Sample records for addition water vapor

  1. Water vapor profiling using microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.

    1988-01-01

    Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.

  2. Electrical Breakdown in Water Vapor

    NASA Astrophysics Data System (ADS)

    Škoro, N.; Marić, D.; Malović, G.; Graham, W. G.; Petrović, Z. Lj.

    2011-11-01

    In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm (˜0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.

  3. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  4. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-05

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause.

  5. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  6. Profiling of Atmospheric Water Vapor with MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

  7. Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Hayden, Christopher M.; Nieman, Steven J.; Menzel, W. Paul; Wanzong, Steven; Goerss, James S.

    1997-01-01

    The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.

  8. Stratospheric water vapor in the NCAR CCM2

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Holton, James R.

    1992-01-01

    Results are presented of the water vapor distribution in a 3D GCM with good vertical resolution, a state-of-the-art transport scheme, and a realistic water vapor source in the middle atmosphere. In addition to water vapor, the model transported methane and an idealized clock tracer, which provides transport times to and within the middle atmosphere. The water vapor and methane distributions are compared with Nimbus 7 SAMS and LIMS data and with in situ measurements. It is argued that the hygropause in the model is maintained not by 'freeze-drying' at the tops of tropical cumulonimbus, but by a balance between two sources and one sink. Since the southern winter dehydration is unrealistically intense, this balance most likely does not resemble the balance in the real atmosphere.

  9. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  10. Performance Modeling of an Airborne Raman Water Vapor Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.

    2000-01-01

    A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.

  11. SOFIA Water Vapor Monitor Design

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Roellig, T. L.; Yuen, L.; Shiroyama, B.; Meyer, A.; Devincenzi, D. (Technical Monitor)

    2002-01-01

    The SOFIA Water Vapor Monitor (WVM) is a heterodyne radiometer designed to determine the integrated amount of water vapor along the telescope line of sight and directly to the zenith. The basic technique that was chosen for the WVM uses radiometric measurements of the center and wings of the 183.3 GHz rotational line of water to measure the water vapor. The WVM reports its measured water vapor levels to the aircraft Mission Controls and Communication System (MCCS) while the SOFIA observatory is in normal operation at flight altitude. The water vapor measurements are also available to other scientific instruments aboard the observatory. The electrical, mechanical and software design of the WVM are discussed.

  12. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  13. Validation on MERSI/FY-3A precipitable water vapor product

    NASA Astrophysics Data System (ADS)

    Gong, Shaoqi; Fiifi Hagan, Daniel; Lu, Jing; Wang, Guojie

    2018-01-01

    The precipitable water vapor is one of the most active gases in the atmosphere which strongly affects the climate. China's second-generation polar orbit meteorological satellite FY-3A equipped with a Medium Resolution Spectral Imager (MERSI) is able to detect atmospheric water vapor. In this paper, water vapor data from AERONET, radiosonde and MODIS were used to validate the accuracy of the MERSI water vapor product in the different seasons and climatic regions of East Asia. The results show that the values of MERSI water vapor product are relatively lower than that of the other instruments and its accuracy is generally lower. The mean bias (MB) was -0.8 to -12.7 mm, the root mean square error (RMSE) was 2.2-17.0 mm, and the mean absolute percentage error (MAPE) varied from 31.8% to 44.1%. On the spatial variation, the accuracy of MERSI water vapor product in a descending order was from North China, West China, Japan -Korea, East China, to South China, while the seasonal variation of accuracy was the best for winter, followed by spring, then in autumn and the lowest in summer. It was found that the errors of MERSI water vapor product was mainly due to the low accuracy of radiation calibration of the MERSI absorption channel, along with the inaccurate look-up table of apparent reflectance and water vapor within the water vapor retrieved algorithm. In addition, the surface reflectance, the mixed pixels of image cloud, the humidity and temperature of atmospheric vertical profile and the haze were also found to have affected the accuracy of MERSI water vapor product.

  14. Water Vapor Feedbacks to Climate Change

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?

  15. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  16. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  17. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  18. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  19. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  20. Validation of Smithsonian Astrophysical Observatory's OMI Water Vapor Product

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gonzalez Abad, G.; Liu, X.; Chance, K.

    2015-12-01

    We perform a comprehensive validation of SAO's OMI water vapor product. The SAO OMI water vapor slant column is retrieved using the 430 - 480 nm wavelength range. In addition to water vapor, the retrieval considers O3, NO2, liquid water, O4, C2H2O2, the Ring effect, water ring, 3rd order polynomial, common mode and under-sampling. The slant column is converted to vertical column using AMF. AMF is calculated using GEOS-Chem water vapor profile shape, OMCLDO2 cloud information and OMLER surface albedo information. We validate our product using NCAR's GPS network data over the world and RSS's gridded microwave data over the ocean. We also compare our product with the total precipitable water derived from the AERONET ground-based sun photometer data, the GlobVapour gridded product, and other datasets. We investigate the influence of sub-grid scale variability and filtering criteria on the comparison. We study the influence of clouds, aerosols and a priori profiles on the retrieval. We also assess the long-term performance and stability of our product and seek ways to improve it.

  1. Atmospheric water vapor: Distribution and Empirical estimation in the atmosphere of Thailand

    NASA Astrophysics Data System (ADS)

    Phokate, S.

    2017-09-01

    Atmospheric water vapor is a crucial component of the Earth’s atmosphere, which is shown by precipitable water vapor. It is calculated from the upper air data. In Thailand, the data were collected from four measuring stations located in Chiang Mai, Ubon Ratchathani, Bangkok, and Songkhla during the years 1998-2013. The precipitable water vapor obtained from this investigation were used to define an empirical model associated with the vapor pressure, which is a surface data at the same stations. The result shows that the relationship has a relatively high level of reliability. The precipitable water vapor obtained from the upper air data is nearly equal to the value from the model. The model was used to calculate the precipitable water vapor from the surface data 85 stations across the country. The result shows that seasonal change of the precipitable water vapor was low in the dry season (November-April) and high in the rainy season (May-October). In addition, precipitable water vapor varies along the latitudes of the stations. The high value obtains for low latitudes, but it is low for high latitudes.

  2. Water vapor distribution in protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fujun; Bergin, Edwin A., E-mail: fdu@umich.edu

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapormore » with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.« less

  3. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  4. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  5. Water vapor adsorption on goethite.

    PubMed

    Song, Xiaowei; Boily, Jean-François

    2013-07-02

    Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.

  6. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  7. Visualization of Atmospheric Water Vapor Data for SAGE

    NASA Technical Reports Server (NTRS)

    Kung, Mou-Liang; Chu, W. P. (Technical Monitor)

    2000-01-01

    The goal of this project was to develop visualization tools to study the water vapor dynamics using the Stratospheric Aerosol and Gas Experiment 11 (SAGE 11) water vapor data. During the past years, we completed the development of a visualization tool called EZSAGE, and various Gridded Water Vapor plots, tools deployed on the web to provide users with new insight into the water vapor dynamics. Results and experiences from this project, including papers, tutorials and reviews were published on the main Web page. Additional publishing effort has been initiated to package EZSAGE software for CD production and distribution. There have been some major personnel changes since Fall, 1998. Dr. Mou-Liang Kung, a Professor of Computer Science assumed the PI position vacated by Dr. Waldo Rodriguez who was on leave. However, former PI, Dr. Rodriguez continued to serve as a research adviser to this project to assure smooth transition and project completion. Typically in each semester, five student research assistants were hired and trained. Weekly group meetings were held to discuss problems, progress, new research direction, and activity planning. Other small group meetings were also held regularly for different objectives of this project. All student research assistants were required to submit reports for conference submission.

  8. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  9. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  10. Analyses on Water Vapor Resource in Chengdu City

    NASA Astrophysics Data System (ADS)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  11. Investigating potential wet bias in the Purple Crow Lidar water vapor measurements

    NASA Astrophysics Data System (ADS)

    VanKerkhove, Jeffrey; Sica, R. J.; Wing, R.; Argall, P. S.

    2018-04-01

    The Purple Crow Lidar is a large aperture lidar, capable of retrieving water vapor into the strato-sphere. A comparison with the ALVICE lidar in 2012 showed water vapor measurements were consistently larger than those of ALVICE in the lower stratosphere, prompting an investigation of the system. Processing approaches and additional instrumental corrections are considered.

  12. Profiling atmospheric water vapor by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.

    1983-01-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  13. Development of a Trajectory Model for the Analysis of Stratospheric Water Vapor

    NASA Astrophysics Data System (ADS)

    Koby, Timothy Robert

    To study stratospheric water vapor, a new trajectory model was created. The model is built from first principles specific to stratospheric motion and can run on any gridded dataset, making it more versatile than current solutions. The design of a new model was motivated by measurements of elevated stratospheric water vapor, which in situ isotopic measurements have determined to be tropospheric in origin. A moist stratosphere has substantial feedbacks in the climate system including radiative, chemical, and biological effects. Additionally, elevated stratospheric water vapor is theorized as an important coupling in the historical transition to the Eocene, 56 million years ago, as well as emergence from the Eocene 40 million years ago. This transition mirrors modern climate change, both in surface temperature and carbon dioxide increase. However, the historical transition became much more extreme and settled to a state of warm temperatures from the equator to the poles with little variation in between. The lack of latitudinal gradient in temperature is associated with a moist stratosphere, which provides additional motivation for thoroughly understanding the effects of adding water vapor to the stratosphere in a climatological context. The time evolution of water vapor enhancements from convective injection is analyzed by initializing trajectories over satellite-measured water vapor enhancements. The model runs show water vapor concentrations that remain elevated over the background concentrations for several days and often over a week, which is of the timescale that warrants concern over increased halogen catalyzed ozone loss and the subsequent risk to public health. By analyzing stratospheric winds during the summer months over North America using normalized angular momentum, a pattern of frequent stratospheric anticyclonic activity over North America emerges as a unique feature of the region. This provides a mechanism for the modeled persistent elevated water

  14. Water-Vapor Raman Lidar System Reaches Higher Altitude

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  15. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling.

    PubMed

    Wang, Zhaofei; Mao, Jiandong; Li, Juan; Zhao, Hu; Zhou, Chunyan; Sheng, Hongjiang

    2017-07-10

    Aerosols and water vapor are important atmospheric components, and have significant effects on both atmospheric energy conversion and climate formation. They play the important roles in balancing the radiation budget between the atmosphere and Earth, while water vapor also directly affects rainfall and other weather processes. To further research atmospheric aerosol optical properties and water vapor content, an all-time six-channel multi-wavelength polarization Raman lidar has been developed at Beifang University of Nationalities. In addition to 1064, 532, and 355 nm Mie scattering channels, the lidar has a polarization channel for 532 nm return signals, a 660 nm water vapor channel, and a 607 nm nitrogen detection channel. Experiments verified the lidar's feasibility and return signals from six channels were detected. Using inversion algorithms, extinction coefficient profiles at 1064, 532 and 355 nm, Ångström exponent profiles, depolarization ratio profiles, and water vapor mixing ratio profiles were all obtained. The polarization characteristics and water vapor content of cirrus clouds, the polarization characteristics of dusty weather, and the water vapor profiles over different days were also analyzed. Results show that the lidar has the full-time detection capability for atmospheric aerosol optical properties and water vapor profiles, and real-time measurements of aerosols and water vapor over the Yinchuan area were realized, providing important information for studying the environmental quality and climate change in this area.

  16. The impact of water vapor diodes on soil water redistribution

    NASA Astrophysics Data System (ADS)

    Wang, Zhuangji; Ankeny, Mark; Horton, Robert

    2017-09-01

    Diurnal soil temperature fluctuations are the prime cause for subsurface water vapor fluxes. In arid and semi-arid areas, water vapor flux is the dominant means of soil water redistribution. The directions of water vapor flux shift from upward to downward diurnally following the variations of the soil thermal gradient. A water vapor diode (WVD), acting as a check valve, allows water vapor flux in one direction but heat flux in both directions. By installing a subsurface WVD, it is possible to impose direction-controlled vapor fluxes, and WVDs can be used to accumulate or remove water in particular soil layers. The egg carton shape, with pores situated at selected peaks and valleys, is a possible design for WVDs. In this study, we provide the concept and the properties of the ideal WVDs, and we discuss four WVD configurations to control soil water redistribution. Numerical simulation is used to evaluate the impacts of the ideal WVDs. The results indicate that WVDs can increase local water contents by at least 0.1 m3m-3 in a silt loam. For a fixed initial water and thermal condition, the effect of WVDs is related to the deployment depth and distance between two consecutive WVDs. WVDs can be used to manipulate soil water redistribution and accumulate water at specific depths to support plant growth. The numerical simulation results indicate the potential effectiveness of the ideal WVDs, and field tests should be performed to determine their function under specific soil conditions.

  17. The role of water vapor in climate. A strategic research plan for the proposed GEWEX water vapor project (GVaP)

    NASA Technical Reports Server (NTRS)

    Starr, D. OC. (Editor); Melfi, S. Harvey (Editor)

    1991-01-01

    The proposed GEWEX Water Vapor Project (GVaP) addresses fundamental deficiencies in the present understanding of moist atmospheric processes and the role of water vapor in the global hydrologic cycle and climate. Inadequate knowledge of the distribution of atmospheric water vapor and its transport is a major impediment to progress in achieving a fuller understanding of various hydrologic processes and a capability for reliable assessment of potential climatic change on global and regional scales. GVap will promote significant improvements in knowledge of atmospheric water vapor and moist processes as well as in present capabilities to model these processes on global and regional scales. GVaP complements a number of ongoing and planned programs focused on various aspects of the hydrologic cycle. The goal of GVaP is to improve understanding of the role of water vapor in meteorological, hydrological, and climatological processes through improved knowledge of water vapor and its variability on all scales. A detailed description of the GVaP is presented.

  18. Remote sensing of water vapor features

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1993-01-01

    Water vapor plays a critical role in the atmosphere. It is an important medium of energy exchange between air, land, and water; it is a major greenhouse gas, providing a crucial radiative role in the global climate system; and it is intimately involved in many regional scale atmospheric processes. Our research has been aimed at improving satellite remote sensing of water vapor and better understanding its role in meteorological processes. Our early studies evaluated the current GOES VAS system for measuring water vapor and have used VAS-derived water vapor data to examine pre-thunderstorm environments. Much of that research was described at the 1991 Research Review. A second research component has considered three proposed sensors--the High resolution Interferometer Sounder (HIS), the Multispectral Atmospheric Mapping Sensor (MAMS), and the Advanced Microwave Sounding Unit (AMSU). We have focused on MAMS and AMSU research during the past year and the accomplishments made in this effort are presented.

  19. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  20. Advancements in oxygen generation and humidity control by water vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  1. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  2. Development and Deployment of a Portable Water Isotope Analyzer for Accurate, Continuous and High-Frequency Oxygen and Hydrogen Isotope Measurements in Water Vapor and Liquid Water

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Baer, Douglas

    2010-05-01

    Stable isotopes of water in liquid and vapor samples are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of del_18O and del_2H are critical to advance the understanding of water cycle dynamics around the globe. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent laboratory development and field deployment of a novel Water Vapor Isotope Analyzer (WVIA), based on cavity enhanced laser absorption spectroscopy, capable of simultaneous in-situ measurements of del_18O and del_2H and water mixing ratio with high precision and high frequency (up to 10 Hz measurement rate). In addition, to ensure the accuracy of the water vapor isotope measurements, a novel Water Vapor Isotope Standard Source (WVISS), based on the instantaneous evaporation of micro-droplets of liquid water (with known isotope composition), has been developed to provide the reference water vapor with widely adjustable mixing ratio (500-30,000 ppmv) for real-time calibration of the WVIA. The comprehensive system that includes the WVIA and WVISS has been validated in extensive laboratory and field studies to be insensitive to ambient temperature changes (5-40 C) and to changes in water mixing ratio over a wide range of mixing ratios. In addition, by operating in the dual inlet mode, measurement drift has essentially been eliminated. The system (WVIA+WVISS) has also been deployed for long-term unattended continuous measurements in the field. In addition to water vapor isotope measurements, the new Water Vapor Isotopic Standard Source (WVISS) may be combined with the WVIA to provide continuous isotopic measurements of liquid water samples at rapid data rate. The availability of

  3. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose

    NASA Astrophysics Data System (ADS)

    Nasution, T. I.; Balyan, M.; Nainggolan, I.

    2018-02-01

    A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.

  4. Water Vapor Over Europa

    NASA Image and Video Library

    2013-12-12

    This graphic shows the location of water vapor detected over Europa south pole in observations taken by NASA Hubble Space Telescope in December 2012. This is the first strong evidence of water plumes erupting off Europa surface.

  5. Estimation water vapor content using the mixing ratio method and validated with the ANFIS PWV model

    NASA Astrophysics Data System (ADS)

    Suparta, W.; Alhasa, K. M.; Singh, M. S. J.

    2017-05-01

    This study reported the comparison between water vapor content, the surface meteorological data (pressure, temperature, and relative humidity), and precipitable water vapor (PWV) produced by PWV from adaptive neuro fuzzy inference system (ANFIS) for areas in the Universiti Kebangsaan Malaysia Bangi (UKMB) station. The water vapor content value was estimated with mixing ratio method and the surface meteorological data as the parameter inputs. The accuracy of water vapor content was validated with PWV from ANFIS PWV model for the period of 20-23 December 2016. The result showed that the water vapor content has a similar trend with the PWV which produced by ANFIS PWV model (r = 0.975 at the 99% confidence level). This indicates that the water vapor content that obtained with mixing ratio agreed very well with the ANFIS PWV model. In addition, this study also found, the pattern of water vapor content and PWV have more influenced by the relative humidity.

  6. Water vapor measurements in- and outside cirrus with the novel water vapor mass spectrometer AIMS-H2O

    NASA Astrophysics Data System (ADS)

    Kaufmann, Stefan; Schlage, Romy; Voigt, Christiane; Jurkat, Tina; Krämer, Martina; Rolf, Christian; Zöger, Martin; Schäfler, Andreas; Dörnbrack, Andreas

    2015-04-01

    Water vapor plays a crucial role for the earth's climate both directly via its radiative properties and indirectly due to its ability to form clouds. However, accurate measurements of especially low water vapor concentrations prevalent in the upper troposphere and lower stratosphere are difficult and exhibit large discrepancies between different instruments and methods. In order to address this issue and to provide a comprehensive water vapor data set necessary to gather a complete picture of cloud formation processes, four state-of-the-art hygrometers including the novel water vapor mass spectrometer AIMS-H2O were deployed on the DLR research aircraft HALO during the ML-Cirrus campaign in March/April 2014 over Europe. Here, we present first water vapor measurements of AIMS-H2O on HALO. The instrument performance is validated by intercomparison with the fluorescence hygrometer FISH and the laser hygrometer SHARC, both also mounted in the aircraft. This intercomparison shows good agreement between the instruments from low stratospheric mixing ratios up to higher H2O concentrations at upper tropospheric conditions. Gathering data from over 24 flight hours, no significant offsets between the instruments were found (mean of relative deviation

  7. Oxidation and Volatilization of Silica-Formers in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    At high temperatures SiC and Si3N4 react with water vapor to form a silica scale. Silica scales also react with water vapor to form a volatile Si(OH)4 species. These simultaneous reactions, one forming silica and the other removing silica, are described by paralinear kinetics. A steady state, in which these reactions occur at the same rate, is eventually achieved, After steady state is achieved, the oxide found on the surface is a constant thickness and recession of the underlying material occurs at a linear rate. The steady state oxide thickness, the time to achieve steady state, and the steady state recession rate can all be described in terms of the rate constants for the oxidation and volatilization reactions. In addition, the oxide thickness, the time to achieve steady state, and the recession rate can also be determined from parameters that describe a water vapor-containing environment. Accordingly, maps have been developed to show these steady state conditions as a function of reaction rate constants, pressure, and gas velocity. These maps can be used to predict the behavior of silica formers in water-vapor containing environments such as combustion environments. Finally, these maps are used to explore the limits of the paralinear oxidation model for SiC and Si3N4

  8. Investigation of water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Nieman, Steven J.; Wanzong, Steven

    1994-01-01

    Water vapor imagery from geostationary satellites has been available for over a decade. These data are used extensively by operational analysts and forecasters, mainly in a qualitative mode (Weldon and Holmes 1991). In addition to qualitative applications, motions deduced in animated water vapor imagery can be used to infer wind fields in cloudless regimes, thereby augmenting the information provided by cloud-drift wind vectors. Early attempts at quantifying the data by tracking features in water vapor imagery met with modest success (Stewart et al. 1985; Hayden and Stewart 1987). More recently, automated techniques have been developed and refined, and have resulted in upper-level wind observations comparable in quality to current operational cloud-tracked winds (Laurent 1993). In a recent study by Velden et al. (1993) it was demonstrated that wind sets derived from Meteosat-3 (M-3) water vapor imagery can provide important environmental wind information in data void areas surrounding tropical cyclones, and can positively impact objective track forecasts. M-3 was repositioned to 75W by the European Space Agency in 1992 in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the current GOES-7 (G-7) satellite (positioned near 112W), the M-3 water vapor channel contains a superior horizontal resolution (5 km vs. 16 km ). In this paper, we examine wind sets derived using automated procedures from both GOES-7 and Meteosat-3 full disk water vapor imagery in order to assess this data as a potentially important source of large-scale wind information. As part of a product demonstration wind sets were produced twice a day at CIMSS during a six-week period in March and April (1994). These data sets are assessed in terms of geographic coverage, statistical accuracy, and meteorological impact through preliminary results of numerical model forecast studies.

  9. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  10. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    NASA Astrophysics Data System (ADS)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  11. The Use of Sage Water Vapor Data for Investigating Climate Change Issues

    NASA Technical Reports Server (NTRS)

    Rind, D.

    2003-01-01

    SAGE water vapor data has proven valuable for addressing several of the important issues in climate change research. It has been used to investigate how the upper troposphere water vapor responds to warming and convection, a key question in understanding the water vapor feedback to anthropogenic global warming. In the case of summer versus winter differences, SAGE results showed that the upper tropospheric relative humidity remained approximately constant; this result was in general agreement with how a GCM handled the seasonal difference, and gave credence to the argument that the GCM was not overestimating the water vapor feedback associated with convection. In addition, the convection-water vapor relationship was investigated further using SAGE water vapor and ISCCP cloud data. The results showed that upper tropospheric drying did appear to occur simultaneously with deep convective events in the tropics, only to be replaced by moistening a few hours later, associated (most likely) with the reevaporation of moisture from anvil clouds. The total effect was, again, a moistening of the upper troposphere associated with convection. Calculation of the actual trends in upper tropospheric moisture is a potential goal for SAGE data usage; trends calculated with radiosonde data, or instruments calibrated with radiosonde data have the problem of the effect of changing radiosonde instruments. SAGE data have in effect been used to compare different radiosondes through comparisons, and could continue to do so. SAGE 3 should also help clarify the absolute accuracy of SAGE retrievals in the troposphere. and its consequences. Model results show that water vapor increases can help explain the observations of stratospheric cooling, along with increasing C02 and ozone reduction. SAGE has been shown to provide trends similar to those of some other satellite and in situ retrievals, with increasing water vapor over time. However, SAGE is impacted by aerosol contamination which must be

  12. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  13. Water Vapor Corrosion in EBC Constituent Materials

    NASA Technical Reports Server (NTRS)

    Kowalski, Benjamin; Fox, Dennis; Jacobson, Nathan S.

    2017-01-01

    Environmental Barrier Coating (EBC) materials are sought after to protect ceramic matrix composites (CMC) in high temperature turbine engines. CMCs are particularly susceptible to degradation from oxidation, Ca-Al-Mg-Silicate (CMAS), and water vapor during high temperature operation which necessitates the use of EBCs. However, the work presented here focuses on water vapor induced recession in EBC constituent materials. For example, in the presence of water vapor, silica will react to form Si(OH)4 (g) which will eventually corrode the material away. To investigate the recession rate in EBC constituent materials under high temperature water vapor conditions, thermal gravimetric analysis (TGA) is employed. The degradation process can then be modeled through a simple boundary layer expression. Ultimately, comparisons are made between various single- and poly-crystalline materials (e.g. TiO2, SiO2) against those found in literature.

  14. Influence of liquid water and water vapor on antimisting kerosene (AMK)

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Sarolouki, M.; Sarohia, V.

    1983-01-01

    Experiments have been performed to evaluate the compatibility of liquid water and water vapor with antimisting kerosenes (AMK) containing polymer additive FM-9 developed by Imperial Chemical Industries. This effort consists of the determination of water solubility in AMK, influence of water on restoration (degradation) of AMK, and effect of water on standard AMK quality control methods. The principal conclusions of this investigation are: (1) the uptake of water in AMK critically depends upon the degree of agitation and can be as high as 1300 ppm at 20 C, (2) more than 250 to 300 ppm of water in AMK causes an insoluble second phase to form. The amount of this second phase depends on fuel temperature, agitation, degree of restoration (degradation) and the water content of the fuel, (3) laboratory scale experiments indicate precipitate formation when water vapor comes in contact with cold fuel surfaces at a much lower level of water (125 to 150 ppm), (4) precipitate formation is very pronounced in these experiments where humid air is percolated through a cold fuel (-20 C), (5) laboratory tests further indicate that water droplet settling time is markedly reduced in AMK as compared to jet A, (6) limited low temperature testing down to -30 C under laboratory conditions indicates the formation of stable, transparent gels.

  15. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  16. Water vapor content in the polar atmosphere measured by Lyman-alpha/OH fluorescence method

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.; Saitoh, S.; Ono, A.

    1985-01-01

    The water vapor of the polar stratosphere possibly plays an important role in various aeronomical processes; for example, OH radical formation through photodissociation of H2O, formation of water cluster ions, radiative energy transfer in the lower stratosphere, condensation onto particulate matter, and so on. In addition to these, it has been speculated, from the viewpoint of global transport and/or budget of water vapor, that the polar stratosphere functions as an active sink. STANFORD (1973) emphasized the existence of the stratospheric Cist cloud in the polar stratosphere which brought a large loss rate of stratospheric water vapor through a so-called freeze-out of cloud particles from the stratosphere into the troposphere. However, these geophysically interesting problems unfortunately remain to be solved, owing to the lack of measurements on water vapor distribution and its temporal variation in the polar stratosphere. The water vapor content measured at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica using a balloon-borne hygrometer (Lyman - alpha/OH fluorescence type) is discussed.

  17. Mountain waves modulate the water vapor distribution in the UTLS

    NASA Astrophysics Data System (ADS)

    Heller, Romy; Voigt, Christiane; Beaton, Stuart; Dörnbrack, Andreas; Giez, Andreas; Kaufmann, Stefan; Mallaun, Christian; Schlager, Hans; Wagner, Johannes; Young, Kate; Rapp, Markus

    2017-12-01

    The water vapor distribution in the upper troposphere-lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m-2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our

  18. The Foundation GPS Water Vapor Inversion and its Application Research

    NASA Astrophysics Data System (ADS)

    Liu, R.; Lee, T.; Lv, H.; Fan, C.; Liu, Q.

    2018-04-01

    Using GPS technology to retrieve atmospheric water vapor is a new water vapor detection method, which can effectively compensate for the shortcomings of conventional water vapor detection methods, to provide high-precision, large-capacity, near real-time water vapor information. In-depth study of ground-based GPS detection of atmospheric water vapor technology aims to further improve the accuracy and practicability of GPS inversion of water vapor and to explore its ability to detect atmospheric water vapor information to better serve the meteorological services. In this paper, the influence of the setting parameters of initial station coordinates, satellite ephemeris and solution observation on the total delay accuracy of the tropospheric zenith is discussed based on the observed data. In this paper, the observations obtained from the observation network consisting of 8 IGS stations in China in June 2013 are used to inverse the water vapor data of the 8 stations. The data of Wuhan station is further selected and compared with the data of Nanhu Sounding Station in Wuhan The error between the two data was between -6mm-6mm, and the trend of the two was almost the same, the correlation reached 95.8 %. The experimental results also verify the reliability of ground-based GPS inversion of water vapor technology.

  19. Water vapor movement in freezing aggregate base materials.

    DOT National Transportation Integrated Search

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  20. Active Raman sounding of the earth's water vapor field.

    PubMed

    Tratt, David M; Whiteman, David N; Demoz, Belay B; Farley, Robert W; Wessel, John E

    2005-08-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed.

  1. Holographic studies of the vapor explosion of vaporizing water-in-fuel emulsion droplets

    NASA Technical Reports Server (NTRS)

    Sheffield, S. A.; Hess, C. F.; Trolinger, J. D.

    1982-01-01

    Holographic studies were performed which examined the fragmentation process during vapor explosion of a water-in-fuel (hexadecane/water) emulsion droplet. Holograms were taken at 700 to 1000 microseconds after the vapor explosion. Photographs of the reconstructed holograms reveal a wide range of fragment droplet sizes created during the explosion process. Fragment droplet diameters range from below 10 microns to over 100 microns. It is estimated that between ten thousand and a million fragment droplets can result from this extremely violent vapor explosion process. This enhanced atomization is thus expected to have a pronounced effect on vaporization processes which are present during combustion of emulsified fuels.

  2. Water vapor recovery from plant growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Newbold, D. D.; Colton, R. H.; Mccray, S. B.

    1991-01-01

    NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. A design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: (1) dehumidification membrane modules to remove water vapor from the air, and (2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.

  3. Galactic water vapor emission: further observations of variability.

    PubMed

    Knowles, S H; Mayer, C H; Sullivan, W T; Cheung, A C

    1969-10-10

    Recent observations of the 1.35-centimeter line emission of water vapor from galactic sources show short-term variability in the spectra of several sources. Two additional sources, Cygnus 1 and NGC 6334N, have been observed, and the spectra of W49 and VY Canis Majoris were measured over a wider range of radial velocity.

  4. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  5. Mass spectrometry for water vapor measurements in the UT/LS

    NASA Astrophysics Data System (ADS)

    Kaufmann, S.; Voigt, C.; Schäuble, D.; Schäfler, A.; Schlager, H.; Thornberry, T. D.; Fahey, D. W.

    2012-12-01

    Water vapor in the lower stratosphere plays a crucial role for the atmospheric radiation budget (Solomon et al., 2011). However, large uncertainties remain in measuring atmospheric water vapor mixing ratios below 10 ppmv typical for the lower stratosphere. To this end, we have developed the Atmospheric Ionization Mass Spectrometer (AIMS) for the accurate and fast detection of water vapor in the UT/LS from aircraft. In the AIMS instrument atmospheric air is directly ionized in a discharge ion source and the resulting water vapor clusters H3O+(H2O)n (n = 0..3) are detected with a linear quadrupole mass spectrometer as a direct measure of the atmospheric water vapor mixing ratio. AIMS is calibrated in-flight with a H2O calibration source using the catalytic reaction of H2 and O2 on a heated platinum surface to form gaseous H2O. This calibration setup combined with the water vapor mass spectrometry offers a powerful technical development in atmospheric hygrometry, enriching existing H2O measurement techniques by a new independent method. Here, we present AIMS water vapor measurements performed during the CONCERT2011 campaign (Contrail and Cirrus Experiment) with the DLR research aircraft Falcon. In September 2011 a deep stratospheric intrusion was probed over northern Europe with a dynamical tropopause lowered down to 6 km. We found sharp humidity gradients between tropospheric and stratospheric air at the edge of the tropopause fold, which we crossed 4 times at altitudes between 6 and 11 km. In the center of the tropopause fold, we measured water vapor mixing ratios down to 4 ppmv. The observed water vapor distribution is compared to water vapor analysis fields of the ECMWF's Integrated Forecast System (IFS) to evaluate the representation water vapor in this specific meteorological situation.

  6. Columnar water vapor retrievals from multifilter rotating shadowband radiometer data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Mikhail; Schmid, Beat; Turner, David D.

    2009-01-26

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) measures direct and diffuse irradiances in the visible and near IR spectral range. In addition to characteristics of atmospheric aerosols, MFRSR data also allow retrieval of precipitable water vapor (PWV) column amounts, which are determined from the direct normal irradiances in the 940 nm spectral channel. The HITRAN 2004 spectral database was used in our retrievals to model the water vapor absorption. We present a detailed error analysis describing the influence of uncertainties in instrument calibration and spectral response, as well as those in available spectral databases, on the retrieval results. The results ofmore » our PWV retrievals from the Southern Great Plains (SGP) site operated by the DOE Atmospheric Radiation Measurement (ARM) Program were compared with correlative standard measurements by Microwave Radiometers (MWRs) and a Global Positioning System (GPS) water vapor sensor, as well as with retrievals from other solar radiometers (AERONET’s CIMEL, AATS-6). Some of these data are routinely available at the SGP’s Central Facility, however, we also used measurements from a wider array of instrumentation deployed at this site during the Water Vapor Intensive Observation Period (WVIOP2000) in September – October 2000. The WVIOP data show better agreement between different solar radiometers or between different microwave radiometers (both groups showing relative biases within 4%) than between these two groups of instruments, with MWRs values being consistently higher (up to 14%) than those from solar instruments. We also demonstrate the feasibility of using MFRSR network data for creation of 2D datasets comparable with the MODIS satellite water vapor product.« less

  7. Observational Constraints on the Water Vapor Feedback Using GPS Radio Occultations

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Fetzer, E. J.

    2016-12-01

    The air refractive index at L-band frequencies depends on the air's density and water vapor content. Exploiting these relationships, we derive a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. Current research indicates that GPS RO data sets can capture the amount of water vapor in very dry and very moist air more efficiently than other observing platforms, possibly suggesting larger water vapor feedback than previously known. Inter-comparing the dq/dTs among different data sets will provide us with additional constraints on the water vapor feedback. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated using Atmospheric Infrared Sounder (AIRS) and NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data sets. In particular, the GPS RO-derived dq/dTs is larger by 6% than that estimated using the AIRS data set. This agrees with past evidence that AIRS may be dry-biased in the upper troposphere. Compared to the MERRA estimations, the GPS RO-derived dq/dTs is 10% smaller, also agreeing with previous results that show that MERRA may have a wet bias in the upper troposphere. Because of their high sensitivity to fractional changes in water vapor, and their inherent long-term accuracy, current and future GPS RO observations show great promise in monitoring climate feedbacks and their trends.

  8. Preliminary characterization of a water vaporizer for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl

    1992-01-01

    A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.

  9. Water vapor: An extraordinary terahertz wave source under optical excitation

    NASA Astrophysics Data System (ADS)

    Johnson, Keith; Price-Gallagher, Matthew; Mamer, Orval; Lesimple, Alain; Fletcher, Clark; Chen, Yunqing; Lu, Xiaofei; Yamaguchi, Masashi; Zhang, X.-C.

    2008-09-01

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H2O vapor is significantly stronger than that from D2O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  10. Chemical reaction between water vapor and stressed glass

    NASA Technical Reports Server (NTRS)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  11. An Assessment of Upper Tropospheric Water Vapor in the MERRA-2 Reanalysis: Comparisons with MLS and In Situ Water Vapor Measurements

    NASA Astrophysics Data System (ADS)

    Selkirk, H. B.; Molod, A.; Pawson, S.; Douglass, A. R.; Voemel, H.; Hurst, D. F.; Jiang, J. H.; Read, W. G.; Schwartz, M. J.; Manyin, M.

    2015-12-01

    The recently released MERRA-2 reanalysis represents a significant evolution of the GEOS-5 atmospheric general circulation model and data assimilation system since the original MERRA project, and it is expected that MERRA-2 will be widely used in climate change studies as has its predecessor. A number of studies have demonstrated critical sensitivities of the climate system to the water vapor content of the upper troposphere and lower stratosphere (UT/LS) and it is therefore important to assess how well the MERRA-2 reanalysis represents the mean structure and variability of water vapor in this part of the atmosphere. Recent comparisons with MLS water vapor indicate that the ECMWF and original MERRA reanalyses overestimate water vapor throughout the global upper troposphere by 50-80%. These overestimates are particularly acute at 147 hPa and 215 hPa and occur in all seasons. In this presentation, we analyze differences between the MLS v.4.2 water vapor data and the new MERRA-2 reanalysis to assess improvements in the treatment of water vapor in the GEOS-5 system since MERRA. We also include in our analysis a comparison of MERRA-2 profiles with water vapor and relative humidity profiles from frostpoint hygrometers at five sites with long-term records and a sixth with an intensive campaign of one month. Three of the long-term sites, Boulder, Colorado, Lindenburg, Germany and Lauder, New Zealand, lie in middle latitudes, and two sites, San José, Costa Rica and Hilo, Hawaii, are in the tropics and subtropics, respectively. The campaign-only database is from the NASA SEAC4RS mission at Ellington Field, Houston, TX in 2013.

  12. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  13. Water recovery by catalytic treatment of urine vapor

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  14. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  15. Q Conversion Factor Models for Estimating Precipitable Water Vapor for Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2015-04-01

    Global Navigation Satellite Systems (GNSS) have recently proved to be one of the crucial tools for determining continuous and precise precipitable water vapor (GNSS-MET networks). GNSS, especially CORS networks such as CORS-TR (the Turkish Network-RTK), provide high temporal and spatial accuracy for the wet tropospheric zenith delays which are then converted to the precipitable water vapor due to the fact that they can operate in all weather conditions continuously and economically. The accuracy of wet tropospheric zenith delay highly depends on the accuracy of precipitable water vapor content in the troposphere. Therefore, the precipitable water vapor is an important element of the tropospheric zenith delay. A number of studies can be found in the literature on the determination of the precipitable water vapor from the tropospheric zenith delay. Studies of Hogg showed that when the precipitable water vapor is known, the tropospheric zenith delay can be computed. Askne and Nodius have developed fundamental equations between the wet tropospheric zenith delay and the precipitable water vapor from the equation of the index of refraction in the troposphere. Furthermore, Bevis have developed a linear regression model to determine the weighted mean temperature (Tm) depending on the surface temperature (Ts) in Askne and Nodius studies. For this reason, nearly 9000 radiosonde profiles in USA were analyzed and the coefficients calculated. Similarly, there are other studies on the calculation of those coefficients for different regions: Solbrig for Germany, Liou for Taiwan, Jihyun for South Korea, Dongseob for North Korea, Suresh Raju for India, Boutiouta and Lahcene for Algeria, Bokoye for Canada, Baltink for Netherlands and Baltic, Bock for Africa. It is stated that the weighted mean temperature can be found with a root mean square error of ±2-5 K. In addition, there are studies on the calculation of the coefficients globally. Another model for the determination of

  16. Water-Assisted Vapor Deposition of PEDOT Thin Film.

    PubMed

    Goktas, Hilal; Wang, Xiaoxue; Ugur, Asli; Gleason, Karen K

    2015-07-01

    The synthesis and characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) using water-assisted vapor phase polymerization (VPP) and oxidative chemical vapor deposition (oCVD) are reported. For the VPP PEDOT, the oxidant, FeCl3 , is sublimated onto the substrate from a heated crucible in the reactor chamber and subsequently exposed to 3,4-ethylenedioxythiophene (EDOT) monomer and water vapor in the same reactor. The oCVD PEDOT was produced by introducing the oxidant, EDOT monomer, and water vapor simultaneously to the reactor. The enhancement of doping and crystallinity is observed in the water-assisted oCVD thin films. The high doping level observed at UV-vis-NIR spectra for the oCVD PEDOT, suggests that water acts as a solubilizing agent for oxidant and its byproducts. Although the VPP produced PEDOT thin films are fully amorphous, their conductivities are comparable with that of the oCVD produced ones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Raman water vapor lidar calibration

    NASA Astrophysics Data System (ADS)

    Landulfo, E.; Da Costa, R. F.; Torres, A. S.; Lopes, F. J. S.; Whiteman, D. N.; Venable, D. D.

    2009-09-01

    We show here new results of a Raman LIDAR calibration methodology effort putting emphasis in the assessment of the cross-section ratio between water vapor and nitrogen by the use of a calibrated NIST traceable tungsten lamp. Therein we give a step by step procedure of how to employ such equipment by means of a mapping/scanning procedure over the receiving optics of a water vapor Raman LIDAR. This methodology has been independently used at Howard University Raman LIDAR and at IPEN Raman LIDAR what strongly supports its reproducibility and points towards an independently calibration methodology to be carried on within an experiment routine.

  18. Refraction of microwave signals by water vapor

    NASA Technical Reports Server (NTRS)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  19. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    PubMed

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  20. Characterization of upper troposphere water vapor measurements during AFWEX using LASE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrare, R. A.; Browell, E. V.; Ismail, I.

    2002-07-15

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere (UT) water vapor measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. They show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived frommore » the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UT water vapor measurements.« less

  1. Using Profiles of Water Vapor Flux to Characterize Turbulence in the Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Weber, Kristy Jane

    The 2015 Plains Elevated Convection at Night (PECAN) field campaign sought to increase understanding of mechanisms for nocturnal severe weather in the Great Plains of the United States. A collection of instruments from this field campaign, including a water vapor Differential LiDAR (Light Detection Imaging And Ranging) (DIAL) and 449 MHz radar wind profiler were used to measure water vapor flux in regions between 300 m and the convective boundary layer. Methods to properly sample eddies using eddy-covariance were established, where analysis showed that a 90-minute Reynold's averaging period was optimal to sample most eddies. Additionally, a case study was used to demonstrate the additional atmospheric parameters which can be calculated from profiles of water vapor flux, such as the water vapor flux convergence/divergence. Flux footprints calculated at multiple heights within the convective boundary layer also show how a surface based instrument is sampling a completely different source than one taking measurements above 300 m. This result is important, as it shows how measurements above the surface layer will not be expected to match with those taken within a few meters of the surface, especially if average surface features such as land use type and roughness length are significantly different. These calculated water vapor flux profile measurements provide a new tool to analyze boundary layer dynamics during the PECAN field campaign, and their relationships to PECAN's study areas such as mesoscale convective systems (MCSs), nocturnal low-level jets (NLLJs), elevated convective initiation, and the propagation of bores or wavelike features from nocturnal convective systems.

  2. A FGGE water vapor wind data set

    NASA Technical Reports Server (NTRS)

    Stewart, Tod R.; Hayden, Christopher M.

    1985-01-01

    It has been recognized for some time that water vapor structure visible in infrared imagery offers a potential for obtaining motion vectors when several images are considered in sequence (Fischer et al., 1981). A study evaluating water vapor winds obtained from the VISSR atmospheric sounder (Stewart et al., 1985) has confirmed the viability of the approach. More recently, 20 data sets have been produced from METEOSAT water vapor imagery for the FGGE period of 10-25 November 1979. Where possible, two data sets were prepared for each day at 0000 and 1200 GMT and compared with rawinsondes over Europe, Africa, and aircraft observations over the oceans. Procedures for obtaining winds were, in general, similar to the earlier study. Motions were detected both by a single pixel tracking and a cross correlation method by using three images individually separated by one hour. A height assignment was determined by matching the measured brightness temperature to the temperature structure represented by the FGGE-IIIB analyses. Results show that the METEOSAT water vapor winds provide uniform horizontal coverage of mid-level flow over the globe with good accuracy.

