether) hardly information is available. The objective here is to determine these thresholds for MTBE, ETBE and TAME, and relate these to concentrations monitored in thousands of samples from Dutch drinking water collection areas. For ETBE odour and flavour thresholds are low with 1-2microgL(-1), for MTBE and TAME they range from 7 to 16microg L(-1). In most groundwater collection areas MTBE concentrations are below 0.1microg L(-1). In phreatic groundwaters in sandy soils not covered by a protective soil layer, occasionally MTBE occurs at higher concentrations. For surface water collection areas a minority of the locations is free of MTBE. For river bank and dune infiltrates, at a few locations the odour and flavour threshold is exceeded. For ETBE fewer monitoring data are available. ETBE was found in 2 out of 37 groundwater collection areas, in concentrations below 1microgL(-1). In the surface water collection areas monitored ETBE was found in concentrations near to the odour and flavour thresholds. The low odour and flavour thresholds combined with the high mobility and persistence of these compounds, their high production volumes and their increased use may yield problems with future production of drinking water.

  6. UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6

    SciTech Connect

    1995-09-01

    This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

  7. June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect

    2011-10-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

  8. High-frequency isotopic analysis of liquid water samples in the field - initial results from continuous water sampling and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James

    2016-04-01

    Studying rapidly changing hydrochemical signals in catchments can help to improve our mechanistic understanding of their water flow pathways and travel times. For these purposes, stable water isotopes (18O and 2H) are commonly used as natural tracers. However, high-frequency isotopic analyses of liquid water samples are challenging. One must capture highly dynamic behavior with high precision and accuracy, but the lab workload (and sample storage artifacts) involved in collecting and analyzing thousands of bottled samples should also be avoided. Therefore, we have tested Picarro, Inc.'s newly developed Continuous Water Sampler Module (CoWS), which is coupled to their L2130-i Cavity Ring-Down Spectrometer to enable real-time on-line measurements of 18O and 2H in liquid water samples. We coupled this isotope analysis system to a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as a UV-Vis spectroscopy system (s::can Messtechnik GmbH, Vienna, Austria) and electrochemical probes for characterization of basic water quality parameters. The system was run unattended for up to a week at a time in the laboratory and at a small catchment. At the field site, stream-water and precipitation samples were analyzed, alternating at sub-hourly intervals. We observed that measured isotope ratios were highly sensitive to the liquid water flow rate in the CoWS, and thus to the hydraulic head difference between the CoWS and the samples from which water was drawn. We used a programmable high-precision dosing pump to control the injection flow rate and eliminate this flow-rate artifact. Our experiments showed that the precision of the CoWS-L2130-i-system for 2-minute average values was typically better than 0.06‰ for δ18O and 0.16‰ for δ2H. Carryover effects were 1% or less between isotopically contrasting water samples for 30-minute sampling intervals. Instrument drift could be minimized through periodic analysis of

  9. PORTABLE ULTRAFILTRATION DEVICE FOR CONCENTRATION PATHOGENS FROM LARGE VOUME SAMPLES OF DRINKING WATER

    EPA Science Inventory

    Symposium Paper in proceedings of Water Security Congress, Washington, D.C., 12 Sep 2006 - Development and testing of several potential protocols utilizing ultrafiltration to collect and concentrate microorganisms from large volume water samples.

  10. Enhancement of nitrate removal at the sediment-water interface by carbon addition plus vertical mixing.

    PubMed

    Chen, Xuechu; He, Shengbing; Zhang, Yueping; Huang, Xiaobo; Huang, Yingying; Chen, Danyue; Huang, Xiaochen; Tang, Jianwu

    2015-10-01

    Wetlands and ponds are frequently used to remove nitrate from effluents or runoffs. However, the efficiency of this approach is limited. Based on the assumption that introducing vertical mixing to water column plus carbon addition would benefit the diffusion across the sediment-water interface, we conducted simulation experiments to identify a method for enhancing nitrate removal. The results suggested that the sediment-water interface has a great potential for nitrate removal, and the potential can be activated after several days of acclimation. Adding additional carbon plus mixing significantly increases the nitrate removal capacity, and the removal of total nitrogen (TN) and nitrate-nitrogen (NO3(-)-N) is well fitted to a first-order reaction model. Adding Hydrilla verticillata debris as a carbon source increased nitrate removal, whereas adding Eichhornia crassipe decreased it. Adding ethanol plus mixing greatly improved the removal performance, with the removal rate of NO3(-)-N and TN reaching 15.0-16.5 g m(-2) d(-1). The feasibility of this enhancement method was further confirmed with a wetland microcosm, and the NO3(-)-N removal rate maintained at 10.0-12.0 g m(-2) d(-1) at a hydraulic loading rate of 0.5 m d(-1). PMID:25556005

  11. COMPOSITE SAMPLING FOR DETECTION OF COLIFORM BACTERIA IN WATER SUPPLY

    EPA Science Inventory

    Low densities of coliform bacteria introduced into distribution systems may survive in protected habitats. These organisms may interfere with and cause confusion in the use of the coliforms as indicators of sewage contamination of drinking water. Methods of increasing the probabi...

  12. Sample container and storage for paclobutrazol monitoring in irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paclobutrazol is a plant growth retardant commonly used on greenhouse crops. Residues from paclobutrazol applications can accumulate in recirculated irrigation water. Given that paclobutrazol has a long half-life and potential biological activity in parts per billion concentrations, it would be de...

  13. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry.

    PubMed

    Dilling, Jörg; Kaiser, Klaus

    2002-12-01

    In this study, we tested a simple and rapid method for the estimation of carbon in the hydrophobic fraction of dissolved organic matter (DOM) of different origin (spruce, pine, and beech litter) in soil water. The method is based on the fact that the hydrophobic fraction of DOM contains almost entirely the aromatic moieties of DOM. Thus, it showed a clearly distinct light absorption at 260 nm compared to the hydrophilic fraction. This light absorption was directly proportional to the concentration of the hydrophobic fraction. Moreover, it was independent of the concentration of the hydrophilic fraction. We compared the concentrations of hydrophobic DOM estimated by the UV method with those of the conventional fractionation using chromatographic columns of XAD-8 macroporous resin and found an excellent agreement between the two methods for both solutions from laboratory sorption experiments and field samples of forest floor leachates and subsoil porewaters. In addition, the absorption at 260 nm of hydrophobic DOM proved to be independent of pH values ranging from 2.0 to 6.5. Compared to the conventional chromatographic fractionation, the method using the UV absorption at 260 nm is less time consuming, needs a much smaller sample volume, and showed a better reproducibility. However, its use is restricted to water samples of low nitrate (< 25 mg L(-1)) and Fe (< 5 mg L(-1)) concentrations and, probably, with the hydrophobic fraction dominated by aromatic compounds deriving from degradation of lignin.

  14. Luminex detection of fecal indicators in river samples, marine recreational water, and beach sand.

    PubMed

    Baums, Iliana B; Goodwin, Kelly D; Kiesling, Traci; Wanless, David; Diaz, Mara R; Fell, Jack W

    2007-05-01

    Research to understand and remediate coastal pollution is moving toward a multitiered approach in which traditional enumeration of fecal indicators is accompanied by molecular analysis of a variety of targets. Technology that rapidly detects multiple microbial contaminants would benefit from such an approach. The Luminex 100 system is a suspension array that assays multiple analytes rapidly in a single well of a microtiter plate. The ability of the system to simultaneously detect multiple fecal indicating bacteria in environmental samples was tested. Primer/probe sets were designed to simultaneously detect the following fecal indicators: the Bacteroides fragilis group, Enterococcus spp., Escherichia coli and Shigella spp., Bacteroides distasonis, and Ent. faecalis. Specificity and sensitivity of the Luminex probes was tested against laboratory cultures. In addition, sequencing, culture plate testing, and specificity testing with environmental isolates were steps taken to validate the function of the assay with environmental samples. Luminex response to cultures and to environmental samples was consistent with sequencing results, suggesting that the technology has the potential to simultaneously detect multiple targets for coastal water quality applications, particularly as progress is made to efficiently extract DNA from water and sediment matrices. PMID:17350051

  15. Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte Additive

    SciTech Connect

    Qian, Jiangfeng; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Henderson, Wesley A.; Zhang, Yaohui; Zhang, Jiguang

    2015-07-01

    Residual water presents in nonaqueous electrolytes has been widely regarded as a detrimental factor for lithium (Li) batteries. This is because water is highly reactive with the commonly used LiPF6 salt and leads to the formation of HF that corrodes battery materials. In this work, we demonstrate that a controlled trace-amount of water (25-100 ppm) can be an effective electrolyte additive for achieving dendrite-free Li metal deposition in LiPF6-based electrolytes and avoid its detrimental effect at the same time. Detailed analyses reveal that the trace amount of HF formed by the decomposition reaction of LiPF6 with water will be electrochemically reduced during initial Li deposition process to form a uniform and dense LiF-rich SEI layer on the surface of the substrate. This LiF-rich SEI layer leads to a uniform distribution of the electric field on the substrate surface and enables uniform and dendrite-free Li deposition. Meanwhile the detrimental effect of HF is diminished due to the consumption of HF in the LiF formation process. Microscopic analysis reveals that the as-deposited dendrite-free Li films exhibit a self-aligned and highly-compacted Li nanorods structure which is consistent with their charming blue color or known as structure color. These findings clearly demonstrate a novel approach to control the nucleation and grow process of Li metal films using well-controlled trace-amount of water. They also shine the light on the effect of water on other electrodeposition processes.

  16. The representativeness of pore water samples collected from the unsaturated zone using pressure-vacuum lysimeters

    USGS Publications Warehouse

    Peters, C.A.; Healy, R.W.

    1988-01-01

    Studies have indicated that the chemistry of water samples may be altered by the collection technique, creating concern about the representativeness of the pore water samples obtained. A study using soil water pressure-vacuum lysimeters in outwash sand and glacial till deposits demonstrates that for non-dilute-solution samples the effect of pH of sampling with lysimeters is minimal, and that measured major cation and anion concentrations are representative of the natural pore water; trace-metal concentrations can be significantly altered by collection procedures at low concentrations. -from Authors

  17. Comparison and verification of bacterial water quality indicator measurement methods using ambient coastal water samples.

    PubMed

    Griffith, John F; Aumand, Larissa A; Lee, Ioannice M; McGee, Charles D; Othman, Laila L; Ritter, Kerry J; Walker, Kathy O; Weisberg, Stephen B

    2006-05-01

    More than 30 laboratories routinely monitor water along southern California's beaches for bacterial indicators of fecal contamination. Data from these efforts frequently are combined and compared even though three different methods (membrane filtration (MF), multiple tube fermentation (MTF), and chromogenic substrate (CS) methods) are used. To assess data comparability and quantify variability within method and across laboratories, 26 laboratories participated in an intercalibration exercise. Each laboratory processed three replicates from eight ambient water samples employing the method or methods they routinely use for water quality monitoring. Verification analyses also were conducted on a subset of wells from the CS analysis to confirm or exclude the presence of the target organism. Enterococci results were generally comparable across methods. Confirmation revealed a 9% false positive rate and a 4% false negative rate in the CS method for enterococci, though these errors were small in the context of within- and among-laboratory variability. Fecal coliforms also were comparable across all methods, though CS underestimated the other methods by about 10%, probably because it measures only E. coli, rather than the larger fecal coliform group measured by MF and MTF. CS overestimated total coliforms relative to the other methods by several fold and was found to have a 40% false positive rate in verification. Across-laboratory variability was small relative to within- and among-method variability, but only after data entry errors were corrected. One fifth of the laboratories committed data entry errors that were much larger than any method-related errors. These errors are particularly significant because these data were submitted in a test situation where laboratories were aware they would be under increased scrutiny. Under normal circumstances, it is unlikely that these errors would have been detected and managers would have been obliged to issue beach water quality

  18. Linkages Between Biotic and Abiotic Belowground Processes in a Mojave Desert Ecosystem: Responses to Experimental Nitrogen and Water Additions

    NASA Astrophysics Data System (ADS)

    Verburg, P. S.; Marion, G. M.; Young, A. C.; Glanzmann, I.; Stevenson, B.; Arnone, J. A.; Nowak, R. S.

    2007-05-01

    Fine roots play a critical role in nutrient acquisition and water uptake. Yet it is unclear how fine roots in arid environments respond to increased nitrogen deposition and rainfall, two important global change factors in arid lands in the southwestern United States. In addition it is unclear how changes in root activity may impact soil CO2 concentrations, an important parameter affecting carbonate dynamics. We measured fine root length density (RLD) and soil CO2 concentrations for two years in experimentally manipulated plots in a Mojave Desert ecosystem. The study was conducted at the Mojave Global Change Facility located at the Nevada Test Site 60 miles northwest of Las Vegas. The treatments included: 1) three 25 mm water additions during the summer, 2) one nitrogen addition in the fall equivalent to 40 kg per hectare per year, 3) a combined water and nitrogen addition and, 4) untreated controls. Root data were collected using minirhizotron imaging approximately every 90 days underneath shrubs and intershrub areas. Soil CO2 concentrations were collected at the same sampling times and locations at 10, 40 and 90 cm depth using gas wells. The RLD showed clear seasonal patterns with the fastest increase in RLD occurring between February and April. During the winter the increase in RLD was higher underneath shrubs than in intershrub areas but during the summer months increases in RLD were similar under shrubs and in intershrub areas. Water additions slightly increased root mortality during the summer but this increase in mortality was not large enough to cause consistent differences in RLD between control and irrigated plots. Nitrogen addition had no effect on root dynamics in any of the plots. In contrast to RLD, irrigation consistently increased soil CO2 concentrations at all depths during the summer even when roots were not actively growing anymore. We speculate that the increased mortality under irrigation causes increased heterotrophic respiration which may

  19. Quality-control design for surface-water sampling in the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Mueller, David K.; Martin, Jeffrey D.; Lopes, Thomas J.

    1997-01-01

    The data-quality objectives of the National Water-Quality Assessment Program include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of chemical analyses of surface-water samples. The quality-control samples used to make these estimates include field blanks, field matrix spikes, and replicates. This report describes the design for collection of these quality-control samples in National Water-Quality Assessment Program studies and the data management needed to properly identify these samples in the U.S. Geological Survey's national data base.

  20. IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES

    EPA Science Inventory

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...

  1. LC/TOF-MS Identification of Organic Components in Cloud and Fog Water Samples

    NASA Astrophysics Data System (ADS)

    Rinehart, L. R.; Shen, X.; Collett, J. L.

    2006-12-01

    The nature and identity of organic compounds in cloud and fog droplets are not well understood. Approximately 80 percent of the total organic carbon remains unidentified due to several confounding factors. Traditionally, many of the organic compound analyses have been accomplished by the use of gas chromatography (GC) / mass spectrometry (MS) methods. These methods require analytes to be extracted from water and introduced into the GC by the use of organic solvents. Extraction efficiencies of the water- soluble organic components vary widely depending upon molecular size and polarity. Additionally, many polar compounds are thermally labile and require derivatization to make them more amenable for GC/MS analysis. Liquid chromatography (LC) methods which allow for sample introduction in water have also been used widely for organic analyses. However, commonly used detection methods such as conductivity, UV absorbance, and fluorescence limit the identification of organic components based on detection specific associated physical properties. Recently, electrospray ionization has allowed for MS detection to be paired with LC. There exist several types of MS each with their own specific advantages and disadvantages. In this study, we used LC with accurate mass time of flight (TOF) MS. The distinct advantage of accurate mass TOF is that it may be used to identify unknown organic compounds. Here we present results from our search for novel organic components (including organic nitrogen and organosulfates) in a variety of cloud and fog water samples from polluted and rural environments. These results are paired with established measurement methods for liquid water content, pH, and concentrations of total organic carbon (TOC), dissolved organic carbon (DOC), carbohydrates, formaldehyde, low molecular weight organic acids, carbonyls, and organic nitrogen.

  2. The Influence of Pumping on Observed Bacterial Counts in Groundwater Samples: Implications for Sampling Protocol and Water Quality Interpretation

    NASA Astrophysics Data System (ADS)

    Kozuskanich, J.; Novakowski, K.; Anderson, B.

    2008-12-01

    Drinking water quality has become an important issue in Ontario following the events in Walkerton in 2000. Many rural communities are reliant on private groundwater wells for drinking water, and it is the responsibility of the owner to have the water tested to make sure it is safe for human consumption. Homeowners can usually take a sample to the local health unit for total coliform and E. Coli analysis at no charge to determine if the water supply is being tainted by surface water or fecal matter, both of which could indicate the potential for negative impacts on human health. However, is the sample coming out of the tap representative of what is going on the aquifer? The goal of this study is to observe how bacterial counts may vary during the course of well pumping, and how those changing results influence the assessment of water quality. Multiple tests were conducted in bedrock monitoring wells to examine the influence of pumping rate and pumped volume on observed counts of total coliform, E. Coli, fecal streptococcus, fecal coliform and heterotrophic plate count. Bacterial samples were collected frequently during the course of continuous purging events lasting up to 8 hours. Typical field parameters (temperature, salinity, pH, dissolved oxygen and ORP) were also continuously monitored during the course of each test. Common practice in groundwater studies is to wait until these parameters have stabilized or three well volumes have been removed prior to sampling, to ensure the sample is taken from new water entering the well from the aquifer, rather than the original water stored in the borehole prior to the test. In general, most bacterial counts were low, but did go above the drinking water standard of 0 counts/100mL (total coliform and E. Coli) at times during the tests. Results show the greatest variability in the observed bacterial counts at the onset of pumping prior to the removal of three well volumes. Samples taken after the removal of three well

  3. UMTRA Project water sampling and analysis plan, Gunnison, Colorado: Revision 1

    SciTech Connect

    Not Available

    1994-11-01

    This water sampling and analysis plan summarizes the results of previous water sampling activities and the plan for future water sampling activities, in accordance with the Guidance Document for Preparing Sampling and Analysis Plans for UMTRA Sites. A buffer zone monitoring plan for the Dos Rios Subdivision is included as an appendix. The buffer zone monitoring plan was developed to ensure continued protection to the public from residual contamination. The buffer zone is beyond the area depicted as contaminated ground water due to former milling operations. Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually at the Gunnison processing site and disposal site. Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer at the Gunnison disposal site. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation.

  4. Occurrence of Leptospira DNA in water and soil samples collected in eastern Poland.

    PubMed

    Wójcik-Fatla, Angelina; Zając, Violetta; Wasiński, Bernard; Sroka, Jacek; Cisak, Ewa; Sawczyn, Anna; Dutkiewicz, Jacek

    2014-01-01

    Leptospira is an important re-emerging zoonotic human pathogen, disseminated by sick and carrier animals, water and soil. Weather calamities, such as flooding or cyclones favour the spreading of these bacteria. To check a potential role of natural water and soil in the persistence and spread of Leptospira on the territory of eastern Poland, 40 samples of natural water and 40 samples of soil were collected from areas exposed to flooding, and 64 samples of natural water and 68 samples of soil were collected from areas not exposed to flooding. Samples of water were taken from various reservoirs (rivers, natural lakes, artificial lakes, canals, ponds, farm wells) and samples of soils were taken at the distance of 1-3 meters from the edge of the reservoirs. The samples were examined for the presence of Leptospira DNA by nested-PCR. Two out of 40 samples of water (5.0%) collected from the area exposed to flooding showed the presence of Leptospira DNA, while all 40 samples of soil from this area were negative. All samples of water and soil (64 and 68, respectively) collected from the areas not exposed to flooding were negative. No significant difference were found between the results obtained in the areas exposed and not exposed to flooding. In conclusion, these results suggest that water and soil have only limited significance in the persistence and dissemination of Leptospira in eastern Poland. PMID:25528911

  5. 400 area secondary cooling water sampling and analysis plan

    SciTech Connect

    Penn, L.L.

    1996-10-29

    This is a total rewrite of the Sampling and Analysis Plan in response to, and to ensure compliance with, the State Waste Discharge Permit ST 4501 issued on July 31, 1996. This revision describes changes in facility status and implements requirements of the permit.

  6. Water stable isotope measurements of Antarctic samples by means of IRMS and WS-CRDS techniques

    NASA Astrophysics Data System (ADS)

    Michelini, Marzia; Bonazza, Mattia; Braida, Martina; Flora, Onelio; Dreossi, Giuliano; Stenni, Barbara

    2010-05-01

    of the sample in the box. In the WS-CRDS the path of laser is longer, producing higher-sensitivity measurements. The instrument is paired with an autosampler and can be used without it and the vaporizer to analyze directly the isotopic composition of the water vapour in the atmosphere. In addition, the instrument can be moved from the laboratory and also used for outdoor measurements. The more important improvements over traditional IRMS techniques are that WS-CRDS needs less sample in order to perform the analysis (<2 ul vs. 3/5 ml); that it doesn't need manipulation of the sample (like the gas/water equilibration techniques) and the analyses are faster. Coversely, memory effects may affect the measurements so there is the need to increase the number of injection to have a high precision measurement. The laboratory of Isotope Geochemistry of the Department of Geosciences has recently acquired a WS-CRDS system from PICARRO. The isotopic data obtained with this new method have been compared with the ones obtained by means of IRMS methods. An HDO device coupled with a Thermo Finnigan Delta Plus Advantage mass spectrometer has been used, using the well know CO2 and H2/water equilibration technique. At the moment of the writing of the abstract the mean difference between the values obtained using PICARRO and using the traditional IRMS method is of the order of 0.1 per mil for the ratio 18O/16O and 1.00 per mil for the ratio D/H, but further measurements are currently underway. O'Keef A., Deacon D.A.G., 1988. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources, Rev. Sci. Instrum., 59, 2544.

  7. GROUND-WATER SAMPLING BIAS OBSERVED IN SHALLOW, CONVENTIONAL WELLS

    EPA Science Inventory

    A previous field demonstration project on nitrate-based bioremediation of a fuel-contaminated aquifer used short-screened clustered well points in addition to shallow (10 foot), conventional monitoring wells to monitor the progress of remediation during surface application of rec...

  8. Towards a phylogenetic generic classification of Thelypteridaceae: Additional sampling suggests alterations of neotropical taxa and further study of paleotropical genera.

    PubMed

    Almeida, Thaís Elias; Hennequin, Sabine; Schneider, Harald; Smith, Alan R; Batista, João Aguiar Nogueira; Ramalho, Aline Joseph; Proite, Karina; Salino, Alexandre

    2016-01-01

    Thelypteridaceae is one of the largest fern families, having about 950 species and a cosmopolitan distribution but with most species occurring in tropical and subtropical regions. Its generic classification remains controversial, with different authors recognizing from one up to 32 genera. Phylogenetic relationships within the family have not been exhaustively studied, but previous studies have confirmed the monophyly of the lineage. Thus far, sampling has been inadequate for establishing a robust hypothesis of infrafamilial relationships within the family. In order to understand phylogenetic relationships within Thelypteridaceae and thus to improve generic reclassification, we expand the molecular sampling, including new samples of Old World taxa and, especially, many additional neotropical representatives. We also explore the monophyly of exclusively or mostly neotropical genera Amauropelta, Goniopteris, Meniscium, and Steiropteris. Our sampling includes 68 taxa and 134 newly generated sequences from two plastid genomic regions (rps4-trnS and trnL-trnF), plus 73 rps4 and 72 trnL-trnF sequences from GenBank. These data resulted in a concatenated matrix of 1980 molecular characters for 149 taxa. The combined data set was analyzed using maximum parsimony and bayesian inference of phylogeny. Our results are consistent with the general topological structure found in previous studies, including two main lineages within the family: phegopteroid and thelypteroid. The thelypteroid lineage comprises two clades; one of these included the segregates Metathelypteris, Coryphopteris, and Amauropelta (including part of Parathelypteris), whereas the other comprises all segregates of Cyclosorus s.l., such as Goniopteris, Meniscium, and Steiropteris (including Thelypteris polypodioides, previously incertae sedis). The three mainly neotropical segregates were found to be monophyletic but nested in a broadly defined Cyclosorus. The fourth mainly neotropical segregate, Amauropelta

  9. Towards a phylogenetic generic classification of Thelypteridaceae: Additional sampling suggests alterations of neotropical taxa and further study of paleotropical genera.

