Science.gov

Sample records for additional band broadening

  1. Frequency band broadening of magnetospheric VLF emissions near the equator

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Lin, C. S.

    1981-01-01

    The broadening of the whistler mode VLF emission band has frequently been observed by the equatorially orbiting S3-A (Explorer 45) satellite outside the midnight sector of the plasmasphere, during periods of geomagnetic disturbance. Prior to the broadening, the band of this emission is narrow with a sharp gap at the half electron gyrofrequency. The gradual broadening of the emission band on the low-frequency side is associated with the simultaneously observed spreading of the anisotropy of the ring current electrons to higher and wider energy ranges. Using the modeled distribution function, the linear growth rates of the cyclotron instability are calculated numerically. The results suggest that broadening of the VLF emission band near the plasmasphere can be caused by spreading of the ring current electron anisotropy toward higher energies.

  2. Foreign-gas-broadening effects in the 15-micron CO2 bands.

    NASA Technical Reports Server (NTRS)

    Reichle, H. G., Jr.; Young, C.

    1972-01-01

    The effects of N2, O2, Ar, and He on the absorption of radiation by the 15-micron perpendicular CO2 bands are reported. The investigation was carried out at medium resolution and at gas pressures less than 1 atm. The results of the study are presented in the form of a band-averaged broadening coefficient for N2, band-averaged broadening factors for O2, Ar, and He, and wavelength dependent broadening coefficients for N2, O2, Ar, and He. Comparisons are made with other experimental and theoretical results. In addition transmittances were calculated for homogeneous paths using some of the molecular parameters determined in the study and compared with measured transmittances.

  3. A broad-standard technique for correcting for band broadening in size-exclusion chromatography.

    PubMed

    Zhang, Peng; Mazoyer, Paul; Gilbert, Robert G

    2016-04-22

    Band broadening in size-exclusion chromatography (SEC) is always present to some extent. Broadening effects on averages such as the weight- and number average molecular weights (MW¯ and Mn¯ respectively) are minimal with modern SEC systems. However, broadening distorts the shape of the true molecular weight distribution (MWD), which causes problems if one wants to compare the detailed form of the MWD to a model. An addition to current methods for overcoming this problem is presented. One starts with a sufficiently wide range of samples whose exact values of Mn¯ andMW¯ have been measured by non-SEC methods (e.g. by fluorimetry and light scattering, respectively, of the sample without size separation). A true (unbroadened) molecular weight distribution for a sample can be obtained by deconvolution (here using a maximum-entropy algorithm) by fitting SEC data for these samples to these exact Mn¯ and MW¯ values to find the values of the parameters in a sufficiently flexible assumed broadening function. This was modelled using simulated band broadening and subsequent deconvolution, with the broadening parameters least-squares fitted to the "exact" sets of values of Mn¯ and MW¯. The results show that if these Mn¯ and MW¯ values are for a series of broad (not narrow) standards covering a sufficient range of molecular weight, then after deconvolution, a good representation of the original molecular weight distribution used in the simulation is obtained. The method should prove useful for water-soluble polymers, for which it is often difficult to obtain narrow standards of a wide range of molecular weight, as required in a number of well-established methods for correcting for band broadening. PMID:27016112

  4. Pressure broadening and line coupling in bending bands of CO2

    NASA Technical Reports Server (NTRS)

    Green, Sheldon

    1989-01-01

    The pressure broadening and line coupling cross sections in the Fano-Ben Reuven theory of line shapes are calculated for bending bands of CO2 in a bath of He atoms. Molecular collision dynamics are simplified by invoking the infinite order sudden (IOS) approximation for molecular rotational and vibrational angular momentum in a manner similar to but not identical with the method developed by Clary and shown to be accurate for CO2-He. Numerical values are obtained using a pairwise additive interaction potential developed by Clary. Predictions are in good accord with data for various infrared bands and pure rotational Raman spectra. It is found that all pressure broadening and state-to-state cross sections depend on only a few dynamical factors (generalized IOS cross sections) and are therefore closely interrelated. Results are used to assess models developed previously to analyze line shapes in this and similar systems.

  5. Broadening and collisional interference of lines in the ir spectra of ammonia: Self-broadening in the ν2 band

    NASA Astrophysics Data System (ADS)

    Cherkasov, M. R.

    2016-06-01

    The relaxation parameters of lines of the P, Q, and R branches of the ammonia ν2 band are calculated in the case of self-broadening with the effects of collisional interference of doublet components taken into account. It is shown that the cross-relaxation parameters do not exceed, as a rule, several percent of the values of the self-broadening coefficients and, consequently, the isolated line approximation is applicable in a wide pressure range. The calculated results are compared with experimental data.

  6. Air broadening coefficients for the ν3 band of hydroperoxyl radicals

    NASA Astrophysics Data System (ADS)

    Minamida, Maya; Tonokura, Kenichi

    2014-11-01

    Using mid-infrared laser absorption spectroscopy, we investigated the room-temperature pressure broadening coefficients for hydroperoxyl radicals (HO2) in nitrogen and oxygen over the 1060.0-1065.5 cm-1 range of the ν3 band. The HO2 radicals were produced by flash photolysis of a chlorine/1,4-cyclohexadiene/oxygen mixture. The 20 measured absorption profiles were analyzed with Voigt functions. Air broadening coefficients were estimated from the nitrogen- and oxygen-broadening results and compared with previous results. We discuss the dependence of air broadening on rotational states.

  7. Size Interplay between Polymer and Nanopores for the Band Broadening of SEC

    NASA Astrophysics Data System (ADS)

    Weiss, Ian; Ryu, Chang Yeol; Chang, Taihyun

    2012-02-01

    The size interplay between polymer chains and nanopores plays a key role in governing the retention time of polymer chains in liquid chromatography. These nanopores also contribute to the band broadening of the resulting peaks seen in most liquid chromatography systems including size exclusion chromatography (SEC). We have studied how the relationship between the size of the nanopores and the hydrodynamic radius of the polymers affects the band broadening during SEC. This related to Brown random motion of polymer chains in solution, whose motions are restricted by the presence of nanoporous stationary phase for the SEC. We have prepared model polystyrene samples with extremely narrow polydispersity (PDI < 1.0001) using temperature gradient interaction chromatography. Those model samples allow us to directly measure the band broadening of SEC using different size pore columns at various solvent conditions.

  8. Spectral line shapes of self-broadened P-branch transitions of oxygen B band

    NASA Astrophysics Data System (ADS)

    Wójtewicz, S.; Cygan, A.; Masłowski, P.; Domysławska, J.; Lisak, D.; Trawiński, R. S.; Ciuryło, R.

    2014-09-01

    We used the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer assisted by the optical frequency comb for systematic line-shape study of self-broadened P-branch transitions of the O216B band [b1Σg+(v=1)←X3Σg-(v=0)]. In the line-shape analysis we take into account the line-narrowing effects described by Dicke narrowing or the speed dependence of collisional broadening. The relation between the parameters describing Dicke narrowing with the use of the soft- and hard-collision models is discussed and verified experimentally in the low pressure regime using the multispectrum fitting technique. We report line positions with uncertainties of about 170 kHz, the collisional broadening coefficients with 0.45% uncertainties, and line intensities with 0.5% uncertainties. We compare these results to data available in the literature.

  9. Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Holladay, Christopher; Heung, Henry; Bouanich, Jean-Pierre; Mellau, Georg Ch.; Keller, Reimund; Hurtmans, Daniel R.

    2008-09-01

    We report measurements for N 2-broadening, pressure-shift and line mixing coefficients for 55 oxygen transitions in the A-band retrieved using a multispectrum fitting technique. Nineteen laboratory absorption spectra were recorded at 0.02 cm -1 resolution using a multi-pass absorption cell with path length of 1636.9 cm and the IFS 120 Fourier transform spectrometer located at Justus-Liebig-University in Giessen, Germany. The total sample pressures ranged from 8.8 to 3004.5 Torr with oxygen volume mixing ratios in nitrogen ranging between 0.057 and 0.62. An Exponential Power Gap (EPG) scaling law was used to calculate the N 2-broadening and N 2-line mixing coefficients. The line broadening and shift coefficients for the A-band of oxygen self-perturbed and perturbed by N 2 are modeled using semiclassical calculations based on the Robert-Bonamy formalism and two intermolecular potentials. These potentials involve electrostatic contributions including the hexadecapole moment of the molecules and (a) a simple dispersion contribution with one adjustable parameter to fit the broadening coefficients or (b) the atom-atom Lennard-Jones model without such adjustable parameters. The first potential leads to very weak broadening coefficients for high J transitions whereas the second potential gives much more improved results at medium and large J values, in reasonable agreement with the experimental data. For the line shifts which mainly arise in our calculation from the electronic state dependence of the isotropic potential, their general trends with increasing J values can be well predicted, especially from the first potential. From the theoretical results, we have derived air-broadening and air-induced shift coefficients with an agreement comparable to that obtained for O 2-O 2 and O 2-N 2.

  10. Experimental Air-Broadened Line Parameters in the nu2 Band of CH3D

    NASA Technical Reports Server (NTRS)

    Cross, Adriana Predoi; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.

    2007-01-01

    In this study we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu2 fundamental band of CH3D. These results were obtained from analysis of 17 room temperature laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Arizona. Three absorption cells with path lengths of 10.2, 25 and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129x10(exp -2) to 52.855x10(exp -2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum non-linear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J" = 20 and K = 15, where K" = K' equivalent to K (for a parallel band). The measured air broadening coefficients range from 0.0205 to 0.0835 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(exp -1) atm(exp -1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J" and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J" and J" + 1 in the (sup Q)P- (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.

  11. A theoretical and experimental study of pressure broadening of the oxygen A-band by helium

    SciTech Connect

    Grimminck, Dennis L. A. G.; Spiering, Frans R.; Janssen, Liesbeth M. C.; Avoird, Ad van der; Zande, Wim J. van der; Groenenboom, Gerrit C.

    2014-05-28

    The rotationally resolved magnetic dipole absorption spectrum of the oxygen A-band b{sup 1}Σ{sub g}{sup +}(v=0)←X{sup 3}Σ{sub g}{sup −}(v=0) perturbed by collisions with helium was studied theoretically using the impact approximation. To calculate the relaxation matrix, scattering calculations were performed on a newly computed helium-oxygen (b{sup 1}Σ{sub g}{sup +}) interaction potential as well as on a helium-oxygen (X{sup 3}Σ{sub g}{sup −}) interaction potential from the literature. The calculated integrated line cross sections and broadening coefficients are in good agreement with experimental results from the literature. Additionally, cavity ring-down experiments were performed in the wings of the spectral lines for a quantitative study of line-mixing, i.e., the redistribution of rotational line intensities by helium-oxygen collisions. It is shown that inclusion of line-mixing in the theory is required to reproduce the experimentally determined absolute absorption strengths as a function of the density of the helium gas.

  12. Band broadening of DNA fragments isolated by polyacrylamide gel electrophoresis in capillary electrophoresis.

    PubMed

    Kaneta, Takashi; Ogura, Takehito; Yamato, Shuhei; Imasaka, Totaro

    2012-02-01

    Polyacrylamide gel electrophoresis (PAGE) is used frequently for isolation and purification of DNA fragments. In the present study, DNA fragments extracted from polyacrylamide gels showed significant band broadening in capillary electrophoresis (CE). A pHY300PLK (a shuttle vector functioning in Escherichia coli and Bacillus subtilis) marker, which contained nine fragments ranging from 80 to 4870 bp, was separated by PAGE, and each fragment was isolated by phenol/chloroform extraction and ethanol precipitation. After extraction from the polyacrylamide gel, the peaks of the isolated DNA fragments exhibited band broadening in CE, where a linear poly(ethylene oxide) was used as a sieving matrix. The theoretical plate numbers of the DNA fragments contained in the pHY300PLK marker were >10(6) for all the fragments before extraction. However, the DNA fragments extracted from the polyacrylamide gel showed decreased theoretical plate numbers (5-20 times smaller). The degradation of the theoretical plate number was significant for middle sizes of the DNA fragments ranging from 489 to 1360 bp, whereas the largest and smallest fragments (80 and 4870 bp) had no obvious influence. The band broadening was attributed to contamination of the DNA fragments by polyacrylamide fibers during the separation and extraction process. PMID:22258810

  13. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  14. Broadening of absorption band by coupled gap plasmon resonances in a near-infrared metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Yao, Hongbing; Gong, Daolei; Chen, Mingyang; Tong, Yanqun; Fu, Yonghong; Ren, Naifei

    2016-07-01

    We propose a strategy to broaden the absorption band of the conventional metamaterial absorber by incorporating alternating metal/dielectric films. Up to 7-fold increase in bandwidth and ∼95% average absorption are achieved arising from the coupling of induced multiple gap plasmon resonances. The resonance coupling is analytically demonstrated using the coupled oscillator model, which reveals that both the optimal coupling strength and the resonance wavelength matching are required for the enhancement of absorption bandwidth. The presented multilayer design is easily fabricated and readily implanted to other absorber configurations, offering a practical avenue for applications in photovoltaic cells and thermal emitters.

  15. Line positions, intensities and self-broadening coefficients for the ν5 band of methyl chloride

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.; Dhib, M.; Aroui, H.

    2013-05-01

    High resolution Fourier transform spectra have been recorded around 6.9 μm at room temperature using a rapid scan Bruker IFS 120 HR interferometer (unapodized Bruker resolution=0.005 cm-1). Transitions of both 12CH335Cl and 12CH337Cl isotopologues belonging to the ν5 perpendicular band have been studied. Line positions, intensities, and self-broadening coefficients have been retrieved using a multispectrum fitting procedure that allowed to fit simultaneously the whole set of experimental spectra recorded at various pressures of CH3Cl. The wavenumber calibration has been performed using the frequencies of CO2 transitions. The transition dipole moments squared have been determined for each measured line and the whole set of measurements has been compared with previous measurements and with values from HITRAN and GEISA databases. The rotational J and K dependencies of the self-broadening coefficients have been clearly observed and modeled using empirical polynomial expansions. The average accuracy of the line parameters obtained in this work has been estimated to be between 0.1×10-3 and 1×10-3 cm-1 for line positions, between 2% and 5% for line intensities and between 5% and 10% for self-broadening coefficients depending on the transitions.

  16. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2015-07-17

    Supercritical fluid chromatography, where a low-viscosity mobile phase such as carbon dioxide is used, proves to be an excellent technique for fast and efficient separations, especially when sub-2μm particles are used. However, to achieve high velocities when using these small particles, and in order to stay within the flow rate range of current SFC-instruments, narrow columns (e.g. 2.1mm ID) must be used. Unfortunately, state-of-the-art instrumentation is limiting the full separation power of these narrower columns due to significant extra-column band broadening effects. The present work identifies and quantifies the different contributions to extra-column band broadening in SFC such as the influence of the sample solvent, injection volume, extra-column volumes and detector cell volume/design. When matching the sample solvent to the mobile phase in terms of elution strength and polarity (e.g. using hexane/ethanol/isopropanol 85/10/5vol%) and lowering the injection volume to 0.4μL, the plate count can be increased from 7600 to 21,300 for a low-retaining compound (k'=2.3) on a 2.1mm×150mm column (packed with 1.8μm particles). The application of a water/acetonitrile mixture as sample solvent was also investigated. It was found that when the volumetric ratio of water/acetonitrile was optimized, only a slightly lower plate count was measured compared to the hexane-based solvent when minimizing injection and extra-column volume. This confirms earlier results that water/acetonitrile can be used if water-soluble samples are considered or when a less volatile solvent is preferred. Minimizing the ID of the connection capillaries from 250 to 65μm, however, gives no further improvement in obtained efficiency for early-eluting compounds when a standard system configuration with optimized sample solvent was used. When switching to a state-of-the-art detector design with reduced (dispersion) volume (1.7-0.6μL), an increase in plate count is observed (from 11,000 to 14

  17. Temperature dependences of self- and N2-broadened line-shape parameters in the ν3 and ν5 bands of 12CH3D: Measurements and calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, A.; Malathy Devi, V.; Sutradhar, P.; Sinyakova, T.; Buldyreva, J.; Sung, K.; Smith, M. A. H.; Mantz, A. W.

    2016-07-01

    This paper presents the results of a spectroscopic line shape study of self- and nitrogen-broadened 12CH3D transitions in the ν3 and ν5 bands in the Triad region. We combined five pure gas spectra with eighteen spectra of lean mixtures of 12CH3D and nitrogen, all recorded with a Bruker IFS-125 HR Fourier transform spectrometer. The spectra have been analyzed simultaneously using a multispectrum nonlinear least squares fitting technique. N2-broadened line parameters for 184 transitions in the ν3 band and 205 transitions in the ν5 band were measured. In addition, line positions and line intensities were measured for 168 transitions in the ν3 band and 214 transitions in the ν5 band. We have observed 10 instances of weak line mixing corresponding to K″=3 A1 or A2 transitions. Comparisons were made for the N2-broadening coefficients and associated temperature exponents with corresponding values calculated using a semi-classical Robert Bonamy type formalism that involved an inter-molecular potential with terms corresponding to short- and long-range interactions, and exact classical molecular trajectories. The theoretical N2-broadened coefficients are overestimated for high J values, but are in good agreement with the experimental values for small and middle range J values.

  18. Line intensities and self-broadening coefficients for the ν2 band of methyl chloride

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.

    2016-08-01

    The present report concerns measurements of lines intensities and self-broadening coefficients for 170 transitions of the ν2 band of both 12CH335Cl and 12CH337Cl isotopologues between 1291 and 1403 cm-1. This work is the continuation of a previous effort on the ν5 band (Barbouchi Ramchani et al., 2013). For these studies, spectra of CH3Cl have been recorded at room temperature using a rapid scan Bruker IFS120 HR interferometer. The line parameters have been retrieved using a Voigt profile and a multispectrum fitting procedure. The average accuracy of the line parameters obtained in this work has been estimated to be between 2% and 5% for line intensities and between 5% and 10% for self-broadening coefficients depending on the transitions. A global comparison with the experimental values existing in the literature has been performed. The measurements of line intensities have also been compared to calculated values from HITRAN and GEISA databases.

  19. Temperature dependences of N2-broadening and shift coefficients in the ν6 perpendicular band of 12CH3D

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, A.; Devi, V. Malathy; Sung, K.; Sinyakova, T.; Buldyreva, J.; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.

    2015-09-01

    The temperature-dependences of line broadening and shift parameters for many 12CH3D transitions have been determined using six high-resolution, high signal-to-noise ratio, room-temperature CH3D (98% purity) and CH3D-N2 spectra recorded with 25 cm path length (at 0.01 cm-1 unapodized resolution) using the McMath-Pierce FTS located on Kitt Peak, Arizona, and 17 additional high quality, pure CH3D (99% purity) and CH3D-N2 spectra recorded between 79 and 296 K with the 20.38 cm path coolable cell (at 0.0056 cm-1 unapodized resolution) with the Bruker 125HR FTS at the Jet Propulsion Laboratory (JPL), Pasadena, California. The spectra have been fitted simultaneously applying a multispectrum nonlinear least-squares technique. In the analysis, the Lorentzian N2-broadened half-width coefficients and the corresponding pressure-shift coefficients as well as their temperature dependences are extracted for about 400 transitions (0≤J″≤19, K″≤16) in the perpendicular (ΔK=±1) ν6 band. At 296 K, the measured N2-broadened half-width coefficients range from 0.0209 to 0.0782 cm-1 atm-1 whereas the majority of the associated N2-induced shift coefficients are negative, and the values are between -0.016 and 0.005 cm-1 atm-1. The temperature dependence exponents for N2-broadened half-widths range between 0.264 and 0.924, whereas the temperature dependence coefficients for N2-induced shifts are between 0 and 0.00011 cm-1 atm-1 K-1. The N2-broadened half-width coefficients have been also calculated using a semi-classical approach based on a rigorous treatment of the active molecule as a symmetric top, a model intermolecular potential comprising both short- and long-range interactions, and exact classical trajectories. The role of the various high-order multipoles in the line-broadening at low, middle and high values of the rotational quantum number J″ has been investigated and the main features of the K-dependences analyzed. The calculations performed for 296, 240 and 190 K

  20. Self- and CO2-broadened line shape parameters for infrared bands of HDO

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Malathy Devi, V.; Benner, D. Chris; Sung, Keeyoon; Mantz, Arlan W.; Gamache, Robert R.; Villanueva, Geronimo L.

    2015-11-01

    Knowledge of CO2-broadened HDO line widths and their temperature dependence is required to interpret infrared spectra of the atmospheres of Mars and Venus. However, this information is currently absent in most spectroscopic databases. We have analyzed nine high-resolution, high signal-to-noise spectra of HDO and HDO+CO2 mixtures to obtain broadening coefficients and other line shape parameters for transitions of the ν2 and ν3 vibrational bands located at 7.13 and 2.70 μm, respectively. The gas samples were prepared by mixing equal amounts of high-purity distilled H2O and 99% enriched D2O. The spectra were recorded at different temperatures (255-296 K) using a 20.38 cm long coolable cell [1] installed in the sample compartment of the Bruker IFS125HR Fourier transform spectrometer at the Jet Propulsion Laboratory in Pasadena, CA. The retrieved HDO spectroscopic parameters include line positions, intensities, self- and CO2-broadened half-width and pressure-induced shift coefficients and the temperature dependences for CO2 broadening. These spectroscopic parameters were obtained by simultaneous multispectrum fitting [2] of the same interval in all nine spectra. A non-Voigt line shape with speed dependence was applied. Line mixing was also observed for several transition pairs. Preliminary results compare well with the few other measurements reported in the literature.[1] K. Sung et al., J. Mol. Spectrosc. 162, 124-134 (2010).[2] D. C. Benner et al., J. Quant. Spectrosc. Radiat Transfer 53, 705-721 (1995).The research performed at the College of William and Mary was supported by NASA’s Mars Fundamental Research Program (Grant NNX13AG66G). The research at Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, Langley Research Center, and Goddard Space Flight Center was conducted under contracts and cooperative agreements with the National Aeronautics and Space Administration. RRG is pleased to acknowledge support of this study by the

  1. Multispectrum Analysis of the v4 Band of CH3CN: Positions, Intensities, Self and N2 Broadening and Pressure-Induced Shifts

    SciTech Connect

    Rinsland, Curtis P; Devi, V M; Benner, D C; Blake, Thomas A; Sams, Robert L; Brown, Linda R; Kleiner, Isabelle; Dehayem-kamadjeu, A; Muller, H S; Gamache, R R; Niles, Danielle L; Masiello, Tony

    2008-04-01

    A multispectrum nonlinear least squares fitting technique has been applied to measure accurate zero-pressure line center positions, Lorentz self- and N2-broadening coefficients and self- and N2-pressure-induced shift coefficients in the parallel ν4 band of CH3CN near 920 cm-1. Fifteen high-resolution (0.0029 cm-1) laboratory absorption spectra of pure and N2-broadened CH3CN recorded at room temperature using the Bruker IFS 125HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, U.S.A. were analyzed simultaneously. Short spectral intervals containing manifolds of transitions from the same value of J have been fitted together. In all, we have obtained high precision line positions, absolute line intensities, self- and N2-broadening coefficients for P(44) through P(3) and R(0) through R(46) manifolds. All measurements have been fitted successfully assuming a Voigt line shape. Preliminary fits of line intensities up to J = 47 using one principal dipole moment derivative and three Herman-Wallis terms are reported. The results are not fully satisfactory due to perturbations caused by interactions with other bands. The total intensity obtained from this prediction by summing individual line intensities for the v4 band region has been compared with the integrated absorption coefficient reported for the v4 band from lower resolution spectra measured at the same laboratory facility. The variations of N2 broadening, self-broadening, N2- shift and self-shift coefficients with the J and K quantum numbers have been measured for the first time. N2-broadening coefficients decrease with increasing J and K. Some self-broadening coefficients are very large (up to ~2 cm-1 atm-1 at 294 K). Ratios of N2-broadening coefficients to self-broadening coefficients show a compact distribution with rotational quantum number in both the P- and R-branches that range from ~0.45 to 15 with a maxima ratio near J"=13. Pressure

  2. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  3. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    SciTech Connect

    Kim, Jinhyun; Yim, Sanggyu

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughness and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.

  4. Temperature Dependences of Air-Broadening and Shift Parameters in the ν_3 Band of Ozone

    NASA Astrophysics Data System (ADS)

    Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    2015-06-01

    Line parameter errors can contribute significantly to the total errors in retrievals of terrestrial atmospheric ozone concentration profiles using the strong 9.6-μm band, particularly for nadir-viewing experiments Detailed knowledge of the interfering ozone signal is also needed for retrievals of other atmospheric species in this spectral region. We have determined Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for a number of transitions in the ν_3 fundamental band of 16O_3. These results were obtained by applying the multispectrum nonlinear least-squares fitting technique to a set of 31 high-resolution infrared absorption spectra of O_3 recorded at temperatures between 160 and 300 K with several different room-temperature and coolable sample cells at the McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak. We compare our results with other available measurements and with the ozone line parameters in the HITRAN database. J.~Worden et al., J.~Geophys.~Res. 109 (2004) 9308-9319. R.~Beer et al., Geophys.~Res.~Lett. 35 (2008) L09801. D.~Chris Benner et al., JQSRT 53 (1995) 705-721. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 4. JQSRT 130 (2013) 4-50.

  5. Measurements and Theoretical Calculations of N2-broadening and N2-shift Coefficients in the v2 band of CH3D

    NASA Technical Reports Server (NTRS)

    Predoi-Cross, A.; Hambrook, Kyle; Brawley-Tremblay, Marco; Bouanich, J. P.; Smith, Mary Ann H.

    2006-01-01

    In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the v2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure- broadening coefficients of 368 v2 transitions with quantum numbers as high as J"= 20 and K = 16, where K" = K' equivalent to K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about 0.0003 to 0.0094 cm(exp -1) atm(exp -1). We have examined the dependence of the measured broadening and shift parameters on the J", and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J", and J" + 1 in the (sup Q)P-, (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressureshift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the (sup Q)Q-branch of self-induced shifts of CH3D, are also in

  6. Temperature-Dependence of Air-Broadened Line Widths and Shifts in the nu3 Band of Ozone

    NASA Technical Reports Server (NTRS)

    Smith, Mary A. H.; Rinsland, Curtis P.; Devi, V. Malathy; Benner, D. Chris; Cox, A. M.

    2006-01-01

    The 9.6-micron bands of O3 are used by many remote-sensing experiments for retrievals of terrestrial atmospheric ozone concentration profiles. Line parameter errors can contribute significantly to the total errors in these retrievals, particularly for nadir-viewing. The McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak was used to record numerous high-resolution infrared absorption spectra of O3 broadened by various gases at temperatures between 160 and 300 K. Over 30 spectra were analyzed simultaneously using a multispectrum nonlinear least squares fitting technique to determine Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for selected transitions in the 3 fundamental band of (16)O3. We compare the present results with other measurements reported in the literature and with the ozone parameters on the 2000 and 2004 editions of the HITRAN database.

  7. Broadening, shifting, and line asymmetries in the 2<--0 band of CO and CO-N2: Experimental results and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Bouanich, J. P.; Benner, D. Chris; May, A. D.; Drummond, J. R.

    2000-07-01

    We have measured the room temperature, widths, pressure shifts, and line asymmetry coefficients for many transitions of the first overtone band of CO and CO perturbed by N2. The broadening coefficients were obtained with an accuracy of about 1%. The pure CO profiles have been fitted by a Voigt profile while the CO-N2 spectral profiles have been fitted with a Lorentz and an empirical line shape model (HCv) that blends together a hard collision model and a speed-dependent Lorentz profile. In addition to the Voigt, Lorentz, and HCv models, we have added a dispersion profile to account for weak line mixing. The line broadening and shift coefficients are compared to semiclassical calculations employing a variety of intermolecular interactions. The line asymmetry results are compared to line mixing calculations based on the energy corrected sudden (ECS) model. The results indicate that effects other than line mixing also contribute to the measured line asymmetry.

  8. Air- and Self-Broadened Half Widths, Pressure-Induced Shifts, and Line Mixing in the Nu(sub 2) Band of (12)CH4

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Benner, D. Chris; Pedroi-Cross, A.; Devi, V. Malathy

    2013-01-01

    Lorentz self- and air-broadened half width and pressure-induced shift coefficients and their dependences on temperature have been measured from laboratory absorption spectra for nearly 130 transitions in the nu(sub 2) band of (12)CH4. In addition line mixing coefficients (using the relaxation matrix element formalism) for both self- and airbroadening were experimentally determined for the first time for a small number of transitions in this band. Accurate line positions and absolute line intensities were also determined. These parameters were obtained by analyzing high-resolution (approx. 0.003 to 0.01 per cm) laboratory spectra of high-purity natural CH4 and air-broadened CH4 recorded at temperatures between 226 and 297 K using the McMath-Pierce Fourier transform spectrometer (FTS) located at the National Solar Observatory on Kitt Peak, Arizona. A multispectrum nonlinear least squares technique was used to fit short (5-15 per cm) spectral intervals in 24-29 spectra simultaneously. Parameters were determined for nu(sub 2) transitions up to J" = 16. The variations of the measured broadening and shift parameters with the rotational quantum number index and tetrahedral symmetry species are examined. The present results are also compared with previous measurements available in the literature.

  9. The No Vibrational Fundamental Band: Temperature Dependence of N2-Broadening Coefficients

    NASA Technical Reports Server (NTRS)

    Spencer, M. N.; Chackerian, C., Jr.; Giver, L. P.; Brown, L. R.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Rovibrational spectra of the vibrational fundamental of nitric oxide have been recorded under N2-broadening conditions at 0.0056 cm(exp-1) resolution using the Solar McMath FTS at the Kitt Peak National Observatory. The temperature range for the experiments was 296 K to 183 K. The 30 cm absorption cell used for the measurements is cooled with a helium compressor and can operate at temperatures down to 60 K; vibration isolation of the cell allows its use with high performance Fourier Transform Spectrometers. From these spectra, N2-broadened line widths have been determined thru m = 16.5. Qualitative as well as quantitative discrepancies are observed between our experimental determinations of the temperature dependence of the broadening and theoretical calculations.

  10. Pressure broadening, -shift, speed dependence and line mixing in the ν3 rovibrational band of N2O

    NASA Astrophysics Data System (ADS)

    Loos, Joep; Birk, Manfred; Wagner, Georg

    2015-01-01

    In this paper, we report measured air-broadening, -shift, speed dependence and Rosenkranz line mixing parameters for the ν3 fundamental rovibrational band of N2O. A Bruker IFS 125HR Fourier transform spectrometer was used with a White-type multipass absorption cell with 46.4 m absorption path length to measure four ambient temperature air-broadened absorption spectra at total pressures ranging from 100 to 1000 mbar. A multispectrum fitting technique was used to retrieve parameters up to |m|=40 (m=-J″ and m=J″+1 for the P and R branch, respectively) utilizing the partially correlated quadratic speed-dependent hard collision model including Rosenkranz line mixing. Speed dependence of the broadening parameter as well as line mixing could be observed in the spectra. The broadening parameters are compared to HITRAN2012, where deviations can be ascribed to the influence of neglecting speed dependence effects in spectra analyses when using the Voigt line profile. The line mixing coefficients show a smooth dependence on m.

  11. The No Vibrational Fundamental Band: Temperature Dependence of N2- Broadening Coefficients

    NASA Technical Reports Server (NTRS)

    Spencer, M. N.; Jr., C. Chackerian; Giver, L. P.; Brown, L. R.

    1995-01-01

    Rovibrational spectra of the vibrational fundamental of nitric oxide have been recorded under N2-broadening conditions using the Solar McMath FTS at the Kitt Peak National Observatory. The temperature range for the experiments was 296K to 183K. Qualitative as well as quantitative discrepancies are observed between these experimental determinations of the temperature dependence.

  12. Tunable diode laser measurements of air-broadened linewidths in the nu6 band of H2O2

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Fridovich, B.

    1986-01-01

    Air-broadened half-widths of 18 transitions in the nu6 band of H2O2 between 1252/cm and 1291/cm have been determined from spectra recorded at room temperature using a tunable diode laser spectrometer. The preparation of the H2O2 gas samples for the measurements is described, and the data analysis is discussed, including the derivation of Lorentz broadening coefficients and the contribution of molecular collisions to the measured Lorentz half-widths. For the 18 transitions, the half-widths varied from 0.0923/cm/atm to 0.1155/cm/atm at 296 K, with a mean value of 0.1020/cm/atm. An error of less than 10 percent is estimated for these results.

  13. Measurements of collision-broadened line widths in the 7.66-micron band of (C-12)H4 at temperatures relevant to the atmosphere

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad; Chudamani, Sury

    1989-01-01

    A tunable diode laser spectrometer is used to measure the collision-broadened half widths of spectral lines in the fundamental band of (C-12)H4 at 7.66 microns at temperatures between 130 and 295 K. Consideration is given to O2-, N2-, and air-broadened half widths. The temperature dependence of the measured line widths is examined.

  14. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 μm absorption bands

    NASA Astrophysics Data System (ADS)

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-07-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400-1840 cm-1 and 3440-3970 cm-1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm-1 band) and 7% for self-broadening coefficients (3600 cm-1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm-1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4-5% for both intensities and half-widths.

  15. Additional one-photon coherence-induced transparency in a Doppler-broadened V-type system

    NASA Astrophysics Data System (ADS)

    Anil Kumar, M.; Singh, Suneel

    2013-06-01

    We illustrate an alternate mechanism which causes probe transparency in a Doppler-broadened V-type system. Our numerical results obtained for very low control field amplitudes clearly indicate the feasibility of attaining nearly perfect probe transparency that originates from an additional one-photon coherence induced by the control field in a Doppler-broadened V-type system. In this regime of control field amplitudes, the criterion for electromagnetically induced transparency (EIT) is not fulfilled and hence the contribution of the usual EIT term is found to be negligible.

  16. HCl vibrational fundamental band - Line intensities and temperature dependence of self-broadening coefficients

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Goorvitch, D.; Giver, L. P.

    1985-01-01

    Self-broadening in the vibrational fundamental of HCl is inversely proportional to the temperature for transitions which lie near the Boltzmann rotational maximum and becomes monotonically less temperature-dependent as the rotational quantum number increases. The rotationless transition moment was found to have the value of 5.57 + or - 0.13 x 10 to the -3rd (Debye)-squared and the first Herman-Wallis factor, C = -2.543 + or - 0.019 x 10 to the -2nd.

  17. Air-broadened linewidth measurements in the [nu][sub 2] vibrational band of the hydroperoxyl radical

    SciTech Connect

    Nelson, D.D. Jr.; Zahniser, M.S. )

    1994-08-01

    The authors have measured the air-broadening coefficient for one of the strongest infrared absorption lines of the hydroperoxyl radical--the 9[sub 19] [l arrow] 8[sub 18]F[sub 1],F[sub 2] doublet of the [nu][sub 2] band at 1,411.18 cm[sup [minus]1]. The authors obtain a value of b = 0.107 [+-] 0.009 cm[sup [minus]1] atm[sup [minus]1] (half-width at half-maximum) for the Lorentz broadening caused by air at 296 K. This measurement was made using a high-resolution tunable diode laser. The HO[sub 2] was made at atmospheric pressure from the H + O[sub 2] association reaction. The HO[sub 2] was sampled by a fast-flow reduced-pressure multipass absorption cell using an astigmatic off-axis resonator. The optical path length was 100 m with 182 passes. The results of this measurement are essential for the design and implementation of several atmospheric hydroperoxyl monitoring schemes.

  18. Tunable diode laser mesurements of widths of air- and nitrogen-broadened lines in the nu(4) band of C-13H4

    NASA Technical Reports Server (NTRS)

    Devi, V. M.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.

    1985-01-01

    Tunable diode laser measurements of air-broadened and N2-broadened halfwidths are reported for 23 lines in the nu(4) band of C-13H4, between 1260 and 1360/cm. For all lines, at least three scans of each of four or more pressures were recorded. The experimental halfwidths presently obtained for C-13H4 are both larger and smaller than the U.S. Air Force Geophysics Laboratory values.

  19. CO2 pressure broadening and shift coefficients for the 2-0 band of 12C16O

    NASA Astrophysics Data System (ADS)

    Hashemi, R.; Predoi-Cross, A.; Dudaryonok, A. S.; Lavrentieva, N. N.; Vandaele, A. C.; Vander Auwera, J.

    2016-08-01

    Fourier transform absorption spectra of the 2-0 band of 12C16O mixed with CO2 have been recorded at total pressures from 156 to 1212 hPa and at 4 different temperatures between 240 K and 283 K. CO2 pressure-induced line broadening and line shift coefficients, and the temperature dependence of the former have been measured including line mixing using a multi-spectrum non-linear least squares fitting technique. Different line shape models have been considered to take into account the Dicke narrowing or speed dependence effects. Measured line-shape parameters were compared with theoretical values, calculated for individual temperatures using a semi-empirical method and the Exponential Power Gap (EPG) law.

  20. Infrared spectroscopy at high temperature : N2- and O2-broadening coefficients in the ν4 band of CH4

    NASA Astrophysics Data System (ADS)

    Fissiaux, Laurent; Populaire, Jean-Claude; Blanquet, Ghislain; Lepère, Muriel

    2015-11-01

    In the present work, we have developed a high-temperature absorption cell for infrared spectroscopy. This absorption cell can contain gases of the room temperature up to 650 K without temperature gradient. The construction of the cell and its technical features are described in detail in this paper. In order to demonstrate the feasibility and the interest of the cell, we have measured the N2-, O2- and air-broadening coefficients of, respectively, six and three absorption lines in the ν4 band of methane at four temperatures (350, 425, 500, 575 K). The measurements of these coefficients was realized with a tunable diode-laser spectrometer. The line parameters were obtained by fitting to the experimental profile the Voigt line shape and the Rautian and Galatry models taking into account the collisional narrowing. For these lines, the n parameter of the temperature dependence has been determined.

  1. Measurements of collision-broadened line widths in the nu4-fundamental band of (C-12)H4 at low temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Chudamani, S.

    1989-01-01

    Collision-broadened half-widths of several lines in the nu4 fundamental band of (C-12)H4 have been measured at low temperatures between 130 and 295 K using a tunable diode laser and the sweep integration technique. The broadening gases are H2, N2, He, and Ar. The temperature dependence of the measured line widths is described in terms of an exponent n, which is shown not only to be different for each broadening gas but also to depend upon the tetrahedral symmetry identification of the lines of CH4.

  2. Excitation temperature of C2 and broadening of the 6196 Å diffuse interstellar band

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, M.; Gnaciński, P.; Schmidt, M. R.; Galazutdinov, G.; Bondar, A.; Krełowski, J.

    2009-05-01

    This paper presents a finding of the correlation between the width of a strong diffuse interstellar band at 6196 Å and the excitation temperature of C2 based on high resolution and high signal-to-noise ratio spectra. The excitation temperature was determined from absorption lines of the Phillips A1Π_u-X1Σ+g and Mulliken D1Σ+_u-X1Σ+g systems. The width and shape of the narrow 6196 Å DIB profile apparently depend on the C2 temperature, being broader for higher values. Based on data collected at the ESO (8 m telescope at Paranal, 3.6 m and 2.2 m telescopes at La Silla) and observations made with the 1.8 m telescope in South Korea and the Cassegrain Fiber Environment in Hawaii.