  3. Detection of water vapor on Jupiter

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  4. Algorithm Estimates Microwave Water-Vapor Delay

    NASA Technical Reports Server (NTRS)

    Robinson, Steven E.

    1989-01-01

    Accuracy equals or exceeds conventional linear algorithms. "Profile" algorithm improved algorithm using water-vapor-radiometer data to produce estimates of microwave delays caused by water vapor in troposphere. Does not require site-specific and weather-dependent empirical parameters other than standard meteorological data, latitude, and altitude for use in conjunction with published standard atmospheric data. Basic premise of profile algorithm, wet-path delay approximated closely by solution to simplified version of nonlinear delay problem and generated numerically from each radiometer observation and simultaneous meteorological data.

  5. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  6. Isotopic composition of water vapor near the air-water interface

    NASA Astrophysics Data System (ADS)

    Zannoni, Daniele; Bergamasco, Andrea; Peschiutta, Mirco; Rampazzo, Giancarlo; Stenni, Barbara

    2017-04-01

    Evaporation is a key process in water cycle that links liquid water to the atmosphere. In the last fifty years stable isotopes of hydrogen and oxygen have been intensively used to describe climate processes related to evaporation and precipitation, ranging in different spatial and temporal scales. Evaporation introduces large isotopic effects in the phases involved. The well known Craig-Gordon model (Craig & Gordon, 1965) describes those isotopic effects involving several steps and different processes, moving from the air-water interface to the free atmosphere. However, very few works in literature have tested the vertical behavior of the Craig-Gordon model in natural conditions on both fresh and marine waters. In this work we present the results from four field experiments aimed to describe the vertical variability of δ18O and δD in the first few meters over a large water body (the coastal lagoon of Venice, northern Italy) and to test the Craig-Gordon model in such conditions. Each experiment involved cryotrapping of water vapor at different height over the water surface (0.1m, 2m and 4m) and the sampling of the liquid water at two depth (surface and 0.5m). During the experiments, water vapor was also sampled in the nearest mainland (˜2.5 km from gradient measurements) to determine the isotopic composition of background water vapor. Liquid samples were then analyzed with a Picarro L1102-i and Thermo-Fisher Delta Plus Advantage for water vapor and lagoon water, respectively. The last two experiments have also involved simultaneous measurements of relative humidity using commercially-available humidity probes at each height. This approach was used to determine a reference scale in order to compare observations to modeled estimates. Despite the coarse time resolution due to cryotrapping method (measurements are averaged over 1.5 hours), preliminary results show measurable differences in the isotopic composition of water vapor along the vertical gradient and good

  7. Water vapor, water-ice clouds, and dust in the North Polar Region

    NASA Technical Reports Server (NTRS)

    Tamppari, Leslie K.; Smith, Michael D.; Bass, Deborah S.; Hale, Amy S.

    2006-01-01

    The behavior of water vapor, water-ice and dust in the Martian atmosphere is important for understanding the overall Martian climate system, which is characterized by three main cycles: water, including water-ice, dust, and CO2. Understanding these cycles will lend insight into the behavior of the atmospheric dynamics, the atmosphere's ability to transport dust, water-ice, and vapor to different parts of the planet, and how that ability changes as a function of dust and water-ice loading.

  8. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  9. Suppression of ENSO in a coupled model without water vapor feedback

    NASA Astrophysics Data System (ADS)

    Hall, A.; Manabe, S.

    We examine 800-year time series of internally generated variability in both a coupled ocean-atmosphere model where water vapor anomalies are not allowed to interact with longwave radiation and one where they are. The ENSO-like phenomenon in the experiment without water vapor feedback is drastically suppressed both in amplitude and geographic extent relative to the experiment with water vapor feedback. Surprisingly, the reduced amplitude of ENSO-related sea surface temperature anomalies in the model without water vapor feedback cannot be attributed to greater longwave damping of sea surface temperature. (Differences between the two experiments in radiative feedback due to clouds counterbalance almost perfectly the differences in radiative feedback due to water vapor.) Rather, the interaction between water vapor anomalies and longwave radiation affects the ENSO-like phenomenon through its influence on the vertical structure of radiative heating: Because of the changes in water vapor associated with it, a given warm equatorial Pacific sea surface temperature anomaly is associated with a radiative heating profile that is much more gravitationally unstable when water vapor feedback is present. The warm sea surface temperature anomaly therefore results in more convection in the experiment with water vapor feedback. The increased convection, in turn, is related to a larger westerly wind-stress anomaly, which creates a larger decrease in upwelling of cold water, thereby enhancing the magnitude of the original warm sea surface temperature anomaly. In this manner, the interaction between water vapor anomalies and longwave radiation magnifies the air-sea interactions at the heart of the ENSO phenomenon; without this interaction, the coupling between sea surface temperature and wind stress is effectively reduced, resulting in smaller amplitude ENSO episodes with a more limited geographical extent.

  10. Global analyses of water vapor, cloud and precipitation derived from a diagnostic assimilation of SSM/I geophysical retrievals

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Cohen, Charles

    1990-01-01

    An analytical approach is described for diagnostically assimilating moisture data from Special Sensor Microwave Imager (SSM/I) into a global analysis of water vapor, cloud content, and precipitation. In this method, 3D fields of wind and temperature values taken from ECMWF gridded analysis are used to drive moisture conservation equations with parameterized microphysical treatment of vapor, liquid, and ice; the evolving field of water vapor is periodically updated or constrained by SSM/I retrievals of precipitable water. Initial results indicate that this diagnostic model can produce realistic large-scale fields of cloud and precipitation. The resulting water vapor analyses agree well with SSM/I and have an additional advantage of being synoptic.

  11. Water Vapor Monitoring at the Roque de LOS Muchachos Observatory

    NASA Astrophysics Data System (ADS)

    Rodriguez-Espinosa, J. M.; Kidger, M.; del Rosario, J. C.; Trancho, G.

    1997-12-01

    We present the first results from a long-term campaign of water vapor monitoring at the Roque de los Muchachos Observatory (Canary Islands, Spain). This observatory is situated on a volcanic peak, on the small island of La Palma. Although its altitude is relatively low (2400 meters), our initial site-testing, taken for site selection for the Spanish 10m telescope project, shows that a significant fraction of nights have water vapor column of 1mm, or lower, with values of 2mm and lower being relatively common, even in summer. The water vapor column can be stable at under 1mm for several nights, with only minimal variations. We contrast the results obtained using an infrared radiometer (on loan from Kitt Peak National Observatory), with those obtained using the 940nm water vapor line and comment briefly on plans for future automatic monitoring of water vapor at the observatory.

  12. Tracing Water Vapor and Ice During Dust Growth

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.; Bergin, Edwin A.

    2016-12-01

    The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ˜50 in the disk atmosphere. In our isothermal column, this vapor depletion results in the vertical snowline moving closer to the midplane (by up to 2 gas scale heights) and the gas-phase {{C}}/{{O}} ratio above the vertical snowline increasing. Our findings illustrate the importance of dynamical effects and the need for understanding coevolutionary dynamics of gas and solids in planet-forming environments.

  13. Investigation of water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher

    1993-01-01

    Motions deduced in animated water vapor imagery from geostationary satellites can be used to infer wind fields in cloudless regimes. For the past several years, CIMSS has been exploring this potentially important source of global-scale wind information. Recently, METEOSAT-3 data has become routinely available to both the U.S. operational and research community. Compared with the current GOES satellite, the METEOSAT has a superior resolution (5 km vs. 16 km) in its water vapor channel. Preliminary work: at CIMSS has demonstrated that wind sets derived from METEOSAT water vapor imagery can provide important upper-tropospheric wind information in data void areas, and can positively impact numerical model guidance in meteorological applications. Specifically, hurricane track forecasts can be improved. Currently, we are exploring methods to further improve the derivation and quality of the water vapor wind sets.

  14. Characterization of Upper Troposphere Water Vapor Measurements during AFWEX using LASE

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Browell, E. V.; Ismail, S.; Kooi, S.; Brasseur, L. H.; Brackett, V. G.; Clayton, M.; Barrick, J.; Linne, H.; Lammert, A.

    2002-01-01

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. We show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived from the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UTWV measurements.

  15. Characterization of Upper-Troposphere Water Vapor Measurements during AFWEX Using LASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrare, Richard; Browell, E. V.; Ismail, S.

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors over the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma. LASE was deployed from the NASA DC-8 aircraft and measured water vapor over the ARM SGP Central Facility (CF) site during seven flights between November 27 and December 10, 2000. Initially, the DOE ARM SGP Cloud and Radiation Testbed (CART) Raman lidar (CARL) UTWVmore » profiles were about 5-7% wetter than LASE in the upper troposphere, and the Vaisala RS80-H radiosonde profiles were about 10% drier than LASE between 8-12 km. Scaling the Vaisala water vapor profiles to match the precipitable water vapor (PWV) measured by the ARM SGP microwave radiometer (MWR) did not change these results significantly. By accounting for an overlap correction of the CARL water vapor profiles and by employing schemes designed to correct the Vaisala RS80-H calibration method and account for the time response of the Vaisala RS80H water vapor sensor, the average differences between the CARL and Vaisala radiosonde upper troposphere water vapor profiles are reduced to about 5%, which is within the ARM goal of mean differences of less than 10%. The LASE and DC-8 in situ Diode Laser Hygrometer (DLH) UTWV measurements generally agreed to within about 3 to 4%. The DC-8 in situ frost point cryogenic hygrometer and Snow White chilled mirror measurements were drier than the LASE, Raman lidars, and corrected Vaisala RS80H measurements by about 10-25% and 10-15%, respectively. Sippican (formerly VIZ manufacturing) carbon hygristor radiosondes exhibited large variabilities and poor agreement with the other measurements. PWV derived from the LASE profiles agreed to within about 3% on average

  16. Airborne Observations of Water Vapor Deuterium Excess in the Mid-Latitude Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2017-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  17. Detection of Thermal Water Vapor Emission from W Hydrae

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Chen, Wesley; Melnick, Gary J.; DeGraauw, Thijs; Feuchtgruber, Helmut; Harwitt, Martin

    1997-01-01

    We have detected four far-infrared emission lines of water vapor toward the evolved star W Hydrae, using the Short Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO). This is the first detection of thermal water vapor emission from a circumstellar outflow.

  18. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  19. Analysis of the global ISCCP TOVS water vapor climatology

    NASA Technical Reports Server (NTRS)

    Wittmeyer, Ian L.; Vonder Haar, Thomas H.

    1994-01-01

    A climatological examination of the global water vapor field based on a multiyear period of successfull satellite-based observations is presented. Results from the multiyear global ISCCP TIROS Operational Vertical Sounder (TOVS) water vapor dataset as operationally produced by NESDIS and ISCCP are shown. The methods employed for the retrieval of precipitable water content (PWC) utilize infrared measurements collected by the TOVS instrument package flown aboard the NOAA series of operational polar-orbiting satellites. Strengths of this dataset include the nearly global daily coverage, availability for a multiyear period, operational internal quality checks, and its description of important features in the mean state of the atmosphere. Weaknesses of this PWC dataset include that the infrared sensors are unable to collect data in cloudy regions, the retrievals are strongly biased toward a land-based radiosonde first-guess dataset, and the description of high spatial and temporal variability is inadequate. Primary consequences of these factors are seen in the underestimation of ITCZ water vapor maxima, and underestimation of midlatitude water vapor mean and standard deviation values where transient atmospheric phenomena contribute significantly toward time means. A comparison of TOVS analyses to SSM/I data over ocean for the month of July 1988 shows fair agreement in the magnitude and distribution of the monthly mean values, but the TOVS fields exhibit much less temporal and spatial variability on a daily basis in comparison to the SSM/I analyses. The emphasis of this paper is on the presentation and documentation of an early satellite-based water vapor climatology, and description of factors that prevent a more accurate representation of the global water vapor field.

  20. Water vapor - The wet blanket of microwave interferometry

    NASA Technical Reports Server (NTRS)

    Resch, G. M.

    1980-01-01

    The various techniques that utilize microwave interferometry could be employed to determine distances of several thousand kilometers with an accuracy of 1 cm or 2 cm. Such measurements would be useful to obtain new knowledge of earth dynamics, greater insight into fundamental astronomical constants, and the ability to accurately navigate a spacecraft in interplanetary flight. There is, however, a basic problem, related to the presence of tropospheric water vapor, which has to be overcome before such measurements can be realized. Differing amounts of water vapor over the interferometer stations cause errors in the differential time of arrival which is the principal observable quantity. Approaches for overcoming this problem are considered, taking into account requirements for water vapor calibration to support interferometric techniques.

  1. Study on water vapor characteristic of typical heavy snowstorm case in Northern Xinjiang

    NASA Astrophysics Data System (ADS)

    Cui, C.; Zhang, J.

    2017-12-01

    Using the daily precipitation at 51 weather stations in the Northern Xinjiang from November to March during 2000—2012 and daily water vapor of NCEP/NCAR 6 h 1°×1° reanalysis data, the water vapor characteristics of 11 typical heavy snowstorm cases were studied. The result shows that the 11 cases are classified into 3 types: West of Northern Xinjiang and along Tianshan edge, north and east of Northern Xinjiang, west of Northern Xinjiang and west Tianshan. There are two main water vapor sources: Near the Mediterranean Sea, the Red Sea or near the Persian Gulf. There are two water vapor transport routes which are west, southwest and northwest, respectively. Water vapor from southwest route is more, that from northwest route is less. The top of water vapor is close to 300 hPa. The strongest water vapor transport level is between 650-750 hPa. Before the every occurrence of 11 heavy snowstorm processes, there are water vapor convergence between 600-1000 hPa in Northern Xinjiang.There are positive correlations between the snowstorm intensity and water vapor convergence between 600-1000 hPa, as well as the convergence strength, rang and duration time in Northern Xinjiang. Hence, some lowest values of the strongest water vapor transport, water vapor convergence and the upper and lower level jet streams are resented also and gave useful references for accurate heavy snowstorm forecasting.

  2. Importance Profiles for Water Vapor

    NASA Astrophysics Data System (ADS)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or ``kernel'' depends on whether specific humidity S, relative humidity R, or ln(R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  3. Importance Profiles for Water Vapor

    NASA Astrophysics Data System (ADS)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  4. MIPAS middle atmosphere water vapor distributions

    NASA Astrophysics Data System (ADS)

    Garcia-Comas, Maya; Lopez-Puertas, Manuel; Funke, Bernd; Bermejo-Pantale, Diego; Stiller, Gabriele; Grabowski, Udo; von Clarmann, Thomas

    Water vapor is a key constituent of the middle atmosphere. It is involved in the ozone chem-istry, it is the precursor of PSCs and PMCs, and it is an infrared cooler in the stratosphere. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard Envisat observes the H2O infrared emissions with high resolution up to the mesopause. We have derived water vapor abundance from MIPAS spectra using the IMK/IAA data processor, which includes the GRANADA non-LTE algorithm. That allows for accurate H2O retrievals in the atmospheric regions where its emissions are affected by non-LTE, i.e., above 50km and particularly in the polar summer. We describe the information gained from MIPAS spectra about the non-LTE processes affecting the H2O infrared emissions, discuss its uncertainties and present MIPAS pole-to-pole distributions of water vapor retrieved from the stratosphere to the upper meso-sphere. We pay special attention to its behavior in the polar summer mesosphere, where the presence of PMCs and particular dynamical events may perturb the H2O vertical distribution. We also compare our results with those from global circulation models and other independent measurements.

  5. Shape Evolution of Metal Nanoparticles in Water Vapor Environment.

    PubMed

    Zhu, Beien; Xu, Zhen; Wang, Chunlei; Gao, Yi

    2016-04-13

    The structures of the metal nanoparticles are crucial for their catalytic activities. How to understand and even control the shape evolution of nanoparticles under reaction condition is a big challenge in heterogeneous catalysis. It has been proved that many reactive gases hold the capability of changing the structures and properties of metal nanoparticles. One interesting question is whether water vapor, such a ubiquitous environment, could induce the shape evolution of metal nanoparticles. So far this question has not received enough attention yet. In this work, we developed a model based on the density functional theory, the Wulff construction, and the Langmuir adsorption isotherm to explore the shape of metal nanoparticle at given temperature and water vapor pressure. By this model, we show clearly that water vapor could notably increase the fraction of (110) facets and decrease that of (111) facets for 3-8 nm Cu nanoparticles, which is perfectly consistent with the experimental observations. Further investigations indicate the water vapor has different effects on the different metal species (Cu, Au, Pt, and Pd). This work not only helps to understand the water vapor effect on the structures of metal nanoparticles but also proposes a simple but effective model to predict the shape of nanoparticles in certain environment.

  6. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    PubMed

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H 2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H 2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H 2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  7. Influence of ethanol vapor addition on the surface modification of polyethylene in a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Van Deynse, Annick; Morent, Rino; Leys, Christophe; De Geyter, Nathalie

    2017-10-01

    In this paper, ethanol vapor up to 50% is added to an argon, air or nitrogen dielectric barrier discharge at medium pressure to profoundly investigate the effect of ethanol addition on the surface modification of low density polyethylene (LDPE). Water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS) measurements show that the ethanol vapor addition effect on the LDPE surface depends on the used carrier gas. Adding ethanol to an argon plasma has no significant effect on the wettability nor on the chemical composition of LDPE compared to a pure argon plasma treatment. Ethanol addition does however slightly increase the LDPE surface roughness. Addition of small amounts of ethanol vapor to an air plasma makes it possible to incorporate additional nitrogen and oxygen groups on the LDPE surface, resulting in an extra decrease of 11% in WCA value. Moreover, the LDPE surface roughness is slightly increased due to the ethanol vapor addition. The most significant effect of ethanol addition is however observed when nitrogen is used as carrier gas. After an N2/2% ethanol plasma treatment, an 85% reduction in WCA value to 8.5° is found compared to a pure N2 plasma treatment. This very hydrophilic LDPE surface is obtained due to a significantly high incorporation of oxygen and nitrogen groups on the surface with an O/C and N/C ratio reaching 32% and 53% respectively. FTIR measurements also reveal that the observed extremely high wettability of LDPE is not the result of plasma activation but is due to plasma polymerization effects occurring on the surface resulting into the deposition of a plasma polymer containing ketones, amides as well as Cdbnd N groups. In addition, ageing studies have also been conducted and these studies reveal that for all carrier gases, ethanol addition to the discharge gas significantly suppresses the ageing effect. All the above mentioned conclusions therefore indicate that ethanol vapor based plasmas can be an excellent tool to increase

  8. The annual cycle of stratospheric water vapor in a general circulation model

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  9. Portable device for generation of ultra-pure water vapor feeds

    NASA Astrophysics Data System (ADS)

    Velin, P.; Stenman, U.; Skoglundh, M.; Carlsson, P.-A.

    2017-11-01

    A portable device for the generation of co-feeds of water vapor has been designed, constructed, and evaluated for flexible use as an add-on component to laboratory chemical reactors. The vapor is formed by catalytic oxidation of hydrogen, which benefits the formation of well-controlled minute concentrations of ultra-pure water. Analysis of the effluent stream by on-line mass spectrometry and Fourier transform infrared spectroscopy confirms that water vapor can be, with high precision, generated both rapidly and steadily over extended periods in the range of 100 ppm to 3 vol. % (limited by safety considerations) using a total flow of 100 to 1500 ml/min at normal temperature and pressure. Further, the device has been used complementary to a commercial water evaporator and mixing system to span water concentrations up to 12 vol. %. Finally, an operando diffuse reflective infrared Fourier transform spectroscopic measurement of palladium catalysed methane oxidation in the absence and presence of up to 1.0 vol. % water has been carried out to demonstrate the applicability of the device for co-feeding well-controlled low concentrations of water vapor to a common type of spectroscopic experiment. The possibilities of creating isotopically labeled water vapor as well as using tracer gases for dynamic experiments are discussed.

  10. Portable device for generation of ultra-pure water vapor feeds.

    PubMed

    Velin, P; Stenman, U; Skoglundh, M; Carlsson, P-A

    2017-11-01

    A portable device for the generation of co-feeds of water vapor has been designed, constructed, and evaluated for flexible use as an add-on component to laboratory chemical reactors. The vapor is formed by catalytic oxidation of hydrogen, which benefits the formation of well-controlled minute concentrations of ultra-pure water. Analysis of the effluent stream by on-line mass spectrometry and Fourier transform infrared spectroscopy confirms that water vapor can be, with high precision, generated both rapidly and steadily over extended periods in the range of 100 ppm to 3 vol. % (limited by safety considerations) using a total flow of 100 to 1500 ml/min at normal temperature and pressure. Further, the device has been used complementary to a commercial water evaporator and mixing system to span water concentrations up to 12 vol. %. Finally, an operando diffuse reflective infrared Fourier transform spectroscopic measurement of palladium catalysed methane oxidation in the absence and presence of up to 1.0 vol. % water has been carried out to demonstrate the applicability of the device for co-feeding well-controlled low concentrations of water vapor to a common type of spectroscopic experiment. The possibilities of creating isotopically labeled water vapor as well as using tracer gases for dynamic experiments are discussed.

  11. Cirrus and Water Vapor Transport in the Tropical Tropopause Layer

    NASA Astrophysics Data System (ADS)

    Dinh, Tra Phuong

    Simulations of tropical-tropopause-layer (TTL) cirrus under the influence of a large-scale equatorial Kelvin wave have been performed in two dimensions. These simulations show that, even under the influence of the large-scale wave, radiatively induced dynamics in TTL cirrus plays an important role in the transport of water vapor in the vertical direction. In a typical TTL cirrus, the heating that results from absorption of radiation by ice crystals induces a mesoscale circulation. Advection of ice and water vapor by the radiatively induced circulation leads to the persistence of the cloud and upward advection of the cloudy air. Upward advection of the cloudy air is equivalent to upward transport of water vapor when the air above the cloud is drier than the cloudy air, and downward transport otherwise. In TTL cirrus, microphysical processes also contribute to transport of water vapor in the vertical direction. Ice nucleation and growth, followed by sedimentation and sublimation, always lead to downward transport of water vapor. The magnitude of the downward transport by microphysical processes increases with the relative humidity of the air surrounding the cloud. Moisture in the surrounding environment is important because there is continuous interactions between the cloudy and environmental air throughout the cloud boundary. In our simulations, when the air surrounding the cloud is subsaturated, hence drier than the cloudy air, the magnitude of the downward transport due to microphysical processes is smaller than that of the upward transport due to the radiatively induced advection of water vapor. The net result is upward transport of water vapor, and equivalently hydration of the lower stratosphere. On the other hand, when the surrounding air is supersaturated, hence moister than the cloudy air, microphysical and radiatively induced dynamical processes work in concert to induce downward transport of water vapor, that is dehydration of the lower stratosphere. TTL

  12. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Image and Video Library

    2003-09-20

    This false-color image shows the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner. Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain. http://photojournal.jpl.nasa.gov/catalog/PIA00430

  13. CRISM Observations of Water Vapor and Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2008-01-01

    Near-infrared spectra returned by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, [1]) on-board the Mars Reconnaissance Orbiter (MRO) contain the clear spectral signature of several atmospheric gases including carbon dioxide (CO2), water vapor (H2O), and carbon monoxide (CO). Here we describe the seasonal and spatial mapping of water vapor and carbon dioxide for one full Martian year using CRISM spectra.

  14. Development of an Airborne Micropulse Water Vapor DIAL

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  15. Microwave radiometry as a tool to calibrate tropospheric water-vapor delay

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Claflin, E. S.

    1980-01-01

    Microwave radiometers were used to measure the emission line due to the water vapor molecules of atmospheric emission. Four separate field tests were completed which compared radiometers to other techniques which measure water vapor. It is shown that water vapor induced delay can be estimated with an accuracy of plus or minus 2 cm for elevation angles above 17 degrees.

  16. Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems

    NASA Astrophysics Data System (ADS)

    Saranya, P.; Krishan, Gopal; Rao, M. S.; Kumar, Sudhir; Kumar, Bhishm

    2018-02-01

    The study evaluates the water vapor isotopic compositions and its controls with special reference to Indian Summer Monsoon (ISM) season at Roorkee, India. Precipitation is usually a discrete event spatially and temporally in this part of the country, therefore, the information provided is limited, while, the vapors have all time availability and have a significant contribution in the hydrological cycle locally or over a regional scale. Hence for understanding the processes altering the various sources, its isotopic signatures were studied. The Isotope Water Vapour Line (Iso Val) was drawn together with the Global Meteoric Water Line (GMWL) and the best fit line was δD = 5.42 * δ18O + 27.86. The precipitation samples were also collected during the study period and were best fitted with δD = 8.20(±0.18) * δ18O + 9.04(±1.16) in the Local Meteoric Water Line (LMWL). From the back trajectory analysis of respective vapor samples, it is unambiguous that three major sources viz; local vapor, western disturbance and monsoon vapor are controlling the fate of moisture over Roorkee. The d-excess in ground-level vapor (GLV) reveals the supply of recycled moisture from continental water bodies and evapo-transpiration as additional moisture sources to the study area. The intensive depletion in isotopic ratios was associated with the large-scale convective activity and low-pressure/cyclonic/depression systems formed over Bay of Bengal.

  17. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  18. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    NASA Technical Reports Server (NTRS)

    Kelly, K. K.; Proffitt, M. H.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, E.; Wilson, J. C.; Kley, D.

    1993-01-01

    Measurements of stratospheric and upper tropospheric cloud water plus water vapor (total water) and water vapor were made with two Lyman alpha hygrometers as part of the STEP tropical experiment. The in situ measurements were made in the Darwin, Australia, area in January and February of 1987 on an ER-2 aircraft. Average stratospheric water vapor at a potential temperature of 375 K (the average value of Theta at the tropopause) was 2.4 parts per million by volume (ppmv). This water mixing ratio is below the 3.0 to 4.0 ppmv necessary to be consistent with the observed upper stratospheric dryness. Saturation with respect to ice and the potential for dehydration was observed up to Theta = 402 K.

  19. Role of Co-Vapors in Vapor Deposition Polymerization

    PubMed Central

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok

    2015-01-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers. PMID:25673422

  20. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  1. Tm:germanate Fiber Laser for Planetary Water Vapor Atmospheric Profiling

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; De Young, Russell

    2009-01-01

    The atmospheric profiling of water vapor is necessary for finding life on Mars and weather on Earth. The design and performance of a water vapor lidar based on a Tm:germanate fiber laser is presented.

  2. Error analysis of integrated water vapor measured by CIMEL photometer

    NASA Astrophysics Data System (ADS)

    Berezin, I. A.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Frantsuzova, I. S.; Volkova, K. A.; Poberovsky, A. V.; Holben, B. N.; Smirnov, A.; Slutsker, I.

    2017-01-01

    Water vapor plays a key role in weather and climate forming, which leads to the need for continuous monitoring of its content in different parts of the Earth. Intercomparison and validation of different methods for integrated water vapor (IWV) measurements are essential for determining the real accuracies of these methods. CIMEL photometers measure IWV at hundreds of ground-based stations of the AERONET network. We analyze simultaneous IWV measurements performed by a CIMEL photometer, an RPG-HATPRO MW radiometer, and a FTIR Bruker 125-HR spectrometer at the Peterhof station of St. Petersburg State University. We show that the CIMEL photometer calibrated by the manufacturer significantly underestimates the IWV obtained by other devices. We may conclude from this intercomparison that it is necessary to perform an additional calibration of the CIMEL photometer, as well as a possible correction of the interpretation technique for CIMEL measurements at the Peterhof site.

  3. Tunable lasers for water vapor measurements and other lidar applications

    NASA Technical Reports Server (NTRS)

    Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.

  4. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1990-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T (sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  5. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1989-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T(sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  6. Latitudinal change in precipitation and water vapor isotopes over Southern ocean

    NASA Astrophysics Data System (ADS)

    Rahul, P.

    2015-12-01

    The evaporation process over ocean is primary source of water vapor in the hydrological cycle. The Global Network of Isotopes in Precipitation (GNIP) dataset of rainwater and water vapor isotopes are predominantly based on continental observations, with very limited observation available from the oceanic area. Stable isotope ratios in precipitation provide valuable means to understand the process of evaporation and transport of water vapor. This is further extended in the study of past changes in climate from the isotopic composition of ice core. In this study we present latitudinal variability of water vapor and rainwater isotopic composition and compared it with factors like physical condition of sea surface water from near equator (1°S) to the polar front (56°S) during the summer time expedition of the year 2013. The water vapor and rainwater isotopes showed a sharp depletion in isotopes while progressively move southward from the tropical regions (i.e. >30°S), which follows the pattern recorded in the surface ocean water isotopic composition. From the tropics to the southern latitudes, the water vapor d18O varied between -11.8‰ to -14.7‰ while dD variation ranges between -77.7‰ to -122.2‰. Using the data we estimated the expected water vapor isotopic composition under kinetic as well as equilibrium process. Our observation suggests that the water vapor isotopic compositions are in equilibrium with the sea water in majority of cases. At one point of observation, where trajectory of air parcel originated from the continental region, we observed a large deviation from the existing trend of latitudinal variability. The deduced rainwater composition adopting equilibrium model showed a consistent pattern with observed values at the tropical region, while role of kinetic process become dominant on progressive shift towards the southern latitudes. We will draw comparison of our observation with other data available in the literature together with isotope

  7. Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes.

    PubMed

    Jeon, Wonjae; Yun, Jongju; Khan, Fakhre Alam; Baik, Seunghyun

    2015-09-14

    Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ∼17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of magnitude higher than the Knudsen prediction regardless of membrane temperature. The water vapor separation performance of hydrophobic polytetrafluoroethylene membranes could also be significantly enhanced at low temperatures. This work combines the membrane-based separation technology with temperature control to enhance water vapor separation performance.

  8. Water vapor absorption in the atmospheric window at 239 GHz

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.

    1995-01-01

    Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.

  9. A latitudinal survey of mesospheric and upper stratospheric water vapor

    NASA Technical Reports Server (NTRS)

    Croskey, C. L.; Martone, J. P.; Olivero, J. J.; Puliafito, S. E.

    1994-01-01

    As part of the LAtitudinal DIstribution of Middle Atmosphere Structure (LADIMAS) campaign, measurements of mesospheric and upper stratospheric water vapor concentration were made over a latitudinal range from 53 N to 63 S. The 22-GHz emission line of water vapor was observed by a new, portable, cryogenically cooled microwave radiometer that was carried on board the German research vessel Polarstern as it sailed from Bremerhaven, Germany, to the Antarctic during November and December, 1991. Water vapor profiles were obtained at approximately 5 deg latitude intervals for an altitude range of 40 to 80 km.

  10. CHMWTR: A Plasma Chemistry Code for Water Vapor

    DTIC Science & Technology

    2012-02-01

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6790--12-9383 CHMWTR: A Plasma Chemistry Code for Water Vapor Daniel F. GorDon Michael...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT CHMWTR: A Plasma Chemistry Code for Water Vapor Daniel F. Gordon, Michael H. Helle, Theodore G. Jones, and K...October 2011 NRL *Directed Energy Scholar, Directed Energy Professional Society Plasma chemistry Breakdown field Conductivity 67-4270-02 CHMWTR: a Plasma

  11. Retrieval of water vapor mixing ratios from a laser-based sensor

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  12. Modeling Convection of Water Vapor into the Mid-latitude Summer Stratosphere

    NASA Astrophysics Data System (ADS)

    Clapp, C.; Leroy, S. S.; Anderson, J. G.

    2016-12-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) from the tropics to the poles is important both radiatively and chemically. Water vapor is the most important greenhouse gas, and increases in water vapor concentrations in the UTLS lead to cooling at these levels and induce warming at the surface [Forster and Shine, 1999; 2002; Solomon et al., 2010]. Water vapor is also integral to stratospheric chemistry. It is the dominant source of OH in the lower stratosphere [Hanisco et al., 2001], and increases in water vapor concentrations promote stratospheric ozone loss by raising the reactivity of several key heterogeneous reactions as well as by promoting the growth of reactive surface area [Anderson et al., 2012; Carslaw et al., 1995; Carslaw et al., 1997; Drdla and Muller , 2012; Kirk-Davidoff et al., 1999; Shi et al., 2001]. However, the processes that control the distribution and phase of water in this region of the atmosphere are not well understood. This is especially true at mid-latitudes where several different dynamical mechanisms are capable of influencing UTLS water vapor concentrations. The contribution by deep convective storm systems that penetrate into the lower stratosphere is the least well understood and the least well represented in global models because of the small spatial scales and short time scales over which convection occurs. To address this issue, we have begun a modeling study to investigate the convective injection of water vapor from the troposphere into the stratosphere in the mid-latitudes. Fine-scale models have been previously used to simulate convection from the troposphere to the stratosphere [e.g., Homeyer et al., 2014]. Here we employ the Advanced Research Weather and Research Forecasting model (ARW) at 3-km resolution to resolve convection over the mid-western United States during August of 2013 including a storm system observed by SEAC4RS. We assess the transport of water vapor into the stratosphere over the model

  13. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1976-01-01

    A total of 18 different membranes were procured, characterized, and tested in a modified bench-scale vapor diffusion water reclamation unit. Four membranes were selected for further studies involving membrane fouling. Emphasis was placed on the problem of flux decline due to membrane fouling. This is discussed in greater details under "Summary and Discussion on Membrane Fouling Studies" presented in pages 47-51. The system was also investigated for low temperature application on wash-water where the permeated water is not recovered but vented into space vacuum.

  14. On the vertical distribution of water vapor in the Martian tropics

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    1988-01-01

    Although measurements of the column abundance of atmospheric water vapor on Mars have been made, measurements of its vertical distribution have not. How water is distributed in the vertical is fundamental to atmosphere-surface exchange processes, and especially to transport within the atmosphere. Several lines of evidence suggest that in the lowest several scale heights of the atmosphere, water vapor is nearly uniformly distributed. However, most of these arguments are suggestive rather than conclusive since they only demonstrate that the altitude to saturation is very high if the observed amount of water vapor is distributed uniformly. A simple argument is presented, independent of the saturation constraint, which suggests that in tropical regions, water vapor on Mars should be very nearly uniformly mixed on an annual and zonally averaged basis.

  15. Water Vapor Uptake of Ultrathin Films of Biologically Derived Nanocrystals: Quantitative Assessment with Quartz Crystal Microbalance and Spectroscopic Ellipsometry.

    PubMed

    Niinivaara, Elina; Faustini, Marco; Tammelin, Tekla; Kontturi, Eero

    2015-11-10

    Despite the relevance of water interactions, explicit analysis of vapor adsorption on biologically derived surfaces is often difficult. Here, a system was introduced to study the vapor uptake on a native polysaccharide surface; namely, cellulose nanocrystal (CNC) ultrathin films were examined with a quartz crystal microbalance with dissipation monitoring (QCM-D) and spectroscopic ellipsometry (SE). A significant mass uptake of water vapor by the CNC films was detected using the QCM-D upon increasing relative humidity. In addition, thickness changes proportional to changes in relative humidity were detected using SE. Quantitative analysis of the results attained indicated that in preference to being soaked by water at the point of hydration each individual CNC in the film became enveloped by a 1 nm thick layer of adsorbed water vapor, resulting in the detected thickness response.

  16. GPS meteorology - Remote sensing of atmospheric water vapor using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Bevis, Michael; Businger, Steven; Herring, Thomas A.; Rocken, Christian; Anthes, Richard A.; Ware, Randolph H.

    1992-01-01

    We present a new approach to remote sensing of water vapor based on the Global Positioning System (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, and government and military agencies, in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitate water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change.

  17. ELF and ALEX SURF WINTER WAVES: Lidar Intercomparison of Aerosol and Water Vapor Measurements in the Baltimore-Washington Metropolitan Area During the Winter Water Vapor Validation Experiments (WAVES) 2008 campaign.

    NASA Astrophysics Data System (ADS)

    Delgado, R.; Weldegaber, M.; Wilson, R. C.; McMillan, W.; McCann, K. J.; Woodman, M.; Demoz, B.; Adam, M.; Connell, R.; Venable, D.; Joseph, E.; Rabenhorst, S.; Twigg, L.; McGee, T.; Whiteman, D. N.; Hoff, R. M.

    2008-12-01

    Elastic and Raman lidar measurements were conducted to measure the vertical distribution of aerosols and water vapor during the Water Vapor Validation Experiments (WAVES) 2008 campaign by the University of Maryland Baltimore County (UMBC) Atmospheric Lidar Group at UMBC, at the same time as measurements at Howard University's Beltsville Research Station (26.5 km distant). The lidar profiles of atmospheric water vapor and aerosols allowed comparison for AURA/Aqua retrieval studies, by performing instrument accuracy assessments and data, generated by various independent active and passive remote sensing instruments for case studies of regional water vapor and aerosol sub-pixel variability. Integration of the lidar water vapor mixing ratios has been carried out to generate a column precipitable water vapor timeseries that can be compared to UMBC's SUOMINET station and Baltimore Bomem Atmospheric Emitted Radiance Interferometer (BBAERI). Changes in atmospheric aerosol concentration and water vapor mixing ratios due to meteorological events observed in the lidar timeseries have been correlated to the vertical temperature timeseries of BBAERI and to modeling of the air mass over the Baltimore-Washington metro area with the Weather Research and Forecasting (WRF) model.

  18. Electrification in Hurricanes over the Tropical Americas: Implication for Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Chronis, Themis G.; Robertson, Franklin R.; Miller, Timothy L.

    2007-01-01

    This study explores the relation between lightning activity and water vapor in the Tropical Tropopause Layer (TTL) over hurricane systems in the Tropical Americas. The hypothesis herein is that hurricanes that exhibit enhanced lightning activity are associated with stronger updrafts that can transport more moisture directly into the TTL (and subsequently into the tropical stratosphere) or even directly into the tropical stratosphere over this region. The TTL over the Tropical Americas, which includes the Caribbean and Gulf of Mexico, is of particular interest, because summertime cold point tropopause is the lowest in height and thus the warmest in temperature over the tropics. The latter condition implies higher saturation values and thus potential for more water vapor to enter the stratosphere. Climate forecast is very sensitive to stratospheric water vapor abundance, because of the key role that water vapor plays in regulating the chemical and radiative properties of the stratosphere. Given the potential for increases in hurricane intensity and frequency under predicted warmer conditions, it becomes essential to understand the effect of hurricanes on stratospheric water vapor. In this study, we use a combination of ground and space-borne observations as well as trajectory calculations. The observations include: cloud-to-ground (CG) lightning data from the U.S. National Lightning Detection Network (NLDN), geostationary infrared observations from the National Climatic Data Center Hurricane Satellite (HURSAT) data set, cloud properties from Aqua-MODIS, and water vapor from Aura-MLS. We analyze hurricanes from the 2005 season when Aura-MLS data are available, namely: Dennis, Emily, Katrina, Rita, and Wilma. Our analysis consists of examining CG lightning, cloud-top properties, and TTL water vapor (i.e., 100 and 147 mb) over the hurricane while it remains over water in the Tropical Americas region. We investigate daily as well as diurnal statistical properties. The

  19. In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.; Yuen, Lunming; Sisson, David; Hang, Richard

    2012-01-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012.

  20. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    NASA Technical Reports Server (NTRS)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  1. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humiditymore » conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.« less

  2. A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.

    2017-12-01

    The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

  3. Vapor compression distiller and membrane technology for water revitalization

    NASA Technical Reports Server (NTRS)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  4. Vapor compression distiller and membrane technology for water revitalization.

    PubMed

    Ashida, A; Mitani, K; Ebara, K; Kurokawa, H; Sawada, I; Kashiwagi, H; Tsuji, T; Hayashi, S; Otsubo, K; Nitta, K

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied; one is an absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation able to easily produce condensed water under zero gravity was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  5. Comparing Vertical Distributions of Water Vapor Flux within Two Landfalling Atmospheric Rivers

    NASA Astrophysics Data System (ADS)

    Rutz, J. J.; Lavers, D. A.

    2015-12-01

    The West Coast of North America is frequently impacted by atmospheric rivers (ARs), regions of intense horizontal water vapor transport that often produce heavy rain, flooding, and landslides when they interact with near-coastal mountains. Recently, studies have shown that ARs penetrate farther inland on many occasions, with indications that the vertical distribution of vapor transport within the ARs may play a key role in this penetration (Alexander et al. 2015; Rutz et al. 2015). We hypothesize that the amount of near-coastal precipitation and the likelihood of AR penetration farther inland may be inversely linked by vertical distributions of vapor fluxes before, during, and after landfall. To explore whether differing vertical distributions of transport explain differing precipitation and penetration outcomes, we compare two landfalling ARs that had very similar spatial extents and rates of vertically integrated (total) vapor transport, but which nonetheless produced very different amounts of precipitation over northern California. The vertical distribution of water vapor flux, specific humidity, and wind speed during these two ARs are examined along several transects using cross-sectional analyses of the Climate Forecast System Reanalysis with a horizontal resolution of ~0.5° (~63 km) and a sigma-pressure hybrid coordinate at 64 vertical levels. In addition, we pursue similar analyses of forecasts from the NCEP Global Ensemble Forecast System GEFS to assess whether numerical weather prediction models accurately represent these distributions. Finally, we calculate backward trajectories from within each AR to examine whether or not the origins of their respective air parcels play a role in the resulting vertical distribution of water vapor flux. The results have major implications for two problems in weather prediction: (1) the near-coastal precipitation associated with landfalling ARs and (2) the likelihood of AR penetration farther inland.

  6. Production of long-term global water vapor and liquid water data set using ultra-fast methods to assimilate multi-satellite and radiosonde observations

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Reinke, Donald L.; Randel, David L.; Stephens, Graeme L.; Combs, Cynthia L.; Greenwald, Thomas J.; Ringerud, Mark A.; Wittmeyer, Ian L.

    1993-01-01

    During the next decade, many programs and experiments under the Global Energy and Water Cycle Experiment (GEWEX) will utilize present day and future data sets to improve our understanding of the role of moisture in climate, and its interaction with other variables such as clouds and radiation. An important element of GEWEX will be the GEWEX Water Vapor Project (GVaP), which will eventually initiate a routine, real-time assimilation of the highest quality, global water vapor data sets including information gained from future data collection systems, both ground and space based. The comprehensive global water vapor data set being produced by METSAT Inc. uses a combination of ground-based radiosonde data, and infrared and microwave satellite retrievals. This data is needed to provide the desired foundation from which future GEWEX-related research, such as GVaP, can build. The first year of this project was designed to use a combination of the best available atmospheric moisture data including: radiosonde (balloon/acft/rocket), HIRS/MSU (TOVS) retrievals, and SSM/I retrievals, to produce a one-year, global, high resolution data set of integrated column water vapor (precipitable water) with a horizontal resolution of 1 degree, and a temporal resolution of one day. The time period of this pilot product was to be det3ermined by the availability of all the input data sets. January 1988 through December 1988 were selected. In addition, a sample of vertically integrated liquid water content (LWC) was to be produced with the same temporal and spatial parameters. This sample was to be produced over ocean areas only. Three main steps are followed to produce a merged water vapor and liquid water product. Input data from Radiosondes, TOVS, and SSMI/I is quality checked in steps one and two. Processing is done in step two to generate individual total column water vapor and liquid water data sets. The third step, and final processing task, involves merging the individual output

  7. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  8. CRISM Limb Observations of Aerosols and Water Vapor

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.