    PubMed

    Almeida, Thaís Elias; Hennequin, Sabine; Schneider, Harald; Smith, Alan R; Batista, João Aguiar Nogueira; Ramalho, Aline Joseph; Proite, Karina; Salino, Alexandre

    2016-01-01

    Thelypteridaceae is one of the largest fern families, having about 950 species and a cosmopolitan distribution but with most species occurring in tropical and subtropical regions. Its generic classification remains controversial, with different authors recognizing from one up to 32 genera. Phylogenetic relationships within the family have not been exhaustively studied, but previous studies have confirmed the monophyly of the lineage. Thus far, sampling has been inadequate for establishing a robust hypothesis of infrafamilial relationships within the family. In order to understand phylogenetic relationships within Thelypteridaceae and thus to improve generic reclassification, we expand the molecular sampling, including new samples of Old World taxa and, especially, many additional neotropical representatives. We also explore the monophyly of exclusively or mostly neotropical genera Amauropelta, Goniopteris, Meniscium, and Steiropteris. Our sampling includes 68 taxa and 134 newly generated sequences from two plastid genomic regions (rps4-trnS and trnL-trnF), plus 73 rps4 and 72 trnL-trnF sequences from GenBank. These data resulted in a concatenated matrix of 1980 molecular characters for 149 taxa. The combined data set was analyzed using maximum parsimony and bayesian inference of phylogeny. Our results are consistent with the general topological structure found in previous studies, including two main lineages within the family: phegopteroid and thelypteroid. The thelypteroid lineage comprises two clades; one of these included the segregates Metathelypteris, Coryphopteris, and Amauropelta (including part of Parathelypteris), whereas the other comprises all segregates of Cyclosorus s.l., such as Goniopteris, Meniscium, and Steiropteris (including Thelypteris polypodioides, previously incertae sedis). The three mainly neotropical segregates were found to be monophyletic but nested in a broadly defined Cyclosorus. The fourth mainly neotropical segregate, Amauropelta

  10. Using Lagrangian sampling to study water quality during downstream transport in the San Luis Drain, California, USA

    USGS Publications Warehouse

    Volkmar, E.C.; Dahlgren, R.A.; Stringfellow, W.T.; Henson, S.S.; Borglin, S.E.; Kendall, C.; Van Nieuwenhuyse, E. E.

    2011-01-01

    To investigate the mechanism for diel (24h) changes commonly observed at fixed sampling locations and how these diel changes relate to downstream transport in hypereutrophic surface waters, we studied a parcel of agricultural drainage water as it traveled for 84h in a concrete-lined channel having no additional water inputs or outputs. Algal fluorescence, dissolved oxygen, temperature, pH, conductivity, and turbidity were measured every 30min. Grab samples were collected every 2h for water quality analyses, including nutrients, suspended sediment, and chlorophyll/pheophytin. Strong diel patterns were observed for dissolved oxygen, pH, and temperature within the parcel of water. In contrast, algal pigments and nitrate did not exhibit diel patterns within the parcel of water, but did exhibit strong diel patterns for samples collected at a fixed sampling location. The diel patterns observed at fixed sampling locations for these constituents can be attributed to algal growth during the day and downstream transport (washout) of algae at night. Algal pigments showed a rapid daytime increase during the first 48h followed by a general decrease for the remainder of the study, possibly due to sedimentation and photobleaching. Algal growth (primarily diatoms) was apparent each day during the study, as measured by increasing dissolved oxygen concentrations, despite low phosphate concentrations (<0.01mgL-1). ?? 2011 Elsevier B.V.

  11. Total and inorganic arsenic in fish samples from Norwegian waters.

    PubMed

    Julshamn, Kaare; Nilsen, Bente M; Frantzen, Sylvia; Valdersnes, Stig; Maage, Amund; Nedreaas, Kjell; Sloth, Jens J

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Artic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography-ICP-MS following microwave-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg(-1) wet weight. For inorganic arsenic, the concentrations found were very low (<0.006 mg kg(-1)) in all cases. The obtained results question the assumptions made by the European Food Safety Authority (EFSA) on the inorganic arsenic level in fish used in the recent EFSA opinion on arsenic in food.

  12. Sample volume optimization for radon-in-water detection by liquid scintillation counting.

    PubMed

    Schubert, Michael; Kopitz, Juergen; Chałupnik, Stanisław

    2014-08-01

    Radon is used as environmental tracer in a wide range of applications particularly in aquatic environments. If liquid scintillation counting (LSC) is used as detection method the radon has to be transferred from the water sample into a scintillation cocktail. Whereas the volume of the cocktail is generally given by the size of standard LSC vials (20 ml) the water sample volume is not specified. Aim of the study was an optimization of the water sample volume, i.e. its minimization without risking a significant decrease in LSC count-rate and hence in counting statistics. An equation is introduced, which allows calculating the ²²²Rn concentration that was initially present in a water sample as function of the volumes of water sample, sample flask headspace and scintillation cocktail, the applicable radon partition coefficient, and the detected count-rate value. It was shown that water sample volumes exceeding about 900 ml do not result in a significant increase in count-rate and hence counting statistics. On the other hand, sample volumes that are considerably smaller than about 500 ml lead to noticeably lower count-rates (and poorer counting statistics). Thus water sample volumes of about 500-900 ml should be chosen for LSC radon-in-water detection, if 20 ml vials are applied.

  13. Chloride in ground water and surface water in the vicinity of selected surface-water sampling sites of the beneficial use monitoring program of Oklahoma, 2003

    USGS Publications Warehouse

    Mashburn, Shana L.; Sughru, Michael P.

    2004-01-01

    The Oklahoma Water Resources Board Beneficial Use Monitoring Program reported exceedances of beneficial-use standards for chloride at 11 surface-water sampling sites from January to October 2002. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study to determine the chloride concentrations in ground water in the vicinity of Beneficial Use Monitoring Program surface-water sampling sites not meeting beneficial use standards for chloride and compare chloride concentrations in ground water and surface water. The chloride-impaired Beneficial Use Monitoring Program surface-water sampling sites are located in the western and southern regions of Oklahoma. The ground-water sampling sites were placed in proximity to the 11 surface-water sampling sites designated impaired by chloride by the Oklahoma Water Resources Board. Two surface-water sampling sites were located on the Beaver River (headwaters of the North Canadian River), three sites on the Cimarron River, one site on Sandy Creek, one site on North Fork Red River, and four sites on the Red River. Six ground-water samples were collected, when possible, from two test holes located upstream from each of the 11 Beneficial Use Monitoring Program surface-water sampling sites. One test hole was placed on the left bank and right bank, when possible, of each Beneficial Use Monitoring Program surfacewater sampling site. All test holes were located on alluvial deposits adjacent to the Beneficial Use Monitoring Program surface-water sampling sites within 0.5 mile of the stream. Top, middle, and bottom ground-water samples were collected from the alluvium at each test hole, when possible. Water properties of specific conductance, pH, water temperature, and dissolved oxygen were recorded in the field before sampling for chloride. The ground-water median chloride concentrations at 8 of the 11 Beneficial Use Monitoring Program sites were less than the surface-water median

  14. Growth and parameters of microflora in intestinal and faecal samples of piglets due to application of a phytogenic feed additive.

    PubMed

    Muhl, A; Liebert, F

    2007-10-01

    A commercial phytogenic feed additive (PFA), containing the fructopolysaccharide inulin, an essential oil mix (carvacrol, thymol), chestnut meal (tannins) and cellulose powder as carrier substance, was examined for effects on growth and faecal and intestinal microflora of piglets. Two experiments (35 days) were conducted, each with 40 male castrated weaned piglets. In experiment 1, graded levels of the PFA were supplied (A1: control; B1: 0.05% PFA; C1: 0.1% PFA; D1: 0.15% PFA) in diets based on wheat, barley, soybean meal and fish meal with lysine as the limiting amino acid. In experiment 2, a similar diet with 0.1% of the PFA (A2: control; B2: 0.1% PFA; C2: +0.35% lysine; D2: 0.1% PFA + 0.35% lysine) and lysine supplementation was utilized. During experiment 1, no significant effect of the PFA on growth, feed intake and feed conversion rate was observed (p > 0.05). Lysine supplementation in experiment 2 improved growth performance significantly, but no significant effect of the PFA was detected. Microbial counts in faeces (aerobes, Gram negatives, anaerobes and lactobacilli) during the first and fifth week did not indicate any significant PFA effect (p > 0.05). In addition, microflora in intestinal samples was not significantly modified by supplementing the PFA (p > 0.05). Lysine supplementation indicated lysine as limiting amino acid in the basal diet, but did not influence the microbial counts in faeces and small intestine respectively.

  15. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse.

    PubMed

    Cheng, Weizhi; Roessler, Justin; Blaisi, Nawaf I; Townsend, Timothy G

    2014-12-01

    Drinking water treatment residues (WTR) offer potential benefits when recycled through land application. The current guidance in Florida, US allows for unrestricted land application of lime softening WTR; alum and ferric WTR require additional evaluation of total and leachable concentrations of select trace metals prior to land application. In some cases a mixed WTR is produced when lime softening is accompanied by the addition of a coagulant or other treatment chemical; applicability of the current guidance is unclear. The objective of this research was to characterize the total and leachable chemical content of WTR from Florida facilities that utilize multiple treatment chemicals. Lime and mixed lime WTR samples were collected from 18 water treatment facilities in Florida. Total and leachable concentrations of the WTR were measured. To assess the potential for disposal of mixed WTR as clean fill below the water table, leaching tests were conducted at multiple liquid to solid ratios and under reducing conditions. The results were compared to risk-based soil and groundwater contamination thresholds. Total metal concentrations of WTR were found to be below Florida soil contaminant thresholds with Fe found in the highest abundance at a concentration of 3600 mg/kg-dry. Aluminum was the only element that exceeded the Florida groundwater contaminant thresholds using SPLP (95% UCL = 0.23 mg/L; risk threshold = 0.2 mg/L). Tests under reducing conditions showed elevated concentrations of Fe and Mn, ranging from 1 to 3 orders of magnitude higher than SPLP leachates. Mixed lime WTR concentrations (total and leachable) were lower than the ferric and alum WTR concentrations, supporting that mixed WTR are appropriately represented as lime WTR. Testing of WTR under reducing conditions demonstrated the potential for release of certain trace metals (Fe, Al, Mn) above applicable regulatory thresholds; additional evaluation is needed to assess management options where

  16. Graphene oxide as a micro-solid-phase extraction sorbent for the enrichment of parabens from water and vinegar samples.

    PubMed

    Wang, Lu; Zang, Xiaohuan; Wang, Chun; Wang, Zhi

    2014-07-01

    A simple hydrophilic polyamide organic membrane protected micro-solid-phase extraction method with graphene oxide as the sorbent was developed for the enrichment of some parabens from water and vinegar samples prior to gas chromatography with mass spectrometry detection. The main experimental parameters affecting the extraction efficiencies, such as the type and amount of the sorbent, extraction time, stirring rate, salt addition, sample solution pH and desorption conditions, were investigated. Under the optimized experimental conditions, the method showed a good linearity in the range of 0.1-100.0 ng/mL for water samples and 0.5-100.0 ng/mL for vinegar samples, with the correlation coefficients varying from 0.9978 to 0.9997. The limits of detection (S/N = 3) of the method were in the range of 0.005-0.010 ng/mL for water samples and 0.01-0.05 ng/mL for vinegar samples, respectively. The recoveries of the method for the analytes at spiking levels of 5.0 and 70.0 ng/mL were between 84.6 and 106.4% with the relative standard deviations varying from 4.2 to 9.5%. The results indicated that the developed method could be a practical approach for the determination of paraben residues in water and vinegar samples.

  17. Analysis of pharmaceutical and other organic wastewater compounds in filtered and unfiltered water samples by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.

    2014-01-01

    Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample

  18. Effect of PAC addition on immersed ultrafiltration for the treatment of algal-rich water.

    PubMed

    Zhang, Yan; Tian, Jiayu; Nan, Jun; Gao, ShanShan; Liang, Heng; Wang, Meilian; Li, Guibai

    2011-02-28

    The aim of this study was to evaluate the effect of powdered activated carbon (PAC) addition on the treatment of algal-rich water by immersed ultrafiltration (UF), in terms of permeate quality and membrane fouling. Experiments were performed with a hollow-fiber polyvinyl chloride ultrafiltration membrane at a laboratory scale, 20-25°C and 10 L/(m(2) h) constant permeate flux. UF could achieve an absolute removal of Microcystis aeruginosa cells, but a poor removal of algogenic organic matter (AOM) released into water, contaminants responsible for severe membrane fouling. The addition of 4 g/L PAC to the immersed UF reactor significantly alleviated the development of trans-membrane pressure and enhanced the removal of dissovled organic carbon (by 10.9±1.7%), UV(254) (by 27.1±1.7%), and microcystins (expressed as MC-LR(eq), by 40.8±4.2%). However, PAC had little effect on the rejection of hydrophilic high molecular weight AOM such as carbohydrates and proteins. It was also identified that PAC reduced the concentrations of carbohydrates and proteins in the reactor due to decreased light intensity, as well as the MC-LR(eq) concentration by PAC adsorption. PMID:21216530

  19. {sup 222}Rn in water: A comparison of two sample collection methods and two sample transport methods, and the determination of temporal variation in North Carolina ground water

    SciTech Connect

    Hightower, J.H. III

    1994-12-31

    Objectives of this field experiment were: (1) determine whether there was a statistically significant difference between the radon concentrations of samples collected by EPA`s standard method, using a syringe, and an alternative, slow-flow method; (2) determine whether there was a statistically significant difference between the measured radon concentrations of samples mailed vs samples not mailed; and (3) determine whether there was a temporal variation of water radon concentration over a 7-month period. The field experiment was conducted at 9 sites, 5 private wells, and 4 public wells, at various locations in North Carolina. Results showed that a syringe is not necessary for sample collection, there was generally no significant radon loss due to mailing samples, and there was statistically significant evidence of temporal variations in water radon concentrations.

  20. Insights into stable isotope characterization to monitor the signification of soil water sampling for environmental studies dealing with soil water dynamics through the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Brenot, Agnès; Benoît, Marc; Carignan, Jean; France-Lanord, Christian

    2015-11-01

    Porous cup samplers and drainage samplers are two of the broadly used techniques to monitor soil water for agronomical studies. This study provides further insight into the sample signification of these two sampling techniques. For that purpose, temporal variations of soil water δD and δ18O values collected by these two techniques have been monitored for an experimental field studied by INRA. The stable isotope data acquired provide further evidence that soil water samples collected by these two techniques are not equivalent and correspond to different water dynamics in soils: 1) quick infiltration along preferential flow paths for drainage (short residence time) and 2) water with longer residence time for porous cups. This implies that stable isotopic tools could be useful to provide additional information to "classical" monitoring of soil water. This could be of particular interest to estimate the residence time of soil water and could be relevant to follow the effectiveness of agricultural pressure reduction programs on natural water ecosystems.

  1. Spatial distributions and seasonal variations of organochlorine pesticides in water and soil samples in Bolu, Turkey.

    PubMed

    Karadeniz, Hatice; Yenisoy-Karakaş, Serpil

    2015-03-01

    In this study, a total of 75 water samples (38 groundwater and 37 surface water samples) and 54 surface soil samples were collected from the five districts of Bolu, which is located in the Western Black Sea Region of Turkey in the summer season of 2009. In the autumn season, 17 water samples (surface water and groundwater samples) and 17 soil samples were collected within the city center to observe the seasonal changes of organochlorine pesticides (OCPs). Groundwater and surface water samples were extracted using solid phase extraction. Soil samples were extracted ultrasonically. Sixteen OCP compounds in the standard solution were detected by a gas chromatography-electron capture detector (GC-ECD). Therefore, the method validation was performed for those 16 OCP compounds. However, 13 OCP compounds could be observed in the samples. The concentrations of most OCPs were higher in samples collected in the summer than those in the autumn. The most frequently observed pesticides were endosulfan sulfate and 4,4'-dichlorodiphenyltrichloroethane (DDT) in groundwater samples, α-HCH in surface water samples, and endosulfan sulfate in soil samples. The average concentration of endosulfan sulfate was the highest in water and soil samples. Compared to the literature values, the average concentrations in this study were lower values. Spatial distribution of OCPs was evaluated with the aid of contour maps for the five districts of Bolu. Generally, agricultural processes affected the water and soil quality in the region. However, non-agricultural areas were also affected by pesticides. The concentrations of pesticides were below the legal limits of European directives for each pesticide.

  2. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  3. Automated syringe sampler. [remote sampling of air and water

    NASA Technical Reports Server (NTRS)

    Purgold, G. C. (Inventor)

    1981-01-01

    A number of sampling services are disposed in a rack which slides into a housing. In response to a signal from an antenna, the circutry elements are activated which provide power individually, collectively, or selectively to a servomechanism thereby moving an actuator arm and the attached jawed bracket supporting an evaculated tube towards a stationary needle. One open end of the needle extends through the side wall of a conduit to the interior and the other open end is maintained within the protective sleeve, supported by a bifurcated bracket. A septum in punctured by the end of the needle within the sleeve and a sample of the fluid medium in the conduit flows through the needle and is transferred to a tube. The signal to the servo is then reversed and the actuator arm moves the tube back to its original position permitting the septum to expand and seal the hole made by the needle. The jawed bracket is attached by pivot to the actuator to facilitate tube replacement.

  4. Interstitial water studies on small core samples, Leg 22

    USGS Publications Warehouse

    Manheim, Frank T.; Waterman, Lee S.; Sayles, Frederick L.

    1974-01-01

    Interstitial waters from Leg 22 in the Indian Ocean revealed two unique results: Site 214, on the Ninetyeast Ridge, penetrated through a 30-meter sequence of fine-grained basalt and reentered hard, silty clay containing carbonate skeletal debris. Such a basalt layer may well have been impervious and extensive enough to seal off underlying (fossil) seawater of Paleocene age. However, except for a marked increase in calcium and a slight increase in chloride, no appreciable changes in pore fluid chemistry could be confirmed. Site 217, at the northernmost end of the Ninetyeast Ridge, demonstrated record concentrations of interstitial calcium in clayey nannofossil oozes and a relatively small but significant increment in chloride with depth. Presumably, these increments signal the existence of evaporitic sediments or evaporite-influenced brines at considerably greater depth than penetrated.

  5. UMTRA Project water sampling and analysis plan, Gunnison, Colorado. Revision 2

    SciTech Connect

    1995-09-01

    Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually at the Gunnison processing site (GUN-01) and disposal site (GUN-08). Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer (Tertiary gravels) at the Gunnison disposal site. Semiannual water sampling is scheduled for the spring and fall. Water quality sampling is conducted at the processing site (1) to ensure protection of human health and the environment, (2) for ground water compliance monitoring during remedial action construction, and (3) to define the extent of contamination. At the processing site, the frequency and duration of sampling will be dependent upon the nature and extent of residual contamination and the compliance strategy chosen. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation.

  6. H02 WETLAND TREATMENT SYSTEM WATER CHEMISTRY SAMPLING AND RESULTS REPORT

    SciTech Connect

    Bach, M; Michael Serrato, M; Eric Nelson, E

    2008-02-15

    inorganic chemistry influence on pH. In addition, alternative methods to alleviate or mitigate the pH increase were evaluated. This study documents the results of sampling activities undertaken and conveys the analytical results along with suggestions for operation of the H-02 Wetland Treatment System. The water samples collected and the water quality data generated from this activity are for analytical purposes only, and as such, were not collected in support of compliance activities.

  7. Analyses of water, core material, and elutriate samples collected near Yazoo City, Mississippi (Yazoo Headwater Project)

    USGS Publications Warehouse

    Leone, Harold L.; Dupuy, Alton J.

    1978-01-01

    Five core-material-sampling sites near Yazoo City, Miss., were chosen by the U.S. Army Corps of Engineers to represent areas of proposed dredging activity. Four receiving-water sites also were selected to represent the water that will contact the proposed dredged material. Chemical and physical analyses were performed upon core material and native-water samples from these sites as well as upon elutriate samples of specific sediment-receiving water systems. The results of these analyses are presented without interpretation. (Woodard-USGS)

  8. Additions of nutrients and major ions by the atmosphere and tributaries to nearshore waters of northwestern Lake Huron

    USGS Publications Warehouse

    Manny, Bruce A.; Owens, R.W.

    1983-01-01

    Nutrient additions by the atmosphere and six tributaries to nearshore waters of northwestern Lake Huron were measured at weekly intervals from August 1975 to July 1976. The atmosphere contributed 43% of the nitrogen (N) and 10% of the phosphorus (P) that was added during the year. The 1975–76 atmospheric loading rate of total N to this area (11 kg/ha/yr) was one of the highest found to date in the United States. N was conserved more efficiently than P in the tributary drainage basins. Of the N and P that fell annually on the watersheds under study, 2 to 37% of the N and 31 to 84% of the P was carried with runoff to the lake. From a basin where ditching and clear-cutting occurred, water, P, silica (SiO2), N, and sodium were lost at higher rates than from five other basins. Most of the N in bulk atmospheric samples (23%) and tributary waters (56%) was dissolved organic N, a form of N not often measured.

  9. Rotating-disk sorptive extraction of nonylphenol from water samples.

    PubMed

    Richter, Pablo; Leiva, Claudio; Choque, Carlos; Giordano, Ady; Sepúlveda, Betsabet

    2009-12-01

    In this study the sorption of nonylphenol was implemented on a rotating Teflon disk coated with a PDMS film on one of its surfaces. In this way, the disk, which has a high surface area, contacts only the liquid sample, which can be stirred at higher velocity than with the stir bar used in stir-bar sorptive extraction (SBSE), without damaging the phase while at the same time facilitating analyte mass transfer to the PDMS surface. We refer to the procedure as rotating-disk sorptive extraction (RDSE). Extraction variables such as disk rotational velocity, extraction time, and surface area of PDMS film were studied to establish the best conditions for extraction. With increasing rotational velocity, the amount of extracted analyte significantly increases because the stagnant layer concomitantly decreases. On the other hand, the extracted amount concomitantly increases with extraction time, reaching equilibrium at approximately 20 min, which can be reduced to 10 min when the surface area of PDMS increases from 1.74 to 6.97 cm(2). Precision of the method was determined by using the same disk (n=6) and different disks (n=3), showing relative standard deviations for the analyte of 3.7% and 10%, respectively. The detection limit of the method was 0.09 microg/L NP, defined at a signal to noise ratio of 3. The method was applied to a real sample, achieving quantitative recovery. The PDMS phase on the disk could be used for at least 50 experiments. In any case, replacement of the PDMS film on the disk is very easy and inexpensive, as compared to the commercial alternative SBSE.

  10. Heat transfer characteristics for some coolant additives used for water cooled engines

    SciTech Connect

    Abou-Ziyan, H.Z.; Helali, A.H.B.

    1996-12-31

    Engine coolants contain certain additives to prevent engine overheating or coolant freezing in cold environments. Coolants, also, contain corrosion and rust inhibitors, among other additives. As most engines are using engine cooling solutions, it is of interest to evaluate the effect of engine coolants on the boiling heat transfer coefficient. This has its direct impact on radiator size and environment. This paper describes the apparatus and the measurement techniques. Also, it presents the obtained boiling heat transfer results at different parameters. Three types of engine coolants and their mixtures in distilled water are evaluated, under sub-cooled and saturated boiling conditions. A profound effect of the presence of additives in the coolant, on heat transfer, was clear since changes of heat transfer for different coolants were likely to occur. The results showed that up to 180% improvement of boiling heat transfer coefficient is experienced with some types of coolants. However, at certain concentrations other coolants provide deterioration or not enhancement in the boiling heat transfer characteristics. This investigation proved that there are limitations, which are to be taken into consideration, for the composition of engine coolants in different environments. In warm climates, ethylene glycol should be kept at the minimum concentration required for dissolving other components, whereas borax is beneficial to the enhancement of the heat transfer characteristics.

  11. Considerations for sampling inorganic constituents in ground water using diffusion samplers

    USGS Publications Warehouse

    Vroblesky, D.A.; Petkewich, M.D.; Campbell, T.R.; ,

    2002-01-01

    Data indicate that nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water from wells that closely correspond to concentrations obtained by low-flow sampling. Conservative solutes, such as chloride, can be sampled by filling the diffusion samplers with oxygenated water. The samplers should be filled with anaerobic water for sampling redoxsensitive solutes. Oxidation of iron within the samplers, either by using aerobic fill water or by in-well oxygenation events, can lead to erroneous iron concentrations. Lithologic and chemical heterogeneity and sampler placement depth can lead to differences between concentrations from diffusion samples and low-flow samples because of mixing during pumping. A disadvantage of regenerated cellulose dialysis samplers is that they can begin to biodegrade within the two weeks of deployment. Nylon-screen samplers buried beneath streambed sediment along the unnamed tributary in a discharge zone of arseniccontaminated ground water were useful in locating the specific discharge zone.