  3. Effect of pre- and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions.

    PubMed

    Vanderlinden, Kim; Broeckhoven, Ken; Vanderheyden, Yoachim; Desmet, Gert

    2016-04-15

    We report on the results of an experimental and theoretical study of the effect of the extra-column band broadening (ECBB) on the performance of narrow-bore columns filled with the smallest particles that are currently commercially available. Emphasis is on the difference between the effect of ECBB under gradient and isocratic conditions, as well as on the ability to model and predict the ECBB effects using well-established band broadening expressions available from the theory of chromatography. The fine details and assumptions that need to be taken into account when using these expressions are discussed. The experiments showed that, the steeper the gradient, the more pronounced the extra-column band broadening losses become. Whereas the pre-column band broadening can in both isocratic and gradient elution be avoided by playing on the possibilities to focus the analytes on top of the column (e.g. by using the POISe injection method when running isocratic separations), the post-column extra-column band broadening is inescapable in both cases. Inducing extra-column band broadening by changing the inner diameter of the post-column tubing from 65 to 250 μm, we found that all peaks in the chromatogram are strongly affected (around a factor of 1.9 increase in relative peak width) when running steep gradients, while usually only the first eluting peak was affected in the isocratic mode or when running shallow gradients (factor 1.6-1.8 increase in relative peak width for the first eluting analyte). PMID:26987413

  4. Measured and Theoretical Self- and N(2)-Broadened Line Parameters in the ν6 Band of CH(3)D

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyon; Predoi-Cross, Adriana; Smith, Mary Ann H.; Mantz, Arlan W.; Sinyakova, Tatyana; Buldyreva, Jeanna

    2014-06-01

    Monodeuterated methane (CH3D) is a constituent trace species in several planetary atmospheres, and its spectrum is often used in determinations of atmospheric H/D ratios. Methane plays an important role in terrestrial atmospheric chemistry. It is the most abundant hydrocarbon in our atmosphere and as an IR active gas makes an important contribution to the enhanced greenhouse effect. Methane is increasing in the Earth's atmosphere at a rate of about 1% per year. The current knowledge of its sources and sinks are not sufficient to isolate the cause of the observed changes in the mixing ratio and global distribution. As a result, the infrared spectrum of methane and its isotopomers is continually being investigated in order to obtain improved spectroscopic line parameters needed to interpret remote sensing observations. Remote sensing instruments require laboratory data sets based on measurements of very high accuracy. The primary objective of this study is to enhance our spectroscopic knowledge of monodeuterated methane in theν6 band located at 6.8 microns. We present measurement results for self- and N2-broadened line parameters from room temperature down to about 80 K. A total of 23 high-resolution, high S/N spectra recorded with two Fourier transform spectrometers: a) the McMath-Pierce FTS located on Kitt Peak and b) a Bruker IFS-125HR FTS at the Jet Propulsion Laboratory (JPL) 1 were fit simultaneously in a multispectrum approach. 2 The set included both pure CH3D and dilute mixtures of CH3D in research grade nitrogen. The variations in the measured line parameters with the symmetry species, the rotational quantum numbers and with temperature are reported and discussed in comparison with earlier measurements. For the case of nitrogen-broadening, we also provide semi-classical calculations based on a rigorous treatment of the active molecule as a symmetric top, a model intermolecular potential comprising both short- and long-range interactions, and exact

  5. Air- and N2-Broadening Coefficients and Pressure-Shift Coefficients in the C-12(O2-16) Laser Bands

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.

    1998-01-01

    In this paper we report the pressure broadening and the pressure-induced line shift coefficients for 46 individual rovibrational lines in both the (12)C(16)O2, 00(sup 0)1-(10(sup 0)0-02(sup 0)0)I, and 00(sup 0)1-(10(sup 0)0-02(sup 0)0)II, laser bands (laser band I centered at 960.959/cm and laser band II centered at 1063.735/cm) determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer. The results were obtained from analysis of 10 long-path laboratory absorption spectra recorded at room temperature using a multispectrum nonlinear least-squares technique. Pressure effects caused by both air and nitrogen have been investigated. The air-broadening coefficients determined in this study agree well with the values in the 1996 HITRAN database; ratios and standard deviations of the ratios of the present air-broadening measurements to the 1996 HITRAN values for the two laser bands are: 1.005(15) for laser band I and 1.005(14) for laser band II. Broadening by nitrogen is 3 to 4% larger than that of air. The pressure-induced line shift coefficients are found to be transition dependent and different for the P- and R-branch lines with same J" value. No noticeable differences in the shift coefficients caused by air and nitrogen were found. The results obtained are compared with available values previously reported in the literature.

  6. Measurement at different temperatures of absolute intensities, line half-widths, and broadening by Ar and N2 for the 30 0 1 II--00 0 0 band of CO2

    NASA Technical Reports Server (NTRS)

    Valero, F. P. J.; Suarez, C. B.

    1978-01-01

    Vibration-rotation line intensities, self-broadening coefficients, and foreign-gas-broadening (Ar and N2) coefficients were measured at 197, 233, and 294 K for the 30 0 1 II--00 0 0 band of CO2 at 6348/cm. Values for the total band intensity, purely vibrational transition moment, and vibration-rotation interaction factor were deduced from the measurements.

  7. Problems involving the determination of the column-only band broadening in columns producing narrow and tailed peaks.

    PubMed

    Vanderheyden, Yoachim; Vanderlinden, Kim; Broeckhoven, Ken; Desmet, Gert

    2016-04-01

    We have investigated which of the different existing peak variance read-out methods (including the effect of a deconvolution pre-treatment method) are most suited to eliminate the system contribution from the total observed band broadening observed in LC systems. Emphasis is put on the most demanding case, i.e., the measurement of non-retained component peaks, which typically are very narrow and tailed. The problem with such peaks is that the method that is generally considered to be the only mathematically correct method (i.e., the method of moments) leads to peak variance values that are so strongly dominated by the tail of the peak that they become highly exaggerated and practically meaningless (i.e., they are dominated by the peak width at 10 or 12σt, which corresponds to resolutions and peak purities that are so high they are never pursued in practice). Interestingly, filtering away the extra-column contribution from the entire peak shape using peak deconvolution (wherein not only the second order moment is corrected but also all other moments) produces corrected 4σt- and half height peak widths that are physically meaningful, i.e., the corrected values allow to make sufficiently accurate predictions of how the peak width at 4σt and at half height changes when the column length changes. This result now allows to navigate away from the classical method of moments to define the column plate height, and resort to plate heights based on the practically much more relevant 4σt- and 5σt-widths, provided theses are corrected via peak deconvolution. PMID:26947164

  8. Self- and N2-broadening of CH3Br ro-vibrational lines in the ν2 band: The J and K dependence

    NASA Astrophysics Data System (ADS)

    Boussetta, Z.; Kwabia Tchana, F.; Aroui, H.

    2015-02-01

    Methyl bromide (CH3Br) is the major source of inorganic bromine in the atmosphere and contributes significantly to ozone depletion. Indeed, CH3Br is dissociated by UV radiation, producing Br radicals that catalyze the destruction of ozone. In this paper, we report measured Lorentz self- and N2-broadening coefficients of CH3Br in the ν2 fundamental band using a mono-spectrum non-linear least squares fitting of Voigt profiles which appeared to properly model the observed molecular line shapes within the noise level. These measurements were made by analyzing 12 laboratory absorption spectra recorded at high resolution (0.005, 0.003 or 0.002 cm-1) using the Fourier transform spectrometer Bruker IF125HR located at the LISA facility in Créteil. The spectra were obtained at room temperature using a White-type multipass cell with an optical path of 0.849 m and various pressures. We have been able to determine the self- and N2-broadening coefficients of 948 ν2 transitions with quantum numbers as high as J = 49 and K = 10. The measured self-broadening coefficients range from 0.1542 to 0.4930 cm-1 atm-1 and the N2-broadening coefficients range from 0.0737 to 0.1284 cm-1 atm-1 at 295 K. The accuracy of the broadening coefficients measured in this work is between 4% and 8%, depending on the studied transition. Comparisons with measurements taken in the ν5 and ν6 bands of CH3Br did not show any clear vibrational dependence. The J and K dependences of the self- and N2-broadening coefficients have been observed and the rotational K dependence has been modeled using empirical polynomial expression. On average, the empirical expression reproduce the measured broadening coefficients to within 6%. The data obtained represent a significant contribution to the determination of broadening coefficients of CH3Br useful for atmospheric remote sensing and applications. Note: The assignment column gives the isotopologue (79 for CH379Br and 81 for CH381Br) for which the transition is

  9. A Multispectrum Analysis of the {nu}{sub 2} Band of H{sup 12}C{sup 14}N: Part I. Intensities, Broadening and Shift Coefficients

    SciTech Connect

    Devi, V M.; Benner, D C.; Smith, M.A.H.; Rinsland, Curtis P.; Predoi-Cross, A; Sharpe, Steven W.; Sams, Robert L.; Boulet, C; Bouanich, J P.

    2005-05-01

    Absolute intensities, self- and air-broadening coefficients, self- and air-induced shift coefficients and their temperature dependences have been determined for lines belonging to the P- and R-branches of the {nu}{sub 2} band of H{sup 12}C{sup 14}N centered near 712 cm{sup -1}. Infrared spectra of HCN in the 14-{micro}m region were obtained at high resolution (0.002-0.008 cm{sup -1}) using two different Fourier transform spectrometers (FTS), the McMath-Pierce FTS at the National Solar Observatory on Kitt Peak and the Bruker IFS 120HR FTS at the Pacific Northwest National Laboratory. Spectra were recorded with 99.8% pure HCN as well as lean mixtures of HCN in air at various temperatures ranging between +26 C and -60 C. A multispectrum nonlinear least squares technique was used to fit selected intervals of 36 spectra simultaneously to obtain the line positions, intensities, broadening and shift parameters. The measured line intensities were analyzed to determine the vibrational band intensity and the Herman-Wallis coefficients. The measured self-broadening coefficients vary between 0.2 and 1.2 cm{sup -1} atm{sup -1} at 296 K, and the air broadening coefficients range from 0.08 to 0.14 cm{sup -1} atm{sup -1} at 296 K. The temperature dependence exponents of self-broadening range from 1.46 to -0.12 while the corresponding exponents for air broadening vary between 0.58 and 0.86. The present measurements are the first known determination of negative values for the temperature dependence exponents of HCN broadening coefficients. We were able to support our self-broadening measurements with appropriate theoretical calculations. Our present measurements are compared, where possible, with previous measurements for this and other HCN bands, as well as the parameters that are included in the 2000 and 2004 editions of the HITRAN (HIgh-resolution TRANsmission) database.

  10. Multispectrum analysis of the v9 band of 12C2H6: Positions, intensities, self- and N2-broadened half-width coefficients

    SciTech Connect

    Devi, V. Malathy; Rinsland, Curtis P.; Benner, D. C.; Sams, Robert L.; Blake, Thomas A.

    2010-06-01

    Line positions, intensities, Lorentz self- and N2-broadened half-width coefficients have been measured for PQ3, PQ2, PQ1, RQ0,RQ1, RQ2, and RQ3 sub-band transitions in the 9 fundamental band of 12C2H6. A multispectrum nonlinear least-squares fitting technique was used to fit up to 17 high-resolution (~0.00156 cm-1), room temperature absorption spectra of pure (99.99% chemical purity) natural sample of ethane and lean mixtures of the high-purity ethane diluted with N2. A Bruker IFS 120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington was used to record the data. A standard Voigt line shape was assumed to fit all the data since no line mixing or other non Voigt line shapes were required to fit any of the spectra used in the analysis. Short spectral intervals (~2 to 2.5 cm-1) of all 17 spectra covering a specific PQ or RQ sub band were fit simultaneously. For the first time in an ethane band, pressure-broadened half-width coefficients were determined for each of the torsional-split components. Constraints were used such that the half-width coefficients of both torsional-split components were identical for a specific broadening gas. No pressure-induced shift coefficients were necessary to fit the spectra to their noise level. The present study revealed for the first time the dependence of self- and N2-broadened half-width coefficients upon the J, K quantum numbers of the transitions in ethane. A number of transitions belonging to the 9+ 4- 4 and the 9+2 4-2 4 hot bands were also observed in the fitted regions and measurements were made when possible.

  11. Measurements of argon broadened Lorentz width and pressure-induced line shift coefficients in the nu4 band of (C-12)H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1989-01-01

    Room temperature argon broadened halfwidth and pressure-induced line shift coefficients have been determined for 118 transitions in the nu4 band of (C-12)H4 from analysis of high resolution laboratory absorption spectra recorded with the McMath Fourier transform spectrometer operated on Kitt Peak by the National Solar Observatory. Transitions up to J-double-prime = 12 have been measured using a nonlinear least-squares spectral fitting procedure. The variation of the measured halfwidth coefficients with symmetry type and rotational quantum number is very similar to that measured previously for N2 and air broadening, but the absolute values of the argon broadening coefficients are all smaller. On average, the ratio of the argon broadened halfwidth coefficient to the corresponding N2 broadened halfwidth coefficient is 0.877 + or - 0.017 (2 Sigma). More than 95 percent of the pressure-induced shifts are negative with values ranging from -0.0081 to +0.0055/cm atm. The pressure shifts in argon are nearly equal to corresponding values measured previously in N2 and air.

  12. Measurements of Lorentz air-broadening coefficients and relative intensities in the H2O-16 pure rotational and nu2 bands from long horizontal path atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Goldman, Aaron; Malathy Devi, V.

    1991-01-01

    Lorentz air-broadening coefficients and relative intensities have been measured for forty-three lines in the pure rotational band and twenty lines in the nu2 band of H2O-16 between 800 and 1150/cm. The results were derived from analysis of nine 0.017/cm-resolution atmospheric absorption spectra recorded over horizontal paths of 0.5-1.5 km with the McMath Fourier transform spectrometer and main solar telescope operated on Kitt Peak by the National Solar Observatory. A nonlinear least-squares spectral fitting technique was used in the spectral analysis. The results are compared with previous measurements and calculations. In most cases, the measured pressure-broadening coefficients and intensities are significantly different from the values in the 1986 HITRAN line parameters compilation.

  13. Self-, N2, O2, H2, Ar, and He broadening in the nu3 band Q branch of CH4

    NASA Technical Reports Server (NTRS)

    Pine, A. S.

    1992-01-01

    Self-, N2-, O2-, H2-, Ar-, and He-broadening coefficients, pressure shifts, and integrated intensities have been measured for most transitions in the Q branch of the nu3 fundamental band of methane using a difference-frequency laser spectrometer. A systematic dependence of the broadening coefficients on the tetrahedral symmetry species and order index is observed with striking similarities for N2, O2, and Ar and for H2 and He buffer gases. Comparison with earlier measurements on other bands and branches of methane indicates very little vibrational, branch, or carbon isotope dependence. Dicke narrowing is evident at intermediate pressures, yielding an average narrowing coefficient and an optical diffusion constant for each gas mixture.

  14. Design of suitable carrier buffer for free-flow zone electrophoresis by charge-to-mass ratio and band broadening analysis.

    PubMed

    Kong, Fan-Zhi; Yang, Ying; He, Yu-Chen; Zhang, Qiang; Li, Guo-Qing; Fan, Liu-Yin; Xiao, Hua; Li, Shan; Cao, Cheng-Xi

    2016-09-01

    In this work, charge-to-mass ratio (C/M) and band broadening analyses were combined to provide better guidance for the design of free-flow zone electrophoresis carrier buffer (CB). First, the C/M analyses of hemoglobin and C-phycocyanin (C-PC) under different pH were performed by CLC Protein Workbench software. Second, band dispersion due to the initial bandwidth, diffusion, and hydrodynamic broadening were discussed, respectively. Based on the analyses of the C/M and band broadening, a better guidance for preparation of free-flow zone electrophoresis CB was obtained. Series of experiments were performed to validate the proposed method. The experimental data showed high accordance with our prediction allowing the CB to be prepared easily with our proposed method. To further evaluate this method, C-PC was purified from crude extracts of Spirulina platensis with the selected separation condition. Results showed that C-PC was well separated from other phycobiliproteins that have similar physicochemical properties, and analytical grade product with purity up to 4.5 (A620/A280) was obtained. PMID:27465345

  15. Water Broadening of Oxygen

    NASA Astrophysics Data System (ADS)

    Drouin, Brian J.; Payne, Vivienne; Mlawer, Eli

    2013-06-01

    A need for precise air-mass retrievals utilizing the near-infrared O_2 A-band has motivated measurements of the water-broadening in oxygen. Experimental challenges have resulted in very little water broadened oxygen data, especially in the near-infrared where pressure broadened linewidth must compete with the relatively large thermal linewidth. Existing water broadening data^a for the O_2 A-band is of insufficient precision for application to the atmospheric data. Because of the nature of scattering processes, it is believed that broadening parameters for O_2 from one spectral region may be transferable to other spectral regions - so we investigated the O_2 60 GHz magnetic dipole Q branch which is also used prominently in remote sensing. Atmospheric retrievals of air-mass and temperature that use the 60 GHz magnetic dipole Q branch incorporate a water-broadening parameter that is scaled to self-broadened values, but there is only high temperature data that directly supports this hypothesis.^b We present precise O_2-H_2O broadening measurements for the magnetic dipole Q-branch and the pure-rotational band, measured at room temperature with a Zeeman-modulated absorption cell and a frequency-multiplier spectrometer. Here we will describe the apparatus and the measurement analysis. Inter-comparisons of these and other O_2 broadening data sets confirm the expectation of only minor band-to-band scaling of pressure broadening. The measurement provides a basis for fundamental parameterization of retrieval codes for the long-wavelength atmospheric measurements. Finally, we encourage the application of these measurements for retrievals of air-mass via remote sensing of the oxygen A-band. ^a E.M. Vess et al. J. Phys. Chem. A 116, 4069-4073 (2012). ^b G. Fanjoux et al. J. Chem. Phys. 101(2) 1061-1071 (1994).

  16. Measurement of pressure-broadening and lineshift coefficients at 77 and 296 K of methane lines in the 727 nm band using intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Kuldip; O'Brien, James J.

    1994-01-01

    Pressure-broadening coefficients and pressure-induced lineshifts of several rotational-vibrational lines have been measured in the 727 nm absorption band of methane at temperatures of 77 and 296 K, using nitrogen, hydrogen, and helium as the foreign-gas collision partners. A technique involving intracavity laser spectroscopy is used to record the methane spectra. Average values of the broadening coefficients (/cm/atm) at 77 K are: 0.199, 0.139, 0.055, and 0.29 for collision partners N2, H2, He, and CH4, respectively. Typical average values of the pressure-induced lineshifts (/cm/atm) at 77 K and for the range of foreign gas pressures between 10 and 200 torr are -0.052 for N2, -0.063 for H2, and +0.031 for He. All the values obtained at 296 K are considerably different from the corresponding values at 77 K. This represents the first report of pressure-broadening and shifting coefficients for the methane transitions in a region where the delta nu(sub C-H) = 5 band occurs.

  17. Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the v2 band of ammonia near 10.4 μm

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.

    2016-05-01

    We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.

  18. Multispectrum Analysis of Self-And N-2-Broadening, Shifting and Line Mixing Coefficients in The nu(6) Band of (CH3D)-C-12

    SciTech Connect

    Devi, V. Malathy; Benner, D. Chris; Brown, Linda R.; Smith, Mary A.; Rinsland, C.P.; Sams, Robert L.; Sharpe, Steven W.

    2003-01-15

    A multispectrum nonlinear least-squares fitting technique has been applied to determine accurate zero-pressure line center positions, Lorentz self-broadening and N2-broadening coefficients and self-induced and N2-induced pressure shift coefficients of transitions in the v6 (E) perpendicular band of 12 CH3D between 1035 and 1270 cm-1. High-resolution room temperature absorption spectra recorded with two Fourier transform spectrometers (FTS) were analyzed together. Three spectra at 0.002 cm-1 resolution recorded using the Bruker IFS 120 HR at Pacific Northwest National Laboratory (PNNL), and fourteen spectra obtained with the McMath-Pierce FTS (0.006 cm-1 resolution) at the National Solar Observatory (NSO) on Kitt Peak were used in the analysis.

  19. Self-, N2-, O2-broadening coefficients and line parameters of HFC-32 for ν7 band and ground state transitions from infrared and microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Turchetto, Arianna; Puzzarini, Cristina; Stoppa, Paolo; Pietropolli Charmet, Andrea; Giorgianni, Santi

    2014-09-01

    Hydrofluorocarbons have been used as replacement gases of chlorofluorocarbons, since the latter have been phased out by the Montreal Protocol due to their environmental hazardous ozone-depleting effects. This is also the case of difluoromethane (CH2F2, HFC-32), which nowadays is widely used in refrigerant mixtures together with CF3CH3, CF3CH2F, and CF3CHF2. Due to its commercial use, in the last years, the atmospheric concentration of HFC-32 has increased significantly. However, this molecule presents strong absorptions within the 8-12 μm atmospheric window, and hence it is a greenhouse gas which contributes to global warming. Although over the years several experimental and theoretical investigations dealt with the spectroscopic properties of CH2F2, up to now pressure broadening coefficients have never been determined. In the present work, the line-by-line parameters of CH2F2 are retrieved for either ground state or ν7 band transitions by means of microwave (MW) and infrared (IR) absorption spectroscopy, respectively. In particular, laboratory experiments are carried out on 9 pure rotational transitions of the ground state and 26 ro-vibrational transitions belonging to the ν7 band lying around 8.2 μm within the atmospheric region. Measurements are carried out at room temperature on self-perturbed CH2F2 as well as on CH2F2 perturbed by N2 and O2. The line shape analysis leads to the first determination of self-, N2-, O2-, and air-broadening coefficients, and also of line intensities (IR). Upon comparison, broadening coefficients of ground state transitions are larger than those of the ν7 band, and no clear dependence on the rotational quantum numbers can be reported. The obtained results represent basic information for the atmospheric modelling of this compound as well as for remote sensing applications.

  20. Spectral line parameters including temperature dependences of N2- and self-broadened widths in the region of the nu9 band of C2H6 using a multispectrum fitting technique

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Benner, D. Chris; Rinsland, C. P.; Smith, M. A. H.; Sams, R. L.; Blake, T. A.; Flaud, Jean-Marie; Sung, Keeyoon; Brown, L. R.; Mantz, A. W.

    2010-04-01

    Ethane is a prominent contributor to the spectrum of Titan, particularly in the region of the nu9 band at 12 micron. A multispectrum nonlinear least squares fitting program was applied to laboratory spectra of ethane to measure accurate positions, absolute intensities, N2- and self-broadened half width coefficients and their temperature dependences for a large number transitions. These measurements include several PQ and RQ sub-bands (and other sub bands such as PP, RR) in the nu9 fundamental band of 12C2H6 centered near 822 cm-1. Positions and intensities were measured for more than 1750 transitions. N2- and self-broadened half width coefficients were measured for over 1450 transitions while the temperature dependence exponents were determined for 1330 transitions. About 1900 additional measurements (mostly line positions and intensities) belonging to the nu9+nu4-nu4 hot band, 13C12CH6 nu9 band and over 500 unidentified transitions were also made in the fitted intervals. Forty-three high resolution (0.0016-0.003 cm-1) infrared laboratory absorption spectra recorded at temperatures between 150 and 298 K were fitted simultaneously in retrieving these parameters. Forty-one of these spectra were recorded in the temperature range of 211-298 K using the Bruker IFS 120HR interferometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. Two additional spectra at 150 K were obtained using the high resolution Bruker IFS 125HR interferometer of the Jet Propulsion Laboratory (JPL) in Pasadena, California. A specialized cooling cell capable of achieving temperatures down to 70 K was employed to record the 150 K spectra. Constraints pertaining to intensity ratios, doublet separations, half width coefficients and their temperature dependence exponents were written in determining these parameters for each of the two torsional split components. Similar to N2- and self-broadened half width coefficients, their temperature dependence exponents were

  1. Measurements of the CO_2 15 μm Band System Broadened by Air, N_2 and CO_2 at Terrestrial Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Devi, V. Malathy; Benner, D. Chris; Blake, T. A.; Sams, R. L.

    2009-06-01

    In earth remote sensing, retrievals of atmospheric temperature profiles are often based on observed radiances in infrared spectral regions where emission from atmospheric CO_2 predominates. To achieve improved retrieval accuracy, systematic errors in the forward model must be reduced, especially those associated with errors in the spectroscopic line calculation. We have recorded more than 110 new high-resolution infrared spectra of the 15-μm band system of CO_2 to accurately determine line intensities, self-, air- and N_2-broadened widths and pressure-induced line shifts, along with their temperature dependences. The spectra were recorded with the Bruker IFS 120 HR Fourier transform spectrometer at Pacific Northwest National Laboratory (PNNL) and temperature-controlled sample cells. Sample temperatures were between 206K and 298K. Maximum total pressures were 15 Torr for self-broadening and 613 Torr for air- and N_2-broadening. Analysis is done using a multispectrum fitting technique to retrieve the spectroscopic parameters. Line mixing and other non-Lorentz, non-Voigt line shapes are also assessed. The resulting line parameters are compared with the HITRAN database and with other measurements. D. Chris Benner, C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, and D. Atkins, J. Quant. Spectrosc. Radiat. Transfer 53, 705-721 (1995) L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005) L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, in press (2009)

  2. Room-temperature Broadening and Pressure-shift Coefficients in the nu(exp 2) Band of CH3D-O2: Measurements and Semi-classical Calculations

    NASA Technical Reports Server (NTRS)

    Predoi-Cross, Adriana; Hambrook, Kyle; Brawley-Tremblay, Shannon; Bouanich, Jean-Pierre; Devi, V. Malathy; Smith, Mary Ann H.

    2006-01-01

    We report measured Lorentz O2-broadening and O2-induced pressure-shift coefficients of CH3D in the nu(exp 2) fundamental band. Using a multispectrum fitting technique we have analyzed 11 laboratory absorption spectra recorded at 0.011 cm(exp 1) resolution using the McMath-Pierce Fourier transform spectrometer, Kitt Peak, Arizona. Two absorption cells with path lengths of 10.2 and 25 cm were used to record the spectra. The total sample pressures ranged from 0.98 to 339.85 Torr with CH3D volume mixing ratios of 0.012 in oxygen. We report measurements for O2 pressure-broadening coefficients of 320 nu(exp 2) transitions with quantum numbers as high as J0(sup w) = 17 and K = 14, where K(sup w) = K' is equivalent to K (for a parallel band). The measured O2-broadening coefficients range from 0.0153 to 0.0645 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shifts are negative. The reported O2-induced pressure-shift coefficients vary from about -0.0017 to -0.0068 cm(exp -1) atm(exp -1). We have examined the dependence of the measured broadening and shift parameters on the J(sup W), and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J(sup W), J(sup W), and J(sup w) + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%. The O2-broadening and pressure shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are generally larger than the experimental data. Using for the trajectory model an isotropic Lennard-Jones potential derived from molecular parameters instead of the spherical average of the atom-atom model, a better agreement is obtained with these data, especially for |m| <= 12

  3. Spectral Line Parameters Including Temperature Dependences of Self- and Air-Broadening in the 2 (left arrow) 0 Band of CO at 2.3 micrometers

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.

    2012-01-01

    Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.

  4. Multispectrum Analysis of 12CH4 in the v4 Band: I. Air-Broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing

    NASA Technical Reports Server (NTRS)

    Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi

    2009-01-01

    Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.

  5. N2 and O2 pressure broadening and pressure shift in the 4ν2 band of 16O12C32S

    NASA Astrophysics Data System (ADS)

    Galalou, S.; Ben Mabrouk, K.; Aroui, H.; Kwabia Tchana, F.; Willaert, F.; Flaud, J.-M.

    2011-12-01

    To measure accurately OCS concentrations in planetary atmospheres, it is important to know precisely nitrogen and oxygen pressure broadening and pressure-induced shift coefficients for the lines used in the retrievals. We present in this study the corresponding coefficients for lines of the P and R branches of the 4ν2 band of the primary isotopologue of carbonyl sulfide (16O12C32S).For this purpose, infrared absorption spectra of a natural carbonyl sulfide (OCS) gas sample were recorded at an unapodized resolution of 0.004 cm-1, at room temperature for different pressures of N2 and O2, using a Bruker IFS125HR spectrometer at the LISA Laboratory in France. The line parameters were derived using the multispectrum fitting method applied to the measured shapes of the lines, including the interference effects caused by the line overlaps.The results are compared with earlier measurements and with values calculated using a semi-classical model based upon the Robert and Bonamy formalism that reproduces rather well the experimental m (m=-J for P(J) lines and m=J+1 for R(J) lines) quantum number dependence of the N2 and O2 broadening coefficients. On the other hand most of the lines studied here have positive shift coefficients, which do not show any systematic dependence on m. However, in previous studies of the ν3, 2ν3 and ν2 bands, these coefficients were negative for all lines.

  6. Multispectrum measurements of spectral line parameters including temperature dependences of N2- and self-broadened half-width coefficients in the region of the v9 band of 12C2H6

    SciTech Connect

    Malathy Devi, V.; Benner, D. C.; Rinsland, C.P.; Smith, M.A.H.; Sams, Robert L.; Blake, Thomas A.; Flaud, Jean Marie; Sung, Keeyoon; Brown, L.R.; Mantz, A. W.

    2010-11-01

    Ethane is a prominent contributor to the spectrum of Titan, particularly in the region of the v9 band at 12μm. A multispectrum nonlinear least squares fitting program was applied to laboratory spectra of ethane to measure accurate positions, absolute intensities, N2- and selfbroadened half- width coefficients and their temperature dependences for a large number transitions. These measurements include several pQ and rQ sub-bands (and other sub-bands such as pP, rR) in the v9 fundamental band of 12C2H6 centered near 822 cm-1. Positions were measured for 2958 transitions and intensities for 3771 transitions. N2- and self-broadened half-width coefficients were determined for over 1700 transitions while temperature dependence exponents were retrieved for over 1350 of those transitions. Of these, many measurements (mostly line positions and intensities) belong to the v9+v4-v4 hot band, v9+2v4-2v4 hot band, 13C12CH6 v9 band and unidentified transitions. Forty-three high resolution (0.0016-0.005 cm-1) infrared laboratory absorption spectra recorded at temperatures between 148 and 298 K were fitted simultaneously to retrieve these parameters. Forty-one of these spectra were obtained in the temperature range of 211-298 K using the Bruker IFS 120HR interferometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. Two additional spectra at 148 K were recorded using a new temperature stabilized cryogenic cell designed to work inside the sample compartment of the high resolution Bruker IFS 125HR interferometer of the Jet Propulsion Laboratory (JPL) in Pasadena California. The specialized cooling cell developed at Connecticut College and capable of achieving gas sample temperatures down to 70 K with a temperature stability and uniformity of better than ±0.05 K was employed to record the 148 K spectra. Constraints to intensity ratios, doublet separations, half-width coefficients and their temperature dependence exponents were required to

  7. Peculiarities of zone migration and band broadening in gradient reversed-phase high-performance liquid chromatography of proteins with respect to membrane chromatography.

    PubMed

    Belenkii, B G; Podkladenko, A M; Kurenbin, O I; Mal'tsev, V G; Nasledov, D G; Trushin, S A

    1993-08-13

    The peculiarities of zone migration and band broadening in the reversed-phase gradient HPLC of proteins were investigated. In the isocratic mode a critical composition of the mobile phase was found at which all proteins regardless of their molecular mass migrate with equal velocity and have a capacity factor equal to the phase ratio (VP/V0), i.e., the same capacity factor as a marker of total accessible volume would have in steric exclusion chromatography. It is shown that steric exclusion conditions are never achieved in gradient HPLC. In the first (adsorption stage) of gradient elution where the separation takes place the velocity of a protein increases until it becomes equal to the velocity of the desorbing solvent front at a critical distance X0 from column entrance. Strong broadening is characteristic of this stage. In the second (critical) stage the protein travels the remaining distance (L-X0) with the velocity of the solvent. A definition of X0 is given allowing one very simple calculation of the minimum permissible column length as a function of gradient steepness, mobile phase velocity and protein adsorption parameter. When x = X0 the protein zone has the smallest dispersion. Making L < X0 is especially disadvantageous, as it leads to anomalous bandspreading. The theory of gradient HPLC was refined on this basis and the usefulness of this approach in high-performance membrane chromatography is demonstrated. PMID:8408410

  8. Chain-length-dependent impact of band broadening on the molar-mass determination of synthetic polymers via size-exclusion chromatography.

    PubMed

    Wolpers, Arne; Vana, Philipp

    2016-08-01

    The impact of band-broadening (BB) on the molar-mass determination of synthetic polymers via size-exclusion chromatography (SEC) is systematically studied. BB is simulated using the exponentially modified Gaussian (EMG) model, which combines the two inherent and distinct characteristics contributing to BB in SEC: symmetric Gaussian broadening and asymmetric skewing. It is demonstrated that BB both during the measurement of the analyte itself and during the calibration process has an individual impact on molar-mass determination. In this context, particularly skewing leads to a chain-length-dependent underestimation of molar masses, with deviations of the apparent from the true ones of only a few percent for low molar masses to up to 20% for high ones for reasonable extents of BB. The impact is shown to be independent of the shape of the analyte⬢s molar-mass distribution (MMD) and affects broad and multimodal MMDs similarly to narrow and unimodal ones. As a consequence, strategies are presented for a comprehensive quantitative correction of the observed effects, which may find their application in refined SEC software packages. The potential impact of the findings on general conceptions of repeatability and reproducibility within SEC experiments is discussed. PMID:27393628

  9. Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of (C-12)H3D from measurements with a tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Thakur, K. B.

    1986-01-01

    Absolute intensities and self-, air- and N2-broadened half-widths have been determined for the first time for individual lines in the nu3(A1) band of (C-12)H3D near 7.6 microns from measurements of individual vibration-rotation lines using a tunable diode laser spectrometer. The intensity measurements are believed to be accurate to within three percent. Within experimental uncertainties, equal broadening efficiencies are found for both air and nitrogen. Self-broadened half-widths determined for three transitions yield an average half-width value of 0.803 + or -0.0010/cm/atm at 296 K.

  10. Air-Broadened Line Parameters for the 2←0 Bands of 13C16O and 12C18O at 2.3 μm

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.

    2012-06-01

    Air-broadened line shape parameters were determined for the first time in the 2←0 bands of 13C16O near 4166.8 cm-1 and 12C18O near 4159.0 cm-1. Spectra were recorded at 0.005 cm-1 resolution using a coolable absorption cell in the sample compartment of the Bruker IFS 125HR Fourier transform spectrometer at Jet Propulsion Laboratory. Gas temperatures and pressures ranged from 150 to 298 K and 20 to 700 Torr, respectively. Line parameters were determined by broad-band multispectrum least-squares fitting of the 4000-4360 cm-1 region in 16 spectra simultaneously; each set included 4 isotope-enriched pure sample scans and 12 air+CO samples (13CO or C18O, as appropriate). The air-broadened parameters measured were Lorentz half-width coefficients, their temperature dependence exponents; pressure-induced shift coefficients, their temperature dependences; and off-diagonal relaxation matrix elements. Speed dependence parameters were included to minimize the fit residuals. For both isotopologues the individual line positions and intensities were constrained to their theoretical relationships in order to obtain the rovibrational (G, B, D, and H) and band intensity parameters, including Herman-Wallis coefficients. The results for 13C16O and 12C18O are compared with those for the 12C16O 2←0 band and discussed. K. Sung, A. W. Mantz, M. A. H. Smith, et al., JMS 262 (2010) 122-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721. V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller and R. A. Toth, JMS 242 (2007) 90-117. V. Malathy Devi, D. C. Benner, M. A. H. Smith, et al., JQSRT (2012) in press. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  11. Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB{sub 6} nanoparticles

    SciTech Connect

    Machida, Keisuke; Adachi, Kenji

    2015-07-07

    An ensemble inhomogeneity of non-spherical LaB{sub 6} nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB{sub 6} particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent −3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB{sub 6} with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.

  12. Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles

    NASA Astrophysics Data System (ADS)

    Machida, Keisuke; Adachi, Kenji

    2015-07-01

    An ensemble inhomogeneity of non-spherical LaB6 nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB6 particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent -3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB6 with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.

  13. Temperature Dependences for Air-broadened Widths and Shift Coefficients in the 30013 - 00001 and 30012 - 00001 Bands of Carbon Dioxide near 1600 nm

    NASA Astrophysics Data System (ADS)

    Devi, M.; Predoi-Cross, A.; McKellar, R.; Benner, C.; Miller, C. E.; Toth, R. A.; Brown, L. R.

    2008-12-01

    Nearly 40 high resolution spectra of air-broadened CO2 recorded at temperatures between 215 and 294 K were analyzed using a multispectrum nonlinear least squares technique to determine temperature dependences of air-broadened half width and air-induced pressure shift coefficients in the 30013-00001 and 30012-00001 bands of 12CO2. Data were recorded with two different Fourier transform spectrometers (Kitt Peak FTS at the National Solar Observatory in Arizona and the Bomem FTS at NRC, Ottawa) with optical path lengths ranging between 25 m and 121 m. The sample pressures varied between 11 torr (pure CO2) and 924 torr (CO2-air) with volume mixing ratios of CO2 in air between ~ 0.015 and 0.11. To minimize systematic errors and increase the accuracy of the retrieved parameters, we constrained the multispectrum nonlinear least squares fittings to use quantum mechanical expressions for the rovibrational energies and intensities rather than retrieving the individual positions and intensities line-by-line. The results suggest minimal vibrational dependence for the temperature dependence coefficients.1 1 A. Predoi-Cross and R. Mckellar are grateful for financial support from the National Sciences and Engineering Research Council of Canada. The research at the Jet Propulsion laboratory (JPL), California Institute of Technology, was performed under contract with National Aeronautics and Space Administration. The support received from the National Science Foundation under Grant No. ATM-0338475 to the College of William and Mary is greatly appreciated. The authors thank Mike Dulick of the National Solar Observatory for his assistance in obtaining the data recorded at Kitt Peak.

  14. Measurements of Band Intensities, Herman-Wallis Parameters, and Self-Broadening Line-Widths of the 30011 - 00001 and 30014 - 00001 Bands of CO2 at 6503 cm(exp -1) and 6076 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Brown, L. R.; Wattson, R. B.; Spencer, M. N.; Chackerian, C., Jr.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Rotationless band intensities and Herman-Wallis parameters are listed in HITRAN tabulations for several hundred CO2 overtone-combination bands. These parameters are based on laboratory measurements when available, and on DND calculations for the unmeasured bands. The DND calculations for the Fermi interacting nv(sub 1) + v(sub 3) polyads show the a(sub 2) Herman-Wallis parameter varying smoothly from a negative value for the first member of the polyad to a positive value for the final member. Measurements of the v(sub 1) + v(sub 3) dyad are consistent with the DND calculations for the a(sub 2) parameter, as are our recent measurements of the 4v(sub 1) + v(sub 3) pentad. However, the measurement-based values in the HITRAN tables for the 2v(sub 1) + v(sub 3) triad and the 3v(sub 1) + v(sub 3) tetrad do not support the DND calculated values for the a(sub 2) parameters. We therefore decided to make new measurements to improve some of these intensity parameters. With the McMath FTS at Kitt Peak National Observatory/National Solar Observatory we recorded several spectra of the. 4000 to 8000 cm(exp -1) region of pure CO2 at 0.011 cm(exp -1) resolution using the 6 meter White absorption cell. The signal/noise and absorbance of the first and fourth bands of the 3v(sub 1) + v(sub 3) tetrad of C-12O-16 were ideal on these spectra for measuring line intensities and broadening widths. Our selfbroadening results agree with the HITRAN parameterization, while our measurements of the rotationless band intensities are about 15% less than the HITRAN values. We find a negative value of a(sub 2) for the 30011-00001 band and a positive value for the 30014-00001 band, whereas the HITRAN values of a(sub 2) are positive for all four tetrad bands. Our a(sub 1) and a(sub 2) Herman-Wallis parameters are closer to DND calculated values than the 1992 HITRAN values for both the 30011-00001 and the 30014-00001 band.