    2009-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.

  9. Trapping of water vapor from an atmosphere by condensed silicate matter formed by high-temperature pulse vaporization

    NASA Technical Reports Server (NTRS)

    Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.

    1993-01-01

    The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.

  10. Water Vapor Variations over Mauna Loa and Table Mountain since 2010

    NASA Astrophysics Data System (ADS)

    Nedoluha, G. E.; Gomez, R. M.; Allen, D. R.; Boone, C.; Lambert, A.; Stiller, G. P.; Hurst, D. F.

    2012-12-01

    The Vapor Millimeter-wave Spectrometer (WVMS) instrument deployed at Network for the Detection of Atmospheric Composition Change (NDACC) sites at Table Mountain, California (34.4N, 242.3E) and at Mauna Loa, Hawaii (19.5N, 204.4E) have, since 2010, been able to make measurements down to ~26km. With this extended retrieval capability these instruments can now make measurements from ~26-80km. There is an increase from 2010 to 2012 which appears to be caused primarily by dynamical variations, although an increase in water vapor entering the stratosphere probably also plays a role at the lower altitudes. Water vapor mixing ratios at both of these NDACC sites are now higher than they have been for about a decade from the lower stratosphere through the mid-mesosphere. In addition to the WVMS measurements, we will present coincident satellite measurements from the Aura Microwave Limb Sounder (MLS), the Atmospheric Chemistry Experiment (ACE), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We will also compare the lowest altitude WVMS measurements with frostpoint hygrometer measurements from Boulder, Colorado (40N, 255E), and Hilo, Hawaii (19.7N, 205E). In order to understand the interannual dynamically-driven changes in water vapor, we will investigate interannual variations in mixing using equivalent length and tracer equivalent latitude from 2010-2012. Since dynamical variations affect H2O in the stratosphere primarily by changing the amount of CH4 oxidation that has occurred in a particular region, we will also examine CH4 variations from the GMI model.

  11. Impact of air and water vapor environments on the hydrophobicity of surfaces.

    PubMed

    Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P

    2015-09-01

    Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    NASA Technical Reports Server (NTRS)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  13. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Yu, Yunyue; Wick, Gary A.; Schluessel, Peter; Reynolds, Richard W.

    1994-01-01

    A new satellite sea surface temperature (SST) algorithm is developed that uses nearly coincident measurements from the microwave special sensor microwave imager (SSM/I) to correct for atmospheric moisture attenuation of the infrared signal from the advanced very high resolution radiometer (AVHRR). This new SST algorithm is applied to AVHRR imagery from the South Pacific and Norwegian seas, which are then compared with simultaneous in situ (ship based) measurements of both skin and bulk SST. In addition, an SST algorithm using a quadratic product of the difference between the two AVHRR thermal infrared channels is compared with the in situ measurements. While the quadratic formulation provides a considerable improvement over the older cross product (CPSST) and multichannel (MCSST) algorithms, the SSM/I corrected SST (called the water vapor or WVSST) shows overall smaller errors when compared to both the skin and bulk in situ SST observations. Applied to individual AVHRR images, the WVSST reveals an SST difference pattern (CPSST-WVSST) similar in shape to the water vapor structure while the CPSST-quadratic SST difference appears unrelated in pattern to the nearly coincident water vapor pattern. An application of the WVSST to week-long composites of global area coverage (GAC) AVHRR data demonstrates again the manner in which the WVSST corrects the AVHRR for atmospheric moisture attenuation. By comparison the quadratic SST method underestimates the SST corrections in the lower latitudes and overestimates the SST in th e higher latitudes. Correlations between the AVHRR thermal channel differences and the SSM/I water vapor demonstrate the inability of the channel difference to represent water vapor in the midlatitude and high latitudes during summer. Compared against drifting buoy data the WVSST and the quadratic SST both exhibit the same general behavior with the relatively small differences with the buoy temperatures.

  14. Water vapor d2H dynamics over China derived from SCIAMACHY satellite measurements

    USDA-ARS?s Scientific Manuscript database

    This study investigates water vapor isotopic patterns and controls over China using high-quality water vapor delta2H data retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) observations. The results show that water vapor delta2H values on both annual and...

  15. The Planck-Benzinger thermal work function in the condensation of water vapor

    NASA Astrophysics Data System (ADS)

    Chun, Paul W.

    Based on the Planck-Benzinger thermal work function using Chun's method, the innate temperature-invariant enthalpy at 0 K, ?H0(T0), for the condensation of water vapor as well as the dimer, trimer, tetramer, and pentamer form in the vapor phase, was determined to be 0.447 kcal mol-1 for vapor, 1.127 for the dimer, 0.555 for the trimer, 0.236 for the tetramer, and 0.079 kcal mol-1 for the pentamer using ?G(T) data reported by Kell et al. in 1968 and Kell and McLaurin in 1969. These results suggest that the predominant dimeric form is the most stable of these n-mers. Using Nemethy and Scheraga's 1962 data for the Helmholtz free energy of liquid water, the value of ?H0(T0) was determined to be 1.21 kcal mol-1. This is very close to the value for the energy of the hydrogen bond EH of 1.32 kcal mol-1 reported by Nemethy and Scheraga, using statistical thermodynamics. It seems clear that very little energy is required for interconversion between the hypothetical supercooled water vapor and glassy water at 0 K. A hypothetical supercooled water vapor at 0 K is apparently almost as highly associated as glassy water at that temperature, suggesting a dynamic equilibrium between vapor and liquid. This water vapor condensation is highly similar in its thermodynamic behavior to that of sequence-specific pairwise (dipeptide) hydrophobic interaction, except that the negative Gibbs free energy change minimum at ?Ts?, the thermal setpoint for vapor condensation, where T?S = 0, occurs at a considerably lower temperature, 270 K (below 0°C) compared with ?350 K. The temperature of condensation ?Tcond? at which ?G(T) = 0, where water vapor begins to condense, was found to be 383 K. In the case of a sequence-specific pairwise hydrophobic interaction, the melting temperature, ?Tm?, where ?G(Tm) = 0 was found to be 460 K. Only between two temperature limits, ?Th? = 99 K and ?Tcond? = 383 K, where ?G(Tcond) = 0, is the net chemical driving force favorable for polymorphism of glassy water

  16. Imaging spectrometer measurement of water vapor in the 400 to 2500 nm spectral region

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.; Conel, James E.; Dozier, Jeff

    1995-01-01

    The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) measures the total upwelling spectral radiance from 400 to 2500 nm sampled at 10 nm intervals. The instrument acquires spectral data at an altitude of 20 km above sea level, as images of 11 by up to 100 km at 17x17 meter spatial sampling. We have developed a nonlinear spectral fitting algorithm coupled with a radiative transfer code to derive the total path water vapor from the spectrum, measured for each spatial element in an AVIRIS image. The algorithm compensates for variation in the surface spectral reflectance and atmospheric aerosols. It uses water vapor absorption bands centered at 940 nm, 1040 nm, and 1380 nm. We analyze data sets with water vapor abundances ranging from 1 to 40 perceptible millimeters. In one data set, the total path water vapor varies from 7 to 21 mm over a distance of less than 10 km. We have analyzed a time series of five images acquired at 12 minute intervals; these show spatially heterogeneous changes of advocated water vapor of 25 percent over 1 hour. The algorithm determines water vapor for images with a range of ground covers, including bare rock and soil, sparse to dense vegetation, snow and ice, open water, and clouds. The precision of the water vapor determination approaches one percent. However, the precision is sensitive to the absolute abundance and the absorption strength of the atmospheric water vapor band analyzed. We have evaluated the accuracy of the algorithm by comparing several surface-based determinations of water vapor at the time of the AVIRIS data acquisition. The agreement between the AVIRIS measured water vapor and the in situ surface radiometer and surface interferometer measured water vapor is 5 to 10 percent.

  17. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  18. Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng

    2018-03-01

    To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.

  19. Water vapor in Titan's atmosphere observed by Cassini/CIRS data

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; Teanby, N. A.; Anderson, C. M.; Irwin, P. G.; Flasar, F. M.

    2011-12-01

    Water vapor in Titan's atmosphere has only been detected by whole-disk observations from the Infrared Space Observatory [1]. In fact an earlier attempt to measure water vapor with NASA's Cassini Composite Infrared Spectrometer (CIRS, [2]) was unsuccessful, due to poor signal-to-noise in early versions of the calibration pipeline. In this paper we show the detection of the water vapor in Titan's atmosphere through the analysis of the emission lines present in the spectral range (60 - 300 cm-1) observed by the far-IR Focal Plane 1 (FP1) detector. We model high spectral resolution (0.5 cm-1) disk versus limb data to determine the water mixing ratio as a function of latitude and time (using data acquired from December 2004 to late 2011), also exploring differences between the leading and trailing side of Saturn's moon. The opacity sources in the atmospheric model include thermal emission from the moon, collision-induced absorption (CIA) from pairs of Titan's main atmospheric molecules, the stratospheric aerosol and emission lines from atmospheric gases across the FP1 spectral range (see Cottini et al., 2011 [3] for description of the model). The radiative transfer model and retrieval code (NEMESIS) is based on the method of optimal estimation to perform a correlated-k computation of synthetic spectra.Our determination of the atmospheric abundance of water vapor yields a value of ~0.14 ppb assuming a constant vertical profile, which corresponds to a column abundance of 4.3x1014 molecules/cm2. Preliminary results suggest a change in the atmospheric water vapour abundance during northern winter into early northern spring. We also detected water in CIRS high resolution limb spectra. Modeling these limb observations, mainly centered on two tangent heights, 125 and 225 km, allows us to constrain the water vapor abundance vertical profile; utilizing the limb data allows us to retrieve the water vapor from disk observations using a water vapor mixing ratio that varies in

  20. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  1. Possible near-IR channels for remote sensing precipitable water vapor from geostationary satellite platforms

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Goetz, A. F. H.; Westwater, Ed R.; Conel, J. E.; Green, R. O.

    1993-01-01

    Remote sensing of troposheric water vapor profiles from current geostationary weather satellites is made using a few broadband infrared (IR) channels in the 6-13 micron region. Uncertainties greater than 20% exist in derived water vapor values just above the surface from the IR emission measurements. In this paper, we propose three near-IR channels, one within the 0.94-micron water vapor band absorption region, and the other two in nearby atmospheric windows, for remote sensing of precipitable water vapor over land areas, excluding lakes and rivers, during daytime from future geostationary satellite platforms. The physical principles are as follows. The reflectance of most surface targets varies approximately linearly with wavelength near 1 micron. The solar radiation on the sun-surface-sensor ray path is attenuated by atmospheric water vapor. The ratio of the radiance from the absorption channel with the radiances from the two window channels removes the surface reflectance effects and yields approximately the mean atmospheric water vapor transmittance of the absorption channel. The integrated water vapor amount from ground to space can be obtained with a precision of better than 5% from the mean transmittance. Because surface reflectances vary slowly with time, temporal variation of precipitable water vapor can be determined reliably. High spatial resolution, precipitable water vapor images are derived from spectral data collected by the Airborne Visable-Infrared Imaging Spectrometer, which measures solar radiation reflected by the surface in the 0.4-2.5 micron region in 10-nm channels and has a ground instantaneous field of view of 20 m from its platform on an ER-2 aircraft at 20 km. The proposed near-IR reflectance technique would complement the IR emission techniques for remote sensing of water vapor profiles from geostationary satellite platforms, especially in the boundary layer where most of the water vapor is located.

  2. Seasonal Trends in Stratospheric Water Vapor as Derived from SAGE II Data

    NASA Technical Reports Server (NTRS)

    Roell, Marilee M.; Fu, Rong

    2008-01-01

    Published analysis of HALOE and Boulder balloon measurements of water vapor have shown conflicting trends in stratospheric water vapor for the periods of 1981 through 2005. Analysis of the SAGE II monthly mean water vapor data filtered for large aerosol events for time periods from 1985-1991, 1995-1999, and 2000-2005 have shown a globally decreasing water vapor trend at 17.5km. Seasonal analysis for these three time periods show a decreasing trend in water vapor at 17.5km for the winter and spring seasons. The summer and autumn seasonal analysis show a decreasing trend from 1985-2005, however, there is a increasing trend in water vapor at 17.5km for these seasons during 1995-2005. Latitude vs height seasonal analysis show a decreasing trend in the lower stratosphere between 20S - 20N for the autumn season, while at the latitudes of 30-50S and 30-50N there is an increasing trend in water vapor at heights up to 15km for that season. Comparison with regions of monsoon activity (Asian and North American) show that the Asian monsoon region had some effect on the lower stratospheric moistening in 1995-1999, however, for the time period of 2000-2005, there was no change in the global trend analysis due to either monsoon region. This may be due to the limitations of the SAGE II data from 2000-2005.

  3. Effects of additional vapors on sterilization of microorganism spores with plasma-excited neutral gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-01-01

    Some fundamental experiments are carried out in order to develop a plasma process that will uniformly sterilize both the space and inner wall of the reactor chamber at atmospheric pressure. Air, oxygen, argon, and nitrogen are each used as the plasma source gas to which mixed vapors of water and ethanol at different ratios are added. The reactor chamber is remotely located from the plasma area and a metal mesh for eliminating charged particles is installed between them. Thus, only reactive neutral particles such as plasma-excited gas molecules and radicals are utilized. As a result, adding vapors to the source gas markedly enhances the sterilization effect. In particular, air with water and/or ethanol vapor and oxygen with ethanol vapor show more than 6-log reduction for Geobacillus stearothermophilus spores.

  4. Assessment of Atmospheric Water Vapor Abundance Above RSL Locations on Mars

    NASA Astrophysics Data System (ADS)

    Berdis, Jodi R.; Murphy, Jim; Wilson, Robert John

    2016-10-01

    The possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs)1 are investigated. These RSLs appear during local spring and summer on downward slopes, and have been linked to liquid water which leaves behind streaks of briny material. Viking Orbiter Mars Atmospheric Water Detector (MAWD)2 and Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES)3-5 derived water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, and Coprates Chasma) exhibit episodic enhanced local water vapor abundance during southern summer solstice (Ls = 270°) and autumnal equinox (Ls = 360°) when RSLs are observed to develop6,7. Any detected atmospheric water vapor signal would expand upon current knowledge of RSLs, while non-detection would provide upper limits on RSL water content. Viking Orbiter Infrared Thermal Mapper (IRTM) and MGS TES derived temperature values are also investigated due to the appearance of active RSLs after the surface temperature of the slopes exceeds 250 K1.A high spatial resolution Martian atmospheric numerical model will be employed to assess the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. The ability of past and future orbiter-based instruments to detect such water vapor quantities will be assessed.References1. McEwen, A. et al. 2011, Sci., 333, 7402. Jakosky, B. & Farmer, C. 1982, JGR, 87, 29993. Christensen, P. et al. 1992, JGR, 97, 77194. Christensen, P. et al. 2001, JGR, 106, 238235. Smith, M. 2002, JGR, 107, 51156. Ojha, L. et al. 2015, Nature Geosci., 8, 8297. Stillman, D. et al. 2014, Icarus, 233, 328

  5. Constraining the Surficial Liquid Water and Resulting Atmospheric Water Vapor Abundance at Recurring Slope Lineae (RSL) Locations on Mars

    NASA Astrophysics Data System (ADS)

    Berdis, Jodi; Murphy, Jim; Wilson, Robert John

    2017-10-01

    Possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs) are investigated in this study. RSLs appear during local spring and summer on downward, equator-facing slopes at southern mid-latitudes (~31-52°S Stillman et al. 2014), and have been linked to liquid water which leaves behind streaks of briny material (McEwen et al. 2011, McEwen et al. 2014). Viking Orbiter Mars Atmospheric Water Detector (VO MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) derived atmospheric water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, Coprates Chasma) exhibit episodic, enhanced local atmospheric water vapor abundance during southern spring and summer (Ls = 180-360°) when RSLs are observed to develop (Stillman et al. 2014, Ojha et al. 2015). Significant water vapor signals at these locations might reveal RSLs as the source of the enhanced water vapor. Detected atmospheric water vapor signals would expand upon current knowledge of RSLs, whereas non-detection could provide upper limits on RSL water source content. In order to assess how much surficial RSL water would be required to produce a detectable signal, we utilize the high spatial resolution Geophysical Fluid Dynamics Laboratory Mars Climate General Circulation Model to simulate the evaporation of RSL-producing surface water and quantify the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. Finally, we will assess the ability of past and future orbiter-based instruments to detect such water vapor quantities.

  6. Variations in the water vapor distribution and the associated effects on fog and haze events over Xi'an based on Raman lidar data and back trajectories.

    PubMed

    Wang, Yufeng; Zhang, Jing; Fu, Qiang; Song, Yuehui; Di, Huige; Li, Bo; Hua, Dengxin

    2017-10-01

    A combination of more than two years of water vapor lidar data with back trajectory analysis using the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model was used to study the long-range transport of air masses and the water vapor distribution characteristics and variations over Xi'an, China (34.233° N, 108.911° E), which is a typical city in Northwest China. High-quality profiles of the water vapor density were derived from a multifunction Raman lidar system built in Xi'an, and more than 2000 sets of profiles with >400 nighttime observations from October 2013 to July 2016 were collected and used for statistical and quantitative analyses. The vertical variations in the water vapor content were discussed. A mutation height of the water vapor exists at 2-4 km with a high occurrence rate of ∼60% during the autumn and winter seasons. This height reflects a distinct stratification in the water vapor content. Additionally, the atmospheric water vapor content was mainly concentrated in the lower troposphere, and the proportion of the water vapor content at 0.5-5 km accounted for 80%-90% of the total water vapor below 10 km. Obvious seasonal variations were observed, including large water vapor content during the spring and summer and small content during the autumn and winter. Combined with back trajectory analysis, the results showed that markedly different water vapor transport pathways contribute to seasonal variations in the water vapor content. South and southeast airflows dominated during the summer, with 30% of the 84 trajectories originating from these areas; however, the air masses during the winter originated from the north and local regions (64.3%) and from the northwest (27%). In addition, we discussed variations in the water vapor during fog and haze weather conditions during the winter. A considerable enhancement in the mean water vapor density at 0.5-3 km exhibited a clear positive correlation (correlation coefficient >0.8) with

  7. Towards water vapor assimilation into mesoscale models for improved precipitation forecast

    NASA Astrophysics Data System (ADS)

    Demoz, B.; Whiteman, D.; Venable, D.; Joseph, E.

    2006-05-01

    Atmospheric water vapor plays a primary role in the life cycle of clouds, precipitation and is crucial in understanding many aspects of the water cycle. It is very important to short-range mesoscale and storm-scale weather prediction. Specifically, accurate characterization of water vapor at low levels is a necessary condition for quantitative precipitation forecast (QPF), the initiation of convection and various thermodynamic and microphysical processes in mesoscale severe weather systems. However, quantification of its variability (both temporal and spatial) and integration of high quality and high frequency water vapor profiles into mesoscale models have been challenging. We report on a conceptual proposal that attempts to 1) define approporiate lidar-based data and instrumentation required for mesoscale data assimilation and 2) a possible federated network of ground-based lidars that may be capable of acquiring such high resolution water vapor data sets and 3) a possible frame work of assimilation of the data into a mesoscale model.

  8. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.

    Molybdenum disilicide (MoSi 2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O 2 containing atmospheres due to the formation of a passive SiO 2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi 2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi 2 displays more mass gain in water vapormore » than in air. The oxidation kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO 2(OH) 2 and Si(OH) 4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm 2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  9. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE PAGES

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.; ...

    2016-03-08

    Molybdenum disilicide (MoSi 2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O 2 containing atmospheres due to the formation of a passive SiO 2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi 2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi 2 displays more mass gain in water vapormore » than in air. The oxidation kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO 2(OH) 2 and Si(OH) 4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm 2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  10. Transparent and robust siloxane-based hybrid lamella film as a water vapor barrier coating.

    PubMed

    Tokudome, Yasuaki; Hara, Takaaki; Abe, Risa; Takahashi, Masahide

    2014-11-12

    Water vapor barriers are important in various application fields, such as food packaging and sealants in electronic devices. Polymer/clay composites are well-studied water vapor barrier materials, but their transparency and mechanical strength degrade with increasing clay loading. Herein, we demonstrate films with good water vapor barrier properties, high transparency, and mechanical/thermal stability. Water vapor barrier films were prepared by the solution crystallization of siloxane hybrid lamellae. The films consist of highly crystallized organic/inorganic hybrid lamellae, which provide high transparency, hardness, and thermal stability and inhibit the permeation of water vapor. The water permeability of a 6 μm thick hybrid film is comparable to that of a 200 μm thick silicon rubber film.

  11. Intercomparisons of high-resolution solar blind Raman lidar atmospheric profiles of water vapor with radiosondes and kytoon

    NASA Technical Reports Server (NTRS)

    Petri, K.; Salik, A.; Cooney, J.

    1986-01-01

    A report is given of measurements of atmospheric profiles of water vapor in the boundary layer by use of solar blind Raman lidar. These measurement episodes, occuring twice a day over a two week period, were accompanied by a dense net of supporting measurements. The support included two radiosonde launches per measurement episodes as well as a kytoon support measurement of water vapor using a wet bulb-dry bulb instrument. The kytoon strategy included ten minute stops at strategic altitudes. Additional kytoon measurements included ozone profiles and nephelometric extinction profiles in the visible. Typically, six or seven 1000 shot lidar profile averages were collected during a measurement episode. Overall performance comparisons are provided and intercomparisons between auxiliary measurement devices are presented. Data on the accuracy of the lidar water vapor profiles are presented.

  12. Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors

    NASA Technical Reports Server (NTRS)

    Turner, D. D.; Feltz, W. F.; Ferrare, R. A.

    2000-01-01

    The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.

  13. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    PubMed

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  14. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    NASA Astrophysics Data System (ADS)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  15. Extratropical Influence of Upper Tropospheric Water Vapor on Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    1998-01-01

    The purpose of this paper is to re-examine the impact of upper tropospheric water vapor on greenhouse warming in midlatitudes by analyzing the recent observations of the upper tropospheric water vapor from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), in conjuction with other space-based measurement and model simulation products.

  16. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data

    NASA Astrophysics Data System (ADS)

    Ye, Shirong; Xia, Pengfei; Cai, Changsheng

    2016-09-01

    The near-real-time high spatial resolution of atmospheric water vapor distribution is vital in numerical weather prediction. GPS tomography technique has been proved effectively for three-dimensional water vapor reconstruction. In this study, the tomography processing is optimized in a few aspects by the aid of radiosonde and COSMIC historical data. Firstly, regional tropospheric zenith hydrostatic delay (ZHD) models are improved and thus the zenith wet delay (ZWD) can be obtained at a higher accuracy. Secondly, the regional conversion factor of converting the ZWD to the precipitable water vapor (PWV) is refined. Next, we develop a new method for dividing the tomography grid with an uneven voxel height and a varied water vapor layer top. Finally, we propose a Gaussian exponential vertical interpolation method which can better reflect the vertical variation characteristic of water vapor. GPS datasets collected in Hong Kong in February 2014 are employed to evaluate the optimized tomographic method by contrast with the conventional method. The radiosonde-derived and COSMIC-derived water vapor densities are utilized as references to evaluate the tomographic results. Using radiosonde products as references, the test results obtained from our optimized method indicate that the water vapor density accuracy is improved by 15 and 12 % compared to those derived from the conventional method below the height of 3.75 km and above the height of 3.75 km, respectively. Using the COSMIC products as references, the results indicate that the water vapor density accuracy is improved by 15 and 19 % below 3.75 km and above 3.75 km, respectively.

  17. Trends of total water vapor column above the Arctic from satellites observations

    NASA Astrophysics Data System (ADS)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  18. Deuterium excess reveals diurnal sources of water vapor in forest air.

    PubMed

    Lai, Chun-Ta; Ehleringer, James R

    2011-01-01

    An understanding of atmospheric water vapor content and its isotopic composition is important if we are to be able to model future water vapor dynamics and their potential feedback on future climate change. Here we present diurnal and vertical patterns of water isotope ratios in forest air (δ(2)H(v) and δ(18)O(v)) not observed previously. Water vapor observed at three heights over 3 consecutive days in a coniferous forest in the Pacific Northwest of the United States, shows a stratified nocturnal structure of δ(2)H(v) and δ(18)O(v), with the most positive values consistently observed above the canopy (60 m). Differences between 0.5 m and 60 m range between 2-6‰ for δ(18)O and 20-40‰ for δ(2)H at night. Using a box model, we simulated H(2)O isotope fluxes and showed that the low to high δ(2)H(v) and δ(18)O(v) profiles can be explained by the vapor flux associated with evaporation from the forest floor and canopy transpiration. We used d-excess as a diagnostic tracer to identify processes that contribute to the diurnal variation in atmospheric moisture. Values of d-excess derived from water vapor measurements showed a repeated diel pattern, with the lowest values occurring in the early morning and the highest values occurring at midday. The isotopic composition of rain water, collected during a light rain event in the first morning of our experiment, suggested that considerable below-cloud secondary evaporation occurred during the descent of raindrops. We conclude that atmospheric entrainment appears to drive the isotopic variation of water vapor in the early morning when the convective boundary layer rapidly develops, while evapotranspiration becomes more important in the mid-afternoon as a primary moisture source of water vapor in this forest. Our results demonstrate the interplay between the effects of vegetation and boundary layer mixing under the influence of rain evaporation, which has implications for larger-scale predictions of precipitation

  19. Numerical method based on transfer function for eliminating water vapor noise from terahertz spectra.

    PubMed

    Huang, Y; Sun, P; Zhang, Z; Jin, C

    2017-07-10

    Water vapor noise in the air affects the accuracy of optical parameters extracted from terahertz (THz) time-domain spectroscopy. In this paper, a numerical method was proposed to eliminate water vapor noise from the THz spectra. According to the Van Vleck-Weisskopf function and the linear absorption spectrum of water molecules in the HITRAN database, we simulated the water vapor absorption spectrum and real refractive index spectrum with a particular line width. The continuum effect of water vapor molecules was also considered. Theoretical transfer function of a different humidity was constructed through the theoretical calculation of the water vapor absorption coefficient and the real refractive index. The THz signal of the Lacidipine sample containing water vapor background noise in the continuous frequency domain of 0.5-1.8 THz was denoised by use of the method. The results show that the optical parameters extracted from the denoised signal are closer to the optical parameters in the dry nitrogen environment.

  20. Cassini/CIRS Observations of Water Vapor in Saturn's Stratosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Achterberg, R. K.; Simon-Miller, A. A.; Carlson, R. C.; Jennings, D. E.

    2008-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained numerous spectra of Saturn at varying spectral and spatial resolutions since Saturn Orbit Insertion in 2004. Emission lines due to water vapor in Saturn's stratosphere were first detected using whole-disk observations from the Infrared Space Observatory (Feuchtgruber et al 1997) and subsequently confirmed by the Submillimeter Wave Astronomy Satellite (Rergin et al 2000). CIRS has detected water and the data permit the retrieval of the latitudinal variation of water on Saturn. Emission lines of H2O on Saturn are very weak in the CIRS data. Thus. large spectral averages as well as improvements in calibration are necessary to detect water vapor. Zonally averaged nadir spectra were produced every 10 degrees of latitude. Stratospheric temperatures in the 0.5 - 5.0 mbar range were obtained by inverting spectra of CH4 in the v4 band centered at 1304 cm(exp -1). The origin of water vapor is believed to be from the ablation of micrometeorites containing water ice, followed by photochemistry. This external source of oxygen originates either from the Saturn system (from the rings or perhaps from Enceladus) or from the interplanetary medium. Connerney (1986) proposed a mechanism to transport water from the inner edge of the B-ring along magnetic field lines to specific latitudes (50N and 44S) on Saturn. Prange et al (2006) interpreted a minimum in the abundance of acetylene from ultraviolet spectra near 41S on Saturn as possibly due to an enhanced influx of water. Existing CIRS far-IR spectra are at relatively low spatial resolution, but observations at closer range planned for the extended mission will be able to test the "ring rain" mechanism by searching for localized water vapor enhancement at midlatitudes.

  1. Growth behavior of LiMn{sub 2}O{sub 4} particles formed by solid-state reactions in air and water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less

  2. Effects of the polarizability and packing density of transparent oxide films on water vapor permeation.

    PubMed

    Koo, Won Hoe; Jeong, Soon Moon; Choi, Sang Hun; Kim, Woo Jin; Baik, Hong Koo; Lee, Sung Man; Lee, Se Jong

    2005-06-09

    The tin oxide and silicon oxide films have been deposited on polycarbonate substrates as gas barrier films, using a thermal evaporation and ion beam assisted deposition process. The oxide films deposited by ion beam assisted deposition show a much lower water vapor transmission rate than those by thermal evaporation. The tin oxide films show a similar water vapor transmission rate to the silicon oxide films in thermal evaporation but a lower water vapor transmission rate in IBAD. These results are related to the fact that the permeation of water vapor with a large dipole moment is affected by the chemistry of oxides and the packing density of the oxide films. The permeation mechanism of water vapor through the oxide films is discussed in terms of the chemical interaction with water vapor and the microstructure of the oxide films. The chemical interaction of water vapor with oxide films has been investigated by the refractive index from ellipsometry and the OH group peak from X-ray photoelectron spectroscopy, and the microstructure of the composite oxide films was characterized using atomic force microscopy and a transmission electron microscope. The activation energy for water vapor permeation through the oxide films has also been measured in relation to the permeation mechanism of water vapor. The diffusivity of water vapor for the tin oxide films has been calculated from the time lag plot, and its implications are discussed.

  3. Responses of ecosystem water use efficiency to spring snow and summer water addition with or without nitrogen addition in a temperate steppe

    PubMed Central

    Zhai, Penghui; Huang, Jianhui; Zhao, Xiang; Dong, Kuanhu

    2018-01-01

    Water use efficiency (WUE) is an important indicator of ecosystem functioning but how ecosystem WUE responds to climate change including precipitation and nitrogen (N) deposition increases is still unknown. To investigate such responses, an experiment with a randomized block design with water (spring snowfall or summer water addition) and nitrogen addition was conducted in a temperate steppe of northern China. We investigated net ecosystem CO2 production (NEP), gross ecosystem production (GEP) and evapotranspiration (ET) to calculate ecosystem WUE (WUEnep = NEP/ET or WUEgep = GEP/ET) under spring snow and summer water addition with or without N addition from 2011 to 2013. The results showed that spring snow addition only had significant effect on ecosystem WUE in 2013 and summer water addition showed positive effect on ecosystem WUE in 2011 and 2013, as their effects on NEP and GEP is stronger than ET. N addition increased ecosystem WUE in 2012 and 2013 both in spring snow addition and summer water addition for its increasing effects on NEP and GEP but no effect on ET. Summer water addition had less but N addition had greater increasing effects on ecosystem WUE as natural precipitation increase indicating that natural precipitation regulates ecosystem WUE responses to water and N addition. Moreover, WUE was tightly related with atmospheric vapor-pressure deficit (VPD), photosynthetic active radiation (PAR), precipitation and soil moisture indicating the regulation of climate drivers on ecosystem WUE. In addition, it also was affected by aboveground net primary production (ANPP). The study suggests that ecosystem WUE responses to water and N addition is determined by the change in carbon process rather than that in water process, which are regulated by climate change in the temperate steppe of northern China. PMID:29529082

  4. Responses of ecosystem water use efficiency to spring snow and summer water addition with or without nitrogen addition in a temperate steppe.

    PubMed

    Zhang, Xiaolin; Zhai, Penghui; Huang, Jianhui; Zhao, Xiang; Dong, Kuanhu

    2018-01-01

    Water use efficiency (WUE) is an important indicator of ecosystem functioning but how ecosystem WUE responds to climate change including precipitation and nitrogen (N) deposition increases is still unknown. To investigate such responses, an experiment with a randomized block design with water (spring snowfall or summer water addition) and nitrogen addition was conducted in a temperate steppe of northern China. We investigated net ecosystem CO2 production (NEP), gross ecosystem production (GEP) and evapotranspiration (ET) to calculate ecosystem WUE (WUEnep = NEP/ET or WUEgep = GEP/ET) under spring snow and summer water addition with or without N addition from 2011 to 2013. The results showed that spring snow addition only had significant effect on ecosystem WUE in 2013 and summer water addition showed positive effect on ecosystem WUE in 2011 and 2013, as their effects on NEP and GEP is stronger than ET. N addition increased ecosystem WUE in 2012 and 2013 both in spring snow addition and summer water addition for its increasing effects on NEP and GEP but no effect on ET. Summer water addition had less but N addition had greater increasing effects on ecosystem WUE as natural precipitation increase indicating that natural precipitation regulates ecosystem WUE responses to water and N addition. Moreover, WUE was tightly related with atmospheric vapor-pressure deficit (VPD), photosynthetic active radiation (PAR), precipitation and soil moisture indicating the regulation of climate drivers on ecosystem WUE. In addition, it also was affected by aboveground net primary production (ANPP). The study suggests that ecosystem WUE responses to water and N addition is determined by the change in carbon process rather than that in water process, which are regulated by climate change in the temperate steppe of northern China.

  5. New calibration technique for water-vapor Raman lidar combined with the GNSS precipitable water vapor and the Meso-Scale Model

    NASA Astrophysics Data System (ADS)

    Kakihara, H.; Yabuki, M.; Kitafuji, F.; Tsuda, T.; Tsukamoto, M.; Hasegawa, T.; Hashiguchi, H.; Yamamoto, M.

    2017-12-01

    Atmospheric water vapor plays an important role in atmospheric chemistry and meteorology, with implications for climate change and severe weather. The Raman lidar technique is useful for observing water-vapor with high spatiotemporal resolutions. However, the calibration factor must be determined before observations. Because the calibration factor is generally evaluated by comparing Raman-signal results with those of independent measurement techniques (e.g., radiosonde), it is difficult to apply this technique to lidar sites where radiosonde observation cannot be carried out. In this study, we propose a new calibration technique for water-vapor Raman lidar using global navigation satellite system (GNSS)-derived precipitable water vapor (PWV) and Japan Meteorological Agency meso-scale model (MSM). The analysis was accomplished by fitting the GNSS-PWV to integrated water-vapor profiles combined with the MSM and the results of the lidar observations. The maximum height of the lidar signal applicable to this method was determined within 2.0 km by considering the signal noise mainly caused by low clouds. The MSM data was employed at higher regions that cannot apply the lidar data. This method can be applied to lidar signals lower than a limited height range due to weather conditions and lidar specifications. For example, Raman lidar using a laser operating in the ultraviolet C (UV-C) region has the advantage of daytime observation since there is no solar background radiation in the system. The observation range is, however, limited at altitudes lower than 1-3 km because of strong ozone absorption at the UV-C region. The new calibration technique will allow the utilization of various types of Raman lidar systems and provide many opportunities for calibration. We demonstrated the potential of this method by using the UV-C Raman lidar and GNSS observation data at the Shigaraki MU radar observatory (34°51'N, 136°06'E; 385m a.s.l.) of the Research Institute for Sustainable

  6. Adsorption of N-hexane, methanol and water vapor and binary mixtures of N-hexane/water vapor on super activated carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Prado, Jesus Antonio

    Recent times have seen a large rise in the utilization of engineered nanomaterials (ENMs) within a wide variety of industries due to their unique properties. Consequently, the fabrication, application and disposal of ENMs will inevitably lead to their release to the environment. Once ENMs are in the environment, they may undergo atmospheric transformations, such the sorption of hazardous air pollutants (HAPs) or water vapor. These transformed ENMs may then affect the general public through inhalation -- or other pathways of exposure -- and those employed by the ever-growing nanotechnology sector are of particular vulnerability. As a result, it is important to evaluate the adsorption characteristics of a common carbon-based ENM under the presence of HAPs or water vapor which may adsorb onto them. This study investigated the unary and binary gas-phase adsorption of n-hexane, methanol and water vapor on super activated carbon nanoparticles (SACNPs) with a bench-scale adsorption system. Removal efficiencies, breakthrough tests, throughput ratios, adsorption capacities and kinetics modeling were completed to assess the adsorption behavior of the SACNPs.

  7. Algorithms and sensitivity analyses for Stratospheric Aerosol and Gas Experiment II water vapor retrieval

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Chiou, E. W.; Larsen, J. C.; Thomason, L. W.; Rind, D.; Buglia, J. J.; Oltmans, S.; Mccormick, M. P.; Mcmaster, L. M.

    1993-01-01

    The operational inversion algorithm used for the retrieval of the water-vapor vertical profiles from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation data is presented. Unlike the algorithm used for the retrieval of aerosol, O3, and NO2, the water-vapor retrieval algorithm accounts for the nonlinear relationship between the concentration versus the broad-band absorption characteristics of water vapor. Problems related to the accuracy of the computational scheme, the accuracy of the removal of other interfering species, and the expected uncertainty of the retrieved profile are examined. Results are presented on the error analysis of the SAGE II water vapor retrieval, indicating that the SAGE II instrument produced good quality water vapor data.

  8. Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab Initio Molecular Dynamics Simulations.

    PubMed

    Kessler, Jan; Elgabarty, Hossam; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D

    2015-08-06

    The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab initio molecular dynamics simulations in conjunction with an instantaneous surface definition [Willard, A. P.; Chandler, D. J. Phys. Chem. B 2010, 114, 1954]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.

  9. Seasonal variability of mesospheric water vapor

    NASA Technical Reports Server (NTRS)

    Schwartz, P. R.; Bevilacqua, R. M.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz atmospheric water vapor line in emission were made at the JPL in order to obtain data in a dry climate, and to confirm similar measurements made at the Haystack Observatory. The results obtained from March 1984 to July 1984 and from December 1984 to May 1985, were based on data recorded by a HP9816 microcomputer. The instrument spectrometer was a 64 channel, 62.5 kHz resolution filter bank. Data indicates the existence of a seasonal variation in the abundance of water vapor in the upper mesosphere, with mixing ratios higher in summer than in spring. This is consistent with recent theoretical and observational results. In the area of semiannual oscillation, Haystack data are more consistent than those of JPL, indicating an annual cycle with abundances at maximum in summer and minimum in winter.

  10. Local Time Variation of Water Vapor on Mars using TES Aerobraking Spectra

    NASA Astrophysics Data System (ADS)

    AlShamsi, M. R.; AlJanaahi, A. A.; Smith, M. D.; Altunaiji, E. S.; Edwards, C. S.

    2016-12-01

    During the Mars Global Surveyor (MGS) aerobraking phase, the spacecraft was in a large elliptical orbit that enabled the Thermal Emission Spectrometer (TES) instrument to sample many local times of Mars. The observed TES aerobraking spectra during that phase cover the time range between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. These TES aerobraking spectra have never been analyzed to study local time variations on Mars. Through radiative transfer modeling of the spectra, surface and atmospheric temperature, dust and water ice optical depth, and water vapor were retrieved. Specifically, the water vapor retrievals during aerobraking have similar seasonal and latitudinal trends to those in other Mars years observed by TES. These retrievals show somewhat higher water vapor during the morning hours (09:00-12:00) than in the afternoon (12:00-17:00) during southern summer (Ls=270°-330°) and little variation as a function of local time for southern fall (Ls=0°-30°). These retrievals show water vapor has a positive correlation with surface pressure (or negative correlation with altitude) indicating that water vapor is mixed in the lowest 10-20 km.

  11. The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence

    NASA Astrophysics Data System (ADS)

    Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.

    2017-12-01

    In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.

  12. Stable Calibration of Raman Lidar Water-Vapor Measurements

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, Iain S.

    2008-01-01

    A method has been devised to ensure stable, long-term calibration of Raman lidar measurements that are used to determine the altitude-dependent mixing ratio of water vapor in the upper troposphere and lower stratosphere. Because the lidar measurements yield a quantity proportional to the mixing ratio, rather than the mixing ratio itself, calibration is necessary to obtain the factor of proportionality. The present method involves the use of calibration data from two sources: (1) absolute calibration data from in situ radiosonde measurements made during occasional campaigns and (2) partial calibration data obtained by use, on a regular schedule, of a lamp that emits in a known spectrum determined in laboratory calibration measurements. In this method, data from the first radiosonde campaign are used to calculate a campaign-averaged absolute lidar calibration factor (t(sub 1)) and the corresponding campaign-averaged ration (L(sub 1)) between lamp irradiances at the water-vapor and nitrogen wavelengths. Depending on the scenario considered, this ratio can be assumed to be either constant over a long time (L=L(sub 1)) or drifting slowly with time. The absolutely calibrated water-vapor mixing ratio (q) obtained from the ith routine off-campaign lidar measurement is given by q(sub 1)=P(sub 1)/t(sub 1)=LP(sub 1)/P(sup prime)(sub 1) where P(sub 1) is water-vapor/nitrogen measurement signal ration, t(sub 1) is the unknown and unneeded overall efficiency ratio of the lidar receiver during the ith routine off-campaign measurement run, and P(sup prime)(sub 1) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the ith routine off-campaign measurement run. If L is assumed constant, then the lidar calibration is routinely obtained without the need for new radiosonde data. In this case, one uses L=L(sub 1) = P(sup prime)(sub 1)/t(sub 1), where P(sub 1)(sup prime) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated

  13. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  14. Catalytic combustion of styrene over copper based catalyst: inhibitory effect of water vapor.

    PubMed

    Pan, Hongyan; Xu, Mingyao; Li, Zhong; Huang, Sisi; He, Chun

    2009-07-01

    The effects of water vapor on the activity of the copper based catalysts with different supports such as CuO/gamma-Al2O3, CuO/SiO2 and CuO/TiO2 for styrene combustion were investigated. The catalytic activity of the catalysts was tested in the absence of and presence of water vapor and the catalysts were characterized. Temperature programmed desorption (TPD) experiments and diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) measurements were conducted in order to estimate and explain the water effects. Results showed that the existence of water vapor had a significant negative effect on the catalytic activity of these copper based catalysts due to the competition adsorption of water molecule. DRIFTS studies showed that the catalyst CuO/gamma-Al2O3 had the strongest adsorption of water, while the catalyst CuO/TiO2 had the weakest adsorption of water. H2O-TPD studies also indicated that the order of desorption activation energies of water vapor on the catalysts or the strength of interactions of water molecules with the surfaces of the catalysts was CuO/gamma-Al2O3>CuO/SiO2>CuO/TiO2. As a consequence of that, the CuO/TiO2 exhibited the better durability to water vapor, while CuO/gamma-Al2O3 had the poorest durability to water vapor among these three catalysts.

  15. [Monitoring and Analysis of Stable Isotopes of the Near Surface Water Vapor in Changsha].