  12. Chemical analyses of water samples from the Picher mining area, northeast Oklahoma and southeast Kansas

    USGS Publications Warehouse

    Parkhurst, David L.

    1987-01-01

    Chemical analyses are presented for 169 water samples from Tar Creek drainage and the Picher lead-zinc mining area of northeast Oklahoma and southeast Kansas. Water samples were taken from November 1983 through February 1986 from the abandoned mines, from points of mine-water discharge, and from surface-water locations upstream and downstream from mine discharge area. The pH, temperature, alkalinity, dissolved oxygen, and specific conductance were measured in the field. Laboratory analyses routinely included the major ions plus aluminum, cadmium, copper, iron, lead, manganese, nickel, and zinc. Non-routine analyses of dissolved gases and tritium are presented. Stable carbon-isotope ratios for 11 mine-water samples and three carbonate-rock samples are reported. Miscellaneous stream-discharge measurements made at the time of sampling or taken from gaging-station records are included in the report.

  13. USE OF NATURAL WATERS AS U. S. GEOLOGICAL SURVEY REFERENCE SAMPLES.

    USGS Publications Warehouse

    Janzer, Victor J.

    1985-01-01

    The U. S. Geological Survey conducts research and collects hydrologic data relating to the Nation's water resources. Seven types of natural matrix reference water samples are prepared for use in the Survey's quality assurance program. These include samples containing major constituents, trace metals, nutrients, herbicides, insecticides, trace metals in a water and suspended-sediment mixture, and precipitation (snowmelt). To prepare these reference samples, natural water is collected in plastic drums and the sediment is allowed to settle. The water is then filtered, selected constituents are added, and if necessary the water is acidified and sterilized by ultraviolet irradiation before bottling in plastic or glass. These reference samples are distributed twice yearly to more than 100 laboratories for chemical analysis. The most probable values for each constituent are determined by evaluating the data submitted by the laboratories using statistical techniques recommended by ASTM.

  14. Antibiotic resistance among different species of fecal coliforms isolated from water samples.

    PubMed Central

    Niemi, M; Sibakov, M; Niemela, S

    1983-01-01

    The distribution of resistance to ampicillin, chloramphenicol, sulfonamides, tetracycline, and streptomycin among fecal coliforms in sewage, surface waters, and sea water was investigated. The incidence of resistant strains among isolates varied significantly among the water samples, without obvious connection with the water source or the level of pollution. The average frequency of multiple resistance was not always high in the same samples in which the overall resistance was high. The species composition varied considerably in different water samples. A significant correlation was observed between the relative frequency of Klebsiella species and the incidence of ampicillin resistance in water samples. The importance of species composition of fecal coliforms, affected by their source and by the aquatic environment, on the resistance pattern is noted. PMID:6337553

  15. Filtration of water-sediment samples for the determination of organic compounds

    USGS Publications Warehouse

    Sandstrom, Mark W.

    1995-01-01

    This report describes the equipment and procedures used for on-site filtration of surface-water and ground-water samples for determination of organic compounds. Glass-fiber filters and a positive displacement pumping system are suitable for processing most samples for organic analyses. An optional system that uses disposable in-line membrane filters is suitable for a specific gas chromatography/mass spectrometry, selected-ion monitoring analytical method for determination of organonitrogen herbicides. General procedures to minimize contamination of the samples include preparing a clean workspace at the site, selecting appropriate sample-collection materials, and cleaning of the equipment with detergent, tap water, and methanol.

  16. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  17. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples.

    PubMed

    Liu, Yu; Zhao, Ercheng; Zhu, Wentao; Gao, Haixiang; Zhou, Zhiqiang

    2009-02-01

    A novel microextraction method termed ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209-276) and accepted recoveries (79-110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2-100 microg/L, and the relative standard deviations (RSDs, n=5) were 4.5-10.7%. The limits of detection for the four insecticides were 0.53-1.28 microg/L at a signal-to-noise ratio (S/N) of 3.

  18. Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds.

    PubMed

    DiFilippo, Erica L; Eganhouse, Robert P

    2010-09-15

    Solid-phase microextraction (SPME) has shown potential as an in situ passive-sampling technique in aquatic environments. The reliability of this method depends upon accurate determination of the partition coefficient between the fiber coating and water (K(f)). For some hydrophobic organic compounds (HOCs), K(f) values spanning 4 orders of magnitude have been reported for polydimethylsiloxane (PDMS) and water. However, 24% of the published data examined in this review did not pass the criterion for negligible depletion, resulting in questionable K(f) values. The range in reported K(f) is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these questionable values are removed. Other factors that could account for the range in reported K(f), such as fiber-coating thickness and fiber manufacturer, were evaluated and found to be insignificant. In addition to accurate measurement of K(f), an understanding of the impact of environmental variables, such as temperature and ionic strength, on partitioning is essential for application of laboratory-measured K(f) values to field samples. To date, few studies have measured K(f) for HOCs at conditions other than at 20° or 25 °C in distilled water. The available data indicate measurable variations in K(f) at different temperatures and different ionic strengths. Therefore, if the appropriate environmental variables are not taken into account, significant error will be introduced into calculated aqueous concentrations using this passive sampling technique. A multiparameter linear solvation energy relationship (LSER) was developed to estimate log K(f) in distilled water at 25 °C based on published physicochemical parameters. This method provided a good correlation (R(2) = 0.94) between measured and predicted log K(f) values for several compound classes. Thus, an LSER approach may offer a reliable means of predicting log K(f) for HOCs whose experimental log K(f) values are presently

  19. Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds

    USGS Publications Warehouse

    DiFilippo, Erica L.; Eganhouse, Robert P.

    2010-01-01

    Solid-phase microextraction (SPME) has shown potential as an in situ passive-sampling technique in aquatic environments. The reliability of this method depends upon accurate determination of the partition coefficient between the fiber coating and water (Kf). For some hydrophobic organic compounds (HOCs), Kf values spanning 4 orders of magnitude have been reported for polydimethylsiloxane (PDMS) and water. However, 24% of the published data examined in this review did not pass the criterion for negligible depletion, resulting in questionable Kf values. The range in reported Kf is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these questionable values are removed. Other factors that could account for the range in reported Kf, such as fiber-coating thickness and fiber manufacturer, were evaluated and found to be insignificant. In addition to accurate measurement of Kf, an understanding of the impact of environmental variables, such as temperature and ionic strength, on partitioning is essential for application of laboratory-measured Kf values to field samples. To date, few studies have measured Kf for HOCs at conditions other than at 20 degrees or 25 degrees C in distilled water. The available data indicate measurable variations in Kf at different temperatures and different ionic strengths. Therefore, if the appropriate environmental variables are not taken into account, significant error will be introduced into calculated aqueous concentrations using this passive sampling technique. A multiparameter linear solvation energy relationship (LSER) was developed to estimate log Kf in distilled water at 25 degrees C based on published physicochemical parameters. This method provided a good correlation (R2 = 0.94) between measured and predicted log Kf values for several compound classes. Thus, an LSER approach may offer a reliable means of predicting log Kf for HOCs whose experimental log Kf values are presently unavailable. Future

  20. Pesticide content in drinking water samples collected from orchard areas in central Poland.

    PubMed

    Badach, Hanna; Nazimek, Teresa; Kamińska, Iwona A

    2007-01-01

    Samples of drinking water collected in Warka-Grójec region of central Poland were tested for the presence of pesticides. Data obtained from analysis of water samples will be used for future epidemiological and environmental studies in the region. Samples were collected during spring and autumn of 2002-2003 from dug wells, deep wells and water mains in 81 randomly-selected rural households scattered throughout this region of extensive agriculture. The concentration of pesticides from four main chemical groups was determined by gas chromatography: organochlorines (lindane, DDT, methoxychlor), triazines (atrazine, simazine), organophosphates (acephate, diazinon, fenitrothion) and pyrethroids (alpha-cypermethrin, deltamethrin). Two-year monitoring of drinking water samples indicated the presence of DDT and methoxychlor contamination. Pyrethroids were generally not detected, with the exception of alpha-cypermethrin found in only a few samples. Triazines were also found in water samples collected in the course of the study with higher incidence during spring period. Organophosphates were by far the most common contaminants of drinking water in this region. Almost all samples were contaminated by significant amounts of fenitrothion. The present study reveals an urgent need for systematic monitoring of drinking water quality in regions of intensive agriculture, since they are highly vulnerable to pesticide contamination. Consumption of pesticide-contaminated water may have a negative impact on the population living in this area, which also requires scientific assessment.

  1. Non-additive response of blends of rice and potato starch during heating at intermediate water contents: A differential scanning calorimetry and proton nuclear magnetic resonance study.

    PubMed

    Bosmans, Geertrui M; Pareyt, Bram; Delcour, Jan A

    2016-02-01

    The impact of different hydration levels, on gelatinization of potato starch (PS), rice starch (RS) and a 1:1 blend thereof, was investigated by differential scanning calorimetry and related to nuclear magnetic resonance proton distributions of hydrated samples, before and after heating. At 20% or 30% hydration, the visual appearance of all samples was that of a wet powder, and limited, if any, gelatinization occurred upon heating. At 30% hydration, changes in proton distributions were observed and related to plasticization of amorphous regions in the granules. At 50% hydration, the PS-RS blend appeared more liquid-like than other hydrated samples and showed more pronounced gelatinization than expected based on additive behavior of pure starches. This was due to an additional mobile water fraction in the unheated PS-RS blend, originating from differences in water distribution due to altered stacking of granules and/or altered hydration of PS due to presence of cations in RS.

  2. Physicochemical Characterization of Lake Spray Aerosol Generated from Great Lakes Water Samples

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.

    2014-12-01

    Wave breaking across bodies of water releases particles into the air which can impact climate and human health. Similar to sea spray aerosols formed through marine wave breaking, freshwater lakes generate lake spray aerosol (LSA). LSA can impact climate directly through scattering/absorption and indirectly through cloud nucleation. In addition, these LSA are suggested to impact human health through inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Few studies have been conducted to assess the physical and chemical properties of freshwater LSA. Herein, we discuss constructing a LSA generation system and preliminary physical and chemical characterization of aerosol generated from water samples collected at various sites across Lake Erie, Lake Huron, Lake Superior, and Lake Michigan. Information on aerosol size distributions, number concentrations, and chemical composition will be discussed as a function of lake water blue-green algae concentration, dissolved organic carbon concentration, temperature, conductivity, and dissolved oxygen concentration. These studies represent a first step towards evaluating the potential for LSA to impact climate and health in the Great Lakes region.

  3. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  4. Predictors of victim disclosure in child sexual abuse: Additional evidence from a sample of incarcerated adult sex offenders.

    PubMed

    Leclerc, Benoit; Wortley, Richard

    2015-05-01

    The under-reporting of child sexual abuse by victims is a serious problem that may prolong the suffering of victims and leave perpetrators free to continue offending. Yet empirical evidence indicates that victim disclosure rates are low. In this study, we perform regression analysis with a sample of 369 adult child sexual offenders to examine potential predictors of victim disclosure. Specifically, we extend the range of previously examined potential predictors of victim disclosure and investigate interaction effects in order to better capture under which circumstances victim disclosure is more likely. The current study differs from previous studies in that it examines the impact of victim and offense variables on victim disclosure from the perspective of the offender. In line with previous studies, we found that disclosure increased with the age of the victim and if penetration had occurred. In addition, we found that disclosure increased when the victim came from a non-dysfunctional family and resisted the abuse. The presence of an interaction effect highlighted the impact of the situation on victim disclosure. This effect indicated that as victims get older, they are more likely to disclose the abuse when they are not living with the offender at the time of abuse, but less likely to do so when they are living with the offender at the time of abuse. These findings are discussed in relation to previous studies and the need to facilitate victim disclosure.

  5. Facile synthesis of SrCO3 nanostructures in methanol/water solution without additives

    PubMed Central

    2012-01-01

    Highly dispersive strontium carbonate (SrCO3) nanostructures with uniform dumbbell, ellipsoid, and rod-like morphologies were synthesized in methanol solution without any additives. These SrCO3 were characterized by X-ray diffraction, field emission scanning electron microscopy, and N2 adsorption-desorption. The results showed that the reaction temperature and the methanol/water ratio had important effects on the morphologies of SrCO3 particles. The dumbbell-like SrCO3 exhibited a Broader-Emmett-Teller surface area of 14.9 m2 g−1 and an average pore size of about 32 nm with narrow pore size distribution. The formation mechanism of the SrCO3 crystal was preliminary presented. PMID:22704526

  6. A probe for sampling interstitial waters of stream sediments and bog soils

    USGS Publications Warehouse

    Nowlan, G.A.; Carollo, C.

    1974-01-01

    A probe for sampling interstitial waters of stream sediments and bog soils is described. Samples can be obtained within a stratigraphic interval of 2-3 cm, to a depth of 60-80 cm, and with little or no contamination of the samples by sediment or air. ?? 1974.

  7. Vigorous Mold Growth in Soils After Addition of Water-Insoluble Fatty Substances

    PubMed Central

    Krause, Frank P.; Lange, Willy

    1965-01-01

    Various water-insoluble fatty compounds, when added to soil in finely divided form, will support as high-caloric nutrients a visible, vigorous growth of the molds, Fusarium solani Mart., F. diversisporum Sherb., and F. equiseti. n-Paraffins and olefins are most effective, because the effect of additives is reduced to the extent that oxygen atoms are introduced into the molecule. n-Fatty alcohols support growth in soil almost as well as the paraffins; however, growth is reduced when branched-chain compounds are added as nutrients. Compounds that will support mold growth when added to air-dried soil as finely powdered solids will not do so when incorporated at temperatures above their melting point, but will produce dense growth when applied to wet soil in this form. Mold growth is correlated with degradation of fatty matter. The rate of degradation is controlled by the availability of water, oxygen, and the basic inorganic nutrients. Images Fig. 1 Fig. 2 PMID:14325872

  8. Polymer Growth Rate in a Wire Chamber with Oxygen,Water, or Alcohol Gas Additives

    SciTech Connect

    Boyarski, Adam; /SLAC

    2008-07-02

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium-isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a SEM/EDX instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is stored in the polymer layer and that a high electric field is necessary to remove the charge.

  9. [Distribution of Phosphorus Forms in the Overlying Water Under Disturbance with the Addition of Algae].

    PubMed

    Chen, Jun; Li, Yong; Li, Da-peng; Huang, Yong; Zhu, Pei-ying

    2016-04-15

    Distribution of different phosphorus (P) forms in the overlying water and the contribution of different algae to the P disappearance were investigated under disturbance with the addition of algae (Microcystis aeruginosa and Selenastrum capricornutum, respectively). The sediments and overlying water were taken from Meiliang Bay in Taihu Lake. The results showed that the concentrations of total P (TP), dissolved total P (DTP), dissolved inorganic P (DIP) and biavailable P (BAP) decreased with and without disturbance. The uptake of DTP and DIP by Microcystis aeruginosa was better than that of Selenastrum capricornutum under the disturbance, but it was the opposite without the disturbance. The disappearance of P in the overlying water was attributed completely to the physico-chemical adsorption of the suspended solids and the uptake of algae. But the contribution of suspended solids and algae depended on the disturbance. The contribution of Microcystis aeruginosa and Selenastrum capricornutum to DTP and DIP absorption was about 60% without disturbance. However, the value was reduced to 40% (Microcystis aeruginosa) and 25% ( Selenastrum capricornutum) under the disturbance. Under the disturbance and the action of algae, the distribution of sedimentary P forms changed. NH4 Cl-P and Ca-P release and Fe/Al-P increase were observed with and without disturbance. The decrease of NH4 Cl-P and Ca-P and the increase of Fe/Al-P were more obvious with disturbance than without disturbance. Selenastrum capricornutum was favor of the release of Ca-P and the formation of Fe/Al-P. PMID:27548963

  10. [Distribution of Phosphorus Forms in the Overlying Water Under Disturbance with the Addition of Algae].

    PubMed

    Chen, Jun; Li, Yong; Li, Da-peng; Huang, Yong; Zhu, Pei-ying

    2016-04-15

    Distribution of different phosphorus (P) forms in the overlying water and the contribution of different algae to the P disappearance were investigated under disturbance with the addition of algae (Microcystis aeruginosa and Selenastrum capricornutum, respectively). The sediments and overlying water were taken from Meiliang Bay in Taihu Lake. The results showed that the concentrations of total P (TP), dissolved total P (DTP), dissolved inorganic P (DIP) and biavailable P (BAP) decreased with and without disturbance. The uptake of DTP and DIP by Microcystis aeruginosa was better than that of Selenastrum capricornutum under the disturbance, but it was the opposite without the disturbance. The disappearance of P in the overlying water was attributed completely to the physico-chemical adsorption of the suspended solids and the uptake of algae. But the contribution of suspended solids and algae depended on the disturbance. The contribution of Microcystis aeruginosa and Selenastrum capricornutum to DTP and DIP absorption was about 60% without disturbance. However, the value was reduced to 40% (Microcystis aeruginosa) and 25% ( Selenastrum capricornutum) under the disturbance. Under the disturbance and the action of algae, the distribution of sedimentary P forms changed. NH4 Cl-P and Ca-P release and Fe/Al-P increase were observed with and without disturbance. The decrease of NH4 Cl-P and Ca-P and the increase of Fe/Al-P were more obvious with disturbance than without disturbance. Selenastrum capricornutum was favor of the release of Ca-P and the formation of Fe/Al-P.

  11. Comparison of the mutagenic activity of XAD4 and blue rayon extracts of surface water and related drinking water samples.

    PubMed

    Kummrow, Fábio; Rech, Celia M; Coimbrão, Carlos A; Roubicek, Deborah A; Umbuzeiro, Gisela de A

    2003-11-10

    The combination of mutagenicity tests and selective extraction methodologies can be useful to indicate the possible classes of genotoxic organic contaminants in water samples. Treated and source water samples from two sites were analyzed: a river under the influence of an azo dye-processing plant discharge and a reservoir not directly impacted with industrial discharges, but contaminated with untreated domestic sewage. Organic extraction was performed in columns packed with XAD4 resin, that adsorbs a broad class of mutagenic compounds like polycyclic aromatic hydrocarbons (PAHs), arylamines, nitrocompounds, quinolines, antraquinones, etc., including the halogenated disinfection by-products; and with blue rayon that selectively adsorbs polycyclic planar structures. The organic extracts were tested for mutagenicity with the Salmonella assay using TA98 and TA100 strains and the potencies were compared. A protocol for cleaning the blue rayon fibers was developed and the efficiency of the reused fibers was analyzed with spiked samples. For the river water samples under the influence of the azo-type dye-processing plant, the mutagenicity was much higher for both blue rayon and XAD4 extracts when compared to the water from the reservoir not directly impacted with industrial discharges. For the drinking water samples, although both sites showed mutagenic responses with XAD4, only samples from the site under the influence of the industrial discharge showed mutagenic activity with the blue rayon extraction, suggesting the presence of polycyclic compounds in those samples. As expected, negative results were found with the blue rayon extracts of the drinking water collected from the reservoir not contaminated with industrial discharges. In this case, it appears that using the blue rayon to extract drinking water samples and comparing the results with the XAD resin extracts we were able to distinguish the mutagenicity caused by industrial contaminants from the halogenated

  12. The effects of water sample treatment, preparation, and storage prior to cyanotoxin analysis for cylindrospermopsin, microcystin and saxitoxin.

    PubMed

    Kamp, Lisa; Church, Jennifer L; Carpino, Justin; Faltin-Mara, Erin; Rubio, Fernando

    2016-02-25

    Cyanobacterial harmful algal blooms occur in freshwater lakes, ponds, rivers, and reservoirs, and in brackish waters throughout the world. The wide variety of cyanotoxins and their congeners can lead to frequent exposure of humans through consumption of meat, fish, seafood, blue-green algal products and water, accidental ingestion of contaminated water and cyanobacterial scum during recreational activities, and inhalation of cyanobacterial aerosols. Cyanotoxins can also occur in the drinking water supply. In order to monitor human exposure, sensitive analytical methods such as enzyme linked immunosorbent assay and liquid chromatography-mass spectrometry are often used. Regardless of the analytical method of choice, some problems regularly occur during sample collection, treatment, storage, and preparation which cause toxin loss and therefore underestimation of the true concentration. To evaluate the potential influence of sample treatment, storage and preparation materials on surface and drinking water samples, the effects of different types of materials on toxin recovery were compared. Collection and storage materials included glass and various types of plastics. It was found that microcystin congeners LA and LF adsorbed to polystyrene, polypropylene, high density polyethylene and polycarbonate storage containers, leading to low recoveries (<70%), cylindrospermopsin and saxitoxin did not adsorb to the containers tested. Therefore, this study shows that glass or polyethylene terephthalate glycol containers are the materials of choice for collection and storage of samples containing the cyanotoxins cylindrospermopsin, microcystins, and saxitoxin. This study also demonstrated that after 15 min chlorine decreased the concentration of microcystin LR to <40%, microcystin LA and saxitoxin to <15%, therefore quenching of drinking water samples immediately upon sample collection is critical for accurate analysis. In addition, the effect of various drinking water treatment

  13. The effects of water sample treatment, preparation, and storage prior to cyanotoxin analysis for cylindrospermopsin, microcystin and saxitoxin.

    PubMed

    Kamp, Lisa; Church, Jennifer L; Carpino, Justin; Faltin-Mara, Erin; Rubio, Fernando

    2016-02-25

    Cyanobacterial harmful algal blooms occur in freshwater lakes, ponds, rivers, and reservoirs, and in brackish waters throughout the world. The wide variety of cyanotoxins and their congeners can lead to frequent exposure of humans through consumption of meat, fish, seafood, blue-green algal products and water, accidental ingestion of contaminated water and cyanobacterial scum during recreational activities, and inhalation of cyanobacterial aerosols. Cyanotoxins can also occur in the drinking water supply. In order to monitor human exposure, sensitive analytical methods such as enzyme linked immunosorbent assay and liquid chromatography-mass spectrometry are often used. Regardless of the analytical method of choice, some problems regularly occur during sample collection, treatment, storage, and preparation which cause toxin loss and therefore underestimation of the true concentration. To evaluate the potential influence of sample treatment, storage and preparation materials on surface and drinking water samples, the effects of different types of materials on toxin recovery were compared. Collection and storage materials included glass and various types of plastics. It was found that microcystin congeners LA and LF adsorbed to polystyrene, polypropylene, high density polyethylene and polycarbonate storage containers, leading to low recoveries (<70%), cylindrospermopsin and saxitoxin did not adsorb to the containers tested. Therefore, this study shows that glass or polyethylene terephthalate glycol containers are the materials of choice for collection and storage of samples containing the cyanotoxins cylindrospermopsin, microcystins, and saxitoxin. This study also demonstrated that after 15 min chlorine decreased the concentration of microcystin LR to <40%, microcystin LA and saxitoxin to <15%, therefore quenching of drinking water samples immediately upon sample collection is critical for accurate analysis. In addition, the effect of various drinking water treatment

  14. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica

    USGS Publications Warehouse

    Lisle, J.T.; Smith, J.J.; Edwards, D.D.; McFeters, G.A.

    2004-01-01

    McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.

  15. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica.

    PubMed

    Lisle, John T; Smith, James J; Edwards, Diane D; McFeters, Gordon A

    2004-12-01

    McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered. PMID:15574926

  16. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica.

    PubMed

    Lisle, John T; Smith, James J; Edwards, Diane D; McFeters, Gordon A

    2004-12-01

    McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.

  17. Simultaneous enhancement of organics and nitrogen removal in drinking water biofilm pretreatment system with reed addition.