  15. Effect of temperature variation on shift and broadening of the exciton band in Cs3Bi2I9 layered crystals

    NASA Astrophysics Data System (ADS)

    Machulin, V. F.; Motsnyi, F. V.; Smolanka, O. M.; Svechnikov, G. S.; Peresh, E. Yu.

    2004-12-01

    The exciton reflection spectra of Cs3Bi2I9 layered crystals are investigated in the temperature region 4.2-300 K with light polarization E⊥c. It is estimated that the energy gap Eg equals 2.857 eV (T=4.2 K) and the exciton binding energy Ry is 279 meV. A nontraditional temperature shift of Eg(T) for layered substances is found for the first time. It is learned that this shift is described very well by the Varshni formula. A transition region in the temperature broadening of the half-width H(T) of the exciton band with increase of temperature is registered in the interval between 150 and 220 K. It is shown that this region may be identified as the heterophase structure region where ferroelastic and paraelastic phases coexist. A surge of H(T) at the point of the ferroelastic phase transition (Tc=220 K) is also observed.

  16. Rotational level-dependent collisional broadening and line shift of the A2Sigma(+)-X2Pi (1,0) band of OH in hydrogen-air combustion gases

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Allen, M. G.; Davis, S. J.

    1993-01-01

    Measurements of the collisional broadening and line shift of the (1,0) band of the A2Sigma(+)-X2Pi system of OH are reported in atmospheric pressure hydrogen-air combustion gases. The measurements were made using a single-mode, narrow linewidth, frequency-doubled ring dye laser operating near 283 nm. The OH was generated in the combustion gases of a flat flame H2-air burner. Collisional broadening parameters for equilibrium mixtures of H2, O2, H2O, and N2 were obtained spanning a range of fuel/air equivalence ratios from 0.6 to 1.6 and temperatures from 1500 to 2050 K. Measurements were obtained spanning rotational quantum numbers from 4.5 to 16.5. The collision induced frequency shift was determined to be 0.1 that of the collisional broadening.

  17. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Boulet, C.

    2016-06-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  18. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3.

    PubMed

    Ma, Q; Boulet, C

    2016-06-14

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II). PMID:27306003

  19. Absolute Rovibrational Intensities, Self-Broadening and Self-Shift Coefficients for the X(sup 1) Sigma(+) V=3 (left arrow) V=0 Band (C-12)(O-16)

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; Freedman, R.; Giver, L. P.; Brown, L. R.

    2001-01-01

    The rotationless transition moment squared for the x(sup 1) sigma (sup +) v=3 (left arrow) v=0 band of CO is measured to be the absolute value of R (sub 3-0) squared = 1.7127(25)x 10(exp -7) Debye squared. This value is about 8.6 percent smaller than the value assumed for HITRAN 2000. The Herman-Wallis intensity factor of this band is F=1+0.01168(11)m+0.0001065(79)m squared. The determination of self-broadening coefficients is improved with the inclusion of line narrowing; self-shifts are also reported.

  20. A Multispectrum Analysis of the v2 Band of H12C14N: Part II. Theoretical Calculations of Self-Broadening, Self-Induced Shifts, and Their Temperature Dependences

    SciTech Connect

    Bouanich, J P.; Boulet, C; Predoi-Cross, A; Sharpe, Steven W.; Sams, Robert L.; Smith, Mary A.; Rinsland, Curtis P.; Benner, D C.; Devi, V M.

    2005-04-07

    A semiclassical theory based upon the Robert-Bonamy formalism has been developed in order to explain the experimental measurements of self-broadening, self-induced pressure shift coefficients in the v1, v2, 2v2 bands of H12C14N and the 2v1 band of H13C14N as well as the temperature dependences of these parameters with special emphasis on the v2 band. Our calculations include only electrostatic interactions and neglect the vibrational dependence of the isotropic part of the intermolecular potential, which probably has a weak contribution to the HCN self-shifts for the bands investigated in this study. The agreement between theory and measurements is good in the cases of self-broadening coefficients and their variation with temperature, as well as the self-shift coefficients determined at room temperature. However, the observed temperature dependence of self-shift coefficients in the v2 band is different from that derived theoretically.

  1. Compactional deformation bands in Wingate Sandstone; additional evidence of an impact origin for Upheaval Dome, Utah

    NASA Astrophysics Data System (ADS)

    Okubo, Chris H.; Schultz, Richard A.

    2007-04-01

    Field and microstructural observations from Upheaval Dome, in Canyonlands National Park, Utah, show that inelastic strain of the Wingate Sandstone is localized along compactional deformation bands. These bands are tabular discontinuities (< 0.5 cm thick) that accommodate inelastic shear and compaction of inter-granular volume. Measurements of porosity and grain size from non-deformed samples are used to define a set of capped strength envelopes for the Wingate Sandstone. These strength envelopes reveal that compactional deformation bands require at least ca. 0.7 GPa (and potentially more than 2.3 GPa) of effective mean stress in order to nucleate within this sandstone. We find that the most plausible geologic process capable of generating these required magnitudes of mean stress is a meteoritic impact. Therefore the compactional deformation bands observed within the Wingate Sandstone are additional evidence of an impact event at Upheaval Dome and support a post-Wingate (post-Early Jurassic) age for this impact.

  2. Corrigendum to "Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012←00001 and 30013←00001 bands" [J. Quant. Spectrosc. Radiat. Transf., 111 (9) (2010) 1065-1079

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Liu, W.; Murphy, Reba; Povey, Chad; Gamache, R.; Laraia, A.; McKellar, A. R. W.; Hurtmans, Daniel; Devi, V. M.

    2015-10-01

    The group of authors would like to make the following clarification: the retrievals of self-broadened temperature dependence coefficients were performed by the authors both using the multispectrum fit program from Ref. [14] and using the multispectrum fit program of D. Chris Benner [Benner DC, Rinsland CP, Devi VM, Smith MAH, Atkins D. A multispectrum nonlinear least-squares fitting technique. J. Quant. Spectrosc. Radiat. Transf. 1995;53:705-21.). To retrieve the room temperature self-broadening parameters, the authors have used the values in Ref. [4]. For reasons of consistency with the results published for air-broadening and air-shift temperature dependence coefficients in A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, R.A. Toth, L.R. Brown, Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO2near 1600 μm, Canadian Journal of Physics, 87 (5) (2009) 517-535, Tables 2 and 3, and Figures 2 and 4 contain only the values retrieved using the multispectrum fit program of D. Chris Benner. We would like to thank D. Chris Benner for allowing us to use his fitting software.

  3. Quantum Cascade Laser Measurements of Line Intensities, N2-, O2- and Ar- Collisional Broadening Coefficients of N2O in the ν3 Band Near 4.5 µm.

    PubMed

    Es-Sebbar, Et-Touhami; Deli, Meriem; Farooq, Aamir

    2016-06-01

    This study deals with precise measurements of absolute line intensities, N2-, O2- and Ar- collisional broadening coefficients of N2O in the P-branch of the ν3 vibrational band near 4.5 µm. Collisional broadening coefficients of N2O-air are derived from the N2- and O2- broadening contributions by considering an ideal atmospheric composition. Studies are performed at room temperature for 10 rotational transitions over 2190-2202 cm(-1) spectral range using a distributed-feedback quantum cascade laser. To retrieve spectroscopic parameters for each individual transition, measured absorption line shape is simulated within Voigt and Galatry profiles. The obtained results compare well with previous experimental data available in the literature: the discrepancies being less than 4% for most of the probed transitions. The spectroscopic data reported here are very useful for the design of sensors used to monitor the abundance of N2O in earth's atmosphere. PMID:27091906

  4. Self- and air-broadened line shape parameters in the ν2+ν3 band of 12CH4: 4500-4630 cm-1

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Mantz, Arlan W.; Sung, Keeyoon; Crawford, Timothy J.; Predoi-Cross, Adriana

    2015-02-01

    Accurate knowledge of spectral line shape parameters is important for infrared transmission and radiance calculations in the terrestrial atmosphere. In this paper, we report the self- and air-broadened Lorentz half-widths, pressure-induced shifts and line mixing coefficients (via off-diagonal relaxation matrix elements) along with their temperature dependences for methane ν2+ν3 absorption lines in the 4500-4630 cm-1 region of the Octad. For this, we recorded 14 high-resolution, high signal to noise ratio (S/N) spectra of high-purity (99.95% 12C-enriched) samples of pure methane and its dilute mixtures in dry air between 298 K and 148 K. A Bruker IFS 125HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California, was used to obtain the experimental data. The absorption cell used for this study was a specially built 20.38 cm long coolable cell installed in its sample compartment. The sample pressures for the pure 12CH4 spectra were 4.5-385 Torr; for the air-broadened spectra the total pressures ranged between 95 and 300 Torr with the methane volume mixing ratios between 0.04 and 0.097. All 14 spectra were fitted simultaneously using an interactive multispectrum nonlinear least-squares curve fitting technique. The results are compared to values reported in the literature.

  5. First measurements of nitrous oxide self-broadening and self-shift coefficients in the 0002-0000 band at 2.26 μm using high resolution Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Werwein, Viktor; Brunzendorf, Jens; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-05-01

    Nitrous oxide (N2O) is one of the most important greenhouse gases in the terrestrial atmosphere and is routinely measured with ground-based FTIR networks like the Total Carbon Column Observing Network (TCCON). A spectral window for the TCCON retrievals is the 14N216O 0002-0000-band region from 4375 to 4445 cm-1 (2.250-2.285 μm). In our study, we present the first high-resolution Fourier transform spectrometer measurements of self-broadening and self-shift coefficients in the range of 53-1019 hPa for the lines R0e-R40e of this band. The line parameters were determined at 296 K using metrologically validated temperature, and pressure values, which were traced back to the SI-units. The averaged estimated relative uncertainties for the coverage factor of k = 2 (two times the standard deviation) are 0.3% and 9.5% with a standard deviation of 0.1% and 5.3% for the self-broadening and the self-shift coefficients, respectively. Vacuum line positions, determined for the first time by taking the self-shift coefficients into account are also reported with an estimated averaged relative uncertainty of 1.1 ∗ 10-8 for k = 2 and a standard deviation of 3 ∗ 10-9. A well-defined uncertainty assessment for the measured line parameters is given.

  6. Effect of Cd Addition in Band Gap and Volume Conductivity of SeTe Based Glasses

    NASA Astrophysics Data System (ADS)

    Saraswat, Vibhav K.; Kishore, V.; Saraswat, Y. K.; Saxena, N. S.

    2011-10-01

    Presented paper discusses the variation in optical band gap and volume dc conductivity of Se-Te-Cd ternary Chalcogenide glasses as a function of concentration of Cd i.e. the composition of the glasses. Also, the temperature dependence of volume conductivity has been studied. The amorphous nature of these glasses has been confirmed by XRD patterns. Keithley Electrometer/High resistance meter 6517A was used in its FVMI mode to record I_V characteristics at different temperatures. Variation in conductivity, derived from I_V curves, as a function of composition of sample could be accounted for the bonds formed in the system. Additionally, the Poole-Frenkel conduction mechanism has also been verified in order to investigate the good agreement with the established fact that most of Chalcogenide glasses obey the Poole-Frenkel conduction mechanism. Absorption spectra were recorded using Ocean Optics USB2000 spectrophotometer in visible region. Band gap calculation using Tauc relation reveals that the system under test is semi-conducting in nature. The observed results are found to be in good agreement with each other.

  7. Spectral shapes of Ar-broadened HCl lines in the fundamental band by classical molecular dynamics simulations and comparison with experiments

    SciTech Connect

    Tran, H.; Domenech, J.-L.

    2014-08-14

    Spectral shapes of isolated lines of HCl perturbed by Ar are investigated for the first time using classical molecular dynamics simulations (CMDS). Using reliable intermolecular potentials taken from the literature, these CMDS provide the time evolution of the auto-correlation function of the dipole moment, whose Fourier-Laplace transform leads to the absorption spectrum. In order to test these calculations, room temperature spectra of various lines in the fundamental band of HCl diluted in Ar are measured, in a large pressure range, with a difference-frequency laser spectrometer. Comparisons between measured and calculated spectra show that the CMDS are able to predict the large Dicke narrowing effect on the shape of HCl lines and to satisfactorily reproduce the shapes of HCl spectra at different pressures and for various rotational quantum numbers.

  8. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. I. Effects of Line Coupling on Self-Broadened v (sub 1) and Pure Rotational Bands of NH3

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.

    2016-01-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of selfbroadened NH3. The half-widths and shifts in the ?1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  9. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO{sub 2} (a‐SiO{sub 2}) exposed to {sup 60}Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a‐SiO{sub 2}, and the peak energy is larger for α-quartz than that for a‐SiO{sub 2}. The full width at half maximum for a‐SiO{sub 2} is larger by ∼40-60% than that for α-quartz, and it increases with an increase in the disorder of the a‐SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a‐SiO{sub 2}.

  10. Resonance broadening and van der waals broadening

    NASA Astrophysics Data System (ADS)

    Mashonkina, L.

    2010-11-01

    Resonance broadening is important for the hydrogen lines in the spectra of F-type and later stars. In the corresponding temperature regime, the extended wings of the Balmer lines are used as a stellar effective temperature indicator. We show the effect of the use of two broadening theories, Ali & Griem (1965, 1966) and Barklem et al. (2000a, 2000b), on the effective temperature derived in non-LTE from Hα and Hβ in the Sun and the metal-poor star HD19445. Van der Waals broadening is important for strong spectral lines in the atmospheres of F-type and later stars. For the selected transitions in Ca I and Ca II, line profile comparisons are made between applying the van der Waals damping constants from laboratory measurements, the ABO perturbation theory, and the classic Unsöld approximation.

  11. Absolute intensities and foreign gas broadening coefficients of the 11(sub 1,10) from 11(sub 2,10) and 18(sub 0,18) from 18(sub 1,18) lines in the nu(sub 7) band of C2H4

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; Sirota, J. Marcos

    1993-01-01

    Absolute intensities and foreign gas broadening coefficients of the 18(sub 0,18) from 18(sub 1,18) and 11(sub 1,10) from 11(sub 2,10) transitions in the nu(sub 7) band of C2H4 near 948/cm have been measured at a spectral resolution of approximately 5 x 10(exp -4)/cm using tunable diode laser spectrometry. Ar, He, N2, O2 were used as the broadening gases. In order to determine the temperature dependence of the broadening coefficient, data were obtained at temperatures ranging from 150 to 296 K. The absolute intensity of the 5(sub 0,5) from 5(sub 1,5) transition was also found at 296 K. A band strength of 330 +/- 10/sq cm/atm was obtained from weighted averages of the individual line intensities and a rigid asymmetric top calculation.

  12. Experimental investigation of the difference in B-term dominated band broadening between fully porous and porous-shell particles for liquid chromatography using the Effective Medium Theory.

    PubMed

    Liekens, Anuschka; Denayer, Joeri; Desmet, Gert

    2011-07-15

    The difference in B-term diffusion between fully porous and porous-shell particles is investigated using the physically sound diffusion equations originating from the Effective Medium Theory (EMT). Experimental data of the B-term diffusion obtained via peak parking measurements on six different commercial particle types have been analyzed (3 porous and 3 non porous). All particles were investigated using the same experimental design and test analytes, over a very broad range of retention factor values. First, the B-term reducing effect of the solid core (inducing an additional obstruction compared to fully porous particles) has been quantified using the Hashin-Shtrikman expression, showing that the presence of a solid core can account for a reduction of about 11% when the core diameter makes up 63% of the total particle diameter (Halo and Poroshell-particles) and a reduction of 16% when the core diameter makes up 73% (Kinetex). Remaining differences can be attributed to differences in the microscopic structure of the meso-porous material (meso-pore diameter, internal porosity or relative void volume). The much lower B-term diffusion of Halo and Kinetex particles compared to the fully porous Acquity particles (some 20-40% difference, of which about 10-15% can be attributed to the presence of the solid core) can hence largely be attributed to the much smaller internal porosity and the smaller pore size of the meso-porous material making up the shell of these particles. PMID:21628063

  13. Comparison of Trajectory Models in Calculations of N2-broadened Half-widths and N2-induced Line Shifts for the Rotational Band of H2O-16 and Comparison with Measurements

    NASA Technical Reports Server (NTRS)

    Lamouroux, J.; Gamache, R. R.; Laraia, A. L.; Ma, Q.; Tipping, R. H.

    2012-01-01

    In this work, Complex Robert-Bonamy calculations of half-widths and line shifts were done for N2-broadening of water for 1639 transitions in the rotational band using two models for the trajectories. The first is a model correct to second order in time, the Robert-Bonamy parabolic approximation. The second is the solution of Hamilton's equations. Both models use the isotropic part of the atom-atom potential to determine the trajectories. The present calculations used an intermolecular potential expanded to 20th order to assure the convergence of the half-widths and line shifts. The aim of the study is to assess if the difference in the half-widths and line shifts determined from the two trajectory models is greater than the accuracy requirements of the spectroscopic and remote sensing communities. The results of the calculations are compared with measurements of the half-widths and line shifts. It is shown that the effects of the trajectory model greatly exceed the needs of current remote sensing measurements and that line shape parameters calculated using trajectories determined by solving Hamilton's equations agree better with measurement.

  14. Measurement of the Temperature Dependence of Line Mixing and Pressure Broadening Parameters between 296 and 90 K in the v3 band of 12CH4 and their Influence on Atmospheric Methane Retrievals

    NASA Technical Reports Server (NTRS)

    Mondelain, Didier; Payan, Sebastien; Deng, Wenping; Camy-Peyret, Claude; Hurtmans, Daniel; Mantz, Arlan W.

    2007-01-01

    We measured the temperature dependence of the nitrogen broadening, narrowing and line-mixing coefficients of four lines of the P9 manifold in the v3 band of 12CH4 for atmospheric purposes. The data were collected using our tunable diode laser (TDL) spectrometer with active wavenumber control coupled to a newly developed cold Herriott cell with a path length of 5.37 m and a temperature uniformity of better than 0.01 K along the cell. We recorded and analyzed spectra recorded at sample temperature between 90 K and room temperature. We have investigate the influence of our new results in the inversion model used to retrieve methane profiles from atmospheric spectra; our new results make it possible to retrieve significantly more precise methane profiles. The atmospheric spectra we utilized were obtained by several of us with a balloon-born Fourier Transform infrared experiment in a limb configuration. Differences up to 7% on the retrieved volume mixing ratio were found compared to an inversion model using only HITRAN04 spectroscopic parameters.

  15. Additional comments on the assumption of homogenous survival rates in modern bird banding estimation models

    USGS Publications Warehouse

    Nichols, J.D.; Stokes, S.L.; Hines, J.E.; Conroy, M.J.

    1982-01-01

    We examined the problem of heterogeneous survival and recovery rates in bird banding estimation models. We suggest that positively correlated subgroup survival and recovery probabilities may result from winter banding operations and that this situation will produce positively biased survival rate estimates. The magnitude of the survival estimate bias depends on the proportion of the population in each subgroup. Power of the suggested goodness-of-fit test to reject the inappropriate model for heterogeneous data sets was low for all situations examined and was poorest for positively related subgroup survival and recovery rates. Despite the magnitude of some of the biases reported and the relative inability to detect heterogeneity, we suggest that levels of heterogeneity normally encountered in real data sets will produce relatively small biases of average survival rates.

  16. Additional evidence concerning the valence-band offset in HgTe/CdTe

    NASA Astrophysics Data System (ADS)

    Young, P. M.; Ehrenreich, H.

    1991-05-01

    The consistency of large values of the valence-band offset, Λ, in HgTe/CdTe superlattices with magneto-optical experiments is examined in light of data on a 90-Å HgTe/40-Å CdTe superlattice. The data are shown to be consistent with values Λ=400+/-40 meV rather than the much smaller cited values. This analysis, when considered with photoemission experiments, leaves intact the conclusion that HgTe/CdTe superlattices are best explained by a large offset.

  17. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  18. Effective medium theory expressions for the effective diffusion in chromatographic beds filled with porous, non-porous and porous-shell particles and cylinders. Part II: Numerical verification and quantitative effect of solid core on expected B-term band broadening.

    PubMed

    Deridder, Sander; Desmet, Gert

    2011-01-01

    The results of a numerical simulation study of the diffusion and retention in fully porous spheres and cylinders are compared with some of the high order accuracy analytical solutions for the effective diffusion coefficient that have been derived from the effective medium theory (EMT) theory in part I of the present study. A variety of different ordered (spheres and cylinders) and disordered (cylinders) packings arrangements has been considered. The agreement between simulations and theory was always excellent, lying within the (very tight) accuracy limits of the simulations over the full range of retention factor and diffusion constant values that is practically relevant for most LC applications. Subsequently filling up the spheres and cylinders with a central solid core, while keeping the same packing geometry and the same mobile phase (same thermodynamic retention equilibrium), it was found that the core induces an additional obstruction which reduces the effective intra-particle diffusion coefficient exactly with a factor γ(part)=2/(2+ρ³) for spherical particles and γ(part)=1/(1+ρ²) for cylinders (ρ is the ratio of the core to the particle diameter, ρ=d(core)/d(part)). These expressions hold independently of the packing geometry, the value of the diffusion coefficients and the equilibrium constant or the size of the core. The expressions also imply that, if considering equal mobile phase conditions, the presence of the solid core will never reduce the particle contribution to the B-term band broadening with more than 33% (50% in case of cylindrical pillars). PMID:21122871

  19. Direct measurement of additional Ar-H2O vibration-rotation-tunneling bands in the millimeter-submillimeter range

    NASA Astrophysics Data System (ADS)

    Zou, Luyao; Widicus Weaver, Susanna L.

    2016-06-01

    Three new weak bands of the Ar-H2O vibration-rotation-tunneling spectrum have been measured in the millimeter wavelength range. These bands were predicted from combination differences based on previously measured bands in the submillimeter region. Two previously reported submillimeter bands were also remeasured with higher frequency resolution. These new measurements allow us to obtain accurate information on the Coriolis interaction between the 101 and 110 states. Here we report these results and the associated improved molecular constants.

  20. Interface contributions to peak broadening in CE-ESI-MS

    SciTech Connect

    Udseth, H.R.; Barinaga, C.J.; Smith, R.D. ); Whitted, W.H. )

    1991-06-01

    The applications of capillary electrophoresis (CE) are expanding, and a number of commercial CE instruments are now available. Combining CE with mass spectroscopy (MS), first done with an electrospray ionization (ESI) interface, yields additional advantages. Other interfaces have been proposed, but CE-ESI-MS offers better sensitivity, reduced background, applicability to higher molecular weight (MW) compounds and a better interface design. Our aim has been to exploit the advantages of automated CE coupled to MS for separation of biological materials. Details of our instrument design are provided. Samples used for these studies were a mixture of myoglobin proteins (MW {approximately}17 kilodaltons) and a tryptic digest of tuna cytochrome c. The results show the ESI-MS interface does not broaden bands, and ion dissociation in the mass spectrometer permits the unambiguous identification of fragments in cases where mass alone is insufficient. 2 refs., 2 figs. (MHB)

  1. Do Additional Bands (coastal, NIR-2, Red-Edge and Yellow) in WORLDVIEW-2 Multispectral Imagery Improve Discrimination of AN Invasive Tussock, Buffel Grass (cenchrus Ciliaris)?

    NASA Astrophysics Data System (ADS)

    Marshall, V.; Lewis, M.; Ostendorf, B.

    2012-07-01

    Our goals is to determine if Worldview-2 8-band multispectral imagery can be used to discriminate an invasive grass species namely, Buffel grass (Cenchrus ciliaris) in the subtropical arid parts of central Australia and whether it offers a tangible improvement on 4-band (visible and near infra red) multispectral imagery. A Worldview-2 scene was acquired for a 10*10km area just west of Alice Springs in central Australia following heavy rains of early Summer. Mixture Tuned Matched Filtering was used to classify the image. Target and background spectra were selected in the field and extracted from the image. Linear discriminate analysis (LDA) was used to examine the spectral separability of each group of the target/ background spectra. The importance of the additional spectral bands on the image classification was assessed by running LDA for both 8 and 4 bands (red, green, blue and NIR). LDA did not indicate improved separability between groups when additional spectral bands were applied. Preliminary classification results indicate that Buffel grass (Cenchrus ciliaris) is detected with an omission error 44%, commission error of 11.8% and overall accuracy of 59.5%. We were surprised that the additional spectral bands did not improve spectral separability and in part attribute this to the high degree of variance we observed within groups of spectra, which was particularly observable in the NIR2 and Yellow bands. The analyses may be significantly improved by acquiring imagery following the first big rains at the end of the dry season. At this time, phonological differences between our focal species and the surrounding native vegetation should be maximised. We suspect that Worldview-2 will offer even greater potential for the discrimination of Buffel grass under these conditions, being able to fully utilise the yellow-band in particular.

  2. Broadening nanotechnology's impact on development

    NASA Astrophysics Data System (ADS)

    Beumer, Koen

    2016-05-01

    Discussions about nanotechnology and development focus on applications that directly address the needs of the world's poor. Nanotechnology can certainly make an impact in the fight against global poverty, but we need to broaden our imagination.

  3. Mixture formation of Er{sub x}Yb{sub 2-x}Si{sub 2}O{sub 7} and Er{sub x}Yb{sub 2-x}O{sub 3} on Si for broadening the C-band in an optical amplifier

    SciTech Connect

    Omi, Hiroo; Tawara, Takehiko; Abe, Yoshiyuki; Anagnosti, Maria

    2013-04-15

    Thin films composed of polycrystalline Er{sub x}Yb{sub 2-x}O{sub 3} grains and crystalline Er{sub x}Yb{sub 2-x}Si{sub 2}O{sub 7} layers were formed on a Si(111) substrate by RF - sputtering and subsequent thermal annealing in Ar gas ambient up to 1100 Degree-Sign C. The films were characterized by synchrotron radiation grazing incidence X-ray diffraction, cross-sectional transmission microscopy, energy dispersive X-ray spectrometry and micro photoluminescence measurements. In the annealed film of 950 Degree-Sign C it is observed that the I{sub 15/2} - I{sub 13/2} Er{sup 3+} photoluminescent transition exhibits simultaneously maximum intensity and peak width at room temperature. This effect satisfies the requirements for broadening the C-band of an optical amplifier on Si.

  4. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  5. Photoluminescence fatigue and inhomogeneous line broadening in semi-insulating Tl6SeI4 single crystals

    NASA Astrophysics Data System (ADS)

    Kostina, S. S.; Peters, J. A.; Lin, W.; Chen, P.; Liu, Z.; Wang, P. L.; Kanatzidis, M. G.; Wessels, B. W.

    2016-06-01

    Photoluminescence (PL) properties of semi-insulating Tl6SeI4 have been investigated. A broad emission band centered at 1.63 ± 0.02 eV was observed in all samples. The PL emission band is excitonic in nature and is tentatively attributed to a bound exciton emission. PL fatigue (a reduction in PL intensity under prolonged laser excitation) was always observed. The amount of PL fatigue depended on excitation power and temperature. PL fatigue kinetics are described by a stretched exponential with nominal lifetimes in the 10–265 s range. The recovery of the PL occurred within a few seconds of light cessation. The magnitude of PL fatigue in different samples correlated with inhomogeneous line broadening of the 1.63 eV emission band, such that broader bands exhibited more fatigue. An additional luminescence band centered at 1.78 eV was observed which increased in intensity under prolonged laser irradiation. The fatigue phenomenon is tentatively attributed to two mechanisms—the formation of photo-induced defects and the formation of quasi-stable particles. Both of these mechanisms introduce additional radiative and non-radiative recombination channels that lead to a decrease in the PL intensity under prolonged laser irradiation. Since inhomogeneous line broadening and PL fatigue are related to the concentration of defects or impurities, the measurement of these two parameters is an effective method to screen sample quality.

  6. Broadening the Definition of Learning.

    ERIC Educational Resources Information Center

    Visser, Yusra Laila; Rowland, Gordon; Visser, Jan

    2002-01-01

    Considers the implications that broadening the definition of learning would have for educators and educational technologists. This special issues addresses the task of redefining learning from a variety of perspectives. The authors draw on different frameworks of analysis, exploring what it means to be learning at levels ranging from the…

  7. Medical vest broadens treatment capability

    NASA Technical Reports Server (NTRS)

    Johnson, G. S.

    1970-01-01

    Universal sized vest, with specially tailored pockets designed to hold medical supplies, provides first aid/first care medical teams with broadened on-site capability. Vest is made of nylon, tough fibrous materials, and polyvinyl chloride. Design facilitates rapid donning, doffing, and adjustment.

  8. Broadening the Educational Technology Foundations.

    ERIC Educational Resources Information Center

    Borras, Isabel

    A discussion of the role of educational technology (ET), particularly in second language teaching and learning, examines some theoretical foundations of ET and suggests why and how those foundations should be broadened. It first reviews the assets and shortcomings of three theories to which ET has been closely linked: behaviorism; neo-behaviorism;…

  9. Broadening and collisional interference of lines in the IR spectra of ammonia. Theory

    NASA Astrophysics Data System (ADS)

    Cherkasov, M. R.

    2016-06-01

    The general theory of relaxation spectral shape parameters in the impact approximation (M. R. Cherkasov, J. Quant. Spectrosc. Radiat. Transfer 141, 73 (2014)) is adapted to the case of line broadening of infrared spectra of ammonia. Specific features of line broadening of parallel and perpendicular bands are discussed. It is shown that in both cases the spectrum consists of independently broadened singlets and doublets; however, the components of doublets can be affected by collisional interference. The paper is the first part of a cycle of studies devoted to the problems of spectral line broadening of ammonia.

  10. Infrared Spectra of N_2-BROADENED 13CH_4 at Titan Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Sung, K.; Brown, L. R.; Crawford, T. J.; Mantz, A. W.; Devi, V. Malathy; Benner, D. Chris

    2010-06-01

    High-resolution spectra of the ν_4 fundamental band of 13CH_4 broadened by N_2 at temperatures relevant to the atmosphere of Titan (80 K to 296 K) have been recorded using new temperature-controlled absorption cells installed in the sample compartment of a Bruker (IFS-125HR) Fourier Transform spectrometer (FTS) at the Jet Propulsion Laboratory (JPL). Details of the cells and spectrometer performance have been discussed in the previous talk. Early analysis of these spectra using multispectrum fitting has determined half widths, pressure-induced shifts, line mixing parameters and their temperature dependences for R-branch transitions from R(0) through R(6). In addition to the initial R(2) study mentioned in the previous talk, the analysis for the other J-manifolds examined in detail whether or not the N_2-broadened half width coefficients follow the simple power-law temperature-dependence over the entire temperature range from 80 K to 296 K. The results are compared with other published measurements of N_2-broadened methane parameters at low temperatures. A. W. Mantz et al., Closed-cycle He-cooled absorption cells designed for a Bruker IFS-125HR: First results between 79 K and 297 K, this session. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  11. Inelastic collision processes in ozone and their relation to atmospheric pressure broadening

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.; Flannery, C.; Klaassen, J.; Mizugai, Y.; Spencer, M.

    1990-01-01

    The research task employs infrared double-resonance to determine rotational energy transfer rates and pathways, in both the ground and vibrationally excited states of ozone. The resulting data base will then be employed to test inelastic scattering theories and to assess intermolecular potential models, both of which are necessary for the systematization and prediction of infrared pressure-broadening coefficients, which are in turn required by atmospheric ozone monitoring techniques based on infrared remote sensing. In addition, observation of excited-state absorption transitions will permit us to improve the determination of the 2 nu(sub 3), nu(sub 1) + nu(sub 2), and 2 nu(sub 1) rotational constants and to derive band strengths for hot-band transitions involving these levels.

  12. Development of wide band gap p- a-SiOxCy:H using additional trimethylboron as carbon source gas

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Won; Sichanugrist, Porponth; Janthong, Bancha; Khan, Muhammad Ajmal; Niikura, Chisato; Konagai, Makoto

    2016-07-01

    We report p-type a-SiOxCy:H thin films which were fabricated by introducing additional Trimethylboron (TMB, B(CH3)3) doping gas into conventional standard p-type a-SiOx:H films. The TMB addition into the condition of p-a-SiOx:H improved optical bandgap from 2.14 to 2.20 eV without deterioration of electrical conductivity, which is promising for p-type window layer of thin film solar cells. The suggested p-a-SiOxCy:H films were applied in amorphous silicon solar cells and we found an increase of quantum efficiency at short wavelength regions due to wide bandgap of the new p-layer, and thus efficiency improvement from 10.4 to 10.7% was demonstrated in a-Si:H solar cell by employing the p-a-SiOxCy:H film. In case of a-SiOx:H cell, high open circuit voltage of 1.01 V was confirmed by using the suggested the p-a-SiOxCy:H film as a window layer. This new p-layer can be highly promising as a wide bandgap window layer to improve the performance of thin film silicon solar cells. [Figure not available: see fulltext.

  13. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  14. Nitrogen-broadened lines of ethane at 150 K

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1985-01-01

    Spectral transmittance has been measured in the nu9 fundamental band of C2H6 at 150 K using a Fourier transform spectrometer with apodized spectral resolution of 0.06/cm. Comparison of observed spectral transmittance with a line-by-line computation using the spectral catalog of Atakan et al. (1983) has yielded N2-broadened half-widths at 150 K.

  15. Temperature dependence of self-broadened halfwidths of CO2

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos B.; Valero, Francisco P. J.

    1990-01-01

    The temperature dependence of self-broadened halfwidths of CO2 was studied in the temperature range 165-300 K for the band at 4978/cm. Assuming a power-law of the form gamma(T) = delta(T0)(T0/T)-exp n, the exponent has been determined for J = 6-32. An average value of n = 0.745 + or - 7 percent has been found.

  16. Pressure broadening of rotational bands. I - A statistical theory

    NASA Technical Reports Server (NTRS)

    Rosenkranz, P. W.

    1985-01-01

    Absorption of electromagnetic waves by rotational transitions of molecules is formulated for the case in which the wave frequency is displaced from resonance by an amount large compared to the reciprocal duration of a typical binary collision, and also large compared to the differences between frequencies of the strong resonances of the gas. In this far-wing limit, Fano's relaxation operator is reduced to a scalar parameter which depends on the frequency displacement. This relaxation parameter is not symmetric with respect to reflection about resonance, but becomes symmetric when multiplied by the factor exp (h/2pi) (omega sub d)/2kT where omega sub d is the frequency displacement. The theory applies to dipolar molecules of any shape, in collisions with either dipolar or quadrupolar molecules.

  17. Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM₇₀ bulk-heterojunction layers.

    PubMed

    Huh, Yoon Ho; Park, Byoungchoo

    2013-01-14

    We herein report on the improved photovoltaic (PV) effects of using a polymer bulk-heterojunction (BHJ) layer that consists of a low-band gap electron donor polymer of poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)) (PCDTBT) and an acceptor of [6,6]-phenyl C₇₁ butyric acid methyl ester (PCBM₇₀), doped with an interface-engineering surfactant additive of poly(oxyethylene tridecyl ether) (PTE). The presence of an interface-engineering additive in the PV layer results in excellent performance; the addition of PTE to a PCDTBT:PCBM₇₀ system produces a power conversion efficiency (PCE) of 6.0%, which is much higher than that of a reference device without the additive (4.9%). We attribute this improvement to an increased charge carrier lifetime, which is likely to be the result of the presence of PTE molecules oriented at the interfaces between the BHJ PV layer and the anode and cathode, as well as at the interfaces between the phase-separated BHJ domains. Our results suggest that the incorporation of the PTE interface-engineering additive in the PCDTBT:PCBM₇₀ PV layer results in a functional composite system that shows considerable promise for use in efficient polymer BHJ PV cells. PMID:23389265

  18. Wall-collision line broadening of molecular oxygen within nanoporous materials

    SciTech Connect

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan; Svensson, Tomas; Svanberg, Sune; Adolfsson, Erik

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressure and Doppler broadening.

  19. Multigroup Free-atom Doppler-broadening Approximation. Experiment

    SciTech Connect

    Gray, Mark Girard

    2015-11-06

    The multigroup energy Doppler-broadening approximation agrees with continuous energy Dopplerbroadening generally to within ten percent for the total cross sections of 1H, 56Fe, and 235U at 250 lanl. Although this is probably not good enough for broadening from room temperature through the entire temperature range in production use, it is better than any interpolation scheme between temperatures proposed to date, and may be good enough for extrapolation from high temperatures. The method deserves further study since additional improvements are possible.

  20. Gain and Raman line-broadening with graphene coated diamond-shape nano-antennas.

    PubMed

    Paraskevaidis, Charilaos; Kuykendall, Tevye; Melli, Mauro; Weber-Bargioni, Alexander; Schuck, P James; Schwartzberg, Adam; Dhuey, Scott; Cabrini, Stefano; Grebel, Haim

    2015-10-01

    Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve. PMID:26332298

  1. N2- and (H2+He)-broadened cross sections of benzene (C6H6) in the 7-15 μm region for the Titan and jovian atmospheres

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Toon, Geoffrey C.; Crawford, Timothy J.

    2016-06-01

    In support of atmospheric remote sensing of Titan and jovian planets, we measured absorption cross sections of benzene (C6H6) in the 7-15 μm region at temperatures between 235 K and 297 K. For this, high-resolution laboratory spectra of C6H6 were obtained using two cold cells (80 cm and 2.07 cm path length) configured to a high resolution Fourier-transform infrared (FT-IR) spectrometer, Bruker IFS-125HR, at the Jet Propulsion Laboratory (JPL). The spectrum sets include 15 pure and 15 N2-broadened benzene spectra in the 630-1534 cm-1 region, along with four additional spectra broadened by an H2(85%) and He(15%) gas mixture for the 630-740 cm-1 region. From these spectra, temperature dependent benzene cross sections were obtained for gas phase benzene in the presence of N2 and (H2+He) at ambient pressures and temperatures down to 235 K. In addition, we generated two independent sets of pseudolines: one of N2-broadened benzene for Titan and the other of (H2+He)-broadened benzene for jovian planets. It is shown that the benzene pseudolines can reproduce the observed features to ˜ 5% in transmittance, including the continuum-like absorption formed by numerous overlapping weak and hot band transitions. Based on the pseudoline parameters, the integrated band intensities at 296 K for the three strongest bands in the region were measured to be 177.0(73), 14.0(10), 27.2(9)×10-17 cm-1/(molecule·cm-2) in the region of v4 at 674 cm-1, v14 at 1038.267, and v13 at 1483.985 cm-1, respectively, from the combined set of pure and N2-broadened benzene spectra. For the (H2+He) mixture-broadened benzene spectra, the integrated band intensity for v4 band in the 630-735 cm-1 region was measured to be 168.8(17)×10-17 cm-1/(molecule·cm-2) at 296 K, which is in agreement with the intensity derived from the N2-broadened benzene spectra within the combined measurement uncertainties. The results from this work show an excellent agreement (2%) with one of the latest experimental studies by

  2. Stark broadening of B IV spectral lines

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Christova, Magdalena; Simić, Zoran; Kovačević, Andjelka; Sahal-Bréchot, Sylvie

    2016-08-01

    Stark broadening parameters for 157 multiplets of helium-like boron (B IV) have been calculated using the impact semiclassical perturbation formalism. Obtained results have been used to investigate the regularities within spectral series. An example of the influence of Stark broadening on B IV lines in DO white dwarfs is given.