    PubMed

    Xie, Yu-long; Zhang, Xin-ping; Yao, Tian-ci; Huang, Huang

    2016-02-15

    Based on the monitored atmospheric water vapor stable isotopes and observed meteorological elements at Changsha during the period from November 12, 2014 to April 13, 2015, the variations of water vapor stable isotopes and the relationships between isotope ratios and temperature, absolute humidity, precipitation amount were analyzed in this paper. The results indicated that: (1) Seasonal variations of delta18O and 82H in atmospheric water vapor at Changsha were remarkable, with high values in winter. delta18O and delta2H in atmospheric water vapor were positively correlated with absolute humidity in winter. There were some fluctuations of the delta18O and delta2H in atmospheric water vapor, especially when the precipitation events occurred. Precipitation events had a significant effect on the variations of delta18O and delta2H in atmospheric water vapor, and low values were often accompanied with precipitation events; (2) Diurnal Variations of delta18O and delta2H in atmospheric water vapor had a close correlation with the atmospheric water vapor content, whereas the absolute humidity was mainly controlled by the strength of the local evapotranspiration and atmospheric turbulence. The "precipitation amount effect" was observed during the process of a single precipitation event; (3) Values of delta18O and delta2H in atmospheric water vapor were always lower than those of precipitation in Changsha, but he variation trends were completely consistent, the average difference values were 8.6% per hundred and 66.82% per hundred, respectively; (4) The meteoric vapor line (MVL) in cold months was delta2H =7.18 delta18O + 10.58, the slope and intercept of MVL were always lower than those of MWL, and the slope and intercept of MVL in spring were significantly higher than those of winter.

  16. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    NASA Astrophysics Data System (ADS)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  17. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  18. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  19. Airborne differential absorption lidar system for water vapor investigations

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  20. Application of an automatic cloud tracking technique to Meteosat water vapor and infrared observations

    NASA Technical Reports Server (NTRS)

    Endlich, R. M.; Wolf, D. E.

    1980-01-01

    The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).

  1. Temporal Variations of Telluric Water Vapor Absorption at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Li, Dan; Blake, Cullen H.; Nidever, David; Halverson, Samuel P.

    2018-01-01

    Time-variable absorption by water vapor in Earth’s atmosphere presents an important source of systematic error for a wide range of ground-based astronomical measurements, particularly at near-infrared wavelengths. We present results from the first study on the temporal and spatial variability of water vapor absorption at Apache Point Observatory (APO). We analyze ∼400,000 high-resolution, near-infrared (H-band) spectra of hot stars collected as calibration data for the APO Galactic Evolution Experiment (APOGEE) survey. We fit for the optical depths of telluric water vapor absorption features in APOGEE spectra and convert these optical depths to Precipitable Water Vapor (PWV) using contemporaneous data from a GPS-based PWV monitoring station at APO. Based on simultaneous measurements obtained over a 3° field of view, we estimate that our PWV measurement precision is ±0.11 mm. We explore the statistics of PWV variations over a range of timescales from less than an hour to days. We find that the amplitude of PWV variations within an hour is less than 1 mm for most (96.5%) APOGEE field visits. By considering APOGEE observations that are close in time but separated by large distances on the sky, we find that PWV is homogeneous across the sky at a given epoch, with 90% of measurements taken up to 70° apart within 1.5 hr having ΔPWV < 1.0 mm. Our results can be used to help simulate the impact of water vapor absorption on upcoming surveys at continental observing sites like APO, and also to help plan for simultaneous water vapor metrology that may be carried out in support of upcoming photometric and spectroscopic surveys.

  2. Characteristics of water vapor fluctuations by the use of GNSS signal delays

    NASA Astrophysics Data System (ADS)

    Gregorič, Asta; Škrlec, Samo; Mole, Maruška; Bergant, Klemen; Vučković, Marko; Stanič, Samo

    2017-04-01

    Water vapor plays a crucial role in a number of atmospheric processes related to the water cycle. It is also the Earth's most abundant greenhouse gas, thus influencing global climate as well as micrometeorology. Since the phase change of water is associated with large latent heat, water vapor plays an important role in the vertical atmospheric stability. It also influences aerosol aging and removal from the atmosphere. As the temporal and spatial distribution of water vapor is in general highly variable, continuous monitoring at several locations is required to be able to describe the situation in a given terrain configuration. In-situ meteorological measurements provide the information on water vapor concentration at the surface only, while the radiosonde data suffers from poor temporal and spatial (horizontal) resolution. Integrated water vapor content above a certain location on the surface can also be monitored in real time, exploiting the wet delay of GNSS signals, however, it does not yield absolute humidity. In this contribution we present a measurement of average absolute humidity within the Vipava valley (Slovenia), between February 2015 and October 2016. It is based on differential measurement of integrated water vapor content at two adjacent stations, using stationary GNSS receivers, which are horizontally displaced for 6 km, and vertically displaced for 826 m. The integrated water vapor values were derived using the GIPSY-OASIS II software. One of the receivers is located at the valley floor (125 m a.s.l.) and the other on the top of the adjacent mountain ridge (951 m a.s.l.). Visual data from both stations was also stored to evaluate the reliability of the remote sensing results in different weather conditions. Based on the dataset covering 20 consecutive months, we investigated temporal evolution of the water vapor content within the valley. The results show typical seasonal pattern and are strongly correlated to weather phenomena. Comparison to the

  3. Stable isotopic variations of water vapor on the winter coastal area in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jeonghoon; Lee, Songyi; Han, Yeongcheol; Do Hur, Soon

    2017-04-01

    Studies of isotopic compositions of precipitation in Korea have been conducted for groundwater mixing and sources and residence time of water. Unravelling of water vapor isotopes will be very helpful in explaining the sources of moisture. In this work, we first present isotopic compositions of water vapor over western part of Korea in winter between December 2015 and February 2016. We collected the samples of water vapor isotopes by a cryogenic method with impingers and liquid nitrogen. We captured the water vapor for 4 to 6 hours, depending on humidity and collected 54 samples in total. The samples were analyzed by a Picarro L2130-i and the precisions were 0.06‰ and 0.7‰ for oxygen and hydrogen, respectively. The isotopic compositions of water vapor ranged from -34.04‰ to -15.27‰ for oxygen and from -221.9‰ to -100.2‰ for hydrogen. The deuterium excess (d=δD-8*δ18O) was between 17.4 and 44.0 in permil. Both air temperature (T, δ18O=0.57*T-25.5, R2=0.46) and relative humidity (RH, δ18O=0.18*RH-35.9, R2=0.38) were positively correlated with the water vapor isotopes. This is not consistent with the fact that precipitation isotopes are correlated with only temperate in winter Eastern Asia. We expect that the water vapor isotopes will be an important role to understand the origin and pathway of moistures over the Eastern Asia.

  4. Mars atmospheric water vapor abundance: 1996-1997

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  5. Space-Time Variations in Water Vapor as Observed by the UARS Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Elson, Lee S.; Read, William G.; Waters, Joe W.; Mote, Philip W.; Kinnersley, Jonathan S.; Harwood, Robert S.

    1996-01-01

    Water vapor in the upper troposphere has a significant impact on the climate system. Difficulties in making accurate global measurements have led to uncertainty in understanding water vapor's coupling to the hydrologic cycle in the lower troposphere and its role in radiative energy balance. The Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite is able to retrieve water vapor concentration in the upper troposphere with good sensitivity and nearly global coverage. An analysis of these preliminary retrievals based on 3 years of observations shows the water vapor distribution to be similar to that measured by other techniques and to model results. The primary MLS water vapor measurements were made in the stratosphere, where this species acts as a conserved tracer under certain conditions. As is the case for the upper troposphere, most of the stratospheric discussion focuses on the time evolution of the zonal mean and zonally varying water vapor. Stratospheric results span a 19-month period and tropospheric results a 36-month period, both beginning in October of 1991. Comparisons with stratospheric model calculations show general agreement, with some differences in the amplitude and phase of long-term variations. At certain times and places, the evolution of water vapor distributions in the lower stratosphere suggests the presence of meridional transport.

  6. Scalable Production Method for Graphene Oxide Water Vapor Separation Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Shin, Yongsoon; Liu, Wei

    ABSTRACT Membranes for selective water vapor separation were assembled from graphene oxide suspension using techniques compatible with high volume industrial production. The large-diameter graphene oxide flake suspensions were synthesized from graphite materials via relatively efficient chemical oxidation steps with attention paid to maintaining flake size and achieving high graphene oxide concentrations. Graphene oxide membranes produced using scalable casting methods exhibited water vapor flux and water/nitrogen selectivity performance meeting or exceeding that of membranes produced using vacuum-assisted laboratory techniques. (PNNL-SA-117497)

  7. Effects of Chamber Pressure and Partial Pressure of Water Vapor on Secondary Drying in Lyophilization.

    PubMed

    Searles, James A; Aravapalli, Sridhar; Hodge, Cody

    2017-10-01

    Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.

  8. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  9. Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector

    NASA Astrophysics Data System (ADS)

    Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu

    2018-02-01

    Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.

  10. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region duringmore » boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.« less

  11. Water vapor barrier and sorption properties of edible films from pullulan and rice wax.

    USDA-ARS?s Scientific Manuscript database

    Edible films were prepared by using various ratios of pullulan and rice wax. Freestanding composite films were obtained with up to 46.4% rice wax. Water vapor barrier properties of the film were improved with increased addition of rice wax. Moisture sorption isotherms were also studied to examine...

  12. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin A.; Platt, Ulrich

    2017-05-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800-900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  13. Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    2004-01-01

    Many structural materials rely on the formation of chromia, silica or alumina as a protective layer when exposed in high temperature oxidizing environments. The presence of these oxide layers provides a protective diffusion barrier which slows down further oxidation. In atmospheres containing water vapor, however, reactions to form volatile hydroxide species occur which remove the surface oxide, thus, lowering the protective capability of the oxide scale. This paper summarizes the current understanding of volatility of chromia, silica and alumina in water vapor containing combustion environments. In addition unanswered questions in each system are discussed. Th current paper represents an update on the considerable information learned in the past five years for these systems.

  14. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1998-01-01

    Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.

  15. The effect of tropospheric fluctuations on the accuracy of water vapor radiometry

    NASA Technical Reports Server (NTRS)

    Wilcox, J. Z.

    1992-01-01

    Line-of-sight path delay calibration accuracies of 1 mm are needed to improve both angular and Doppler tracking capabilities. Fluctuations in the refractivity of tropospheric water vapor limit the present accuracies to about 1 nrad for the angular position and to a delay rate of 3x10(exp -13) sec/sec over a 100-sec time interval for Doppler tracking. This article describes progress in evaluating the limitations of the technique of water vapor radiometry at the 1-mm level. The two effects evaluated here are: (1) errors arising from tip-curve calibration of WVR's in the presence of tropospheric fluctuations and (2) errors due to the use of nonzero beamwidths for water vapor radiometer (WVR) horns. The error caused by tropospheric water vapor fluctuations during instrument calibration from a single tip curve is 0.26 percent in the estimated gain for a tip-curve duration of several minutes or less. This gain error causes a 3-mm bias and a 1-mm scale factor error in the estimated path delay at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor column density present in the troposphere during the astrometric observation. The error caused by WVR beam averaging of tropospheric fluctuations is 3 mm at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor (and is proportionally higher for higher water vapor content) for current WVR beamwidths (full width at half maximum of approximately 6 deg). This is a stochastic error (which cannot be calibrated) and which can be reduced to about half of its instantaneous value by time averaging the radio signal over several minutes. The results presented here suggest two improvements to WVR design: first, the gain of the instruments should be stabilized to 4 parts in 10(exp 4) over a calibration period lasting 5 hours, and second, the WVR antenna beamwidth should be reduced to about 0.2 deg. This will reduce the error induced by water vapor fluctuations in the estimated path delays to less than 1 mm for the elevation range

  16. Constraining Water Vapor Abundance on Mars using a Coupled Heat-Water Transport Model and Seasonal Frost Observations

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Byrne, S.

    2016-12-01

    The stability of water ice on Mars' surface is determined by its temperature and the density of water vapor at the bottom of the atmosphere. Multiple orbiting instruments have been used to study column-integrated water abundance in the martian atmosphere, resolving the global annual water cycle. However, poor knowledge of the vertical distribution of water makes constraining its abundance near the surface difficult. One must assume a mixing regime to produce surface vapor density estimates. More indirectly, one can use the appearance and disappearance of seasonal water frost, along with ice stability models, to estimate this value. Here, we use derived temperature and surface reflectance data from MGS TES to constrain a 1-D thermal diffusion model, which is coupled to an atmospheric water transport model. TES temperatures are used to constrain thermal properties of our modeled subsurface, while changes in TES albedo can be used to determine the timing of water frost. We tune the density of water vapor in the atmospheric model to match the observed seasonal water frost timing in the northern hemisphere, poleward of 45°N. Thus, we produce a new estimate for the water abundance in the lower atmosphere of Mars and how it varies seasonally and geographically. The timing of water frost can be ambiguous in TES data, especially at lower latitudes where the albedo contrast between frosted and unfrosted surfaces is lower (presumably due to lesser areal coverage of water frost). The uncertainty in frost timing with our approach is <20° LS ( 40 sols), and will be used to define upper and lower bounds in our estimate of vapor density. The implications of our derived vapor densities on the stability of surface and subsurface water ice will be discussed.

  17. Numerical simulation of water injection into vapor-dominated reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  18. The self-similar turbulent flow of low-pressure water vapor

    NASA Astrophysics Data System (ADS)

    Konyukhov, V. K.; Stepanov, E. V.; Borisov, S. K.

    2018-05-01

    We studied turbulent flows of water vapor in a pipe connecting two closed vessels of equal volume. The vessel that served as a source of water vapor was filled with adsorbent in the form of corundum ceramic balls. These ceramic balls were used to obtain specific conditions to lower the vapor pressure in the source vessel that had been observed earlier. A second vessel, which served as a receiver, was empty of either air or vapor before each vapor sampling. The rate of the pressure increase in the receiver vessel was measured in a series of six samplings performed with high precision. The pressure reduction rate in the source vessel was found to be three times lower than the pressure growth rate in the receiver vessel. We found that the pressure growth rates in all of the adjacent pairs of samples could be arranged in a combination that appeared to be identical for all pairs, and this revealed the existence of a rather interesting and peculiar self-similarity law for the sampling processes under consideration.

  19. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Imaki, Masaharu; Kojima, Ryota; Kameyama, Shumpei

    2018-04-01

    We have studied a ground based coherent differential absorption LIDAR (DIAL) for vertical profiling of water vapor density using a 1.5μm laser wavelength. A coherent LIDAR has an advantage in daytime measurement compared with incoherent LIDAR because the influence of background light is greatly suppressed. In addition, the LIDAR can simultaneously measure wind speed and water vapor density. We had developed a wavelength locking circuit using the phase modulation technique and offset locking technique, and wavelength stabilities of 0.123 pm which corresponds to 16 MHz are realized. In this paper, we report the wavelength locking circuits for the 1.5 um wavelength.

  20. Water vapor variance measurements using a Raman lidar

    NASA Technical Reports Server (NTRS)

    Evans, K.; Melfi, S. H.; Ferrare, R.; Whiteman, D.

    1992-01-01

    Because of the importance of atmospheric water vapor variance, we have analyzed data from the NASA/Goddard Raman lidar to obtain temporal scales of water vapor mixing ratio as a function of altitude over observation periods extending to 12 hours. The ground-based lidar measures water vapor mixing ration from near the earth's surface to an altitude of 9-10 km. Moisture profiles are acquired once every minute with 75 m vertical resolution. Data at each 75 meter altitude level can be displayed as a function of time from the beginning to the end of an observation period. These time sequences have been spectrally analyzed using a fast Fourier transform technique. An example of such a temporal spectrum obtained between 00:22 and 10:29 UT on December 6, 1991 is shown in the figure. The curve shown on the figure represents the spectral average of data from 11 height levels centered on an altitude of 1 km (1 plus or minus .375 km). The spectra shows a decrease in energy density with frequency which generally follows a -5/3 power law over the spectral interval 3x10 (exp -5) to 4x10 (exp -3) Hz. The flattening of the spectrum for frequencies greater than 6x10 (exp -3) Hz is most likely a measure of instrumental noise. Spectra like that shown in the figure are calculated for other altitudes and show changes in spectral features with height. Spectral analysis versus height have been performed for several observation periods which demonstrate changes in water vapor mixing ratio spectral character from one observation period to the next. The combination of these temporal spectra with independent measurements of winds aloft provide an opportunity to infer spatial scales of moisture variance.

  1. Cassini/CIRS Observations of Water Vapor in Saturn's Stratosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, Gordon; Achterberg, R. K.; Simon-Miller, A. A.; Jennings, D. E.

    2010-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained numerous spectra of Saturn at varying spectral and spatial resolutions since Saturn Orbit Insertion in 2001. Emission lines due to water vapor in Saturn's stratosphere were first detected using whole-disk observations from the Infrared Space Observatory [1] and subsequently confirmed by the Submillimeter Wave Astronomy Satellite [2], CIRS has detected water and the data permit the retrieval of the latitudinal variation of water on Saturn. Emission lines of H2O on Saturn are very weak in the CIRS data. Thus, large spectral averages as well as improvements in calibration are necessary to detect water vapor. long integrations at the full 0.5/cm spectral resolution were performed at targeted latitudes on Saturn. High emission angles were chosen to enhance stratospheric emission. Over the course of the prime and extended mission a set of observations has been built up spaced roughly every 10 degrees of latitude. Stratospheric temperatures in the 0.5 - 5.0 mbar range were obtained by inverting spectra of CH4 in the v'4 band centered at 1501/cm. The origin of water vapor is believed to be from the ablation of micrometeorites containing eater ice, followed by photochemistry. This external source of oxygen originates either from the Saturn system (from the rings or perhaps from Enceladus) or from the interplanetary medium. Connerney [3] proposed a mechanism to transport water from the inner edge of the B-ring along magnetic field lines to specific latitudes (50N and 44S) on Saturn. Prange et al [4] interpreted a minimum in the abundance of acetylene from ultraviolet spectra gear 41S on Saturn as possibly due to an enhanced influx of water. We will be able to test the "ring rain" mechanism by searching, for localized water vapor enhancement at mid-latitudes. Our results may be used to constrain photochemical models of Saturn's stratosphere [5].

  2. Internal Water Vapor Photoacoustic Calibration

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  3. Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films.

    PubMed

    Liu, Hongyu; Liu, Cuiyun; Peng, Shuge; Pan, Bingli; Lu, Chang

    2018-02-15

    A series of novel methyl cellulose (MC) composite films were prepared using polyethyleneimine reduced graphene oxide (PEI-RGO) as an effective filler for water vapor barrier application. The as-prepared PEI-RGO/MC composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, tensile test and scanning electron microscopy. The experimental and theoretical results exhibited that PEI-RGO was uniformly dispersed in the MC matrix without aggregation and formed an aligned dispersion. The addition of PEI-RGO resulted in an enhanced surface hydrophobicity and a tortuous diffusion pathway for water molecules. Water vapor permeability of PEI-RGO/MC with loading of 3.0% of surface modified graphene was as low as 5.98×10 -11 gmm -2 s -1 Pa -1 . The synergistic effects of enhanced surface hydrophobicity and tortuous diffusion pathway were accounted for the improved water vapor barrier performance of the PEI-RGO/MC composite films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Improved waste water vapor compression distillation technology. [for Spacelab

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  5. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  6. Observations of Water Vapor Outflow from NML Cygnus

    NASA Astrophysics Data System (ADS)

    Zubko, Viktor; Li, Di; Lim, Tanya; Feuchtgruber, Helmut; Harwit, Martin

    2004-07-01

    We report new observations of the far-infrared and submillimeter water vapor emission of NML Cygnus based on data gathered with the Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite. We compare the emission from NML Cyg to that previously published for VY CMa and W Hya in an attempt to establish the validity of recently proposed models for the outflow from evolved stars. The data obtained support the contention by Ivezić & Elitzur that the atmospheres of evolved stars obey a set of scaling laws in which the optical depth of the outflow is the single most significant scaling parameter, affecting both the radiative transfer and the dynamics of the outflow. Specifically, we provide observations comparing the water vapor emission from NML Cyg, VY CMa, and W Hya and find, to the extent permitted by the quality of our data, that the results are in reasonable agreement with a model developed by Zubko & Elitzur. Using this model we derive a mass loss based on the dust opacities, spectral line fluxes, and outflow velocities of water vapor observed in the atmospheres of these oxygen-rich giants. For VY CMa and NML Cyg, we also obtain an estimate of the stellar mass.

  7. Development and Validation of Water Vapor Tracers as Diagnostics for the Atmospheric Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.

  8. Water Vapor Tacers as Diagnostics of the Regional Atmospheric Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle, especially in North America where moisture transport and local evaporation are important sources of water for precipitation. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. All evaporative sources of water are accounted for by tracers, and the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The Geostationary Operational Environmental Satellites General Circulation Model (GEOS GCM) is used to simulate several summer periods to determine the source regions of precipitation for the United States and India. Using this methodology, a detailed analysis of the recycling of water, interannual variability of the sources of water and links to the Great Plains low-level jet and North American monsoon will be presented. Potential uses in GCM sensitivity studies, predictability studies and data assimilation especially regarding the North American monsoon and GEWEX America Prediction Project (GAPP) will be discussed.

  9. Lognormal Assimilation of Water Vapor in a WRF-GSI Cycled System

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.; Kliewer, A.; Jones, A. S.; Forsythe, J. M.

    2015-12-01

    Recent publications have shown the viability of both detecting a lognormally-distributed signal for water vapor mixing ratio and the improved quality of satellite retrievals in a 1DVAR mixed lognormal-Gaussian assimilation scheme over a Gaussian-only system. This mixed scheme is incorporated into the Gridpoint Statistical Interpolation (GSI) assimilation scheme with the goal of improving forecasts from the Weather Research and Forecasting (WRF) Model in a cycled system. Results are presented of the impact of treating water vapor as a lognormal random variable. Included in the analysis are: 1) the evolution of Tropical Storm Chris from 2006, and 2) an analysis of a "Pineapple Express" water vapor event from 2005 where a lognormal signal has been previously detected.

  10. Site of water vapor absorption in the desert cockroach, Arenivaga investigata.

    PubMed Central

    O'Donnell, M J

    1977-01-01

    The desert cockroach, Arenivaga investigata, can gain weight by absorption of water-vapor from unsaturated atmospheres above 82.5% relative humidity. Blocking the anus or the dorsal surface with wax does not prevent water vapor uptake, but interference with movements of the mouthparts or blocking the mouth with wax-prevents such uptake. Weight gains are associated with the protrusion from the mouth of two bladder-like extensions of the hypopharynx. During absorption these structures are warmer than the surrounding mouthparts, their surface temperature increasing with relative humidity. This suggests that the surfaces of the bladder-like structures function at least as sites for condensation of water vapor, but the precise location of its transfer into the hemolymph has not yet been identified. Images PMID:266217

  11. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)

    2001-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.

  12. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  13. Parameterization of water vapor using high-resolution GPS data and empirical models

    NASA Astrophysics Data System (ADS)

    Ningombam, Shantikumar S.; Jade, Sridevi; Shrungeshwara, T. S.

    2018-03-01

    The present work evaluates eleven existing empirical models to estimate Precipitable Water Vapor (PWV) over a high-altitude (4500 m amsl), cold-desert environment. These models are tested extensively and used globally to estimate PWV for low altitude sites (below 1000 m amsl). The moist parameters used in the model are: water vapor scale height (Hc), dew point temperature (Td) and water vapor pressure (Es 0). These moist parameters are derived from surface air temperature and relative humidity measured at high temporal resolution from automated weather station. The performance of these models are examined statistically with observed high-resolution GPS (GPSPWV) data over the region (2005-2012). The correlation coefficient (R) between the observed GPSPWV and Model PWV is 0.98 at daily data and varies diurnally from 0.93 to 0.97. Parameterization of moisture parameters were studied in-depth (i.e., 2 h to monthly time scales) using GPSPWV , Td , and Es 0 . The slope of the linear relationships between GPSPWV and Td varies from 0.073°C-1 to 0.106°C-1 (R: 0.83 to 0.97) while GPSPWV and Es 0 varied from 1.688 to 2.209 (R: 0.95 to 0.99) at daily, monthly and diurnal time scales. In addition, the moist parameters for the cold desert, high-altitude environment are examined in-depth at various time scales during 2005-2012.

  14. Observed Seasonal to Decadal-Scale Responses in Mesospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis

    2010-01-01

    The 14-yr (1991-2005) time series of mesospheric water vapor from the Halogen Occultation Experiment (HALOE) are analyzed using multiple linear regression (MLR) techniques for their6 seasonal and longer-period terms from 45S to 45N. The distribution of annual average water vapor shows a decrease from a maximum of 6.5 ppmv at 0.2 hPa to about 3.2 ppmv at 0.01 hPa, in accord with the effects of the photolysis of water vapor due to the Lyman-flux. The distribution of the semi-annual cycle amplitudes is nearly hemispherically symmetric at the low latitudes, while that of the annual cycles show larger amplitudes in the northern hemisphere. The diagnosed 11-yr, or solar cycle, max minus min, water vapor values are of the order of several percent at 0.2 hPa to about 23% at 0.01 hPa. The solar cycle terms have larger values in the northern than in the southern hemisphere, particularly in the middle mesosphere, and the associated linear trend terms are anomalously large in the same region. Those anomalies are due, at least in part, to the fact that the amplitudes of the seasonal cycles were varying at northern mid latitudes during 1991-2005, while the corresponding seasonal terms of the MLR model do not allow for that possibility. Although the 11-yr variation in water vapor is essentially hemispherically-symmetric and anti-phased with the solar cycle flux near 0.01 hPa, the concurrent temperature variations produce slightly colder conditions at the northern high latitudes at solar minimum. It is concluded that this temperature difference is most likely the reason for the greater occurrence of polar mesospheric clouds at the northern versus the southern high latitudes at solar minimum during the HALOE time period.

  15. Raman lidar water vapor profiling over Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Costa-Surós, Montserrat; Althausen, Dietrich

    2017-09-01

    Water vapor mixing ratio and relative humidity profiles were derived from the multi-wavelength Raman PollyXT lidar at the EARLINET site in Warsaw, using the Rayleigh molecular extinction calculation based on atmospheric temperature and pressure from three different sources: i) the standard atmosphere US 62, ii) the Global Data Assimilation System (GDAS) model output, and iii) the WMO 12374 radiosoundings launched at Legionowo. With each method, 136 midnight relative humidity profiles were obtained for lidar observations from July 2013 to August 2015. Comparisons of these profiles showed in favor of the latter method (iii), but it also indicated that the other two data sources could replace it, if necessary. Such use was demonstrated for an automated retrieval of water vapor mixing ratio from dusk until dawn on 19/20 March 2015; a case study related to an advection of biomass burning aerosol from forest fires over Ukraine. Additionally, an algorithm that applies thresholds to the radiosounding relative humidity profiles to estimate macro-physical cloud vertical structure was used for the first time on the Raman lidar relative humidity profiles. The results, based on a subset of 66 profiles, indicate that below 6 km cloud bases/tops can be successfully obtained in 53% and 76% cases from lidar and radiosounding profiles, respectively. Finally, a contribution of the lidar derived mean relative humidity to cloudy conditions within the range of 0.8 to 6.2 km, in comparison to clear-sky conditions, was estimated.

  16. Titan's Stratospheric Water Vapor profile from Cassini CIRS far-infrared Spectra

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Gorius, N.; Coustenis, A.; Irwin, P. G. J.; Anderson, C. M.; Bjoraker, G. L.; Jennings, D. E.; Flasar, F. M.; Ansty, T. M.

    2017-09-01

    In this work we present an update of water vapor abundance in Titan's stratosphere through modeling of its emission lines present in the spectral range (100 - 300 cm-1) observed by the Cassini Composite Infrared Spectrometer (CIRS) far-IR Focal Plane 1 (FP1) detector. We model and analyze high spectral resolution (0.5 cm-1) disk and limb observations acquired from December 2004 to December 2016 to determine the water mixing ratio profile. Nadir data and limb data acquired up to 2011 and pointing at two altitudes in Titan's stratosphere (125 and 225 km) have been previously used in [1] to detect water vapor and retrieve its abundance at two limb altitudes. Few years of more data and improved calibrations are now available to further investigate water vapor. In particular, three far-infrared limb integrations were planned and acquired in 2014 and 2016 with CIRS staring at a single altitude (175 km) for longer time. These new data provided us with one more altitude point to derive the water vapor abundance and improve its retrieved vertical profile, increasing significantly the science results. These results will also be compared to previous results and to the latest photochemical models of Titan's oxygen species.

  17. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    EPA Science Inventory

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  18. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    USGS Publications Warehouse

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  19. Convective Radiofrequency Water Vapor Thermal Therapy with Rezūm System.

    PubMed

    Helo, Sevann; Holland, Bradley; McVary, Kevin T

    2017-10-01

    Lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) are amongst the most commonly treated conditions by urologists. Minimally invasive therapies for the treatment of BPH/LUTS have garnered increased interest as new technology has emerged, improving durability, efficacy, and safety. This paper reviews the most recent literature regarding water vapor therapy, a convective thermal therapy that ablates prostatic tissue. The current literature includes a pilot study of 65 men and a randomized controlled trial (RCT) of 197 men investigating the efficacy and safety profile of water vapor therapy up to 2 years. Subjects treated with water vapor therapy demonstrated a 51% reduction in IPSS from baseline, sustained at 24 months (p < 0.0001). Durable improvements in max flow rate (Qmax) and quality of life (QoL) were also achieved, while no changes in sexual function were observed. Reporting of adverse events (AEs) reveals predominantly Clavien grade I complications that were self-limited. The clinical efficacy and safety of water vapor therapy are durable to 24 months making it an attractive alternative for patients seeking a minimally invasive treatment for LUTS due to BPH.

  20. Molecular dynamics of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  1. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    NASA Astrophysics Data System (ADS)

    Garfinkel, Chaim I.; Gordon, Amit; Oman, Luke D.; Li, Feng; Davis, Sean; Pawson, Steven

    2018-04-01

    A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño-Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer-Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  2. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  3. Millimeter-wave Imaging Radiometer (MIR) data processing and development of water vapor retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1995-01-01

    This document describes the progress of the task of the Millimeter-wave Imaging Radiometer (MIR) data processing and the development of water vapor retrieval algorithms, for the second six-month performing period. Aircraft MIR data from two 1995 field experiments were collected and processed with a revised data processing software. Two revised versions of water vapor retrieval algorithm were developed, one for the execution of retrieval on a supercomputer platform, and one for using pressure as the vertical coordinate. Two implementations of incorporating products from other sensors into the water vapor retrieval system, one from the Special Sensor Microwave Imager (SSM/I), the other from the High-resolution Interferometer Sounder (HIS). Water vapor retrievals were performed for both airborne MIR data and spaceborne SSM/T-2 data, during field experiments of TOGA/COARE, CAMEX-1, and CAMEX-2. The climatology of water vapor during TOGA/COARE was examined by SSM/T-2 soundings and conventional rawinsonde.

  4. Fog chemical composition and its feedback to fog water fluxes, water vapor fluxes, and microphysical evolution of two events near Paris

    NASA Astrophysics Data System (ADS)

    Degefie, D. T.; El-Madany, T.-S.; Held, M.; Hejkal, J.; Hammer, E.; Dupont, J.-C.; Haeffelin, M.; Fleischer, E.; Klemm, O.

    2015-10-01

    The chemical composition of collected fog water and its temporal evolution was studied during the PARISFOG campaign in winter 2012/2013 at the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphéric) atmospheric observatory outside Paris, France. A further development of the caltech active fog collector was applied, in which the collected fog water gets into contact with Teflon and polyether ether ketone (PEEK) material exclusively. The collector was operational whenever the visibility was below 1000 m. In addition, the turbulent and gravitational fluxes of fog water and water vapor flux were used to examine in detail the temporal evolution the chemical composition of two fogs. The technique was applied to two fog events, one representing a radiation fog and the other one representing a stratus lowering fog. The result revealed that the dominant inorganic species in the fog water were NH4+, NO3-, Ca2 + and SO42 -, which accounted for more than 85% of the ion balance. The pH ranged from 3.7 to 6.2. In the evolution the two fog events, the interaction among the turbulent fog water flux, gravitational fog water flux and water vapor flux controlled the major ion loads (amount of ions, dissolved in fog droplets per volume of air) and ion concentrations (amount dissolved per volume of liquid water) of the fog water. In the radiation fog event, an increase of ion loads and ion concentrations occurred when the direction of water vapor flux towards to the place where the condensation process occurred. A decrease of ion loads and ion concentrations mainly happened by gravitational fog water flux with a minor contribution from turbulent fog water flux. However, when the turbulent water vapor flux was oriented downward, it turned the turbulent fog water flux upward and offset the removal of ions in the fog. In the stratus lowering fog event, the turbulent fog water flux and the gravitational water flux together mainly contributed to the fog water deposition and

  5. Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.

    PubMed

    Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar

    2014-06-17

    There is overwhelming evidence that ions are present near the vapor-liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion-ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor-liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. "Sticky" electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn-like one in response to charging of its ends.

  6. Water vapor permeability of the rigid-shelled gecko egg.

    PubMed

    Andrews, Robin M

    2012-07-01

    The vast majority of squamate reptiles (lizards and snakes) produce parchment-shelled eggs that absorb water during incubation, and thus increase in mass, volume, and surface area. In contrast, females from a single monophyletic lineage of gekkotan lizards produce rigid-shelled eggs. These eggs are functionally comparable to those of birds, that is, at oviposition, eggs contain all the water needed for development, and their mass decreases during incubation via the diffusion of water vapor through the shell. I determined patterns of water loss and shell permeability to water vapor from oviposition to hatching for the rigid-shelled eggs of the gekkonid Chrondrodactylus turneri and compared permeability of C. turneri eggs to those of birds and other squamates. Chrondrodactylus turneri eggs incubated at 28.5°C and 40% relative humidity (RH) decreased in mass by 14% over the course of a 68-day incubation period. The rate of water loss varied during incubation; egg mass decreased rapidly during the first 8 days of incubation, declined at a low constant rate during the next 35 days, and then decreased rapidly during the final 25 days of incubation. Overall permeability was 0.17 mg/day/kPa/cm(2) . Percent water loss of rigid-shelled gecko eggs during incubation is similar to that exhibited by birds, but water vapor permeability is about one-third that of bird eggs and several orders of magnitude lower than that of parchment-shelled squamate eggs. In general, the water economy of their eggs may be associated with the adaptive radiation of the rigid-shelled sphaerodactylid, phyllodactylid, and gekkonid geckos. © 2012 WILEY PERIODICALS, INC.

  7. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote sources of water for precipitation, based on the implementation of passive constituent tracers of water vapor (termed water vapor tracers, WVT) in a general circulation model. In this case, the major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In this approach, each WVT is associated with an evaporative source region, and tracks the water until it precipitates from the atmosphere. By assuming that the regional water is well mixed with water from other sources, the physical processes that act on the WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be computed within the model simulation, and can be validated against the model's prognostic water vapor. Furthermore, estimates of precipitation recycling can be compared with bulk diagnostic approaches. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional tracers, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic 2 regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In

  8. Total Water Vapor Transport Observed in Twelve Atmospheric Rivers over the Northeastern Pacific Ocean Using Dropsondes

    NASA Astrophysics Data System (ADS)

    Ralph, F. M.; Iacobellis, S.; Neiman, P. J.; Cordeira, J. M.; Spackman, J. R.; Waliser, D. E.; Wick, G. A.; White, A. B.; Fairall, C. W.

    2014-12-01

    Demory et al (2013) recently showed that the global water cycle in climate models, including the magnitude of water vapor transport, is strongly influenced by the model's spatial resolution. The lack of offshore observations is noted as a serious limitation in determining the correct amount of transport. Due to the key role of atmospheric rivers (ARs) in determining the global distribution of water vapor, quantifying transport from ARs is a high priority. This forms a foundation of the CalWater-2 experiment aimed at sampling many ARs during 2014-2018. In February 2014, an "early-start" deployment of the NOAA G-IV research aircraft sampled 10 ARs over the northeast Pacific Ocean. On six of these flights, dropsondes were deployed in a line crossing the AR so as to robustly sample the total water vapor transport (TVT). The TVT is defined here as the sum of the vertically integrated horizontal water vapor transport (IVT) in the AR using a baseline that stretches from its warm southern (or eastern) edge to its cool northern (or western) edge. TVT includes both AR-parallel and AR-perpendicular transport. These data double the overall number of such cross-AR airborne samples suitable for calculating TVT. Analysis of TVT for these six new samples, in combination with the six previous samples from the preceding 16 years (from CalJet, WISPAR, and a Hawaii-based campaign), will be shown. A comparison will be made of the AR width and TVT determined using the well-established integrated water vapor (IWV) threshold of 2 cm, versus an IVT threshold of 250 kg m-1 s-1. Finally, the data from a well sampled case on 13 February 2014 (23 sondes with 75-100 km spacing) will be used to assess the sensitivity of TVT to dropsonde horizontal spacing and vertical resolution. This sensitivity analysis is of practical importance for the upcoming CalWater-2 field campaign where the G-IV will be used to sample many additional AR events, due to the relatively high cost of the dropsondes.

  9. Quasar Drenched in Water Vapor Artist Concept

    NASA Image and Video Library

    2012-08-31

    Artist concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below.

  10. Remote Sensing of Water Vapor and Thin Cirrus Clouds using MODIS Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yoram J.

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.

  11. Increasing vertical resolution of three-dimensional atmospheric water vapor retrievals using a network of scanning compact microwave radiometers

    NASA Astrophysics Data System (ADS)

    Sahoo, Swaroop

    2011-12-01

    . This thesis also discusses Colorado State University's (CSU) participation in the European Space Agency (ESA)'s "Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapor Effects" (METAWAVE) experiment conducted in the fall of 2008. CSU deployed a ground-based network of three Compact Microwave Radiometers for Humidity profiling (CMR-Hs) in Rome to measure atmospheric brightness temperatures. These measurements were used to retrieve high-resolution 3-D atmospheric water vapor and its variation with time. High-resolution information about water vapor can be crucial for the mitigation of wet tropospheric path delay variations that limit the quality of Interferometric Synthetic Aperture Radar satellite interferograms. Three-dimensional water vapor retrieval makes use of radiative transfer theory, algebraic tomographic reconstruction and Bayesian optimal estimation coupled with Kalman filtering. In addition, spatial interpolation (kriging) is used to retrieve water vapor density at unsampled locations. 3-D humidity retrievals from Rome data with vertical and horizontal resolution of 0.5 km are presented. The water vapor retrieved from CMR-H measurements is compared with MM5 Mesoscale Model output, as well as with measurements from the Medium Resolution Imaging Spectrometer (MERIS) aboard ESA's ENVISAT and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua and Terra satellites.

  12. The role of water vapor in the ITCZ response to hemispherically asymmetric forcings

    NASA Astrophysics Data System (ADS)

    Clark, S.; Ming, Y.; Held, I.

    2016-12-01

    Studies using both comprehensive and simplified models have shown that changes to the inter-hemispheric energy budget can lead to changes in the position of the ITCZ. In these studies, the mean position of the ITCZ tends to shift toward the hemisphere receiving more energy. While included in many studies using comprehensive models, the role of the water vapor-radiation feedback in influencing ITCZ shifts has not been focused on in isolation in an idealized setting. Here we use an aquaplanet idealized moist general circulation model initially developed by Dargan Frierson, without clouds, newly coupled to a full radiative transfer code to investigate the role of water vapor in the ITCZ response to hemispherically asymmetric forcings. We induce a southward ITCZ shift by reducing the incoming solar radiation in the northern hemisphere. To isolate the radiative impact of water vapor, we run simulations where the radiation code sees the prognostic water vapor field, which responds dynamically to temperature, parameterized convection, and the circulation and also run simulations where the radiation code sees a prescribed static climatological water vapor field. We find that under Earth-like climate conditions, a shifting water vapor distribution's interaction with longwave radiation amplifies the latitudinal displacement of the ITCZ in response to a given hemispherically asymmetric forcing roughly by a factor of two; this effect appears robust to the convection scheme used. We argue that this amplifying effect can be explained using the energy flux equator theory for the position of the ITCZ.

  13. The threshold of vapor channel formation in water induced by pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2012-12-01

    Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.

  14. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-03-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  15. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study.

    PubMed

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-12-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  16. Durability of Environmental Barrier Coatings in a Water Vapor/Oxygen Environment

    NASA Technical Reports Server (NTRS)

    Holchin, John E.

    2004-01-01

    Silicon carbide (Sic) and silicon nitride (Si3N4) show potential for application in the hot sections of advanced jet engines. The oxidation behavior of these materials has been studied in great detail. In a pure oxygen environment, a silica (SiO2) layer forms on the surface and provides protection from further oxidation. Initial oxidation is rapid, but slows as silica layer grows; this is known as parabolic oxidation. When exposed to model fuel-lean combustion applications (standard in jet engines), wherein the partial pressure of water vapor is approximately 0.5 atm., these materials exhibit different characteristics. In such an environment, the primary oxidant to form silica is water vapor. At the same time, water vapor reacts with the surface oxide to form gaseous silicon hydroxide (Si(OH)4). The simultaneous formation of both silica and Si(OH)4 -the latter which is lost to the atmosphere- the material continues to recede. Recession rates for uncoated Sic and Si3N4 are unacceptably high, for use in jet engines, - on the order of 1mm/4000h. External coatings have been developed that protect Si-based materials from water vapor attack. One such coating consists of a Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS) topcoat, a mullite/BSAS intermediate layer and a Si bond coat. The key function of the topcoat is to protect the Si-base material from water vapor; therefore it must be fairly stable in water vapor (recession rate of about 1mm/40,000h) and remain crack free. Although BSAS is much more resistant to water vapor attack than pure silica, it exhibits a linear weight loss in 50% H2O - 50% O2 at 1500 C. The objective of my research is to determine the oxidation behavior of a number of alternate hot-pressed monolithic top coat candidates. Potential coatings were exposed at 1500 C to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s . These included rare- earth silicates, barium-strontium aluminosilicates. When weight changes were measured with a continuously recording

  17. Eggshell permeability: a standard technique for determining interspecific rates of water vapor conductance.

    PubMed

    Portugal, Steven J; Maurer, Golo; Cassey, Phillip

    2010-01-01

    Typically, eggshell water vapor conductance is measured on whole eggs, freshly collected at the commencement of a study. At times, however, it may not be possible to obtain whole fresh eggs but rather egg fragments or previously blown eggs. Here we evaluate and describe in detail a technique for modern laboratory analysis of eggshell conductance that uses fragments from fresh and museum eggs to determine eggshell water vapor conductance. We used fresh unincubated eggs of domesticated chickens (Gallus gallus domesticus), ducks (Anas platyrhynchos domesticus), and guinea fowl (Numida meleagris) to investigate the reliability, validity, and repeatability of the technique. To assess the suitability of museum samples, museum and freshly collected black-headed gull eggs (Larus ridibundus) were used. Fragments were cut out of the eggshell from the blunt end (B), equator (E), and pointy end (P). Eggshell fragments were glued to the top of a 0.25-mL micro test tube (Eppendorf) filled with 200 μL of distilled water and placed in a desiccator at 25°C. Eppendorfs were weighed three times at 24-h intervals, and mass loss was assumed to be a result of water evaporation. We report the following results: (1) mass loss between weighing sessions was highly repeatable and consistent in all species; (2) the majority of intraspecific variability in eggshell water vapor conductance between different eggs of the same species was explained through the differences in water vapor conductance between the three eggshell parts of the same egg (B, E, and P); (3) the technique was sensitive enough to detect significant differences between the three domestic species; (4) there was no overall significant difference between water vapor conductance of museum and fresh black-headed gull eggs; (5) there was no significant difference in water vapor conductance for egg fragments taken from the same egg both between different trials and within the same trial. We conclude, therefore, that this technique

  18. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  19. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less

  20. Using GPS radio occultations to infer the water vapor feedback

    NASA Astrophysics Data System (ADS)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Fetzer, Eric J.