    PubMed

    Feng, Li-Juan; Zhu, Liang; Yang, Qi; Yang, Guang-Feng; Xu, Jian; Xu, Xiang-Yang

    2013-02-01

    A novel drinking water biofilm pretreatment process with reed addition was established for enhancement of simultaneously organics and nitrogen removal. Results showed that nitrate removal efficiency was positively related with the influent C/N ratio, reaching to 87.8±2.8% at the C/N ratio of 4.7. However, the predicted trichloromethane (THM) levels based on total organic carbon (TOC) and UV254 were high with the increase of influent C/N ratio. Combined with the pollutants removal performance and microbial community variation, an appropriate C/N ratio via reed addition was determined at 2.2 for the continuous biofilm reactor. With adjustment of hydraulic retention time (HRT), the highest of nitrate removal efficiency (74.2±1.4%) and organics utilization efficiency (0.63 mg NO3--N mg(-1)TOC) were achieved at an optimum HRT of 18 h, with both low effluent NO3--N (0.88±0.03 mg l(-1)) and TOC (2.86±0.67 mg l(-1)).

  18. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Sharma, Sumit

    2015-08-01

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  19. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    SciTech Connect

    Kumar, Ajay Sharma, Sumit

    2015-08-28

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  20. Using orthogonal array sampling to cope with uncertainty in ground water problems.

    PubMed

    Baalousha, Husam

    2009-01-01

    Uncertainty in ground water hydrology originates from different sources. Neglecting uncertainty in ground water problems can lead to incorrect results and misleading output. Several approaches have been developed to cope with uncertainty in ground water problems. The most widely used methods in uncertainty analysis are Monte Carlo simulation (MCS) and Latin hypercube sampling (LHS), developed from MCS. Despite the simplicity of MCS, many runs are required to achieve a reliable result. This paper presents orthogonal array (OA) sampling as a means to cope with uncertainty in ground water problems. The method was applied to an analytical stream depletion problem. To examine the convergence rate of the OA sampling, the results were compared to MCS and LHS. This study shows that OA can be applied to ground water problems. Results reveal that the convergence rate of the OA sampling is faster than MCS and LHS, with a smaller error of estimate when applied to a stream depletion problem. PMID:19735309

  1. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.

    PubMed

    Mull, Bonnie; Hill, Vincent R

    2012-12-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity.

  2. Fabric phase sorptive extraction: Two practical sample pretreatment techniques for brominated flame retardants in water.

    PubMed

    Huang, Guiqi; Dong, Sheying; Zhang, Mengfei; Zhang, Haihan; Huang, Tinglin

    2016-09-15

    Sample pretreatment is the critical section for residue monitoring of hazardous pollutants. In this paper, using the cellulose fabric as host matrix, three extraction sorbents such as poly (tetrahydrofuran) (PTHF), poly (ethylene glycol) (PEG) and poly (dimethyldiphenylsiloxane) (PDMDPS), were prepared on the surface of the cellulose fabric. Two practical extraction techniques including stir bar fabric phase sorptive extraction (stir bar-FPSE) and magnetic stir fabric phase sorptive extraction (magnetic stir-FPSE) have been designed, which allow stirring of fabric phase sorbent during the whole extraction process. In the meantime, three brominated flame retardants (BFRs) [tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bisallylether (TBBPA-BAE), tetrabromobisphenol A bis(2,3-dibromopropyl)ether (TBBPA-BDBPE)] in the water sample were selected as model analytes for the practical evaluation of the proposed two techniques using high-performance liquid chromatography (HPLC). Moreover, various experimental conditions affecting extraction process such as the type of fabric phase, extraction time, the amount of salt and elution conditions were also investigated. Due to the large sorbent loading capacity and unique stirring performance, both techniques possessed high extraction capability and fast extraction equilibrium. Under the optimized conditions, high recoveries (90-99%) and low limits of detection (LODs) (0.01-0.05 μg L(-1)) were achieved. In addition, the reproducibility was obtained by evaluating the intraday and interday precisions with relative standard deviations (RSDs) less than 5.1% and 6.8%, respectively. The results indicated that two pretreatment techniques were promising and practical for monitoring of hazardous pollutants in the water sample. Due to low solvent consumption and high repeated use performance, proposed techniques also could meet green analytical criteria.

  3. Fabric phase sorptive extraction: Two practical sample pretreatment techniques for brominated flame retardants in water.

    PubMed

    Huang, Guiqi; Dong, Sheying; Zhang, Mengfei; Zhang, Haihan; Huang, Tinglin

    2016-09-15

    Sample pretreatment is the critical section for residue monitoring of hazardous pollutants. In this paper, using the cellulose fabric as host matrix, three extraction sorbents such as poly (tetrahydrofuran) (PTHF), poly (ethylene glycol) (PEG) and poly (dimethyldiphenylsiloxane) (PDMDPS), were prepared on the surface of the cellulose fabric. Two practical extraction techniques including stir bar fabric phase sorptive extraction (stir bar-FPSE) and magnetic stir fabric phase sorptive extraction (magnetic stir-FPSE) have been designed, which allow stirring of fabric phase sorbent during the whole extraction process. In the meantime, three brominated flame retardants (BFRs) [tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bisallylether (TBBPA-BAE), tetrabromobisphenol A bis(2,3-dibromopropyl)ether (TBBPA-BDBPE)] in the water sample were selected as model analytes for the practical evaluation of the proposed two techniques using high-performance liquid chromatography (HPLC). Moreover, various experimental conditions affecting extraction process such as the type of fabric phase, extraction time, the amount of salt and elution conditions were also investigated. Due to the large sorbent loading capacity and unique stirring performance, both techniques possessed high extraction capability and fast extraction equilibrium. Under the optimized conditions, high recoveries (90-99%) and low limits of detection (LODs) (0.01-0.05 μg L(-1)) were achieved. In addition, the reproducibility was obtained by evaluating the intraday and interday precisions with relative standard deviations (RSDs) less than 5.1% and 6.8%, respectively. The results indicated that two pretreatment techniques were promising and practical for monitoring of hazardous pollutants in the water sample. Due to low solvent consumption and high repeated use performance, proposed techniques also could meet green analytical criteria. PMID:27300591

  4. Multiport well design for sampling of ground water at closely spaced vertical intervals

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    1996-01-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.

  5. Multiport well design for sampling of ground water at closely spaced vertical intervals

    SciTech Connect

    Delin, G.N.; Landon, M.K.

    1996-11-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples form the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Trace experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorocarbon concentrations.

  6. Laboratory Investigation into the Contribution of Contaminants to Ground Water from Equipment Materials Used in Sampling

    SciTech Connect

    Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P Evan; Sklarew, Debbie S.

    2004-08-30

    Benzene contamination was detected in well water samples from the Ogallala Aquifer beneath and adjacent to the Department of Energy's Pantex Plant near Amarillo, Texas. This study assessed whether or not the materials used in multilevel sampling equipment at this site could have contributed to the contaminants found in well water samples. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory test indicated three different materials from two types of multilevel samplers did, in fact, contribute volatile and semivolatile organic compounds to the ground water samples from static leach tests that were conducted during an eight week period. The nylon-11 tubing contributed trace concentrations of benzene (1.37 ?g/L) and relatively high concentrations of the plasticizer N-butylbenzenesulfonamide (NBSA) (764 mg/L) to the water; a urethane-coated nylon well liner contributed relatively high concentrations of toluene (278 ?g/L) and trace amounts of NBSA; and a sampling port spacer material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests were below the concentrations measured in actual ground water samples, the concentrations of organics from these equipment materials were sufficient to render the results reported for the ground water samples suspect.

  7. Effects of water sample preservation and storage conditions on nitrate concentrations

    SciTech Connect

    Li, Y.C.; Alva, A.K.; Calvert, D.V.; Zhang, M. |

    1995-12-31

    USEPA method 300 requires water samples should be stored at 4 C immediately after collection and NO{sub 3}-N concentration analyzed within 48 hr of sample collection. Many research and commercial laboratories find it is difficult to meet this holding time. Water samples are often stored for several days at 4 C or {minus}20 C until analysis. The objective of this study was to evaluate effects of groundwater sample pretreatment, storage temperatures, and holding times on concentrations of NO{sub 3}-N. The storage of samples at 25 C decreased concentrations of NO{sub 3}-N by 1.7% and 12.5% for 48 hr and 50 days, respectively. No significant changes were observed during the 50 days storage at 4 C or {minus}20 C. Acidification of water samples at 4 C had no significant effect on NO{sub 3}-N concentration up to 50-day holding time.

  8. A study on the prevalence of Aeromonas spp. and its enterotoxin genes in samples of well water, tap water, and bottled water

    PubMed Central

    Didugu, Hareesh; Thirtham, Madhavarao; Nelapati, Krishnaiah; Reddy, K Kondal; Kumbhar, Baba Saheb; Poluru, Anusha; Pothanaboyina, Guruvishnu

    2015-01-01

    Aim: The aim of this work was to study the prevalence of Aeromonas spp. and its enterotoxin genes in various water sources. Materials and Methods: 125 samples (50 from well water, 50 from tap water, and 25 from bottled water) were collected from various sources in and around Greater Hyderabad Municipal Corporation and examined for the presence of aeromonads by both cultural and polymerase chain reaction (PCR) assay. Alkaline peptone water with ampicillin was used as enrichment. Aeromonas isolation medium and ampicillin dextrin agar were used as selective media. The boiling and snap chilling method was used for DNA extraction. Primers targeted against 16S rRNA, aer, and ast were used to identify aeromonads and its enterotoxins. Results: 48%, 18%, and 12% of well water, tap water, and bottled water samples were found positive by cultural assay with an overall prevalence of 28.8%. Aeromonads were detected in 32 % (52% in well water, 20% in tap water, and 16% in bottled water) of samples by PCR assay. Aerolysin (aer) gene was noticed in 34.6%, 20%, and 0% of well water, tap water, and bottled water samples, respectively, with an overall prevalence of 27.5%. Thermostable cytotonic enterotoxin (ast) was observed in 37.5% (42.3% in well water, 30% in tap water, and 25% in bottled mineral water) of samples. Conclusions: Presence of aeromonads and its toxin genes in various sources of water is of public health concern and emphasizes the need for necessary preventive measures to tackle the problem. PMID:27047024

  9. Well installation and documentation, and ground-water sampling protocols for the pilot National Water-Quality Assessment Program

    USGS Publications Warehouse

    Hardy, M.A.; Leahy, P.P.; Alley, W.M.

    1989-01-01

    Several pilot projects are being conducted as part of the National Water Quality Assessment (NAWQA) Program. The purpose of the pilot program is to test and refine concepts for a proposed full-scale program. Three of the pilot projects are specifically designed to assess groundwater. The purpose of this report is to describe the criteria that are being used in the NAWQA pilot projects for selecting and documenting wells, installing new wells, and sampling wells for different water quality constituents. Guidelines are presented for the selection of wells for sampling. Information needed to accurately document each well includes site characteristics related to the location of the well, land use near the well, and important well construction features. These guidelines ensure the consistency of the information collected and will provide comparable data for interpretive purposes. Guidelines for the installation of wells are presented and include procedures that need to be followed for preparations prior to drilling, the selection of the drilling technique and casing type, the grouting procedure, and the well-development technique. A major component of the protocols is related to water quality sampling. Tasks are identified that need to be completed prior to visiting the site for sampling. Guidelines are presented for purging the well prior t sampling, both in terms of the volume of water pumped and the chemical stability of field parameters. Guidelines are presented concerning sampler selection as related to both inorganic and organic constituents. Documentation needed to describe the measurements and observations related to sampling each well and treating and preserving the samples are also presented. Procedures are presented for the storage and shipping of water samples, equipment cleaning, and quality assurance. Quality assurance guidelines include the description of the general distribution of the various quality assurance samples (blanks, spikes, duplicates, and

  10. Genotypic Characterization of Cryptosporidium hominis from Water Samples in São Paulo, Brazil

    PubMed Central

    Araújo, Ronalda S.; Dropa, Milena; Fernandes, Licia N.; Carvalho, Terezinha T.; Sato, Maria Inês Z.; Soares, Rodrigo M.; Matté, Glavur R.; Matté, Maria Helena

    2011-01-01

    The protozoan parasite Cryptosporidium has emerged as one of the most important water contaminants, causing waterborne outbreaks of diarrheal diseases worldwide. The small size of oocysts under the microscope and the possibility of changes in characteristics of oocysts, mainly in environmental samples, make the taxonomy of the genus difficult if morphologic characteristics are considered. This limitation encouraged the application of molecular methods to identify this microorganism. The aim of this study was to detect and identify by nested-polymerase chain reaction oocysts of Cryptosporidium present in water samples in the state of São Paulo, Brazil. Water samples were concentrated through a membrane filter, DNA was extracted by using a standard technique, and both amplification reactions used forward and reverse oligonucleotides that were complementary to Cryptosporidium 18S ribosomal RNA gene sequences. Thirty water samples from different sites of collection in the state of São Paulo were evaluated. Cryptosporidium oocysts were detected in 30% of the samples. By genoptyping, C. hominis and Cryptosporidium sp. were identified in recreational water and C. meleagridis was identified in surface water samples. This is the first report of C. hominis in environmental samples in Brazil. Although identification of Cryptosporidium is still a difficult task, molecular methods are essential for specific identification and are a helpful tool to aid to understand the epidemiology of this parasite in Brazil. PMID:22049036

  11. Determination of natural radioactivity by gross alpha and beta measurements in ground water samples.

    PubMed

    Turhan, S; Ozçitak, E; Taşkin, H; Varinlioğlu, A

    2013-06-01

    In this study, the activity concentrations of the gross α and β in ground water samples collected from the different drilled wells in Nevşehir province were measured to assess annual effective dose due to the ingestion of the water samples. Nevşehir province is one of the major cities of Cappadocia Region which is a popular tourist destination as it has many areas with unique geological, historic, and cultural features. Sampling and measurements were carried out in the autumn of 2011 and the spring of 2012. The values of the activity concentrations of the gross α and β measured in the water samples ranged from 80 to 380 mBq L(-1) with a mean of 192 mBq L(-1) and 120-3470 mBq L(-1) with a mean of 579 mBq L(-1) respectively. All values of the gross α were lower than the limit value of 500 mBq L(-1) while two ground water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). Therefore two water samples were the subject of further radioisotope-specific analysis. The obtained result indicated that the elevated activity concentrations of the gross β in these water samples are dominated by (40)K activity. Annual effective doses ranged from 0.04 to 0.20 mSv y(-1).

  12. Assessment of elemental contaminants in water and fish samples from Aba river.

    PubMed

    Alinnor, I J

    2005-03-01

    The elemental contaminants in water and fish samples from Aba river were studied. The elements studied were Zn, Ni, As, Hg, Co and Mn. Three water samples and three samples of different fish species were collected from different locations in the river. The water and fish samples were analysed for elemental contaminants using Atomic Absorption Spectrophotometer (AAS). The elemental toxicants Zn and Mn were identified in appreciable amounts in fresh fish species namely, Lates niloticus and Oriochronis niloticus, of mean values 8.012 ppm and 0.861 ppm, respectively. The analysis also shows arsenic concentration of mean value 0.01 ppm in Lates niloticus. The analysis of frozen fish samples purchased from the Waterside market located near the river shows Ni and Hg levels of mean values 0.83 ppm and 0.02 ppm, respectively. The levels of elemental contaminants As, Zn, Hg and Mn from the water samples have mean values 0.082 ppm, 11.284 ppm, 0.201 ppm and 1.024 ppm, respectively. There are five industries that discharge waste products into Aba river. In view of this, there is a need to determine the level of pollution of the river, since the inhabitants depend on the river for their drinking water, fishing and other domestic uses. This study is aimed at determining the level of heavy metal toxicants in fish and water samples from the river. The effect of these elemental contaminants and the associated health hazards were examined.

  13. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  14. Understanding the origin and evolution of water in the Moon through lunar sample studies.

    PubMed

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J

    2014-09-13

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. PMID:25114308

  15. Understanding the origin and evolution of water in the Moon through lunar sample studies

    PubMed Central

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J.

    2014-01-01

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. PMID:25114308

  16. Understanding the origin and evolution of water in the Moon through lunar sample studies.

    PubMed

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J

    2014-09-13

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin.

  17. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    SciTech Connect

    Walter, Matthew; Yin, Shengjun; Stevens, Gary; Sommerville, Daniel; Palm, Nathan; Heinecke, Carol

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  18. Fermentation Quality of Ensiled Water Hyacinth (Eichhornia crassipes) as Affected by Additives

    PubMed Central

    Tham, Ho Thanh; Van Man, Ngo; Pauly, Thomas

    2013-01-01

    A lab-scale ensiling study was carried out to investigate the fermentation quality of water hyacinth (WH) supplemented with molasses, rice bran, as an absorbent, and an inoculant in the form of fermented vegetable juice and their combinations. After wilting the water hyacinths for 7 h to a dry matter (DM) content of 240 to 250 g/kg, the following treatments were applied: i) Control (C), WH only; ii) WH with sugarcane molasses at 40 g/kg WH (CM); iii) WH inoculated with fermented vegetable juice at 10 ml/kg WH (CI); iv) CM and CI (CMI) combined; v) WH with 150 g rice bran/kg WH (CA); vi) CA and CI combined (CAI); vii) CA and CM combined (CAM); and viii) CA, CM and CI combined (CAMI). After application of additives, the differently treated forages were mixed and ensiled in triplicates in 1,500-ml polyethylene jars. After ensiling for 3 d, pH values in all treatments, except C and CI, had decreased to approximately 4.0 and remained low till 14 d. After 56 d, pH had increased between 0.4 to 0.9 pH-units compared to those at 14 d. The ammonia nitrogen (NH3-N) concentration ranged from an acceptable level in treatment CM (8 g/kg N) to a high NH3-N value in treatment CMI (16 g/kg N). Lactic acid formation was higher in CI than in all other treatments. Butyric acid contents, which indicate badly fermented silages, were low in all silages (<2 g/kg DM). There were two-way interactions (p-values from <0.001 to 0.045) for almost all fermentation end-products and pH, except for the molasses×inoculant interaction on NH3-N (p = 0.26). Significant 3-way interactions were found on all observed variables except for weight losses of silages. It is concluded that conserving wilted WH as silage for ruminants may be improved by the addition of molasses or rice bran. PMID:25049776

  19. Errors in Measuring Water Potentials of Small Samples Resulting from Water Adsorption by Thermocouple Psychrometer Chambers 1

    PubMed Central

    Bennett, Jerry M.; Cortes, Peter M.

    1985-01-01

    The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios. PMID:16664367

  20. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    PubMed Central

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-01-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979

  1. "Nanofiltration" Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples.

    PubMed

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R

    2016-01-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979

  2. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    NASA Astrophysics Data System (ADS)

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-02-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.

  3. High frequency sampling of stable water isotopes for assessing runoff generation processes in a mesoscale urbanized catchment

    NASA Astrophysics Data System (ADS)

    Wrede, Sebastian; Fenicia, Fabrizio; Kurtenbach, Andreas; Keßler, Sabine; Bierl, Reinhard

    2013-04-01

    Experimental hydrology critically relies on tracer techniques to decipher and uncover runoff generation processes. Although tracer measurements contributed significantly to a better understanding of catchment functioning, their potential is not yet fully exploited. The temporal resolution of tracer measurements is typically relatively coarse, and applications are confined to a few locations. Additionally, experimental hydrology has focused primarily on pristine catchments, and the influence of anthropogenic effects remains largely unexplored. High frequency sampling of multiple tracers may therefore substantially enhance our understanding of hydrological processes and the impact of anthropogenic effects and enable a better protection and management of water resources and water quality. In this preliminary study we aim to assess runoff generation processes using geochemical and isotopic tracer techniques in the mesoscale Olewiger Bach catchment (24 km²) that is located in the low mountain ranges of the city of Trier, southwest Germany. The catchment is mainly characterized by quartzite and Devonian schist, overlain by fluvial sediments. Mixed land use prevails in the southern part of the basin, while the northern lower reaches are mainly urbanized. Several waste water treatment plants, separate sewer and stormwater management systems are present in parts of the catchment and contribute to the discharge of the main river. Tracer techniques employed in this ongoing study are twofold. A long term sampling of stable water isotopes (oxygen-18 and deuterium) was initiated in order to allow inferences about mean residence times of water in different catchment compartments, while event-based sampling using a multi-tracer approach was used to identify different runoff components and associated water pathways. Special attention is given to the observation of in-channel processes by assessing the dynamics of dissolved and particulate geochemical tracers and stable water

  4. Idaho's surface-water-quality monitoring program: results from five sites sampled during water years 1990-93

    USGS Publications Warehouse

    ,

    1994-01-01

    In 1990, the U.S. Geological Survey (USGS), in cooperation with the Idaho Department of Health and Welfare, Division of Environmental Quality, implemented a statewide water-quality monitoring program in response to Idaho's antidegradation policy as required by the Clean Water Act. The program objective is to provide water-quality managers with a coordinated statewide network to detect trends in surface-water quality. The monitoring program includes the collection and analysis of samples from 56 sites on the Bear, Clearwater, Kootenai, Pend Oreille, Salmon, Snake, and Spokane Rivers and their tributaries (fig. 1). Samples are collected every year at 5 sites (annual sites) in drainage basins where long-term water-quality management is practiced, every other year at 19 sites (biennial sites) in basins where land and water uses change slowly, and every third year at 32 sites (triennial sites) where future development may affect water quality. Each year, 25 of the 56 sites are sampled. This report discusses results of sampling at five annual sites. During water years 1990-93 (October 1, 1989, through September 30, 1993), samples were collected six times per year at the five annual sites (fig. 1). Onsite analyses were made for discharge, specific conductance, pH, temperature, dissolved oxygen, bacteria (fecal coliform and fecal streptococci), and alkalinity. Laboratory analyses were made for major ions, nutrients, trace elements, and suspended sediment. Suspended sediment, nitrate, fecal coliform, trace elements, and specific conductance were used to characterize surface-water quality. Because concentrations of all trace elements except zinc were near detection limits, only zinc is discussed.

  5. Analysis of water-quality data and sampling programs at selected sites in north-central Colorado. Water Resources Investigation

    SciTech Connect

    Mueller, D.K.

    1990-01-01

    The report provides an analysis of the water-quality data at selected sites and provides an evaluation of the suitability of the current (1987) sampling programs at each site for meeting future needs of defining water quality within the area affected by CBT Project operations. Specific objectives of the report are to: provide summary statistics of water-quality data at each site for the period of record; identify significant trends for water-quality constituents or properties at each site; determine whether certain stations could be discontinued without substantial loss of information; determine whether the frequency of sampling for any individual constituent or groups of constituents at any of the sites could be decreased without substantial loss of information; and evaluate which water-quality constituents and properties need to be measured in order to meet the water-quality-data needs at each site. Fourteen streamflow and reservoir stations were selected for the analysis. These sites represent a network of water-quality sampling stations that can be used to evaluate the effects of CBT Project water transfers on both sides of the Continental Divide.

  6. GROUND WATER ISSUE: LOW-FLOW (MINIMAL DRAWDOWN) GROUND-WATER SAMPLING PROCEDURES

    EPA Science Inventory

    This paper is intended to provide background information on the development of low-flow sampling procedures and its application under a variety of hydrogeologic settings. The sampling methodology described in this paper assumes that the monitoring goal is to sample monitoring wel...

  7. Ground-Water Data-Collection Protocols and Procedures for the National Water-Quality Assessment Program: Collection and Documentation of Water-Quality Samples and Related Data

    USGS Publications Warehouse

    Koterba, Michael T.; Wilde, Franceska D.; Lapham, Wayne W.

    1995-01-01

    Protocols for ground-water sampling are described in a report written in 1989 as part of the pilot program for the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). These protocols have been reviewed and revised to address the needs of the full-scale implementation of the NAWQA Program that began in 1991. This report, which is a collaborative effort between the NAWQA Program and the USGS Office of Water Quality, is the result of that review and revision. This report describes protocols and recommended procedures for the collection of water-quality samples and related data from wells for the NAWQA Program. Protocols and recommended procedures discussed include (1) equipment setup and other preparations for data collection; (2) well purging and field measurements; (3) collecting and processing ground-water-quality samples; (4) equipment decontamination; (5) quality-control sampling; and (6) sample handling and shipping.

  8. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    USGS Publications Warehouse

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  9. Vacuum hand pump apparatus for collecting water samples from a horizontal intragravel pipe

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.