  3. Stark broadening of B IV spectral lines

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Christova, Magdalena; Simić, Zoran; Kovačević, Andjelka; Sahal-Bréchot, Sylvie

    2016-05-01

    Stark broadening parameters for 157 multiplets of helium like boron (B IV) have been calculated using the impact semiclassical perturbation formalism. Obtained results have been used to investigate the regularities within spectral series. An example of the influence of Stark broadening on B IV lines in DO white dwarfs is given.

  4. Stark broadening data for stellar plasma research.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.

  5. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  6. Dynamic Stark broadening of Lyman-α

    NASA Astrophysics Data System (ADS)

    Stambulchik, Evgeny; Demura, Alexander V.

    2016-02-01

    Calculating lineshapes of atomic radiative transitions broadened by plasma is a complex problem lacking a general analytic solution, and several models have been suggested to treat it. Lyman-α is the simplest transition; paradoxically however, calculating the broadening of this spectral line in plasma results in a significant spread between different models. Here, we argue that the quasistatic broadening regime is never realized for the line core in a one-component plasma; instead, the broadening due to either electrons or ions alone evolves from the impact regime to another regime, also dynamical in nature. In the latter (referred to here as ‘rotational’ broadening), the linewidth only depends on the typical frequency of the plasma microfields and is independent of both the microfield magnitudes and the atomic properties of the transition. We also demonstrate that rotational broadening is asymptotically reached in the high-density/low-temperature limit by other transitions with an unshifted central component, such as the Balmer-α line. A simple expression is suggested interpolating between the two asymptotic regimes, applicable to broadening due to electrons and ions alike. The treatment is further extended to realistic two-component plasmas. Comparison to results of accurate computer simulations shows a good agreement over a very large range of plasma parameters, both for the case of one- and two-component plasmas.

  7. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  8. Gain and Raman line-broadening with graphene coated diamond-shape nano-antennas

    NASA Astrophysics Data System (ADS)

    Paraskevaidis, Charilaos; Kuykendall, Tevye; Melli, Mauro; Weber-Bargioni, Alexander; Schuck, P. James; Schwartzberg, Adam; Dhuey, Scott; Cabrini, Stefano; Grebel, Haim

    2015-09-01

    Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve.Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03893f

  9. Charge Correlations in Plasma Line Broadening

    SciTech Connect

    Wrighton, Jeffrey M.; Dufty, James W.

    2008-10-22

    The traditional theory of plasma line broadening is re-examined to correct for phenom-enological assumptions regarding charge correlations. Conditions for static ions are assumed, and the ion microfield distribution is introduced without neglecting ion-electron correlations, and with a precise definition for the ion field at the radiator. Radiator and plasma subsystems are defined so as to make a second order calculation of electron broadening valid for the case of high Z radiators. The electron broadening operator is identified in terms of the fluctuation of the electron density at the radiator, averaged over the entire plasma constrained by a given value for the ion microfield.

  10. Thermally induced microstrain broadening in hexagonal zinc

    SciTech Connect

    Lawson, Andrew C; Valdez, James A; Roberts, Joyce A; Leineweber, Andreas; Mittemeijer, E J; Kreher, W

    2008-01-01

    Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.

  11. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins.

    PubMed Central

    Somsen, O J; van Grondelle, R; van Amerongen, H

    1996-01-01

    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits. Images FIGURE 3 FIGURE 4 PMID:8889168

  12. Simulation of a spectral inhomogeneous broadening

    NASA Astrophysics Data System (ADS)

    Kozlov, V. V.; Rosanov, N. N.

    2014-06-01

    The standard approach that is used to simulate effects of inhomogeneous spectral broadening in a medium consisting of two- or multilevel systems is to calculate the microscopic polarization (the dipole moment of an individual system) as a function of the frequency detuning and further to average this quantity over detunings with corresponding weights. This just leads to the macroscopic polarization that appears in Maxwell's equations of electrodynamics of continuous media. Here, we study and develop an alternative method that has been recently proposed by N.V. Vysotina, N.N. Rozanov, and V.E. Semenov (Opt. Spectrosc. 106 (5), 713 (2009)) for calculation of the macroscopic polarization and that has been aimed at solving problems of computational quantum optics. In this approach, the frequency detuning is considered as a stochastic function of coordinates; in one-dimensional problems, of longitudinal coordinate z. At each step of evolution, the microscopic polarization is calculated for a randomly chosen fixed value of the detuning. Therefore, calculating the macroscopic polarization does not need an additional averaging over detunings; it is replaced by averaging over spatial coordinates, which is naturally performed when describing the radiation propagation through an ensemble of quantum systems. This radically reduces the amount of computations, especially in the context of the finite-difference time domain (FDTD) method.

  13. He-broadening and shift coefficients of water vapor lines in infrared spectral region

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2015-11-01

    The water vapor line broadening and shift coefficients in the ν1+ν2, ν2+ν3, ν1+ν3, 2ν3, 2ν1, 2ν2+ν3, and ν1+2ν2 vibrational bands induced by helium pressure were measured using a Bruker IFS 125HR spectrometer. The vibrational bands 2ν3 and ν1+2ν2 were investigated for the first time. The interaction potential used in the calculations of broadening and shift coefficients was chosen as the sum of pair potentials, which were modeled by the Lennard-Jones (6-12) potentials. The vibrational and rotational contributions to this potential were obtained by use of the intermolecular potential parameters and intramolecular parameters of H2O molecule. The calculated values of the broadening and shift coefficients were compared with the experimental data.

  14. Nitrogen, oxygen and air broadened widths and relative intensities of N2O lines near 2450/cm

    NASA Technical Reports Server (NTRS)

    Hawkins, R. L.

    1982-01-01

    Spectra of the v sub 1 + 2v sub 2 and the weak underlying v sub 1 + 3v sub 2 - v sub 2 band of N2O near 2450/cm were analyzed by the nonlinear, least squares, whole band technique. The oxygen, nitrogen, and air broadened line widths and the relative line intensities were determined. The air broadened widths, for/m/3, are in agreement with those in the 1980 AFGL line listing and the relative band intensities also agree, within about 20% with the values in this listing.

  15. Measurements of (C-12)H4 nu-4 band halfwidths using a tunable diode laser system and a Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Devi, V. M.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.

    1985-01-01

    Air-broadened and N2-broadened halfwidths at room temperature for twenty-five transitions in the nu-4 fundamental band of (C-12)H4 have been determined from IR absorption spectra recorded with a tunable diode laser spectrometer. Two tunable diode lasers operating in the 1250-1380-kayser region were used to obtain these data. Air-broadened halfwidths for twenty of these lines were also determined from additional spectra recorded at 0.01-kayser resolution with the Fourier transform spectrometer in the McMath solar telescope complex on Kitt Peak. The air-broadened halfwidths obtained from these two techniques are very consistent with agreement better than 3 percent in most cases.

  16. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    DOE PAGESBeta

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; Rack, Phillip D.; Plank, Harald

    2015-02-16

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead to evenmore » more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.« less

  17. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    SciTech Connect

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; Rack, Phillip D.; Plank, Harald

    2015-02-16

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.

  18. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  19. Sound pulse broadening in stressed granular media.

    PubMed

    Langlois, Vincent; Jia, Xiaoping

    2015-02-01

    The pulse broadening and decay of coherent sound waves propagating in disordered granular media are investigated. We find that the pulse width of these compressional waves is broadened when the disorder is increased by mixing the beads made of different materials. To identify the responsible mechanism for the pulse broadening, we also perform the acoustic attenuation measurement by spectral analysis and the numerical simulation of pulsed sound wave propagation along one-dimensional disordered elastic chains. The qualitative agreement between experiment and simulation reveals a dominant mechanism by scattering attenuation at the high-frequency range, which is consistent with theoretical models of sound wave scattering in strongly random media via a correlation length. PMID:25768496

  20. Characteristics of yttrium oxide laser ceramics with additives

    SciTech Connect

    Osipov, V V; Solomonov, V I; Orlov, A N; Shitov, V A; Maksimov, R N; Spirina, A V

    2013-03-31

    Neodymium- or ytterbium-doped laser ceramics with a disordered crystal-field structure formed by introduction of iso- and heterovalent elements into yttrium oxide are studied. It is shown that these additives broaden the spectral band of laser transitions, which makes it possible to use ceramics as active laser media emitting ultrashort pulses. Lasing was obtained in several samples of this ceramics. At the same time, it is shown that addition of zirconium and hafnium stimulates the Foerster quenching of upper laser levels and pump levels. (extreme light fields and their applications)

  1. Controlling the band gap energy of cluster-assembled materials.

    PubMed

    Mandal, Sukhendu; Reber, Arthur C; Qian, Meichun; Weiss, Paul S; Khanna, Shiv N; Sen, Ayusman

    2013-11-19

    Cluster-assembled materials combine the nanoscale size and composition-dependent properties of clusters, which have highly tunable magnetic and electronic properties useful for a great variety of potential technologies. To understand the emergent properties as clusters are assembled into hierarchical materials, we have synthesized 23 cluster-assembled materials composed of As7(3-)-based motifs and different countercations and measured their band gap energies. We found that the band gap energy varies from 1.09 to 2.21 eV. In addition, we have carried out first principles electronic structure studies to identify the physical mechanisms that enable control of the band gap edges of the cluster assemblies. The choice of counterion has a profound effect on the band gap energy in ionic cluster assemblies. The top of the valence band is localized on the arsenic cluster, while the conduction band edge is located on the alkali metal counterions. Changing the counterion changes the position of the conduction band edge, enabling control of the band gap energy. We can also vary the architecture of the ionic solid by incorporating cryptates as counterions, which provide charge but are separated from the clusters by bulky ligands. Higher dimensionality typically decreases the band gap energy through band broadening; however band gap energies increased upon moving from zero-dimensional (0D) to two-dimensional (2D) assemblies. This is because internal electric fields generated by the counterion preferentially stabilize the adjacent lone pair orbitals that mark the top of the valence band. Thus, the choice of the counterion can control the position of the conduction band edge of ionic cluster assemblies. In addition, the dimensionality of the solid via internal electric fields can control the valence band edge. Through covalently linking arsenic clusters into composite building blocks, we have also been able to tune the band gap energy. We used a theoretical description based on

  2. Pulsed Spin Locking in Spin-1 NQR: Broadening Mechanisms

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.

    Nuclear Quadrupole Resonance (NQR) is a branch of magnetic resonance physics that allows for the detection of spin I > 1/2 nuclei in crystalline and semi-crystalline materials. Through the application of a resonant radio frequency (rf) pulse, the nuclei's response is to create an oscillating magnetic moment at a frequency unique to the target substance. This creates the NQR signal, which is typically weak and rapidly decaying. The decay is due to the various line broadening mechanisms, the relative strengths of which are functions of the specific material, in addition to thermal relaxation processes. Through the application of a series of rf pulses the broadening mechanisms can be refocused, narrowing the linewidth and extending the signal in time. Three line broadening mechanisms are investigated to explain the NQR signal's linewidth and behavior. The first, electric field gradient (EFG) inhomogeneity, is due to variations in the local electric environment among the target nuclei, for instance from crystal imperfections. While EFG inhomogeneity can vary between samples of the same chemical composition and structure, the other broadening mechanisms of homonuclear and heteronuclear dipolar coupling are specific to this composition and structure. Simple analytical models are developed that explain the NQR signal response to pulse sequences by accounting for the behavior of each broadening mechanism. After a general theoretical introduction, a model of pairs of spin-1 nuclei is investigated, and the refocusing behaviors of EFG and homonuclear dipolar coupling are analyzed. This reveals the conditions where EFG is refocused but homonuclear dipolar coupling is not. In this case the resulting signal shows a rapid decay, the rate of which becomes a measure of interatomic distances. This occurs even in the more complex case of a powder sample with its many randomly oriented crystallites, under particular pulsing conditions. Many target NQR compounds are rich in hydrogen

  3. Self- and foreign-gas broadening of ethane lines determined from diode laser measurements at 12 microns

    NASA Technical Reports Server (NTRS)

    Blass, W. E.; Halsey, G. W.; Jennings, D. E.

    1987-01-01

    Self- and foreign-gas broadening of ethane lines have been measured in the nu9 band at 12 microns. A coefficient of 0.125 per cm atm was determined for self broadening. Foreign-gas broadening coefficients determined are (in per cm atm) 0.090 for N2, 0.069 for He, 0.068 for Ar, 0.108 for H2, and 0.096 for CH4. Results are given for a sample temperature of 296 K.

  4. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Van Laer, R.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.

    2016-02-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and inter-mode forward SBS the existence of two broadening mechanisms with opposite sign also opens the possibility to compensate the effect of geometry-induced broadening. Our results can be transferred to other micro- and nano-structured waveguide geometries such as photonic crystal fibres.

  5. Foreign-gas broadening of nitrous oxide absorption lines.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    We have measured the foreign-gas broadening coefficients for collisional broadening of lines in the nu-3 fundamental of N2O by He, Ne, Ar, Kr, Xe, H2, D2, and CH4. These coefficients, which give the ratio of the line-broadening ability of these gases to the line-broadening ability of N2, can be used with recent measurements and calculations of N2 broadening to obtain optical collision cross sections.

  6. Broadening Our View of Linguistic Diversity

    ERIC Educational Resources Information Center

    O'Neal, Debra; Ringler, Marjorie

    2010-01-01

    The definition of English language learners needs to be broadened to include the marginalized dialects of English. Not all native speakers speak Standard English, and even those who do need to learn Academic English to succeed in school. By using strategies developed for ELLs, teachers can help all students become fluent in the language of school.

  7. Distribution of Chern number by Landau level broadening in Hofstadter butterfly

    NASA Astrophysics Data System (ADS)

    Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao

    2015-04-01

    We discuss the relationship between the quantum Hall conductance and a fractal energy band structure, Hofstadter butterfly, on a square lattice under a magnetic field. At first, we calculate the Hall conductance of Hofstadter butterfly on the basis of the linear responce theory. By classifying the bands into some groups with a help of continued fraction expansion, we find that the conductance at the band gaps between the groups accord with the denominators of fractions obtained by aborting the expansion halfway. The broadening of Landau levels is given as an account of this correspondance.

  8. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition.

    PubMed

    Kurzmann, Annika; Ludwig, Arne; Wieck, Andreas D; Lorke, Axel; Geller, Martin

    2016-05-11

    In quantum dots (QDs), the Auger recombination is a nonradiative process in which the electron-hole recombination energy is transferred to an additional carrier. It has been studied mostly in colloidal QDs, where the Auger recombination time is in the picosecond range and efficiently quenches the light emission. In self-assembled QDs, on the other hand, the influence of Auger recombination on the optical properties is in general neglected, assuming that it is masked by other processes such as spin and charge fluctuations. Here, we use time-resolved resonance fluorescence to analyze the Auger recombination and its influence on the optical properties of a single self-assembled QD. From excitation-power-dependent measurements, we find a long Auger recombination time of about 500 ns and a quenching of the trion transition by about 80%. Furthermore, we observe a broadening of the trion transition line width by up to a factor of 2. With a model based on rate equations, we are able to identify the interplay between tunneling and Auger rate as the underlying mechanism for the reduced intensity and the broadening of the line width. This demonstrates that self-assembled QDs can serve as an ideal model system to study how the charge recapture process, given by the band-structure surrounding the confined carriers, influences the Auger process. Our findings are not only relevant for improving the emission properties of colloidal QD-based emitters and dyes, which have recently entered the consumer market, but also of interest for more visionary applications, such as quantum information technologies, based on self-assembled quantum dots. PMID:27087053

  9. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition

    NASA Astrophysics Data System (ADS)

    Kurzmann, Annika; Ludwig, Arne; Wieck, Andreas D.; Lorke, Axel; Geller, Martin

    2016-05-01

    In quantum dots (QDs) the Auger recombination is a non-radiative process, where the electron-hole recombination energy is transferred to an additional carrier. It has been studied mostly in colloidal QDs, where the Auger recombination time is in the ps range and efficiently quenches the light emission. In self-assembled QDs, on the other hand, the influence of Auger recombination on the optical properties is in general neglected, assuming that it is masked by other processes such as spin and charge fluctuations. Here, we use time-resolved resonance fluorescence to analyze the Auger recombination and its influence on the optical properties of a single self-assembled QD. From excitation-power dependent measurements, we find a long Auger recombination time of about 500 ns and a quenching of the trion transition by about 80 percent. Furthermore, we observe a broadening of the trion transition linewidth by up to a factor of two. With a model based on rate equations, we are able to identify the interplay between tunneling and Auger rate as the underlying mechanism for the reduced intensity and the broadening of the linewidth. This demonstrates that self-assembled QDs can serve as an ideal model system to study how the charge recapture process, given by the band-structure surrounding the confined carriers, influences the Auger process. Our findings are not only relevant for improving the emission properties of colloidal QD-based emitters and dyes, which have recently entered the consumer market. They are also of interest for more visionary applications, such as quantum information technologies, based on self-assembled quantum dots.

  10. Coincidence Doppler Broadening of Positron Annihilation Radiation in Fe

    NASA Astrophysics Data System (ADS)

    do Nascimento, E.; Vanin, V. R.; Maidana, N. L.; Helene, O.

    2013-06-01

    We measured the Doppler broadening annihilation radiation spectrum in Fe, using 22NaCl as a positron source, and two Ge detectors in coincidence arrangement. The two-dimensional coincidence energy spectrum was fitted using a model function that included positron annihilation with the conduction band and 3d electrons, 3s and 3p electrons, and in-flight positron annihilation. Detectors response functions included backscattering and a combination of Compton and pulse pileup, ballistic deficit and shaping effects. The core electrons annihilation intensity was measured as 16.4(3) %, with almost all the remainder assigned to the less bound electrons. The obtained results are in agreement with published theoretical values.

  11. Ammonia: Experimental absolute linestrengths and self-broadening parameters in the 1800- to 2100-cm -1 range

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Lacome, N.; Guelachvili, G.; Tarrago, G.; Encrenaz, T.

    1987-08-01

    Absolute linestrengths were obtained for over 750 vibration-rotation transitions of ammonia in the 1800- to 2100-cm -1 range, at various temperatures (293-170 K), using a high-resolution (0.0054 cm -1) Fourier transform spectrometer. The precision of the measurements is about 10%. Lower state energy levels of the transitions were determined and used to extend the assignments in the 2 ν2( s → a) and ν4 bands on the basis of the predictions by S. Urban, V. Spirko, D. Papousek, R. S. McDowell, A. F. Krupnov, J. Curtis, and K. Narahari Rao ( J. Mol. Spectrosc.79, 455-495 (1980)). In addition, self-broadening parameters (including temperature dependence) were determined for more than 350 lines.

  12. Speed-dependent effects and Dicke narrowing in nitrogen-broadened oxygen

    NASA Astrophysics Data System (ADS)

    Wójtewicz, S.; Masłowski, P.; Cygan, A.; Wcisło, P.; Zaborowski, M.; Piwiński, M.; Ciuryło, R.; Lisak, D.

    2015-11-01

    We present the line-shape analysis of the nitrogen-broadened P9 P9 oxygen B-band transition measured by the optical frequency comb-assisted Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer. Perturbation by both oxygen and nitrogen molecules is taken into account simultaneously in the line-shape analysis. Several line-shape models describing physical effects such as Dicke narrowing, the speed dependence of collisional broadening and shifting, and the correlation between velocity- and phase-changing collisions were used in the analysis. The comparison between the hypergeometric and quadratic approximations of the speed-dependent effects is presented. Observed line narrowing is mostly determined by the speed dependence of the collisional broadening.

  13. N2-broadening coefficients of methyl chloride at room temperature

    NASA Astrophysics Data System (ADS)

    Bray, C.; Jacquemart, D.; Buldyreva, J.; Lacome, N.; Perrin, A.

    2012-07-01

    Methyl chloride is of interest for atmospheric applications, since this molecule is directly involved in the catalytic destruction of ozone in the lower stratosphere. In a previous work [Bray et al. JQSRT 2011;112:2446], lines positions and intensities of self-perturbed 12CH335Cl and 12CH337Cl have been studied into details for the 3.4 μm spectral region. The present work is focused on measurement and calculation of N2-broadening coefficients of the 12CH335Cl and 12CH337Cl isotopologues. High-resolution Fourier Transform spectra of CH3Cl-N2 mixtures at room-temperature have been recorded between 2800 and 3200 cm-1 at LADIR (using a classical source) and between 47 and 59 cm-1 at SOLEIL (using the synchrotron source on the AILES beamline). 612 mid-infrared transitions of the ν1 band and 86 far-infrared transitions of the pure rotational band have been analyzed using a multispectrum fitting procedure. Average accuracy on the deduced N2-broadening coefficients has been estimated to 5% and 10% in the mid- and far-infrared spectral regions, respectively. The J- and K-rotational dependences of these coefficients have been observed in the mid-infrared region and then a simulation has been performed using an empirical model for 0≤J≤50, K≤9. The 12CH335Cl-N2 line widths for 0≤J≤50 and K≤10 of the ν1 band and for 55≤J≤67 and K≤15 of the pure rotational band have been computed using a semi-classical approach involving exact trajectories and a real symmetric-top geometry of the active molecule. Finally, a global comparison with the experimental and theoretical data existing in the literature has been performed. Similar J- and K-rotational dependences have been appeared while no clear evidence for any vibrational or isotopic dependences have been pointed out.

  14. On the Stark Broadening of Lu III Spectral Lines

    NASA Astrophysics Data System (ADS)

    Majlinger, Zlatko; Simić, Zoran; Dimitrijević, Milan S.

    2015-12-01

    The electron-impact widths for 27 Lu III spectral lines have been calculated by using the modified semiempirical method. Calculations have been also performed with the published relativistic Hartree-Fock oscillator strengths and additionally, with the approximate formula of Cowley. With the obtained results, the influence of Stark broadening on Lu III lines was investigated in the spectra of A-type stars. The obtained data will be included in the STARK-B database, which is part of the Virtual Atomic and Molecular Data Center - VAMDC.

  15. Smile to see the forest: Facially expressed positive emotions broaden cognition.

    PubMed

    Johnson, Kareem J; Waugh, Christian E; Fredrickson, Barbara L

    2010-02-19

    The broaden hypothesis, part of Fredrickson's (1998, 2001) broaden-and-build theory, proposes that positive emotions lead to broadened cognitive states. Here, we present evidence that cognitive broadening can be produced by frequent facial expressions of positive emotion. Additionally, we present a novel method of using facial electromyography (EMG) to discriminate between Duchenne (genuine) and non-Duchenne (non-genuine) smiles. Across experiments, Duchenne smiles occurred more frequently during positive emotion inductions than neutral or negative inductions. Across experiments, Duchenne smiles correlated with self-reports of specific positive emotions. In Experiment 1, high frequencies of Duchenne smiles predicted increased attentional breadth on a global-local visual processing task. In Experiment 2, high frequencies of Duchenne smiles predicted increased attentional flexibility on a covert attentional orienting task. These data underscore the value of using multiple methods to measure emotional experience in studies of emotion and cognition. PMID:23275681

  16. OBSERVATIONAL EVIDENCE FOR A CORRELATION BETWEEN MACROTURBULENT BROADENING AND LINE-PROFILE VARIATIONS IN OB SUPERGIANTS

    SciTech Connect

    Simon-Diaz, S.; Herrero, A.; Castro, N.; Uytterhoeven, K.; Puls, J.

    2010-09-10

    The spectra of O and B supergiants (Sgs) are known to be affected by a significant form of extra line broadening (usually referred to as macroturbulence) in addition to that produced by stellar rotation. Recent analyses of high-resolution spectra have shown that the interpretation of this line broadening as a consequence of large-scale turbulent motions would imply highly supersonic velocity fields in photospheric regions, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. As part of a long-term observational project, we are investigating the macroturbulent broadening in O and B Sgs and its possible connection with spectroscopic variability phenomena and stellar oscillations. In this Letter, we present the first encouraging results of our project, namely, firm observational evidence for a strong correlation between the extra broadening and photospheric line-profile variations in a sample of 13 Sgs with spectral types ranging from O9.5 to B8.

  17. Anomalous Broadening in Driven Dissipative Rydberg Systems.

    PubMed

    Goldschmidt, E A; Boulier, T; Brown, R C; Koller, S B; Young, J T; Gorshkov, A V; Rolston, S L; Porto, J V

    2016-03-18

    We observe interaction-induced broadening of the two-photon 5s-18s transition in ^{87}Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly 2 orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18s atoms with blackbody induced population in nearby np states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms. PMID:27035299

  18. Anomalous Broadening in Driven Dissipative Rydberg Systems

    NASA Astrophysics Data System (ADS)

    Goldschmidt, E. A.; Boulier, T.; Brown, R. C.; Koller, S. B.; Young, J. T.; Gorshkov, A. V.; Rolston, S. L.; Porto, J. V.

    2016-03-01

    We observe interaction-induced broadening of the two-photon 5 s -18 s transition in 87Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly 2 orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18 s atoms with blackbody induced population in nearby n p states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms.

  19. Broadened diesel fuel specifications for rail applications

    SciTech Connect

    Cataldi, C.R.

    1988-01-01

    As the demand for distillate products increases, petroleum refiners find it increasingly expensive to meet the traditional specifications for jet and diesel fuels. Because those costs eventually show up in the price of fuel, the railroad industry has a diesel fuel research program to identify broadened specification fuels that cost less than standard fuels and which do not adversely affect engine performance or maintenance cost. Laboratory tests concentrated on cetane number, distillation range, and viscosity. The tests included 72 hours at idle speed, engine performance, and 500-hour endurance tests. Long-term field tests have verified the laboratory findings that cetane number can be reduced to 32 and 90 percent distillation point increased to 700/sup 0/F. Several railroads now have over three years of experience with broadened specification fuels in normal operations with no reported problems. With formal tests, some railroads have also relaxed their winter specifications for pour and cloud points.

  20. Spectral line broadening in magnetized black holes

    SciTech Connect

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  1. Thermal infrared lines of methane broadened by nitrogen at low temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1983-01-01

    Measurements of spectral transmittance in the nu4-fundamental band of (C-12)H4 have been performed at low temperatures using a Fourier transform spectrometer with apodized spectral resolution of 0.06 per cm. With applications to lines formed in the atmospheres of Titan and earth in mind, N2 has been used as the broadening gas. Comparisons of observed and computed spectral transmittances on a line-by-line basis have yielded line strengths, N2-broadened half-widths and their variation with temperature. Best agreement between measured and computed spectra was obtained when the absolute intensity of the band was taken as 128 per (sq cm-atm) at 296 K. Line widths were found to vary as T to the n power with n = -1.0 for lines of the F-species and 0.63 for the A-species. The measured line widths are considerably larger than those used in the AFGL compilation.

  2. Broadening parameters of the H2O-He collisional system for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Starikov, V. I.

    2016-03-01

    The water vapor line broadening γ and shift δ coefficients in the ν1 + ν2, ν2 + ν3, ν1 + ν3, 2ν3, 2ν1, 2ν2 + ν3, and ν1 + 2ν2 vibrational bands were obtained from the analysis of the H2O-He absorption spectra, recorded in the region from 5000 to 7500 cm-1 with the spectral resolution of 0.01 cm-1 using a Bruker IFS 125HR FTIR spectrometer. The vibrational bands 2ν3 and ν1 + 2ν2 were investigated for the first time. The calculations of γ and δ were performed in the framework of the semi-classical method. The rotational contributions as well as the contributions connected with the accidental resonances were taken into account in the used H2O-He interaction potential. The analytical representation of the broadening coefficients γ at planetary temperatures was introduced and discussed.

  3. Process dependent nuclear k⊥ broadening effect

    NASA Astrophysics Data System (ADS)

    Schäfer, Andreas; Zhou, Jian

    2013-10-01

    We study the process dependent nuclear k⊥ broadening effect by employing the transverse momentum dependent (TMD) factorization approach in combination with the Mclerran-Venugopalan model. More specifically, we investigate how the parton transverse momentum distributions are affected by the process dependent gauge links in cold nuclear matter. In particular, our analysis also applies to the polarized cases including the nuclear quark Boer-Mulders function and the linearly polarized gluon distribution. Our main focus is on the nuclear TMDs at intermediate or large x.

  4. Null-broadening in a waveguide.

    PubMed

    Kim, J S; Hodgkiss, W S; Kuperman, W A; Song, H C

    2002-07-01

    Null-broadening, introduced in plane wave beamforming, is extended to an ocean waveguide in the context of matched field processing. The method is based on the minimum variance processor with white noise constraint and the distribution of fictitious sources using the theory of waveguide invariants. The proposed method is demonstrated in simulation as well as with data collected during the SWellEx-96 experiment. As another application, it is shown that the width of a null can be controlled in an adaptive time reversal mirror with a source-receive array. PMID:12141344

  5. Shock-front broadening in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Barber, J. L.; Kadau, K.

    2008-04-01

    We analyze a model for the evolution of shock fronts in polycrystalline materials. This model is based on the idea of Meyers and Carvalho [Mater. Sci. Eng. 24, 131 (1976)] that the shock velocity anisotropy within the polycrystal is the most important factor in shock front broadening. Our analysis predicts that the shock front width increases as the 1/2 power of the front penetration distance into the crystal. Our theoretical prediction is in plausible agreement with previous experimental results for the elastic precursor rise time, and it should therefore provide a useful shock width estimate. Furthermore, our theoretical framework is also applicable to other problems involving front propagation in heterogeneous media.

  6. N2-broadening coefficients of methyl chloride: Measurements at room temperature and calculations at atmospheric temperatures

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.; Dhib, M.; Aroui, H.

    2014-11-01

    Infrared spectroscopic study on methyl chloride is the first step for its accurate detection in the atmosphere. In our previous work [Barbouchi Ramchani et al. J Quant Spectrosc Radiat Transfer 2013;120:1-15], line positions, intensities and self-broadening coefficients of both 12CH335Cl and 12CH337Cl isotopologues have been studied in the 6.9 μm spectral region. The present work is focused on measurements of N2-broadening coefficients for transitions of 12CH335Cl and 12CH337Cl around 6.9 μm. For that, high-resolution Fourier transform spectra of CH3Cl-N2 mixtures have been recorded at room temperature using a rapid scan Bruker IFS 120 HR interferometer at LADIR. The N2-broadening coefficients have been retrieved using a Voigt profile and a multispectrum fitting procedure. The average accuracy of the N2-broadening obtained in this work has been estimated to be between 5% and 10% depending on the transitions. The rotational J- and K-dependences of the N2-broadening coefficients have been clearly observed and modeled using empirical polynomial expansions. The 12CH335Cl-N2 line-widths of the ν5 band have also been computed using a semi-classical approach for the PR, RR and QR sub-branches. A global comparison with the experimental data from this work but also existing in the literature was then performed. Similar J- and K-rotational dependences have been observed while no clear evidence of any vibrational or isotopic dependence has been pointed out. Finally, performing theoretical calculations of the N2-broadening coefficients at various temperatures of atmospheric interest between 200 and 296 K allowed deducing the temperature exponent of the 12CH335Cl-N2 line-widths.

  7. Attention and positive affect: temporal switching or spatial broadening?

    PubMed

    Phaf, R Hans

    2015-04-01

    Evolutionary reasoning and computation suggest that positive affect is associated with higher attentional flexibility than negative affect, even when affectively neutral material is processed. The affective modulation of interference in the Eriksen flanker task seems, however, more readily explained by a spatial broadening of attention due to positive affect. It is argued here that these results should also be interpreted in terms of an increased switching over time between flankers and target (i.e., flexibility). The two hypotheses were contrasted with positive and negative mood inductions in a masked-flanker task. The interval (Stimulus Onset Asynchrony; SOA) with which the masked flankers preceded the target letter was parametrically varied. In contrast to what is found with simultaneous non-masked flanker presentation, masking produced larger interference with negative than with positive moods. In addition, a crossover interaction between mood and SOA emerged. These results seem incompatible with a spatial broadening account and support an affective modulation account in terms of flexibility. PMID:25772099

  8. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  9. Action potential broadening in a presynaptic channelopathy.

    PubMed

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E; Kullmann, Dimitri M

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca(2+) influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  10. Commitment to Broadening Participation at NOAO

    NASA Astrophysics Data System (ADS)

    Garmany, Catharine D.; Norman, D.

    2011-01-01

    AURA and NOAO take seriously the importance of Broadening Participation in Astronomy. At the request of the AURA President, each of the AURA centers (NOAO, NSO, STSCI, Gemini) appointed a Diversity Advocates (DA). At NOAO this job is shared by Dara Norman and Katy Garmany, who were appointed by Dave Silva in Jan 2009. The DA's are members of the AURA Committee on Workforce and Diversity (WDC), a designated subcommittee of the AURA Board of Directors. The role of this committee includes reviewing activities and plans on an AURA wide basis aimed at broadening the participation within AURA, and reviewing AURA wide policies on the workforce. At NOAO, the role of the DAs spans a number of departments and activities. They serve on observatory search committees, and offer suggestions on how NOAO job searches can reach the most diverse audience. The DA's job is to insure that NOAO actively pursues every opportunity to increase diversity: to this end they are involved in outreach and educational activities that focus on workplace development and encourage inclusion of woman, minorities and persons with disabilities.

  11. Action potential broadening in a presynaptic channelopathy

    PubMed Central

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  12. Action potential broadening in a presynaptic channelopathy

    NASA Astrophysics Data System (ADS)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  13. Isotopic Differences in CO Air Broadening and Shift Parameters

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Malathy Devi, V.; Benner, D. Chris; Mantz, A. W.; Sung, K.; Brown, L. R.

    2012-10-01

    Line shape parameters were measured in the 2-0 bands at 2.3 µm for the three most abundant isotopologues of carbon monoxide at temperatures between 150 K and 298 K and total pressures up to 0.9 atm. These parameters include the Lorentz half-width coefficients with their temperature dependence exponents; pressure-induced line shift coefficients with their temperature dependences, speed dependence parameters, and off-diagonal relaxation matrix elements. For this, we recorded more than 50 high resolution (0.005 cm-1) spectra of CO and two of its isotopologues (13CO and C18O) using a coolable absorption cell [1] in the sample compartment of the Bruker IFS 125HR Fourier transform spectrometer at Jet Propulsion Laboratory. Line parameters were retrieved by broad-band constrained multispectrum least-squares fitting [2] of 16 or more spectra simultaneously. The individual line positions and intensities were constrained to their theoretical relationships in order to obtain the rovibrational (G, B, D, and H) and band intensity parameters, including Herman-Wallis coefficients, as has been done for CO2 previously [3]. Differences between the air-broadening results for the 12C16O band [4] and the 13C16O and 12C18O 2-0 bands [5] are examined. This research is supported by NASA’s Earth Science Atmospheric Composition Laboratory Research Program. Part of the research at the Jet Propulsion Laboratory, California Institute of Technology, the College of William and Mary, and Connecticut College was performed under contracts and grants with the National Aeronautics and Space Administration. 1. K. Sung et al., J. Mol. pectrosc. 262 (2010) 122. 2. D. C. Benner et al., J. Quant. Spectrosc. Radiat. Transfer 53 (1995) 705. 3. V. Malathy Devi et al., J. Mol. Spectrosc. 242 (2007) 90. 4. V. Malathy Devi et al., J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1013. 5. V. Malathy Devi et al., J. Mol. Spectrosc. 276-277 (2012) 33.

  14. Broadening of the R(0) and P(2) Lines in the 13CO Fundamental by Helium Atoms from 300 K down to 12 K: Measurements and Comparison with Close-Coupling Calculations

    NASA Technical Reports Server (NTRS)

    Thibault, F.; Mantz, A. W.; Claveau, C.; Valentin, A.; Hurtmans, D.

    2007-01-01

    We present measurements of He-broadening parameters for the R(0) and O(2) lines in the fundamental band of 13CO at different temperatures between 12K and room temperature. The broadening parameters are determined, taking into account confinement narrowing, by simultaneous least-squares fitting of spectra recorded using a frequency stabilized diode laser spectrometer. The pressure broadening cross sections are deduced and compared to close-coupling calculations and earlier results obtained for rotational transitions of 12 CO.

  15. Air broadening of the hydrogen halides. I - N2-broadening and shifting in the HCl fundamental

    NASA Technical Reports Server (NTRS)

    Looney, J. P.; Herman, R. M.

    1987-01-01

    The resolvent operator formalism of Kolb, Griem (1964), and Baranger (1962) is used to determine the widths and shifts of the fundamental band vibration-rotation lines of HCl under N2 pressure. Time-development operator matrix elements are evaluated accounting for all bilinear and second order anisotropic terms, in addition to isotropic effects to all orders. The method employs the use of a parabolic trajectory model and explicit velocity averaging. The major contributions to the linewidths are found to arise from dipole-quadrupole, quadrupole-quadrupole, and vibrationally dependent isotropic dispersion forces. Good overall agreement is found between calculated and measured widths and linewidths over a 163-295 K temperature range.

  16. Shock front broadening in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Barber, John; Kadau, Kai

    2008-03-01

    We analyze a model for the evolution of weak shock fronts (or elastic precursor waves) in polycrystalline materials. This model is based on the idea of Meyers and Carvalho [Mater. Sci. Eng. 24, 131 (1976)] that the shock velocity anisotropy within the polycrystal is the most important factor in shock front broadening. Our analysis predicts that the shock front width increases as the 1/2 power of the front penetration distance into the crystal. Our theoretical prediction is in plausible agreement with previous experimental results for the elastic precursor rise time, and it should therefore provide a useful shock width estimate. Furthermore, our theoretical framework is also applicable to other problems involving front propagation in heterogeneous media.

  17. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  18. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  19. Calculation of pressure-broadened linewidths for CO in Ar

    NASA Technical Reports Server (NTRS)

    Green, S.

    1985-01-01

    Calculations of the pressure-broadening cross sections of CO in Ar have been made within the infinite-order sudden (IOS) and coupled states (CS) quantum scattering approximations. Two intermolecular potentials were used, a pairwise additive atom-atom potential which has been employed previously in semiclassical (modified Anderson theory) studies of this system and one calculated ab initio within an electron gas formalism. Predictions from the two potentials generally agree within about 25 percent and bracket experimental values (except for some recent high temperature data obtained in shock tube experiments). The CS approximation appears to be quite accurate although computationally expensive. The much cheaper IOS approximation is accurate for the J = 0-1 line but does not properly predict the dependence on line number. The quantum results are also compared with earlier semiclassical values.

  20. Analysis of pressure-broadened ozone spectra in the 3 micron region

    NASA Technical Reports Server (NTRS)

    Prochaska, Eleanor S.

    1991-01-01

    This work involves the analysis of a series of McMath Fourier Transform Infrared (FTIR) spectra of ozone broadened by mixing with air (four different pressures), nitrogen (three pressures), or oxygen (three pressures). Each spectrum covers the region from 2396 to 4057 cm(-1). This study focused on the 3 sub nu sub 3 band in t 3000 to 3060 cm(-1). The band is analyzed by first dividing its region into small intervals containing a few well isolated absorption lines of reasonable intensity. Each of these small intervals is fit by multiple iterations of the nonlinear least squares program until residuals (the difference between calculated and observed spectrum, as a percent of the strongest intensity in the interval) are minimized to a reasonable value which corresponds to the noise level of the measured spectrum. Position, intensity, and half-width are recorded for later analysis. From the measured half-widths, a pressure broadening coefficient was determined for each absorption line. Pressure shifts were determined by comparing observed line positions in the spectra of the diluted ozone samples to tabulated line positions determined from spectra of pure gas samples. Comparisons to other work on ozone indicate that the broadening and shift coefficients determined in this study are consistent with those determined in other spectral regions.