    2016-11-01

    The air refractive index at L-band frequencies depends on the air's water vapor content and density. Exploiting this relationship, we derive for the first time a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model by using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated by using the Atmospheric Infrared Sounder and the NASA's Modern-Era Retrospective Analysis for Research and Applications data sets. Because of their high sensitivity to fractional changes in water vapor, current and future GPS RO observations show great promise in monitoring climate feedback and their trends.

  1. Atmospheric transmission loss in mirror-to-tower slant ranges due to water vapor

    NASA Astrophysics Data System (ADS)

    Gueymard, Christian A.; López, Gabriel; Rapp-Arrarás, Igor

    2017-06-01

    Considering CSP systems of the central tower-receiver type, this study investigates the specific effect of water vapor absorption on the total atmospheric transmission losses that impact direct irradiance along the slant path between a distant mirror and the receiver on the tower. Spectral and broadband calculations of total atmospheric attenuation are made for various water vapor conditions (from dry to humid) with both the rigorous MODTRAN code and the simpler and faster SMARTS code. The use of the latter is made indirectly possible through the "fictitious sun" concept. The MODTRAN and SMARTS results compare reasonably well under the present conditions, which closely echo the conditions used in previous studies, thus allowing instructive comparisons that will be reported later. To study the vertical profile of water vapor between surface and a height of 300 m, the columnar precipitable water at ≈5 m resolution has been derived from special high-resolution radiosonde soundings carried out twice daily at two arid sites. This analysis shows that the desired precipitable water at the receiver level can be simply extrapolated from that at the mirror level if the water vapor scale height is known. The latter is shown to significantly vary on a daily basis at the two sounding sites, with a median of 2.74 km. The exact value of this scale height conditions the transmission loss due to water vapor, but in any case this loss is found relatively small in comparison with other sources of attenuation, even when considering long slant paths under humid conditions. This unexpected finding is explained by the saturation effect that characterizes water vapor absorption.

  2. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (<5 pr-micrometer) is observed at middle and high latitudes in the fall and winter of both hemispheres. There are large differences in the hemispheric (north versus south) and seasonal (perihelion versus aphelion) behavior of water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  3. The Effect of Cirrus Clouds on Water Vapor Transport in the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Lei, L.; McCormick, M. P.; Anderson, J.

    2017-12-01

    Water vapor plays an important role in the Earth's radiation budget and stratospheric chemistry. It is widely accepted that a large percentage of water vapor entering the stratosphere travels through the tropical tropopause and is dehydrated by the cold tropopause temperature. The vertical transport of water vapor is also affected by the radiative effects of cirrus clouds in the tropical tropopause layer. This latter effect of cirrus clouds was investigated in this research. The work focuses on the tropical and mid-latitude region (50N-50S). Water vapor data from the Microwave Limb Sounder (MLS) and cirrus cloud data from the Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation (CALIPSO) instruments were used to investigate the relationship between the water vapor and the occurrence of cirrus cloud. A 10-degree in longitude by 10-degree in latitude resolution was chosen to bin the MLS and CALIPSO data. The result shows that the maximum water vapor in the upper troposphere (below 146 hPa) is matched very well with the highest frequency of cirrus cloud occurrences. Maximum water vapor in the lower stratosphere (100 hPa) is partly matched with the maximum cirrus cloud occurrence in the summer time. The National Oceanic and Atmospheric Administration Interpolated Outgoing Longwave Radiation data and NCEP-DOE Reanalysis 2 wind data were used also to investigate the relationship between the water vapor entering the stratosphere, deep convection, and wind. Results show that maximum water vapor at 100 hPa coincides with the northern hemisphere summer-time anticyclone. The effects from both single-layer cirrus clouds and cirrus clouds above the anvil top on the water vapor entering the stratosphere were also studied and will be presented.

  4. Vacuum distillation: vapor filtered-catalytic oxidation water reclamation system utilizing radioisotopes

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Kurg, E. K.

    1971-01-01

    The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.

  5. Monitoring middle-atmospheric water vapor over Seoul by using a 22 GHz ground-based radiometer SWARA

    NASA Astrophysics Data System (ADS)

    Ka, Soohyun; de Wachter, Evelyn; Kaempfer, Niklaus; Oh, Jung Jin

    2010-10-01

    Water vapor is the strongest natural greenhouse gas in the atmosphere. It is most abundant in the troposphere at low altitudes, due to evaporation at the ocean surface, with maximum values of around 6 g/kg. The amount of water vapor reaches a minimum at tropopause level and increases again in the middle atmosphere through oxidation of methane and vertical transport. Water vapor has both positive and negative effects on global warming, and we need to study how it works on climate change by monitoring water vapor concentration in the middle atmosphere. In this paper, we focus on the 22 GHz ground-based radiometer called SWARA (Seoul Water vapor Radiometer) which has been operated at Sookmyung women's university in Seoul, Korea since Oct. 2006. It is a joint project of the University of Bern, Switzerland, and the Sookmyung Women's University of Seoul, South Korea. The SWARA receives 22.235 GHz emitted from water vapor spontaneously and converts down to 1.5 GHz with +/- 0.5 GHz band width in 61 kHz resolution. To represent 22.235 GHz water vapor spectrum precisely, we need some calibration methods because the signal shows very weak intensity in ~0.1 K on the ground. For SWARA, we have used the balancing and the tipping curve methods for a calibration. To retrieve the water vapor profile, we have applied ARTS and Qpack software. In this paper, we will present the calibration methods and water vapor variation over Seoul for the last 4 years.

  6. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  7. A New Raman Water Vapor Lidar Calibration Technique and Measurements in the Vicinity of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Evans, Keith D.; Demoz, Belay B.; Cadirola, Martin P.; Melfi, S. H.; Whiteman, David N.; Schwemmer, Geary K.; Starr, David OC.; Schmidlin, F. J.; Feltz, Wayne

    2000-01-01

    The NAcA/Goddard Space Flight Center Scanning Raman Lidar has made measurements of water vapor and aerosols for almost ten years. Calibration of the water vapor data has typically been performed by comparison with another water vapor sensor such as radiosondes. We present a new method for water vapor calibration that only requires low clouds, and surface pressure and temperature measurements. A sensitivity study was performed and the cloud base algorithm agrees with the radiosonde calibration to within 10- 15%. Knowledge of the true atmospheric lapse rate is required to obtain more accurate cloud base temperatures. Analysis of water vapor and aerosol measurements made in the vicinity of Hurricane Bonnie are discussed.

  8. Propelling a water drop with the vapor-mediated Marangoni effect

    NASA Astrophysics Data System (ADS)

    Kim, Seungho; Kim, Ho-Young

    2013-11-01

    We show that a water drop on solid surfaces can be propelled just by placing a volatile alcohol drop nearby. It is found to be because the water-air interface near the alcohol drop mixes with alcohol vapor, thereby locally lowering the surface tension. The surface-tension-gradient induces the motion of the water drop, enabling the trajectory control of water drops through the motion of remote alcohol drops. This vapor-mediated Marangoni effect also gives rise to other interesting interfacial flow phenomena, such as nucleation of holes on a water film and ballooning of a water drop hanging from a syringe needle with the approach of an alcohol drop. We visualize such interfacial dynamics with a high-speed camera and rationalize their salient features by scaling analysis. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).

  9. Water Vapor Transport, June through November 2005 Movie

    NASA Image and Video Library

    2008-11-18

    This visualization from the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite shows variations in the three dimensional distribution of water vapor in the atmosphere during the summer and fall of 2005.

  10. Stable isotopes in water vapor and precipitation for a coastal lagoon at mid latitudes

    NASA Astrophysics Data System (ADS)

    Zannoni, Daniele; Bergamasco, Andrea; Dreossi, Giuliano; Rampazzo, Giancarlo; Stenni, Barbara

    2016-04-01

    The stable oxygen and hydrogen isotope composition in precipitation can be used in hydrology to describe the signature of local meteoric water. The isotopic composition of water vapor is usually obtained indirectly from measurements of δD and δ18O in precipitation, assuming the isotopic equilibrium between rain and water vapor. Only few studies report isotopic data in both phases for the same area, thus providing a complete Local Meteoric Water Line (LMWL). The goal of this study is to build a complete LMWL for the lagoon of Venice (northern Italy) with observations of both water vapor and precipitation. The sampling campaign has started in March 2015 and will be carried out until the end of 2016. Water vapor is collected once a week with cold traps at low temperatures (-77°C). Precipitation is collected on event and monthly basis with a custom automatic rain sampler and a rain gauge, respectively. Liquid samples are analyzed with a Picarro L1102-i and results are reported vs VSMOW. The main meteorological parameters are continuously recorded in the same area by the campus automatic weather station. Preliminary data show an LMWL close to the Global Meteoric Water Line (GMWL) with lower slope and intercept. An evaporation line is clearly recognizable, considering samples that evaporated between the cloud base and the ground. The deviation from the GMWL parameters, especially intercept, can be attributed to evaporated rain or to the humidity conditions of the water vapor source. Water vapor collected during rainfall shows that rain and vapor are near the isotopic equilibrium, just considering air temperature measured at ground level. Temperature is one of the main factor that controls the isotopic composition of the atmospheric water vapor. Nevertheless, the circulation of air masses is a crucial parameter which has to be considered. Water vapor samples collected in different days but with the same meteorological conditions (air temperature and relative humidity

  11. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    NASA Astrophysics Data System (ADS)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  12. Forest Canopy Water Cycling Responses to an Intermediate Disturbance Revealed Through Stable Water Vapor Isotopes

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Rey Sanchez, C.; Fotis, A. T.; Morin, T. H.; Vogel, C. S.; Gough, C. M.; Aron, P.; Bohrer, G.

    2016-12-01

    Forest structure, age, and species composition modulate fluxes of carbon and water between the land surface and the atmosphere. The response of forests to intermediate disturbances such as ecological succession, species-specific insect invasion, or selective logging that disrupt the canopy but do not promote complete stand replacement, shape how these fluxes evolve through time. We investigate the impact of an intermediate disturbance to water cycling processes by comparing vertical profiles of stable water isotopes in two closely located forest canopies in the northern lower peninsula of Michigan using cavity ring-down spectroscopy. In one of the canopies, an intermediate disturbance was prescribed in 2008 by inducing mortality in all canopy-dominant early successional species. Isotopic compositions of atmospheric water vapor are measured at six heights during two time periods (summer and early fall) at two flux towers and compared with local meteorology and calculated atmospheric back-trajectories. Disturbance has little impact on low-frequency changes in isotopic composition (e.g., >1 day); at these timescales, isotopic composition is strongly related to large-scale moisture transport. In contrast, disturbance has substantial impacts on the vertical distribution of water isotopes throughout the canopy when transpiration rates are high during the summer, but impact is muted during early fall. Sub-diurnal differences in canopy water vapor cycling are likely related to differences in species composition and response to disturbance and changes in canopy structure. Predictions of transpiration fluxes by land-surface models that do not account species-specific relationships and canopy structure are unlikely to capture these relationships, but addition of stable isotopes to land surface models may provide a useful parameter to improve these predictions.

  13. Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays

    USGS Publications Warehouse

    Chiou, Cary T.; Rutherford, David W.

    1997-01-01

    The effects of exchanged cation and layer charge on the sorption of water and ethylene glycol monoethyl ether (EGME) vapors on montmorillonite have been studied on SAz-1 and SWy-1 source clays, each exchanged respectively with Ca, Na, K, Cs and tetramethylammonium (TMA) cations. The corresponding lattice expansions were also determined, and the corresponding N2 adsorption data were provided for comparison. For clays exchanged with cations of low hydrating powers (such as K, Cs and TMA), water shows a notably lower uptake than does N2 at low relative pressures (P/P0). By contrast, EGME shows higher uptakes than N2 on all exchanged clays at all P/P0. The anomaly for water is attributed to its relatively low attraction for siloxane surfaces of montmorillonite because of its high cohesive energy density. In addition to solvating cations and expanding interlayers, water and EGME vapors condense into small clay pores and interlayer voids created by interlayer expansion. The initial (dry) interlayer separation varies more significantly with cation type than with layer charge; the water-saturated interlayer separation varies more with cation type than the EGME-saturated interlayer separation. Because of the differences in surface adsorption and interlayer expansion for water and EGME, no general correspondence is found between the isotherms of water and EGME on exchanged clays, nor is a simple relation observed between the overall uptake of either vapor and the cation solvating power. The excess interlayer capacities of water and of EGME that result from lattice expansion of the exchanged clays are estimated by correcting for amounts of vapor adsorption on planar clay surfaces and of vapor condensation into intrinsic clay pores. The resulting data follow more closely the relative solvating powers of the exchanged cations.

  14. A new criterion to evaluate water vapor interference in protein secondary structural analysis by FTIR spectroscopy.

    PubMed

    Zou, Ye; Ma, Gang

    2014-06-04

    Second derivative and Fourier self-deconvolution (FSD) are two commonly used techniques to resolve the overlapped component peaks from the often featureless amide I band in Fourier transform infrared (FTIR) curve-fitting approach for protein secondary structural analysis. Yet, the reliability of these two techniques is greatly affected by the omnipresent water vapor in the atmosphere. Several criteria are currently in use as quality controls to ensure the protein absorption spectrum is negligibly affected by water vapor interference. In this study, through a second derivative study of liquid water, we first argue that the previously established criteria cannot guarantee a reliable evaluation of water vapor interference due to a phenomenon that we refer to as sample's absorbance-dependent water vapor interference. Then, through a comparative study of protein and liquid water, we show that a protein absorption spectrum can still be significantly affected by water vapor interference even though it satisfies the established criteria. At last, we propose to use the comparison between the second derivative spectra of protein and liquid water as a new criterion to better evaluate water vapor interference for more reliable second derivative and FSD treatments on the protein amide I band.

  15. LASE validation experiment: preliminary processing of relative humidity from LASE derived water vapor in the middle to upper troposphere

    NASA Technical Reports Server (NTRS)

    Brackett, Vincent G.; Ismail, Syed; Browell, Edward V.; Kooi, Susan A.; Clayton, Marian B.; Ferrare, Richard A.; Minnis, Patrick; Getzewich, Brian J.; Staszel, Jennifer

    1998-01-01

    Lidar Atmospheric Sensing Experiment (LASE) is the first fully engineered, autonomous airborne DIAL (Differentials Absorption Lidar) system to measure water vapor, aerosols, and clouds throughout the troposphere. This system uses a double-pulsed Ti:sapphire laser, which is pumped by a frequency-doubled flashlamp-pumped Nd: YAG laser, to transmit light in the 815 mn absorption band of water vapor. LASE operates by locking to a strong water vapor line and electronically tuning to any spectral position on the absorption line to choose the suitable absorption cross-section for optimum measurements over a range of concentrations in the atmosphere. During the LASE Validation Experiment, which was conducted over Wallops Island during September, 1995, LASE operated on either the strong water line for measurements in middle to upper troposphere, or on the weak water line for measurements made in the middle to lower troposphere including the boundary layer. Comparisons with water vapor measurements made by airborne dew point and frost point hygrometers, NASA/GSFC (Goddard Space Flight Center) Raman Lidar, and radiosondes showed the LASE water vapor mixing ratio measurements to have an accuracy of better than 6% or 0.01 g/kg, whichever is larger, throughout the troposphere. In addition to measuring water vapor mixing ratio profiles, LASE simultaneously measures aerosol backscattering profiles at the off-line wavelength near 815 nm from which atmospheric scattering ratio (ASR) profiles are calculated. ASR is defined as the ratio of total (aerosol + molecular) atmospheric scattering to molecular scattering. Assuming a region with very low aerosol loading can be identified, such as that typically found just below the tropopause, then the ASR can be determined. The ASR profiles are calculated by normalizing the scattering in the region containing enhanced aerosols to the expected scattering by the "clean" atmosphere at that altitude. Images of the total ASR clearly depict cloud

  16. A new method to obtain Fourier transform infrared spectra free from water vapor disturbance.

    PubMed

    Chen, Yujing; Wang, Hai-Shui; Umemura, Junzo

    2010-10-01

    Infrared absorption bands due to water vapor in the mid-infrared regions often obscure important spectral features of the sample. Here, we provide a novel method to collect a qualified infrared spectrum without any water vapor interference. The scanning procedure for a single-beam spectrum of the sample is divided into two stages under an atmosphere with fluctuating humidity. In the first stage, the sample spectrum is measured with approximately the same number of scans as the background. If the absorbance of water vapor in the spectrum is positive (or negative) at the end of the first stage, then the relative humidity in the sample compartment of the spectrometer is changed by a dry (or wet) air blow at the start of the second stage while the measurement of the sample spectrum continues. After the relative humidity changes to a lower (or higher) level than that of the previously collected background spectrum, water vapor peaks will become smaller and smaller with the increase in scanning number during the second stage. When the interfering water lines disappear from the spectrum, the acquisition of a sample spectrum is terminated. In this way, water vapor interference can finally be removed completely.

  17. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    NASA Technical Reports Server (NTRS)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  18. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotopemore » observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ 18O v ranged from –40.2 to –15.9 ‰ and δ 2H v ranged from –278.7 to –113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess ( d v) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in d v, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol –1) indicate that

  19. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    DOE PAGES

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; ...

    2016-04-25

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotopemore » observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ 18O v ranged from –40.2 to –15.9 ‰ and δ 2H v ranged from –278.7 to –113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess ( d v) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in d v, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol –1) indicate that

  20. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  1. Investigation of the Effect of Alloying Elements and Water Vapor Contents on the Oxidation and Decarburization of Transformation-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Sohn, I. R.; Pettit, F. S.; Meier, G. H.; Sridhar, S.

    2009-08-01

    The present research deals with an investigation of the effect of alloying element additions (Si, P, and Sb) and water vapor content ({{{{{P}}_{{{{H}}_{ 2} {{O}}}} } {{{P}}_{{{{H}}_{ 2} }} }}} = 0.01{{ to }}0.13}) on the oxidation and decarburization behavior of transformation-induced plasticity (TRIP) steels in a gas mixture of 95 vol pct argon and 5 vol pct hydrogen/steam, by thermogravimetry (TG). The oxidation proceeds primarily as an internal oxidation front in the TRIP steels, but a thin external scale on the order of a micrometer thickness exists and is comprised primarily of fayalite ((Mn,Fe)2SiO4) and ((MnO) x (FeO)1- x . The oxidation products are distributed near the surface and along grain boundaries. A comparison between calculated and measured oxidation curves indicated that the oxidation and decarburization are independent. The results for TRIP steels, both with and without an Sb addition, indicate that increasing Si and P contents accelerate, whereas Sb addition suppresses, both decarburization and oxidation rates. Water vapor content has no obvious effect on decarburization but has a pronounced effect on oxidation, and decreasing water vapor content decreases the oxidation rates.

  2. Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.

    2017-12-01

    We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential

  3. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere.

    PubMed

    Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J

    2015-03-17

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  4. Impact of freeze-drying, mixing and horizontal transport on water vapor in the upper troposphere and lower stratosphere (UTLS)

    NASA Astrophysics Data System (ADS)

    Poshyvailo, Liubov; Ploeger, Felix; Müller, Rolf; Tao, Mengchu; Konopka, Paul; Abdoulaye Diallo, Mohamadou; Grooß, Jens-Uwe; Günther, Gebhard; Riese, Martin

    2017-04-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) is a key player in the global radiation budget. Therefore, a realistic representation of the water vapor distribution in this region and the involved control processes is critical for climate models, but largely uncertain hitherto. It is known that the extremely low temperatures around the tropical tropopause cause the dominant factor controlling water vapor in the lower stratosphere. Here, we focus on additional processes, such as horizontal transport between tropics and extratropics, small-scale mixing, and freeze-drying. We assess the sensitivities of simulated water vapor in the UTLS from simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). CLaMS is a Lagrangian transport model, with a parameterization of small-scale mixing (model diffusion) which is coupled to deformations in the large-scale flow. First, to assess the robustness of water vapor with respect to the meteorological datasets we examine CLaMS driven by ECMWF ERA-Interim and the Japanese 55-year reanalysis. Second, to investigate the effects of small-scale mixing we vary the parameterized mixing strength in the CLaMS model between the reference case with the mixing strength optimized to reproduce atmospheric trace gas observations and a purely advective simulation with parameterized mixing turned off. Also calculation of Lagrangian cold points gives further insight of the processes involved. Third, to assess the effects of horizontal transport between the tropics and extratropics we carry out sensitivity simulations with horizontal transport barriers along latitude circles at the equator, 15°N/S and 35°N/S. Finally, the impact of Antarctic dehydration is estimated from additional sensitivity simulations with switched off freeze-drying in the model at high latitudes of 50°N/S. Our results show that the uncertainty in the tropical tropopause temperatures between current reanalysis datasets causes significant

  5. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    NASA Astrophysics Data System (ADS)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  6. Sensitive coating for water vapors detection based on thermally sputtered calcein thin films.

    PubMed

    Kruglenko, I; Shirshov, Yu; Burlachenko, J; Savchenko, A; Kravchenko, S; Manera, M G; Rella, R

    2010-09-15

    In this paper the adsorption properties of thermally sputtered calcein thin films towards water and other polar molecules vapors are studied by different characterization techniques: quartz crystal microbalance, surface plasmon resonance and visible spectroscopy. Sensitivity of calcein thin films to water vapors resulted much higher as compared with those of a number of dyes whose structure was close to that of calcein. All types of sensors with calcein coatings have demonstrated linear concentration dependences in the wide range of water vapor pressure from low concentrations up to 27,000 ppm (close to saturation). At higher concentrations of water vapor all sensors demonstrate the abrupt increase of the response (up to two orders). A theoretical model is advanced explaining the adsorption properties of calcein thin films taking into account their chemical structure and peculiarities of molecular packing. The possibility of application of thermally sputtered calcein films in sensing technique is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. [Removal of SO2 from flue gas by water vapor DC corona discharge].

    PubMed

    Sun, Ming; Wu, Yan

    2006-07-01

    The influence of several factors on removal rate of SO2 from flue gas in unsaturated water vapor DC corona discharge was researched. Furthermore, the experiments of the removal rate of SO2 in pulsed discharge increased by water vapor DC corona discharge plasma were conducted. The experiment system is supplied with multi-nozzle-plate electrodes and the flow of simulated flue gas is under 70 m3/h. The results show that removal rate of SO2 can be improved by increasing the concentration of water vapor, intensity of electric field or decreasing flow of simulated flue gas. In unsaturated water vapor DC corona discharge, removal rate of SO2 can be improved by 10%, when NH3 is added as NH3 and SO2 is in a mole ratio of two to one, it can reach 60%. The removal rate of SO2 can be increased by 5% in pulsed corona discharge and reach above 90%.

  8. Electro-Osmosis and Water Uptake in Polymer Electrolytes in Equilibrium with Water Vapor at Low Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.

    2009-01-01

    Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonatedmore » poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.« less

  9. Dual effects of water vapor on ceria-supported gold clusters.

    PubMed

    Li, Zhimin; Li, Weili; Abroshan, Hadi; Ge, Qingjie; Li, Gao; Jin, Rongchao

    2018-04-05

    Atomically precise nanocatalysts are currently being intensely pursued in catalysis research. Such nanocatalysts can serve as model catalysts for gaining fundamental insights into catalytic processes. In this work we report a discovery that water vapor provokes the mild removal of surface long-chain ligands on 25-atom Au25(SC12H25)18 nanoclusters in a controlled manner. Using the resultant Au25(SC12H25)18-x/CeO2 catalyst and CO oxidation as a probe reaction, we found that the catalytic activity of cluster/CeO2 is enhanced from nearly zero conversion of CO (in the absence of water) to 96.2% (in the presence of 2.3 vol% H2O) at the same temperature (100 °C). The cluster catalysts exhibit high stability during the CO oxidation process under moisture conditions (up to 20 vol% water vapor). Water vapor plays a dual role in gold cluster-catalyzed CO oxidation. FT-IR and XPS analyses in combination with density functional theory (DFT) simulations suggest that the "-SC12H25" ligands are easier to be removed under a water vapor atmosphere, thus generating highly active sites. Moreover, the O22- peroxide species constitutes the active oxygen species in CO oxidation, evidenced by Raman spectroscopy analysis and isotope experiments on the CeO2 and cluster/CeO2. The results also indicate the perimeter sites of the interface of Au25(SC12H25)18-x/CeO2 to be active sites for catalytic CO oxidation. The controlled exposure of active sites under mild conditions is of critical importance for the utilization of clusters in catalysis.

  10. Relationship between changes in the upper and lower tropospheric water vapor: A revisit

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sun, D. Z.; Zhang, G. J.

    2017-12-01

    Upper tropospheric water vapor response to enhanced greenhouse gas forcing is as important as the lower tropospheric water vapor response in determining climate sensitivity. Early studies using older versions of climate models have suggested that the upper- and lower-troposphere water vapor changes are more strongly coupled in the climate models than in the observations. Here we reexamine this issue using a state-of-the-art climate model—the NCAR community model CAM5. Specifically, we have calculated the correlations between interannual variations of specific humidity in all levels of the troposphere with that at the surface in CAM5 and in the observations (as represented by the updated ERA-Interim and NCEP reanalysis). It is found that the previously noted biases in how strongly upper tropospheric water vapor and lower troposphere water vapor are linked still exist in CAM5—the change in the tropical averaged upper tropospheric water vapor is more strongly correlated with the change in the surface. However, this bias disappears in the averaged correlation obtained by averaging the point-by-point correlations over the tropics. The spatial pattern of the point-by-point correlations reveals that the better agreement between the model and the observations is related to the opposite model biases in different regions: the correlation is weaker in the model in the western Pacific, but stronger in the central and eastern Pacific. Further analysis of precipitation fields suggests that the weaker (stronger) coupling between tropospheric water vapor and surface moisture over western (central-eastern) Pacific in model is related to weaker (stronger) simulated convective activities in these regions. More specifically, during El Nino, the model has excessive deep convection in the central Pacific, but too littler deep convection in western Pacific. Implications of the results are discussed in the context of climate change as well as in the context of how to improve the model

  11. Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide Films on Gallium Arsenide Substrates

    DOE PAGES

    Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.; ...

    2018-01-12

    Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less

  12. Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide Films on Gallium Arsenide Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.

    Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less

  13. Continuous Estimates of Precipitable Water Vapor Within and Around Hurricane Systems

    NASA Astrophysics Data System (ADS)

    Braun, J. J.; Iwabuchi, T.; van Hove, T.

    2008-12-01

    This study investigates how estimates of precipitable water vapor (PW) from Global Positioning System (GPS) stations can be used to quantify how atmospheric moisture influences the intensity of tropical storms and hurricanes. The motivation for this study is based on the fact that hurricanes derive their strength through water vapor that is both evaporated from warm ocean surfaces and the existing moisture in the surrounding atmospheric environment. Observationally, there are relatively few instruments that can accurately measure water vapor in the presence of clouds and rain. Retrievals of PW using GPS stations may be the most reliable way to continuously monitor column integrated water vapor. Using storm information from the National Hurricane Center (www.nhc.noaa.gov), we have compared storm intensity to PW estimates for all tropical storms and hurricanes making landfall within 100-km of a GPS station between 2003 and 2008. We find that PW is inversely correlated (r**2 < -0.7) to the drop in surface pressure observed at that station. We have also begun to relate atmospheric PW at a station to the local sea surface temperature (SST). This comparison can be used to measure how strongly atmospheric water vapor and SST are coupled. It can also be used to measure how quickly the atmosphere responds to changes in SST. Finally we have compared the estimated PW to the Global Forecast System (GFS) analysis fields that are used to initialize numerical weather prediction models. This comparison indicates that the GFS analysis fields have significantly larger errors in atmospheric moisture in the Caribbean and Gulf of Mexico when compared to differences over the continental United States. These results illustrate that estimates of PW are an important data set for atmospheric scientists and forecasters attempting to improve the prediction of hurricane intensity.

  14. Temperature/pressure and water vapor sounding with microwave spectroscopy

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  15. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert

    2018-05-01

    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full

  16. Water vapor in the Martian atmosphere by SPICAM IR/Mars-Express

    NASA Astrophysics Data System (ADS)

    Trokhimovskiy, Alexander; Fedorova, Anna; Korablev, Oleg; Bertaux, Jean-Loup; Villard, Eric; Rodin, Alexander V.

    Introduction SPICAM experiment along with PFS and OMEGA spectrometers on Mars Express has a capability to sound the water vapor in the atmosphere. The results of H2O measurements have been intensively published during last years [1-6]. Here we present the new analysis of SPICAM IR water vapor measurements, covering two Martian years. The near-IR channel of SPICAM experiment on Mars Express spacecraft is a 800-g acousto-optic tunable filter (AOTF)-based spectrometer operating in the spectral range of 1-1.7 m with resolving power of 2000 [7, 8]. The nadir measurements of H2O in the 1.37-m spectral band is one of the main objectives of the experiment. Data treatment As compared with previous analysis of water vapor presented in [4] we used the spectroscopic database HITRAN2004 [9] instead of HITRAN 2000 and the most recent measurements of the water line-width broadening in CO2 atmosphere. Latest version HITRAN2008 doesn't have any meaningful changes in water vapour lines, which are used for retrievment. Martian Climate Database V4.2 [10] was adopted for modelling of synthetic spectra and a scenario based on TES MY24 was used. The spare model of SPICAM IR instrument was recalibrated in June 2007 in Reims, to analyze specifically the sensitivity to the H2O vapor band. According to laboratory measurements, a leakage from the AOTF is responsible up to 5 Radiative transfer modelling and results Sensitivity of retrieval to aerosol scattering and different vertical distributions of aerosol and water vapor was analyzed for H2O absorption band at 1.38 m and 2.56 m for different dust particles. Dependences of equivalent width of the H2O band on the water vapor abundance and aerosol optical depth for different vertical distribution of water vapor and aerosol optical depth are obtained. A number of orbits processed with "honest" aerosol account, in some cases difference to clear atmosphere approach is meaningful. Open questions for further processing are great demand in computer

  17. Vertical Distribution of Aerosols and Water Vapor Using CRISM Limb Observations

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.; Clancy, R. T.; CRISM Science; Operations Teams

    2011-12-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of CO2 (or surface pressure) and H2O gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 nm for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available

  18. The Intrinsic Variability in the Water Vapor Saturation Ratio Due to Turbulence

    NASA Astrophysics Data System (ADS)

    Anderson, Jesse Charles

    The water vapor concentration plays an important role for many atmospheric processes. The mean concentration is key to understand water vapor's effect on the climate as a greenhouse gas. The fluctuations about the mean are important to understand heat fluxes between Earth's surface and the boundary layer. These fluctuations are linked to turbulence that is present in the boundary layer. Turbulent conditions are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the pi chamber. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh- Benard convection at several turbulent intensities. These were used to calculate the saturation ratio, often referred to as the relative humidity. The fluctuations in the water vapor concentration were found to be the more important than the temperature for the variability of the saturation ratio. The fluctuations in the saturation ratio result in some cloud droplets experiencing a higher supersaturation than other cloud droplets, causing those "lucky" droplets to grow at a faster rate than other droplets. This difference in growth rates could contribute to a broadening of the size distribution of cloud droplets, resulting in the enhancement of collision-coalescence. These fluctuations become more pronounced with more intense turbulence.

  19. Using "CONNected objECT (CONNECT)" Algorithm to Explore Intense Global Water Vapor Transport to Investigate Impacts of Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Kawzenuk, B.; Sellars, S. L.; Nguyen, P.; Ralph, F. M.; Sorooshian, S.

    2017-12-01

    The CONNected objECT (CONNECT) algorithm is applied to Integrated Water Vapor Transport (IVT) data from the NASA's Modern-Era Retrospective Analysis for Research and Applications - Version 2 reanalysis product for the period 1980 to 2016 to study water vapor transport globally. The algorithm generates life-cycle records as statistical objects for the time and space location of the evolving strong vapor transport events. Global statistics are presented and used to investigate how climate variability impacts the events' location and frequency. Results show distinct water vapor object frequency and seasonal peaks during NH and SH Winter. Moreover, a positive linear trend in the annual number of objects is reported, increasing by 3.58 objects year-over-year (with 95% confidence, +/- 1.39). In addition, we show five distinct regions where these events typically exist (southeastern United States, eastern China, South Pacific south of 25°S, eastern South America and off the southern tip of South Africa), and where they rarely exist (eastern South Pacific Ocean and central southern Atlantic Ocean between 5°N-25°S). In addition, the event frequency and geographical location are also shown to be related to the Arctic Oscillation, Pacific North American Pattern, and the Quasi-Biennial Oscillation.

  20. SPADE H2O measurements and the seasonal cycle of statospheric water vapor

    NASA Technical Reports Server (NTRS)

    Hintsa, Eric J.; Weinstock, Elliot M.; Dessler, Andrew E.; Anderson, James G.; Loewenstein, Max; Podolske, James R.

    1994-01-01

    We present measurements of lower statospheric water vapor obtained during the Stratospheric Phototchemistry, Aerosols and Dynamics Expedition (SPADE) mission with a new high precision, fast response, Lyman-alpha hygrometer. The H2O data show a distinct seasonal cycle. For air that recently entered the statosphere, data collected during the fall show much more water vapor than data from the spring. Fast quasi-horizontal mixing causes compact relationships between water and N2O to be established on relatively short time scales. The measurements are consistent with horizontal mixing times of a few months or less. Vertical mixing appears to cause the seasonal variations in water vapor to propagate up to levels corresponding to air that has been in the stratosphere approximately one year.

  1. Nonlinear rovibrational polarization response of water vapor to ultrashort long-wave infrared pulses

    NASA Astrophysics Data System (ADS)

    Schuh, K.; Rosenow, P.; Kolesik, M.; Wright, E. M.; Koch, S. W.; Moloney, J. V.

    2017-10-01

    We study the rovibrational polarization response of water vapor using a fully correlated optical Bloch equation approach employing data from the HITRAN database. For a 10 -μ m long-wave infrared pulse the resulting linear response is negative, with a negative nonlinear response at intermediate intensities and a positive value at higher intensities. For a model atmosphere comprised of the electronic response of argon combined with the rovibrational response of water vapor this leads to a weakened positive nonlinear response at intermediate intensities. Propagation simulations using a simplified noncorrelated approach show the resultant reduction in the peak filament intensity sustained during filamentation due to the presence of the water vapor.

  2. A scanning Raman lidar for observing the spatio-temporal distribution of water vapor

    NASA Astrophysics Data System (ADS)

    Yabuki, Masanori; Matsuda, Makoto; Nakamura, Takuji; Hayashi, Taiichi; Tsuda, Toshitaka

    2016-12-01

    We have constructed a scanning Raman lidar to observe the cross-sectional distribution of the water vapor mixing ratio and aerosols near the Earth's surface, which are difficult to observe when a conventional Raman lidar system is used. The Raman lidar is designed for a nighttime operating system by employing a ultra-violet (UV) laser source and can measure the water vapor mixing ratio at an altitude up to 7 km using vertically pointing observations. The scanning mirror system consists of reflective flat mirrors and a rotational stage. By using a program-controlled rotational stage, a vertical scan can be operated with a speed of 1.5°/s. The beam was pointed at 33 angles over range of 0-48° for the elevation angle with a constant step width of 1.5°. The range-height cross sections of the water vapor and aerosol within a 400 m range can be obtained for 25 min. The lidar signals at each direction were individually smoothed with the moving average to spread proportionally with the distance from the laser-emitting point. The averaged range at a distance of 200 m (400 m) from the lidar was 30.0 m (67.5 m) along the lidar signal in a specific direction. The experimental observations using the scanning lidar were conducted at night in the Shigaraki MU radar observatory located on a plateau with undulating topography and surrounded by forests. The root mean square error (RMSE) between the temporal variations of the water vapor mixing ratio by the scanning Raman lidar and by an in-situ weather sensor equipped with a tethered balloon was 0.17 g/kg at an altitude of 100 m. In cross-sectional measurements taken at altitudes and horizontal distances up to 400 m from the observatory, we found that the water vapor mixing ratio above and within the surface layer varied vertically and horizontally. The spatio-temporal variability of water vapor near the surface seemed to be sensitive to topographic variations as well as the wind field and the temperature gradient over the site

  3. Investigating understory flora species as an isotope proxy for atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Rambo, J. P.; Lai, C.; Farlin, J. P.

    2011-12-01

    An understanding of stable isotope variation in leaf water is useful in quantifying water fluxes through different pathways. Little is known about species specific variations of leaf water 18O and 2H enrichment and their interactions with atmospheric water vapor in understory flora. Toward this end, we measured stable 18O and 2H signatures of leaf water and atmospheric water vapor in an old growth forest in the Pacific Northwest. A LGR off-axis cavity-enhanced absorption spectroscopy analyzer was used to measure hourly 18O/16O and 2H/1H ratios of atmospheric water vapor (δ18Ov and δ2Hv) at 3 canopy heights (1m aboveground, mid- and above-canopy). By employing a routine, in-situ calibration, we were able to account for the concentration and temperature dependency from the instrument-reported δ18Ov and δ2Hv values using a single reference water. By using a 3-point calibration procedure we were able to produce accurate (±0.2% for δ18Ov, ±0.5% for δ2Hv) and precise (±0.3% for δ18Ov, ±3.0% for δ2Hv) measurements on the VSMOW scale. During our sampling campaign we observed large variations ranging from -175.0% to -125.1% for δ2Hv and -23.9% to -13.5% for δ18Ov. Leaf tissue of four dominant understory plant species were sampled every 2 hours over a three day period. Previous studies showed that leaf water becomes isotopically enriched from evaporative fractionation during the day, and then returns to an isotopic equilibrium with atmospheric water vapor during nighttime, reaching a complete equilibrium at pre-dawn in wet environments (i.e. Amazon forests). This diurnal pattern in leaf water isotope ratios was ubiquitous in terrestrial ecosystems, however, leading to the potential of using this plant-based signature as a proxy to infer δ18Ov and δ2Hv in remote locations. In the present study we investigate how leaf water of understory flora and atmospheric water vapor interact in a temperate forest.

  4. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    NASA Astrophysics Data System (ADS)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per; de Jonge, Lis W.

    2016-01-01

    The mathematical characterization of water vapor sorption isotherms of soils is crucial for modeling processes such as volatilization of pesticides and diffusive and convective water vapor transport. Although numerous physically based and empirical models were previously proposed to describe sorption isotherms of building materials, food, and other industrial products, knowledge about the applicability of these functions for soils is noticeably lacking. We present an evaluation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0.93 based on measured data of 207 soils with widely varying textures, organic carbon contents, and clay mineralogy. In addition, the potential applicability of the models for prediction of sorption isotherms from known clay content was investigated. While in general, all investigated models described measured adsorption and desorption isotherms reasonably well, distinct differences were observed between physical and empirical models and due to the different degrees of freedom of the model equations. There were also considerable differences in model performance for adsorption and desorption data. While regression analysis relating model parameters and clay content and subsequent model application for prediction of measured isotherms showed promise for the majority of investigated soils, for soils with distinct kaolinitic and smectitic clay mineralogy predicted isotherms did not closely match the measurements.

  5. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Some effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. Furthermore, we show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration ofmore » water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. These findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.« less

  6. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    DOE PAGES

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; ...

    2015-03-02

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Some effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. Furthermore, we show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration ofmore » water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. These findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.« less

  7. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    PubMed Central

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-01-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  8. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Periolatto, M.; Spena, P. Russo; Sangermano, M.

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  9. Strategies for Near Real Time Estimation of Precipitable Water Vapor

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz E.

    1996-01-01

    Traditionally used for high precision geodesy, the GPS system has recently emerged as an equally powerful tool in atmospheric studies, in particular, climatology and meteorology. There are several products of GPS-based systems that are of interest to climatologists and meteorologists. One of the most useful is the GPS-based estimate of the amount of Precipitable Water Vapor (PWV) in the troposphere. Water vapor is an important variable in the study of climate changes and atmospheric convection (Yuan et al., 1993), and is of crucial importance for severe weather forecasting and operational numerical weather prediction (Kuo et al., 1993).

  10. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    NASA Astrophysics Data System (ADS)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  11. Mass Spectrometric Identification of Si-O-H(g) Species from the Reaction of Silica with Water Vapor at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1997-01-01

    A high-pressure sampling mass spectrometer was used to detect the volatile species formed from SiO2 at temperatures between 1200C and 1400C in a flowing water vapor/oxygen gas mixture at 1 bar total pressure. The primary vapor species identified was Si(OH)4. The fragment ion Si(OH)3+,' was observed in quantities 3 to 5 times larger than the parent ion Si(OH)4+. The Si(OH)3+ intensity was found to have a small temperature dependence and to increase with the water vapor partial pressure as expected. In addition, SiO(OH)+ believed to be a fragment of SiO(OH)2, was observed. These mass spectral results were compared to the behavior of silicon halides.

  12. Triple isotope composition of oxygen in atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Uemura, Ryu; Barkan, Eugeni; Abe, Osamu; Luz, Boaz

    2010-02-01

    Recently, an excess of 17O (17O-excess) has been demonstrated in meteoric water and ice cores. Based on theory and experiments, it has been suggested that this excess originates from evaporation of ocean water into under-saturated air. However, there has never been direct demonstration of this excess in marine vapor. Here, we present results of the first measurements of δ17O and δ18O in vapor samples collected over the South Indian and the Southern Oceans. Our data show the existence of 17O-excess in marine vapor and also clear negative correlation between 17O-excess and relative humidity. Thus, 17O-excess is useful for constraining oceanic humidity in hydrological and climatic models. Using the obtained values of 17O-excess, we estimated the fractionation factor between H218O and H216O for diffusion in air above the ocean (18αdiff). The new estimation of 18αdiff (1.008) is larger than the widely accepted value in hydrological studies.

  13. The development of a performance-enhancing additive for vapor-compression heat pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.

    1997-12-31

    This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less

  14. Improvement of the Database on the 1.13-microns Band of Water Vapor

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Schwenke, David W.; Chackerian, Charles, Jr.; Varanasi, Prasad; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Corrections have recently been reported (Giver et al.) on the short-wave (visible and near-infrared) line intensities of water vapor that were catalogued in the spectroscopic database known as HITRAN. These updates have been posted on www.hitran.com, and are being used to reanalyze the polar stratospheric absorption in the 0.94 microns band as observed in POAM. We are currently investigating additional improvement in the 1.13 microns band using data obtained by us with an absorption path length of 1.107 km and 4 torr of water vapor and the ab initio line list of Partridge and Schwenke (needs ref). We are proposing the following four types of improvement of the HITRAN database in this region: 1) HITRAN has nearly 200 lines in this region without proper assignments of rotational quantum levels. Nearly all of them can now be assigned. 2) We have measured positions of the observable H2O-17 and H2O-18 lines. These lines in HITRAN currently have approximate positions based upon rather aged computations. 3) Some additional lines are observed and assigned which should be included in the database. 4) Corrections are necessary for the lower state energies E" for the HITRAN lines of the 121-010 "hot" band.