    1996-01-01

    We describe a lightweight, portable vacuum hand pump apparatus for use in collecting water samples from horizontal intragravel pipe samplers buried in the stream bottom. The apparatus is easily fabricated from relatively inexpensive materials available at many laboratory supply houses.

  10. Monitoring-well network and sampling design for ground-water quality, Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.

    2005-01-01

    The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling

  11. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications. PMID:26492498

  12. Slug tests in wells screened across the water table: some additional considerations.

    PubMed

    Butler, J J

    2014-01-01

    The majority of slug tests done at sites of shallow groundwater contamination are performed in wells screened across the water table and are affected by mechanisms beyond those considered in the standard slug-test models. These additional mechanisms give rise to a number of practical issues that are yet to be fully resolved; four of these are addressed here. The wells in which slug tests are performed were rarely installed for that purpose, so the well design can result in problematic (small signal to noise ratio) test data. The suitability of a particular well design should thus always be assessed prior to field testing. In slug tests of short duration, it can be difficult to identify which portion of the test represents filter-pack drainage and which represents formation response; application of a mass balance can help confirm that test phases have been correctly identified. A key parameter required for all slug test models is the casing radius. However, in this setting, the effective casing radius (borehole radius corrected for filter-pack porosity), not the nominal well radius, is required; this effective radius is best estimated directly from test data. Finally, although conventional slug-test models do not consider filter-pack drainage, these models will yield reasonable hydraulic conductivity estimates when applied to the formation-response phase of a test from an appropriately developed well.

  13. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.

  14. Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: a custom pressure plate apparatus and capillary bundle model.

    PubMed

    Wei, Y; Durian, D J

    2013-05-01

    To probe the effects of hydrogel particle additives on the water-accessible pore structure of sandy soils, we introduce a custom pressure plate method in which the volume of water expelled from a wet granular packing is measured as a function of applied pressure. Using a capillary bundle model, we show that the differential change in retained water per pressure increment is directly related to the cumulative cross-sectional area distribution f(r) of the water-accessible pores with radii less than r. This is validated by measurements of water expelled from a model sandy soil composed of 2-mm-diameter glass beads. In particular, it is found that the expelled water is dramatically dependent on sample height and that analysis using the capillary bundle model gives the same pore size distribution for all samples. The distribution is found to be approximately log normal, and the total cross-sectional area fraction of the accessible pore space is found to be f(0)=0.34. We then report on how the pore distribution and total water-accessible area fraction are affected by superabsorbent hydrogel particle additives, uniformly mixed into a fixed-height sample at varying concentrations. Under both fixed volume and free swelling conditions, the total area fraction of water-accessible pore space in a packing decreases exponentially as the gel concentration increases. The size distribution of the pores is significantly modified by the swollen hydrogel particles, such that large pores are clogged while small pores are formed.

  15. UMTRA project water sampling and analysis plan, Naturita, Colorado. Revision 1

    SciTech Connect

    1995-09-01

    Planned, routine ground water sampling activities for calendar year 1995 to 1997 at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Naturita, Colorado, are described in this water sampling and analysis plan. The following plan identifies and justifies the sampling locations, analytical parameters, detection limits, sampling frequency, and specific rationale for each routine monitoring station at the site. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

  16. Difficulties in obtaining representative samples for compliance with the Ballast Water Management Convention.

    PubMed

    Carney, Katharine J; Basurko, Oihane C; Pazouki, Kayvan; Marsham, Sara; Delany, Jane E; Desai, D V; Anil, A C; Mesbahi, Ehsan

    2013-03-15

    As implementation of the Ballast Water Convention draws nearer a major challenge is the development of protocols which accurately assess compliance with the D-2 Standard. Many factors affect the accuracy of assessment: e.g. large volume of ballast water, the shape, size and number of ballast tanks and the heterogeneous distribution of organisms within tanks. These factors hinder efforts to obtain samples that truly represent the total ballast water onboard a vessel. A known cell density of Tetraselmis suecica was added to a storage tank and sampled at discharge. The factors holding period, initial cell density and sampling interval affected representativeness. Most samples underestimated cell density, and some tanks with an initial cell density of 100 cells ml(-1) showed <10 cells ml(-1) at discharge, i.e. met the D-2 standard. This highlights difficulties in achieving sample representativeness and when applied to a real ballast tank this will be much harder to achieve.

  17. Geophysical methods to support correct water sampling locations for salt dilution gauging

    NASA Astrophysics Data System (ADS)

    Comina, C.; Lasagna, M.; De Luca, D. A.; Sambuelli, L.

    2014-05-01

    To improve water management design, particularly in irrigation areas, it is important to evaluate the baseline state of the water resources, including canal discharge. Discharge measurements, using salt dilution gauging, are a traditional and well-documented technique. The complete mixing of salt used for dilution gauging is required for reliable measurements; this condition is difficult to test or verify and, if not fulfilled, is the largest source of uncertainty in the discharge calculation. In this paper, a geophysical technique (FERT, Fast Electrical Resistivity Tomography) is proposed for imaging the distribution of the salt plume used for dilution gauging at every point along a sampling cross-section. In this way, it is possible to check whether complete mixing has occurred. If the mixing is not complete, the image created by FERT can also provide guidance for selecting water-sampling locations in the sampling cross-section. A water multi-sampling system prototype for the simultaneous sampling of canal water at different points within the cross-section, aimed to potentially take into account concentration variability, is also proposed and tested. Preliminary results of a single test with salt dilution gauging and FERT in a real case are reported. The results show that imaging the passage of the salt plume is possible by means of geophysical controls and that this can potentially help in the selection of water sampling points.

  18. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples.

    PubMed

    Fontaine, Melanie; Guillot, Emmanuelle

    2003-07-01

    The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.

  19. [Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern China].

    PubMed

    Yang, Shan; Li, Xiao-bing; Wang, Ru-zhen; Cai, Jiang-ping; Xu, Zhu-wen; Zhang, Yu-ge; Li, Hui; Jiang, Yong

    2015-03-01

    In this study, we measured the responses of soil bacterial diversity and community structure to nitrogen (N) and water addition in the typical temperate grassland in northern China. Results showed that N addition significantly reduced microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) under regular precipitation treatment. Similar declined trends of MBC and MBN caused by N addition were also found under increased precipitation condition. Nevertheless, water addition alleviated the inhibition by N addition. N addition exerted no significant effects. on bacterial α-diversity indices, including richness, Shannon diversity and evenness index under regular precipitation condition. Precipitation increment tended to increase bacterial α-diversity, and the diversity indices of each N gradient under regular precipitation were much lower than that of the corresponding N addition rate under increased precipitation. Correlation analysis showed that soil moisture, nitrate (NO3(-)-N) and ammonium (NH4+-N) were significantly negatively correlated with bacterial evenness index, and MBC and MBN had a significant positive correlation with bacterial richness and evenness. Non-metric multidimensional scaling (NMDS) ordination illustrated that the bacterial communities were significantly separated by N addition rates, under both water ambient and water addition treatments. Redundancy analysis (RDA) revealed that soil MBC, MBN, pH and NH4+-N were the key environmental factors for shaping bacterial communities.

  20. Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin

    USGS Publications Warehouse

    Graczyk, David J.; Robertson, Dale M.; Rose, William J.; Steur, Jeffrey J.

    2000-01-01

    In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream ob- servers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality, a combination of manual and automated sampling methods have commonly been used manual methods when flow is relatively stable and automated methods when flow is rapidly changing. Auto- mated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to be an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1). also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about $25- $50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.

  1. Soil and Water – What is Detectable through Microbiological Sample Preparation Techniques

    EPA Science Inventory

    The concerns of a potential terrorist’s use of biological agents in soil and ground water are articulated by comparisons to major illnesses in this Country involving contaminated drinking water sources. Objectives are focused on the importance of sample preparation in the rapid, ...

  2. Natural radioactivity in various water samples and radiation dose estimations in Bolu province, Turkey.

    PubMed

    Gorur, F Korkmaz; Camgoz, H

    2014-10-01

    The level of natural radioactivity for Bolu province of north-western Turkey was assessed in this study. There is no information about radioactivity measurement reported in water samples in the Bolu province so far. For this reason, gross α and β activities of 55 different water samples collected from tap, spring, mineral, river and lake waters in Bolu were determined. The mean activity concentrations were 68.11 mBq L(-1), 169.44 mBq L(-1) for gross α and β in tap water. For all samples the gross β activity is always higher than the gross α activity. All value of the gross α were lower than the limit value of 500 mBq L(-1) while two spring and one mineral water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). The associated age-dependent dose from all water ingestion in Bolu was estimated. The total dose for adults had an average value exceeds the WHO recommended limit value. The risk levels from the direct ingestion of the natural radionuclides in tap and mineral water in Bolu were determinated. The mean (210)Po and (228)Ra risk the value of tap and mineral waters slightly exceeds what some consider on acceptable risk of 10(-4) or less.

  3. 78 FR 35929 - Proposed Listing of Additional Waters To Be Included on Indiana's 2010 List of Impaired Waters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... decision identifying water quality limited segments and associated pollutants in Indiana to be listed... pollution controls are not stringent enough to attain or maintain state water quality standards and for... certain water quality limited segments and associated pollutants (Table 1 in Appendix A1 of EPA's...

  4. 78 FR 56695 - Proposed Listing of Additional Waters To Be Included on Indiana's 2010 List of Impaired Waters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... EPA's proposed decision identifying water quality limited segments and associated pollutants in Indiana to be listed pursuant to the Clean Water Act Section 303(d)(2), and requests public comment. For... Under the Clean Water Act AGENCY: Environmental Protection Agency (EPA). ACTION: Reopening of...

  5. THE COMBINED CARCINOGENIC RISK FOR EXPOSURE TO MIXTURES OF DRINKING WATER DISINFECTION BY-PRODUCTS MAY BE LESS THAN ADDITIVE

    EPA Science Inventory

    The Combined Carcinogenic Risk for Exposure to Mixtures of Drinking Water Disinfection By-Products May be Less Than Additive

    Risk assessment methods for chemical mixtures in drinking water are not well defined. Current default risk assessments for chemical mixtures assume...

  6. Sampling design for compliance monitoring of surface water quality: A case study in a Polder area

    NASA Astrophysics Data System (ADS)

    Brus, D. J.; Knotters, M.

    2008-11-01

    International agreements such as the EU Water Framework Directive (WFD) ask for efficient sampling methods for monitoring natural resources. In this paper a general methodology for designing efficient, statistically sound monitoring schemes is described. An important decision is the choice between a design-based and a model-based method, implying the choice between probability (random) sampling and purposive sampling. For mapping purposes, model-based methods are more appropriate, whereas to obtain valid results for the universe as a whole, such as in testing water quality standards against legal standards, we generally prefer a design-based method. Four basic sampling patterns in space-time universe are described: static, synchronous, static-synchronous, and rotational. A case study is carried out for monitoring the quality of surface water at two farms in western Netherlands, wherein a synchronous sampling design is applied, with stratified simple random sampling in both space and time. To reduce laboratory costs the aliquots taken at the locations of a given sampling round are bulked to form a composite. To test the spatiotemporal mean N-total concentration during the summer half-year against the MAR standard with a power of 80% at a concentration 15% below the MAR standard and with a confidence of 95%, six to nine sampling rounds are needed with 50 to 75 locations per sampling round. For P-total the required number of sampling rounds differs strongly between the two farms, but is for both farms much larger than for N-total.

  7. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    PubMed

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry).

  8. Continuous sample drop flow-based microextraction method as a microextraction technique for determination of organic compounds in water sample.

    PubMed

    Moinfar, Soleyman; Khayatian, Gholamreza; Milani-Hosseini, Mohammad-Reza

    2014-11-01

    Continuous sample drop flow-based microextraction (CSDF-ME) is an improved version of continuous-flow microextraction (CFME) and a novel technique developed for extraction and preconcentration of benzene, toluene, ethyl benzene, m-xylene and o-xylene (BTEXs) from aqueous samples prior to gas chromatography-flame ionization detection (GC-FID). In this technique, a small amount (a few microliters) of organic solvent is transferred to the bottom of a conical bottom test tube and a few mL of aqueous solution is moved through the organic solvent at relatively slow flow rate. The aqueous solution transforms into fine droplets while passing through the organic solvent. After extraction, the enriched analyte in the extraction solvent is determined by GC-FID. The type of extraction solvent, its volume, needle diameter, and aqueous sample flow rate were investigated. The enrichment factor was 221-269 under optimum conditions and the recovery was 89-102%. The linear ranges and limits of detection for BTEXs were 2-500 and 1.4-3.1 µg L(-1), respectively. The relative standard deviations for 10 µg L(-1) of BTEXs in water were 1.8-6.2% (n=5). The advantages of CSDF-ME are its low cost, relatively short sample preparation time, low solvent consumption, high recovery, and high enrichment factor.

  9. Evaluation of the Validity of Groundwater Samples Obtained Using the Purge Water Management System at SRS

    SciTech Connect

    Beardsley, C.C.

    1999-04-27

    As part of the demonstration testing of the Purge Water Management System (PWMS) technology at the Savannah River Site (SRS), four wells were equipped with PWMS units in 1997 and a series of sampling events were conducted at each during 1997-1998. Three of the wells were located in A/M Area while the fourth was located at the Old Radioactive Waste Burial Ground in the General Separations Area.The PWMS is a ''closed-loop'', non-contact, system used to collect and return purge water to the originating aquifer after a sampling event without having significantly altered the water quality. One of the primary concerns as to its applicability at SRS, and elsewhere, is whether the PWMS might resample groundwater that is returned to the aquifer during the previous sampling event. The purpose of the present investigation was to compare groundwater chemical analysis data collected at the four test wells using the PWMS vs. historical data collected using the standard monitoring program methodology to determine if the PWMS provides representative monitoring samples.The analysis of the groundwater chemical concentrations indicates that the PWMS sampling methodology acquired representative groundwater samples at monitoring wells ABP-1A, ABP-4, ARP-3 and BGO-33C. Representative groundwater samples are achieved if the PWMS does not resample groundwater that has been purged and returned during a previous sampling event. Initial screening calculations, conducted prior to the selection of these four wells, indicated that groundwater velocities were high enough under the ambient hydraulic gradients to preclude resampling from occurring at the time intervals that were used at each well. Corroborating evidence included a tracer test that was conducted at BGO-33C, the high degree of similarity between analyte concentrations derived from the PWMS samples and those obtained from historical protocol sampling, as well as the fact that PWMS data extend all previously existing concentration

  10. GROUND WATER MONITORING AND SAMPLING: MULTI-LEVEL VERSUS TRADITIONAL METHODS WHATS WHAT?

    EPA Science Inventory

    After years of research and many publications, the question still remains: What is the best method to collect representative ground water samples from monitoring wells? Numerous systems and devices are currently available for obtaining both multi-level samples as well as traditi...

  11. PASSIVE SAMPLING OF GROUND WATER MONITORING WELLS WITHOUT PURGING MULTILEVEL WELL CHEMISTRY AND TRACER DISAPPEARANCE

    EPA Science Inventory

    It is essential that the sampling techniques utilized in groundwater monitoring provide data that accurately depicts the water quality of the sampled aquifer in the vicinity of the well. Due to the large amount of monitoring activity currently underway in the U.S.A. it is also im...

  12. HYDROLYSIS OF MTBE IN GROUND WATER SAMPLES PRESERVED WITIH HYDROCHLORIC ACID

    EPA Science Inventory

    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as TBA. Because alcohols tend to stay with the water samples, they are not efficiently transferred to the gas chromatograph for separation and analysis. A common tec...

  13. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples.

    PubMed

    Riediger, Irina N; Hoffmaster, Alex R; Casanovas-Massana, Arnau; Biondo, Alexander W; Ko, Albert I; Stoddard, Robyn A

    2016-01-01

    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA and PowerSoil DNA Isolation kits were evaluated to extract DNA from sewage, pond, river and ultrapure water samples spiked with leptospires. Performance of each kit varied with sample type. Sample processing methods were further evaluated and optimized using the PowerSoil DNA kit due to its performance on turbid water samples and reproducibility. Centrifugation speeds, water volumes and use of Escherichia coli as a carrier were compared to improve DNA recovery. All matrices showed a strong linearity in a range of concentrations from 106 to 10° leptospires/mL and lower limits of detection ranging from <1 cell /ml for river water to 36 cells/mL for ultrapure water with E. coli as a carrier. In conclusion, we optimized a method to quantify pathogenic Leptospira in environmental waters (river, pond and sewage) which consists of the concentration of 40 mL samples by centrifugation at 15,000×g for 20 minutes at 4°C, followed by DNA extraction with the PowerSoil DNA Isolation kit. Although the method described herein needs to be validated in environmental studies, it potentially provides the opportunity for effective, timely and sensitive assessment of environmental leptospiral burden. PMID:27487084

  14. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples

    PubMed Central

    Riediger, Irina N.; Hoffmaster, Alex R.; Biondo, Alexander W.; Ko, Albert I.; Stoddard, Robyn A.

    2016-01-01

    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA and PowerSoil DNA Isolation kits were evaluated to extract DNA from sewage, pond, river and ultrapure water samples spiked with leptospires. Performance of each kit varied with sample type. Sample processing methods were further evaluated and optimized using the PowerSoil DNA kit due to its performance on turbid water samples and reproducibility. Centrifugation speeds, water volumes and use of Escherichia coli as a carrier were compared to improve DNA recovery. All matrices showed a strong linearity in a range of concentrations from 106 to 10° leptospires/mL and lower limits of detection ranging from <1 cell /ml for river water to 36 cells/mL for ultrapure water with E. coli as a carrier. In conclusion, we optimized a method to quantify pathogenic Leptospira in environmental waters (river, pond and sewage) which consists of the concentration of 40 mL samples by centrifugation at 15,000×g for 20 minutes at 4°C, followed by DNA extraction with the PowerSoil DNA Isolation kit. Although the method described herein needs to be validated in environmental studies, it potentially provides the opportunity for effective, timely and sensitive assessment of environmental leptospiral burden. PMID:27487084

  15. Classification of Water Masses and Targeted Sampling of Ocean Plankton Populations by an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ryan, J. P.; Bellingham, J. G.; Harvey, J.; McEwen, R.; Chavez, F.; Scholin, C.

    2011-12-01

    Autonomous underwater vehicles (AUVs) are playing an increasingly active role in oceanographic surveys due to their mobility, efficiency, and growing intelligence. The Dorado AUV is equipped with a comprehensive suite of in situ sensors and ten 1.8-liter water samplers (called "gulpers"). During an October 2010 experiment in Monterey Bay, the AUV ran our autonomous peak-capture algorithm to acquire chlorophyll/backscatter peak samples from a phytoplankton bloom, allowing biologists to successfully monitor fluctuations in harmful microalgae (Psuedo-nitzschia spp.), the toxin they produce (domoic acid), and co-occurring zooplankton (invertebrate larvae and copepods) over space and time. For further investigations of the complex marine ecosystem in northern Monterey Bay, we set a more challenging goal: when the AUV flies from an upwelling shadow region (stratified water column) through an upwelling front into newly upwelled water, can it autonomously distinguish among water columns with different vertical structures and accordingly sample plankton populations on either side of, as well as within, the upwelling front? To achieve this goal, we have developed two new algorithms, one for distinguishing upwelling water columns from stratified water columns based on the vertical homogeneity of temperature, and the other for detecting an upwelling front based on the horizontal gradient of temperature. For acquiring targeted water samples, the 10 gulpers are appropriately allocated to the two distinct water columns and the front. Lockout time intervals between triggerings are set to prevent "dense triggerings". During our June 2011 experiment, the Dorado AUV flew westward from an upwelling shadow region (stratified water column) through an upwelling front, and into an upwelling water column. Three gulpers were allocated to the stratified water column, four to the front, and the remaining three to the upwelling water column. The AUV successfully detected and acquired targeted

  16. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  17. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2011-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  18. Comparison of sampling strategies for monitoring water quality in mesoscale Canadian Prairie watersheds.

    PubMed

    Ross, Cody; Petzold, Halya; Penner, Amber; Ali, Genevieve

    2015-07-01

    The Canadian Prairies are subject to cold winter dynamics, spring snowmelt runoff, and summer storms; a process variability that makes it difficult to identify an adequate sampling strategy for capturing representative water quality data. Hence, our research objective was to compare multiple water quality sampling strategies for Prairie watersheds and rank them based on operational and statistical criteria. The focus was on the Catfish Creek Watershed (Manitoba, Canada), which drains into the hypereutrophic Lake Winnipeg. Water samples were collected every 7 h during the 2013 open-water season and notably analyzed for nitrate and orthophosphate. The original high-frequency dataset (7 h) was then deconstructed into lower-frequency datasets to mimic strategies involving sample collection on a daily, weekly, bi-weekly, monthly, and seasonal basis. A comparison and decision matrix was also built to assess the ability of the lower-frequency datasets to retain the statistical properties of the original (7 h) dataset. Results indicate that nutrient concentrations vary significantly over short timescales and are affected by both sampling time (day versus night) and water level fluctuations. The decision matrix revealed that seasonal sampling is sufficient when the goal is only to capture mean water quality conditions; however, sub-daily to daily sampling is required for accurate process signal representation. While we acknowledge that sampling programs designed by researchers and public agencies are often driven by different goals, we found daily sampling to be the most parsimonious strategy for the study watershed and suggest that it would help to better quantify nutrient loads to Lake Winnipeg.

  19. Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition

    PubMed Central

    Li, Yulin; Ning, Zhiying; Cui, Duo; Mao, Wei; Bi, Jingdong; Zhao, Xueyong

    2016-01-01

    Background The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined. Methodology/Principal Findings A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis) with contrasting substrate chemistry (e.g. N concentration, lignin content in this study) in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter. Conclusion/Significance These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China

  20. Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states

    NASA Astrophysics Data System (ADS)

    Reidelbach, Marco; Betz, Fridtjof; Mäusle, Raquel Maya; Imhof, Petra

    2016-08-01

    Proton transfer reactions are complex transitions due to the size and flexibility of the hydrogen-bonded networks along which the protons may "hop". The combination of molecular dynamics based sampling of water positions and orientations with direct sampling of proton positions is an efficient way to capture the interplay of these degrees of freedom in a transition network. The energetically most favourable pathway in the proton transfer network computed for an aspartate-water cluster shows the pre-orientation of water molecules and aspartate side chains to be a pre-requisite for the subsequent concerted proton transfer to the product state.

  1. Analytical results for 89 water samples from the Papago Indian Reservation, Arizona

    USGS Publications Warehouse

    Ficklin, Walter H.; Ashton, Wheeler; Preston, D.J.; Nowlan, G.A.

    1978-01-01

    Eighty-nine water samples were collected from the Papago Indian Reservation during 1977 and 1978 as a part of a mineral resource study. Each sample was analyzed for copper, zinc, molybdenum, arsenic, uranium, sodium, potassium, calcium, magnesium, bicarbonate, sulfate, chloride, fluoride, and silica. Temperature, pH, and specific conductance were also measured. The data are presented in accompanying tables. Also, included are the location and a description of each sample site.

  2. Analysis of core soil and water samples from the Cactus Crater Disposal Site at Enewetak atoll

    SciTech Connect

    Robison, W.L.; Noshkin, V.E.

    1981-02-18

    Core soil samples and water samples were collected from the Cactus Crater Disposal Site at Enewetak for analysis of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu and /sup 241/Am by both gamma spectroscopy and, through a contractor laboratory, by wet chemistry procedures. The samples processing methods, the analytical methods and the analytical quality control are all procedures developed for the continuing Marshall Island radioecology and dose assessment work.

  3. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    USGS Publications Warehouse

    Carruth, Robert L.; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate

  4. THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) WAS LESS THAN ADDITIVE

    EPA Science Inventory

    THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY -PRODUCTS (DBP) W AS LESS THAN ADDITIVE.

    Current default risk assessments for chemical mixtures assume additivity of carcinogenic effects but this may under or over represent the actual biological res...

  5. Backflushing Filters for Field Processing of Water Samples Prior to Trace-Element Analyses

    USGS Publications Warehouse

    Kennedy, V.C.; Jenne, E.A.; Burchard, J.M.