  1. Implementation of on-the-fly doppler broadening in MCNP

    SciTech Connect

    Martin, W. R.; Wilderman, S.; Brown, F. B.; Yesilyurt, G.

    2013-07-01

    A new method to obtain Doppler broadened cross sections has been implemented into MCNP, removing the need to generate cross sections for isotopes at problem temperatures. When a neutron of energy E enters a material region that is at some temperature T, the cross sections for that material at temperature T are immediately obtained 'on-the-fly' (OTF) by interpolation using a high order functional expansion for the temperature dependence of the Doppler-broadened cross section for that isotope at the neutron energy E. The OTF cross sections agree with the NJOY-based cross sections for all neutron energies and all temperatures in the range specified by the user, e.g., 250 K - 3200 K. The OTF methodology has been successfully implemented into the MCNP Monte Carlo code and has been tested on several test problems by comparing MCNP with conventional ACE cross sections versus MCNP with OTF cross sections. The test problems include the Doppler defect reactivity benchmark suite and two full-core VHTR configurations, including one with multiphysics coupling using RELAP5-3D/ATHENA for the thermal-hydraulic analysis. The comparison has been excellent, verifying that the OTF libraries can be used in place of the conventional ACE libraries generated at problem temperatures. In addition, it has been found that the OTF methodology greatly reduces the complexity of the input for MCNP, resulting in an order of magnitude decrease in the number of input lines for full-core configurations. Finally, for full-core problems with multiphysics feedback, the memory required to store the cross section data is considerably reduced with OTF cross sections and the additional computational effort with OTF is modest, on the order of 10-15%. (authors)

  2. Inhomogeneous broadening of electronic transitions in a liquid helium bubble: The role of shape fluctuations

    NASA Astrophysics Data System (ADS)

    Lerner, P. B.; Chadwick, M. B.; Sokolov, I. M.

    1993-02-01

    Recent experiments of Grimes et al. [ Phys. Rev. B 41, 6366 (1990)] and Parshin et al. [ JETP, 74, 68 (1992)] demonstrate a substatial broadening in the 1 s-1 p transition of a single electron trapped in a liquid helium bubble (“bubblonium”) compared to theoretical predictions based on natural radiative linewidth. We show that the larger observed linewidth can be explained by inhomogeneus broadening due to quantum quadrupole fluctuations in the bubble shape. A simple adiabaticity rule for the bubblonium transitions similar to the Franck-Condon principle for molecular transitions is established. Quantitative estimates of the additional inhomogeneous linewidth at T=0 and 2.2 K are provided. The full theoretical linewidth, due to inhomogeneous and homogeneous broadening, has a Voigt-profile shape, and accounts for the data reasonably well.

  3. Broadening of optical transitions in polycrystalline CdS and CdTe thin films

    SciTech Connect

    Li Jian; Chen Jie; Collins, R. W.

    2010-11-01

    The dielectric functions {epsilon} of polycrystalline CdS and CdTe thin films sputter deposited onto Si wafers were measured from 0.75 to 6.5 eV by in situ spectroscopic ellipsometry. Differences in {epsilon} due to processing variations are well understood using an excited carrier scattering model. For each sample, a carrier mean free path {lambda} is defined that is found to be inversely proportional to the broadening of each of the band structure critical points (CPs) deduced from {epsilon}. The rate at which broadening occurs with {lambda}{sup -1} is different for each CP, enabling a carrier group speed {upsilon}{sub g} to be identified for the CP. With the database for {upsilon}{sub g}, {epsilon} can be analyzed to evaluate the quality of materials used in CdS/CdTe photovoltaic heterojunctions.

  4. Low Temperature Measurements of HCN Broadened by N2 in the 14-micron Spectral Region

    SciTech Connect

    Smith, M.A.H.; Rinsland, Curtis P.; Blake, Thomas A.; Sams, Robert L.; Benner, D. C.; Devi, V. M.

    2008-04-01

    N2-broadening and N2-pressure-induced shift coefficients; and the temperature dependence exponent of the N2-broadening and the temperature dependent coefficients of N2-pressure-induced shifts have been measured for transitions in the v2 band of HCN from analysis of high-resolution absorption spectra recorded with two different Fourier transform spectrometers. A total of 34 laboratory spectra recorded at 0.002-0.005 cm-1 resolution and at temperatures ranging from 211 to 300 K were used in the determination of various spectral line parameters. A multispectrum nonlinear least squares curve fitting technique employing a modified Voigt line profile including speed dependence was used in the P- and R-branch measurements. In analyzing the Q branch transitions, the off-diagonal relaxation matrix element coefficients were included in analysis to fit the data. Present results are compared to previous measurements reported in the literature.

  5. Effect of a Simulated Analogue Telephone Channel on the Performance of a Remote Automatic System for the Detection of Pathologies in Voice: Impact of Linear Distortions on Cepstrum-Based Assessment - Band Limitation, Frequency Response and Additive Noise

    NASA Astrophysics Data System (ADS)

    Fraile, Rubén; Sáenz-Lechón, Nicolás; Godino-Llorente, Juan Ignacio; Osma-Ruiz, Víctor; Fredouille, Corinne

    Advances in speech signal analysis during the last decade have allowed the development of automatic algorithms for a non-invasive detection of laryngeal pathologies. Performance assessment of such techniques reveals that classification success rates over 90 % are achievable. Bearing in mind the extension of these automatic methods to remote diagnosis scenarios, this paper analyses the performance of a pathology detector based on Mel Frequency Cepstral Coefficients when the speech signal has undergone the distortion of an analogue communications channel, namely the phone channel. Such channel is modeled as a concatenation of linear effects. It is shown that while the overall performance of the system is degraded, success rates in the range of 80% can still be achieved. This study also shows that the performance degradation is mainly due to band limitation and noise addition.

  6. Envelope broadening and scattering attenuation of a scalar wavelet in random media having power-law spectra

    NASA Astrophysics Data System (ADS)

    Sato, Haruo

    2016-01-01

    Peak delay and envelope broadening of an S-wavelet with travel distance increasing are seen in short-period seismograms of small earthquakes. Those phenomena are results of scattering by random velocity inhomogeneities in the earth medium. As shown in sonic well-log data we may suppose that random velocity fluctuation has power-law spectra even in the seismic spectral range. As a simple mathematical model, we study how the envelope of a scalar wavelet varies in von Kármán-type random media, which have power-law spectra at large wavenumbers. Since the centre wavenumber of a wavelet is a unique scale in the power-law spectral range, using it as a reference, we divide the random media into the low-wavenumber spectral (long-scale) component and the high-wavenumber spectral (short-scale) component. For the wave propagation through the long-scale component of random media, we may apply the parabolic approximation to the wave equation. Using the Markov approximation, which is a stochastic extension of the phase screen method, we directly synthesize the energy density, which is the mean-square (MS) envelope of a wavelet in a given frequency band. The envelope duration increases according to the second power of travel distance. There is an additional factor, the wandering effect which increases the envelope duration according to the traveltime fluctuation. Wide angle scattering caused by the short-scale component of random media attenuates wave amplitude with travel distance increasing. We use the total scattering coefficient of the short-scale component as a measure of scattering attenuation per distance, which is well described by the Born approximation. Multiplying the exponential scattering attenuation factor by the MS envelope derived by the Markov approximation, we can synthesize the MS envelope reflecting all the spectral components of random media. When the random medium power spectra have a steep role-off at large wavenumbers, the envelope broadening is small and

  7. Droplet spectral broadening in marine stratus

    SciTech Connect

    Hudson, J.G.; Yum, Seong Soo

    1997-11-15

    Broadening of the cloud droplet (diameter < 50 {mu}m) spectrum with increased droplet size was found to depend on the vertical profiles of cloud water. Clouds with liquid water profiles resembling adiabatic conditions displayed constant spectral widths. Other clouds displayed broader droplet spectra and increasing broadness with mean droplet sizes. Less than adiabatic cloud liquid water profiles may be accounted for by conversion to drops (diameter > 50 {mu}m, i.e., drizzle). Broad droplet spectra were most closely associated with drizzle drops. Both the concentration, C and slope, k, of the cloud condensation nuclei (CCN) spectra were theoretically found to affect droplet spectral width. For individual cloud parcels a higher C and lower k each contributed to broader droplet spectra. When mixing among cloud parcels with different updrafts was considered, the predictions deviated especially at larger mean droplet diameters. Variations in updraft velocity result in differences in droplet concentrations and mean droplet sizes. The predictions for this internal mixing process showed greater droplet spectral widths for CCN spectra with higher k, especially at the larger mean droplet diameters. Instead of the individual parcel predictions of narrower droplet spectra at larger mean droplet sizes, internal mixing predicted increasing droplet spectral width with increasing mean droplet size. These predictions are consistent with the observations. First, when only cloud parcels with small mean droplet diameters (< 1 {mu}m) were considered, the polluted clouds that formed on CCN with higher C and lower k displayed broader droplet spectra than clean clouds. Cloud parcels with large mean droplet diameters (>12 {mu}m) and large {sigma} were observed only in clean conditions where k was high. Increasing droplet spectral width with mean droplet diameter (especially > 12 {mu}m) is typical of many observations here and elsewhere.

  8. Foreign-gas pressure broadening parameters of propane near 748/cm

    NASA Technical Reports Server (NTRS)

    Nadler, Schachar; Jennings, D. E.

    1989-01-01

    The pressure-broadening coefficients of the nu sub 19 band of propane near 748/cm due to H2, N2, and He are determined using a tunable diode laser spectrometer at room temperature. The coefficients obtained were 0.183(5)/cm/atm for C3H8-H2, 0.119(2) for C3H8-N2, and 0.105(2) for C3H8-He. The possible implications of the results for propane on Titan, the earth, and Saturn are noted.

  9. Measurements of self-broadening of infrared absorption lines of ozone

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, V. M.

    1991-01-01

    Lorentz self-broadening coefficients have been determined for 355 spectral lines belonging to five different infrared vibration-rotation bands of O3 in the spectral region from 4.8 to 17 microns. Six ozone absorption spectra, recorded at room temperature using a Fourier transform spectrometer, were analyzed. The half-width values were obtained through a nonlinear least-squares spectral fitting procedure. The results are compared with previous measurements, and the vibration of the half-widths with vibrational and rotational quantum numbers is examined.

  10. Self-, N2- and Ar-broadening and line mixing in HCN and C2H2

    NASA Technical Reports Server (NTRS)

    Pine, A. S.

    1993-01-01

    Self-, N2- and Ar-broadening coefficients were measured for the stretch-bend infrared combination bands nu-1 + nu-1/2 (4004/cm) of HCN and nu-1 + nu-1/5 (4091/cm) of C2H2, using a tunable difference-frequency laser. At atmospheric pressures, the Q branches of these bands exhibit significant rotational narrowing or line mixing. The broadening coefficients are fit with empirical rotationally inelastic collision rate laws, which are then used to model the line mixing in the overlapped Q-branch profiles. Simple energy gap fitting laws appear to be suitable for the shorter-range intermolecular quadrupole-quadrupole and induction forces, whereas an energy-corrected-sudden scaling law works better for the longer-range dipole-dipole and dipole-quadrupole collision partners. In all cases, the line-coupling coefficients are substantially reduced from the rotationally inelastic rates fit to the broadening coefficients, indicating that 35-70 percent of the broadening may be due to other collisional mechanisms such as cross-relaxation to the degenerate H state vibrational level.

  11. Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence

    NASA Astrophysics Data System (ADS)

    Boonruang, Sakoolkan; Greenwell, Andrew; Moharam, M. G.

    2007-11-01

    Broadening of the angular response of two-dimensional (2D) guided mode resonant spectral filters at oblique incidence is investigated. Coupling into multiple fundamental guided resonant modes having the same propagation constant but propagating in different planes (inherent multiple-plane diffraction by 2D gratings) is shown to significantly broaden the angular tolerance while maintaining narrow linewidth. Resonances have symmetric and broad angular responses when the incident wave is coupled to four resonant modes in a structure with a hexagonal grating pattern. Further broadening is implemented by enhancing the second Bragg diffraction of the 2D grating structure. Resonance with a narrow spectral linewidth (ΔλFWHM~1.6×10-4λ0) and angularly tolerant to an ~6 μm beam diameter is obtained. A second approach utilizing a dual 2D grating configuration with a second grating on the substrate side is shown to increase the lateral confinement, causing the merging of two successive resonant bands. This results in further improvement of the angular/spectral linewidth ratio by ~80%.

  12. Nitrogen-Broadened 13CH_4 at 80 TO 296 K

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Sung, K.; Brown, L. R.; Crawford, T. J.; Mantz, A. W.; Devi, V. Malathy; Benner, D. Chris

    2011-06-01

    High-resolution spectra of the ν_4 fundamental band of 13CH_4 broadened by N_2 at temperatures relevant to the atmosphere of Titan were recorded using temperature-controlled absorption cells installed in the sample compartment of a Bruker IFS-125HR Fourier Transform spectrometer (FTS) at the Jet Propulsion Laboratory (JPL). Analysis of these spectra using multispectrum fitting has determined half widths, pressure-induced shifts, line mixing parameters and their temperature dependences for transitions belonging to a number of P- and R-branch J-manifolds. The analysis examined in detail the temperature-dependence of N_2-broadened half width and pressure-induced shift coefficients over the entire temperature range from 80 K to 296 K. The results are compared with other published measurements of N_2- and air-broadened methane parameters. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. K. Sung, A. W. Mantz, M. A. H. Smith, L. R. Brown, T. J. Crawford, V. Malathy Devi and D. C. Benner, JMS 262 (2010) 122-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721.

  13. Gastric Banding

    MedlinePlus

    ... gastric banding before deciding to have the procedure. Advertisements for a device or procedure may not include ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  14. Relativistic formulation for the Doppler-broadened line profile

    SciTech Connect

    Huang, Young-Sea; Chiue, Juang-Han; Huang, Yi-Chi; Hsiung, Te-Chih

    2010-07-15

    Profiles of spectral lines due to the thermal motion of light-emitting particles are formulated based on the classical and the relativistic Doppler effects, respectively. For the classical case, the well-known Doppler-broadened line profile is reproduced. For the relativistic case, the line profile obtained is asymmetrically broadened with increasing temperature. However, the peak frequency remains unshifted, in contrast to blueshifted, as has been predicted in the current literature. Reasoning is given as to why the relativistic Doppler-broadened line profile currently accepted is probably invalid.

  15. NASA broadened-specification fuels combustion technology program

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1980-01-01

    The broadened-Specification Fuels Combustion Technology program's purpose is to evolve and demonstrate the technology required to enable current and next generation high-thrust, high-bypass-ratio turbofan engines to use fuels with broadened properties and to verify the evolved technology in full scale engine tests. The three phases of the program are combustor concept screening, combustor optimization testing, and engine verification testing. Constraints for designing combustion systems are outlined and problems to be expected in the use of broadened properties fuels are listed.

  16. abo-cross: Hydrogen broadening cross-section calculator

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.; Anstee, S. D.; O'Mara, B. J.

    2015-07-01

    Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O'Mara (1995), Barklem & O'Mara (1997) and Barklem, O'Mara & Ross (1998) for s-p, p-s, p-d, d-p, d-f and f-d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.

  17. Nuclear broadening of transverse momentum in Drell-Yan reactions

    SciTech Connect

    Johnson, M. B.; Leitch, M. J.; McGaughey, P. L.; Moss, J. M.; Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2007-03-15

    Data for Drell-Yan (DY) processes on nuclei are currently available from fixed target experiments up to the highest energy of {radical}(s)=40 GeV. The bulk of the data cover the range of short coherence length, where the amplitudes of the DY reaction on different nucleons do not interfere. In this regime, DY processes provide direct information about broadening of the transverse momentum of the projectile parton experiencing initial-state multiple interactions. We revise a previous analysis of data from the E772 experiment and perform a new analysis of broadening including data from the E866 experiment at Fermilab. We conclude that the observed broadening is about twice as large as the one found previously. This helps to settle controversies that arose from a comparison of the original determination of broadening with data from other experiments and reactions.

  18. Solar Wind Strahl Broadening by Self-Generated Plasma Waves

    NASA Technical Reports Server (NTRS)

    Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.

    2013-01-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  19. Doppler broadening in the β-proton- γ decay sequence

    NASA Astrophysics Data System (ADS)

    Schwartz, Sarah; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Perez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-10-01

    We report the first observation of Doppler-broadening in β delayed proton- γ decay. The broadening occurs because the daughter nucleus γ decays while recoiling from proton emission. A method to analyze β delayed nucleon emission was applied to two Doppler-broadened 25Al peaks from the 26P(βpγ)25Al decay. The method was first tested on the broad 1613 keV γ-ray peak using known center-of-mass proton energies as constraints. The method was then applied to the 1776 keV γ-ray peak from the 2720 keV excited state of 25Al. The broadening was used to determine a 26Si excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.7 (syst.) MeV. This energy is consistent with proton emission from the known T = 2 isobaric analog state of 26P in 26Si.

  20. Correlations between Doppler and pressure broadening for the resonance interaction

    NASA Technical Reports Server (NTRS)

    Cooper, J.; Stacey, D. N.

    1975-01-01

    The correlation between Doppler and collisional broadening has been considered in detail for radiation in which the lower level of the transition is broadened by the resonance interaction. It is found that rather than a single Voigt profile, the profile of the radiation is essentially a sum of Voigt profiles. Although the widths of these profiles vary by some 40%, the over-all line shape is very close to the single Voigt shape obtained when correlation effects are neglected.

  1. Self-phase-modulation induced spectral broadening in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  2. Broadening of infrared absorption lines at reduced temperatures - Carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    An evacuated high-resolution Czerny-Turner spectrograph, which is described in this paper, has been used to determine the strengths S and self-broadening parameters for lines in the R branch of the nu (sub 3) fundamental of carbon dioxide at 298 and at 207 K. The values of self-broadening parameters at 207 K are greater than those to be expected on the basis of a fixed collision cross section.

  3. Spectral broadening measurements of the ionospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.

    1980-01-01

    Using data obtained from radio occultation experiments of Pioneer 10 and 11, the theory for spectral broadening is compared with the theory of weak intensity scintillation. This comparison is possible because Pioneer's observed spectral broadening occurred when the intensity scintillations were weak. Good agreement is found, and the inferred characteristics of the electron density irregularities for the ionospheres of both Jupiter and Saturn are presented.

  4. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  5. The broaden-and-build theory of positive emotions.

    PubMed

    Fredrickson, Barbara L

    2004-09-29

    The broaden-and-build theory describes the form and function of a subset of positive emotions, including joy, interest, contentment and love. A key proposition is that these positive emotions broaden an individual's momentary thought-action repertoire: joy sparks the urge to play, interest sparks the urge to explore, contentment sparks the urge to savour and integrate, and love sparks a recurring cycle of each of these urges within safe, close relationships. The broadened mindsets arising from these positive emotions are contrasted to the narrowed mindsets sparked by many negative emotions (i.e. specific action tendencies, such as attack or flee). A second key proposition concerns the consequences of these broadened mindsets: by broadening an individual's momentary thought-action repertoire--whether through play, exploration or similar activities--positive emotions promote discovery of novel and creative actions, ideas and social bonds, which in turn build that individual's personal resources; ranging from physical and intellectual resources, to social and psychological resources. Importantly, these resources function as reserves that can be drawn on later to improve the odds of successful coping and survival. This chapter reviews the latest empirical evidence supporting the broaden-and-build theory and draws out implications the theory holds for optimizing health and well-being. PMID:15347528

  6. The broaden-and-build theory of positive emotions.

    PubMed Central

    Fredrickson, Barbara L

    2004-01-01

    The broaden-and-build theory describes the form and function of a subset of positive emotions, including joy, interest, contentment and love. A key proposition is that these positive emotions broaden an individual's momentary thought-action repertoire: joy sparks the urge to play, interest sparks the urge to explore, contentment sparks the urge to savour and integrate, and love sparks a recurring cycle of each of these urges within safe, close relationships. The broadened mindsets arising from these positive emotions are contrasted to the narrowed mindsets sparked by many negative emotions (i.e. specific action tendencies, such as attack or flee). A second key proposition concerns the consequences of these broadened mindsets: by broadening an individual's momentary thought-action repertoire--whether through play, exploration or similar activities--positive emotions promote discovery of novel and creative actions, ideas and social bonds, which in turn build that individual's personal resources; ranging from physical and intellectual resources, to social and psychological resources. Importantly, these resources function as reserves that can be drawn on later to improve the odds of successful coping and survival. This chapter reviews the latest empirical evidence supporting the broaden-and-build theory and draws out implications the theory holds for optimizing health and well-being. PMID:15347528

  7. Submillimeter measurements of N2 and air broadening of hypochlorous acid

    NASA Astrophysics Data System (ADS)

    Drouin, Brian J.

    2007-02-01

    The pressure induced broadening of a several Q0r pure rotational transitions of hypochlorous acid, HOCl, have been measured as a function of temperature. This set of rotational transitions is the dominant feature of the submillimeter spectrum in the 500μm range where several remote sensing instruments currently operate. Additional features throughout the submillimeter spectrum have been recorded at the full-resolution of the room temperature Doppler linewidth using multiplier chains in the 110 500μm wavelengths.

  8. Quasiparticle lifetime broadening in resonant x-ray scattering of NH4NO3

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Müller, Matthias; Unterumsberger, Rainer; Beckhoff, Burkhard

    2016-07-01

    It has been previously shown that two effects cause dramatic changes in the x-ray absorption and emission spectra from the N K edge of the insulating crystal ammonium nitrate. First, vibrational disorder causes major changes in the absorption spectrum, originating not only from the thermal population of phonons, but, significantly, from zero-point motion as well. Second, the anomalously large broadening (˜4 eV) of the emission originating from nitrate σ states is due to the unusually short lifetimes of quasiparticles in an otherwise extremely narrow band. In this work, we investigate the coupling of these effects to core and valence excitons that are created as the initial x-ray excitation energy is progressively reduced toward the N edge. Using a G W /Bethe-Salpeter approach, we show the extent to which this anomalous broadening is captured by the G W approximation. The data and calculations demonstrate the importance that the complex self-energies (finite lifetimes) of the valence bands have on the interpretation of emission spectra. We produce a scheme to explain why extreme lifetimes should appear in σ states of other similar compounds.

  9. Multi-band Bloch equations and gain spectra of highly excited II-VI semiconductor quantum wells

    SciTech Connect

    Girndt, A.; Jahnke, F.; Knorr, A.; Koch, S.W.; Chow, W.W.

    1997-04-21

    Quasi-equilibrium excitation dependent optical probe spectra of II-VI semiconductor quantum wells at room temperature are investigated within the framework of multi-band semiconductor Bloch equations. The calculations include correlation effects beyond the Hartree-Fock level which describe dephasing, interband Coulomb correlations and band-gap renormalization in second Born approximation. In addition to the carrier-Coulomb interaction, the influence of carrier-phonon scattering and inhomogeneous broadening is considered. The explicit calculation of single particle properties like band structure and dipole matrix elements using k {center_dot} p theory makes it possible to investigate various II-VI material combinations. Numerical results are presented for CdZnSe/ZnSe and CdZnSe/MnZnSSe semiconductor quantum-well systems.

  10. Peak deconvolution to correctly assess the band broadening of chromatographic columns.

    PubMed

    Vanderheyden, Yoachim; Broeckhoven, Ken; Desmet, Gert

    2016-09-23

    The present study provides experimental evidence for the fact that the peak deconvolution method can be applied to accurately measure the column-only dispersion of the current generation of high speed and high efficiency columns. Unlike the conventional variance difference method, it furthermore preserves any prevailing asymmetry of the column-only peak. This has been demonstrated by testing the same column on three different system configurations, with different extra-column volumes, and showing that, after deconvolution, the resulting column-only peaks coincide very well and produce very similar column-only plate height values (typical relative standard deviation comprising all runs on three different system configurations is 2-2.5%). Extensively studying a large set of theoretically produced peaks (with exactly known variance and asymmetry), it could be shown that the main criterion for the validity of the deconvolution method is that the variance of the system-only peak is minimum 1.5 times smaller than the variance of the column+system peak. The need to add a radial mixer unit to accurately assess the system-only contributions has been demonstrated as well. To illustrate its use and merits, the deconvolution method has been used to establish so-called multiple van Deemter curves, wherein plate height curves relating to different peak width definitions are shown in the same plot. These plots can give new insights in the intrinsic asymmetry of the column-only dispersion. PMID:27578411

  11. Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines

    SciTech Connect

    Swann, William C.; Gilbert, Sarah L.

    2005-08-01

    We have measured the line centers and pressure-induced shift and broadening of 25 lines in the 2{nu}{sub 3} rotational-vibrational band of hydrogen cyanide H{sup 13}C{sup 14}N. These lines can be used as wavelength references in the optical fiber communication wavelength division multiplexing C-band (approximately 1530-1565 nm). We find that the pressure shift varies with line number from +0.09 pm/kPa to -0.15 pm/kPa (approximately -1.5 to +2.5 MHz/Torr). The pressure broadening also varies with line number and is typically between 1 and 5.4 pm/kPa (17-90 MHz/Torr). We determined the line centers of 21 lines with an expanded uncertainty (2{sigma}) of 0.01 pm ({approx_equal}1 MHz), an improvement of more than 1 order of magnitude over previous line center measurements of this band. We also calculate the molecular constants for the band, yielding improved determination of the band origin frequency and the excited-state molecular constants.

  12. A reward band study of mallards to estimate band reporting rates

    USGS Publications Warehouse

    Henny, C.J.; Burnham, K.P.

    1976-01-01

    Reward bands ($10) were placed on 2,122 hatching-year mallards (Anas platyrhynchos), and an additional 11,490 received conventional bands (controls) to estimate band reporting rates. An analysis of band recoveries indicated that the reporting rate was dependent primarily upon three factors: (1) the distance banded birds were recovered from the banding site, (2) band collecting activities of conservation agencies (usually near banding sites), and ( 3) the intensity of banding effort in the region (frequency of banded birds in the population of the region). Reporting rates were uniformly depressed near the banding sites, but they showed an east-west cline at distances greater than 80 km from the banding sites. The reporting rate was highest in the west. Limited data on historical band reporting rates were compiled. Recommendations are given for adjusting band recoveries to account for the nonreporting of bands for 1957-73.

  13. Band Together!

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  14. Concentration Dependence of Line Shapes in the ν_1 + ν_3 Band of Acetylene

    NASA Astrophysics Data System (ADS)

    Cich, Matthew; Forthomme, Damien; Hall, Gregory; McRaven, C.; Sears, Trevor

    2014-06-01

    Using an extended cavity diode laser locked to a frequency comb, the line shape of the P(11) line in the ν_1 + ν_3 combination band of acetylene has been studied as a function of varying concentration of the absorber in nitrogen. Mixture concentrations of 1, 5 and 10% at 296 K and pressures between a few Torr and one atmosphere were made and the measurements analyzed using two different speed-dependent broadening models. These experiments are designed to test the additivity of contributions to pressure broadening and shift in speed-dependent line shape modeling, i.e. whether the lineshape parameters follow partial pressure weighting in the binary mixtures. P(11) is relatively isolated with respect to underlying hot band transitions and neighboring transitions of the same band, but it was found that the accurate positions of underlying hot band transitions were crucial to the successful modeling of the observed line shapes, even though these lines are typically 100-1000 times weaker than P(11) itself and are many Doppler line widths removed from the line center. Positions of the hot band lines quoted in the HITRAN database, which are derived from the analysis of high resolution FTIR spectra, are of the order of 10's of MHz in error. In parallel work, we have measured the positions of many of these lines by saturation dip spectroscopy. Progress in the analysis of the data and the new saturation dip line center measurements will be reported. [1] C. P. McRaven, et al. Paper RI05, 68th International Symposium on Molecular Spectroscopy, 2013 Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

  15. Stark Broadening Parameters for Neutral Oxygen Spectral Lines

    NASA Astrophysics Data System (ADS)

    Alonizan, N.; Qindeel, R.; Nessib, N. Ben; Sahal-Bréchot, S.; Dimitrijević, Milan S.

    2015-12-01

    Stark broadening parameters for nine neutral oxygen (O I) lines have been determined within the impact approximation and the semiclassical perturbation method. The atomic data have been taken from the TOPbase and NIST atomic databases. The electron and proton Stark widths and shifts and ion broadening parameter values for these O I lines have been calculated for electron density of 10 16 cm -3 and for 4 different electron temperatures in the range of 5000 K to 40000 K. These Stark broadening parameters are compared with our previous results (Ben Nessib, N. et al. 1996, Physica Scripta, 54, 603-613), where we calculated Stark broadening parameters for only four O I spectral lines and where Stark widths and shifts were compared with experimental and theoretical data available in the literature. In the present paper, we have also compared our results with the Griem's book (Griem, H. R. 1974, Spectral line broadening by plasmas) and VALD (Ryabchikova, T. et al. 2015, Physica Scripta, 90, 054005) values.

  16. Latitudinal variation of speed and mass flux in the acceleration region of the solar wind inferred from spectral broadening measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Goldstein, Richard M.

    1994-01-01

    Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.

  17. Some Strategies From SOARS for Broadening Participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Haacker-Santos, R.; Pandya, R.; Calhoun, A.

    2006-12-01

    The mission of SOARS® is to broaden participation in the geosciences by increasing the number of Black or African-American, American Indian or Alaska Native, Hispanic or Latino, female, and first-generation college students who enroll and succeed in graduate school in the atmospheric and related sciences. This mission contributes to national goals of developing a diverse, internationally competitive, and globally engaged workforce of scientists and engineers. SOARS is a multiyear undergraduate-to-graduate bridge program that uses three strategies: a strong learning community, a multidimensional mentoring program, and experience in research. Our presentation will describe SOARS' strategies in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw upon recent research that documents how these strategies can be successfully implemented, including: - A survey of over 124 higher-education based STEM programs - A workshop report from the American Chemical Society emphasizing cooperation between industry and academia - An independent ethnographic study of the Significant Opportunities in Atmospheric and Related Science (SOARS®) program, administered by the University Corporation for Atmospheric Research (UCAR) In the 11 years since SOARS' founding, 104 students have participated in the program. Of those participants, 16 are still enrolled as undergraduates, and 60 have gone on to purse graduate school in STEM. Overall, this represents a success rate 91%. Of the 35 SOARS participants who have entered the workforce, 26 are in STEM related disciplines. Four SOARS participants have already earned their PhD, and additional 17 are in PhD programs. Seventeen protégés have earned Master's and entered the workforce, and 17 more protégés are enrolled in Master's programs.

  18. Self-broadening of the hydrogen Balmer α line

    NASA Astrophysics Data System (ADS)

    Allard, N. F.; Kielkopf, J. F.; Cayrel, R.; van't Veer-Menneret, C.

    2008-03-01

    Context: Profiles of hydrogen lines in stellar spectra are determined by the properties of the hydrogen atom and the structure of the star's atmosphere. Hydrogen line profiles are therefore a very important diagnostic tool in stellar modeling. In particular they are widely used as effective temperature criterion for stellar atmospheres in the range T_eff 5500-7000 K. Aims: In cool stars such as the Sun hydrogen is largely neutral and the electron density is low. The line center width at half maximum and the spectral energy distribution in the wings are determined primarily by collisions with hydrogen atoms due to their high relative density. This work aims to provide benchmark calculations of Balmer α based on recent H2 potentials. Methods: For the first time an accurate determination of the broadening of Balmer α by atomic hydrogen is made in a unified theory of collisional line profiles using ab initio calculations of molecular hydrogen potential energies and transition matrix elements among singlet and triplet electronic states. Results: We computed the shape, width and shift of the Balmer α line perturbed by neutral hydrogen and studied their dependence on temperature. We present results over the full range of temperatures from 3000 to 12 000 K needed for stellar spectra models. Conclusions: Our calculations lead to larger values than those obtained with the commonly used Ali & Griem (1966, Phys. Rev. A, 144, 366) theory and are closer to the recent calculations of Barklem et al. (2000a, A&A, 355, L5; 2000b, A&A, 363, 1091). We conclude that the line parameters are dependent on the sum of many contributing molecular transitions, each with a different temperature dependence, and we provide tables for Balmer α. The unified line shape theory with complete molecular potentials also predicts additional opacity in the far non-Lorentzian wing.

  19. Shape of collision-broadened lines of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Seleznev, A. F.; Fedoseev, G. V.; Koshelev, M. A.; Tretyakov, M. Yu.

    2015-08-01

    We consider lineshape of the rotational spectrum of a CO molecule under the conditions of prevailing collisional broadening. Several series of experimental data obtained at relatively high (up to 1000) signal-to-noise ratio of self-broadening and broadening by noble gases have been analyzed. We used for analysis several well known models beyond the Voigt profile. It is confirmed that the use of the Hartman-Tran profile needs certain requirements in order to obtain meaningful and unambiguous results. A simple numerical simulation is suggested to evaluate the result of the model usage for any particular set of experimental data. Parameters of the collisional line narrowing were obtained. It is shown that under the experimental conditions, deviations of the shape of the observed lines from the Voigt profile are solely due to the wind effect.

  20. Portable Hyperspectral Imaging Broadens Sensing Horizons

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Broadband multispectral imaging can be very helpful in showing differences in energy being radiated and is often employed by NASA satellites to monitor temperature and climate changes. In addition, hyperspectral imaging is ideal for advanced laboratory uses, biomedical imaging, forensics, counter-terrorism, skin health, food safety, and Earth imaging. Lextel Intelligence Systems, LLC, of Jackson, Mississippi purchased Photon Industries Inc., a spinoff company of NASA's Stennis Space Center and the Institute for Technology Development dedicated to developing new hyperspectral imaging technologies. Lextel has added new features to and expanded the applicability of the hyperspectral imaging systems. It has made advances in the size, usability, and cost of the instruments. The company now offers a suite of turnkey hyperspectral imaging systems based on the original NASA groundwork. It currently has four lines of hyperspectral imaging products: the EagleEye VNIR 100E, the EagleEye SWIR 100E, the EagleEye SWIR 200E, and the EagleEye UV 100E. These Lextel instruments are used worldwide for a wide variety of applications including medical, military, forensics, and food safety.

  1. Multigroup Free-atom Doppler-broadening Approximation. Theory

    SciTech Connect

    Gray, Mark Girard

    2015-11-06

    Multigroup cross sections at a one target temperature can be Doppler-broadened to multigroup cross sections at a higher target temperature by matrix multiplication if the group structure suf- ficiently resolves the original temperature continuous energy cross section. Matrix elements are the higher temperature group weighted averages of the integral over the lower temperature group boundaries of the free-atom Doppler-broadening kernel. The results match theory for constant and 1/v multigroup cross sections at 618 lanl group structure resolution.

  2. Trace Isotope Detection Enhanced by Coherent Elimination of Power Broadening

    SciTech Connect

    Conde, Alvaro Peralta; Brandt, Lukas; Halfmann, Thomas

    2006-12-15

    The selectivity and spectral resolution of traditional laser-based trace isotope analysis, i.e., resonance ionization mass spectrometry (RIMS), is limited by power broadening of the radiative transition. We use the fact that power broadening does not occur in coherently driven quantum systems when the probing and excitation processes are temporally separated to demonstrate significant improvement of trace element detection, even under conditions of strong signals. Specifically, we apply a coherent variant of RIMS to the detection of traces of molecular nitric oxide (NO) isobars. For large laser intensities, the detected isotope signal can be increased by almost 1 order of magnitude without any loss in spectral resolution.

  3. Forward-scattered light: Spectral broadening and temporal coherence

    NASA Astrophysics Data System (ADS)

    Swanson, N. L.; van Winkle, D. H.

    1997-06-01

    Fabry-Pérot spectroscopy was used to observe a spectral broadening of 1.3+/-0.2 MHz in laser light forward scattered through a colloidal solution. Light from a single-mode argon-ion laser was collected after scattering through water to which measured amounts of diatomaceous earth or 0.08-μm-diam polystyrene spheres were successively added. The broadening is attributed to coupling between fluctuations in particle concentration and spontaneous thermal fluctuations. Though spontaneous fluctuations exist in all pure fluids, they are very weak in water. However, the presence of the particles induces temperature gradients in the fluid, which in turn induce fluctuations in particle concentration.

  4. Combustion technology overview. [the use of broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1980-01-01

    An overview of combustor technology developments required for use of broadened property fuels in jet aircraft is presented. The intent of current investigations is to determine the extent to which fuel properties can be varied, to obtain a data base of combustion - fuel quality effects, and to determine the trade-offs associated with broadened property fuels. Subcomponents of in-service combustors such as fuel injectors and liners, as well as air distributions and stoichiometry, are being altered to determine the extent to which fuel flexibility can be extended. Finally, very advanced technology consisting of new combustor concepts is being evolved to optimize the fuel flexibility of gas turbine combustors.

  5. Communicating Science with Batiks: Broadening the Audience

    NASA Astrophysics Data System (ADS)

    Pilkey, O. H.; Fraser, M. E.

    2012-12-01

    Batik artist Fraser and coastal geologist Pilkey began their collaboration in 1994 at the Smithsonian Air and Space Museum. Since that time they have made over 25 joint presentations and produced 25 educational art exhibitions, some with as many as 60 batiks on silk, each large-scale artwork accompanied by a brief wall description of its geologic significance. Among other venues, the exhibitions have been housed at The National Academy of Sciences, The National Science Foundation, Duke University's Museum of Art, and the North Carolina Museum of Natural Sciences. They were also featured in a National Geographic TV special and have been widely picked up in cyberspace. In addition, the duo has published 2 books. One, A Celebration of the World's Barrier Islands (2003), combines color images with batiks, and the second, Global Climate Change: A Primer (2011), is illustrated exclusively with batiks. The creation of each batik is preceded by a scientist-artist conference wherein they discuss the salient features of the natural system to be depicted. The objective is to show the majesty of selected natural features or processes and at the same time to communicate the science behind them. From the artist's standpoint, this collaboration has given focus and purpose to her art and fulfills her desire to support environmental causes. The science-art alliance has been highly successful in attracting a new audience to the problems facing barrier islands and also to the broader subject of global climate change. A feared backlash from hardnosed science colleagues over "dilution" or "softening" of science has not materialized. A future collaboration with the "American Rivers" society will highlight the problems facing rivers.A batik of an iceberg showing the typical proportion of underwater versus above-water ice volumes.

  6. Measurements of Methane at 7.5 μm Broadened by Nitrogen at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Crawford, T. J.; Malathy Devi, V.; Benner, D. Chris

    2010-10-01

    Since the ν4 band system of methane (CH4) at 7.5 µm appears prominently in infrared spectra of Titan's atmosphere, we are conducting laboratory studies to examine the temperature-dependence of infrared transitions of CH4 broadened by N2 in this spectral region. Spectra of methane-nitrogen mixtures at temperatures from 79 to 297 K were obtained at 0.006 cm-1 resolution (resolving power = 2x105) using the Bruker IFS 125HR Fourier transform spectrometer at the Jet Propulsion Laboratory with new temperature-controlled gas cells designed specifically to fit in the spectrometer's sample compartment. Details of the cells and spectrometer performance [1] are described in an adjacent poster by Sung et al. A multispectrum nonlinear least squares technique [2] is used to fit selected intervals of 9 or more spectra simultaneously to obtain the temperature dependences of line broadening, pressure-induced shift and line mixing parameters. Results for 13CH4 at 80 to 297 K are discussed relative to our previous high-resolution studies of air- and self-broadened 12CH4 and 13CH4 [3-5] at terrestrial atmospheric temperatures (210 to 314 K). This research is supported by NASA's Planetary Atmospheres Program. 1. K. Sung et al., J. Mol. Spectrosc. (2010) doi:10.1016/j.jms.2010.05.004. 2. D. Chris Benner et al., J. Quant. Spectrosc. Radiat. Transfer 53 (1995) 705-721. 3. M. A. H. Smith et al., J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 639-653. 4. M. A. H. Smith et al., J. Quant. Spectrosc. Radiat. Transfer 111 (2010) 1152-1166. 5. M. A. H. Smith et al., J. Quant. Spectrosc. Radiat. Transfer (2010) submitted.