  15. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  16. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  17. Sparsity-driven tomographic reconstruction of atmospheric water vapor using GNSS and InSAR observations

    NASA Astrophysics Data System (ADS)

    Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan

    2016-04-01

    An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. On the other hand, as water vapor causes a delay in the microwave signal propagation within the atmosphere, a precise determination of water vapor is required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). However, due to its high variability in time and space, the atmospheric water vapor distribution is difficult to model. Since GNSS meteorology was introduced about twenty years ago, it has increasingly been used as a geodetic technique to generate maps of 2D Precipitable Water Vapor (PWV). Moreover, several approaches for 3D tomographic water vapor reconstruction from GNSS-based estimates using the simple least squares adjustment were presented. In this poster, we present an innovative and sophisticated Compressive Sensing (CS) concept for sparsity-driven tomographic reconstruction of 3D atmospheric wet refractivity fields using data from GNSS and InSAR. The 2D zenith wet delay (ZWD) estimates are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data of 100 points as if corresponding to 100 GNSS sites within an area of 100 km × 100 km in the test region of the Upper Rhine Graben. The made-up ZWD values can be mapped into different elevation and azimuth angles. Using the Cosine transform, a sparse representation of the wet refractivity field is obtained. In contrast to existing tomographic approaches, we exploit sparsity as a prior for the regularization of the underdetermined inverse system. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation. The accuracy of the estimated 3D water

  18. Characterization of a Compact Water Vapor Radiometer

    NASA Astrophysics Data System (ADS)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of < -20 dB is met.For the gain stability test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is < 2 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2 x 10-4 requirement. The observable gain stability is < 2.5 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2.5 x 10-4 requirement.Overall, the test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  19. Climatic Analysis of Oceanic Water Vapor Transports Based on Satellite E-P Datasets

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Sohn, Byung-Ju; Mehta, Vikram

    2004-01-01

    Understanding the climatically varying properties of water vapor transports from a robust observational perspective is an essential step in calibrating climate models. This is tantamount to measuring year-to-year changes of monthly- or seasonally-averaged, divergent water vapor transport distributions. This cannot be done effectively with conventional radiosonde data over ocean regions where sounding data are generally sparse. This talk describes how a methodology designed to derive atmospheric water vapor transports over the world oceans from satellite-retrieved precipitation (P) and evaporation (E) datasets circumvents the problem of inadequate sampling. Ultimately, the method is intended to take advantage of the relatively complete and consistent coverage, as well as continuity in sampling, associated with E and P datasets obtained from satellite measurements. Independent P and E retrievals from Special Sensor Microwave Imager (SSM/I) measurements, along with P retrievals from Tropical Rainfall Measuring Mission (TRMM) measurements, are used to obtain transports by solving a potential function for the divergence of water vapor transport as balanced by large scale E - P conditions.

  20. Effects of convective ice evaporation on interannual variability of tropical tropopause layer water vapor

    NASA Astrophysics Data System (ADS)

    Ye, Hao; Dessler, Andrew E.; Yu, Wandi

    2018-04-01

    Water vapor interannual variability in the tropical tropopause layer (TTL) is investigated using satellite observations and model simulations. We break down the influences of the Brewer-Dobson circulation (BDC), the quasi-biennial oscillation (QBO), and the tropospheric temperature (ΔT) on TTL water vapor as a function of latitude and longitude using a two-dimensional multivariate linear regression. This allows us to examine the spatial distribution of the impact of each process on TTL water vapor. In agreement with expectations, we find that the impacts from the BDC and QBO act on TTL water vapor by changing TTL temperature. For ΔT, we find that TTL temperatures alone cannot explain the influence. We hypothesize a moistening role for the evaporation of convective ice from increased deep convection as the troposphere warms. Tests using a chemistry-climate model, the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), support this hypothesis.

  1. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.

  2. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Cirrus Clouds during WVIOP2000 and AFWEX

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.; hide

    2002-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.

  3. Interaction of gases with lunar materials. [surface properties of lunar fines, especially on exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Gammage, R. B.

    1975-01-01

    The surface properties of lunar fines were investigated. Results indicate that, for the most part, these properties are independent of the chemical composition and location of the samples on the lunar surface. The leaching of channels and pores by adsorbed water vapor is a distinguishing feature of their surface chemistry. The elements of air, if adsorbed in conjunction with water vapor or liquid water, severely impedes the leaching process. In the absence of air, liquid water is more effective than water vapor in attacking the grains. The characteristics of Apollo 17 orange fines were evaluated and compared with those of other samples. The interconnecting channels produced by water vapor adsorption were found to be wider than usual for other types of fines. Damage tracks caused by heavy cosmic ray nuclei and an unusually high halogen content might provide for stronger etching conditions upon exposure to water vapor.

  4. Influence of absorption by environmental water vapor on radiation transfer in wildland fires

    Treesearch

    D. Frankman; B. W. Webb; B. W. Butler

    2008-01-01

    The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...

  5. Inter- annual variability of water vapor over an equatorial coastal station using Microwave Radiometer observations.

    NASA Astrophysics Data System (ADS)

    Renju, Ramachandran Pillai; Uma, K. N.; Krishna Moorthy, K.; Mathew, Nizy; Raju C, Suresh

    The south-western region of the Indian peninsula is the gateway of Indian summer monsoon. This region experiences continuous monsoon rain for a longer period of about six months from June to November. The amount of water vapor variability is one of the important parameters to study the onset, active and break phases of the monsoon. Keeping this in view, a multi-frequency Microwave Radiometer Profiler (MRP) has been made operational for continuous measurements of water vapor over an equatorial coastal station Thiruvananthapuram (8.5(°) N, 76.9(°) E) since April 2010. The MRP estimated precipitable water vapor (PWV) for different seasons including monsoon periods have been evaluated by comparing with the collocated GPS derived water vapor and radiosonde measurements. The diurnal, seasonal and inter annual variation of water vapor has been studied for the last four years (2010-2013) over this station. The significant diurnal variability of water vapor is found only during the winter and pre-monsoon periods (Dec -April). The vertical distribution of water vapour is studied in order to understand its variability especially during the onset of monsoon. During the building up of south-west monsoon, the specific humidity increases to ˜ 10g/kg in the altitude range of 4-6 km and consistently maintained it throughout the active spells and reduces to below 2g/kg during break spells of monsoon. The instrument details and the results will be presented.

  6. Reduction of Legionella spp. in Water and in Soil by a Citrus Plant Extract Vapor

    PubMed Central

    Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-01-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml−1 on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml−1 reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml−1 reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. PMID:25063652

  7. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.

    Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.

  8. Uncertainties of the Intensity of the 1130 nm Band of Water Vapor

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Pilewskie, P.; Gore, W. J.; Chackerian, C., Jr.; Varanasi, P.; Bergstrom, R.; Freedman, R. S.

    2001-01-01

    Belmiloud, et al have recently suggested that the HITRAN line intensities in the 1130 nm water vapor band are much too weak. Giver, et at corrected unit conversion errors to make the HITRAN intensities compatible with the original measurements of Mandin, et al, but Belmiloud, et al believe that many of those line intensity measurements were too weak, and they propose the total intensity of the 1130 nm water vapor band is 38% stronger than the sum of the HITRAN line intensities in this region. We have made independent assessments of this proposal using 2 spectra obtained with the Ames 25 meter base path White cell. The first was made using the moderate resolution (8 nm) solar spectral flux radiometer (SSFR) flight instrument with a White cell absorbing path of 506 meters and 10 torr water vapor pressure. Modeling this spectrum using the HITRAN linelist gives a reasonable match, and the model is not compatible when the HITRAN line intensities are increased by 38%. The second spectrum was obtained with a White cell path of 1106 meters and 12 torr water vapor pressure, using a Bomem FTIR with near Doppler width resolution. This spectrum is useful for measuring intensities of isolated weak lines to compare with the measurements of Mandin, et al. Unfortunately, as Belmiloud et al point out, at these conditions the strong lines are much too saturated for good intensity measurements. Our measurements of the weak lines are in reasonable agreement with those of Mandin, et al. Neither of our spectra supports the proposal of Belmiloud et al for a general 38% increase of the absorption intensity in the 1130 nm water vapor band.

  9. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  10. Atmospheric absorption of terahertz radiation and water vapor continuum effects

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.

    2013-09-01

    The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.

  11. Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan

    NASA Astrophysics Data System (ADS)

    Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji

    2009-11-01

    In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.

  12. Measurement and Modeling of Water-Vapor Diffusion in Elastomers with Impact in Humidity and Vacuum Measurements

    NASA Astrophysics Data System (ADS)

    Šetina, Janez; Sefa, Makfir; Erjavec, Bojan; Hudoklin, Domen

    2013-03-01

    The dynamics of water-vapor dissolution in Viton O-rings is measured with a gravimetric method using a precise mass comparator. A sample gasket was degassed in high vacuum for a sufficiently long period to remove more than 99 % of the dissolved water vapor. After that, it was exposed to the ambient atmosphere with a controlled temperature, and relative humidity and water-vapor uptake curves were measured gravimetrically with a precise balance. The dynamics of a water-vapor release into vacuum from another sample that was previously saturated with water vapor at room temperature was determined. The sample was placed in a vacuum outgassing rate measurement apparatus. The time dependence of the evolved water vapor was calculated by integrating the measured outgassing rate. The physical process of water absorption can be described by the diffusion equation. The geometry of the samples required solving the diffusion equation in cylindrical coordinates. This was done numerically using a finite-difference method. As a result of the modeling, room temperature values of the diffusion constant D, the solubility s, and the permeability K = D× s of water vapor in the sample material (Viton A-401C) were obtained. For sample 1, we obtained D = 8.0 × 10 ^{-8} cm2 {\\cdot } s^{-1} and s = 6.5 × 10^{-7} g {\\cdot } cm^-3 Pa^{-1}, while for sample 2, D = 3.0 × 10^{-7} cm2 s^{-1} and s = 3.5 × 10^{-7} g {\\cdot } cm^{-3} {\\cdot } Pa^{-1}.

  13. Advances in Raman Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.

  14. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  15. Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

    NASA Technical Reports Server (NTRS)

    Wormhoudt, Joda; Shorter, Joanne H.; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Freedman, Andrew; Campbell, Melissa; Chang, Clarence T.; Smith, Frederick D.

    2004-01-01

    The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (COP) from cabin air. Product water vapor measurements from a CDRA test bed at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the COP desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of approx. 40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact. Measured values of total water vapor evolved during a single desorption cycle were as low as 1 mg.

  16. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    NASA Technical Reports Server (NTRS)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  17. Temporal changes in endmember abundances, liquid water and water vapor over vegetation at Jasper Ridge

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Green, Robert O.; Sabol, Donald E.; Adams, John B.

    1993-01-01

    Imaging spectrometry offers a new way of deriving ecological information about vegetation communities from remote sensing. Applications include derivation of canopy chemistry, measurement of column atmospheric water vapor and liquid water, improved detectability of materials, more accurate estimation of green vegetation cover and discrimination of spectrally distinct green leaf, non-photosynthetic vegetation (NPV: litter, wood, bark, etc.) and shade spectra associated with different vegetation communities. Much of our emphasis has been on interpreting Airborne Visible/Infrared Imaging Spectrometry (AVIRIS) data spectral mixtures. Two approaches have been used, simple models, where the data are treated as a mixture of 3 to 4 laboratory/field measured spectra, known as reference endmembers (EM's), applied uniformly to the whole image, to more complex models where both the number of EM's and the types of EM's vary on a per-pixel basis. Where simple models are applied, materials, such as NPV, which are spectrally similar to soils, can be discriminated on the basis of residual spectra. One key aspect is that the data are calibrated to reflectance and modeled as mixtures of reference EM's, permitting temporal comparison of EM fractions, independent of scene location or data type. In previous studies the calibration was performed using a modified-empirical line calibration, assuming a uniform atmosphere across the scene. In this study, a Modtran-based calibration approach was used to map liquid water and atmospheric water vapor and retrieve surface reflectance from three AVIRIS scenes acquired in 1992 over the Jasper Ridge Biological Preserve. The data were acquired on June 2nd, September 4th and October 6th. Reflectance images were analyzed as spectral mixtures of reference EM's using a simple 4 EM model. Atmospheric water vapor derived from Modtran was compared to elevation, and community type. Liquid water was compare to the abundance of NPV, Shade and Green Vegetation

  18. Water vapor changes under global warming and the linkage to present-day interannual variabilities in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Takahashi, Hanii; Su, Hui; Jiang, Jonathan H.

    2016-12-01

    The fractional water vapor changes under global warming across 14 Coupled Model Intercomparison Project Phase 5 simulations are analyzed. We show that the mean fractional water vapor changes under global warming in the tropical upper troposphere between 300 and 100 hPa range from 12.4 to 28.0 %/K across all models while the fractional water vapor changes are about 5-8 %/K in other regions and at lower altitudes. The "upper-tropospheric amplification" of the water vapor change is primarily driven by a larger temperature increase in the upper troposphere than in the lower troposphere per degree of surface warming. The relative contributions of atmospheric temperature and relative humidity changes to the water vapor change in each model vary between 71.5 to 131.8 % and 24.8 to -20.1 %, respectively. The inter-model differences in the water vapor change is primarily caused by differences in temperature change, except over the inter-tropical convergence zone within 10°S-10°N where the model differences due to the relative humidity change are significant. Furthermore, we find that there is generally a positive correlation between the rates of water vapor change for long-tem surface warming and those on the interannual time scales. However, the rates of water vapor change under long-term warming have a systematic offset from those on the inter-annual time scales and the dominant contributor to the differences also differs for the two time scales, suggesting caution needs to be taken when inferring long-term water vapor changes from the observed interannual variations.

  19. Preliminary endurance tests of water vaporizers for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Macrae, Gregory S.

    1993-01-01

    Three water vaporizers designed for resistojet applications were built and tested for periods up to 500 h and 250 thermal cycles. Two of the vaporizers were not sensitive to orientation with respect to gravity, an indication of likely compatibility with low-gravity environments. Some temperatures and pressures in the third were impacted by orientation, although operation was always stable. The pressure drop across the sand-filled version increased by 147 percent in 38 h and 19 thermal cycles. Bonding of the sand granules in the downstream end of the heat exchanger was the suspected cause of failure of this vaporizer. Pressure drops across the two sintered stainless steel-filled versions were more gradual. One, with a pore size of 60 microns, showed an 80 percent increase in 500 h and 250 thermal cycles and another, with a 10 microns poresize, showed a 29 percent increase in 350 h and 175 thermal cycles. Testing of the latter metal-filled vaporizer was ongoing as of this writing. Oxidation of the porous metal packing materials in these vaporizers, with subsequent deposition of oxide particles within the pores, was believed to have caused the observed increases in pressure drops.

  20. Total Column Water Vapor Trends from 15 Years of MODIS/NIR above the Arctic

    NASA Astrophysics Data System (ADS)

    OMAR, D. A.; Sarkissian, A.; Keckhut, P.; Bock, O.; Claud, C.; Irbah, A.

    2016-12-01

    Water vapor is defined as a major climate indicator at many occasions, highly variable spatially and temporarily, water vapor has the most important natural GHG effect, through his high infra-red absorption capacity, and temperature changes sensitivity, water vapor affects the Earth radiative budget and energy transfer, evolved at many atmospheric dynamics including the cloud formation and the aerosols composition. As a consequence to the accelerated transition towards the new climate especially above the arctic, and to investigate the feedback to the arctic amplification and the global warming, we study the water vapor variability and trends on a relatively long term above the arctic region, using the Total Column Water Vapor retrieval from MODIS/NIR spectro-radiometer on board of TERRA satellite. These 15 Years monthly daytime satellite data were compared to GPS integrated water vapor over four selected NDACC polar stations: Sodankyla-Finland, Ny-Alesund -Svalbard, Thule-Greenland, Scoresbysund-Greenland. GPS data are calculated with the temperature and pressure profile of the nearest coastal ERA-Interim station. These data were filtered for nearly coincident time to satellite over pass in order to exclude the timing effects. Errors, relative biases and RMSE at both monthly and seasonally scales will be presented and discussed. Then the MODIS 15 years linear trends and anomalies above the whole Arctic will be shown with a special focus on sea ice extent decline feed-back and hydrologic cycle connections with respect to heat waves. Results show wetter trends on the Mackenzie and mid-Siberia at September, unlike the European arctic summer which is getting drier, while Svalbard is getting wetter almost all the year. Conclusion and perspectives are also presented.

  1. Advanced Water Vapor Lidar Detection System

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1998-01-01

    In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of

  2. Reduction of Legionella spp. in water and in soil by a citrus plant extract vapor.

    PubMed

    Laird, Katie; Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-10-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml(-1) on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml(-1) reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml(-1) reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations - Method, validation, and data characteristics

    NASA Technical Reports Server (NTRS)

    Rind, D.; Chiou, E.-W.; Chu, W.; Oltmans, S.; Lerner, J.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1993-01-01

    Results are presented of water vapor observations in the troposphere and stratosphere performed by the Stratospheric Aerosol and Gas Experiment II solar occultation instrument, and the analysis procedure, the instrument errors, and data characteristics are discussed. The results are compared with correlative in situ measurements and other satellite data. The features of the data set collected between 1985 and 1989 include an increase in middle- and upper-tropospheric water vapor during northern hemisphere summer and autumn; minimum water vapor values of 2.5-3 ppmv in the tropical lower stratosphere; slowly increasing water vapor values with altitude in the stratosphere, reaching 5-6 ppmv or greater near the stratopause; extratropical values with minimum profile amounts occurring above the conventionally defined tropopause; and higher extratropical than tropical water vapor values throughout the stratosphere except in locations of possible polar stratospheric clouds.

  4. New Water Vapor Barrier Film Based on Lamellar Aliphatic-Monoamine-Bridged Polysilsesquioxane.

    PubMed

    Zhang, Cong; Zhang, Ce; Ding, Ruimin; Cui, Xinmin; Wang, Jing; Zhang, Qinghua; Xu, Yao

    2016-06-15

    Siloxane-based hybrid lamellar materials with ordered nanostructure units paralleling to the substrate have been widely used for water vapor barrier. However, it is very difficult to control the orientation of the lamellar units at molecular level. In this Research Article, a new lamellar bridged polysilsesquioxane (BPSQ) film, whose voids between lamellae were filled by pendant alkyl chains in the organic bridge, was prepared via the stoichiometric reaction between 3-glycidoxypropyltrimethoxysilane and aliphatic monoamine at 60 °C without catalyst. Experimental evidence obtained from FT-IR, MS, NMR, and GIXRD techniques suggested that the as-prepared BPSQ films were constructed by lamellar units with disordered orientation. Nonetheless, they possessed satisfactory water vapor barrier performance for potassium dihydrogen phosphate (KDP) and deuterated potassium dihydrogen phosphate (DKDP) optical crystals, and the water vapor transmission rate through BPSQ film with thickness of 25 μm was as low as 20.3 g·m(-2)·d(-1). Those results proved that filling the voids between molecular lamellae with alkyl chains greatly weakened the effect of lamellar unit orientation on the vapor barrier property of BPSQ film.

  5. Improved cell for water-vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  6. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  7. Eddy Covariance measurements of stable isotopes (δD and δ18O) in water vapor

    NASA Astrophysics Data System (ADS)

    Braden-Behrens, Jelka; Knohl, Alexander

    2017-04-01

    Stable isotopes are a promising tool to enhance our understanding of ecosystem gas exchanges. Studying 18O and 2H in water vapour (H2Ov) can e.g. help partitioning evapotranspiration into its components. With recent developments in laser spectroscopy direct Eddy Covariance (EC) measurements for investigating fluxes of stable isotopologues became feasible. So far very few case studies have applied the EC method to measure stable isotopes in water vapor. We continuously measure fluxes of water vapor isotopologues with the EC method in a managed beech forest in Thuringia, Germany, since autumn 2015 using the following setup: An off-axis integrated cavity output water vapor isotope analyzer (WVIA, Los Gatos Research. Inc, USA) measures the water vapour concentration and its isotopic composition (δD and δ18O). The instrument, that was optimized for high flow rates (app. 4slpm) to generate high frequency (2Hz) measurements, showed sufficient precision with Allan Deviations of app. 0.12 ‰ for δD and 0.06 ‰ for δ18O for averaging periods of 100s. The instrument was calibrated hourly using a high-flow optimized version of the water vapor isotope standard source (WVISS, Los Gatos Research. Inc, USA) that provides water vapor with known isotopic composition for a large range of different concentrations. Our calibration scheme includes a near continuous concentration range calibration instead of a simple 2 or 3-point calibration to face the analyzers strong concentration dependency within a range of app. 6 000 to 16 000 ppm in winter and app. 8 000 to 23 000 ppm in summer. In the used setup, the high-flow and high-frequency optimized water vapor isotope analyzer (WVIA) showed suitable characteristics (Allan deviation and spectral energy distribution) to perform Eddy covariance measurements of stable isotopes in H2Ov. Thus, this novel instrument for EC measurements of water vapor isotopologues provides a new opportunity for studying the hydrological cycle in long

  8. PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. R. Westwater; V. V. Leuskiy; M. Klein

    2004-11-01

    experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].« less

  9. Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.

    2014-01-01

    Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.

  10. Observed Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales

    NASA Technical Reports Server (NTRS)

    Jin, Menglin; King, Michael D.

    2005-01-01

    How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, 4-years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (GPCP) global precipitation analysis, were used to assess the land impacts on clouds, rainfall, and water vapor at continental scales. At these scales, the observations illustrate that continents are integrated regions that enhance the seasonality of atmospheric and surface hydrological parameters. Specifically, the continents of Eurasia and North America enhance the seasonality of cloud optical thickness, cirrus fraction, rainfall, and water vapor. Over land, both liquid water and ice cloud effective radii are smaller than over oceans primarily because land has more aerosol particles. In addition, different continents have similar impacts on hydrological variables in terms of seasonality, but differ in magnitude. For example, in winter, North America and Eurasia increase cloud optical thickness to 17.5 and 16, respectively, while in summer, Eurasia has much smaller cloud optical thicknesses than North America. Such different land impacts are determined by each continent s geographical condition, land cover, and land use. These new understandings help further address the land-ocean contrasts on global climate, help validate global climate model simulated land-atmosphere interactions, and help interpret climate change over land.

  11. Effects of water vapor on the oxidation behavior of alumina and chromia forming superalloys at temperatures between 700°C and 1000°C

    NASA Astrophysics Data System (ADS)

    Hance, Kivilcim Onal

    Several superalloys and Ni-Cr alloys were tested at temperatures between 700°C and 1000°C in dry air and in air/H2O mixtures, whereby the effects of water vapor on the formation of alumina and chromia scales were investigated. The experimental parameters included temperature of testing, composition of the reactive gases, thermal cycling and the composition of the underlying alloy. Water vapor affected the oxidation characteristics of alumina and chromia in different ways. Selective oxidation of Al was not favored in air/H 2O mixtures and at low reaction temperatures. The alloy composition was critical in developing and maintaining continuous protective scales. For alumina-forming systems, higher Al and Cr contents were found to be beneficial for improved resistance against attack. Significant additions of Hf to the alloys resulted in accelerated internal oxidation at 1000°C. Transient oxidation was more profound in air/H2O mixtures in comparison to dry air. The adherence of scales was adversely affected by water vapor at 1000°C. Water vapor did not affect the selective oxidation of Cr. The major impact of H2O on chromia scales was the accelerated formation of volatile Cr-species which makes the underlying alloy more vulnerable to attack by reactive gases. These reactions were not significant in dry air at 900°C and below. The transient oxidation was not adversely affected by water vapor on Ni-Cr systems. The scale spallation was more profound in dry air. The study showed that the main degradation mechanism for chromia in wet air was the formation of vapor Cr-species. On the contrary, scale spallation was more detrimental in dry air. Additions of Ce improved the adherence of chromia in each environment. Ce furthermore decreased the chromia formation rate in dry air. It was not clear if the element had the same effect in air/H2O. The presence of water vapor affected the morphology of chromia. The thin external TiO2 that developed over chromia on IN 738 reduced

  12. Partitioning the effects of Global Warming on the Hydrological Cycle with Stable Isotopes in Water Vapor

    NASA Astrophysics Data System (ADS)

    Dee, S. G.; Russell, J. M.; Nusbaumer, J. M.; Konecky, B. L.; Buenning, N. H.; Lee, J. E.; Noone, D.

    2016-12-01

    General circulation models (GCMs) suggest that much of the global hydrological cycle's response to anthropogenic warming will be caused by increased lower-tropospheric water vapor concentrations and associated feedbacks. However, fingerprinting changes in the global hydrological cycle due to anthropogenic warming remains challenging. Held and Soden (2006) predicted that as lower-tropospheric water vapor increases, atmospheric circulation will weaken as climate warms to maintain the surface energy budget. Unfortunately, the strength of this feedback and the fallout for other branches of the hydrological cycle is difficult to constrain in situ or with GCMs alone. We demonstrate the utility of stable hydrogen isotope ratios in atmospheric water vapor to quantitatively trace changes in atmospheric circulation and convective mass flux in a warming world. We compare water isotope-enabled GCM experiments for control (present-day) CO2 vs. high CO2(2x, 4x) atmospheres in two GCMs, IsoGSM and iCAM5. We evaluate changes in the distribution of water vapor, vertical velocity (omega), and the stream function between these experiments in order to identify spatial patterns of circulation change over the tropical Pacific (where vertical motion is strong) and map the δD of water vapor associated with atmospheric warming. We also probe the simulations to isolate isotopic signatures associated with water vapor residence time, precipitation efficiency, divergence, and cloud physics. We show that there are robust mechanisms that moisten the troposphere and weaken convective mass flux, and that these mechanisms can be tracked using the δD of water vapor. Further, we find that these responses are most pronounced in the upper troposphere. These findings provide a framework to develop new metrics for the detection of global warming impacts to the hydrological cycle. Further, currently available satellite missions measure δD in the atmospheric boundary layer, the free atmosphere, or the

  13. Computer simulation of the NASA water vapor electrolysis reactor

    NASA Technical Reports Server (NTRS)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  14. Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx

    DOE PAGES

    Zuidema, P.; Leon, D.; Pazmany, A.; ...

    2012-01-05

    Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upwardpointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the Gband (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (abovecloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to twomm and nearcoastal values reaching tenmm. The VOCALS-REx free troposphere wasmore » drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and insitu thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (≈100 m) resolution was estimated at 20 gm -2 and 3 gm -2 respectively for well-mixed conditions, and 25 gm -2 absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs <100 (40) gm -2. Coastal LWPs values were lower than those offshore. For the four dedicated 20° S flights, the mean (median) coastal LWP was 67 (61) gm -2, increasing to 166 (120) gm -2 1500 km offshore. Finally, the overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds.« less

  15. IR spectroscopy of water vapor confined in nanoporous silica aerogel.

    PubMed

    Ponomarev, Yu N; Petrova, T M; Solodov, A M; Solodov, A A

    2010-12-06

    The absorption spectrum of the water vapor, confined in the nanoporous silica aerogel, was measured within 5000-5600 cm(-1) with the IFS 125 HR Fourier spectrometer. It has been shown, that tight confinement of the molecules by the nanoporous size leads to the strong lines broadening and shift. For water vapor lines, the HWHM of confined molecules are on the average 23 times larger than those for free molecules. The shift values are in the range from -0.03 cm(-1) to 0.09 cm(-1). Some spectral lines have negative shift. The data on the half-widths and center shifts for some strongest H(2)O lines have been presented.

  16. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    PubMed

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairvapor nuclei, and (iv

  17. A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States

    NASA Astrophysics Data System (ADS)

    Smith, Jessica B.; Wilmouth, David M.; Bedka, Kristopher M.; Bowman, Kenneth P.; Homeyer, Cameron R.; Dykema, John A.; Sargent, Maryann R.; Clapp, Corey E.; Leroy, Stephen S.; Sayres, David S.; Dean-Day, Jonathan M.; Paul Bui, T.; Anderson, James G.

    2017-09-01

    On 27 August 2013, during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys field mission, NASA's ER-2 research aircraft encountered a region of enhanced water vapor, extending over a depth of approximately 2 km and a minimum areal extent of 20,000 km2 in the stratosphere (375 K to 415 K potential temperature), south of the Great Lakes (42°N, 90°W). Water vapor mixing ratios in this plume, measured by the Harvard Water Vapor instrument, constitute the highest values recorded in situ at these potential temperatures and latitudes. An analysis of geostationary satellite imagery in combination with trajectory calculations links this water vapor enhancement to its source, a deep tropopause-penetrating convective storm system that developed over Minnesota 20 h prior to the aircraft plume encounter. High resolution, ground-based radar data reveal that this system was composed of multiple individual storms, each with convective turrets that extended to a maximum of 4 km above the tropopause level for several hours. In situ water vapor data show that this storm system irreversibly delivered between 6.6 kt and 13.5 kt of water to the stratosphere. This constitutes a 20-25% increase in water vapor abundance in a column extending from 115 hP to 70 hPa over the plume area. Both in situ and satellite climatologies show a high frequency of localized water vapor enhancements over the central U.S. in summer, suggesting that deep convection can contribute to the stratospheric water budget over this region and season.

  18. Water Vapor Reaches Mars' Middle Atmosphere During Global Dust Storm

    NASA Image and Video Library

    2018-01-23

    Rising air during a 2007 global dust storm on Mars lofted water vapor into the planet's middle atmosphere, researchers learned from data graphed here, derived from observations by the Mars Climate Sounder instrument on NASA's Mars Reconnaissance Orbiter. The two vertical black lines in the right half of the graph (at about 260 and 310 on the horizontal scale) mark the beginning and end of the most recent global dust storm on Mars, which burst from regional scale to globe-encircling scale in July 2007. The presence of more colored dots, particularly green ones, in the upper portion of the graph between those lines, compared to the upper portion of the graph outside those lines, documents the uplift of water vapor in connection with the global dust storm. The vertical scale is altitude, labeled at left in kilometers above the surface of Mars (50 kilometers is about 30 miles; 80 kilometers is about 50 miles). The color bar below the graph gives the key to how much water vapor each dot represents, in parts per million, by volume, in Mars' atmosphere. Note that green to yellow represents about 100 times as much water as purple does. The horizontal axis of the graph is time, from January 2006 to February 2008. It is labeled with numbers representing the 360 degrees of Mars' orbit around the Sun, from zero to 360 degrees and then further on to include the first 30 degrees of the following Martian year. (The zero point is autumnal equinox -- end of summer -- in Mars' northern hemisphere.) This graph, based on Mars Reconnaissance Orbiter observations, was used in a January 2018 paper in Nature Astronomy by Nicholas Heavens of Hampton University in Hampton, Virginia, and co-authors. The paper presents Martian dust storms' uplifting effect on water vapor as a factor in seasonal patterns that other spacecraft have detected in the rate of hydrogen escaping from the top of Mars' atmosphere. https://photojournal.jpl.nasa.gov/catalog/PIA22080

  19. Differential absorption lidar observation on small-time-scale features of water vapor in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kong, Wei; Li, Jiatang; Liu, Hao; Chen, Tao; Hong, Guanglie; Shu, Rong

    2017-11-01

    Observation on small-time-scale features of water vapor density is essential for turbulence, convection and many other fast atmospheric processes study. For the high signal-to-noise signal of elastic signal acquired by differential absorption lidar, it has great potential for all-day water vapor turbulence observation. This paper presents a set of differential absorption lidar at 935nm developed by Shanghai Institute of Technical Physics of the Chinese Academy of Science for water vapor turbulence observation. A case at the midday is presented to demonstrate the daytime observation ability of this system. "Autocovariance method" is used to separate the contribution of water vapor fluctuation from random error. The results show that the relative error is less than 10% at temporal and spatial resolution of 10 seconds and 60 meters in the ABL. This indicate that the system has excellent performance for daytime water vapor turbulence observation.

  20. Carbon and water vapor fluxes of different ecosystems in Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspira...

  1. A mechanistic model for mercury capture with in situ-generated titania particles: role of water vapor.

    PubMed

    Rodríguez, Sylian; Almquist, Catherine; Lee, Tai Gyu; Furuuchi, Masami; Hedrick, Elizabeth; Biswas, Pratim

    2004-02-01

    A mechanistic model to predict the capture of gas-phase mercury (Hg) species using in situ-generated titania nanosize particles activated by UV irradiation is developed. The model is an extension of a recently reported model for photochemical reactions by Almquist and Biswas that accounts for the rates of electron-hole pair generation, the adsorption of the compound to be oxidized, and the adsorption of water vapor. The role of water vapor in the removal efficiency of Hg was investigated to evaluate the rates of Hg oxidation at different water vapor concentrations. As the water vapor concentration is increased, more hydroxy radical species are generated on the surface of the titania particle, increasing the number of active sites for the photooxidation and capture of Hg. At very high water vapor concentrations, competitive adsorption is expected to be important and reduce the number of sites available for photooxidation of Hg. The predictions of the developed phenomenological model agreed well with the measured Hg oxidation rates in this study and with the data on oxidation of organic compounds reported in the literature.

  2. A new technique for monitoring the water vapor in the atmosphere

    NASA Technical Reports Server (NTRS)

    Black, H. D.; Eisner, A.

    1984-01-01

    In the correction of satellite Doppler data for tropospheric effects the precipitable water vapor (PWV) is inferred at the tracking site. The technique depends on: (1) an ephemeris for the satellite; (2) an analytic model for the refraction range effect that is good to a few centimeters; (3) Doppler data with noise level below 10 centimeters; and (4) a surface pressure/temperature measurement at the tracking site. The PWV is a by product of the computation necessary to correct the Doppler data for tropospheric effects. A formulation of the refraction integral minimizes the necessity for explicit water vapor, temperature and pressure profiles.

  3. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  4. Oxidation of Ultra High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Opila, Elizabeth J.; Robinson, Raymond C.

    2004-01-01

    Ultra High Temperature Ceramics (UHTCs) including HfB2 + 20v/0 SiC (HS), ZrB2 + 20v/0 SiC (ZS), and ZrB2 + 30v/0 C + 14v/0 SiC (ZCS) have been investigated for use as potential aeropropulsion engine materials. These materials were oxidized in water vapor (90 percent) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 h at temperatures of 1200, 1300, and 1400 C. CVD SiC was also evaluated as a baseline for comparison. Weight change, X-ray diffraction analyses, surface and cross-sectional SEM and EDS were performed. These results are compared with tests ran in a stagnant air furnace at temperatures of 1327 C for 100 min, and with high pressure burner rig (HPBR) results at 1100 and 1300 C at 6 atm for 50 h. Low velocity water vapor does not make a significant contribution to the oxidation rates of UHTCs when compared to stagnant air. The parabolic rate constants at 1300 C, range from 0.29 to 16.0 mg(sup 2)cm(sup 4)/h for HS and ZCS, respectively, with ZS results between these two values. Comparison of results for UHTCs tested in the furnace in 90 percent water vapor with HPBR results was difficult due to significant sample loss caused by spallation in the increased velocity of the HPBR. Total recession measurements are also reported for the two test environments.

  5. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; hide

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  6. A New Approach for Examining Water Vapor and Deep Convection Interactions in the Tropics

    NASA Astrophysics Data System (ADS)

    Adams, D. K.

    2014-12-01

    The complex interactions/feedbacks between water vapor fields and deep atmospheric convection remains one of the outstanding problems in Tropical Meteorology. The lack of high spatial/temporal resolution, all-weather observations in the Tropics has hampered progress. Numerical models have difficulties, for example, in representing the shallow-to-deep convective transition and the diurnal cycle of precipitation. GNSS (Global Navigation Satellite System) meteorology, which provides all-weather, high frequency (5 minutes), precipitable water vapor, can help. From 3.5 years of GNSS meteorological data in Manaus, (Central Amazonia), 320 convective events were analyzed. Results reveal two characteristic time scales of water vapor convergence; an 8 h time scale of weak convergence and 4 h timescale of intense water vapor convergence associated with the shallow-to-deep convection transition. The 4 h shallow-to-deep transition time scale is particularly robust, regardless of convective intensity, seasonality, or nocturnal versus daytime convection. We also present a summary of the Amazon Dense GNSS Meteorological Network experiment, the first ever in the Tropics, was created with the explicit aim of examining the wv/deep convection relationships at the mesoscale. This innovative, international experiment, consisted of two mesoscale (100km x100km) networks: (1) a one-year (April 2011 to April 2012) campaign (20 GNSS meteorological sites) in and around Manaus , and (2) a 6 week (June 2011) intensive campaign (15 GNSS meteorological sites) in and around Belem, this latter in collaboration with the CHUVA GPM in Brazil. Results presented here from both networks focus on the diurnal cycle of precipitable water vapor: for sea breeze convection in Belem and, for assessing the influence seasonal and topographic influences for Manaus. Ultimately, these unique observations may serve to initialize, constrain, or validate precipitable water vapor spatial and temporal evolution in high

  7. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    EPA Science Inventory

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  8. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    NASA Technical Reports Server (NTRS)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  9. Design, fabrication and deployment of a miniaturized spectrometer radiometer based on MMIC technology for tropospheric water vapor profiling

    NASA Astrophysics Data System (ADS)

    Iturbide-Sanchez, Flavio

    This dissertation describes the design, fabrication and deployment of the Compact Microwave Radiometer for Humidity profiling (CMR-H). The CMR-H is a new and innovative spectrometer radiometer that is based on monolithic microwave and millimeter-wave integrated circuit (MMIC) technology and is designed for tropospheric water vapor profiling. The CMR-H simultaneously measures microwave emission at four optimally-selected frequency channels near the 22.235 GHz water vapor absorption line, constituting a new set of frequencies for the retrieval of the water vapor profile. State-of-the-art water vapor radiometers either measure at additional channels with redundant information or perform multi-frequency measurements sequentially. The fabrication of the CMR-H demonstrates the capability of MMIC technology to reduce substantially the operational power consumption and size of the RF and IF sections. Those sections comprise much of the mass and volume of current microwave receivers for remote sensing, except in the case of large antennas. The use of the compact box-horn array antenna in the CMR-H demonstrates its capability to reduce the mass and volume of microwave radiometers, while maintaining similar performance to that of commonly-used, bulky horn antennas. Due to its low mass, low volume, low power consumption, fabrication complexity and cost, the CMR-H represents a technological improvement in the design of microwave radiometers for atmospheric water vapor observations. The field test and validation of the CMR-H described in this work focuses on comparisons of measurements during two field experiments from the CMR-H and a state-of-the-art microwave radiometer, which measures only in a volume subtended by the zenith-pointing antenna's beam pattern. In contrast, the CMR-H is designed to perform volumetric scans and to function correctly as a node in a network of radiometers. Mass production of radiometers based on the CMR-H design is expected to enable the

  10. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    NASA Astrophysics Data System (ADS)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus

  11. MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer

    NASA Astrophysics Data System (ADS)

    Pankine, Alexey A.; Tamppari, Leslie K.; Smith, Michael D.

    2010-11-01

    We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the 'cold' surface areas in the North polar region ( Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO 2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO 2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor

  12. Retrieval of Atmospheric Water Vapor Profiles from the Special Sensor Microwave TEMPERATURE-2

    NASA Astrophysics Data System (ADS)

    Al-Khalaf, Abdulrahman Khal

    1995-01-01

    Radiometric measurements from the Special Sensor Microwave/Temperature-2 (SSM/T-2) instrument are used to retrieve atmospheric water vapor profiles over ocean, land, coast, and ice/snow backgrounds. These measurements are used to retrieve vertical distribution of integrated water vapor (IWV) and total integrated water vapor (TIWV) using a physical algorithm. The algorithm infers the presence of cloud at a given height from super-saturation of the retrieved humidity at that height then the algorithm estimate the cloud liquid water content. Retrievals of IWV over five different layers are validated against available ground truth such as global radiosondes and ECMWF analyses. Over ocean, the retrieved total integrated water vapor (TIWV) and IWV close to the surface compare quite well, with those from radiosonde observations and the European Center for Medium Range Weather Forecasts (ECMWF) analyses. However, comparisons to radiosonde results are better than (ECMWF) analyses. TIWV root mean square (RMS) difference was 5.95 mm and TWV RMS difference for the lowest layer (SFC-850 mb) was 2.8 mm for radiosonde comparisons. Water vapor retrieval over land is less accurate than over ocean due to the low contrast between the surface and the atmosphere near the surface; therefore, land retrievals are more reliable at layers above 700 mb. However, TIWV and IWV at all layers compare appropriately with ground truth. Over coastal areas the agreement between retrieved water vapor profiles and ground truth is quite good for both TIWV and IWV for the five layers. The natural variability and large variations in the surface emissivity over ice and snow fields leads toward poor results. Clouds degrade retrievals over land and coast, improve the retrievals a little over ocean, and improve dramatically over snow/ice. Examples of retrieved relative humidity profiles were shown to illustrate the algorithm performance for the actual profile retrieval. The overall features of the retrieved

  13. GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters

    NASA Astrophysics Data System (ADS)

    Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.

    2003-12-01

    The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.

  14. Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

  15. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    NASA Astrophysics Data System (ADS)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  16. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    USGS Publications Warehouse

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (<1 mm y−1), as it may be at many locations in a desert landscape, the thermal vapor flux must be balanced mostly by a matric‐potential‐induced upward flux of water. This return flux may include both vapor and liquid components. Below any near‐surface zone of weather‐related fluctuations of matric potential, maintenance of this upward flux requires an increase with depth in the annual mean matric potential; this theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions

  17. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    PubMed

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Generation of real-time mode high-resolution water vapor fields from GPS observations

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  19. Global water vapor distributions in the stratosphere and upper troposphere derived from 5.5 years of SAGE II observations (1986-1991)

    NASA Astrophysics Data System (ADS)

    Chiou, E. W.; McCormick, M. P.; Chu, W. P.