    1976-01-01

    A portable unit is described for filtering water samples at field sites in such a manner that the filtrate is suitable for analysis not only of major constituents but also of trace elments at the mocrogram-per-liter level. A battery-operated peristaltic pump forces the water sample through medical-grade silicone tubing into and through an all-plastic in-line filter which can be backflushed when sediment clogs the filter membrane. Initial filtration rate exceeds 500 milliliter/minute and, because of the backflushing feature, a total time for filtering high-sediment-bearing waster samples is greatly reduced. (Woodard-USGS)

  6. Assessment of polychlorinated naphthalenes in aquifer samples for drinking water purposes.

    PubMed

    Espadaler, I; Eljarrat, E; Caixach, J; Rivera, J; Martí, I; Ventura, F

    1997-01-01

    Polychlorinated naphthalenes (PCNs) were identified and quantified in water samples collected from the aquifer of the Llobregat river near Barcelona (NE Spain) in order to establish the source and extent of spreading of the contamination. Many of the identified PCNs were well resolved as single peaks on the chromatograms recorded using high resolution gas chromatography combined with electron ionization high resolution mass spectrometry and single-ion monitoring. The profile and pattern of PCNs found in groundwater samples are similar to those of Halowax 1099. The levels of the sum of mono- to octachloronaphthalenes in the water samples ranged from 0.003 microgram/L to 72.9 micrograms/L.

  7. Concentration of ions in selected bottled water samples sold in Malaysia

    NASA Astrophysics Data System (ADS)

    Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala

    2013-03-01

    Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.

  8. Spatio-temporal representativeness of euphotic depth in situ sampling in transitional coastal waters

    NASA Astrophysics Data System (ADS)

    Luhtala, Hanna; Tolvanen, Harri

    2016-06-01

    In dynamic coastal waters, the representativeness of spot sampling is limited to the measurement time and place due to local heterogeneity and irregular water property fluctuations. We assessed the representativeness of in situ sampling by analysing spot-sampled depth profiles of photosynthetically active radiation (PAR) in dynamic coastal archipelago waters in the south-western Finnish coast of the Baltic Sea. First, we assessed the role of spatio-temporality within the underwater light dynamics. As a part of this approach, an anomaly detection procedure was tested on a dataset including a large archipelago area and extensive temporal coverage throughout the ice-free season. The results suggest that euphotic depth variability should be treated as a spatio-temporal process rather than considering spatial and temporal dimensions separately. Second, we assessed the representativeness of spot sampling through statistical analysis of comparative data from spatially denser sampling on three test sites on two optically different occasions. The datasets revealed variability in different dimensions and scales. The suitability of a dataset to reveal wanted phenomena can usually be improved by careful planning and by clearly defining the data sampling objectives beforehand. Nonetheless, conducting a sufficient in situ sampling in dynamic coastal area is still challenging: detecting the general patterns at all the relevant dimensions is complicated by the randomness effect, which reduces the reliability of spot samples on a more detailed scale. Our results indicate that good representativeness of a euphotic depth sampling location is not a stable feature in a highly dynamic environment.

  9. Magnetic nanoparticles with hydrophobicity and hydrophilicity for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Xue, Shu-Wen; Tang, Min-Qiong; Xu, Li; Shi, Zhi-guo

    2015-09-11

    Magnetic nanoparticles (MNPs) featured with divinylbenzene (DVB) and sulfonate functionalities (Fe3O4-DVB-SO3(-)) were prepared via "thiol-ene" click chemistry. The hydrophobic DVB moieties were dedicated for extraction while the hydrophilic sulfonate groups were designed for dispersing the MNPs in aqueous sample solution. Thus, the specially designed material could ensure operational convenience and improve reproducibility during extraction. The application of the material was demonstrated by the extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental water samples followed by gas chromatography-mass spectrometric analysis. The main factors influencing the extraction, including the type of the desorption solvent, the agitation mode, the amount of MNPs, extraction and desorption time and salt addition in sample solution, were investigated in detail. Under the optimized conditions, the proposed method showed satisfactory reproducibility with intra-day and inter-day relative standard deviations less than 16.5% and 21.2%, and low limits of detection of 1.1pgmL(-1), 0.8pgmL(-1), 1.1pgmL(-1), 1.4pgmL(-1), 0.6pgmL(-1), 2.1pgmL(-1) and 0.7pgmL(-1) for naphthalene, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene and pyrene, respectively. The developed method was also successfully used for determination of the PAHs in genuine lake and river environmental water samples by standard addition method. All the studied PAHs were detected in these waters with comparable results by the standard liquid-liquid extraction method. The developed MNPs with dual property of hydrophobicity and hydrophilicity were suitable for the treatment of water samples. The magnetic solid phase extraction based on this material was reliable and convenient. It has great potential in the preconcentration of trace analytes in complex matrix. PMID:26260841

  10. Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501

    NASA Astrophysics Data System (ADS)

    Poston, Michael J.; Grieves, Gregory A.; Aleksandrov, Alexandr B.; Hibbitts, Charles A.; Dyar, M. Darby; Orlando, Thomas M.

    2015-07-01

    The desorption activation energies for water molecules chemisorbed on Apollo lunar samples 72501 (highlands soil) and 12001 (mare soil) were determined by temperature programmed desorption experiments in ultra-high vacuum. A significant difference in both the energies and abundance of chemisorption sites was observed, with 72501 retaining up to 40 times more water (by mass) and with much stronger adsorption interactions, possibly approaching 1.5 eV. The dramatic difference between the samples may be due to differences in mineralogy and surface exposure age. The distribution function of water desorption activation energies for sample 72501 was used as an initial condition to simulate water persistence through a temperature profile matching the lunar day.

  11. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  12. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    PubMed

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were <0.2-2.3 µg/L. The results of the present study indicated that the proposed method was suitable for determining bromate concentrations in drinking water without sample pretreatment.

  13. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    SciTech Connect

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  14. A Culture Independent Method for the Detection of Aeromonas sp. from Water Samples

    PubMed Central

    Latif-Eugenín, Fadua; Beaz-Hidalgo, Roxana

    2016-01-01

    The genus Aeromonas is present in a wide variety of water environments and is recognised as potentially pathogenic to humans and animals. Members of this genus are often confused with Vibrio when using automated, commercial identification systems that are culture-dependent. This study describes a polymerase chain reaction (PCR) detection method for Aeromonas that is culture-independent and that targets the glycerophospholopid-cholesterol acyltransferase (gcat) gene, which is specific for this genus. The GCAT-PCR was 100% specific in artificially inoculated water samples, with a detection limit that ranged from 2.5 to 25 cfu/mL. The success at detecting this pathogen in 86 water samples using the GCAT-PCR method was identical to the conventional culturing method when a pre-enrichment step was carried out, yielding 83.7% positive samples. On the other hand, without a pre-enrichment step, only 77.9% of the samples were positive by culturing and only 15.1% with the GCAT-PCR. However, 83.7% positive samples were obtained for the GCAT-PCR when the water volume for the DNA extraction was increased from 400 µL to 4 mL. The proposed molecular method is much faster (5 or 29 h) than the culturing method (24 or 48 h) whether performed directly or after a pre-enrichment step and it will enable the fast detection of Aeromonas in water samples helping to prevent a possible transmission to humans. PMID:27800428

  15. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    PubMed Central

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-01-01

    We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season. PMID:24366178

  16. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual.

    PubMed

    Ludwig, Fulco; Jewitt, Rebecca A; Donovan, Lisa A

    2006-06-01

    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource availability on night-time stomatal conductance (g) and transpiration (E). Water (low and high) and nutrients (low and high) were applied factorially during the growing season to naturally occurring seedlings of the annual Helianthus anomalus. Plant height and biomass were greatest in the treatment where both water and nutrients were added, confirming resource limitations in this habitat. Plants from all treatments showed significant night-time g (approximately 0.07 mol m(-2) s(-1)) and E (approximately 1.5 mol m(-2) s(-1)). In July, water and nutrient additions had few effects on day- or night-time gas exchange. In August, however, plants in the nutrient addition treatments had lower day-time photosynthesis, g and E, paralleled by lower night-time g and E. Lower predawn water potentials and higher integrated photosynthetic water-use efficiency suggests that the nutrient addition indirectly induced a mild water stress. Thus, soil resources can affect night-time g and E in a manner parallel to day-time, although additional factors may also be involved.

  17. Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2015-02-01

    The present work describes the development of a sequential injection standard addition method for iodine speciation in bathing waters and seaweeds extracts without prior sample treatment. Iodine speciation was obtained by assessing the iodide and iodate content, the two inorganic forms of iodine in waters. For the determination of iodide, an iodide ion selective electrode (ISE) was used. The indirect determination of iodate was based on the spectrophotometric determination of nitrite (Griess reaction). For the iodate measurement, a mixing chamber was employed (flow batch approach) to explore the inherent efficient mixing, essential for the indirect determination of iodate. The application of the standard addition method enabled detection limits of 0.14 µM for iodide and 0.02 µM for iodate, together with the direct introduction of the target water samples, coastal and inland bathing waters. The results obtained were in agreement with those obtained by ICP-MS and a colorimetric reference procedure. Recovery tests also confirmed the accuracy of the developed method which was effectively applied to bathing waters and seaweed extracts.

  18. Detection of protozoa in water samples by formalin/ether concentration method.

    PubMed

    Lora-Suarez, Fabiana; Rivera, Raul; Triviño-Valencia, Jessica; Gomez-Marin, Jorge E

    2016-09-01

    Methods to detect protozoa in water samples are expensive and laborious. We evaluated the formalin/ether concentration method to detect Giardia sp., Cryptosporidium sp. and Toxoplasma in water. In order to test the properties of the method, we spiked water samples with different amounts of each protozoa (0, 10 and 50 cysts or oocysts) in a volume of 10 L of water. Immunofluorescence assay was used for detection of Giardia and Cryptosporidium. Toxoplasma oocysts were identified by morphology. The mean percent of recovery in 10 repetitions of the entire method, in 10 samples spiked with ten parasites and read by three different observers, were for Cryptosporidium 71.3 ± 12, for Giardia 63 ± 10 and for Toxoplasma 91.6 ± 9 and the relative standard deviation of the method was of 17.5, 17.2 and 9.8, respectively. Intraobserver variation as measured by intraclass correlation coefficient, was fair for Toxoplasma, moderate for Cryptosporidium and almost perfect for Giardia. The method was then applied in 77 samples of raw and drinkable water in three different plant of water treatment. Cryptosporidium was found in 28 of 77 samples (36%) and Giardia in 31 of 77 samples (40%). Theses results identified significant differences in treatment process to reduce the presence of Giardia and Cryptosporidium. In conclusion, the formalin ether method to concentrate protozoa in water is a new alternative for low resources countries, where is urgently need to monitor and follow the presence of theses protozoa in drinkable water.

  19. Identification and Genotyping of Mycobacterium tuberculosis Isolated From Water and Soil Samples of a Metropolitan City

    PubMed Central

    Velayati, Ali Akbar; Farnia, Parissa; Mozafari, Mohadese; Malekshahian, Donya; Farahbod, Amir Masoud; Seif, Shima; Rahideh, Snaz

    2015-01-01

    BACKGROUND: The potential role of environmental Mycobacterium tuberculosis in the epidemiology of TB remains unknown. We investigated the transmission of M tuberculosis from humans to the environment and the possible transmission of M tuberculosis from the environment to humans. METHODS: A total of 1,500 samples were collected from three counties of the Tehran, Iran metropolitan area from February 2012 to January 2014. A total of 700 water samples (47%) and 800 soil samples (53%) were collected. Spoligotyping and the mycobacterial interspersed repetitive units-variable number of tandem repeats typing method were performed on DNA extracted from single colonies. Genotypes of M tuberculosis strains isolated from the environment were compared with the genotypes obtained from 55 patients with confirmed pulmonary TB diagnosed during the study period in the same three counties. RESULTS: M tuberculosis was isolated from 11 of 800 soil samples (1%) and 71 of 700 water samples (10%). T family (56 of 82, 68%) followed by Delhi/CAS (11 of 82, 13.4%) were the most frequent M tuberculosis superfamilies in both water and soil samples. Overall, 27.7% of isolates in clusters were related. No related typing patterns were detected between soil, water, and clinical isolates. The most frequent superfamily of M tuberculosis in clinical isolates was Delhi/CAS (142, 30.3%) followed by NEW-1 (127, 27%). The bacilli in contaminated soil (36%) and damp water (8.4%) remained reculturable in some samples up to 9 months. CONCLUSIONS: Although the dominant M tuberculosis superfamilies in soil and water did not correspond to the dominant M tuberculosis family in patients, the presence of circulating genotypes of M tuberculosis in soil and water highlight the risk of transmission. PMID:25340935

  20. Uranium speciation in moorland river water samples: a comparison of experimental results and computer model predictions.

    PubMed

    Unsworth, Emily R; Jones, Phil; Cook, Jennifer M; Hill, Steve J

    2005-06-01

    An on-line method has been developed for separating inorganic and organic bound uranium species present in river water samples. The method utilised a small chelating resin (Hyphan) column incorporated into the sample introduction manifold of an ICP-MS instrument. The method was evaluated for samples from rivers on Dartmoor (Devon, UK), an area of granite overlain with peat bogs. The results indicate that organic-uranium species form a major proportion (80%) of the total dissolved uranium present. Further work with synthetic water samples indicated that the level of dissolved organic carbon played a greater role in determining the level of organic-uranium species than did sample pH. Computer models for the water samples were constructed using the WHAM program (incorporating uranium data from the Nuclear Energy Agency Thermochemical Database project) in order to predict the levels of organic-uranium species that would form. By varying the proportion of humic and fulvic acids used in the humic component, predictions within 10% of the experimental results were obtained. The program did exhibit a low bias at higher pH values (7.5) and low organic carbon concentrations (0.5 microg ml(-1)), but under the natural conditions prevalent in the Dartmoor water samples, the model predictions were successful.

  1. Burning of suspended coal-water slurry droplet with oil as combustion additive

    SciTech Connect

    Yao, S.C.; Manwani, P.

    1986-10-01

    Coal-water slurries have been regarded as a potential substitute for heavy fuel oil. Various demonstrations of coal-water slurry combustion have been performed; however, a fundamental understanding of how the combustion process of a slurry fuel is enhanced is still not adequate. The combustion of coal-water mixture droplets suspended on microthermocouples has been investigated. It was found that droplets of lignite coal (which is a noncaking coal) burn effectively; however, droplets of bituminous coal (which is a caking coal) are relatively difficult to burn. During the heat-up of bituminous coal-water slurry droplets may turn to ''popcorn'' and show significant agglomeration. The incomplete combustion of coal-water slurry droplets in furnaces has been reported, and this is a drawback of this process. The objective of the present study is to explore the possibility of enhancing the combustion of coal-water slurry droplets with the use of a combustible emulsified oil.

  2. Preserving ground water samples with hydrochloric acid does not result in the formation of chloroform

    USGS Publications Warehouse

    Squillace, Paul J.; Pankow, James F.; Barbash, Jack E.; Price, Curtis V.; Zogorski, John S.

    1999-01-01

    Water samples collected for the determination of volatile organic compounds (VOCs) are often preserved with hydrochloric acid (HCl) to inhibit the biotransformation of the analytes of interest until the chemical analyses can he performed. However, it is theoretically possible that residual free chlorine in the HCl can react with dissolved organic carbon (DOC) to form chloroform via the haloform reaction. Analyses of 1501 ground water samples preserved with HCl from the U.S. Geological Survey's National Water-Quality Assessment Program indicate that chloroform was the most commonly detected VOC among 60 VOCs monitored. The DOC concentrations were not significantly larger in samples with detectable chloroform than in those with no delectable chloroform, nor was there any correlation between the concentrations of chloroform and DOC. Furthermore, chloroform was detected more frequently in shallow ground water in urban areas (28.5% of the wells sampled) than in agricultural areas (1.6% of the wells sampled), which indicates that its detection was more related to urban land-use activities than to sample acidification. These data provide strong evidence that acidification with HCl does not lead to the production of significant amounts of chloroform in ground water samples. To verify these results, an acidification study was designed to measure the concentrations of all trihalomethanes (THMs) that can form as a result of HCl preservation in ground water samples and to determine if ascorbic acid (C6H8O6) could inhibit this reaction if it did occur. This study showed that no THMs were formed as a result of HCl acidification, and that ascorbic acid had no discernible effect on the concentrations of THMs measured.

  3. The Salmonella mutagenicity of industrial, surface and ground water samples of Aligarh region of India.

    PubMed

    Siddiqui, Athar Habib; Ahmad, Masood

    2003-11-10

    The genotoxicity of three water bodies, viz. industrial waste water of Aligarh city, ground water pumped out from the industrial area of Aligarh, and river water of Yamuna, downstream of Agra, was carried out by means of Ames plate incorporation test and the Ames fluctuation test. All the test samples were significantly mutagenic in both the testing systems. The ground water and river water samples were subjected to XAD concentration prior to the mutagenicity/genotoxicity testing, while the industrial waste water was used directly. Whereas TA98, TA102 and TA104 strains have been found to be maximally sensitive in the Ames plate incorporation assay conducted for various water samples, TA98 and TA100 strains were the most responsive strains in the Ames fluctuation test. The apparent disparity in the sensitivity patterns of various Ames strains by plate incorporation and fluctuation assays could be attributed to a large extent to the different conventional ways of interpretation of the data in these systems. PMID:14568291

  4. The Salmonella mutagenicity of industrial, surface and ground water samples of Aligarh region of India.

    PubMed

    Siddiqui, Athar Habib; Ahmad, Masood

    2003-11-10

    The genotoxicity of three water bodies, viz. industrial waste water of Aligarh city, ground water pumped out from the industrial area of Aligarh, and river water of Yamuna, downstream of Agra, was carried out by means of Ames plate incorporation test and the Ames fluctuation test. All the test samples were significantly mutagenic in both the testing systems. The ground water and river water samples were subjected to XAD concentration prior to the mutagenicity/genotoxicity testing, while the industrial waste water was used directly. Whereas TA98, TA102 and TA104 strains have been found to be maximally sensitive in the Ames plate incorporation assay conducted for various water samples, TA98 and TA100 strains were the most responsive strains in the Ames fluctuation test. The apparent disparity in the sensitivity patterns of various Ames strains by plate incorporation and fluctuation assays could be attributed to a large extent to the different conventional ways of interpretation of the data in these systems.

  5. A survey sampling approach for pesticide monitoring of community water systems using groundwater as a drinking water source.

    PubMed

    Whitmore, Roy W; Chen, Wenlin

    2013-12-01

    The ability to infer human exposure to substances from drinking water using monitoring data helps determine and/or refine potential risks associated with drinking water consumption. We describe a survey sampling approach and its application to an atrazine groundwater monitoring study to adequately characterize upper exposure centiles and associated confidence intervals with predetermined precision. Study design and data analysis included sampling frame definition, sample stratification, sample size determination, allocation to strata, analysis weights, and weighted population estimates. Sampling frame encompassed 15 840 groundwater community water systems (CWS) in 21 states throughout the U. S. Median, and 95th percentile atrazine concentrations were 0.0022 and 0.024 ppb, respectively, for all CWS. Statistical estimates agreed with historical monitoring results, suggesting that the study design was adequate and robust. This methodology makes no assumptions regarding the occurrence distribution (e.g., lognormality); thus analyses based on the design-induced distribution provide the most robust basis for making inferences from the sample to target population.

  6. 76 FR 7106 - Food Additives Permitted in Feed and Drinking Water of Animals; Formic Acid

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 573 Food Additives Permitted in Feed and.... SUMMARY: The Food and Drug Administration (FDA) is amending the regulations for food additives permitted... agent in swine feed. This action is in response to a food additive petition filed by Kemira Oyj...

  7. Interim results of quality-control sampling of surface water for the Upper Colorado River National Water-Quality Assessment Study Unit, water years 1995-96

    USGS Publications Warehouse

    Spahr, N.E.; Boulger, R.W.

    1997-01-01

    Quality-control samples provide part of the information needed to estimate the bias and variability that result from sample collection, processing, and analysis. Quality-control samples of surface water collected for the Upper Colorado River National Water-Quality Assessment study unit for water years 1995?96 are presented and analyzed in this report. The types of quality-control samples collected include pre-processing split replicates, concurrent replicates, sequential replicates, post-processing split replicates, and field blanks. Analysis of the pre-processing split replicates, concurrent replicates, sequential replicates, and post-processing split replicates is based on differences between analytical results of the environmental samples and analytical results of the quality-control samples. Results of these comparisons indicate that variability introduced by sample collection, processing, and handling is low and will not affect interpretation of the environmental data. The differences for most water-quality constituents is on the order of plus or minus 1 or 2 lowest rounding units. A lowest rounding unit is equivalent to the magnitude of the least significant figure reported for analytical results. The use of lowest rounding units avoids some of the difficulty in comparing differences between pairs of samples when concentrations span orders of magnitude and provides a measure of the practical significance of the effect of variability. Analysis of field-blank quality-control samples indicates that with the exception of chloride and silica, no systematic contamination of samples is apparent. Chloride contamination probably was the result of incomplete rinsing of the dilute cleaning solution from the outlet ports of the decaport sample splitter. Silica contamination seems to have been introduced by the blank water. Sampling and processing procedures for water year 1997 have been modified as a result of these analyses.

  8. Hydrogen isotopes from source water to leaf lipid in a continental-scale sample network

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel; Kahmen, Ansgar

    2015-04-01

    Sedimentary plant waxes are useful paleoclimate proxies because they are preserved in depositional settings on geologic timescales and the isotopic composition of the hydrogen in these molecules reflects that of the source water available during biosynthesis. This application is based largely on empirical calibrations that have demonstrated continental-scale correlations between source water and lipid hydrogen isotope values. However, the importance of variable net isotopic fractionation between source water and lipid for different species and environmental conditions is increasingly recognized. Isotopic enrichment of leaf water during transpiration is key among these secondary factors, and is itself sensitive to changes in hydroclimate. Leaf water enrichment also occurs prior to photosynthetic water uptake, and is therefore independent from cellular-level biomarker synthesis. Mechanistic models can predict the mean leaf water hydrogen isotope composition from readily available meteorological variables. This permits global-scale isoscape maps of leaf water isotopic composition and enrichment above source water to be generated, but these models have not been widely validated at continental spatial scales. We have established a network of twenty-one sites across Europe where we are sampling for leaf-, xylem-, and soil-water isotopes (H and O) at approximately 5-week intervals over the summer growing season. We augment the sample set with weekly to monthly precipitation samples and early- and late-season plant wax lipid samples. Collaborators at each site are conducting the sampling, and most sites are members of the FLUXNET tower network that also record high-resolution meteorological data. We present information on the implementation of the network and preliminary results from the 2014 summer season. The complete dataset will be used to track the evolution of water isotopes from source to leaf water and from leaf water to lipid hydrogen across diverse environments

  9. A confirmatory holding time study for purgeable VOCs in water samples

    SciTech Connect

    West, O.R.; Bayne, C.K.; Siegrist, R.L.; Holden, W.H.; Bottrell, D.W.

    1996-10-01

    Analyte stability during pre-analytical storage is essential to the accurate quantification contaminants in environmental samples. This is particularly true for volatile organic compounds (VOCS) which can easily volatilize and/or degrade during sample storage. Recognizing this, regulatory agencies require water samples be collected in vials without headspace and stored at 4 degrees C, and that analyses be conducted within 14 days, 2048 even if samples are acid-preserved. Since the selection of a 14-day holding time was largely arbitrary, the appropriateness of this requirement must be re-evaluated. The goal of the study described here was to provide regulatory agencies with the necessary data to extend the maximum holding time for properly preserved VOC water samples to 28 days.

  10. Determination of (210)Po in drinking water and urine samples using copper sulfide microprecipitation.

    PubMed

    Guérin, Nicolas; Dai, Xiongxin

    2014-06-17

    Polonium-210 ((210)Po) can be rapidly determined in drinking water and urine samples by alpha spectrometry using copper sulfide (CuS) microprecipitation. For drinking water, Po in 10 mL samples was directly coprecipitated onto the filter for alpha counting without any purification. For urine, 10 mL of sample was heated, oxidized with KBrO3 for a short time (∼5 min), and subsequently centrifuged to remove the suspended organic matter. The CuS microprecipitation was then applied to the supernatant. Large batches of samples can be prepared using this technique with high recoveries (∼85%). The figures of merit of the methods were determined, and the developed methods fulfill the requirements for emergency and routine radioassays. The efficiency and reliability of the procedures were confirmed using spiked samples.