  7. Shear bands in a bulk metallic glass after large plastic deformation

    SciTech Connect

    Qu, D.D.; Wang, Y.B.; Liao, X.Z.; Shen, J.

    2012-10-23

    A transmission electron microscopy investigation is conducted to trace shear bands in a Zr{sub 53}Cu{sub 18.7}Ni{sub 12}Al{sub 16.3} bulk metallic glass after experiencing 4% plastic deformation. Shear band initiation, secondary shear band interactions, mature shear band broadening and the interactions of shear bands with shear-induced nanocrystals are captured. Results suggest that the plasticity of the bulk metallic glass is enhanced by complex shear bands and their interactions which accommodate large plastic strain and prevent catastrophic shear band propagation.

  8. Tunable diode laser measurements of formaldehyde foreign-gas broadening parameters and line strengths in the 9-11-micron region

    NASA Technical Reports Server (NTRS)

    Nadler, Shachar; Reuter, Dennis C.; Daunt, Stephen J.

    1987-01-01

    A tunable diode laser spectrometer has been used to determine pressure broadening coefficients due to collision with the foreign gases air, H2, O2, and N2 in the nu4 and nu6 bands of H2CO between 9 and 11 microns. Absolute line strengths for twenty-eight transitions have also been determined. The broadening coefficients are very similar to theoretical literature values in the cases of air, N2, and O2. The H2-H2CO values are in good agreement with earlier experimental millimeter-wave results.

  9. Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds

    NASA Astrophysics Data System (ADS)

    Burger, Miloš; Hermann, Jörg

    2016-08-01

    We present a method for the measurement of Stark broadening parameters of atomic and ionic spectral lines based on laser ablation of hydrogen containing compounds. Therefore, plume emission spectra, recorded with an echelle spectrometer coupled to a gated detector, were compared to the spectral radiance of a plasma in local thermal equilibrium. Producing material ablation with ultraviolet nanosecond laser pulses in argon at near atmospheric pressure, the recordings take advantage of the spatially uniform distributions of electron density and temperature within the ablated vapor. By changing the delay between laser pulse and detector gate, the electron density could be varied by more than two orders of magnitude while the temperature was altered in the range from 6,000 to 14,000 K. The Stark broadening parameters of transitions were derived from their simultaneous observation with the hydrogen Balmer alpha line. In addition, assuming a linear increase of Stark widths and shifts with electron density for non-hydrogenic lines, our measurements indicate a change of the Stark broadening-dependence of Hα over the considered electron density range. The presented results obtained for hydrated calcium sulfate (CaSO4ṡ2H2O) can be extended to any kind of hydrogen containing compounds.

  10. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking.

    PubMed

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J; Grillot, Frédéric

    2016-01-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301

  11. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric

    2016-06-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%.

  12. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking

    PubMed Central

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric

    2016-01-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301

  13. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  14. Temporal broadening of optical pulses propagating through non-Kolmogorov turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Lou, Yan; Tong, Shoufeng; Liu, Rencheng

    2012-03-26

    General formulations of the temporal averaged pulse intensity for optical pulses propagating through either non-Kolmogorov or Kolmogorov turbulence are deduced under the strong fluctuation conditions and the narrow-band assumption. Based on these formulations, an analytical formula for the turbulence-induced temporal half-width of spherical-wave Gaussian (SWG) pulses is derived, and the single-point, two-frequency mutual coherence function (MCF) of collimated Gaussian-beam waves in atmospheric turbulence is formulated analytically, by which the temporal averaged pulse intensity of collimated space-time Gaussian (CSTG) pulses can be calculated numerically. Calculation results show that the temporal broadening of both SWG and CSTG pulses in atmospheric turbulence depends heavily on the general spectral index of the spatial power spectrum of refractive-index fluctuations, and the temporal broadening of SWG pulses can be used to approximate that of CSTG pulses on the axis with the same turbulence parameters and propagation distances. It is also illustrated by numerical calculations that the variation in the turbulence-induced temporal half-width of CSTG pulses with the radial distance is really tiny. PMID:22453453

  15. Beyond the Lorentzian Model in Quantum Transport: Energy-Dependent Resonance Broadening in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenfei; Neaton, Jeffrey B.

    In quantum transport calculations, transmission functions of molecular junctions, as well as spectral functions of metal-organic interfaces, often feature peaks originating from molecular resonances. These resonance peaks are often assumed to be Lorentzian, with an energy-independent broadening function Γ. However, in the general case, the wide-band-limit breaks down, and the Lorentzian approximation is no longer valid. Here, we develop a new energy-dependent broadening function Γ (E) , based on diagonalization of non-Hermitian matrices within a non-equilbrium Green's function (NEGF) formalism. As defined, Γ (E) can describe resonances of non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively; and it is particularly useful in understanding transport properties in terms of molecular orbitals in asymmetric junctions. We compute this quantity via an ab initio NEGF approach based on density functional theory and illustrate its utility with several junctions of experimental relevance, including recent work on rectification in Au-graphite junctions. This work is supported by the DOE, and computational resources are provided by NERSC.

  16. Origins of extreme broadening mechanisms in near-edge x-ray spectra of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Elam, W. T.; Denlinger, J. D.

    2014-11-01

    We demonstrate the observation of many-body lifetime effects in valence-band x-ray emission. A comparison of the N K α emission of crystalline ammonium nitrate to molecular-orbital calculations revealed an unexpected, extreme broadening of the NO σ recombination—so extensively as to virtually disappear. GW calculations establish that this disappearance is due to a large imaginary component of the self-energy associated with the NO σ orbitals. Building upon density-functional theory, we have calculated radiative transitions from the nitrogen 1 s level of ammonium nitrate and ammonium chloride using a Bethe-Salpeter method to include electron-hole interactions. The absorption and emission spectra of both crystals evince large, orbital-dependent sensitivity to molecular dynamics. We demonstrate that many-body effects as well as thermal and zero-point motion are vital for understanding observed spectra. A computational approach using average atomic positions and uniform broadening to account for lifetime and phonon effects is unsatisfactory.

  17. Community Colleges Broadening Horizons through Service Learning, 2006-2009

    ERIC Educational Resources Information Center

    Robinson, Gail

    2007-01-01

    This brief introduces "Community Colleges Broadening Horizons through Service Learning," the American Association of Community Colleges' (AACC's) fifth national Learn and Serve America grant project and describes its grantee college programs. The goals of this grant project are to build on established foundations to integrate service learning…

  18. A Distributed Model for Teacher Mentoring: Broadening the Learning Community

    ERIC Educational Resources Information Center

    Frykholm, Jeffrey

    2005-01-01

    This article examines an innovative way of conceptualizing mentoring and develops the notion of a "distributed" model of mentoring, backed by snippets from professional development program that has sought to use the context of community to broaden the definition (and success) of mentoring for mathematical teachers. The author proposes a way of…

  19. The STARS Alliance: Viable Strategies for Broadening Participation in Computing

    ERIC Educational Resources Information Center

    Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey

    2011-01-01

    The Students and Technology in Academia, Research, and Service (STARS) Alliance is a nationally-connected system of regional partnerships among higher education, K-12 schools, industry and the community with a mission to broaden the participation of women, under-represented minorities and persons with disabilities in computing (BPC). Each regional…

  20. Quality's Higher Education Dividends: Broadened Custodianship and Global Public Scholarship

    ERIC Educational Resources Information Center

    Jacobs, Gerrie J.

    2010-01-01

    This paper speculates on the possible contribution of the quality movement to higher education and the perceived dividends received from this, in general, over the past two decades but also, more specifically, with reference to the author's institution in South Africa. The first major quality contribution is a gradual broadening of higher…

  1. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  2. Extending, Broadening and Rethinking Existing Research on Transfer of Training

    ERIC Educational Resources Information Center

    Volet, Simone

    2013-01-01

    The aim of this Special Issue was to generate a new integrated agenda for research on transfer of training. It brought together scholars from diverse perspectives and invited them to strive toward synergy. This article examines how this collection of articles, as well as other bodies of literature, can help extend, broaden and rethink current…

  3. The relativistic Doppler broadening of the line absorption profile

    NASA Astrophysics Data System (ADS)

    Kichenassamy, S.; Krikorian, R.; Nikogosian, A.

    1982-06-01

    The classical results of Doppler broadening of the line absorption profile are generalized to a relativistic gas in thermal equilibrium by taking into account the relativistic variance of the volume absorption coefficients of the gas, as derived by L. H. Thomas. This variance produces a small correction, even in the non-relativistic approximation.

  4. Observation of Doppler broadening in β -delayed proton- γ decay

    DOE PAGESBeta

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Pérez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; et al

    2015-09-14

    Background: The Doppler broadening of gamma-ray peaks is due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using beta-delayed proton emission or applied to a recoil heavier than A = 10. Purpose: To test and apply this Doppler broadening method using gamma-ray peaks from the P-26(beta p gamma)Al-25 decay sequence. Methods: A fast beam of P-26 was implanted into a planar Ge detector, which was used as a P-26 beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays frommore » the P-26(beta p gamma)Al-25 decay sequence. Results: Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. Moreover, the Doppler broadening analysis method was verified using the 1613-keV gamma-ray line for which the proton energies were previously known. The 1776-keV gamma ray de-exciting the 2720 keV Al-25 level was observed in P-26(beta p gamma)Al-25 decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a Si-26 excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV for the proton-emitting level. Conclusions: Finally, the Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.« less

  5. A Multispectrum Analysis Of Carbon Dioxide Bands In The 6280 To 6390 Cm-1 Including Line Mixing And Speed Dependence

    NASA Astrophysics Data System (ADS)

    Venkataraman, Malathy D.; Benner, D. C.; Brown, L. R.; Miller, C. E.; Toth, R. A.

    2006-09-01

    To support atmospheric remote sensing studies and obtain total column CO2 measurements with a precision of 0.3%, accurate values of ro-vibrational constants, vibrational band intensity and Herman-Wallis coefficients, self- and air-broadening and self- and air-induced pressure-shift coefficients have been measured for the CO2 bands in the 6280 to 6380 cm-1 spectral region from high-resolution (0.01-cm-1) long-path absorption spectra. In addition, line mixing coefficients in the P- and R-branches have also been determined using the off-diagonal relaxation matrix elements for both self- and air-broadening. A multispectrum nonlinear least squares fitting technique modified to include line mixing and speed-dependent line shape and the capability to constrain various spectral line parameters (e.g. positions and intensities) has been applied in the analysis to maximize the accuracy of the retrieved parameters. In addition to the 2201←0000 combination band, rotational constants and intensity parameters were measured for five additional bands that appeared in the same spectral region. The data used in this study were recorded at room temperature with the McMath-Pierce Fourier transform spectrometer (FTS) located at the National Solar Observatory on Kitt Peak. Where appropriate, present results are compared with previous measurements reported in the literature. Part of the research described in this paper was performed at the Jet Propulsion laboratory, California Institute of Technology under contracts and cooperative agreements with the National Aeronautics and Space Administration. The research conducted at the College of William and Mary is supported by the National Science Foundation under Grant No. ATM-0338475.

  6. A Global Fitting Approach For Doppler Broadening Thermometry

    NASA Astrophysics Data System (ADS)

    Amodio, Pasquale; Moretti, Luigi; De Vizia, Maria Domenica; Gianfrani, Livio

    2014-06-01

    Very recently, a spectroscopic determination of the Boltzmann constant, kB, has been performed at the Second University of Naples by means of a rather sophisticated implementation of Doppler Broadening Thermometry (DBT)1. Performed on a 18O-enriched water sample, at a wavelength of 1.39 µm, the experiment has provided a value for kB with a combined uncertainty of 24 parts over 106, which is the best result obtained so far, by using an optical method. In the spectral analysis procedure, the partially correlated speed-dependent hard-collision (pC-SDHC) model was adopted. The uncertainty budget has clearly revealed that the major contributions come from the statistical uncertainty (type A) and from the uncertainty associated to the line-shape model (type B)2. In the present work, we present the first results of a theoretical and numerical work aimed at reducing these uncertainty components. It is well known that molecular line shapes exhibit clear deviations from the time honoured Voigt profile. Even in the case of a well isolated spectral line, under the influence of binary collisions, in the Doppler regime, the shape can be quite complicated by the joint occurrence of velocity-change collisions and speed-dependent effects. The partially correlated speed-dependent Keilson-Storer profile (pC-SDKS) has been recently proposed as a very realistic model, capable of reproducing very accurately the absorption spectra for self-colliding water molecules, in the near infrared3. Unfortunately, the model is so complex that it cannot be implemented into a fitting routine for the analysis of experimental spectra. Therefore, we have developed a MATLAB code to simulate a variety of H218O spectra in thermodynamic conditions identical to the one of our DBT experiment, using the pC-SDKS model. The numerical calculations to determine such a profile have a very large computational cost, resulting from a very sophisticated iterative procedure. Hence, the numerically simulated spectra

  7. A Multispectrum Analysis of the 2v2 Spectral Region of H12C14N: Intensities, Broadening and Pressure-Shift Coefficients

    SciTech Connect

    Devi, V M.; Benner, D C.; Smith, M.A.H.; Rinsland, Curtis P.; Sharpe, Steven W.; Sams, Robert L.

    2004-09-01

    High-resolution (0.005 cm-1) infrared absorption spectra of HCN in the 2v2 band region near 1411 cm-1 have been recorded at room temperature using the Bruker IFS120HR Fourier transform spectrometer located at Pacific Northwest National Laboratory. Four spectra of high-purity (99.8%) HCN together with three spectra of lean mixtures ({approx}3%) of HCN in dry air were simultaneously fit using a multispectrum non-linear least-squares procedure. The analysis yielded room temperature values for absolute intensities, self- and air-broadening coefficients, and self- and air-broadening coefficients for numerous lines in the 2v2 band of H13C14N, were also determined. Since there are no previous measurements of broadening and shift parameters reported in the 2v2 band, our results are compared with values recently determined in the v1 band of H13C14N and with current HITRAN values.

  8. Calculation of pressure-broadened linewidths of SO2 and NO2.

    NASA Technical Reports Server (NTRS)

    Tejwani, G. D. T.

    1972-01-01

    The Anderson-Tsao-Curnutte theory of line broadening (1949, 1962) is applied to calculate the self-broadened and N2- and O2-broadened linewidths of SO2 and NO2. Computed linewidth values are in good agreement with available experimental results and with calculations by Murphy and Boggs (1967, 1969) on four self-broadened and one nitrogen-broadened lines. Air-broadened linewidths are also calculated for SO2 at 200, 250 and 300 K. The results are considered to be useful for predicting theoretical spectra of SO2 under atmospheric conditions.

  9. Solar wind ion distribution broadening by waves and transients

    NASA Astrophysics Data System (ADS)

    Stevens, M. L.; Kasper, J. C.; Case, A. W.; Szabo, A.; Koval, A.; Biesecker, D. A.

    2015-12-01

    Thermal plasma spectra in the solar wind are subject to peak-broadening by plasma waves and small-scale structures at effective frequencies faster than the measurement rate. Under strong turbulence conditions, the non-thermal contribution to proton peak broadening in many commonly-used solar wind measurements becomes comparable to that of the kinetic temperature. The DSCOVR spacecraft, which arrived at the first Earth-Sun Lagrange point in June 2015, bears the PLASMAG Faraday Cup Experiment. That instrument is identical in most respects to the Wind SWE Faraday Cup instrument that has been measuring 92-second proton spectra in the solar wind for the last twenty years. In this paper, the effective proton VDF peak width is compared at 92-second and 1-second resolution as a function of the ambient magnetic fluctuation amplitude on relevant timescales. This work will enable a more accurate understanding of the energy partition in the solar wind plasma.

  10. Positive emotions and the social broadening effects of Barack Obama.

    PubMed

    Ong, Anthony D; Burrow, Anthony L; Fuller-Rowell, Thomas E

    2012-10-01

    Past experiments have demonstrated that the cognitive broadening produced by positive emotions may extend to social contexts. Building on this evidence, we hypothesized that positive emotions triggered by thinking about Barack Obama may broaden and expand people's sense of self to include others. Results from an expressive-writing study demonstrated that African American college students prompted to write about Obama immediately prior to and after the 2008 presidential election used more plural self-references, fewer other-references, and more social references. Mediation analyses revealed that writing about Obama increased positive emotions, which in turn increased the likelihood that people thought in terms of more-inclusive superordinate categories (we and us rather than they and them). Implications of these findings for the role of positive emotions in perspective-taking and intergroup relations are considered. PMID:22905966

  11. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    PubMed Central

    Schmied, Roland; Fowlkes, Jason D; Winkler, Robert; Rack, Phillip D

    2015-01-01

    Summary The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. Moreover, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution. PMID:25821687

  12. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  13. Diode laser measurements of line strengths and widths in the 4.5-micron bands of N2O

    NASA Technical Reports Server (NTRS)

    Lowenstein, M.; Podolske, J. R.; Blackburn, T. E.; Varanasi, P.

    1986-01-01

    Line-strength measurements in the N2O nu3-fundamental region using a tunable diode-laser spectrometer. From these measurements and the Herman-Wallis factor determined by Boissy et al. (1975), the nu-3-fundamental band strength is found to be 1203 + or - 22 per sq cm atm at 297 K. Line-broadening parameters for two nu-3-fundamental lines were determined using nitrogen (N2) as the broadening gas. Measured strengths and N2 line-broadening parameters for several hot-band lines are also presented.

  14. Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo

    2016-04-01

    In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.

  15. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening.

    PubMed

    Shao, Linbo; Jiang, Xue-Feng; Yu, Xiao-Chong; Li, Bei-Bei; Clements, William R; Vollmer, Frank; Wang, Wei; Xiao, Yun-Feng; Gong, Qihuang

    2013-10-18

    A new label-free sensing mechanism is demonstrated experimentally by monitoring the whispering-gallery mode broadening in microcavities. It is immune to both noise from the probe laser and environmental disturbances, and is able to remove the strict requirement for ultra-high-Q mode cavities for sensitive nanoparticle detection. This ability to sense nanoscale objects and biological analytes is particularly crucial for wide applications. PMID:24303524

  16. Light shift and light broadening in the Rb-87 maser.

    NASA Technical Reports Server (NTRS)

    Busca, G.; Tetu, M.; Vanier, J.

    1973-01-01

    A description of measurements of light-shift and light-broadening parameters for an Rb-87 maser operating between the field independent levels is reported. A parallel study of the spectral profile of the D1 pumping line is described. Comparison between the experimental results and theoretical calculations, taking into account the spatial inhomogeneity of the pumping light in the absorption cell, is presented.

  17. Hydrogen Stark broadening by different kinds of model microfields

    NASA Astrophysics Data System (ADS)

    Seidel, J.

    1980-07-01

    A new model microfield is defined (the theta process) which in conjunction with the kangaroo process, is used to demonstrate the effects of different model microfields on hydrogen line profiles. The differences in the statistical features of the models give an estimate of the uncertainties associated with the method of model microfields. Stark broadening of hydrogen Lyman lines by either electrons or ions is investigated specifically.

  18. Jet broadening in unstable non-Abelian plasmas

    SciTech Connect

    Dumitru, Adrian; Schenke, Bjoern; Strickland, Michael; Nara, Yasushi

    2008-08-15

    We perform numerical simulations of the SU(2) Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. Using this technique we calculate the momentum-space broadening of high-energy jets in real time for both locally isotropic and anisotropic plasmas. In both cases we introduce a separation scale that separates hard and soft interactions and demonstrate that our results for jet broadening are independent of the precise separation scale chosen. For an isotropic plasma this allows us to calculate the jet transport coefficient q-circumflex including hard and soft nonequilibrium dynamics. For an anisotropic plasma the jet transport coefficient becomes a tensor with q-circumflex{sub L}{ne}q-circumflex{sub perpendicular}. We find that for weakly coupled anisotropic plasmas the fields develop unstable modes, forming configurations where B{sub perpendicular}>E{sub perpendicular} and E{sub z}>B{sub z}, which lead to q-circumflex{sub L}>q-circumflex{sub perpendicular}. We study whether the effect is strong enough to explain the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity, {delta}{eta}, than in azimuth, {delta}{phi}.

  19. Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman, and ab Initio Methods: Band Strengths for Atmospheric Measurements.

    PubMed

    Lindenmaier, Rodica; Tipton, Nicole; Sams, Robert L; Brauer, Carolyn S; Blake, Thomas A; Williams, Stephen D; Johnson, Timothy J

    2016-08-01

    Hydroxyacetone (acetol) is a simple organic molecule of interest in both the astrophysical and atmospheric communities. It has recently been observed in biomass burning events and is a known degradation product of isoprene oxidation. However, its vibrational assignment has never been fully completed, and few quantitative data are available for its detection via infrared spectroscopy. Our recent acquisition of both the pressure-broadened gas-phase data and the far-IR spectra now allow for unambiguous assignment of several (new) bands. In particular, the observed C-type bands of several fundamentals (particularly in the far-infrared) and a few combination bands demonstrate that the monomer is in a planar (Cs) conformation, at least a majority of the time. As suggested by other researchers, the monomer is a cis-cis conformer stabilized by an intramolecular O-H···O═C hydrogen bond forming a five-membered planar ring structure. Band assignments in the Cs point group are justified (at least for a good fraction of the molecules in the ensemble) by the presence of the C-type bands. The results and band assignments are well confirmed by both ab initio MP2-ccpvtz calculations and GAMESS (B3LYP) theoretical calculations. In addition, using vetted methods for quantitative measurements, we report the first IR absorption band strengths of acetol (also in electronic format) that can be used for atmospheric monitoring and other applications. PMID:27397573

  20. Spectral broadening and electron-photon coupling in III-V infrared detectors of low dimensional quantum confined system

    NASA Astrophysics Data System (ADS)

    Joy, Soumitra R.; Mohammedy, Farseem M.

    2016-05-01

    Present work explores the mid-IR photodetection mechanism in III-V quantum confined system in twofold ways. Firstly, it models the extent of spectral linewidth broadening of photo-detector. Secondly, it investigates whether a strong perturbation of light can modulate the electronic bandstructure. Photo-absorption mechanism in the detector correlated to reduced carrier lifetime in ground state leading to homogeneous spectral widening is calculated. Besides, contribution of non-uniform size and composition of quantum dots towards spectral broadening is modeled in order to get the envelop of inhomogeneously broadened photocurrent spectrum. Our model generates photocurrent spectrum with 1.4 μm broadening centered at 3.5 μm at 77 K for a DWELL-IP, which agrees with the experimental result. The calculated photocurrent spectral width of 1.3 μm for GaAs/AlGaAs Quantum Well (QW) centered at 8.31 μm at 77 K also supports experimental data. In addition, our calculation reveals the emergence of a broad resonant peak in the spectrum of QW-IP in far infrared region (20-50 μm) as the photon volume density increases up to 0.1% of carrier density inside the active region. We introduce a hybrid density-of-states for strongly coupled electron-photon system to explain both mid and far IR peak.

  1. Band anticrossing in dilute nitrides

    SciTech Connect

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  2. TDRS Ku band gateway

    NASA Technical Reports Server (NTRS)

    Collins, Cynthia; Lecha, Javier; Principe, Caleb M.; Ross, Douglas

    1987-01-01

    The Wideband Transport Frame Formatter (WTFF) is the tracking and data relay satellite (TDRS) ku-band return link gateway. The WTFF system is a multiplexing device developed to process and downlink the high rate data generated by a wide variety of users. The WTFF is designed to frame and format high data rate user channels into transport frames and multiplex according to a predefined schedule into two bit streams that are compatible with TDRS Ku I and Q band service. The combined data rate will be 300 Mbps. The WTFF will service up to eight input channels generating data in the range of 10 to 150 Mbps. In addition to these input channels, audio data will be accepted by the WTFF system and inserted in the downlink. A second function of the WTFF is to provide telecommunication coding as assigned to each virtual channel to ensure a given quality of service.

  3. Latitudinal Variation of Solar Wind Speed and Mass Flux in the Acceleration Region of the Solar Wind during Solar Minimum Inferred from Spectral Broadening measurements

    NASA Technical Reports Server (NTRS)

    Woo, R.; Goldstein, R.

    1993-01-01

    In this paper, we use an aggregate of S-band 2.3 GHz (13 cm) spectral broadening observations conducted during solar minimum conditions by the Mariner 4, Pioneer 10, Mariner 10, Helios 1 & 2 and Viking spacecraft to infer the first measurements of the latitudinal variation of solar wind speed and mass flux in the acceleration region of the solar wind at 3-8 R(sub o).

  4. Broadening of CO2 lines in the 4.3 μm region by H2O

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Landsheere, X.; Pangui, E.; Huet, F.; Hartmann, J.-M.; Tran, H.

    2016-08-01

    Transmission spectra of CO2 highly diluted in water vapor have been recorded at 50 and 95 °C for four pressures between 0.02 and 0.1 atm using a high resolution Fourier Transform spectrometer. The collisional (Lorentz) widths of many lines of the ν3 band (and of some of the ν3 + ν2 - ν2 hot band) have been retrieved from each spectrum through fits using Voigt line shapes. Our result are about 4% lower than the values recommended in a previous study but they confirm the relative variations of the line broadening on the rotational quantum numbers. We also provide the first determination of H2O-induced line shifts of CO2 lines.

  5. Origins of the broadening in 1.5 μm emission of Er3+-doped glasses

    NASA Astrophysics Data System (ADS)

    Dousti, M. Reza

    2015-11-01

    The broadband emission (4I13/2 → 4I15/2) of the Er3+-doped glasses has been always an attractive topic of research due to its explicit role in the progress of optical fibers science and technology. Few characteristics, such as the full-width at half-maximum, shape and excited state lifetime of this band are determinant parameters to obtain practically appropriate materials for high-tech applications. In this work, the broadening of the latter near-infrared emission of erbium ions, centered around 1.53 μm in C-band region, is briefly discussed as a function of the host glass, glass modifiers, temperature and thickness of the sample, excitation power and energy, as well as the concentration of the dopant.

  6. Broad-Band Spectroscopy of Hercules X-1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Asami, Fumi; Enoto, Teruaki; Iwakiri, Wataru; Yamada, Shin'ya; Tamagawa, Toru; Mihara, Tatehiro; Nagase, Fumiaki

    2014-01-01

    Hercules X-1 was observed with Suzaku in the main-on state from 2005 to 2010. The 0.4- 100 keV wide-band spectra obtained in four observations showed a broad hump around 4-9 keV in addition to narrow Fe lines at 6.4 and 6.7 keV. The hump was seen in all the four observations regardless of the selection of the continuum models. Thus it is considered a stable and intrinsic spectral feature in Her X-1. The broad hump lacked a sharp structure like an absorption edge. Thus it was represented by two different spectral models: an ionized partial covering or an additional broad line at 6.5 keV. The former required a persistently existing ionized absorber, whose origin was unclear. In the latter case, the Gaussian fitting of the 6.5-keV line needs a large width of sigma = 1.0-1.5 keV and a large equivalent width of 400-900 eV. If the broad line originates from Fe fluorescence of accreting matter, its large width may be explained by the Doppler broadening in the accretion flow. However, the large equivalent width may be inconsistent with a simple accretion geometry.

  7. Spectral broadening and phase scintillation measurements using interplanetary spacecraft radio links during the peak of solar cycle 23

    NASA Astrophysics Data System (ADS)

    Morabito, David D.

    2009-12-01

    When an interplanetary spacecraft is in a solar superior conjunction configuration, the received radio signals are degraded by several effects that generally increase in magnitude as the angle between the spacecraft and the Sun (Sun-Earth-Probe or SEP angle) decreases as viewed by a terrestrial tracking station. During periods of quiescent solar activity, phase scintillation and spectral broadening follow well-defined trends as a function of solar impact distance (SEP angle) and link frequency. During active solar periods, the magnitudes of these effects increase above background levels predicted by the quiet period models. Several such events were observed during the solar superior conjunction of the Cassini spacecraft during the peak of solar cycle 23 in May 2000. Pronounced features in the spectral broadening data above the quiet background appear to be associated with Coronal Mass Ejections (CMEs), and last for extended periods of time ranging from ˜30 min to ˜4 h. These features are coincident with periods of increased activity seen in the region of the spacecraft signal source on coronal white light images, and tend to be related or matched with EIT flare events and possibly long-duration flare events seen in satellite X-ray data. Several such features were captured in the May 2000 Cassini solar conjunction phase scintillation and spectral broadening data at X band (8.4 GHz) and Ka band (32 GHz) radio frequencies, and are presented here. Such characterizations are beneficial in understanding the impact of such events in future interplanetary communication scenarios during solar conjunction periods.

  8. Nonlinear Bloch waves in metallic photonic band-gap filaments

    SciTech Connect

    Kaso, Artan; John, Sajeev

    2007-11-15

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell's equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

  9. Numerical computation of doppler-broadening in the resonance domain

    SciTech Connect

    Sanchez, R.

    2013-07-01

    We have implemented an accurate and fast calculation of the Doppler-broadened kernel PT(E {yields} E') for neutron elastic scattering based on a gas model. An exponential cutoff which accounts for the asymptotic behavior of the error function helps limit the range of integration while eliminating difference effects. This allows for calculating a kernel library for {sup 238}U over a very fine energy grid covering the resonance range in only a few hours in a laptop. We give an example showing the impact of {sup 238}U elastic up-scattering on the values of self shielded cross sections. (authors)

  10. Selective optical pumping process in Doppler-broadened atoms

    SciTech Connect

    Liu Shuangqiang; Zhang Yundong; Fan Daikun; Wu Hao; Yuan Ping

    2011-04-10

    By solving the optical Bloch equations with the rate-equation approximation, we calculate the time dependence of the magnetic sublevel populations of Doppler-broadened atoms. With an increase of the left-circularly polarized pump intensity, the population fraction of a certain sublevel of the excited state almost reaches 0.3, resulting in anisotropy in the excited state, which is important to the optical filter based on circular birefringence and dichroism. Furthermore, numerical results show that the real saturation pump intensity for the moving atoms is much larger than that for the resting atoms.

  11. Density measurements using coherence imaging spectroscopy based on Stark broadening

    SciTech Connect

    Lischtschenko, O.; Bystrov, K.; De Temmerman, G.; Howard, J.; Jaspers, R. J. E.; Koenig, R.

    2010-10-15

    A coherence imaging camera has been set up at Pilot-PSI. The system is to be used for imaging the plasma density through the Stark effect broadening of the H{sub {gamma}} line. Local density values are then obtained by the Abel inversion of the measured interferometric fringe contrast. This report will present the instrument setup and proof-of-principle demonstration. The inverted spatial electron density profiles obtained near the cascaded arc source of Pilot-PSI in discharges with axial magnetic field of B=0.4 T are compared with an independent measurement of electron density by Thomson scattering and good agreement is found.

  12. Strategies for broadening public involvement in space developments

    NASA Technical Reports Server (NTRS)

    Harris, Philip R.

    1992-01-01

    There is widespread public interest in and goodwill toward the space program. For NASA's plans for the next 25 years to be achieved, this public reservoir of support needs to be tapped and channeled. NASA endeavors have to reach out beyond the scientific, technological, and aerospace communities to foster wider participation in space exploration and exploitation. To broaden NASA support and spread out the financing of space activities, recommendations for consideration are offered in the area of economics, political, institutional, international, and managerial areas.

  13. Commercial observation satellites: broadening the sources of geospatial data

    NASA Astrophysics Data System (ADS)

    Baker, John C.; O'Connell, Kevin M.; Venzor, Jose A.

    2002-09-01

    Commercial observation satellites promise to broaden substantially the sources of imagery data available to potential users of geospatial data and related information products. We examine the new trend toward private firms acquiring and operating high-resolution imagery satellites. These commercial observation satellites build on the substantial experience in Earth observation operations provided by government-owned imaging satellites for civilian and military purposes. However, commercial satellites will require governments and companies to reconcile public and private interests in allowing broad public access to high-resolution satellite imagery data without creating national security risks or placing the private firms at a disadvantage compared with other providers of geospatial data.

  14. Curves of growth for van der Waals broadened spectral lines

    NASA Technical Reports Server (NTRS)

    Park, C.

    1980-01-01

    Curves of growth are evaluated for a spectral line broadened by the van der Waals interactions during collisions. The growth of the equivalent widths of such lines is shown to be dependent on the product of the perturber density and the 6/10 power of the van der Waals potential coefficient. When the parameter is small, the widths grow as the 1/2 power of the optical depth as they do for the Voigt profile: but when the parameter is large, they grow as 2/3 power and, hence, faster than the Voigt profile. An approximate analytical expression for the computed growth characteristics is given.

  15. Line-Shape Transition of Collision Broadened Lines

    NASA Astrophysics Data System (ADS)

    Harde, H.; Katzenellenbogen, N.; Grischkowsky, D.

    1995-02-01

    Using the newly developed technique of THz time-domain spectroscopy, we have measured the far-wing absorption line profile of the ensemble of collision broadened ground state rotational lines of methylchloride vapor out to more than 200 linewidths from resonance, corresponding to frequency offsets as much as 5× the resonant frequency. On these far wings the measured absorption is approximately an order of magnitude less than that predicted by the van Vleck-Weisskopf theory. Our observations show that at higher frequencies a transition occurs from the regime of the van Vleck-Weisskopf theory to the regime of the Lorentz theory.

  16. Pressure broadening of the ((dt. mu. )dee)* formation resonances

    SciTech Connect

    Cohen, J.S.; Leon, M.; Padial, N.T.

    1988-12-27

    The treatment of ((dt..mu..)dee)* formation at high densities as a pressure broadening process is discussed. Cross sections for collisions of the complex (dt..mu..)dee, and of the D/sub 2/ molecule from which it is formed, with the bath molecules have been accurately calculated. These cross sections are used to calculate the collisional width in three variations of the impact approximation that have been proposed for this problem. In general, the quasistatic approximation is shown to satisfy the usual conditions of muon-catalyzed fusion better than does the impact approximation. A preliminary rough treatment is presented to illustrate the quasistatic approximation.

  17. Broadening sources of Diginity and Affirmation in Work and Relationship

    PubMed Central

    Byars-Winston, Angela

    2012-01-01

    This article builds on assertions in Richardson’s (2012, this issue) Major Contribution on counseling for work and relationship. In this reaction, I expand on the relevance and potential of the counseling for work and relationship perspective to enrich the field of counseling psychology. My comments focus on three considerations to further extend the cultural relevance of Richardson’s work and relationship perspective: (1) broadening sources of dignity, (2) centering knowledge of marginalized communities, and (3) promoting psychologists’ critical consciousness. Richardson’s perspective holds great promise for being a guiding heuristic to inform counseling psychology research, theory, and practice. PMID:22563131

  18. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  19. A Simple Band for Gastric Banding.

    PubMed

    Broadbent

    1993-08-01

    The author has noted that flexible gastric bands have occasionally stenosed the gastric stoma or allowed it to dilate. A band was developed using a soft outer silicone rubber tube over a holding mechanism made out of a nylon cable tie passed within the silicone tube. This simple, easily applied band is rigid, resisting scar contracture and dilatation. PMID:10757939

  20. Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Cotting, J. E.; Hoskins, L. C.; Levan, M. E.

    1982-08-01

    The resonance Raman excitation profiles for the ν1, ν2, and ν3 vibrations of lycopene in ethyl alcohol, toluene, and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found, thus emphasizing the need to interpret resonance Raman data using a multimode vibrational model. The results indicate that the major broadening mechanism is homogeneous broadening, with about a 25% contribution from inhomogeneous broadening. The excitation profiles in carbon disulfide gave the largest inhomogeneous broadening.

  1. Cross Functional Career Navigation: The Way to Broaden Your Career Options

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Todd

    2000-03-01

    In today's rapid paced global environment, broadening career options for career development depends on successful cross-functional career navigation. For scientists and engineers, this means developing a diversity of skills in addition to a strong technical foundation. Fortunately, companies use cross-functional teams as one of the key tools for rapidly developing and commercializing products and services. Participation on these teams carries with it the additional benefit of allowing an individual to develop new skills, and to gain valuable expertise in areas that are critical to the growth of their company, their industry and, most importantly, their career. This talk will outline some of the important cross functional skills that can propel your career ahead and ways in which you can take charge of your career mapping and enhance your value and employability.

  2. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  3. Broadening Participation of Women and Underrepresented Minorities in STEM through a Hybrid Online Transfer Program.

    PubMed

    Drew, Jennifer C; Galindo-Gonzalez, Sebastian; Ardissone, Alexandria N; Triplett, Eric W

    2016-01-01

    The Microbiology and Cell Science (MCS) Department at the University of Florida (UF) developed a new model of a 2 + 2 program that uses a hybrid online approach to bring its science, technology, engineering, and mathematics (STEM) curriculum to students. In this paradigm, 2-year graduates transfer as online students into the Distance Education in MCS (DE MCS) bachelor of science program. The program has broadened access to STEM with a steadily increasing enrollment that does not draw students away from existing on-campus programs. Notably, half of the DE MCS students are from underrepresented minority (URM) backgrounds and two-thirds are women, which represents a greater level of diversity than the corresponding on-campus cohort and the entire university. Additionally, the DE MCS cohort has comparable retention and academic performance compared with the on-campus transfer cohort. Of those who have earned a BS through the DE MCS program, 71% are women and 61% are URM. Overall, these data demonstrate that the hybrid online approach is successful in increasing diversity and provides another viable route in the myriad of STEM pathways. As the first of its kind in a STEM field, the DE MCS program serves as a model for programs seeking to broaden their reach. PMID:27587859

  4. Broadening Participation of Women and Underrepresented Minorities in STEM through a Hybrid Online Transfer Program

    PubMed Central

    Drew, Jennifer C.; Galindo-Gonzalez, Sebastian; Ardissone, Alexandria N.; Triplett, Eric W.

    2016-01-01

    The Microbiology and Cell Science (MCS) Department at the University of Florida (UF) developed a new model of a 2 + 2 program that uses a hybrid online approach to bring its science, technology, engineering, and mathematics (STEM) curriculum to students. In this paradigm, 2-year graduates transfer as online students into the Distance Education in MCS (DE MCS) bachelor of science program. The program has broadened access to STEM with a steadily increasing enrollment that does not draw students away from existing on-campus programs. Notably, half of the DE MCS students are from underrepresented minority (URM) backgrounds and two-thirds are women, which represents a greater level of diversity than the corresponding on-campus cohort and the entire university. Additionally, the DE MCS cohort has comparable retention and academic performance compared with the on-campus transfer cohort. Of those who have earned a BS through the DE MCS program, 71% are women and 61% are URM. Overall, these data demonstrate that the hybrid online approach is successful in increasing diversity and provides another viable route in the myriad of STEM pathways. As the first of its kind in a STEM field, the DE MCS program serves as a model for programs seeking to broaden their reach. PMID:27587859

  5. Ultrafast laser produced zinc plasma: Stark broadening of emission lines in nitrogen ambient

    NASA Astrophysics Data System (ADS)

    Rao, Kavya H.; Smijesh, N.; Nivas, Jijil JJ; Philip, Reji

    2016-04-01

    The effect of ambient pressure on Stark broadening of emission lines from neutrals and ions in an ultrafast laser (100 fs, 800 nm) produced zinc plasma is investigated. Measured spectra reveal that the full width at half maximum (δλ) of neutral lines remains unchanged in the pressure range of 10-6 to 10-1 Torr, shows an even fluctuation in the pressure range of 0.1 to 100 Torr, and then increases with pressure. On the other hand, δλ of ion lines is nearly a constant from 10-6 to 10-3 Torr, and then increases consistently with ambient pressure. A line narrowing of neutral emissions observed in the region of 1 to 100 Torr can be attributed to larger plasma temperatures, whereas the consistent increase in δλ with pressure seen for ion emission results from the prevalence of additional broadening mechanisms related to Coulomb interactions, ion-ion interaction, and Debye shielding. An accurate knowledge of emission line width is crucial for unambiguously calculating number density values for any given ambient pressure. Moreover, it can be relevant for the design of narrow line width, bright plasma sources for various applications.