    1997-08-01

    Global distributions of water vapor in the stratosphere and upper troposphere are presented on the basis of ˜5.5 years (January 1986 to May 1991) of observations from the Stratospheric Aerosol and Gas Experiment II (SAGE II) aboard the Earth Radiation Budget Satellite (ERBS). Tabulations are included for seasonal zonal mean water vapor mixing ratios (in parts per million by volume) with 1-km vertical resolution and an altitude range from 6 to 40 km. Several climatological features identified in a previous study [McCormick et al., 1993], based on 3 years of observations, have been confirmed by this study: (1) the existence of a region of minimum water vapor (the hygropause) at all latitude bands; (2) the increase in the distance between the tropopause and the hygropause from 1 km at low latitudes to 4 km at high latitudes; and (3) the appearance of a positive poleward gradient throughout all seasons for fixed altitudes between 20 km and 40 km. The latitudinal variation of water vapor mixing ratio at 20 km is characterized by a symmetric pattern with a minimum occurring at the equator. However, the corresponding variations at 25 and 30 km indicate a shift of the minimum toward the summer hemisphere. For the latitude zones 0°-20° and 20°-40° in both hemispheres, the seasonal variations of the hygropause reveal that the altitude as well as the value of the minimum water vapor mixing ratio remain essentially unchanged from December, January, and February to March, April, and May. During September, October, and November the weakening of the hygropause and the spreading of the region of minimum water vapor to a wider altitude range are identified throughout these low-latitude and midlatitude zones. For the upper troposphere the clear-sky relative humidities at 300 mbar show a typical range of 5-60%, which is consistent with previous findings based on Meteosat 6.3 μm measurements. In addition, the unique capability of SAGE II observations has provided us with

  20. Evapotranspiration Partitioning Using Rapid Measurements of Isotopic Composition of Water Vapor in a Semi Arid Evergreen Forest

    NASA Astrophysics Data System (ADS)

    Meuth, J. A.; Dominguez, F.

    2011-12-01

    Evapotranspiration partitioning into transpiration and evaporation is an important step in understanding the relative contribution of the vegetated land surface to total atmospheric moisture in an area. This type of study has rarely been done over long time periods focusing on small time scales of variation. The relative contributions of whole canopy transpiration and soil evaporation to total evapotranspiration were determined in a mid-latitude semi arid evergreen forest using stable isotope measurements of atmospheric water vapor. We used a cavity ringdown spectrometer to collect continuous 5-second average isotopic and water vapor measurements throughout the ecosystem boundary layer. In addition, we analyzed the isotopic composition of liquid water extracted from soil, leaf and stem samples to obtain relative contributions of transpiration and evaporation to whole canopy evapotranspriation. The results from this method provided many time periods throughout the day with statistically significant data. This method can be used to follow daily, monthly, or yearly cycles of evapotranspiration partitioning with relative ease and accuracy.

  1. Tracking motions from satellite water vapor imagery: Quantitative applications to hurricane track forecasting

    NASA Technical Reports Server (NTRS)

    Velden, Christopher; Nieman, Steve; Aberson, Sim; Franklin, James

    1993-01-01

    Water vapor imagery from GOES satellites has been available for over a decade. These data are used extensively, mainly in a qualitative mode, by forecasters in the United States (Weldon and Holmes, 1991). Some attempts have been made at quantifying the data by tracking features in time sequences of the imagery (Stewart et al., 1985; Hayden and Stewart, 1987). For a variety of reasons, applications of this approach have produced marginal results (Velden, 1990). Recently, METEOSAT-3 (M-3) was repositioned at 50W by the European Space Agency, in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the GOES satellite, the M-3 has a superior resolution and signal-to-noise ratio in its water vapor channel, which translates into improved automated tracking capabilities. During a period in 1992 which included the Atlantic hurricane season, water vapor tracking algorithms were applied to the M-3 data in order to evaluate the coverage, accuracy and model impact of the derived vectors. Data sets were produced during several tropical cyclone cases, including Hurricane Andrew. In this paper, the M-3 water vapor wind sets are assessed, and their impact on a hurricane track forecast model is examined.

  2. MM-Wave Radiometric Measurements of Low Amounts of Precipitable Water Vapor

    NASA Technical Reports Server (NTRS)

    Racette, P.; Westwater, Ed; Han, Yong; Manning, Will; Jones, David; Gasiewski, Al

    2000-01-01

    An experiment was conducted during March, 1999 to study ways in which to improve techniques for measuring low amounts of total-column precipitable water vapor (PWV). The experiment was conducted at the DOE's ARM program's North Slope of Alaska/Adjacent Arctic Ocean Cloud and Radiation Testbed site (DoE ARM NSA/AAO CaRT) located just outside Barrow, Alaska. NASA and NOAA deployed a suite of radiometers covering 25 channels in the frequency range of 20 GHz up to 340 GHz including 8 channels around the 183 GHz water vapor absorption line. In addition to the usual CaRT site instrumentation the NOAA Depolarization and Backscatter Unattended Lidar (DABUL), the SUNY Rotating Shadowband Spectroradiometer (RSS) and other surface based meteorological instrumentation were deployed during the intensive observation period. Vaisala RS80 radiosondes were launched daily as well as nearby National Weather Service VIZ sondes. Atmospheric conditions ranged from clear calm skies to blowing snow and heavy multi-layer cloud coverage. Measurements made by the radiosondes indicate the PWV varied from approx. 1 to approx. 5 mm during the experiment. The near-surface temperature varied between about -40 C to - 15 C. In this presentation, an overview of the experiment with examples of data collected will be presented. Application of the data for assessing the potential and limitations of millimeter-wave radiometry for retrieving very low amounts of PWV will be discussed.

  3. Observational Evidence of Changes in Water Vapor, Clouds, and Radiation at the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Minnis, Patrick

    2006-01-01

    Characterizing water vapor and cloud effects on the surface radiation budget is critical for understanding the current climate because water vapor is the most important greenhouse gas in the atmosphere and clouds are one of the largest sources of uncertainty in predicting potential future climate change. Several studies have shown that insolation over land declined until 1990 then increased until the present. Using 8 years of data collected at the ARM Southern Great Plains (SGP) surface site, we found that the insolation increased from 1997 to 2000, but significantly decreased from 2001 to 2004, changes that exactly mirror the variation in the second-order fit of cloud fraction. Under clear-sky conditions, the rates of water vapor, insolation and downwelling longwave (LW) flux are -0.166 cm/yr, 0.48 Wm(exp -2)/yr, and -1.16 Wm(exp -2)/yr, respectively, indicating that water vapor changes are more important for LW flux than for insolation.

  4. Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Brogniez, Hélène; Kiemle, Christoph; Lacour, Jean-Lionel; Crevoisier, Cyril; Kiliani, Johannes

    In situ, airborne and satellite measurements are used to characterize the structure of water vapor in the lower tropical troposphere—below the height, z *, of the triple-point isotherm, T *. The measurements are evaluated in light of understanding of how lowertropospheric water vapor influences clouds, convection and circulation, through both radiative and thermodynamic effects. Lower-tropospheric water vapor, which concentrates in the first few kilometers above the boundary layer, controls the radiative cooling profile of the boundary layer and lower troposphere. Elevated moist layers originating from a preferred level of convective detrainment induce a profile of radiative cooling that drives circulations which reinforce such features. A theory for this preferred level of cumulus termination is advanced, whereby the difference between T * and the temperature at which primary ice forms gives a `first-mover advantage' to glaciating cumulus convection, thereby concentrating the regions of the deepest convection and leading to more clouds and moisture near the triple point. A preferred level of convective detrainment near T * implies relative humidity reversals below z * which are difficult to identify using retrievals from satellite-borne microwave and infrared sounders. Isotopologues retrievals provide a hint of such features and their ability to constrain the structure of the vertical humidity profile merits further study. Nonetheless, it will likely remain challenging to resolve dynamically important aspects of the vertical structure of water vapor from space using only passive sensors.

  5. Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Brogniez, Hélène; Kiemle, Christoph; Lacour, Jean-Lionel; Crevoisier, Cyril; Kiliani, Johannes

    2017-11-01

    In situ, airborne and satellite measurements are used to characterize the structure of water vapor in the lower tropical troposphere—below the height, z_*, of the triple-point isotherm, T_*. The measurements are evaluated in light of understanding of how lower-tropospheric water vapor influences clouds, convection and circulation, through both radiative and thermodynamic effects. Lower-tropospheric water vapor, which concentrates in the first few kilometers above the boundary layer, controls the radiative cooling profile of the boundary layer and lower troposphere. Elevated moist layers originating from a preferred level of convective detrainment induce a profile of radiative cooling that drives circulations which reinforce such features. A theory for this preferred level of cumulus termination is advanced, whereby the difference between T_* and the temperature at which primary ice forms gives a `first-mover advantage' to glaciating cumulus convection, thereby concentrating the regions of the deepest convection and leading to more clouds and moisture near the triple point. A preferred level of convective detrainment near T_* implies relative humidity reversals below z* which are difficult to identify using retrievals from satellite-borne microwave and infrared sounders. Isotopologues retrievals provide a hint of such features and their ability to constrain the structure of the vertical humidity profile merits further study. Nonetheless, it will likely remain challenging to resolve dynamically important aspects of the vertical structure of water vapor from space using only passive sensors.

  6. Oxidation of Slurry Aluminide Coatings on Cast Stainless Steel Alloy CF8C-Plus at 800oC in Water Vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, James A; Armstrong, Beth L; Dryepondt, Sebastien N

    A new, cast austenitic stainless steel, CF8C-Plus, has been developed for a wide range of high temperature applications, including diesel exhaust components, turbine casings and turbocharger housings. CF8C-Plus offers significant improvements in creep rupture life and creep rupture strength over standard CF8C steel. However, at higher temperatures and in more aggressive environments, such as those containing significant water vapor, an oxidation-resistant protective coating will be necessary. The oxidation behavior of alloys CF8C and CF8C-Plus with various aluminide coatings were compared at 800oC in air plus 10 vol% water vapor. Due to their affordability, slurry aluminides were the primary coating systemmore » of interest, although chemical vapor deposition (CVD) and pack cementation coatings were also compared. Additionally, a preliminary study of the low cycle fatigue behavior of aluminized CF8C-Plus was conducted at 800oC. Each type of coating provided substantial improvements in oxidation behavior, with simple slurry aluminides showing very good oxidation resistance after 4,000 h testing in water vapor. Preliminary low cycle fatigue results indicated that thicker aluminide coatings degraded high temperature fatigue properties of CF8C-Plus, whereas thinner coatings did not. Results suggest that appropriately designed slurry aluminide coatings are a viable option for economical, long-term oxidation protection of austenitic stainless steels in water vapor.« less

  7. GPS Water Vapor Tomography: First results from the ESCOMPTE Field Experiment

    NASA Astrophysics Data System (ADS)

    Masson, F.; Champollion, C.; Bouin, M.-N.; Walpersdorf, A.; van Baelen, J.; Doerflinger, E.; Bock, O.

    2003-04-01

    We develop a tomographic software to model the spatial distribution of the tropospheric water vapor from GPS data. First we present simulations based on a real GPS station distribution and simple tropospheric models, which prove the potentiality of the method. Second we apply the software to the ESCOMPTE data. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers has been operated for two weeks within a 20 km x 20 km area around Marseille (Southern France). The network extends from the sea level to the top of the Etoile chain (~700 m high). The input data are the slant delay values obtained by combining the estimated zenith delay values with the horizontal gradients. The effect of the initial tropospheric water vapor model, the number and thickness of the layers of the model, the a priori model and data covariance and some other parameters will be discussed. Simultaneously water vapor radiometer, solar spectrometer, Raman lidar and radiosondes have been deployed to get a data set usable for comparison with the tomographic inversion results and validation of the method. Comparison with meteorological models (MesoNH - Meteo-France) will be shown.

  8. Compact Reconnaissance Imaging Spectrometer Observations of Water Vapor and Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd; Murchie, Scott L.

    2009-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.

  9. North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer

    NASA Astrophysics Data System (ADS)

    Reagan, J. R.; Seidov, D.; Boyer, T.

    2017-12-01

    The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (<35) subpolar area. Multiple studies have shown that preserving this salinity contrast is important for maintaining the Atlantic Meridional Overturning Circulation (AMOC), and that changes to this salinity balance may reduce the strength of the AMOC. High subtropical salinity is primarily due to evaporation (E) dominating precipitation (P), whereas low subpolar salinity is at least partly due to precipitation dominating evaporation. Present-day understanding of the fate of water vapor in the atmosphere over the extratropical North Atlantic is that the precipitation which falls in the subpolar region primarily originates from the water vapor produced through evaporation in the subtropical North Atlantic. With this knowledge and in conjunction with a basic understanding of North Atlantic storm tracks—the main meridional transport conduits in mid and high latitudes— a preliminary time and spatial correlation analysis was completed to relate the North Atlantic decadal climatological salinity between 1985 and 2012 to the evaporation and precipitation climatologies for the same period. Preliminary results indicate that there is a clear connection between subtropical E-P and subpolar NSS. Additional results and potential implications will be presented and discussed.

  10. Measurements of upper atmosphere water vapor made in situ with a new moisture sensor

    NASA Technical Reports Server (NTRS)

    Chleck, D.

    1979-01-01

    A new thin-film aluminum oxide sensor, Aquamax II, has been developed for the measurement of stratospheric and upper tropospheric water vapor levels. The sensor is briefly described with attention given to its calibration and performance. Data obtained from six balloon flights are presented; almost all the results show a constant water vapor mixing ratio, in agreement with other data from midlatitude regions.

  11. Variation characteristics of water vapor distribution during 2000-2008 over Hefei (31.9°N, 117.2°E) observed by L625 lidar

    NASA Astrophysics Data System (ADS)

    Wang, Min; Fang, Xin; Hu, Shunxing; Hu, Huanling; Li, Tao; Dou, Xiankang

    2015-10-01

    Observations of monthly and seasonal nightly water vapor variations over Hefei utilizing L625 lidar water vapor data observed from 2000 to 2008 is the focus of this study. The experimental setup and main parameters of the L625 lidar for water vapor measurement are first presented, then the measurement principle of water vapor and data processing methods are introduced. The water vapor measurement precision of the lidar system was analyzed by comparison with radiosonde. Monthly and seasonal water vapor profiles were built by analyzing 2000-2008 lidar data. In the vertical direction, results show that water vapor content decreases gradually with height. The more the water vapor content in the low atmosphere, the faster the decay rate with altitude. As far as monthly variation, the water vapor content first increases and then decreases with month. The maximum content of water vapor appears in July, at mixing ratio of 15.6 g/kg at 1 km. The seasonal variability of water vapor content is rather obvious. In summer the water vapor mixing ratio reaches up to 15.0 g/kg at 1 km, and in winter it is only 3.9 g/kg at the same altitude. Interannual variation of water vapor content differs between seasons (as revealed in the standard deviation of data) where summer is least stable and autumn is the most stable. Precipitable water vapor is calculated from water vapor mean profiles at 1-4 km and the relationship between precipitable water vapor and precipitation is also investigated. A clear positive correlation is found with Pearson correlation coefficients (R) 0.933 between monthly precipitation and mean precipitable water vapor, as well a clear positive correlation between seasonal precipitation and seasonal mean precipitable water vapor (R = 0.988). Precipitation conversion efficiency (PCE) is calculated from precipitation and precipitable water vapor. The monthly PCE reaches its maximum in October at 25.8%, and drops to its minimum in January at 11.5%. Seasonal PCE's minimum

  12. Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm

    NASA Technical Reports Server (NTRS)

    Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.

    1998-01-01

    We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.

  13. In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Bian, Jianchun; Pan, Laura L.; Paulik, Laura; Vömel, Holger; Chen, Hongbin; Lu, Daren

    2012-10-01

    The Asian summer monsoon (ASM) anticyclone circulation system is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. The observational evidence, however, is largely based on satellite retrievals. We report the first coincident in situ measurements of water vapor and ozone within the ASM anticyclone. The combined water vapor and ozonesondes were launched from Kunming, China in August 2009 and Lhasa, China in August 2010. In total, 11 and 12 sondes were launched in Kunming and Lhasa, respectively. We present the key characteristics of these measurements, and provide a comparison to similar measurements from an equatorial tropical location, during the Tropical Composition, Cloud and Climate Coupling (TC4) campaign in July and August of 2007. Results show that the ASM anticyclone region has higher water vapor and lower ozone concentrations in the upper troposphere and lower stratosphere than the TC4 observations. The results also show that the cold point tropopause in the ASM region has a higher average height and potential temperature. The in situ observations therefore support the satellite-based conclusion that the ASM is an effective transport pathway for water vapor to enter stratosphere.

  14. Extending water vapor trend observations over Boulder into the tropopause region: Trend uncertainties and resulting radiative forcing.

    PubMed

    Kunz, A; Müller, R; Homonnai, V; Jánosi, I M; Hurst, D; Rap, A; Forster, P M; Rohrer, F; Spelten, N; Riese, M

    2013-10-16

    Thirty years of balloon-borne measurements over Boulder (40°N, 105°W) are used to investigate the water vapor trend in the tropopause region. This analysis extends previously published trends, usually focusing on altitudes greater than 16 km, to lower altitudes. Two new concepts are applied: (1) Trends are presented in a thermal tropopause (TP) relative coordinate system from -2 km below to 10 km above the TP, and (2) sonde profiles are selected according to TP height. Tropical (TP z > 14 km), extratropical (TP z < 12 km), and transitional air mass types (12 km < TP z < 14 km) reveal three different water vapor reservoirs. The analysis based on these concepts reduces the dynamically induced water vapor variability at the TP and principally favors refined water vapor trend studies in the upper troposphere and lower stratosphere. Nonetheless, this study shows how uncertain trends are at altitudes -2 to +4 km around the TP. This uncertainty in turn has an influence on the uncertainty and interpretation of water vapor radiative effects at the TP, which are locally estimated for the 30 year period to be of uncertain sign. The much discussed decrease in water vapor at the beginning of 2001 is not detectable between -2 and 2 km around the TP. On lower stratospheric isentropes, the water vapor change at the beginning of 2001 is more intense for extratropical than for tropical air mass types. This suggests a possible link with changing dynamics above the jet stream such as changes in the shallow branch of the Brewer-Dobson circulation.

  15. A Feasibility Study for Simultaneous Measurements of Water Vapor and Precipitation Parameters using a Three-frequency Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.; Tian, L.

    2005-01-01

    The radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. The coupling between the precipitation and water vapor estimates is generally weak but increases with bandwidth and the amount of non-Rayleigh scattering of the hydrometeors. The coupling leads to biases in the estimates of water vapor absorption that are related primarily to the phase state and the median mass diameter of the hydrometeors. For a down-looking radar, path-averaged estimates of water vapor absorption are possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Simulations of the water vapor attenuation retrieval show that the largest source of error typically arises from the variance in the measured radar return powers. Although the error can be mitigated by a combination of a high pulse repetition frequency, pulse compression, and averaging in range and time, the radar receiver must be stable over the averaging period. For fractional bandwidths of 20% or less, the potential exists for simultaneous measurements at the three frequencies with a single antenna and transceiver, thereby significantly reducing the cost and mass of the system.

  16. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  17. Tropospheric rivers? A pilot study. [of filamentary structures of atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Newell, Reginald E.; Newell, Nicholas E.; Zhu, Yong; Scott, Courtney

    1992-01-01

    Computations of daily global tropospheric water vapor flux values show the presence of a filamentary structure. The filaments, here called rivers, have lengths many times their widths and persist for many days while being translated through the atmosphere. They are present in data analyzed for both 1981 and 1991. The water vapor flux maxima coincide quite closely to reflectivity features (averaged from wavelengths of 380 and 360 nm) as revealed by the Total Ozone Mapping Spectrometer (TOMS). It is suggested that the filamentary structure may also be present in other trace constituents.

  18. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  19. Fixation of nitrogen in the presence of water vapor

    DOEpatents

    Harteck, Paul

    1984-01-01

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  20. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  1. Water vapor radiative effects on short-wave radiation in Spain

    NASA Astrophysics Data System (ADS)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Román, Roberto; Cachorro, Victoria E.

    2018-06-01

    In this work, water vapor radiative effect (WVRE) is studied by means of the Santa Barbara's Disort Radiative Transfer (SBDART) model, fed with integrated water vapor (IWV) data from 20 ground-based GPS stations in Spain. Only IWV data recorded during cloud-free days (selected using daily insolation data) were used in this study. Typically, for SZA = 60.0 ± 0.5° WVRE values are around - 82 and - 66 Wm-2 (first and third quartile), although it can reach up - 100 Wm-2 or decrease to - 39 Wm-2. A power dependence of WVRE on IWV and cosine of solar zenith angle (SZA) was found by an empirical fit. This relation is used to determine the water vapor radiative efficiency (WVEFF = ∂WVRE/∂IWV). Obtained WVEFF values range from - 9 and 0 Wm-2 mm-1 (- 2.2 and 0% mm-1 in relative terms). It is observed that WVEFF decreases as IWV increases, but also as SZA increases. On the other hand, when relative WVEFF is calculated from normalized WVRE, an increase of SZA results in an increase of relative WVEFF. Heating rates were also calculated, ranging from 0.2 Kday-1 to 1.7 Kday-1. WVRE was also calculated at top of atmosphere, where values ranged from 4 Wm-2 to 37 Wm-2.

  2. Water Vapor in Titan's Stratosphere from Cassini/CIRS Far-infrared Spectra

    NASA Technical Reports Server (NTRS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Teanby, N. A.; Achterberg, R. K.; Bezard, B.; hide

    2012-01-01

    Since the first detection of water vapor in Titan's stratosphere by disk-average observations from the Infrared Space Observatory (Coustenis et al. 1998) we report here the successful detection of stratospheric water vapor using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al. 2004). CIRS senses water emissions in the far infrared spectral region near 50 microns, which we have modeled using two independent radiative transfer codes (NEMESIS, Irwin et al 2008 and ART, Coustenis et al. 2007, 2010). From the analysis of nadir spectra we have derived a mixing ratio of (0.14 0.05) ppb at an altitude of 97 kilometers, which corresponds to an integrated (from 0 to 600 kilometers) surface normalized column abundance of (3.7 plus or minus 1.3) x 10(exp 14) molecules per square centimeter. In the latitude range 80 S to 30 N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of (0.13 plus or minus 0.04) ppb at an altitude of 115 kilometers and (0.45 plus or minus 0.15) ppb at an altitude of 230 kilometers, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models (e.g. Lara et al. 1996, Wilson and Atreya 2004, Horst et al. 2008); retrieved scaling factors (from approximately 0.1 to approximately 0.6) to the water profile suggested by these models show that water vapor is present in Titan stratosphere with less abundance than predicted.

  3. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; hide

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  4. The ESA GOME-Evolution "Climate" water vapor product: a homogenized time series of H2O columns from GOME, SCIAMACHY, and GOME-2

    NASA Astrophysics Data System (ADS)

    Beirle, Steffen; Lampel, Johannes; Wang, Yang; Mies, Kornelia; Dörner, Steffen; Grossi, Margherita; Loyola, Diego; Dehn, Angelika; Danielczok, Anja; Schröder, Marc; Wagner, Thomas

    2018-03-01

    We present time series of the global distribution of water vapor columns over more than 2 decades based on measurements from the satellite instruments GOME, SCIAMACHY, and GOME-2 in the red spectral range. A particular focus is the consistency amongst the different sensors to avoid jumps from one instrument to another. This is reached by applying robust and simple retrieval settings consistently. Potentially systematic effects due to differences in ground pixel size are avoided by merging SCIAMACHY and GOME-2 observations to GOME spatial resolution, which also allows for a consistent treatment of cloud effects. In addition, the GOME-2 swath is reduced to that of GOME and SCIAMACHY to have consistent viewing geometries.Remaining systematic differences between the different sensors are investigated during overlap periods and are corrected for in the homogenized time series. The resulting Climate product v2.2 (water_vapor_clim_v2.2" target="_blank">https://doi.org/10.1594/WDCC/GOME-EVL_water_vapor_clim_v2.2) allows the study of the temporal evolution of water vapor over the last 20 years on a global scale.

  5. The Discrepancy Between Measured and Modeled Downwelling Solar Irradiance at the Ground: Dependence on Water Vapor

    NASA Technical Reports Server (NTRS)

    Pilewski, P.; Rabbette, M.; Bergstrom, R.; Marquez, J.; Schmid, B.; Russell, P. B.

    2000-01-01

    Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under-cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.

  6. The Discrepancy Between Measured and Modeled Downwelling Solar Irradiance at the Ground: Dependence on Water Vapor

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Rabbette, M.; Bergstrom, R.; Marquez, J.; Schmid, B.; Russell, P. B.

    2000-01-01

    Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm(exp -2) per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.

  7. Water vapor isotopic measurements from the Atmospheric Radiation Measurement site on Graciosa Island, Azores

    NASA Astrophysics Data System (ADS)

    Delp, J. M.; Galewsky, J.

    2017-12-01

    Stable isotopic measurements of water vapor can potentially constrain the processes that govern the formation of low-clouds and how their distribution may change as the climate warms. Using off-axis integrated cavity output spectroscopy, in-situ water vapor isotopic measurements will be collected for a period of one year (beginning August 2017) at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in the Eastern North Atlantic (ENA) located on Graciosa Island, Azores. The Azores location within the ENA is a prime setting for studying low-cloud processes. After correcting for humidity-dependent biases and normalizing the measurements to the VSMOW-SLAP scale, the measurements from the first several months of the water vapor isotopic analyzer's deployment will be compared to complementary datasets from the suite of instruments at the DOE site, including twice-daily soundings, aerosol instrumentation, and cloud radars, with the purpose of determining links between local stratocumulus and precipitation processes and their impact on the stable isotopic composition of atmospheric water vapor. The results of this study will potentially provide a new approach for linking field observations with climate models and may help better constrain the uncertainties associated with low-cloud feedbacks.

  8. Aeroglaze Z306 black paint for cryogenic telescope use: outgassing and water vapor regain

    NASA Astrophysics Data System (ADS)

    McCroskey, Doug M.; Abell, George C.; Chidester, Mike H.

    2000-09-01

    This paper presents the results of an experimental investigation of Aeroglaze Z306 black paint used as a functional coating in a cryogenic telescope for the Space Based Infrared System (SBIRS) program. During ground testing of a DBIRS infrared sensor engineering test model (ETM), degradation of optical transmission was observed. Analysis showed that the degradation was caused by water vapor condensing onto sensor collection optics, which were operating at 120 to 130 K. Root cause analysis identified Aeroglaze Z306 black pain as a likely candidate source of the water vapor. Prior to ETM testing, the painted telescope housing was vacuum baked for 100 hours at 100 $DEGC. However ASTM E 595 test data show that significant water vapor regain occurs within 24 hours after vacuum bake-out. To obtain a detailed characterization of the black paint with respect to water vapor regain and subsequent removal under vacuum conditions, a test plan was developed involving a series of ASTM E 1559 test measurements. These tests improve our understanding of the processes involved and provide the basis for design of an on-orbit H2 bakeout capability for the SBIRS infrared sensor payload.

  9. Interannual Comparison of Water Vapor in the North Polar Region of Mars

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Smith, M. D.; Hale, A. S.; Bass, D. S.

    2003-01-01

    In order to better understand the current climate of Mars, we seek to understand atmospheric water in the north polar region. Our approach is to examine the water transport and cycling issues within the north polar region and in/out of the region on seasonal and annual timescales. Viking Mars Atmospheric Water Detector (MAWD) data showed that water vapor increased as the northern summer season progressed and temperatures increased, and that vapor appeared to be transported southward . However, there has been uncertainty about the amount of water cycling in and out of the north polar region, as evidenced by residual polar cap visible brightness changes between one Martian year (Mariner 9 data) and a subsequent year (Viking data). These changes were originally thought to be interannual variations in the amount of frost sublimed based on global dust storm activity . However, Viking thermal and imaging data were re-examined and it was found that 14-35 pr m of water -ice appeared to be deposited on the cap later in the summer season, indicating that some water may be retained and redistributed within the polar cap region. This late summer deposition could be due to adsorption directly onto the cap surface or due to snowfall. We seek to understand what happens to the water on seasonal and interannual timescales. We address these issues by examining water vapor in the north polar region of Mars during the north spring and summer period from MGS TES data and by comparing these results to the Viking MAWD results.

  10. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST

  11. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum

    NASA Astrophysics Data System (ADS)

    Sussmann, Ralf; Reichert, Andreas; Rettinger, Markus

    2016-09-01

    Quantitative knowledge of water vapor radiative processes in the atmosphere throughout the terrestrial and solar infrared spectrum is still incomplete even though this is crucial input to the radiation codes forming the core of both remote sensing methods and climate simulations. Beside laboratory spectroscopy, ground-based remote sensing field studies in the context of so-called radiative closure experiments are a powerful approach because this is the only way to quantify water absorption under cold atmospheric conditions. For this purpose, we have set up at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.) a long-term radiative closure experiment designed to cover the infrared spectrum between 400 and 7800 cm-1 (1.28-25 µm). As a benefit for such experiments, the atmospheric states at the Zugspitze frequently comprise very low integrated water vapor (IWV; minimum = 0.1 mm, median = 2.3 mm) and very low aerosol optical depth (AOD = 0.0024-0.0032 at 7800 cm-1 at air mass 1). All instruments for radiance measurements and atmospheric-state measurements are described along with their measurement uncertainties. Based on all parameter uncertainties and the corresponding radiance Jacobians, a systematic residual radiance uncertainty budget has been set up to characterize the sensitivity of the radiative closure over the whole infrared spectral range. The dominant uncertainty contribution in the spectral windows used for far-infrared (FIR) continuum quantification is from IWV uncertainties, while T profile uncertainties dominate in the mid-infrared (MIR). Uncertainty contributions to near-infrared (NIR) radiance residuals are dominated by water vapor line parameters in the vicinity of the strong water vapor bands. The window regions in between these bands are dominated by solar Fourier transform infrared (FTIR) calibration uncertainties at low NIR wavenumbers, while uncertainties due to AOD become an increasing and dominant contribution towards higher NIR wavenumbers

  12. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  13. Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Kiemle, Christoph; Lebsock, Mathew D.; Kirchengast, Gottfried; Buehler, Stefan A.; Löhnert, Ulrich; Liu, Cong-Liang; Hargrave, Peter C.; Barrera-Verdejo, Maria; Winker, David M.

    2017-11-01

    A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

  14. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  15. Spatio-Temporal Variability of Water Vapor in the Free Troposphere Investigated by Dial and Ftir Vertical Soundings

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.

    2016-06-01

    We report on the free tropospheric spatio-temporal variability of water vapor investigated by the analysis of a five-year period of water vapor vertical soundings above Mt. Zugspitze (2962 m a.s.l., Germany). Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV), recorded with a solar Fourier Transform InfraRed (FTIR) spectrometer and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL). The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both optical instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. We investigated the short-term variability of both IWV and water vapor profiles from statistical analyses. The latter was also examined by case studies with a clear assignment to certain atmospheric processes as local convection or long-range transport. This study is described in great detail in our recent publication [1].

  16. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOEpatents

    Huang, Yu [Palo Alto, CA; Ly, Jennifer [San Jose, CA; Aldajani, Tiem [San Jose, CA; Baker, Richard W [Palo Alto, CA

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  17. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently lessmore » than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third

  18. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    NASA Astrophysics Data System (ADS)

    Lainer, M.; Kämpfer, N.; Tschanz, B.; Nedoluha, G. E.; Ka, S.; Oh, J. J.

    2015-08-01

    The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a

  19. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    NASA Astrophysics Data System (ADS)

    Lainer, M.; Kämpfer, N.; Tschanz, B.; Nedoluha, G. E.; Ka, S.; Oh, J. J.

    2015-04-01

    The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different datasets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of travelling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown, a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a

  20. CHARM: A CubeSat Water Vapor Radiometer for Earth Science

    NASA Technical Reports Server (NTRS)

    Lim, Boon; Mauro, David; DeRosee, Rodolphe; Sorgenfrei, Matthew; Vance, Steve

    2012-01-01

    The Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC) are partnering in the CubeSat Hydrometric Atmospheric Radiometer Mission (CHARM), a water vapor radiometer integrated on a 3U CubeSat platform, selected for implementation under NASA Hands-On Project Experience (HOPE-3). CHARM will measure 4 channels at 183 GHz water vapor line, subsets of measurements currently performed by larger and more costly spacecraft (e.g. ATMS, AMSU-B and SSMI/S). While flying a payload that supports SMD science objectives, CHARM provides a hands-on opportunity to develop technical, leadership, and project skills. CHARM will furthermore advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and the CubeSat 183 GHz radiometer system from TRL 4 to TRL 7.

  1. Water-vapor conductance of testudinian and crocodilian eggs (class reptilia).

    PubMed

    Packard, G C; Taigen, T L; Packard, M J; Shuman, R D

    1979-09-01

    Flexible-shelled eggs of snapping turtles (Chelydra serpentina) have conductances to water vapor that are 55 times higher than predicted for avian eggs of similar size, whereas rigid-shelled eggs of softshell turtles (Trionyx spiniferus) and American alligators (Alligator mississippiensis) have conductances that are only five times higher than expected for comparable eggs of birds. The differences between empirical and predicted values result from the much higher effective pore areas in reptilian eggshells than in those of birds. The relatively high porosities of these reptilian eggs presumably facilitate the transport of oxygen and carbon dioxide eggshells in later stages of incubation when air trapped inside nest chambers may become hypoxic and hypercapnic, yet seem not to lead to excessive transpiration of water vapor owing to the high humidities in nests where incubation occurs.

  2. Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2011-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal

  3. Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate.

    PubMed

    Kaushal, Aditya M; Vangala, Venu R; Suryanarayanan, Raj

    2011-04-01

    Dibasic calcium phosphate occurs as an anhydrate (DCPA; CaHPO₄) and as a dihydrate (DCPD; CaHPO₄•2H₂O). Our objective was to investigate the unusual behavior of these phases. Dibasic calcium phosphate dihydrate was dehydrated in a (i) differential scanning calorimeter (DSC) in different pan configurations; (ii) variable-temperature X-ray diffractometer (XRD) at atmospheric and under reduced pressure, and in sealed capillaries; and (iii) water vapor sorption analyzer at varying temperature and humidity conditions. Dehydration was complete by 210°C in an open DSC pan and under atmospheric pressure in the XRD. Unlike "conventional" hydrates, the dehydration of DCPD was facilitated in the presence of water vapor. Variable-temperature XRD in a sealed capillary and DSC in a hermetic pan with pinhole caused complete dehydration by 100°C and 140°C, respectively. Under reduced pressure, conversion to the anhydrate was incomplete even at 300°C. The increase in dehydration rate with increase in water vapor pressure has been explained by the Smith-Topley effect. Under "dry" conditions, a coating of poorly crystalline product is believed to form on the surface of particles and act as a barrier to further dehydration. However, in the presence of water vapor, recrystallization occurs, creating cracks and channels and facilitating continued dehydration. Copyright © 2010 Wiley-Liss, Inc.

  4. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    NASA Astrophysics Data System (ADS)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  5. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  6. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  7. Atmospheric solar heating rate in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  8. Scanning Raman lidar for tropospheric water vapor profiling and GPS path delay correction

    NASA Astrophysics Data System (ADS)

    Tarniewicz, Jerome; Bock, Olivier; Pelon, Jacques R.; Thom, Christian

    2002-01-01

    The design of a ground based and transportable combined Raman elastic-backscatter lidar for the remote sensing of lower tropospheric water vapor and nitrogen concentration is described. This lidar is intended to be used for an external calibration of the wet path delay of GPS signals. A description of the method used to derive water vapor and nitrogen profiles in the lower troposphere is given. The instrument has been tested during the ESCOMPTE campaign in June 2001 and first measurements are presented.

  9. 76 FR 5370 - Potential Addition of Vapor Intrusion Component to the Hazard Ranking System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... structures through the subsurface environment and thus, enabling sites with vapor intrusion contamination to... contamination to be included in an HRS evaluation. Presented below is background information on the HRS, its... facility, the potential for contamination of drinking water supplies, direct human contact, destruction of...

  10. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE PAGES

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; ...

    2017-11-03

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large

  11. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large

  12. Water vapor in Titan's stratosphere from Cassini/CIRS Far-infrared spectra

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Teanby, N. A.; Achterberg, R. K.; Bézard, B.; de Kok, R.; Lellouch, E.; Irwin, P. G. J.; Flasar, F. M.; Bampasidis, G.

    2012-09-01

    We report here the detection of stratospheric water vapor [1] using the Cassini Composite Infrared Spectrometer (CIRS, [2]). CIRS senses water emissions in the far infrared spectral region near 50 microns, which we have modeled using a radiative transfer computation code (NEMESIS, [3]). From the analysis of nadir spectra we have derived a mixing ratio of 0.14 ± 0.05 ppb at an altitude of 97 km, which corresponds to an integrated (from 0 to 600 km) surface normalized column abundance of 3.7 ± 1.3 × 1014 molecules/cm2. Using limb observations, we obtained mixing ratios of 0.13 ± 0.04 ppb at an altitude of 115 km and 0.45 ± 0.15 ppb at an altitude of 230 km, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models (e.g. [4], [5] and [6]); retrieved scaling factors (from ~ 0.1 to ~ 0.6) to the water profile suggested by these models show that water vapor is present in Titan's stratosphere with less abundance than predicted.

  13. Airborne Lidar Observations of Water Vapor Variability in the Northern Atlantic Trades

    NASA Astrophysics Data System (ADS)

    Kiemle, Christoph; Groß, Silke; Wirth, Martin; Bugliaro, Luca

    2017-04-01

    During the NARVAL (Next Generation Aircraft Remote Sensing for Validation Studies) field experiments in December 2013 and August 2016 the DLR lidar WALES (Water vapor Lidar Experiment in Space) was operated on board the German research aircraft HALO. The lidar simultaneously provided two-dimensional curtains of atmospheric backscatter and humidity along the flight track with high accuracy and spatial resolution, in order to help improve our knowledge on the coupling between water vapor, clouds, and circulation in the trades. The variability of water vapor, ubiquitous in our measurements, poses challenges to climate models because it acts on the small-scale low-cloud cover. Aloft, the very dry free troposphere in the subsiding branch of the Hadley cell acts as an open window in a greenhouse, efficiently cooling the lower troposphere. Secondary circulations between radiatively heated and cooled regions are supposed to occur, adding complexity to the situation. After recently having identified them to be mainly responsible for the uncertainty in global climate sensitivity, such interactions between shallow convection, circulation and radiation are at the heart of present scientific debate, endorsed by the WCRP (World Climate Research Programme) "Grand Challenge on Clouds, Circulation and Climate Sensitivity". Out of the wealth of about 30 winter and 60 summer flight hours totaling 75000 km of data over the Tropical Atlantic Ocean east of Barbados, several representative lidar segments from different flights are presented, together with Meteosat Second Generation (MSG) images and dropsonde profiles. All observations indicate high heterogeneity of the humidity in the lowest 5 km, as well as high variability of the depth of the cloud layer (1 - 2 km thick) and of the sub-cloud boundary layer ( 1 km thick). Layer depths and partial water vapor columns within the layers may vary by up to a factor of 2, and on a large range of horizontal scales. Occasionally, very dry, up

  14. Methods of Measuring Vapor Pressures of Lubricants With Their Additives Using TGA and/or Microbalances

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Miller, Michael K.; Montoya, Alex F.

    1996-01-01

    The life of a space system may be critically dependent on the lubrication of some of its moving parts. The vapor pressure, the quantity of the available lubricant, the temperature and the exhaust venting conductance passage are important considerations in the selection and application of a lubricant. In addition, the oil additives employed to provide certain properties of low friction, surface tension, antioxidant and load bearing characteristics, are also very important and need to be known with regard to their amounts and vapor pressures. This paper reports on the measurements and analyses carried out to obtain those parameters for two often employed lubricants, the Apiezon(TM)-C and the Krytox(TM) AB. The measurements were made employing an electronic microbalance and a thermogravimetric analyzer (TGA) modified to operate in a vacuum. The results have been compared to other data on these oils when available. The identification of the mass fractions of the additives in the oil and their vapor pressures as a function of the temperature were carried out. These may be used to estimate the lubricant life given its quantity and the system vent exhaust conductance. It was found that the Apiezon(TM)-C has three main components with different rates of evaporation while the Krytox(TM) did not indicate any measurable additive.

  15. Using JPSS Retrievals to Implement a Multisensor, Synoptic, Layered Water Vapor Product for Forecasters

    NASA Astrophysics Data System (ADS)

    Forsythe, J. M.; Jones, A. S.; Kidder, S. Q.; Fuell, K.; LeRoy, A.; Bikos, D.; Szoke, E.

    2015-12-01

    Forecasters have been using the NOAA operational blended total precipitable water (TPW) product, developed by the Cooperative Institute for Research in the Atmosphere (CIRA), since 2009. Blended TPW has a wide variety of uses related to heavy precipitation and flooding, such as measuring the amount of moisture in an atmospheric river originating in the tropics. But blended TPW conveys no information on the vertical distribution of moisture, which is relevant to a variety of forecast concerns. Vertical profile information is particularly lacking over the oceans for landfalling storms. A blended six-satellite, four-layer, layered water vapor product demonstrated by CIRA and the NASA Short-term Prediction Research and Transition Center (SPoRT) in allows forecasters to see the vertical distribution of water vapor in near real-time. National Weather Service (NWS) forecaster feedback indicated that this new, vertically-resolved view of water vapor has a substantial impact on forecasts. This product uses NOAA investments in polar orbiting satellite sounding retrievals from passive microwave radiances, in particular, the Microwave Integrated Retrieval System (MIRS). The product currently utilizes data from the NOAA-18 and -19 spacecraft, Metop-A and -B, and the Defense Meteorological Program (DMSP) F18 spacecraft. The sounding instruments onboard the Suomi-NPP and JPSS spacecraft will be cornerstone instruments in the future evolution of this product. Applications of the product to heavy rain cases will be presented and compared to commonly used data such as radiosondes and Geostationary Operational Environmental Satellite (GOES) water vapor channel imagery. Research is currently beginning to implement advective blending, where model winds are used to move the water vapor profiles to a common time. Interactions with the NOAA Satellite Analysis Branch (SAB), National Center for Environmental Prediction (NCEP) centers including the Ocean Prediction Center (OPC) and Weather

  16. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study.

    PubMed

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-28

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  17. Continuation of the NVAP Global Water Vapor Data Sets for Pathfinder Science Analysis

    NASA Technical Reports Server (NTRS)

    VonderHaar, Thomas H.; Engelen, Richard J.; Forsythe, John M.; Randel, David L.; Ruston, Benjamin C.; Woo, Shannon; Dodge, James (Technical Monitor)

    2001-01-01

    This annual report covers August 2000 - August 2001 under NASA contract NASW-0032, entitled "Continuation of the NVAP (NASA's Water Vapor Project) Global Water Vapor Data Sets for Pathfinder Science Analysis". NASA has created a list of Earth Science Research Questions which are outlined by Asrar, et al. Particularly relevant to NVAP are the following questions: (a) How are global precipitation, evaporation, and the cycling of water changing? (b) What trends in atmospheric constituents and solar radiation are driving global climate? (c) How well can long-term climatic trends be assessed or predicted? Water vapor is a key greenhouse gas, and an understanding of its behavior is essential in global climate studies. Therefore, NVAP plays a key role in addressing the above climate questions by creating a long-term global water vapor dataset and by updating the dataset with recent advances in satellite instrumentation. The NVAP dataset produced from 1988-1998 has found wide use in the scientific community. Studies of interannual variability are particularly important. A recent paper by Simpson, et al. that examined the NVAP dataset in detail has shown that its relative accuracy is sufficient for the variability studies that contribute toward meeting NASA's goals. In the past year, we have made steady progress towards continuing production of this high-quality dataset as well as performing our own investigations of the data. This report summarizes the past year's work on production of the NVAP dataset and presents results of analyses we have performed in the past year.