  11. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2012-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  12. Determination of (210)Po in drinking water and urine samples using copper sulfide microprecipitation.

    PubMed

    Guérin, Nicolas; Dai, Xiongxin

    2014-06-17

    Polonium-210 ((210)Po) can be rapidly determined in drinking water and urine samples by alpha spectrometry using copper sulfide (CuS) microprecipitation. For drinking water, Po in 10 mL samples was directly coprecipitated onto the filter for alpha counting without any purification. For urine, 10 mL of sample was heated, oxidized with KBrO3 for a short time (∼5 min), and subsequently centrifuged to remove the suspended organic matter. The CuS microprecipitation was then applied to the supernatant. Large batches of samples can be prepared using this technique with high recoveries (∼85%). The figures of merit of the methods were determined, and the developed methods fulfill the requirements for emergency and routine radioassays. The efficiency and reliability of the procedures were confirmed using spiked samples. PMID:24906041

  13. Field guidelines for collection, treatment, and analysis of water samples, Montana district

    USGS Publications Warehouse

    Knapton, J.R.

    1985-01-01

    This manual provides a set of standardized guidelines and quality-control procedures for the collection and preservation of water samples and defines procedures for field analyses of unstable constituents or properties. Seldom is the water being samples of such uniformity that a single grab sample is representative of the whole. For this reason a variety of sampler types and sampling methods have been devised. Descriptions and procedures for field use are given for a number of sampler types. Several methods of sampling are described for which these samplers can be used. Sample-processing devices such as sample splitters and filtration apparatus are discussed along with methods of cleaning. Depending on the type of analysis to be performed in the laboratory, samples may need to be preserved shortly after collection. Various types of preservation are described in detail. Analyses for unstable constituents or properties are of necessity accomplished in the field. This manual addresses analytical techniques and quality assurance for: (1) Water temperature, (2) specific conductance, (3) pH, (4) alkalinity, (5) dissolved oxygen, and (6) bacteria. Examples of field report forms are given as attachments. Information pertinent to certain field calculations is also presented. (USGS)

  14. Laboratory investigation into the contribution of contaminants to ground water from equipment materials used in sampling

    SciTech Connect

    Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P. Evan; Sklarew, Deborah S.

    2004-07-31

    Benzene contamination was detected in water samples from the Ogallala aquifer beneath and adjacent to the Department of Energy's (DOE) Pantex Plant near Amarillo, Texas. DOE assembled a Technical Assistance Team to evaluate the source of benzene. One of the team's recommendations was to assess whether the sampling equipment material could be a source of benzene and other volatile organic compounds. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory tests indicated that the equipment material did, in fact, contribute volatile and semi-volatile organic compounds to the groundwater samples. Specifically, three materials were identified as contributing contaminants to water samples. The nylon-11 tubing used contributed benzene and the plasticizer N-butylbenzenesulfonamide (NBSA), the urethane-coated nylon well liner contributed toluene and trace amounts of NBSA, while the sampling port "spacer" material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests are below the concentrations measured in actual groundwater samples, the equipment material was found to contribute organics to the test water rendering the results reported for the groundwater samples highly suspect.

  15. Analysis of pharmaceutical and other organic wastewater compounds in filtered and unfiltered water samples by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.

    2014-01-01

    Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample

  16. Effects of holding time and measurement error on culturing Legionella in environmental water samples.

    PubMed

    Flanders, W Dana; Kirkland, Kimberly H; Shelton, Brian G

    2014-10-01

    Outbreaks of Legionnaires' disease require environmental testing of water samples from potentially implicated building water systems to identify the source of exposure. A previous study reports a large impact on Legionella sample results due to shipping and delays in sample processing. Specifically, this same study, without accounting for measurement error, reports more than half of shipped samples tested had Legionella levels that arbitrarily changed up or down by one or more logs, and the authors attribute this result to shipping time. Accordingly, we conducted a study to determine the effects of sample holding/shipping time on Legionella sample results while taking into account measurement error, which has previously not been addressed. We analyzed 159 samples, each split into 16 aliquots, of which one-half (8) were processed promptly after collection. The remaining half (8) were processed the following day to assess impact of holding/shipping time. A total of 2544 samples were analyzed including replicates. After accounting for inherent measurement error, we found that the effect of holding time on observed Legionella counts was small and should have no practical impact on interpretation of results. Holding samples increased the root mean squared error by only about 3-8%. Notably, for only one of 159 samples, did the average of the 8 replicate counts change by 1 log. Thus, our findings do not support the hypothesis of frequent, significant (≥= 1 log10 unit) Legionella colony count changes due to holding.

  17. Particle size conditions water repellency in sand samples hydrophobized with stearic acid

    NASA Astrophysics Data System (ADS)

    González-Peñaloza, F. A.; Jordán, A.; Bellinfante, N.; Bárcenas-Moreno, G.; Mataix-Solera, J.; Granged, A. J. P.; Gil, J.; Zavala, L. M.

    2012-04-01

    The main objective of this research is to study the effects of particle size and soil moisture on water repellency (WR) from hydrophobized sand samples. Quartz sand samples were collected from the top 15 cm of sandy soils, homogenised and divided in different sieve fractions: 0.5 - 2 mm (coarse sand), 0.25 - 0.5 mm (medium sand), and 0.05 - 0.25 mm (fine sand). WR was artificially induced in sand samples using different concentrations of stearic acid (SA; 0.5, 1, 5, 10, 20 and 30 g kg-1). Sand samples were placed in Petri plates and moistened with distilled water until 10% water content in weight. After a period of 30 min, soil WR was determined using the water drop penetration time (WDPT) test. A set of sub-samples was placed in an oven (50 oC) during the experimental period, and the rest was left air-drying at standard laboratory conditions. Water repellent soil samples were used as control, and the same treatments were applied. WR was determined every 24 h. No changes in WR were observed after 6 days of treatment. As expected, air-dried fine sand samples showed WR increasing with SA concentration and decreasing with soil moisture. In contrast, oven-dried samples remained wettable at SA concentrations below 5 g kg-1. Fine sand oven-dried samples showed extreme WR after just one day of treatment, but air-dried samples did not show extreme repellency until three days after treatment. SA concentrations above 5 g kg-1 always induced extreme WR. Medium sand air-dried samples showed hydrophilic properties when moist and low SA concentration (£1 g kg-1), but strong to extreme WR was induced by higher SA concentrations. In the case of oven-dried samples, medium sand showed severe to extreme WR regardless of soil moisture. Coarse sand showed the longest WDPTs, independently of soil moisture content or SA concentration. This behaviour may be caused by super-hydrophobicity. Also, it is suggested that movements of sand particles during wetting, contribute to expose new

  18. Hydrogeologic framework and sampling design for an assessment of agricultural pesticides in ground water in Pennsylvania

    USGS Publications Warehouse

    Lindsey, Bruce D.; Bickford, Tammy M.

    1999-01-01

    State agencies responsible for regulating pesticides are required by the U.S. Environmental Protection Agency to develop state management plans for specific pesticides. A key part of these management plans includes assessing the potential for contamination of ground water by pesticides throughout the state. As an example of how a statewide assessment could be implemented, a plan is presented for the Commonwealth of Pennsylvania to illustrate how a hydrogeologic framework can be used as a basis for sampling areas within a state with the highest likelihood of having elevated pesticide concentrations in ground water. The framework was created by subdividing the state into 20 areas on the basis of physiography and aquifer type. Each of these 20 hydrogeologic settings is relatively homogeneous with respect to aquifer susceptibility and pesticide use?factors that would be likely to affect pesticide concentrations in ground water. Existing data on atrazine occurrence in ground water was analyzed to determine (1) which areas of the state already have suffi- cient samples collected to make statistical comparisons among hydrogeologic settings, and (2) the effect of factors such as land use and aquifer characteristics on pesticide occurrence. The theoretical vulnerability and the results of the data analysis were used to rank each of the 20 hydrogeologic settings on the basis of vulnerability of ground water to contamination by pesticides. Example sampling plans are presented for nine of the hydrogeologic settings that lack sufficient data to assess vulnerability to contamination. Of the highest priority areas of the state, two out of four have been adequately sampled, one of the three areas of moderate to high priority has been adequately sampled, four of the nine areas of moderate to low priority have been adequately sampled, and none of the three low priority areas have been sampled. Sampling to date has shown that, even in the most vulnerable hydrogeologic settings

  19. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    USGS Publications Warehouse

    Katz, B.G.; Bullen, M.P.; Bullen, T.D.; Hansard, Paul

    1999-01-01

    Concentrations of total lead (Pb) and dissolved Pb exceeded the U.S. Environmental Protection Agency action level of 15 micrograms per liter (mg/L) in approximately 19 percent and 1.3 percent, respectively, of ground-water samples collected during 1991-96 from a statewide network of monitoring wells designed to delineate background water quality of Florida's major aquifer systems. Differences in total Pb concentrations among aquifer systems reflect the combined influence of anthropogenic sources and chemical conditions in each system. A highly significant (p<0.001) difference in median total Pb concentrations was found for water samples from wells with water-level recording devices that contain Pb-counterweights (14 mg/L) compared to non-recorder wells (2 mg/L). Differences between total Pb concentrations for recorder and non-recorder wells are even more pronounced when compared for each aquifer system. The largest differences for recorder status are found for the surficial aquifer system, where median total Pb concentrations are 44 and 2.4 mg/L for recorder wells and non-recorder wells, respectively. Leaching of Pb from metal casing materials is another potential source of Pb in ground water samples. Median total Pb concentrations in water samples from the surficial, intermediate, and Floridan aquifer systems are higher from recorder wells cased with black iron than for recorder wells with steel and PVC casing material. Stable isotopes of Pb were used in this study to distinguish between anthropogenic and natural sources of Pb in ground water, as Pb retains the isotopic signature of the source from which it is derived. Based on similarities between slopes and intercepts of trend lines for various sample types (plots of 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb versus 208Pb/204Pb) the predominant source of total Pb in water samples from the surficial aquifer system is corrosion of Pb counterweights. It is likely that only ground-water samples, not the aquifer

  20. Water Column Sampling Capabilities of the NEPTUNE Canada Regional Cabled Observatory

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.; Neptune Canada Science

    2010-12-01

    The NEPTUNE Canada Regional Observatory affords a wide range of opportunities to conduct adaptive and high-temporal resolution water column property studies. Intensive sites are located in a shallow near-shore environment (Folger Passage), a shelf-slope-break region (Barkley Upper Slope) and a deep offshore mid-ocean spreading centre (Endeavour Ridge). The Folger Passage site has instrument platforms at 100 m and 23 m which are located near the mouth of Barkley Sound on the west coast of Vancouver Island. Instruments include upward-looking surface-wave resolving Acoustic Doppler Current Profilers (ADCPs), multi-frequency echo-sounders to measure backscatter from zooplankton and bottom pressure recorders to assess long-wave variability (e.g. tsunami, shelf waves, tidal). The near-bottom water column is sampled for salinity, temperature, oxygen, chlorophyll, turbidity, photosynthetically active light and, in addition, there are fine scale measurements of the velocity structure of the bottom-boundary layer. Water column measurements at the 400 metre deep Barkley Upper Slope site are facilitated by a world leading Vertical Profiling System (VPS). This winch operated system will profile a suite of instruments through the water column at up to 4 cycles per day. Optical measurements consist of a pair of hyperspectral radiometers to characterise downwelling irradiation and upwelling radiance, backscatter fluorescence for chlorophyll, and an optode to determine oxygen levels. A pumped CTD will provide salinity, temperature, depth as well as plumbing for a nitrate sensor, a coloured dissolved organic matter sensor and a pCO2 sensor. Acoustic instruments on the profiler consist of a 400 kHz ADCP, 200 kHz echosounder and a broad band hydrophone. With these instruments we expect to be able to explore the covariation of physical and chemical parameters with impact at a range of trophic levels, up to and including marine mammals. At the base of the VPS there is a long range ADCP

  1. Organochlorine insecticide residues are found in surface, irrigated water samples from several districts in Bangladesh.

    PubMed

    Chowdhury, Alamgir Zaman; Islam, Mohammad Nazrul; Moniruzzaman, Mohammed; Gan, Siew Hua; Alam, Md Khorshed

    2013-02-01

    The purpose of this study was to investigate the occurrence and distribution of organochlorines such as aldrin, dieldrin, dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyldichloroethane (DDD), dichlorodiphenyltrichloroethane (DDT), endrin, lindane and heptachlor insecticide residues in irrigated surface water samples collected from 22 districts in Bangladesh. The concentrations of the pesticides were determined using gas chromatography mass spectrophotometry. Water samples from five locations (Feni, Nawabganj, Putia, Burichang and Chatak) were contaminated with DDT; the highest DDT concentration detected was 8.29 μg/L, and its metabolite, DDE, was detected at 4.06 μg/L. Water samples from four other locations (Natore, Sikderpara, Chatak and Rajoir) were contaminated with heptachlor residues, and the highest level detected was 5.24 μg/L, which is the above the maximum contaminant level recommended by the World Health Organisation. A water sample collected from Chatak, Sunamganj, was contaminated with both DDT and heptachlor pesticide residues. None of the water samples were contaminated with aldrin, DDD, dieldrin, endrin or lindane. It is concluded that continuous, long-term monitoring and essential steps to limit the use of the pesticides in Bangladesh are needed. PMID:23212886

  2. Determination of boron contents in water samples collected from the Neelum valley, Azad Kashmir, Pakistan.

    PubMed

    Akram, Muhammad; Matiullah; Iqbal, Arshid; Husaini, S N; Malik, Fariha

    2011-03-01

    Intake of boron from food and drinking water may pose a risk to the public health above a certain concentration level. Therefore, knowledge of boron concentration in drinking water and food items is essential. In this context, samples of drinking water were collected from natural springs of the Neelum valley, Azad Kashmir, hit by devastating earthquake in 2005. In these samples, boron concentration was determined using neutron-induced radiography technique. To do so, unknown water samples, along with standard of known boron dried on CR-39 detectors, were irradiated with thermal neutrons. After exposure, CR-39 detectors were etched in 6 M NaOH at 70°C. The tracks produced due to the alpha particles and (7)Li ions as a result of (10)B(n,α)(7)Li reaction were counted under an optical microscope. The tracks produced in theses samples were then related to the boron contents. The measured boron concentration in water samples was found to vary from 0.105 ± 0.005 to 0.247 ± 0.013 mg/l with an average value of 0.17 ± 0.04 mg/l, which are within the acceptable limits.

  3. Geophysical methods to support correct water sampling locations for salt dilution gauging

    NASA Astrophysics Data System (ADS)

    Comina, C.; Lasagna, M.; De Luca, D. A.; Sambuelli, L.

    2014-08-01

    To improve water management design, particularly in irrigation areas, it is important to evaluate the baseline state of the water resources, including canal discharge. Salt dilution gauging is a traditional and well-documented technique in this respect. The complete mixing of salt used for dilution gauging is required; this condition is difficult to test or verify and, if not fulfilled, is the largest source of uncertainty in the discharge calculation. In this paper, a geophysical technique (FERT, fast electrical resistivity tomography) is proposed for imaging the distribution of the salt plume used for dilution gauging at every point along a sampling cross section. With this imaging, complete mixing can be verified. If the mixing is not complete, the image created by FERT can also provide a possible guidance for selecting water-sampling locations in the sampling cross section. A water multi-sampling system prototype aimed to potentially take into account concentration variability is also proposed and tested. The results reported in the paper show that FERT provides a three-dimensional image of the dissolved salt plume and that this can potentially help in the selection of water sampling points.

  4. Characterization of Listeria monocytogenes isolated from Ganges water, human clinical and milk samples at Varanasi, India.

    PubMed

    Soni, Dharmendra K; Singh, Rakesh K; Singh, Durg V; Dubey, Suresh K

    2013-03-01

    Listeria monocytogenes isolated from Ganges water, human clinical and milk samples were characterized by antibiotic susceptibility, serotype identification, detection of virulence genes and ERIC- and REP-PCR fingerprint analyses. All isolates were uniformly resistant to ampicillin, except two isolates, and showed variable resistance to gentamicin, cotrimoxazole, ofloxacin, rifampicin and tetracycline. Of the 20 isolates found positive for pathogens, seven (four human and three water isolates) belong to serogroups 4b, 4d and 4e; six (one human and five water isolates) belong to serogroups 1/2c and 3c; four milk isolates belong to serogroups 1/2b and 3b; and three milk isolates belong to serogroups 1/2a and 3a. Two water isolates, all human isolates, except one (Pb1) lacking inlJ gene, and three milk isolates possess inlA, inlC, plcA, prfA, actA, hlyA and iap genes. The remaining water and milk isolates showed variable presence of inlJ, plcA, prfA, and iap genes. ERIC- and REP-PCR based analyses collectively indicated that isolates of human clinical samples belong to identical or similar clone and isolates of water and milk samples belong to different clones. Overall study demonstrates the prevalence of pathogenic L. monocytogenes species in the environmental and clinical samples. Most of the isolates were resistant to commonly used antibiotics. PMID:23201044

  5. Transcriptomic profiling permits the identification of pollutant sources and effects in ambient water samples.

    PubMed

    Hasenbein, Matthias; Werner, Inge; Deanovic, Linda A; Geist, Juergen; Fritsch, Erika B; Javidmehr, Alireza; Foe, Chris; Fangue, Nann A; Connon, Richard E

    2014-01-15

    Contaminant exposure is one possible contributor to population declines of endangered fish species in the Sacramento-San Joaquin Estuary, California, including the endangered delta smelt (Hypomesus transpacificus). Herein we investigated transcriptional responses in larval delta smelt resulting from exposure to water samples collected at the Department of Water Resources Field Station at Hood, a site of concern, situated upstream of known delta smelt habitat and spawning sites and downstream of the Sacramento Regional Wastewater Treatment Plant (SRWTP). Microarray assessments indicate impacts on energy metabolism, DNA repair mechanisms and RNA processing, the immune system, development and muscle function. Transcription responses of fish exposed to water samples from Hood were compared with exposures to 9% effluent samples from SRWTP, water from the Sacramento River at Garcia Bend (SRGB), upstream of the effluent discharge, and SRGB water spiked with 2mg/L total ammonium (9% effluent equivalent). Results indicate that transcriptomic profiles from Hood are similar to 9% SRWTP effluent and ammonium spiked SRGB water, but significantly different from SRGB. SRGB samples however were also significantly different from laboratory controls, suggesting that SRWTP effluent is not solely responsible for the responses determined at Hood, that ammonium exposure likely enhances the effect of multiple-contaminant exposures, and that the observed mortality at Hood is due to the combination of both effluent discharge and contaminants arising from upstream of the tested sites. PMID:24061060

  6. Microbial profiling of South African acid mine water samples using next generation sequencing platform.

    PubMed

    Kamika, I; Azizi, S; Tekere, M

    2016-07-01

    This study monitored changes in bacterial and fungal structure in a mine water in a monthly basis over 4 months. Over the 4-month study period, mine water samples contained more bacteria (91.06 %) compared to fungi (8.94 %). For bacteria, mine water samples were dominated by Proteobacteria (39.14 to 65.06 %) followed by Firmicutes (26.34 to 28.9 %) in summer, and Cyanobacteria (27.05 %) in winter. In the collected samples, 18 % of bacteria could not be assigned to a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity especially during winter. The fungal domain was the sole eukaryotic microorganism found in the mine water samples with unclassified fungi (68.2 to 91 %) as the predominant group, followed by Basidiomycota (6.9 to 27.8 %). The time of collection, which was linked to the weather, had higher impact on bacterial community than fungal community. The bacterial operational taxonomic units (OTUs) ranged from 865 to 4052 over the 4-month sampling period, while fungal OTUs varied from 73 to 249. The diversity indices suggested that the bacterial community inhabiting the mine water samples were more diverse than the fungal community. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content, as compared to fungi and water characteristics, had the greatest contribution to both bacterial and fungal community variance. The results provided the relationships between microbial community and environmental variables in the studied mining sites. PMID:26980100

  7. Electrothermal Vaporization Sample Introduction for Spaceflight Water Quality Monitoring via Gas Chromatography-Differential Mobility Spectrometry.

    PubMed

    Wallace, William T; Gazda, Daniel B; Limero, Thomas F; Minton, John M; Macatangay, Ariel V; Dwivedi, Prabha; Fernández, Facundo M

    2015-06-16

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. However, with the construction of the International Space Station (ISS) and the subsequent extension in mission duration up to one year, an enhanced, real-time method for environmental monitoring is necessary. The station air is currently monitored for trace volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (GC-DMS) via the Air Quality Monitor (AQM), while water is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. As mission scenarios extend beyond low Earth orbit, a convergence in analytical instrumentation to analyze both air and water samples is highly desirable. Since the AQM currently provides quantitative, compound-specific information for air samples and many of the targets in air are also common to water, this platform is a logical starting point for developing a multimatrix monitor. Here, we report on the interfacing of an electrothermal vaporization (ETV) sample introduction unit with a ground-based AQM for monitoring target analytes in water. The results show that each of the compounds tested from water have similar GC-DMS parameters as the compounds tested in air. Moreover, the ETV enabled AQM detection of dimethlsilanediol (DMSD), a compound whose analysis had proven challenging using other sample introduction methods. Analysis of authentic ISS water samples using the ETV-AQM showed that DMSD could be successfully quantified, while the concentrations obtained for the other compounds also agreed well with laboratory results.

  8. Solid sampling determination of lithium and sodium additives in microsamples of yttrium oxyorthosilicate by high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Laczai, Nikoletta; Kovács, László; Péter, Ágnes; Bencs, László

    2016-03-01

    Solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS-HR-CS-GFAAS) methods were developed and studied for the fast and sensitive quantitation of Li and Na additives in microsamples of cerium-doped yttrium oxyorthosilicate (Y2SiO5:Ce) scintillator materials. The methods were optimized for solid samples by studying a set of GFAAS conditions (i.e., the sample mass, sensitivity of the analytical lines, and graphite furnace heating programs). Powdered samples in the mass range of 0.099-0.422 mg were dispensed onto graphite sample insertion boats, weighed and analyzed. Pyrolysis and atomization temperatures were optimized by the use of single-element standard solutions of Li and Na (acidified with 0.144 mol/L HNO3) at the Li I 610.353 nm and Na I 285.3013 nm analytical lines. For calibration purposes, the method of standard addition with Li and Na solutions was applied. The correlation coefficients (R values) of the calibration graphs were not worse than 0.9678. The limit of detection for oxyorthosilicate samples was 20 μg/g and 80 μg/g for Li and Na, respectively. The alkaline content of the solid samples were found to be in the range of 0.89 and 8.4 mg/g, respectively. The accuracy of the results was verified by means of analyzing certified reference samples, using methods of standard (solution) addition calibration.

  9. Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples.