  6. Expansion and broadening of coronal loop transients - A theoretical explanation

    NASA Technical Reports Server (NTRS)

    Mouschovias, T. CH.; Poland, A. I.

    1978-01-01

    Consequences are examined of the assumption that an observed coronal loop transient is a twisted rope of magnetic-field lines expanding and broadening in the background coronal plasma and magnetic field. It is shown that the expansion can be accounted for by the azimuthal component of the field; the observed broadening of the loop as it moves outward can be accounted for by the longitudinal component of the field. In order to have a net outward force and at the same time avoid a classical pinch (sausage) instability, the two components of the field must satisfy a certain inequality. It is predicted that, as the loop rises, the width (h) of its top portion should vary proportionally with distance (R) from the sun's center. This is in good agreement with measurements that show h is proportional to the 0.8 power of R. The prediction that the radius of curvature of the top portion of the loop should be proportional to R differs from the measured variation. The difference could be accounted for by a drag due to the background coronal field that flattens the loop's top.

  7. Improving Program Design and Assessment with Broadening Participation Resources

    NASA Astrophysics Data System (ADS)

    Siegfried, D.; Johnson, A.; Thomas, S. H.; Fauver, A.; Detrick, L.

    2012-12-01

    Many theoretical and research-based approaches suggest how to best use mentoring to enhance an undergraduate research program. The Institute for Broadening Participation's Pathways to Engineering and Pathways to Ocean Sciences projects synthesized a set of mentoring studies, theoretical sources, and other texts pertinent to undergraduate research program design into a suite of practical tools that includes an online mentoring manual, an online reference library of mentoring and diversity literature, and practical guides such as Using Social Media to Build Diversity in Your REU. The overall goal is to provide easy-to-access resources that can assist faculty and program directors in implementing or honing the mentoring elements in their research programs for undergraduates. IBP's Online Mentoring Manual addresses common themes, such as modeling, student self-efficacy, career development, retention and evaluation. The Online Diversity Reference Library provides a comprehensive, annotated selection of key policy documents, research studies, intervention studies, and other texts on broadening participation in science, technology, engineering and mathematics. IBP's suite of tools provides the theoretical underpinnings and research findings that can help leaders in education integrate site-appropriate mentoring elements into their educational programs. Program directors and faculty from a variety of program types and disciplines have benefitted from using the Manual and other resources. IBP continues the work of translating and synthesizing theory to practice and welcomes your participation and partnership in that effort.

  8. Positive mood broadens visual attention to positive stimuli

    PubMed Central

    Wadlinger, Heather A.; Isaacowitz, Derek M.

    2010-01-01

    In an attempt to investigate the impact of positive emotions on visual attention within the context of Fredrickson's (1998) broaden-and-build model, eye tracking was used in two studies to measure visual attentional preferences of college students (n=58, n=26) to emotional pictures. Half of each sample experienced induced positive mood immediately before viewing slides of three similarly-valenced images, in varying central-peripheral arrays. Attentional breadth was determined by measuring the percentage viewing time to peripheral images as well as by the number of visual saccades participants made per slide. Consistent with Fredrickson's theory, the first study showed that individuals induced into positive mood fixated more on peripheral stimuli than did control participants; however, this only held true for highly-valenced positive stimuli. Participants under induced positive mood also made more frequent saccades for slides of neutral and positive valence. A second study showed that these effects were not simply due to differences in emotional arousal between stimuli. Selective attentional broadening to positive stimuli may act both to facilitate later building of resources as well as to maintain current positive affective states. PMID:20431711

  9. Technical Note: Improved implementation of doppler broadening in MCNP5

    SciTech Connect

    Bartol, Laura J.; DeWerd, Larry A.

    2012-09-15

    Purpose: Incoherent scattering has a substantial effect on spectroscopic measurements and simulations. Many general-purpose Monte Carlo codes include models that account for the effects of bound electrons on incoherent scattering, including Doppler broadening (DB). This work investigates the DB model used in the Monte Carlo N-particle transport code (MCNP5). Methods: Simulations were run with three versions of MCNP5: v1.51, v1.60, and a modified form of v1.60 (v1.60m). All simulations used the MCPLIB04 photon data library, which presents the electron subshell data for incoherent scattering in the form of a probability density function. In v1.60m, the source code was altered to sample the electron subshell from a cumulative density function instead. Each version of the code was tested using an identical set of simulations that investigated DB in a slab of silicon at scattering angles of 15 Degree-Sign , 30 Degree-Sign , and 45 Degree-Sign . For each angle, simulations were run for multiple energies between 200 keV and 800 keV. The spectrum of singly-scattered photons at the exit of the slab was scored. Spectra were analytically calculated for comparison. Results: In v1.51, DB was modeled for incident photon energies below 760 keV, 384 keV, and 260 keV at scattering angles of 15 Degree-Sign , 30 Degree-Sign , and 45 Degree-Sign , respectively. Above these energy thresholds, v1.51 did not model DB. The spectra calculated using v1.60 and v1.60m exhibited DB for all energy-angle combinations; however, v1.60m, exhibited more energy broadening than did v1.60. The spectra calculated with v1.60m agreed with the analytical calculations. Conclusions: MCNP5 v1.51 and v1.60 model partial broadening when used with the MCPLIB04 data library. MCNP5 v1.60m models DB more accurately due to the form of the electron subshell data. In response to these results, Los Alamos National Laboratory has released a new photon data library, MCPLIB84, that presents the electron subshell data in

  10. Impact of inhomogeneous broadening on optical polarization of high-inclination semipolar and nonpolar InxGa1 -xN /GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Mounir, Christian; Schwarz, Ulrich T.; Koslow, Ingrid L.; Kneissl, Michael; Wernicke, Tim; Schimpke, Tilman; Strassburg, Martin

    2016-06-01

    We investigate the influence of inhomogeneous broadening on the optical polarization properties of high-inclination semipolar and nonpolar InxGa1 -xN /GaN quantum wells. Different planar m-plane and (20 2 ¯1 ¯) samples were grown (including core-shell microrods) and have been characterized by excitation-dependent polarization-resolved confocal micro-photoluminescence. The measured degree of linear polarization (DLP) is compared to theoretical predictions obtained by Fermi-Dirac statistical filling of the electronic band structure calculated by the k .p envelope function method. We show that our measured DLP at room temperature, as well as values reported by other groups, are systematically higher than the theoretical predictions. We propose to solve this discrepancy between theory and experiment by introducing inhomogeneous broadening in our calculations. Considering indium content fluctuations and the localization lengths of electrons and holes, different effective broadenings are applied to different subsets of subbands. We thereby show that inhomogeneous broadening leads to an increase of the DLP at room temperature. Furthermore, the dependence of the optical properties on the excitation density is better reproduced. Looking at the DLP as a function of the temperature gives us insight into the thermalization dynamics of charge carriers.

  11. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  12. Role of Lorentz-Stark broadening of hydrogen spectral lines in magnetized plasmas: Applications to magnetic fusion and solar physics

    NASA Astrophysics Data System (ADS)

    Oks, Eugene

    2015-05-01

    Broadening of hydrogen spectral lines in plasmas is an important diagnostic tool for many applications (here and below by "hydrogen atoms" and "hydrogen spectral lines" we mean atoms and spectral lines of hydrogen, deuterium, and tritium). In magnetized plasmas radiating hydrogen atoms moving with the velocity v across the magnetic field B experience a Lorentz electric field EL=v×B/c in addition to other electric fields. Since the velocity v has a distribution, so does the Lorentz field, thus making an additional contribution to the broadening of spectral lines. Compared to previous studies of this contribution, we cover the following new aspects. First, we consider the Lorentz-Doppler broadening of highly-excited hydrogen lines and produce new analytical results for arbitrary strength of the magnetic field B. We show for the first time that in the high-B case, the π-components of hydrogen lines are significantly suppressed compared to the σ-components. Second, we derive analytically Lorentz-broadened profiles of highly-excited hydrogen lines. We obtain expressions for the principal quantum number nmax of the last observable hydrogen line in the spectral series. These expressions differ very significantly from the corresponding Inglis-Teller result and constitute a new diagnostic method allowing to measure the product T1/2B, where T is the atomic temperature. Third, we consider magnetized plasmas containing a low-frequency electrostatic turbulence. This kind of turbulence causes anomalous transport phenomena (e.g., the anomalous resistivity) and is therefore very important to be diagnosed. We derive analytically distributions of the total electric field and the corresponding Stark profiles of hydrogen lines. We demonstrate that our findings lead to a significantly revised interpretation of the previous and future experimental data in magnetic fusion and the observational data in solar physics.

  13. Photosynthetic innovation broadens the niche within a single species.

    PubMed

    Lundgren, Marjorie R; Besnard, Guillaume; Ripley, Brad S; Lehmann, Caroline E R; Chatelet, David S; Kynast, Ralf G; Namaganda, Mary; Vorontsova, Maria S; Hall, Russell C; Elia, John; Osborne, Colin P; Christin, Pascal-Antoine

    2015-10-01

    Adaptation to changing environments often requires novel traits, but how such traits directly affect the ecological niche remains poorly understood. Multiple plant lineages have evolved C4 photosynthesis, a combination of anatomical and biochemical novelties predicted to increase productivity in warm and arid conditions. Here, we infer the dispersal history across geographical and environmental space in the only known species with both C4 and non-C4 genotypes, the grass Alloteropsis semialata. While non-C4 individuals remained confined to a limited geographic area and restricted ecological conditions, C4 individuals dispersed across three continents and into an expanded range of environments, encompassing the ancestral one. This first intraspecific investigation of C4 evolutionary ecology shows that, in otherwise similar plants, C4 photosynthesis does not shift the ecological niche, but broadens it, allowing dispersal into diverse conditions and over long distances. Over macroevolutionary timescales, this immediate effect can be blurred by subsequent specialisation towards more extreme niches. PMID:26248677

  14. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  15. Standard line broadening impact theory for hydrogen including penetrating collisions.

    PubMed

    Alexiou, S; Poquérusse, A

    2005-10-01

    In recent years there has been significant interest in the emission spectra from high-density plasmas, as manifested by a number of experiments. At these high densities short range (small impact parameter) interactions become important and these cannot be adequately handled by the standard theory, whose predictions depend on some cutoffs, necessary to preserve unitarity, the long range approximation, and to ensure the validity of a semiclassical picture. Very recently, as a result of a debate concerning the broadening of isolated ion lines, the importance of penetration of bound electron wave functions by plasma electrons has been realized. By softening the interaction, penetration makes perturbative treatments more valid. The penetration effect has now been included analytically into the standard theory. It turns out that the integrations may be done in closed form in terms of the modified Bessel functions K0 and K1. This work develops the new theory and applies it to experimental measurements. PMID:16383542

  16. Phonon Properties of Materials from Neutron Resonance Doppler Broadening Measurements

    NASA Astrophysics Data System (ADS)

    Eric Lynn, J.

    2002-12-01

    At low temperatures the Doppler broadened widths of neutron resonances are strongly affected by the phonon characteristics of the material used for making the cross-section measurement. The Doppler width can be expressed in terms of the moments of the phonon spectrum carried by the atomic species with the resonant cross-section. Cross-section measurements made with tungsten and tantalum metals are reviewed here and compared with phonon information obtained by other methods. Applications of the method to a plutonium-gallium alloy and to some lanthanum barium cuprates are described briefly. We discuss possible extensions of the technique and how an epithermal flight path at the SNS may be advantageous.

  17. Comparing the line broadened quasilinear model to Vlasov code

    SciTech Connect

    Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.

    2014-03-15

    The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.

  18. Comparing the line broadened quasilinear model to Vlasov code

    NASA Astrophysics Data System (ADS)

    Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.

    2014-03-01

    The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.

  19. RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Lynn, Jacob W.; Parrish, Ian J.; Quataert, Eliot; Chandran, Benjamin D. G.

    2012-10-20

    The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with {beta} {approx} 1, where {beta} is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for v{sub s} >> v{sub A} (e.g., electrons), where v{sub s} is the thermal speed of species s and v{sub A} is the Alfven speed, while FTB dominates for v{sub s} << v{sub A} (e.g., minor ions). Proton heating rates for {beta} {approx} 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.

  20. Effects of Doppler broadening on Autler-Townes splitting in six-wave mixing

    SciTech Connect

    Niu Jinyan; Pei Liya; Lu Xiaogang; Wang Ruquan; Wu Lingan; Fu Panming

    2011-09-15

    The effects of Doppler broadening on Autler-Townes (AT) splitting in six-wave mixing (SWM) are investigated by the dressed-state model. We analyze the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting and find that, depending on the wave-number ratio, there may be two resonant velocities which can originate from resonance with one of the dressed states or from resonance with two different dressed states. Based on this model, we discuss a novel type of AT doublet in the SWM spectrum, where macroscopic effects play an important role. Specifically, the existence of resonant peaks requires polarization interference between atoms of different velocities in addition to a change in the number of resonant atoms involved. Our model can also be employed to analyze electromagnetically induced transparency resonance and other types of Doppler-free high-resolution AT spectroscopy.

  1. Creation of problem-dependent Doppler-broadened cross sections in the KENO Monte Carlo code

    DOE PAGESBeta

    Hart, Shane W. D.; Celik, Cihangir; Maldonado, G. Ivan; Leal, Luiz C.

    2015-11-06

    In this paper, we introduce a quick method for improving the accuracy of Monte Carlo simulations by generating one- and two-dimensional cross sections at a user-defined temperature before performing transport calculations. A finite difference method is used to Doppler-broaden cross sections to the desired temperature, and unit-base interpolation is done to generate the probability distributions for double differential two-dimensional thermal moderator cross sections at any arbitrarily user-defined temperature. The accuracy of these methods is tested using a variety of contrived problems. In addition, various benchmarks at elevated temperatures are modeled, and results are compared with benchmark results. Lastly, the problem-dependentmore » cross sections are observed to produce eigenvalue estimates that are closer to the benchmark results than those without the problem-dependent cross sections.« less

  2. Creation of problem-dependent Doppler-broadened cross sections in the KENO Monte Carlo code

    SciTech Connect

    Hart, Shane W. D.; Celik, Cihangir; Maldonado, G. Ivan; Leal, Luiz C.

    2015-11-06

    In this paper, we introduce a quick method for improving the accuracy of Monte Carlo simulations by generating one- and two-dimensional cross sections at a user-defined temperature before performing transport calculations. A finite difference method is used to Doppler-broaden cross sections to the desired temperature, and unit-base interpolation is done to generate the probability distributions for double differential two-dimensional thermal moderator cross sections at any arbitrarily user-defined temperature. The accuracy of these methods is tested using a variety of contrived problems. In addition, various benchmarks at elevated temperatures are modeled, and results are compared with benchmark results. Lastly, the problem-dependent cross sections are observed to produce eigenvalue estimates that are closer to the benchmark results than those without the problem-dependent cross sections.

  3. Theory and Simulations of Refractive Substructure in Resolved Scatter-broadened Images

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Gwinn, Carl R.

    2015-06-01

    At radio wavelengths, scattering in the interstellar medium distorts the appearance of astronomical sources. Averaged over a scattering ensemble, the result is a blurred image of the source. However, Narayan & Goodman and Goodman & Narayan showed that for an incomplete average, scattering introduces refractive substructure in the image of a point source that is both persistent and wideband. We show that this substructure is quenched but not smoothed by an extended source. As a result, when the scatter-broadening is comparable to or exceeds the unscattered source size, the scattering can introduce spurious compact features into images. In addition, we derive efficient strategies to numerically compute realistic scattered images, and we present characteristic examples from simulations. Our results show that refractive substructure is an important consideration for ongoing missions at the highest angular resolutions, and we discuss specific implications for RadioAstron and the Event Horizon Telescope.

  4. Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahim, Pourmand; Ghasem, Rezaei

    2015-12-01

    Spectroscopic properties of flashlamp pumped Nd3+:YAG laser are studied as a function of temperature in a range from -30 °C to 60 °C. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of 4F3/2 → 4I9/2 are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature. The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is, thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. Project supported by Estahban Branch, Islamic Azad University.

  5. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  6. Temperature dependence of Lorentz air-broadening and pressure-shift coefficients of (12)CH4 lines in the 2.3-micron spectral region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Rinsland, C. P.

    1994-01-01

    High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.

  7. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides.

    PubMed

    Moody, Galan; Kavir Dass, Chandriker; Hao, Kai; Chen, Chang-Hsiao; Li, Lain-Jong; Singh, Akshay; Tran, Kha; Clark, Genevieve; Xu, Xiaodong; Berghäuser, Gunnar; Malic, Ermin; Knorr, Andreas; Li, Xiaoqin

    2015-01-01

    The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton-exciton and exciton-phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors. PMID:26382305

  8. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    PubMed Central

    Moody, Galan; Kavir Dass, Chandriker; Hao, Kai; Chen, Chang-Hsiao; Li, Lain-Jong; Singh, Akshay; Tran, Kha; Clark, Genevieve; Xu, Xiaodong; Berghäuser, Gunnar; Malic, Ermin; Knorr, Andreas; Li, Xiaoqin

    2015-01-01

    The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors. PMID:26382305

  9. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire

    NASA Astrophysics Data System (ADS)

    Reimer, M. E.; Bulgarini, G.; Fognini, A.; Heeres, R. W.; Witek, B. J.; Versteegh, M. A. M.; Rubino, A.; Braun, T.; Kamp, M.; Höfling, S.; Dalacu, D.; Lapointe, J.; Poole, P. J.; Zwiller, V.

    2016-05-01

    One of the key challenges in developing quantum networks is to generate single photons with high brightness, purity, and long temporal coherence. Semiconductor quantum dots potentially satisfy these requirements; however, due to imperfections in the surrounding material, the coherence generally degrades with increasing excitation power yielding a broader emission spectrum. Here we overcome this power-broadening regime and demonstrate an enhanced coherence at exciton saturation where the detected count rates are highest. We detect single-photon count rates of 460 000 counts per second under pulsed laser excitation while maintaining a single-photon purity greater than 99%. Importantly, the enhanced coherence is attained with quantum dots in ultraclean wurtzite InP nanowires, where the surrounding charge traps are filled by exciting above the wurtzite InP nanowire band gap. By raising the excitation intensity, the number of possible charge configurations in the quantum dot environment is reduced, resulting in a narrower emission spectrum. Via Monte Carlo simulations we explain the observed narrowing of the emission spectrum with increasing power. Cooling down the sample to 300 mK, we further enhance the single-photon coherence twofold as compared to operation at 4.5 K, resulting in a homogeneous coherence time, T2, of 1.2 ns, and two-photon interference visibility as high as 83% under strong temporal postselection (˜5 % without temporal postselection).

  10. Foreign-gas collision broadening of the far-infrared spectrum of water vapor

    NASA Technical Reports Server (NTRS)

    Gasster, Samuel D.; Townes, Charles H.; Goorvitch, David; Valero, Francisco P. J.

    1988-01-01

    The far-infrared rotational spectrum of H2(O-16) has been studied in the spectral range 25-112/cm to measure the foreign-gas collision-broadened linewidths. Measurements of 17 lines broadened by nitrogen and 21 lines broadened by oxygen are reported. The measurements were made at 297 K. From these data, the widths due to air broadening are obtained. The experimental results are compared with recent theoretical calculations and with the case of a constant linewidth, equal to the average experimental width. There is some correlation between the relative experimental linewidths and the theoretical predictions. However, the simple assumption of a constant value for the collision-broadened linewidths gives a better representation for the case of N2- and O2-broadened linewidths than do present detailed theoretical calculations.

  11. Conversion efficiency and spectral broadening of the K-{alpha} line emitted from planar titanium targets irradiated with ultra-short laser pulses of high intensity

    SciTech Connect

    Arora, V.; Singhal, H.; Naik, P. A.; Gupta, P. D.

    2011-10-15

    A study of the conversion efficiency and line shape of the K-{alpha} x-ray line radiation from a planar titanium target irradiated by an ultra-short laser pulse is performed. The conversion efficiency and spectral broadening are studied as a function of laser intensity (5 x 10{sup 16}-10{sup 18} W cm{sup -2}), laser pulse duration (45 fs-800 fs), and laser fluence (2 x 10{sup 3}-4.2 x 10{sup 4} J cm{sup -2}). The K-{alpha}{sub 1} line (4510 eV) is observed to be broadened (up to {approx}9 eV), predominantly towards the higher energy side and strongly depends on the laser fluence rather than on laser intensity. The reason for the spectral broadening is attributed to K-{alpha} emission in warm dense plasma. The role of hot electrons and direct laser heating on spectral broadening is outlined. In addition to this, our observations indicates that the presence of pre-plasma strongly contribute to the observed broadening through the inner-shell transitions in multiply charged titanium ions in the pre-plasma. The appropriate laser irradiation parameters to achieve high conversion efficiency and minimum spectral width of the K-{alpha} radiation are identified. The study is important, since the control of the spectral profile is of general interest for diffraction or scattering experiments in view of its potential in increasing temporal resolution.

  12. X-Band/Ka-Band Dichroic Plate

    NASA Technical Reports Server (NTRS)

    Chen, Jacqueline C.

    1993-01-01

    Dichroic plate designed nearly transparent to circularly polarized microwaves at frequencies between 31.8 and 34.7 GHz (in and near Ka band) and reflective at frequencies between 8.4 and 8.5 GHz (in the X band). Made of electrically conductive material and contains rectangular holes in staggered pattern.

  13. Position Displacement of Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Galazutdinov, G.; Krełowski, J.; Beletsky, Y.; Valyavin, G.

    2015-04-01

    We reconsider the already published phenomenon of the blue shift of diffuse interstellar bands, observed in spectra of HD34078 (AE Aur) and members of the Sco OB1 association, in particular HD152233. We have analyzed 29 diffuse bands. Some of them, already proven as blue-shifted in our earlier study, are now confirmed using another instrument: the 6.5 m Clay telescope equipped with the MIKE spectrograph. The high signal-to-noise ratio (over 600) of our spectra allowed us to reveal even small small-scale displacements of positions (both blue and redshifts) of diffuse bands along the considered lines of sight. In some cases, the magnitude of deviation exceeds 10 km s-1. Also, we prove that profiles of many diffuse bands in spectra of HD34078 suffer significant broadening. The origin of the observed phenomena is discussed. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory (Chile).

  14. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2015-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  15. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  16. Preprophase band formation and cortical division zone establishment: RanGAP behaves differently from microtubules during their band formation

    PubMed Central

    Yabuuchi, Takatoshi; Nakai, Tomonori; Sonobe, Seiji; Yamauchi, Daisuke; Mineyuki, Yoshinobu

    2015-01-01

    Correct positioning of the division plane is a prerequisite for plant morphogenesis. The preprophase band (PPB) is a key intracellular structure of division site determination. PPB forms in G2 phase as a broad band of microtubules (MTs) that narrows in prophase and specializes few-micrometer-wide cortical belt region, named the cortical division zone (CDZ), in late prophase. The PPB comprises several molecules, some of which act as MT band organization and others remain in the CDZ marking the correct insertion of the cell plate in telophase. Ran GTPase-activating protein (RanGAP) is accumulated in the CDZ and forms a RanGAP band in prophase. However, little is known about when and how RanGAPs gather in the CDZ, and especially with regard to their relationships to MT band formation. Here, we examined the spatial and temporal distribution of RanGAPs and MTs in the preprophase of onion root tip cells using confocal laser scanning microscopy and showed that the RanGAP band appeared in mid-prophase as the width of MT band was reduced to nearly 7 µm. Treatments with cytoskeletal inhibitors for 15 min caused thinning or broadening of the MT band but had little effects on RanGAP band in mid-prophase and most of late prophase cells. Detailed image analyses of the spatial distribution of RanGAP band and MT band showed that the RanGAP band positioned slightly beneath the MT band in mid-prophase. These results raise a possibility that RanGAP behaves differently from MTs during their band formation. PMID:26237087

  17. Photoacoustic measurement of differential broadening of the Lambda doublets in NO(X 2Pi 1/2,v = 2-0) by Ar

    NASA Technical Reports Server (NTRS)

    Pine, A. S.

    1989-01-01

    A differential broadening of the Lambda doublets in the v = 2-0 overtone band of the 2pi1/2 ground electronic state of NO in an Ar buffer gas has been observed by photoacoustic spectroscopy using a tunable color-center laser. The broadening coefficients for the f symmetry components are larger than for the e symmetry components by up to about 6 percent for J of about 16.5. This differential depends on J and vanishes at low J, implicating the anisotropy of the unpaired electron Pi orbital in the plane of rotation. The 2Pi3/2 transitions are slightly broader than the 2Pi1/2 as a result of spin-flipping collisional relaxation. The observed line shapes also exhibit collisional or Dicke narrowing due to velocity-changing collisions.

  18. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  19. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  20. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  1. Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot

    SciTech Connect

    Wu, Chung-Lun; Lin, Gong-Ru

    2012-12-15

    The SiO{sub x} (SiO{sub x}:Si-QDs) with buried Si quantum dots (Si-QDs) is synthesized by plasma-enhanced chemical vapor deposition (PECVD), and the size-dependent wave-function of Si-QDs embedded in Si-rich SiO{sub 2} matrix is experimentally and theoretically analyzed to reformulate its bandgap energy as E{sub g}(d) = 1.12+5.83/d{sup 1.78}. The photoluminescent lifetime of Si-QDs is dominated by the non-phonon assisted radiative recombination. Shrinking the Si-QD size from 4.3 to 1.9 nm increases the overlapping probability of electron-hole wave-functions in Si-QD to shorten the non-phonon assisted radiative lifetime from 6.3 {mu}s to 83 ns. Fitting the time-resolved photoluminescence trace with a stretched exponential decay function reveals a lifetime dispersion factor. The lifetime dispersion greatly reduced from 0.8 to 0.39 by enlarging the size distribution of Si-QDs from 0.2 to 1.1 nm, which elucidates the inhomogeneous linewidth broadening feature of Si-QDs. Based on the simulation of non-phonon assisted recombination process, the full-band stretched exponential decay analysis confirms the correlation between inhomogeneous linewidth broadening and lifetime dispersion in Si-QDs.

  2. Temperature dependence of 13CH4 line shapes broadened by N2

    NASA Astrophysics Data System (ADS)

    Sung, K.; Mantz, A. M.; Brown, L. R.; Smith, M. H.; Benner, D. C.; Devi, V.; Crawford, T. J.

    2009-12-01

    In order to support remote sensing of Titan’s atmosphere, the temperature dependences for the 13CH4 nitrogen broadening and frequency shift coefficients were measured for several transitions from 1200 to 1400 cm-1 (8.33 to 7.14 μm) using a Fourier transform spectrometer (Bruker IFS-125HR) newly configured with a temperature stabilized cryogenic absorption cell at the Jet Propulsion Laboratory. The cryogenic cell is mounted on the cold finger of a closed cycle helium refrigerator, and the temperatures are monitored with Si diode sensors. The wedged ZnSe cell windows are vacuum sealed with crushed indium gaskets. The cell has an optical path of 24 cm and is suspended from the top cover of the evacuated sample compartment. It has demonstrated a temperature stability of better than ±0.01 K at all temperatures between 300 K and 90 K. To test the system performance, we first recorded 10 spectra of the ν4 band of 13CH4 broadened by nitrogen at 0.0056 cm-1 instrumental resolution (Resolving power = 232000) using a HgCdTe detector. The pressures of 13CH4+N2 mixtures ranged from 140 to 796 torr with the volume mixing ratios of 13CH4 varying between 0.001 and 0.012 at 296, 255, 225 and 180 K. Line shape parameters in the spectral region from 1200 to 1400 cm-1 were retrieved using the nonlinear least squares multispectrum technique1, fitting selected wavenumber intervals of all spectra simultaneously to determine temperature dependence. Preliminary results from the temperature dependence measurements at planetary and astrophysical temperatures are reported along with detailed discussion of the instrumental setup. This new spectroscopic capability at the Jet Propulsion Laboratory will enable future research in studies of planetary science and astrophysics2. 1 Benner DC, Rinsland CP, Devi VM, Smith MAH, Atkins D. A multispectrum nonlinear least squares fitting technique. JQSRT 53, 705 - 721 (1995). 2 The research at the Jet Propulsion Laboratory (JPL), California Institute

  3. Photonic band gap materials

    SciTech Connect

    Soukoulis, C.M. |

    1993-12-31

    An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.

  4. CSF oligoclonal banding

    MedlinePlus

    ... the cerebrospinal fluid (CSF). CFS is the clear fluid that flows in the space around the spinal cord and brain. Oligoclonal bands are proteins called immunoglobulins. The ... system. Oligoclonal bands may be a sign of multiple sclerosis.

  5. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    SciTech Connect

    Berger-By, G.; Decampy, J.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Antar, G. Y.; Collaboration: Tore Supra Team

    2014-02-12

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 10{sup 19} m−3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  6. Dynamic Stark broadening as the Dicke narrowing effect

    NASA Astrophysics Data System (ADS)

    Calisti, A.; Mossé, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L. A.; Lisitsa, V. S.

    2010-01-01

    A very fast method to account for charged particle dynamics effects in calculations of spectral line shape emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model (FFM), which provides an expression of the dynamic line shape as a functional of the static distribution of frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of atomic hydrogen high- n series emission lines. It is not limited to hydrogen spectra. Results on helium- β and Lyman- α lines emitted by argon in microballoon implosion experiment conditions compared with experimental data and simulation results are also presented. The present approach reduces the computer time by more than 2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision, and it opens broad possibilities for its application in spectral line-shape codes.

  7. Workshops Without Walls: broadening access to science around the world.

    PubMed

    Arslan, Betül K; Boyd, Eric S; Dolci, Wendy W; Dodson, K Estelle; Boldt, Marco S; Pilcher, Carl B

    2011-08-01

    The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two "Workshops Without Walls" during 2010 that enabled global scientific exchange--with no travel required. The second of these was on the topic "Molecular Paleontology and Resurrection: Rewinding the Tape of Life." Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel. PMID:21829326

  8. Broadening cell selection criteria with micropallet arrays of adherent cells.

    PubMed

    Wang, Yuli; Young, Grace; Aoto, Phillip C; Pai, Jeng-Hao; Bachman, Mark; Li, G P; Sims, Christopher E; Allbritton, Nancy L

    2007-10-01

    A host of technologies exists for the separation of living, nonadherent cells, with separation decisions typically based on fluorescence or immunolabeling of cells. Methods to separate adherent cells as well as to broaden the range of possible sorting criteria would be of high value and complementary to existing strategies. Cells were cultured on arrays of releasable pallets. The arrays were screened and individual cell(s)/pallets were released and collected. Conventional fluorescence and immunolabeling of cells were compatible with the pallet arrays, as were separations based on gene expression. By varying the size of the pallet and the number of cells cultured on the array, single cells or clonal colonies of cells were isolated from a heterogeneous population. Since cells remained adherent throughout the isolation process, separations based on morphologic characteristics, for example cell shape, were feasible. Repeated measurements of each cell in an array were performed permitting the selection of cells based on their temporal behavior, e.g. growth rate. The pallet array system provides the flexibility to select and collect adherent cells based on phenotypic and temporal criteria and other characteristics not accessible by alternative methods. PMID:17559133

  9. Workshops without Walls: Broadening Access to Science around the World

    PubMed Central

    Arslan, Betül K.; Boyd, Eric S.; Dolci, Wendy W.; Dodson, K. Estelle; Boldt, Marco S.; Pilcher, Carl B.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two “Workshops Without Walls” during 2010 that enabled global scientific exchange—with no travel required. The second of these was on the topic “Molecular Paleontology and Resurrection: Rewinding the Tape of Life.” Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel. PMID:21829326

  10. Multimode instabilities in a homogeneously broadened ring laser

    SciTech Connect

    Lugiato, L.A.; Narducci, L.M.; Eschenazi, E.V.; Bandy, D.K.; Abraham, N.B.

    1985-09-01

    This paper contains a description of the behavior of a multimode unidirectional ring laser with a homogeneously broadened active medium. Our formulation is based on the conventional Maxwell-Bloch (MB) equations, but is distinguished from other treatments by the inclusion of a finite mirror reflectivity and an arbitrary value of the gain parameter. We review the steady-state behavior of the system and analyze the longitudinal profile of the field and of the atomic variables. With an appropriate transformation of variables, we transform the boundary conditions of the ring cavity into standard periodicity type, even in the presence of a finite reflectivity, and derive an infinite hierarchy of coupled mode equations. We analyze exactly the linear stability of the system, and investigate the dependence of the instability domain on the reflectivity and gain parameters. A numerical study of the full MB equations for a parameter range of the type explored in the recent experiments by Hillman et al. (Phys. Rev. Lett. 52, 1605 (1984)) reveals similarities, but also considerable differences between the results of the theory and the main experimental signatures of their instability. However, the injection of numerical noise shows the presence of numerous coexisting basins of attraction which are likely to play a significant role in the dynamics of a noisy laser.

  11. Broadening Participation: Mentoring Community College Students in a Geoscience REU

    NASA Astrophysics Data System (ADS)

    Smith, M.; Osborn, J.

    2015-12-01

    Increasingly, REUs are recruiting from community colleges as a means of broadening participation of underrepresented minorities, women, and low-income students in STEM. As inclusion of community college students becomes normalized, defining the role of science faculty and preparing them to serve as mentors to community college students is a key component of well-designed programs. This session will present empirical research regarding faculty mentoring in the first two years of an NSF-REU grant to support community college students in a university's earth and environmental science labs. Given the documented benefits of undergraduate research on students' integration into the scientific community and their career trajectory in STEM, the focus of the investigation has been on the processes and impact of mentoring community college STEM researchers at a university serving a more traditionally privileged population; the degree to which the mentoring relationships have addressed community college students needs including their emotional, cultural and resource needs; and gaps in mentor training and the mentoring relationship identified by mentors and students.

  12. Air-Broadening of H2O as a Function of Temperature: 696 - 2163 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Toth, R. A.; Brown, L. R.; Smith, M. A. H.; Devi, V. Malathy; Benner, D. Chris; Dulick, M.

    2006-01-01

    The temperature dependence of air-broadened halfwidths are reported for some 500 transitions in the (000)-(000) and (010)-(000) bands of H2(16)O using gas sample temperatures ranging from 241 to 388 K. These observations were obtained from infrared laboratory spectra recorded at 0.006 to 0.011 cm(exp-1) resolution with the McMath-Pierce Fourier transform spectrometer located at Kitt Peak. The experimental values of the temperature dependence exponents, eta, were grouped into eight subsets and fitted to empirical functions in a semi-global procedure. Overall, the values of eta were found to decrease with increasing rotational quantum number J. The number of measurements (over 2200) and transitions (586) involved exceeds by a large margin that of any other comparable reported study.

  13. Hyperfine structure effects in Doppler-broadening thermometry on water vapor at 1.4 μm

    NASA Astrophysics Data System (ADS)

    Domenica De Vizia, Maria; Odintsova, Tatyana; Gianfrani, Livio

    2016-04-01

    This article builds upon a previous work dealing with the budget of uncertainties associated to our recent determination of the Boltzmann constant by means of Doppler broadening thermometry. We report on the outcomes of theoretical calculations and numerical simulations aimed to precisely quantify the influence of the unresolved hyperfine structure of a given ortho component of the \\text{H}218 O spectrum at 1.4 μm on the measurement of the Doppler width of the line itself. We have found that, if the hyperfine structure of the {{4}4,1}\\to {{4}4,0} line of the {ν1}+{ν3} band was ignored, the spectroscopic measurement of the Boltzmann constant would be affected by a relative systematical deviation of 4\\cdot {{10}-8} .

  14. Flat Band Quastiperiodic Lattices

    NASA Astrophysics Data System (ADS)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  15. A Serendipitous Line Survey of Titan in the 1.3mm Band

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.; Butler, B. J.; Moullet, A.

    2012-10-01

    The millimeter and submillimeter bands are rich in rotational transitions from many molecular species detected and/or expected in the atmosphere of Titan. The lines are typically well-separated, and their line shapes, governed by both pressure broadening in the low- to mid-stratosphere and thermal broadening at higher altitudes, can be used to determine vertical abundance profiles given sufficient spectral resolution. This quantity of spectral lines have made Titan a popular target for millimeter and submillimeter radiotelescopes, which have reported detections of many nitriles along with CO (e.g. Muhleman et al 1984; Marten et al 1988; Tanguy et al 1990; Hidayat et al 1995; Gurwell & Muhleman 1995; Hidayat et al 1997; Marten et al 2002; Gurwell 2004; etc). The submillimeter bands are also covered by instruments on Cassini (CIRS) and Herschel (HIFI,SPIRE). The Submillimeter Array has been in operation for nearly 9 years, and during that time has observed Titan several times as a science target. In addition, Titan is utilized at the SMA as a primary standard for flux calibration in the 1.3mm, 1.1mm and 870 micron transmission windows. While each observation used for flux calibration is typically only 10-20 minutes in length, there have been many such observations during the SMA's operation. Thus, while in many small chunks, this SMA calibration data represents a sizable investment of telescope time, and presents an opportunity for use in a serendipitous line survey. This presentation will describe some initial results from an archival project to locate, calibrate, and combine data from multiple SMA observations of Titan, starting in the 1.3mm band. This will include, to our knowledge, the first reported detections in the millimeter bands of vibrationally excited HC3N (v7=1 and v7=2) and also CH3C2H as well as ongoing searches for HC5N and C2H3CN, and isotopic ratios in HC3N and CH3CN.

  16. Correction of Doppler-broadened Rayleigh backscattering effects in H2O dial measurements

    NASA Technical Reports Server (NTRS)

    Ansmann, A.; Bosenberg, J.

    1986-01-01

    A general method of solutions for treating effects of Doppler-broadened Rayleigh backscattering in H2O Differential Absorption Lidar (DIAL) measurements are described and discussed. Errors in vertical DIAL measuremtns caused by this laser line broadening effect can be very large and, therfore, this effect has to be accounted for accurately. To analyze and correct effects of Doppler-broadened Rayleigh backscattering in DIAL experiments, a generalized DIAL approximation was derived starting from a lidar equation, which includes Doppler broadening. To evaluate the accuracy of H2O DIAL measurements, computer simulations were performed. It was concluded that correction of Doppler broadened Rayleigh backscattering is possible with good accuracy in most cases of tropospheric H2O DIAL measurements, but great care has to be taken when layers with steep gradients of Mie backscattering like clouds or inversion layers are present.

  17. Stark line broadening of the n=4 to 3 transitions in high-Z heliumlike ions

    SciTech Connect

    Loboda, P. A.; Lykov, V. A.; Popova, V. V.