  18. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    NASA Astrophysics Data System (ADS)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  19. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, J. M.; Schmid, Beat; Russell, P. B.

    In January-February 2003 the 14-channel NASA Ames Airborne Tracking Sunphotometer 30 (AATS) and the NASA Langley/Ames Diode Laser Hygrometer (DLH) were flown on the NASA DC-8 aircraft. AATS measured column water vapor on the aircraft-to-sun path, while DLH measured local water vapor in the free stream between the aircraft fuselage and an outboard engine cowling. The AATS and DLH measurements were compared for two DC-8 vertical profiles by differentiating the AATS column measurement and/or integrating the DLH local measurement over the altitude range of each profile (7.7-10 km and 1.2-12.5 km). These comparisons extend, for the first time, tests ofmore » AATS water vapor retrievals to altitudes >~6 km and column contents <0.1 g cm-2. To our knowledge this is the first time suborbital spectroscopic water vapor measurements using the 940-nm band have been tested in conditions so high and dry. For both profiles layer water vapor (LWV) from AATS and DLH were highly correlated, with r2 0.998, rms difference 7.2% and bias (AATS minus DLH) 0.9%. For water vapor densities AATS and DLH had r2 0.968, rms difference 27.6%, and bias (AATS minus DLH) -4.2%. These results compare favorably with previous comparisons of AATS water vapor to in situ results for altitudes <~6 km, columns ~0.1 to 5 g cm-2 and densities ~0.1 to 17 g m-3.« less

  20. Analysis of the saturation phenomena of the neutralization rate of positively charged 218Po in water vapor.

    PubMed

    Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian

    2014-09-01

    Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high.

  1. Water vapor δ(2) H, δ(18) O and δ(17) O measurements using an off-axis integrated cavity output spectrometer - sensitivity to water vapor concentration, delta value and averaging-time.

    PubMed

    Tian, Chao; Wang, Lixin; Novick, Kimberly A

    2016-10-15

    High-precision analysis of atmospheric water vapor isotope compositions, especially δ(17) O values, can be used to improve our understanding of multiple hydrological and meteorological processes (e.g., differentiate equilibrium or kinetic fractionation). This study focused on assessing, for the first time, how the accuracy and precision of vapor δ(17) O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time. A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ(2) H, δ(18) O and δ(17) O measurements. The sensitivity of accuracy and precision to water vapor concentration was evaluated using two international standards (GISP and SLAP2). The sensitivity of precision to delta value was evaluated using four working standards spanning a large delta range. The sensitivity of precision to averaging-time was assessed by measuring one standard continuously for 24 hours. Overall, the accuracy and precision of the δ(2) H, δ(18) O and δ(17) O measurements were high. Across all vapor concentrations, the accuracy of δ(2) H, δ(18) O and δ(17) O observations ranged from 0.10‰ to 1.84‰, 0.08‰ to 0.86‰ and 0.06‰ to 0.62‰, respectively, and the precision ranged from 0.099‰ to 0.430‰, 0.009‰ to 0.080‰ and 0.022‰ to 0.054‰, respectively. The accuracy and precision of all isotope measurements were sensitive to concentration, with the higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000-15000 ppm) for all isotopes. The precision was also sensitive to the range of delta values, although the effect was not as large compared with the sensitivity to concentration. The precision was much less sensitive to averaging-time than the concentration and delta range effects. The accuracy and precision performance of the T-WVIA depend on concentration but depend less on the delta value and averaging-time. The instrument can

  2. The Use of Water Vapor for Detecting Environments that Lead to Convectively Produced Heavy Precipitation and Flash Floods

    NASA Technical Reports Server (NTRS)

    Scofield, Rod; Vicente, Gilberto; Hodges, Mike

    2000-01-01

    This Tech Report summarizes years of study and experiences on using GOES Water vapor (6.7 micron and precipitable water) and Special Sensor Microwave Imager (SSM/1) from the Defense Meteorological Satellite Program (DMSP) derived Precipitable Water (PNAI) for detecting environments favorable for convectively produced flash floods. An emphasis is on the moisture. upper air flow, and equivalent potential temperature (Theta(sub e)) patterns that lead to devastating flood events. The 15 minute 6.7 micron water vapor imagery is essential for tracking middle to upper tropospheric disturbances that produce upward vertical motion and initiate flash flood producing systems. Water vapor imagery at 6.7 micron is also used to detect surges of upper level moisture (called tropical water vapor plumes) that have been associated with extremely heavy rainfall. Since the water vapor readily depicts lifting mechanisms and upper level moisture, water vapor imagery is often an excellent source of data for recognizing patterns of heavy precipitation and flash floods. In order to analyze the depth of the moisture, the PW aspects of the troposphere must be measured. The collocation (or nearby location) of high values ofP\\V and instability are antecedent conditions prior to the flash flood or heavy rainfall events. Knowledge of PW magnitudes have been used as thresholds for impending flash flood events, PW trends are essential in flash flood prediction. Conceptual models and water vapor products are used to study some of the characteristics of convective systems that occurred over the United States of America (USA) during the summer of 1997 and the 1997-1998 El Nino. P\\V plumes were associated with most of the \\vest coast heavy precipitation events examined during the winter season of 1997 - 1998, In another study, conducted during the summer season of 1997. results showed that the collocation of water vapor (6.7 micron) and P\\N' plumes possessed higher correlations with predicted

  3. The Water Vapor Source and Transport Characteristic of Rainy Seasons in Eastern China Base on Lagrangian Method

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Jiang, Z.; Liu, Z.; Li, L.

    2017-12-01

    The Hybrid Single-Particle Lagrangian Integrated Trajectory platform is employed in this studyto simulate trajectories of air parcels in the different rainy seasons in East China from 1961 to 2010,with the purpose of investigating general and specific characteristics of moisture sources and the eventual relationship withprecipitation in each rainy season.The moisture transport andsource-sink characteristics of different rainy seasons have evident differences. The results show that the frontal pre-rainy season is mainly influenced bywinter monsoon system, and the precipitation is strongly affected by water vapor from Pacific Ocean (PO) and East China (EC). Afterthe onset of South China Sea Summer Monsoon (SCSMS), the moisture from Pacific Ocean decreases and from Indian Ocean monsoon area increases. Afterwards, with the northward of the rain belt, the parcels from Southwest region (South China Sea (SCS), Indian Ocean (IO) andIndo-China Peninsula and Indian Peninsula(IP)) decrease and from North region (EC, Eurasia (EA) and PO) increase. Besides, most of the land areas are water vapor sink region and most of sea areas are water vapor source region. Before the onset of SCSMS, EC and PO are two main water vapor source areas.After the onset of SCSMS, the source from PO decreasesand Indian monsoon area becomes the main vapor source region. IP is the main water vapor sink area for all four rainy seasons.As for moisture circulation characteristics, the results of vertical structure of water vapor transport indicate that the maximum water vapor transport in west and east boundaries is located in mid-troposphere and in south and north boundaries is at low-troposphere. The spatiotemporal analysis of moisture trajectory based onmultivariate empirical orthogonal function (MVEOF) indicates that the first mode has close relationship with the precipitation in North China and PDO pattern; the second mode is closely related with the precipitation in Yangtze-Huaihe river basin and

  4. Internal Consistency of the NVAP Water Vapor Dataset

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The NVAP (NASA Water Vapor Project) dataset is a global dataset at 1 x 1 degree spatial resolution consisting of daily, pentad, and monthly atmospheric precipitable water (PW) products. The analysis blends measurements from the Television and Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS), the Special Sensor Microwave/Imager (SSM/I), and radiosonde observations into a daily collage of PW. The original dataset consisted of five years of data from 1988 to 1992. Recent updates have added three additional years (1993-1995) and incorporated procedural and algorithm changes from the original methodology. Since each of the PW sources (TOVS, SSM/I, and radiosonde) do not provide global coverage, each of these sources compliment one another by providing spatial coverage over regions and during times where the other is not available. For this type of spatial and temporal blending to be successful, each of the source components should have similar or compatible accuracies. If this is not the case, regional and time varying biases may be manifested in the NVAP dataset. This study examines the consistency of the NVAP source data by comparing daily collocated TOVS and SSM/I PW retrievals with collocated radiosonde PW observations. The daily PW intercomparisons are performed over the time period of the dataset and for various regions.

  5. Observational Evidence of Changes in Water Vapor, Clouds, and Radiation at the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Minnus, Patrick

    2006-01-01

    Characterizing water vapor and cloud effects on the surface radiation budget is critical for understanding the current climate because water vapor is the most important greenhouse gas in the atmosphere and clouds are one of the largest sources of uncertainty in predicting potential future climate change. Several studies have shown that insolation over land declined until 1990 then increased until the present. Using 8 years of surface data, we observed the increasing trend of insolation from 1997 to 2000, but detected a significant decrease from 2001 to 2004. The variation of cloud fraction mirrors that of insolation with an overall increase of 1 percent per year. Under clear-sky conditions, water vapor changes have a greater impact on longwave flux than on insolation.

  6. Annual variations of water vapor in the stratosphere and upper troposphere observed by the Stratospheric Aerosol and Gas Experiment II

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chiou, E. W.; Mcmaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-01-01

    Data collected by the Stratospheric Aerosol and Gas Experiment II are presented, showing annual variations of water vapor in the stratosphere and the upper troposphere. The altitude-time cross sections of water vapor were found to exhibit annually repeatable patterns in both hemispheres, with a yearly minimum in water vapor appearing in both hemispheres at about the same time, supporting the concept of a common source for stratospheric dry air. A linear regression analysis was applied to the three-year data set to elucidate global values and variations of water vapor ratio.

  7. Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures.

    PubMed

    Baral, Susil; Green, Andrew J; Livshits, Maksim Y; Govorov, Alexander O; Richardson, Hugh H

    2014-02-25

    The phase transformation properties of liquid water to vapor is characterized by optical excitation of the lithographically fabricated single gold nanowrenches and contrasted to the phase transformation properties of gold nanoparticles located and optically excited in a bulk solution system [two and three dimensions]. The 532 nm continuous wave excitation of a single gold nanowrench results in superheating of the water to the spinodal decomposition temperature of 580 ± 20 K with bubble formation below the spinodal decomposition temperature being a rare event. Between the spinodal decomposition temperature and the boiling point liquid water is trapped into a metastable state because a barrier to vapor nucleation exists that must be overcome before the thermodynamically stable state is realized. The phase transformation for an optically heated single gold nanowrench is different from the phase transformation of optically excited colloidal gold nanoparticles solution where collective heating effects dominates and leads to the boiling of the solution exactly at the boiling point. In the solution case, the optically excited ensemble of nanoparticles collectively raises the ambient temperature of water to the boiling point where liquid is converted into vapor. The striking difference in the boiling properties of the single gold nanowrench and the nanoparticle solution system can be explained in terms of the vapor-nucleation mechanism, the volume of the overheated liquid, and the collective heating effect. The interpretation of the observed regimes of heating and vaporization is consistent with our theoretical modeling. In particular, we explain with our theory why the boiling with the collective heating in a solution requires 3 orders of magnitude less intensity compared to the case of optically driven single nanowrench.

  8. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OL)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  9. Fatigue crack growth in 7475-T651 aluminum alloy plate in hard vacuum and water vapor. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1981-01-01

    Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.

  10. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    NASA Technical Reports Server (NTRS)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  11. Toward an operational water vapor remote sensing system using the global positioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, S.I.; Chadwick, R.B.; Wolf, d.W.

    1995-04-01

    Water vapor is one of the most important constituents of the free atmosphere since it is the principal mechanism by which moisture and latent heat are transported and cause weather. Recent experiments have demonstrated that data from Global Positioning System (GPS) satellites can be used to monitor precipitable water vapor (PWV) with millimeter accuracy and sub-hourly temporal resolution. Major advantages of GPS-based systems include the following: they work under virtually all weather conditions; individual systems do not have to be calibrated; and, they are relatively inexpensive.

  12. Clouds and Water Vapor in the Climate System: Remotely Piloted Aircraft and Satellites

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    1999-01-01

    The objective of this work was to attack unanswered questions that lie at the intersection of radiation, dynamics, chemistry and climate. Considerable emphasis was placed on scientific collaboration and the innovative development of instruments required to address these scientific issues. The specific questions addressed include: Water vapor distribution in the Tropical Troposphere: An understanding of the mechanisms that dictate the distribution of water vapor in the middle-upper troposphere; Atmospheric Radiation: In the spectral region between 200 and 600/cm that encompasses the water vapor rotational and continuum structure, where most of the radiative cooling of the upper troposphere occurs, there is a critical need to test radiative transfer calculations using accurate, spectrally resolved radiance observations of the cold atmosphere obtained simultaneously with in situ species concentrations; Thin Cirrus: Cirrus clouds play a central role in the energy and water budgets of the tropical tropopause region; Stratosphere-Troposphere Exchange: Assessment of our ability to predict the behavior of the atmosphere to changes in the boundary conditions defined by thermal, chemical or biological variables; Correlative Science with Satellite Observations: Linking this research to the developing series of EOS observations is critical for scientific progress.

  13. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor.

    PubMed

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K

    2018-06-06

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  14. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor

    NASA Astrophysics Data System (ADS)

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K.

    2018-06-01

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  15. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  16. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    PubMed

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  17. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    PubMed

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  18. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OLS)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  19. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES

  20. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  1. Diurnal variations in water vapor over Central and South America

    NASA Astrophysics Data System (ADS)

    Meza, Amalia; Mendoza, Luciano; Clara, Bianchi

    2017-04-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 70 GNSS tracking sites (GPS + GLONASS) belonging to Central and South America, which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, and diverse relieves, therefore the patterns of IWV diurnal variations are very different for each station. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). Firstly, our work study the main characteristics of the IWV diurnal cycle (and for surface temperature, T) obtained for all stations together, using Principal Component Analysis (PCA). First and second PCA modes highlight the global main behaviors of IWV variability for all stations. The first mode on IWV represent the 70% of the variability and could be related to the surface evapotranspiration, while the second mode (27 % of the variability) is practically in counter phase to T variability (its first mode represent the 97% of the variability), therefore this mode could be related to breeze regime. Then, every station is separately analyzed and seasonal and local variations (relative to the relives) are detected, these results spotlight, among other characteristics, the sea and mountain breeze regime. This presentation shows the first analysis of IWV diurnal cycle performed over Central and South America and another original characteristic is PCA technique employed to infer the results. Reference: Dai, A., K. E. Trenberth, and T. R. Karl

  2. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  3. A feasibility study of a microwave water vapor measurement from a space probe along an occultation path

    NASA Technical Reports Server (NTRS)

    Longbothum, R. L.

    1975-01-01

    Stratospheric and mesospheric water vapor measurements were taken using the microwave lines at 22 GHz (22.235 GHz) and 183 GHz (183.31 GHz). The resonant cross sections for both the 22 GHz and the 183 GHz lines were used to model the optical depth of atmospheric water vapor. The range of optical depths seen by a microwave radiometer through the earth's limb was determined from radiative transfer theory. Radiometer sensitivity, derived from signal theory, was compared with calculated optical depths to determine the maximum height to which water vapor can be measured using the following methods: passive emission, passive absorption, and active absorption. It was concluded that measurements using the 22 GHz line are limited to about 50 km whereas the 183 GHz line enables measurements up to and above 100 km for water vapor mixing ratios as low as 0.1 ppm under optimum conditions.

  4. Effect of Plasma Treatment on Air and Water-Vapor Permeability of Bamboo Knitted Fabric

    NASA Astrophysics Data System (ADS)

    Prakash, C.; Ramakrishnan, G.; Chinnadurai, S.; Vignesh, S.; Senthilkumar, M.

    2013-11-01

    In this paper, the effects of oxygen and atmospheric plasma on air and water-vapor permeability properties of single jersey bamboo fabric have been investigated. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn friction force induced by the plasma treatments. The outcomes showed that the water-vapor permeability increased, although the air permeability decreased along with the plasma treatments. The SEM images clearly showed that the plasma modified the fiber surface outwardly. The results showed that the atmospheric plasma has an etching effect and increases the functionality of a bamboo surface, which is evident from SEM and FTIR-ATR analysis. These results reveal that atmospheric pressure plasma treatment is an effective method to improve the performance of bamboo fabric. Statistical analysis also indicates that the results are significant for air permeability and water-vapor permeability of the plasma-treated bamboo fabric.

  5. WATER VAPOR IN THE PROTOPLANETARY DISK OF DG Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podio, L.; Dougados, C.; Thi, W.-F.

    2013-03-20

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high-excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most water ice reservoirs are stored, was only reported in the nearby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para-water ground-state transitions at 557 and 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are {approx}19-26more » times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H{sub 2}O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 M{sub Sun }, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of {approx}10{sup 2}-10{sup 3} Earth oceans in vapor and {approx}100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by the impact of icy bodies forming in the outer disk.« less

  6. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  7. The impact of water vapor assimilation on quantitative precipitation forecast over the Washington, DC metropolitan area

    NASA Astrophysics Data System (ADS)

    Walford, Segayle Cereta

    Forecasting subtle, small-scale convective cases in both winter and summer time is an ongoing challenge in weather forecasting. Recent studies have shown that better structure of moisture within the boundary layer is crucial for improving forecasting skills, particularly quantitative precipitation forecasting (QPF). Lidars, which take high temporal observations of moisture, are able to capture very detailed structures, especially within the boundary layer where convection often begins. This study first investigates the extent to which an aerosol and a water vapor lidar are able to capture key boundary layer processes necessary for the development of convection. The results of this preliminary study show that the water vapor lidar is best able to capture the small scale water vapor variability that is necessary for the development of convection. These results are then used to investigate impacts of assimilating moisture from the Howard University Raman Lidar (HURL) for one mesoscale convective case, July 27-28, 2006. The data for this case is from the Water Vapor Validation Experiment-Satellite and Sondes (WAVES) field campaign located at the Howard University Beltsville Site (HUBS) in Beltsville, MD. Specifically, lidar-based water vapor mixing ratio profiles are assimilated into the Weather Research and Forecasting (WRF) regional model over a 4 km grid resolution over Washington, DC. Model verification is conducted using the Meteorological Evaluation Tool (MET) and the results from the lidar run are then compared to a control (no assimilation) run. The findings indicate that quantitatively conclusions cannot be draw from this one case study. However, qualitatively, the assimilation of the lidar observations improved the equivalent potential temperature, and water vapor distribution of the region. This difference changed location, strength and spatial coverage of the convective system over the HUBS region.

  8. Evidence of water vapor in excess of saturation in the atmosphere of Mars.

    PubMed

    Maltagliati, L; Montmessin, F; Fedorova, A; Korablev, O; Forget, F; Bertaux, J-L

    2011-09-30

    The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.

  9. Comparison of Columnar Water Vapor Measurements During The Fall 1997 ARM Intensive Observation Period: Optical Methods

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Michalsky, J.; Slater, D.; Barnard, J.; Halthore, R.; Liljegren, J.; Holben, B.; Eck, T.; Livingston, J.; Russell, P.; hide

    2000-01-01

    In the fall of 1997 the Atmospheric Radiation Measurement (ARM program conducted an intensive Observation Period (IOP) to study water vapor at its Southern Great Plains (SGP) site. Among the large number of instruments, four sun-tracking radiometers were present to measure the columnar water vapor (CWV). All four solar radiometers retrieve CWV by measuring solar transmittance in the 0.94-micrometer water vapor absorption band. As one of the steps in the CWV retrievals the aerosol component is subtracted from the total transmittance, in the 0.94-micrometer band. The aerosol optical depth comparisons among the same four radiometers are presented elsewhere. We have used three different methods to retrieve CWV. Without attempting to standardize on the same radiative transfer model and its underlying water vapor spectroscopy we found the CWV to agree within 0.13 cm (rms) for CWV values ranging from 1 to 5 cm. Preliminary results obtained when using the same updated radiative transfer model with updated spectroscopy for all instruments will also be shown. Comparisons to the microwave radiometer results will be included in the comparisons.

  10. Amino acids at water-vapor interfaces: surface activity and orientational ordering.

    PubMed

    Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro

    2010-10-14

    The surface activity and orientational ordering of amino acids at water-vapor interfaces were studied with molecular dynamics simulations in combination with thermodynamic integration and umbrella sampling. Asparagine, representing amino acids with polar side chains, displays no surface activity. Tryptophan, in contrast, with its hydrophobic indole ring as side chain unveils a free energy minimum at the water-vapor interface, which lies 6 kJ/mol under the hydration free energy. To study the orientational ordering of tryptophan along the interface, the order parameter was calculated. At the free energy minimum and at the Gibbs dividing surface, the order parameter reveals a parallel alignment of the indole ring with the water surface exposing the π-system to electrophiles in the hydrophobic phase and indicating polarization dependent spectroscopy. In the vicinity of this position a perpendicular orientation is obtained. The surface excess, calculated from the potential of mean force along the interface, is in excellent agreement with experimental measurements.

  11. Nimbus 7 SMMR Derived Seasonal Variations in the Water Vapor, Liquid Water and Surface Winds over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.

  12. Stratospheric areal distribution of water vapor burden and the jet stream

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Magaziner, E.; Stearns, L. P.

    1976-01-01

    Radiometrically inferred areal observations of the atmospheric water vapor burden have been made in the 270 to 520 per cm spectral band over western U.S. and the extreme eastern Pacific from the NASA C-141 Kuiper Airborne Observatory. Before this, very few observations from the upper troposphere and lower stratosphere over such a broad area have been made. A total of 30,600 individual observations from eight separate synoptic situations involving eight jet maxima were computer-averaged over 2-deg latitude x 2-deg longitude boxes and related to the polar continental jet. Mean water vapor burdens ranged from 0.00046 to 0.00143 g per sq cm at 13.4 km with a striking peak just north of the jet wind maximum over a region of strong upward vertical motion.

  13. Preparation and Characterization of Composites Based on Polylactic Acid and Beeswax with Improved Water Vapor Barrier Properties.

    PubMed

    Lim, Jung Hoon; Kim, Jeong Ae; Ko, Jung A; Park, Hyun Jin

    2015-11-01

    Beeswax and a plasticizer (ATBC) were added to polylactic acid (PLA) films in order to enhance the water vapor barrier properties of the films. Beeswax improved the barrier properties; the water vapor permeability in the composite containing 1% beeswax was 58% lower than that of the neat PLA. Fourier transform infrared spectroscopy and X-ray diffraction analysis revealed that the incorporation of beeswax and ATBC had so little effect on the PLA structure. In addition, the structure of PLA did not vary substantially with the additions. The surfaces of the composites were examined by using field emission scanning electron microscopy. Differential scanning calorimetry results showed that the degree of crystallinity of the PLA films increased with the addition of beeswax and ATBC. However, the tensile strength and elongation at break of the composites containing beeswax were up to approximately 50% lower than those of the neat PLA. Although further study is needed to improve the mechanical properties, the aforementioned results showed that the PLA barrier properties can be improved by the incorporation of a small amount of beeswax and ATBC. The results of this study can be applied for the preparation of PLA composite films with improved barrier properties. Such biodegradable films are extremely useful for applications in the food packaging industry. © 2015 Institute of Food Technologists®

  14. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Lee, Jae N.

    2015-01-01

    Additional changes in Version-6.19 include all previous updates made to the q(p) retrieval since Version-6: Modified Neural-Net q0(p) guess above the tropopause Linearly tapers the neural net guess to match climatology at 70 mb, not at the top of the atmosphereChanged the 11 trapezoid q(p) perturbation functions used in Version-6 so as to match the 24 functions used in T(p) retrieval step. These modifications resulted in improved water vapor profiles in Version-6.19 compared to Version-6.Version-6.19 is tested for all of August 2013 and August 2014, as well for select other days. Before finalized and operational in 2016, the V-6.19 can be acquired upon request for limited time intervals.

  15. Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry

    NASA Technical Reports Server (NTRS)

    Racette, Paul E.; Westwater, Ed R.; Han, Yong; Gasiewski, Albin J.; Klein, Marian; Cimini, Domenico; Jones, David C.; Manning, WIll; Kim, Edward J.; Wang, James R.

    2003-01-01

    Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as as 1-2 mm commonly occur in high-latitude regions during the winter months. While such atmospheres carry only a few percent of the latent heat energy compared to tropical atmospheres, the effects of low vapor amounts on the polar radiation budget - both directly through modulation of longwave radiation and indirectly through the formation of clouds - are considerable. Accurate measurements of precipitable water vapor (PWV) during such dry conditions are needed to improve polar radiation models for use in understanding and predicting change in the climatically sensitive polar regions. To this end, the strong water vapor absorption at 183.310 GHz provides a unique means of measuring low amounts of PWV. Weighting function analysis, forward model calculations based upon a 7-year radiosonde dataset, and retrieval simulations consistently predict that radiometric measurements made using several millimeter-wavelength (MMW) channels near the 183 GHz line, together with established microwave (MW) measurements at the 22.235 GHz water vapor line and -3 1 GHz atmospheric absorption window can be used to determine within 5% uncertainty the full range of PWV expected in the Arctic. This unique collective capability stands in spite of accuracy limitations stemming from uncertainties due to the sensitivity of the vertical distribution of temperature and water vapor at MMW channels. In this study the potential of MMW radiometry using the 183 GHz line for measuring low amounts of PWV is demonstrated both theoretically and experimentally. The study uses data obtained during March 1999 as part of an experiment conducted at the Department of Energy s Cloud and Radiation Testbed (CART) near Barrow, Alaska. Several radiometers from both NOAA and NASA were deployed during the experiment to provide the first combined MMW and MW ground-based data set during dry arctic conditions. Single-channel retrievals

  16. Long-term stable water vapor permeation barrier properties of SiN/SiCN/SiN nanolaminated multilayers grown by plasma-enhanced chemical vapor deposition at extremely low pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Bum Ho, E-mail: bhchoi@kitech.re.kr; Lee, Jong Ho

    2014-08-04

    We investigated the water vapor permeation barrier properties of 30-nm-thick SiN/SiCN/SiN nanolaminated multilayer structures grown by plasma enhanced chemical vapor deposition at 7 mTorr. The derived water vapor transmission rate was 1.12 × 10{sup −6} g/(m{sup 2} day) at 85 °C and 85% relative humidity, and this value was maintained up to 15 000 h of aging time. The X-ray diffraction patterns revealed that the nanolaminated film was composed of an amorphous phase. A mixed phase was observed upon performing high resolution transmission electron microscope analysis, which indicated that a thermodynamically stable structure was formed. It was revealed amorphous SiN/SiCN/SiN multilayer structures that are freemore » from intermixed interface defects effectively block water vapor permeation into active layer.« less

  17. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  18. The simulation of stratospheric water vapor in the NH summer monsoon regions in a suite of WACCM models

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wu, Y.; Huang, Y.; Tilmes, S.

    2016-12-01

    Water vapor maxima are found in the upper troposphere lower stratosphere (UTLS) over Asian and North America monsoon regions during Northern Hemisphere (NH) summer months. High concentrations of stratospheric water vapor are associated with the upper-level anticyclonic circulation and they play an important role in the radiative forcing for the climate system. However, discrepancies in the simulation of stratospheric water vapor are found among different models. In this study, we use both observational data: Aura Microwave Limb Sounder satellite observations (MLS), the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) and chemistry climate model outputs: different configurations of the Whole Atmosphere Community Climate Model (WACCM), including standard configuration of WACCM, WACCM L110, specified chemistry (SC) WACCM and specified dynamics (SD) WACCM. We find that WACCM L110 with finer vertical resolution better simulates the stratospheric water vapor maxima over the summer monsoon regions. To better understand the mechanism, we examine the simulated temperature at around 100 hPa since 100 hPa is known to act as a dehydration mechanism, i.e. the warmer the temperature, the wetter the stratospheric water vapor. We find that both WACCM L110 and SD-WACCM better simulate the temperature at 100 hPa as compared to that of MERRA2. This suggests that improving model vertical resolution and dynamical processes in the UTLS is crucial in simulating the stratospheric water vapor concentrations.

  19. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation

    PubMed Central

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H.; Morales, Ricardo; Moore, Richard H.; Lathem, Terry L.; Lance, Sara; Padró, Luz T.; Lin, Jack J.; Cerully, Kate M.; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R.; Chuang, Patrick Y.; Anderson, Bruce E.; Flagan, Richard C.; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N.

    2013-01-01

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought. PMID:23431189

  20. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  1. Measurements of Water Vapor Profiles with Compact DIAL in the Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Abo, Makoto; Sakai, Tetsu; Le Hoai, Phong Pham; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    In recent years, the frequency of occurrence of locally heavy rainfall that can cause extensive damages, has been increasing in Japan. For early prediction of heavy rainfall, it is useful to measure the water vapor vertical distribution upwind cumulus convection beforehand. For that purpose, we have been developing compact water vapor differential absorption lidar (DIAL). We show the results of the measurements with lidar in summer when the local heavy rainfall frequently occurs in Japan. We also show the preliminary result of the assimilation of the lidar data to the numerical model and impact on the heavy rainfall prediction.

  2. Effect of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate. [for aerospace applications

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1984-01-01

    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.

  3. Observing Tropospheric Water Vapor by Radio Occultation using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kursinski, E. R.; Hajj, G. A.; Hardy, K. R.; Romans, L. J.; Schofield, J. T.

    1995-01-01

    Given the importance of water vapor to weather, climate and hydrology, global humidity observations from satellites are critical. At low latitudes, radio occultation observations of Earth's atmosphere using the Global Positioning System (GPS) satellites allow water vapor profiles to be retrieved with accuracies of 10 to 20% below 6 to 7 km altitude and approx. 5% or better within the boundary layer. GPS observations provide a unique combination of accuracy, vertical resolution (less than or equal to 1 km) and insensitivity to cloud and aerosol particles that is well suited to observations of the lower troposphere. These characteristics combined with the inherent stability of radio occultation observations make it an excellent candidate for the measurement of long term trends.

  4. Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maerzke, K A; McGrath, M J; Kuo, I W

    2009-03-16

    Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and over-estimated, respectively.« less

  5. Development of Raman-Mie lidar system for aerosol and water vapor profiling

    NASA Astrophysics Data System (ADS)

    Deng, Qian; Wang, Zhenzhu; Xu, Jiwei; Tan, Min; Wu, Decheng; Xie, Chenbo; Liu, Dong; Wang, Yingjian

    2018-03-01

    Aerosol and water vapor are two important atmospheric parameters. The accurate quantification of diurnal variation of these parameters are very useful for environment assessment and climate change studies. A moveable, compact and unattended lidar system based on modular design is developed for aerosol extinction coefficients and water vapor mixing ratios measurements. In the southern suburbs of Beijing, the continuous observation was carried out by this lidar since the middle of the year of 2017. The lidar equipment is presented and the case study is also described in this paper. The observational results show that the lidar kept a very good status from the long-time continuous measurements which is suitable for networking especially in meteorological research field.

  6. Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging.

    PubMed

    Lu, Peng; Xiao, Huining; Zhang, Weiwei; Gong, Glen

    2014-10-13

    Nanofibrillated cellulose (NFC) easily forms a high strength film but is unable to withstand the influence of water vapor when used in high moisture situations. The water vapor transmission rate (WVTR) of a NFC film was as high as 5088 g/m(2)24h (38 °C, 90% RH). The addition of beeswax latex in a NFC casting film (NFX) lowered the WVTR to 3918 g/m(2)24h. To further reduce the WVTR, a coating agent comprised of acrylated epoxidized soybean oil (AESO) and 3-aminopropyltriethoxysilane (APTS) was applied onto the NFX film using a rod coater. A combination of the suitable AESO/APTS ratio, initiator dosing, curing time and temperature could reduce the WVTR to 188 g/m(2) 24h when the coat weight was 5 g/m(2). Moreover, the coated NFX film was highly hydrophobic along with the improved transparency and thermal stability. This biodegradable polymer-coated NFC film can be used as potential packaging barrier in certain areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films.

    PubMed

    Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan

    2015-11-01

    Biodegradable composite films were prepared using two renewable resources based biopolymers, agar and lignin alkali. The lignin was used as a reinforcing material and agar as a biopolymer matrix. The effect of lignin concentration (1, 3, 5, and 10wt%) on the performance of the composite films was studied. In addition, the mechanical, water vapor barrier, UV light barrier properties, FE-SEM, and TGA of the films were analyzed. The agar/lignin films exhibited higher mechanical and UV barrier properties along with lower water vapor permeability compared to the neat agar film. The FTIR and SEM results showed the compatibility of lignin with agar polymer. The swelling ratio and moisture content of agar/lignin composite films were decreased with increase in lignin content. The thermostability and char content of agar/lignin composite films increased with increased lignin content. The results suggested that agar/lignin films have a potential to be used as a UV barrier food packaging material for maintaining food safety and extending the shelf-life of the packaged food. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts

    NASA Technical Reports Server (NTRS)

    Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.

    1995-01-01

    These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.

  9. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E.; Costa, Maria João; Román, Roberto; Bennouna, Yasmine S.

    2017-12-01

    In this work, the water vapor product from MODIS (MODerate-resolution Imaging Spectroradiometer) instrument, on-board Aqua and Terra satellites, is compared against GPS water vapor data from 21 stations in the Iberian Peninsula as reference. GPS water vapor data is obtained from ground-based receiver stations which measure the delay caused by water vapor in the GPS microwave signals. The study period extends from 2007 until 2012. Regression analysis in every GPS station show that MODIS overestimates low integrated water vapor (IWV) data and tends to underestimate high IWV data. R2 shows a fair agreement, between 0.38 and 0.71. Inter-quartile range (IQR) in every station is around 30-45%. The dependence on several parameters was also analyzed. IWV dependence showed that low IWV are highly overestimated by MODIS, with high IQR (low precision), sharply decreasing as IWV increases. Regarding dependence on solar zenith angle (SZA), performance of MODIS IWV data decreases between 50° and 90°, while night-time MODIS data (infrared) are quite stable. The seasonal cycles of IWV and SZA cause a seasonal dependence on MODIS performance. In summer and winter, MODIS IWV tends to overestimate the reference IWV value, while in spring and autumn the tendency is to underestimate. Low IWV from coastal stations is highly overestimated (∼60%) and quite imprecise (IQR around 60%). On the contrary, high IWV data show very little dependence along seasons. Cloud-fraction (CF) dependence was also studied, showing that clouds display a negligible impact on IWV over/underestimation. However, IQR increases with CF, except in night-time satellite values, which are quite stable.

  10. Modeling Coupled Movement of Water, Vapor, and Energy in Soils and at the Soil-Atmosphere Interface Using HYDRUS

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Brunetti, Giuseppe; Saito, Hirotaka; Bristow, Keith

    2017-04-01

    Mass and energy fluxes in the subsurface are closely coupled and cannot be evaluated without considering their mutual interactions. However, only a few numerical models consider coupled water, vapor and energy transport in both the subsurface and at the soil-atmosphere interface. While hydrological and thermal processes in the subsurface are commonly implemented in existing models, which often consider both isothermally and thermally induced water and vapor flow, the interactions at the soil-atmosphere interface are often simplified, and the effects of slope inclination, slope azimuth, variable surface albedo and plant shading on incoming radiation and spatially variable surface mass and energy balance, and consequently on soil moisture and temperature distributions, are rarely considered. In this presentation we discuss these missing elements and our attempts to implement them into the HYDRUS model. We demonstrate implications of some of these interactions and their impact on the spatial distributions of soil temperature and water content, and their effect on soil evaporation. Additionally, we will demonstrate the use of the HYDRUS model to simulate processes relevant to the ground source heat pump systems.

  11. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; Wang, Lixin; McCabe, Matthew

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  12. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    PubMed

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  13. GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)

    2001-01-01

    The geographic sources of water for the large-scale North American monsoon in a GCM are diagnosed using passive constituent tracers of regional water'sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American i'vionsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of warm season precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.

  14. GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)

    2002-01-01

    The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.

  15. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  16. Water vapor retrieval by LEO and GEO SAR: techniques and performance evaluation.

    NASA Astrophysics Data System (ADS)

    Fermi, Alessandro; Silvio Marzano, Frank; Monti Guarnieri, Andrea; Pierdicca, Nazzareno; Realini, Eugenio; Venuti, Giovanna

    2016-04-01

    The millimetric sensitivity of SAR interferometry has been proved fruitful in estimating water-vapor maps, that can then be processed into higher level ZWD and PWV products. In the paper, we consider two different SAR surveys: Low Earth Orbiting (LEO) SAR, like ESA Sentinel-1, and Geosynchronous Earth Orbiting SAR. The two system are complementary, where LEO coverage is world-wide, while GEO is regional. On the other hand, LEO revisit is daily-to weekly, whereas GEO provides images in minutes to hours. Finally, LEO synthetic aperture is so short, less than a second, that the water-vapor is mostly frozen, whereas in the long GEO aperture the atmospheric phase screen would introduce a total decorrelation, if not compensated for. In the paper, we first review the Differential Interferometric techniques to get differential delay maps - to be then converted into water-vapor products, and then evaluate the quality in terms of geometric resolution, sensitivity, percentage of scene coverage, revisit, by referring to L and C band system, for both LEO and GEO. Finally, we discuss an empirical model for time-space variogram, and show a preliminary validation by campaign conducted with Ground Based Radar, as a proxy of GEO-SAR, capable of continuous scanning wide areas (up to 15 km) with metric resolution.

  17. Influence of water vapor on the electronic property of MoS2 field effect transistors.

    PubMed

    Shu, Jiapei; Wu, Gongtao; Gao, Song; Liu, Bo; Wei, Xianlong; Chen, Qing

    2017-05-19

    The influence of water vapor on the electronic property of MoS 2 field effect transistors (FETs) is studied through controlled experiments. We fabricate supported and suspended FETs on the same piece of MoS 2 to figure out the role of SiO 2 substrate on the water sensing property of MoS 2 . The two kinds of devices show similar response to water vapor and to different treatments, such as pumping in the vacuum, annealing at 500 K and current annealing, indicating the substrate does not play an important role in the MoS 2 water sensor. Water adsorption is found to decrease the carrier mobility probably through introducing a scattering center on the surface of MoS 2 . The threshold voltage and subthreshold swing of the FETs do not change obviously after introducing water vapor, indicating there is no obvious doping and trap introducing effects. Long time pumping in a high vacuum and 500 K annealing show negligible effects on removing the water adsorption on the devices. Current annealing at high source-drain bias is found to be able to remove the water adsorption and set the FETs to their initial states. The mechanism is proposed to be through the hot carriers at high bias.

  18. Implementation of a state of the art automated system for the production of cloud/water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.

    1994-01-01

    The thrust of the proposed effort under this contract is aimed at improving techniques to track water vapor data in sequences of imagery from geostationary satellites. In regards to this task, significant testing, evaluation, and progress was accomplished during this period. Sets of winds derived from Meteosat data were routinely produced during Atlantic hurricane events in the 1993 season. These wind sets were delivered via Internet in real time to the Hurricane Research Division in Miami for their evaluation in a track forecast model. For eighteen cases in which 72-hour forecasts were produced, thirteen resulted in track forecast improvements (some quite significant). In addition, quality-controlled Meteosat water vapor winds produced by NESDIS were validated against rawinsondes, yielding an 8 m/s RMS. This figure is comparable to upper-level cloud drift wind accuracies. Given the complementary horizontal coverage in cloud-free areas, we believe that water vapor vectors can supplement cloud-drift wind information to provide good full-disk coverage of the upper tropospheric flow. The impact of these winds on numerical analysis and forecasts will be tested in the next reporting period.

  19. Eddy Covariance measurements of stable isotopes (δD and δ18O) in water vapor

    NASA Astrophysics Data System (ADS)

    Braden-Behrens, J.; Knohl, A.

    2016-12-01

    Stable isotopes are a promising tool to enhance our understanding of ecosystem gas exchanges. Studying 18O and 2H (D) in water vapour (H2Ov) can e.g. help partitioning evapotranspiration into its components. With recent developments in laser spectroscopy direct Eddy Covariance (EC) measurements to investigate fluxes of stable isotopologues became feasible. But so far only very few case studies applying the EC method to stable isotopes in water vapor have been carried out worldwide At our micrometeorological EC tower in a managed beech forest in Thuringia, Germany, we continuously measure fluxes of water vapor isotopologues using EC since autumn 2015. The set-up is based on an off-axis cavity output water vapor isotope analyzer (WVIA, Los Gatos Research. Inc, USA) that measures the water vapour concentration and its isotopic composition (δD and δ18O). The instrument is optimized for high flow rates (app. 4slpm) to generate high frequent (2Hz) measurements. The HF-optimized WVIA showed sufficient precision with a minimal Allan Deviation of 0.023 ‰ for δD and 0.02 ‰ for δ18O for averaging periods of app. 700 s and 400 s resp. The instrument is calibrated hourly using a high-flow optimized version of the water vapor isotope standard source (WVISS, Los Gatos Research. Inc, USA) that provides water vapor with known isotopic composition for a large range of different concentrations. Our calibration scheme includes a near continuous concentration range calibration instead of a simple 2 or 3-point calibration to face the analyzers large concentration dependency within a range of app. 6 000 to 16 000 ppm in winter and app. 8 000 to 23 000 ppm in summer. We evaluate the calibration approach, present specific aspects of the set-up such as the HF optimization and compare the measured and averaged spectra and cospectra of the isotopologue analyzer with those of the longterm EC installation (using a LI-6262 as well as a LI-7200 infrared gas analyzer at 10 Hz). Furthermore

  20. Modeling Convective Injection of Water Vapor into the Lower Stratosphere in the Mid-Latitudes over North America

    NASA Astrophysics Data System (ADS)

    Clapp, C.; Leroy, S. S.; Anderson, J. G.

    2015-12-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) from the tropics to the poles is important both radiatively and chemically. Water vapor is the most important greenhouse gas, and increases in water vapor concentrations in the UTLS lead to cooling at these levels and induce warming at the surface [Forster and Shine, 1999; 2002;Solomon et al., 2010]. Water vapor is also integral to stratospheric chemistry. It is the dominant source of OH in the lower stratosphere [ Hanisco et al. , 2001], and increases in water vapor concentrations promote stratospheric ozone loss by raising the reactivity of several key heterogeneous reactions as well as by promoting the growth of reactive surface area [Anderson et al., 2012; Carslaw et al., 1995; Carslaw et al., 1997; Drdla and Muller , 2012; Kirk-Davidoff et al., 1999; Shi et al., 2001]. However, the processes that control the distribution and phase of water in this region of the atmosphere are not well understood. This is especially true at mid-latitudes where several different dynamical mechanisms are capable of influencing UTLS water vapor concentrations. The contribution by deep convective storm systems that penetrate into the lower stratosphere is the least well understood and the least well represented in global models because of the small spatial scales and short time scales over which convection occurs. To address this issue, we have begun a modeling study to investigate the convective injection of water vapor from the troposphere into the stratosphere in the mid-latitudes. Fine-scale models have been previously used to simulate convection from the troposphere to the stratosphere [e.g., Homeyer et al., 2014]. Here we employ the Advanced Research Weather and Research Forecasting model (ARW) at 3-km resolution to resolve convection over the eastern United States during August of 2007 and August of 2013. We conduct a comparison of MERRA, the reanalysis used to initialize ARW, and the model output to assess