    PubMed

    Assayag, Nelly; Rivé, Karine; Ader, Magali; Jézéquel, Didier; Agrinier, Pierre

    2006-01-01

    We present here an improved and reliable method for measuring the concentration of dissolved inorganic carbon (DIC) and its isotope composition (delta(13)C(DIC)) in natural water samples. Our apparatus, a gas chromatograph coupled to an isotope ratio mass spectrometer (GCIRMS), runs in a quasi-automated mode and is able to analyze about 50 water samples per day. The whole procedure (sample preparation, CO(2(g))-CO(2(aq)) equilibration time and GCIRMS analysis) requires 2 days. It consists of injecting an aliquot of water into a H(3)PO(4)-loaded and He-flushed 12 mL glass tube. The H(3)PO(4) reacts with the water and converts the DIC into aqueous and gaseous CO(2). After a CO(2(g))-CO(2(aq)) equilibration time of between 15 and 24 h, a portion of the headspace gas (mainly CO(2)+He) is introduced into the GCIRMS, to measure the carbon isotope ratio of the released CO(2(g)), from which the delta(13)C(DIC) is determined via a calibration procedure. For standard solutions with DIC concentrations ranging from 1 to 25 mmol . L(-1) and solution volume of 1 mL (high DIC concentration samples) or 5 mL (low DIC concentration samples), delta(13)C(DIC) values are determined with a precision (1sigma) better than 0.1 per thousand. Compared with previously published headspace equilibration methods, the major improvement presented here is the development of a calibration procedure which takes the carbon isotope fractionation associated with the CO(2(g))-CO(2(aq)) partition into account: the set of standard solutions and samples has to be prepared and analyzed with the same 'gas/liquid' and 'H(3)PO(4)/water' volume ratios. A set of natural water samples (lake, river and hydrothermal springs) was analyzed to demonstrate the utility of this new method. PMID:16810706

  10. Additional Human Papillomavirus Types Detected by the Hybrid Capture Tube Test among Samples from Women with Cytological and Colposcopical Atypia

    PubMed Central

    Kónya, József; Veress, György; Juhász, Attila; Szarka, Krisztina; Sápy, Tamás; Hernádi, Zoltán; Gergely, Lajos

    2000-01-01

    The type specificity of the human papillomavirus (HPV) Hybrid Capture Tube (HCT) test was evaluated by using typing with PCR (MY09-MY11)-restriction fragment length polymorphism (RFLP) and sequencing. All samples HCT test positive for only low-risk HPV (n = 15) or only high-risk HPV (n = 102) were confirmed, whereas 9 of 12 HCT test double-positive samples contained only high-risk HPV types as determined by PCR-RFLP. Several high-risk HPV types (HPV-53, -58, -62, -66, -CP8304, and -MM4) not included in the HCT test were indeed detected, indicating a broader detection range with retained distinction between low-risk and high-risk HPV types. PMID:10618127

  11. Determination of strontium-90 in water and urine samples using ion chromatography.

    PubMed

    Cobb, J; Warwick, P; Carpenter, R C; Morrison, R T

    1994-08-01

    A semi-automated method was developed for the determination of 90Sr in water and urine samples using ion chromatography. Yttrium-90 in secular equilibrium with 90Sr was initially extracted from the sample solution buffered to pH 5 using a high-capacity iminodiacetate chelating resin. At this pH, transition metals, lanthanides and actinides were extracted by the resin. The extracted metals were then transferred on to a separator column where they were separated and eluted as weak acid anionic complexes. The transition metals were eluted first by using a pyridine-2,6-dicarboxylate eluent, then the lanthanides, actinides and 90Y were eluted from the column by using an oxalate-diglycolate eluent. The fraction containing 90Y was then collected and beta-counted. For water samples, a minimum of sample preparation was required prior to chromatography, whereas an oxalate coprecipitation was included as a preconcentration step for urine samples. The derived recoveries for 90Sr for surface water, rain water and urine samples were 91.7 +/- 1.8, 91.9 +/- 1.6 and 90.0 +/- 2.7%, respectively, and the minimum detectable activity using gas flow proportional counting was 8 mBq.

  12. Contactless conductometric determination of methanol and ethanol in samples containing water after their electrophoretic desalination.

    PubMed

    Tůma, Petr; Opekar, František

    2015-08-01

    Determination of the contents of methanol and ethanol in aqueous solutions was performed by measuring the permittivity of solutions using a contactless conductivity detector (C(4) D) normally used for detection in capillary electrophoresis. The detection cell is a section of a fused silica capillary with an internal diameter of 50 μm with a pair of conductivity electrodes on the external walls. The C(4) D response to samples of methanol/water and ethanol/water mixtures is linear in the concentration interval of approx. 40-100% v/v alcohol content. In the analysis of technical samples of methanol and ethanol, the determination is disturbed by the presence of even trace amounts of salts. This interference can be effectively eliminated by integrated electrophoretic desalination of the sample by the application of a direct current electric voltage with a magnitude of 10 kV to the capillary with the injected sample zone. Under these conditions, the ions migrate out of the sample zone and the detector response is controlled purely by the permittivity of the solvent/water zone. Desalinating is effective for NaCl contents in the range from 0 to 5 mmol/L NaCl. The effectiveness of the desalinating process has been verified on MeOH/water samples and in determination of the ethanol content in distilled beverages normally available in the retail network.

  13. Leaf water and plant wax hydrogen isotopes in a European sample network

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2014-12-01

    The hydrogen isotopic composition of plant waxes in sediments is now routinely used as a hydroclimate proxy. This application is based largely on empirical calibrations that have demonstrated continental-scale correlations between source water and lipid hydrogen isotope values. But at smaller spatial scales and for individual locations it is increasingly recognized that factors that modify apparent fractionation between source water and leaf lipid hydrogen isotope values must also be considered. Isotopic enrichment of leaf water during transpiration is key among these secondary factors, and is itself sensitive to changes in hydroclimate. Leaf water enrichment also occurs prior to photosynthetic water uptake, and is therefore independent from cellular-level biomarker synthesis. Recent advances in theory have permitted mechanistic models to be developed that can be used to predict the mean leaf water hydrogen and oxygen isotope composition from readily available meteorological variables. This permits global-scale isoscape maps of leaf water isotopic composition and enrichment above source water to be generated, but these models have not been widely validated at continental spatial scales. We have established a network of twenty-one sites across Europe where we are sampling for leaf-, xylem-, and soil-water isotopes (H and O) at approximately 5-week intervals over the summer growing season. We augment the sample set with weekly to monthly precipitation samples and early- and late-season plant wax lipid samples. Collaborators at each site are conducting the sampling, and most sites are members of the FLUXNET tower network that also record high-resolution meteorological data. We present information on the implementation of the network and preliminary results from the 2014 summer season. The complete dataset will be used to track the evolution of water isotopes from source to leaf water and from leaf water to lipid hydrogen across diverse environments. This will provide

  14. Electrofishing and the effects of depletion sampling on fish health: A review and recommendations for additional study

    USGS Publications Warehouse

    Panek, F.M.; Densmore, Christine L.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    Depletion sampling in combination with multiple-pass electrofishing is an important fisheries management tool for wadeable streams. This combination of techniques has been used routinely by federal and state fishery management agencies for several decades as a reliable means to obtain quantitative data on trout populations or to describe fish community structure. In this paper we review the effects of electrofishing on fish and discuss this within the context of depletion sampling and multiple exposures of fishes to electric fields. The multiple wave forms most commonly used in sampling (alternating current, direct current, and pulsed direct current) are discussed as well as electrofishing induced response, injury and physiological stress. Fish that survive electrofishing injuries are more likely to suffer short and long-term adverse effects to their behavior, health, growth, or reproduction. Of greatest concern are the native, non-target species that may be subjected to multiple electrical shocks during the course of a 3-pass depletion survey. These exposures and their effects on the non-target species warrant further study as do the overall effects of electrofishing on populations and community structure. 

  15. Cyto- and genotoxic potential of water samples from polluted areas in Kosovo.

    PubMed

    Alija, Avdulla J; Bajraktari, Ismet D; Bresgen, Nikolaus; Bojaxhi, Ekramije; Krenn, Margit; Asllani, Fisnik; Eckl, Peter M

    2016-09-01

    Reports on the state of the environment in Kosovo have emphasized that river and ground water quality is affected by pollution from untreated urban water as well as the waste water from the industry. One of the main contributors to this pollution is located in Obiliq (coal power plants). Prishtina-the capital city of Kosovo-is heavily influenced too. Furthermore, the pollutants combined together with those from heavy traffic are dissolved in Prishtina runoff water, which is discharged into the creek entering the river Sitnica together with urban waste water. The available data show the complex pollution with excessive quantities of nitrites, suspended materials, organic compounds, detergents, heavy metals, polychlorinated biphenyls, etc. In this study, the cytotoxic and genotoxic potential of water samples taken at these sites was tested in primary rat hepatocytes. The results obtained indicate that water samples collected in Prishtina and Obiliq had a significant cytotoxic potential in primary rat hepatocyte cultures even when diluted to 1 %. The increased cytotoxicity, however, was not accompanied by an increased genotoxicity as measured by the percentage of micronucleated cells. Further investigations addressing the chemical composition of the samples and the identification of the toxicants responsible for the cytotoxic effects found will be carried out in a next step. PMID:27488194

  16. Determination of organic additives in mortars by near-IR spectroscopy. A novel approach to designing a sample set with high-variability components.

    PubMed

    Blanco, Marcelo; Peguero, Anna

    2007-02-01

    Industrial mortars consist primarily of a mixture of cement and an aggregate plus a small amount of additives that are used to modify specific properties. Using too high or too low additive rates usually results in the loss of desirable properties in the end product. This entails carefully controlling the amounts of additives added to mortar in order to ensure correct dosing and/or adequate homogeneity in the final mixture. Near-IR (NIR) spectroscopy has proved effective for this purpose as it requires no sample pretreatment and affords expeditious analyses. The purpose of this work was to determine two organic additives (viz. Ad1 and Ad2) in mortars by using partial least squares regression multivariate calibration models constructed from NIR spectroscopic data. The additives are used to expedite setting and increase cohesion between particles in the mortar. In order to ensure that the sample set contained natural variability in the samples, we used a methodology based on experimental design to construct a representative set of samples. This novel design is based on a hexagonal antiprism that encompasses the concentration ranges spanned by the analytes and the variability inherent in each additive. The D-optimality criterion was used to obtain various combinations between Ad1 and Ad2 additive classes. The partial least squares calibration models thus constructed for each additive provided accurate predictions: the intercept and the slope of the plots of predicted values versus reference values for each additive were close to 0 and 1, respectively, and their confidence ranges included the respective value. The ensuing analytical methods were validated by using an external sample set.

  17. Addition of a magnetite layer onto a polysulfone water treatment membrane to enhance virus removal.

    PubMed

    Raciny, I; Zodrow, K R; Li, D; Li, Q; Alvarez, P J J

    2011-01-01

    The applicability of low-pressure membranes systems in distributed (point of use) water treatment is hindered by, among other things, their inability to remove potentially harmful viruses and ions via size exclusion. According to the USEPA and the Safe Drinking Water Act, drinking water treatment processes must be designed for 4-log virus removal. Batch experiments using magnetite nanoparticle (nano-Fe3O4) suspensions and water filtration experiments with polysulfone membranes coated with nano-Fe3O4 were conducted to assess the removal of a model virus (bacteriophage MS2). The membranes were coated via a simple filtration protocol. Unmodified membranes were a poor adsorbent for MS2 bacteriophage with less than 0.5-log removal, whereas membranes coated with magnetite nanoparticles exhibited a removal efficiency exceeding 99.99% (4-log). Thus, a cartridge of PSf membranes coated with nano-Fe3O4 particles could be used to remove viruses from water. Such membranes showed negligible iron leaching into the filtrate, thus obviating concern about coloured water. Further research is needed to reduce the loss of water flux caused by coating.

  18. Addition of a Magnetite Layer onto a Polysulfone Water Treatment Membrane to Enhance Virus Removal

    NASA Astrophysics Data System (ADS)

    Raciny, Isabel

    The applicability of low-pressure membranes systems in distributed (point of use) water treatment is hindered by, among other things, their inability to remove potentially harmful viruses and ions via size exclusion. According to the USEPA and the Safe Drinking Water Act, drinking water treatment processes must be designed for 4-log virus removal. Batch experiments using magnetite nanoparticle (nano-Fe3O4) suspensions and water filtration experiments with Polysulfone (PSf) membranes coated with nano-Fe3O 4 were conducted to assess the removal of a model virus (bacteriophage MS2). The membranes were coated via a simple filtration protocol. Unmodified membranes were a poor adsorbent for MS2 bacteriophage with less than 0.5-log removal, whereas membranes coated with magnetite nanoparticles exhibited a removal efficiency exceeding 99.99% (4-log). Thus, a cartridge of PSf membranes coated with nano-Fe3O4 particles could be used to remove viruses from water. Such membranes showed negligible iron leaching into the filtrate, thus obviating concern about colored water. Further research is needed to reduce the loss of water flux caused by coating.

  19. Addition of a magnetite layer onto a polysulfone water treatment membrane to enhance virus removal.

    PubMed

    Raciny, I; Zodrow, K R; Li, D; Li, Q; Alvarez, P J J

    2011-01-01

    The applicability of low-pressure membranes systems in distributed (point of use) water treatment is hindered by, among other things, their inability to remove potentially harmful viruses and ions via size exclusion. According to the USEPA and the Safe Drinking Water Act, drinking water treatment processes must be designed for 4-log virus removal. Batch experiments using magnetite nanoparticle (nano-Fe3O4) suspensions and water filtration experiments with polysulfone membranes coated with nano-Fe3O4 were conducted to assess the removal of a model virus (bacteriophage MS2). The membranes were coated via a simple filtration protocol. Unmodified membranes were a poor adsorbent for MS2 bacteriophage with less than 0.5-log removal, whereas membranes coated with magnetite nanoparticles exhibited a removal efficiency exceeding 99.99% (4-log). Thus, a cartridge of PSf membranes coated with nano-Fe3O4 particles could be used to remove viruses from water. Such membranes showed negligible iron leaching into the filtrate, thus obviating concern about coloured water. Further research is needed to reduce the loss of water flux caused by coating. PMID:21977659

  20. A method for automatic identification of water and fat images from a symmetrically-sampled dual-echo Dixon technique

    PubMed Central

    Ahmad, Moiz; Liu, Yinan; Slavens, Zachary W.; Low, Russell; Merkle, Elmar; Hwang, Ken-Pin; Vu, Anthony; Ma, Jingfei

    2016-01-01

    Sampling water and fat signals symmetrically (i.e., at 0 and 180° relative phase angles) in a dual-echo Dixon technique offers high intrinsic tolerance to phase fluctuations in postprocessing and maximum SNR performance for the separated water and fat images. However, identification of which image is water and which image is fat after their separation is not possible based on the phase information alone. In this work, we proposed a semi-empirical automatic image identification method that is based on the intrinsic asymmetry between the water and fat chemical shift spectra. Specifically, the approximately bi-modal feature of the fat spectra and the observation that most in vivo tissues are either predominantly water or predominantly fat are used to construct a spectrum-based algorithm. Additional refinement is accomplished by considering the spatial distribution of the tissues that may have a coexistence of water and fat. The final improved algorithm was tested on a total of 131 three-dimensional patient datasets collected from different scanners and found to yield correct water and fat identification in all datasets. PMID:20061107

  1. Highly efficient "on water" catalyst-free nucleophilic addition reactions using difluoroenoxysilanes: dramatic fluorine effects.

    PubMed

    Yu, Jin-Sheng; Liu, Yun-Lin; Tang, Jing; Wang, Xin; Zhou, Jian

    2014-09-01

    A remarkable fluorine effect on "on water" reactions is reported. The CF⋅⋅⋅HO interactions between suitably fluorinated nucleophiles and the hydrogen-bond network at the phase boundary of oil droplets enable the formation of a unique microstructure to facilitate on water catalyst-free reactions, which are difficult to realize using nonfluorinated substrates. Accordingly, a highly efficient on water, catalyst-free reaction of difluoroenoxysilanes with aldehydes, activated ketones, and isatylidene malononitriles was developed, thus leading to the highly efficient synthesis of a variety of α,α-difluoro-β-hydroxy ketones and quaternary oxindoles.

  2. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins

    NASA Technical Reports Server (NTRS)

    Correll, D. L.

    1978-01-01

    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  3. Methods for primary concentration of viruses from water samples: a review and meta-analysis of recent studies.

    PubMed

    Cashdollar, J L; Wymer, L

    2013-07-01

    Since the beginning of environmental virology in the mid-twentieth century, a key challenge to scientists in the environmental field has been how to collect, isolate and detect pathogenic viruses from water that is used for drinking and/or recreational purposes. Early studies investigated different types of membrane filters, with more sophisticated technologies being developed more recently. The purpose of this study was to look at the current state of the science of methods for the concentration of viruses from water. Several technologies were reviewed, and associated data were included in a meta-analysis which showed that electronegative filters, electropositive filters and ultrafilters are comparable in performance and that significant differences in recovery are due to virus type rather than filter type, water matrix or sample volume. This information is useful, as it will help to determine which method(s) should be used, particularly if there is a specific viral type being targeted for a particular study. In addition, it will be helpful when sampling different environmental water matrices and/or when budget allowance must be taken into consideration. Taken together, this will be useful in performing viral occurrence studies, which ultimately can help ensure safer water for both humans and the environment.

  4. In situ sampling in coastal waters - in search for an adequate spatial resolution for chlorophyll monitoring

    NASA Astrophysics Data System (ADS)

    Tolvanen, H.; Suominen, T.

    2012-04-01

    Shallow coastal archipelagos give rise to highly dynamic water quality patterns. In situ sampling inevitably loses detail of this spatio-temporal variation, regardless of the spatial and temporal resolution of the monitoring. In the shallow coastal areas of SW Finland in the Baltic Sea, the spatio-temporal variation of water properties is especially high due to the complexity of the archipelago environment and its bathymetry. Water quality monitoring is traditionally carried out in situ on a point network with 5-20 km distance between the sampling stations. Also the temporal coverage is irregular and often focused to the high summer (late July to early August) to capture the highest algal occurrences resulting from eutrophication. The amount of phytoplankton may have irregular vertical variation caused by local prevailing conditions, and therefore the biomass within the productive layer is usually measured by the amount of chlorophyll as a collective sample of the single vertical profile per station. However, the amount of phytoplankton varies also horizontally over short distances in the coastal water that may be homogenous in temperature and salinity. We tested the representativeness of the traditional single sampling station method by expanding the measurement station into six parallel sampling points within a 0.25 km2 area around the station. We measured the chlorophyll content in depth profiles from 1 m to 10 m depth using an optical water quality sonde. This sampling scheme provides us with a better understanding of the occurrence and distribution of phytoplankton in the water mass. The data include three six-point stations in different parts of the coastal archipelago. All stations were sampled several times during the growing season of 2007. In this paper, we compare the results of the established one-point collective depth sampling with the locally extended sampling scheme that portrays also the small-scale horizontal variation of phytoplankton. We

  5. A comparison of river water quality sampling methodologies under highly variable load conditions.

    PubMed

    Facchi, A; Gandolfi, C; Whelan, M J

    2007-01-01

    When river water quality fluctuates over relatively short periods of time with respect to the sampling frequency, the collection of grab samples may be inappropriate for characterising average water quality. This paper presents the results of a water quality monitoring study carried out on a stretch of the river Lambro (northern Italy) dominated by a periodically overloaded sewage treatment works (STW) located near its upstream end. Water quality was strongly influenced by a pronounced diurnal cycle in pollutant loads caused by the regular emission of untreated waste water during periods of high domestic flow (daytime). Two different sampling techniques were employed: grab sampling and 24-h composite sampling using automatic samplers. Samples were collected at the plant overflow and at several sites along the river and analysed for two common ingredients of household detergents, linear alkylbenzene sulphonate (LAS) and boron (B) and for routine water quality variables. The results obtained show that: (1) The diurnal variability of point-source-derived chemical concentrations in the river downstream of the undersized STW increased with increasing removal efficiency in sewage treatment. (2) The shape of the diurnal concentration signal remained relatively intact for a considerable distance downstream of the STW for several water quality variables, suggesting that hydrodynamic dispersion plays a relatively minor role in controlling concentration patterns in this river. (3) In-stream degradation of LAS was consistent with first order kinetics with a rate constant of 0.05-0.06 h(-1). (4) Grab sampling is a relatively inefficient methodology for capturing mean concentrations for rivers subjected to highly variable loads, especially when it is restricted to office hours. The inefficiency of grab sampling is more marked for substances (e.g. LAS) which are effectively removed during sewage treatment than for substances which are not. (5) For LAS, diurnal variability in the

  6. Evaluation of water sampling methodologies for amplicon-based characterization of bacterial community structure.

    PubMed

    Staley, Christopher; Gould, Trevor J; Wang, Ping; Phillips, Jane; Cotner, James B; Sadowsky, Michael J

    2015-07-01

    Reduction in costs of next-generation sequencing technologies has allowed unprecedented characterization of bacterial communities from environmental samples including aquatic ecosystems. However, the extent to which extrinsic factors including sampling volume, sample replication, DNA extraction kits, and sequencing target affect the community structure inferred are poorly explored. Here, triplicate 1, 2, and 6L volume water samples from the Upper Mississippi River were processed to determine variation among replicates and sample volumes. Replicate variability significantly influenced differences in the community α-diversity (P=0.046), while volume significantly changed β-diversity (P=0.037). Differences in phylogenetic and taxonomic community structure differed both among triplicate samples and among the volumes filtered. Communities from 2L and 6L water samples showed similar clustering via discriminant analysis. To assess variation due to DNA extraction method, DNA was extracted from triplicate cell pellets from four sites along the Upper Mississippi River using the Epicentre Metagenomic DNA Isolation Kit for Water and MoBio PowerSoil kit. Operational taxonomic units representing ≤14% of sequence reads differed significantly among all sites and extraction kits used, although differences in diversity and community coverage were not significant (P≥0.057). Samples characterized using only the V6 region had significantly higher coverage and lower richness and α-diversity than those characterized using V4-V6 regions (P<0.001). Triplicate sampling of at least 2L of water provides robust representation of community variability, and these results indicate that DNA extraction kit and sequencing target displayed taxonomic biases that did not affect the overall biological conclusions drawn. PMID:25956022

  7. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples

    USGS Publications Warehouse

    Kim, Un-Jung; Kim, Hee Young; Alvarez, David A.; Lee, In-Seok; Oh, Jeong-Eun

    2014-01-01

    We aimed to verify the effectiveness of semi-permeablemembrane devices (SPMDs) formonitoring hydrophobic organic compounds, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), that are not easy to detect using conventional grab samples (because of their low concentrations), in water.We used SPMDs and grab samples to monitor PCBs and PBDEs upstream and downstream of a sewage treatment plant (STP) in the Suyeong River in Busan, Korea. Concentrations in three different phases (freely dissolved, apparently dissolved, and particulate) were measured, to investigate the aquatic fate of PCBs and PBDEs. The freely dissolved (SPMD) concentrations were 2–3 times higher than the apparently dissolved and particulate phase (grab sample) concentrations. No meaningful relationships were found between the total PCB and PBDE concentrations of the grab sample and SPMD sample because of the different partitioning behaviors and detection frequencies of the individual chemicals. However, the summed concentrations of specific PCB and PBDE congeners (that were abundant in all samples) in the grab and SPMD samples correlated well (r2 = 0.7451 for PCBs 28 + 52 + 153, r2 = 0.9987 for PBDEs 28 + 47 + 99). The PBDE concentrations measured using SPMDs decreased with increasing distance from the STP, but no apparent dilution effect was found in the grab samples. Our results show that SPMDs could be used to support grab sampling for specific chemicals, or to trace chemical sources (such as STPs) to the aquatic environment.

  8. Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1994-01-01

    The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.

  9. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples.

    PubMed

    Kim, Un-Jung; Kim, Hee Young; Alvarez, David; Lee, In-Seok; Oh, Jeong-Eun

    2014-02-01

    We aimed to verify the effectiveness of semi-permeable membrane devices (SPMDs) for monitoring hydrophobic organic compounds, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), that are not easy to detect using conventional grab samples (because of their low concentrations), in water. We used SPMDs and grab samples to monitor PCBs and PBDEs upstream and downstream of a sewage treatment plant (STP) in the Suyeong River in Busan, Korea. Concentrations in three different phases (freely dissolved, apparently dissolved, and particulate) were measured, to investigate the aquatic fate of PCBs and PBDEs. The freely dissolved (SPMD) concentrations were 2-3 times higher than the apparently dissolved and particulate phase (grab sample) concentrations. No meaningful relationships were found between the total PCB and PBDE concentrations of the grab sample and SPMD sample because of the different partitioning behaviors and detection frequencies of the individual chemicals. However, the summed concentrations of specific PCB and PBDE congeners (that were abundant in all samples) in the grab and SPMD samples correlated well (r(2)=0.7451 for PCBs 28+52+153, r(2)=0.9987 for PBDEs 28+47+99). The PBDE concentrations measured using SPMDs decreased with increasing distance from the STP, but no apparent dilution effect was found in the grab samples. Our results show that SPMDs could be used to support grab sampling for specific chemicals, or to trace chemical sources (such as STPs) to the aquatic environment.

  10. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES

    PubMed Central

    STAGGEMEIER, Rodrigo; BORTOLUZZI, Marina; HECK, Tatiana Moraes da Silva; SPILKI, Fernando Rosado; ALMEIDA, Sabrina Esteves de Matos

    2015-01-01

    SUMMARY Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively. PMID:26422153

  11. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES.

    PubMed

    Staggemeier, Rodrigo; Bortoluzzi, Marina; Heck, Tatiana Moraes da Silva; Spilki, Fernando Rosado; Almeida, Sabrina Esteves de Matos

    2015-01-01

    Human Adenovirus