    1995-05-01

    Stark line broadening of the n=4 to 3 transitions of He-like Ne, Mg, and Al in multicharged ion plasmas is considered. Line profiles calculations involved quasi-static ion broadening, impact electron broadening, natural, and Doppler broadening. Considerable effect of Stark line broadening due to plasma ions for the 4F-3D transitions of He-like Ne is demonstrated at the Ne-plasma parameters yielding a maximum gain in the theoretical modeling of the resonantly photopumped Na-Ne x-ray laser scheme under the conditions of the Saturn experiments. The sensitivity of the calculated line profiles to the intermediate coupling effects and different energy level data is also investigated. Calculated line profiles of the 4F-3D transitions in He-like Mg and Al are compared to the experimental and other theoretical data.

  18. Diffuse interstellar bands in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.

    1994-01-01

    A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.

  19. Doppler Broadening Thermometry Based on Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Shui-Ming; Cheng, Cunfeng; Wang, Jin; Tan, Yan; Sun, Yu Robert; Liu, An-Wen; Zhang, Jin-Tao

    2014-06-01

    A Doppler broadening thermometry is implemented using a laser-locked cavity ring-down spectrometer [1,2] combined with a temperature-stabilized sample cell. The temperature fluctuation of the gas sample cell is kept below 1 mK for hours. The probing laser is frequency locked at a longitudinal mode of a Fabry-Pérot interferometer made of ultra-low-expansion glass, and the spectral scan is implemented by scanning the sideband produced by an electro-optic modulator. As a result, a kHz precision has been maintained during the measurement of the spectrum of 10 GHz wide. A ro-vibrational line of C_2H_2 is measured at sample pressures of a few Pa. Using a pair of mirrors with a reflectivity of 0.99997 at 787 nm, we are able to detect absorption line profiles with a signal-to-noise ratio of 10^5. Fitting of the recorded spectra allows us to determine the Doppler width with a statistical uncertainty of 10 ppm. Further improvements on the experimental reproducibility and investigations on the collision effects will probably lead to an optical determination of the Boltzmann constant with an uncertainty of a few ppm. H. Pan, C.-F. Cheng, Y. R. Sun, B. Gao, A.-W. Liu, S.-M. Hu, ``Laser-locked, continuously tunable high resolution cavity ring-down spectrometer," Rev. Sci. Instrum. 82, 103110 (2011) Y. R. Sun, H. Pan, C.-F. Cheng, A.-W. Liu, J.-T. Zhang, S.-M. Hu, ``Application of cavity ring-down spectroscopy to the Boltzmann constant determination," Opt. Express, 19, 19993 (2011)

  20. Broadening Undergraduate Research Skills With A New Astrophysics Laboratory Class

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, Tammy A.; Barth, A. J.

    2009-05-01

    To broaden the research skills of undergraduate students at the University of California, Irvine, we created a new required laboratory class called Observational Astrophysics, designed to be taken by junior and senior physics majors specializing in astrophysics. Students spend the first two weeks learning the basics of observational astronomy (coordinate systems, telescopes, CCDs, etc.) and completing homework assignments. Students spend the next eight weeks performing three lab experiments that involve: 1) CCD imaging of Jupiter with an 8-inch Meade telescope, doing astrometry of the their four brightest moons, and fitting the moons' distance versus time to derive the moons' orbital period, semimajor axis and inclination and Jupiter's mass, 2) CCD imaging of star cluster with a 24-inch telescope, doing profile-fitting photometry with DAOPHOT and doing main-sequence fitting of their observed color-magnitude diagram with stellar evolutionary models to derive the cluster's distance, reddening, and age, and 3) reducing longslit spectra of an x-ray binary previously taken with the Keck 10-meter telescope, deriving the radial velocity curve from cross-correlating the spectra with stellar templates, and deriving a lower limit on the mass of the black hole. In this paper, we discuss the course, report on the student reactions, and summarize some of the important things we learned in creating the class. Students enjoy the class. Although they find it difficult, they highly value the experience because they realize they are learning crucial research skills that will greatly help them when go on to do summer research, attend graduate school or work to industry. We are open to sharing our lab manual and data with others who wish to augment their university's curriculum.

  1. Theory of Self-Phase Modulation and Spectral Broadening

    NASA Astrophysics Data System (ADS)

    Shen, Y. R.; Yang, Guo-Zhen

    Self-phase modulation refers to the phenomenon in which a laser beam propagating in a medium interacts with the medium and imposes a phase modulation on itself. It is one of those very fascinating effects discovered in the early days of nonlinear optics (Bloembergen and Lallemand, 1966; Brewer, 1967; Cheung et al., 1968; Lallemand, 1966; Jones and Stoicheff, 1964; Shimizu, 1967; Stoicheff, 1963). The physical origin of the phenomenon lies in the fact that the strong field of a laser beam is capable of inducing an appreciable intensity-dependent refractive index change in the medium. The medium then reacts back and inflicts a phase change on the incoming wave, resulting in self-phase modulation (SPM). Since a laser beam has a finite cross section, and hence a transverse intensity profile, SPM on the beam should have a transverse spatial dependence, equivalent to a distortion of the wave front. Consequently, the beam will appear to have self-diffracted. Such a self-diffraction action, resulting from SPM in space, is responsible for the well-known nonlinear optical phenomena of self-focusing and self-defocusing (Marburger, 1975; Shen, 1975). It can give rise to a multiple ring structure in the diffracted beam if the SPM is sufficiently strong (Durbin et al., 1981; Santamato and Shen, 1984). In the case of a pulsed laser input, the temporal variation of the laser intensity leads to an SPM in time. Since the time derivative of the phase of a wave is simply the angular frequency of the wave, SPM also appears as a frequency modulation. Thus, the output beam appears with a self-induced spectral broadening (Cheung et al., 1968; Gustafson et al., 1969; Shimizu, 1967).

  2. HOW MIGHT INDUSTRY GOVERNANCE BE BROADENED TO INCLUDE NONPROLIFERATION

    SciTech Connect

    Hund, Gretchen; Seward, Amy M.

    2009-10-06

    Broadening industry governance to support nonproliferation could provide significant new leverage in preventing the spread/diversion of nuclear, radiological, or dual-use material or technology that could be used in making a nuclear or radiological weapon. Industry is defined broadly to include 1) the nuclear industry, 2) dual-use industries, and 3) radioactive source manufacturers and selected radioactive source-user industries worldwide. This paper describes how industry can be an important first line of defense in detecting and thwarting proliferation, such as an illicit trade network or an insider theft case, by complementing and strengthening existing governmental efforts. For example, the dual-use industry can play a critical role by providing export, import, or security control information that would allow a government or the International Atomic Energy Agency (IAEA) to integrate this information with safeguards, export, import, and physical protection information it has to create a more complete picture of the potential for proliferation. Because industry is closest to users of the goods and technology that could be illicitly diverted throughout the supply chain, industry information can potentially be more timely and accurate than other sources of information. Industry is in an ideal position to help ensure that such illicit activities are detected. This role could be performed more effectively if companies worked together within a particular industry to promote nonproliferation by implementing an industry-wide self-regulation program. Performance measures could be used to ensure their materials and technologies are secure throughout the supply chain and that customers are legitimately using and/or maintaining oversight of these items. Nonproliferation is the overarching driver that industry needs to consider in adopting and implementing a self-regulation approach. A few foreign companies have begun such an approach to date; it is believed that, ultimately

  3. Air-broadened line parameters with temperature dependence for 12C16O, 13C16O, and 12C18O at 2.3 μm

    NASA Astrophysics Data System (ADS)

    Smith, M. H.; Malathy Devi, V.; Benner, D.; Mantz, A. W.; Sung, K.; Brown, L. R.

    2012-12-01

    To improve the spectroscopic database for remote sensing of tropospheric CO, we have recorded more than 50 high resolution (0.005 cm-1) spectra of CO and two of its isotopologues (13CO and C18O) at temperatures between 150 and 298 K using a coolable absorption cell in the sample compartment of the Bruker IFS 125HR Fourier transform spectrometer at Jet Propulsion Laboratory. Air-broadened spectra at total pressures up to 700 Torr were recorded for all three isotopologues, and self-broadened CO spectra were also recorded. Line parameters were determined by broad-band constrained multispectrum least-squares fitting of 16 or more spectra simultaneously. Parameters determined in the fits included Lorentz half-width coefficients, their temperature dependence exponents; pressure-induced line shift coefficients, their temperature dependences; and the off-diagonal relaxation matrix elements that characterize line mixing. Speed dependence parameters were also included to minimize the fit residuals. The individual line positions and intensities were constrained to their theoretical relationships in order to obtain the rovibrational (G, B, D, and H) and band intensity parameters, including Herman-Wallis coefficients, as has been done for CO2 previously. The air-broadening results for the 13C16O and 12C18O 2-0 bands are compared with each other and with those for the corresponding 12C16O band.

  4. Dark Bands on Europa

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dark crisscrossing bands on Jupiter's moon Europa represent widespread disruption from fracturing and the possible eruption of gases and rocky material from the moon's interior in this four-frame mosaic of images from NASA's Galileo spacecraft. These and other features suggest that soft ice or liquid water was present below the ice crust at the time of disruption. The data do not rule out the possibility that such conditions exist on Europa today. The pictures were taken from a distance of 156,000 kilometers (about 96,300 miles) on June 27, 1996. Many of the dark bands are more than 1,600 kilometers (1,000 miles) long, exceeding the length of the San Andreas fault of California. Some of the features seen on the mosaic resulted from meteoritic impact, including a 30- kilometer (18.5 mile) diameter crater visible as a bright scar in the lower third of the picture. In addition, dozens of shallow craters seen in some terrains along the sunset terminator zone (upper right shadowed area of the image) are probably impact craters. Other areas along the terminator lack craters, indicating relatively youthful surfaces, suggestive of recent eruptions of icy slush from the interior. The lower quarter of the mosaic includes highly fractured terrain where the icy crust has been broken into slabs as large as 30 kilometers (18.5 miles) across. The mosaic covers a large part of the northern hemisphere and includes the north pole at the top of the image. The sun illuminates the surface from the left. The area shown is centered on 20 degrees north latitude and 220 degrees west longitude and is about as wide as the United States west of the Mississippi River. The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  5. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-01

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized. PMID:27403812

  6. An UWB antenna with metamaterial cladding in S/C-band

    NASA Astrophysics Data System (ADS)

    Jiang, Yan Nan; Cui Zhang, Wen; Wang, Jiao; Cao, Wei Ping; Lin, Yi Yu

    2016-01-01

    A compact and easy fabricated ultra-wideband antenna is proposed in this paper. It comprised of a monopole antenna and a single-side I-shaped structure (ISS) metamaterial (MM) cladding. The monopole itself resonates at 2.4 GHz and presents capacitive impedance at 4.8 GHz. The MM cladding resonates at the first frequency and acts as an inductive element at the second. The higher resonance frequency of 4.8 GHz can be efficiently produced without affecting the monopole resonance. By the ISS MM cladding, the impedance match bandwidth (i.e., |S11| ≤ -10 dB) of the proposed antenna is broadened to 1.98-5.80 GHz (a part of the S/C-band). In addition, the dynamic range of the main lobe directions is only about 17° and the gains are greater than 3.8 dBi over the entire band. The simulations and measurements are in a good agreement. Therefore, the proposed antenna is so charming for the extensive applications in wireless communication community. Contribution to the topical issue "Advanced Electromagnetics Symposium (AES 2014) - Elected submissions", edited by Adel Razek

  7. Broadening the Frequency Bandwidth of Piezoelectric Energy Harvesters Using Coupled Linear Resonators

    NASA Astrophysics Data System (ADS)

    Sadeqi, Soheil

    The desire to reduce power consumption of current integrated circuits has led design engineers to focus on harvesting energy from free ambient sources such as vibrations. The energy harvested this way can eliminate the need for battery replacement, particularly, in low-energy remote sensing and wireless devices. Currently, most vibration-based energy harvesters are designed as linear resonators, therefore, they have a narrow resonance frequency. The optimal performance of such harvesters is achieved only when their resonance frequency is matched with the ambient excitation. In practice, however, a slight shift of the excitation frequency will cause a dramatic reduction in their performance. In the majority of cases, the ambient vibrations are totally random with their energy distributed over a wide frequency spectrum. Thus, developing techniques to extend the bandwidth of vibration-based energy harvesters has become an important field of research in energy harvesting systems. This thesis first reviews the broadband vibration-based energy harvesting techniques currently known in some detail with regard to their merits and applicability under different circumstances. After that, the design, fabrication, modeling and characterization of three new piezoelectric-based energy harvesting mechanism, built typically for rotary motion applications, is discussed. A step-by-step procedure is followed in order to broaden the bandwidth of such energy harvesters by introducing a coupled spring-mass system attached to a PZT beam undergoing rotary motion. It is shown that the new strategies can indeed give rise to a wide-band frequency response making it possible to fine-tune their dynamical response. The numerical results are shown to be in good agreement with the experimental data as far as the frequency response is concerned.

  8. Pressure Broadening of Several Terahertz Transitions of Water from 20K to 200K

    NASA Astrophysics Data System (ADS)

    Dick, Michael J.; Drouin, Brian J.; Pearson, John C.

    2009-06-01

    The pressure broadening of the 0_{00} to 1_{11}, 1_{11} to 2_{02}, 3_{03} to 3_{12}, 2_{21} to 3_{12} and 3_{12} to 3_{21} transitions of water by hydrogen and helium has been investigated using the collisional cooling technique. This technique has allowed the broadening to be examined over the temperature range of 20K to 200K, far below the freezing point of water. The results of the investigation show a general trend of two distinct regions of broadening for each rotational line. Above 50K, the temperature dependence of the broadening follows the expected power law behavior. Below 50K, the broadening decreases very rapidly with temperature. This behavior is similar to that observed in a recent study of the pressure broadening of the 556 GHz line of water completed in our lab. However, this behavior is in sharp contrast to that predicted by previous theoretical calculations. We will present the results of our current investigation. This will include a discussion comparing the current study with the results of the previous experimental and theoretical work. The pressure broadening is a window into the collisional excitation and the implications of our results for the interpretation of water spectra in the interstellar medium will be discussed.

  9. Temperature dependences for N2- and air-broadened Lorentz half-width coefficients of methane transitions around 3.38 μm

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Liu, Qiang; Cao, Zhensong; Chen, Weidong; Vicet, Aurore; Huang, Yinbo; Zhu, Wenyue; Gao, Xiaoming; Rao, Ruizhong

    2016-03-01

    We have measured high-resolution absorption spectra of methane broadened by N2 and air at sample temperatures between 173.0 K and room temperature. The measurements were performed based on direct laser absorption spectroscopy using a tunable diode laser combined with a temperature controlled cryogenically cooled absorption cell. These spectra have been analyzed to determine the pressure-broadened half-width coefficients as well as their temperature dependences for six singlet lines belonging to the ν3 band of methane near 3.38 μm. To our knowledge, the temperature dependence exponents for the pressure-broadened half-width coefficients are reported experimentally for the first time for six transitions of 12CH4 with intensities stronger than 4×10-20 cm-1/(molecule cm-2). The measured half-width coefficients and the temperature dependence exponents of these transitions are compared with the available values reported in the literature and the HITRAN2012 database. Agreements and discrepancies are discussed.

  10. Unfolding the band structure of non-crystalline photonic band gap materials

    NASA Astrophysics Data System (ADS)

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-08-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain.

  11. Unfolding the band structure of non-crystalline photonic band gap materials.

    PubMed

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  12. Unfolding the band structure of non-crystalline photonic band gap materials

    PubMed Central

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  13. Doppler Broadening Calculations of Compton Scattering for Molecules, Plastics, Tissues, and Few Biological Materials in the X-Ray Region: An Analysis in Terms of Compton Broadening and Geometrical Energy Broadening

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Akatsuka, T.; Takeda, T.; Itai, Y.

    2004-09-01

    Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90°. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials.

  14. Banded ion morphology

    SciTech Connect

    Frahm, R.A.

    1987-01-01

    Bands of ions have been observed at constant pitch angle by the Dynamics Explorer High- and Low-Altitude Plasma Instruments at auroral latitudes. The observed ion-dispersion pattern shows lower-energy ions toward the equatorward side of the band and higher-energy ions toward the poleward side of the band. Ion bands have their highest-energy flux at small pitch angles. The observed bands have been correlated with storm phase (by Dst) and substorm phase (by AE). Bands are more likely to occur during main-storm phase than during recovery storm phase. Substorm correlations are statistically significant, but there is a hint that most bands occur during substorm recovery phase. Two models have the potential of producing ion signatures that are similar to the band feature. They are the time-of-flight mechanism and the convective dispersion mechanism. Under a time-of-flight mechanism, ions are dispersed along a magnetic filed line with higher-energy particles outrunning lower energy particles. Ions are dispersed perpendicular to the magnetic field under convective dispersion. A time-of-flight effect does not explain the band energy-latitude dependence observed in the southern night or northern day very well, whereas the convective dispersion mechanism easily accomplishes this.

  15. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    NASA Technical Reports Server (NTRS)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  16. Wide Band to ''Double Band'' upgrade

    SciTech Connect

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs.

  17. Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers

    SciTech Connect

    Matyas, Alpar; Lugli, Paolo; Jirauschek, Christian

    2013-01-07

    Using a generalized version of Fermi's golden rule, collisional broadening is self-consistently implemented into ensemble Monte Carlo carrier transport simulations, and its effect on the transport and optical properties of terahertz quantum cascade lasers is investigated. The inclusion of broadening yields improved agreement with the experiment, without a significant increase of the numerical load. Specifically, this effect is crucial for a correct modeling at low biases. In the lasing regime, broadening can lead to significantly reduced optical gain and output power, affecting the obtained current-voltage characteristics.

  18. Opacity broadening and interpretation of suprathermal CO linewidths: Macroscopic turbulence and tangled molecular clouds

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Alves, J.; Burkert, A.; Goldsmith, P.

    2016-06-01

    Context. Since their first detection in the interestellar medium, (sub-)millimeter line observations of different CO isotopic variants have routinely been employed to characterize the kinematic properties of the gas in molecular clouds. Many of these lines exhibit broad linewidths that greatly exceed the thermal broadening expected for the low temperatures found within these objects. These observed suprathermal CO linewidths are assumed to originate from unresolved supersonic motions inside clouds. Aims: The lowest rotational J transitions of some of the most abundant CO isotopologues, 12CO and 13CO, are found to present large optical depths. In addition to well-known line saturation effects, these large opacities present a non-negligible contribution to their observed linewidths. Typically overlooked in the literature, in this paper we aim to quantify the impact of these opacity broadening effects on the current interpretation of the CO suprathermal line profiles. Methods: Combining large-scale observations and LTE modeling of the ground J = 1-0 transitions of the main 12CO, 13CO, C18O isotopologues, we have investigated the correlation of the observed linewidths as a function of the line opacity in different regions of the Taurus molecular cloud. Results: Without any additional contributions to the gas velocity field, a large fraction of the apparently supersonic (ℳ ~ 2-3) linewidths measured in both 12CO and 13CO (J = 1-0) lines can be explained by the saturation of their corresponding sonic-like, optically thin C18O counterparts assuming standard isotopic fractionation. Combined with the presence of multiple components detected in some of our C18O spectra, these opacity effects also seem to be responsible for most of the highly supersonic linewidths (ℳ > 8-10) detected in some of the broadest 12CO and 13CO spectra in Taurus. Conclusions: Our results demonstrate that most of the suprathermal 12CO and 13CO linewidths reported in nearby clouds like Taurus

  19. Speed dependence of CH335Cl-O2 line-broadening parameters probed on rotational transitions: Measurements and semi-classical calculations

    NASA Astrophysics Data System (ADS)

    Buldyreva, J.; Margulès, L.; Motiyenko, R. A.; Rohart, F.

    2013-11-01

    Relaxation parameters for K-components (K≤6) of six J→J+1 rotational transitions (J=6, 10, 17, 22, 31 and 33) of CH335Cl perturbed by O2 are measured at room temperature with Voigt, speed-dependent Voigt and Galatry profiles in order to probe the speed-dependence effects. With respect to the previous study of CH335Cl-N2 system [Guinet et al., J Quant Spectrosc Radiat Transfer 2012;113:1113], higher active-gas pressures are reached, providing better signal-to-noise ratios, and the exact expression of the Beer-Lambert law is introduced in the fitting procedure, leading, among other advantages, to much more realistic low-pressure results. The broadening parameters of the considered lines are also computed by a semi-classical method for various relative velocities of colliders and the powers characterizing the dependence of the collisional cross-sections on relative speeds are deduced as functions of the rotational numbers J and K. Additional calculations performed with the Maxwell-Boltzmann distribution of velocities show no significant difference with the earlier results [Buldyreva et al., Phys Chem Chem Phys 2011;13:20326] obtained within the mean thermal velocity approximation. Weighted sums of the presently measured Voigt-profile O2-broadening parameters and of the previously published N2-broadening ones are calculated to yield experimental air-broadening coefficients for spectroscopic databases.

  20. Study of pressure broadening effects of H2 on CO2 and CO in the near infrared region between 6317 and 6335 cm-1 at room temperature

    NASA Astrophysics Data System (ADS)

    Padmanabhan, A.; Tzanetakis, T.; Chanda, A.; Thomson, M. J.

    2014-01-01

    In this absorption spectroscopy study of CO2 and CO in the near-infrared (NIR) region between 6317 and 6335 cm-1, we focus on the broadening effect of H2 at room temperature (296 K). Absorption spectra were collected using a Tunable Diode Laser (TDL) operating in the NIR for various gas mixtures filled in a monel gas cell. The experimental parameters chosen in this study are highly relevant to combustion-related industrial applications where TDL sensors are employed to monitor CO2 and CO emissions. In many such applications H2 is always present and there is a need to understand the broadening effect of H2 on CO2 and CO to improve the detection quality of such sensors. Voigt profile analysis was performed to retrieve the experimental parameters. CO2-H2 broadening coefficients are presented for room temperature. From our study on the CO-H2 broadening effect at room temperature, we conclude that within the sensitivity of the measurements made, the presence of H2 has no significant effect in this region. The parameters calculated in this study are intended to be an addition to spectroscopic databases such as HITRAN.

  1. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  2. Singing with the Band

    ERIC Educational Resources Information Center

    Altman, Timothy Meyer; Wright, Gary K.

    2012-01-01

    Usually band, orchestra, and choir directors work independently. However, the authors--one a choral director, the other a band director--have learned that making music together makes friends. Not only can ensemble directors get along, but joint concerts may be just the way to help students see how music can reach the heart. Combined instrumental…

  3. Rubber Band Science

    ERIC Educational Resources Information Center

    Cowens, John

    2005-01-01

    Not only are rubber bands great for binding objects together, but they can be used in a simple science experiment that involves predicting, problem solving, measuring, graphing, and experimenting. In this article, the author describes how rubber bands can be used to teach the force of mass.

  4. Spectral line-shapes of oxygen B-band transitions measured with cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Wójtewicz, S.; Cygan, A.; Masłowski, P.; Domysławska, J.; Wcisło, P.; Zaborowski, M.; Lisak, D.; Trawiński, R. S.; Ciuryło, R.

    2014-11-01

    Results of line-shape measurements of self- and N2-broadened P9 P9 transition of the oxygen B band are presented. Spectra were acquired using the optical frequency comb- assisted Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer (PDH- locked FS-CRDS). In the line-shape analysis the line narrowing described by Dicke narrowing or/and the speed dependence of collisional broadening were taken into account. The multispectrum fitting technique was used to minimize numerical correlations between line-shape parameters. Collisional broadening and shifting coefficients are reported with sub-percent uncertainties. Influence of the spectral line-shape model used in data analysis on determined line intensities and collisional broadening is discussed.

  5. Progressive Band Selection

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin; Chang, Chein-I

    2009-01-01

    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  6. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  7. Buffer-gas-induced shift and broadening of hyperfine resonances in alkali-metal vapors

    NASA Astrophysics Data System (ADS)

    Oreto, P. J.; Jau, Y.-Y.; Post, A. B.; Kuzma, N. N.; Happer, W.

    2004-04-01

    We review the shift and broadening of hyperfine resonance lines of alkali-metal atoms in buffer gases. We present a simple theory both for the shift and the broadening induced by He gas. The theory is parametrized by the scattering length of slow electrons on He atoms and by the measured hyperfine intervals and binding energies of the S states of alkali-metal atoms. The calculated shifts and their temperature dependence are in good agreement with the published experimental data. The calculated broadening is 1.6 times smaller than the recent measurements, and more than 20 times smaller than the earlier measurements. We attribute much of the linewidth in the earlier experiments to possible small temperature gradients and the resulting inhomogeneous line broadening from the temperature dependence of hyperfine frequency shift at constant buffer-gas pressure.

  8. Progress with On-The-Fly Neutron Doppler Broadening in MCNP

    SciTech Connect

    Brown, Forrest B.; Martin, William R.; Yesilyurt, Gokhan; Wilderman, Scott

    2012-06-18

    The University of Michigan, ANL, and LANL have been collaborating on a US-DOE-NE University Programs project 'Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors.' This talk describes the project and provides results from the initial implementation of On-The-Fly Doppler broadening (OTF) in MCNP and testing. The OTF methodology involves high precision fitting of Doppler broadened cross-sections over a wide temperature range (the target for reactor calculations is 250-3200K). The temperature dependent fits are then used within MCNP during the neutron transport, for OTF broadening based on cell temperatures. It is straightforward to extend this capability to cover any temperature range of interest, allowing the Monte Carlo simulation to account for a continuous distribution of temperature ranges throughout the problem geometry.

  9. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics

    NASA Astrophysics Data System (ADS)

    Sim, Sangwan; Park, Jusang; Song, Jeong-Gyu; In, Chihun; Lee, Yun-Shik; Kim, Hyungjun; Choi, Hyunyong

    2013-08-01

    We report ultrafast pump-probe spectroscopy examining exciton dynamics in atomically thin MoS2. Spectrally and temporally resolved measurements are performed to investigate the interaction dynamics of two important direct-gap excitons (A and B) and their associated broadening kinetics. The two excitons show strongly correlated interexcitonic dynamic, in which the transient blue-shifted excitonic absorption originates from the internal A-B excitonic interaction. The observed complex spectral response is determined by the exciton collision-induced linewidth broadening; the broadening of the B-exciton linewidth in turn lowers the peak spectral amplitude of the A exciton. Resonant excitation at the B-exciton energy reveals that interexcitonic scattering plays a more important role in determining the broadening kinetics than free-carrier scattering.

  10. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  11. A universal equation for computing the beam broadening of incident electrons in thin films.

    PubMed

    Gauvin, Raynald; Rudinsky, Samantha

    2016-08-01

    A universal equation for computing the beam broadening of incident electrons in thin films is presented. This equation is based on the concepts of anomalous diffusion with the Hurst exponent H. When the thickness to elastic mean free path ratio, t/λ, is greater than 1, the Hurst exponent goes to 0.5 and this random walk behavior leads to the Goldstein et al. [1] beam broadening equation when non-relativistic screened Rutherford elastic cross-sections are used. When t/λ≪1, the lack of elastic collisions for the electron trajectories gives an H exponent of 1 and a different beam broadening equation is obtained. A general equation to compute the beam broadening that takes into account the variation of H with t/λ is presented and this equation was fitted and validated with Monte Carlo simulations of electron trajectories in thin films. PMID:27161415

  12. Evolution of shear banding flows in metallic glasses characterized by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yao, Li; Luan, Yingwei

    2016-06-01

    To reveal the evolution of shear banding flows, one-dimensional nanostructure metallic glass composites have been studied with molecular dynamics. The inherent size determines the initial thickness of shear bands, and the subsequent broadening can be restricted to some extent. The vortex-like flows evoke the atomic motion perpendicular to the shear plane, which accelerates the interatomic diffusion. The reduction of local strain rate causes the flow softening for monolithic Cu-Zr glass, but the participation of Cu-atoms in the shear banding flow gradually leads to the shear hardening for the composites.

  13. Strategies for broadening participation in the Maryland Sea Grant REU program

    NASA Astrophysics Data System (ADS)

    Moser, F. C.; Kramer, J.; Allen, J. R.

    2011-12-01

    A core goal of the ocean science community is to increase gender and ethnic diversity in its scientific workforce. Maryland Sea Grant strives to provide women and students from underrepresented groups in marine science opportunities to participate in its NSF-supported Research Experiences for Undergraduates (REU) program in estuarine processes. While women currently dominate the applicant student pool, and often the accepted student pool, we are trying a variety of strategies to increase the number of applicants and accepted students from underrepresented groups who might not otherwise be lured into marine science research and, ultimately, careers. For example, we have built partnerships with multicultural-focused undergraduate research programs and institutions, which can raise awareness about our REU program and its commitment to broadening diversity. Further, we work to attract first generation college students, students from small colleges with limited marine science opportunities and students from varied racial and ethnic backgrounds using such strategies as: 1) developing trust and partnerships with faculty at minority serving institutions; 2) expanding our outreach in advertising our program; 3) recruiting potential applicants at professional meetings; 4) targeting minority serving institutions within and beyond our region; 5) encouraging our REU alumni to promote our REU program among their peers; and 6) improving our application process. We believe these efforts contribute to the increase in the diversity of our summer-supported students and the change in the composition of our applicant pool over the last decade. Although we cannot definitively identify which strategies are the most effective at broadening participation in our program, we attribute most of our improvements to some combination of these strategies. In addition, pre- and post-surveying of our REU students improves our understanding of effective tools for recruiting and adapting our program

  14. Broadening perspectives on trauma and recovery: a socio-interpersonal view of PTSD.

    PubMed

    Maercker, Andreas; Hecker, Tobias

    2016-01-01

    Posttraumatic stress disorder (PTSD) is one of the very few mental disorders that requires by definition an environmental context-a traumatic event or events-as a precondition for diagnosis. Both trauma sequelae and recovery always occur in the context of social-interpersonal contexts, for example, in interaction with a partner, family, the community, and the society. The present paper elaborates and extends the social-interpersonal framework model of PTSD. This was developed to complement other intrapersonally focused models of PTSD, which emphasize alterations in an individual's memory, cognitions, or neurobiology. Four primary reasons for broadening the perspective from the individual to the interpersonal-societal contexts are discussed. The three layers of the model (social affects, close relationships, and culture and society) are outlined. We further discuss additional insights and benefits of the social-interpersonal perspective for the growing field of research regarding resilience after traumatic experiences. The paper closes with an outlook on therapy approaches and interventions considering this broader social-interpersonal perspective on PTSD. PMID:26996533

  15. Broadening perspectives on trauma and recovery: a socio-interpersonal view of PTSD†

    PubMed Central

    Maercker, Andreas; Hecker, Tobias

    2016-01-01

    Posttraumatic stress disorder (PTSD) is one of the very few mental disorders that requires by definition an environmental context—a traumatic event or events—as a precondition for diagnosis. Both trauma sequelae and recovery always occur in the context of social–interpersonal contexts, for example, in interaction with a partner, family, the community, and the society. The present paper elaborates and extends the social–interpersonal framework model of PTSD. This was developed to complement other intrapersonally focused models of PTSD, which emphasize alterations in an individual's memory, cognitions, or neurobiology. Four primary reasons for broadening the perspective from the individual to the interpersonal–societal contexts are discussed. The three layers of the model (social affects, close relationships, and culture and society) are outlined. We further discuss additional insights and benefits of the social–interpersonal perspective for the growing field of research regarding resilience after traumatic experiences. The paper closes with an outlook on therapy approaches and interventions considering this broader social–interpersonal perspective on PTSD. PMID:26996533

  16. Targeted methylation testing of a patient cohort broadens the epigenetic and clinical description of imprinting disorders.

    PubMed

    Poole, Rebecca L; Docherty, Louise E; Al Sayegh, Abeer; Caliebe, Almuth; Turner, Claire; Baple, Emma; Wakeling, Emma; Harrison, Lucy; Lehmann, Anna; Temple, I Karen; Mackay, Deborah J G

    2013-09-01

    Imprinting disorders are associated with mutations and epimutations affecting imprinted genes, that is those whose expression is restricted by parent of origin. Their diagnosis is challenging for two reasons: firstly, their clinical features, particularly prenatal and postnatal growth disturbance, are heterogeneous and partially overlapping; secondly, their underlying molecular defects include mutation, epimutation, copy number variation, and chromosomal errors, and can be further complicated by somatic mosaicism and multi-locus methylation defects. It is currently unclear to what extent the observed phenotypic heterogeneity reflects the underlying molecular pathophysiology; in particular, the molecular and clinical diversity of multilocus methylation defects remains uncertain. To address these issues we performed comprehensive methylation analysis of imprinted genes in a research cohort of 285 patients with clinical features of imprinting disorders, with or without a positive molecular diagnosis. 20 of 91 patients (22%) with diagnosed epimutations had methylation defects of additional imprinted loci, and the frequency of developmental delay and congenital anomalies was higher among these patients than those with isolated epimutations, indicating that hypomethylation of multiple imprinted loci is associated with increased diversity of clinical presentation. Among 194 patients with clinical features of an imprinting disorder but no molecular diagnosis, we found 15 (8%) with methylation anomalies, including missed and unexpected molecular diagnoses. These observations broaden the phenotypic and epigenetic definitions of imprinting disorders, and show the importance of comprehensive molecular testing for patient diagnosis and management. PMID:23913548

  17. Studying Velocity Turbulence from Doppler-broadened Absorption Lines: Statistics of Optical Depth Fluctuations

    SciTech Connect

    Lazarian, A.; Pogosyan, D.

    2008-10-10

    We continue our work on developing techniques for studying turbulence with spectroscopic data. We show that Doppler-broadened absorption spectral lines, in particular, saturated absorption lines, can be used within the framework of the previously introduced technique termed the velocity coordinate spectrum (VCS). The VCS relates the statistics of fluctuations along the velocity coordinate to the statistics of turbulence; thus, it does not require spatial coverage by sampling directions in the plane of the sky. We consider lines with different degree of absorption and show that for lines of optical depth less than one, our earlier treatment of the VCS developed for spectral emission lines is applicable, if the optical depth is used instead of intensity. This amounts to correlating the logarithms of absorbed intensities. For larger optical depths and saturated absorption lines, we show that only wings of the line are available for the analysis. In terms of the VCS formalism, this results in introducing an additional window, whose size decreases with the increase of the optical depth. As a result, strongly saturated absorption lines only carry the information about the small-scale turbulence. Nevertheless, the contrast of the fluctuations corresponding to the small-scale turbulence increases with the increase of the optical depth, which provides advantages for studying turbulence by combining lines with different optical depths. By combining different absorption lines one can develop a tomography of the turbulence in the interstellar gas in all its complexity.

  18. DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects

    PubMed Central

    Kessler, Kristin; Wunderlich, Ina; Uebe, Steffen; Falk, Nathalie S.; Gießl, Andreas; Helmut Brandstätter, Johann; Popp, Bernt; Klinger, Patricia; Ekici, Arif B.; Sticht, Heinrich; Dörr, Helmuth-Günther; Reis, André; Roepman, Ronald; Seemanová, Eva; Thiel, Christian T.

    2015-01-01

    Skeletal ciliopathies are a heterogeneous group of autosomal recessive osteochondrodysplasias caused by defects in formation, maintenance and function of the primary cilium. Mutations in the underlying genes affect the molecular motors, intraflagellar transport complexes (IFT), or the basal body. The more severe phenotypes are caused by defects of genes of the dynein-2 complex, where mutations in DYNC2H1, WDR34 and WDR60 have been identified. In a patient with a Jeune-like phenotype we performed exome sequencing and identified compound heterozygous missense and nonsense mutations in DYNC2LI1 segregating with the phenotype. DYNC2LI1 is ubiquitously expressed and interacts with DYNC2H1 to form the dynein-2 complex important for retrograde IFT. Using DYNC2LI1 siRNA knockdown in fibroblasts we identified a significantly reduced cilia length proposed to affect cilia function. In addition, depletion of DYNC2LI1 induced altered cilia morphology with broadened ciliary tips and accumulation of IFT-B complex proteins in accordance with retrograde IFT defects. Our results expand the clinical spectrum of ciliopathies caused by defects of the dynein-2 complex. PMID:26130459

  19. Fabrication of a 2-DOF electromagnetic energy harvester with in-phase vibrational bandwidth broadening

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Jui; Wu, Jia-Yin

    2016-09-01

    A vibration structure with two-degrees-of-freedom is proposed to increase the usable bandwidth of a micromachined electromagnetic energy harvester. Compared with the structure of a pure cantilever harvester, the proposed structure is formed by integrating a spiral diaphragm into a U-shaped cantilever diaphragm. By performing finite element analysis, the resonance frequencies of the two diaphragms are designed with a slight shift, both lower than 300 Hz. In addition, to achieve output bandwidth broadening, electroplated copper coils on the spiral and the U-shaped cantilever are coupled and the connection sequences of the coupled coils are arranged such that single- or duo-mode tuning of the energy harvester can be realized. The harvester delivers powers of 22.1 and 21.5 nW at two resonance frequencies of 211 and 274 Hz, respectively, in the duo-mode operation. The proposed spiral–cantilever coupled energy harvester has lower resonance frequencies and broader bandwidth than a pure cantilever-type harvester of equal area, and can therefore harvest more energy from the environment.

  20. Bulk band gaps in divalent hexaborides

    SciTech Connect

    Denlinger, Jonathan; Clack, Jules A.; Allen, James W.; Gweon, Gey-Hong; Poirier, Derek M.; Olson, Cliff G.; Sarrao, John L.; Bianchi, Andrea D.; Fisk, Zachary

    2002-08-01

    Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB6 additionally provide a stringent test case for proper inclusion of many-body effects in quasi-particle band calculations.

  1. An In-situ method for the study of strain broadening usingsynchrotronx-ray diffraction

    SciTech Connect

    Tang, Chiu C.; Lynch, Peter A.; Cheary, Robert W.; Clark, Simon M.

    2006-12-15

    A tensonometer for stretching metal foils has beenconstructed for the study of strain broadening in x-ray diffraction lineprofiles. This device, which is designed for use on the powderdiffractometer in Station 2.3 at Daresbury Laboratory, allows in-situmeasurements to be performed on samples under stress. It can be used fordata collection in either transmission or reflection modes using eithersymmetric or asymmetric diffraction geometries. As a test case,measurements were carried out on a 18mum thick copper foil experiencingstrain levels of up to 5 percent using both symmetric reflection andsymmetric transmission diffraction. All the diffraction profilesdisplayed peak broadening and asymmetry which increased with strain. Themeasured profiles were analysed by the fundamental parameters approachusing the TOPAS peak fitting software. All the observed broadenedprofiles were modelled by convoluting a refineable diffraction profile,representing the dislocation and crystallite size broadening, with afixed instrumental profile pre-determined usinghigh quality LaB6reference powder. The de-convolution process yielded "pure" sampleintegral breadths and asymmetry results which displayed a strongdependence on applied strain and increased almost linearly with appliedstrain. Assuming crystallite size broadening in combination withdislocation broadening arising from fcc a/2<110>111 dislocations,we have extracted the variation of mechanic al property with strain. Theobservation of both peak asymmetry and broadening has been interpreted asa manifestation of a cellular structure with cell walls and cellinteriors possessing high and low dislocation densities.

  2. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.

    PubMed

    Storm, P V; Cappelli, M A

    1996-08-20

    Laser-induced fluorescence of the H(α) transition of atomic hydrogen has previously been performed in the plume of a hydrogen arcjet thruster. Measurements of plasma velocity and temperature, based on the Doppler shift and broadening of the H(α) line shape, were previously published [Appl. Opt. 32, 6117 (1993)]. In that paper the Stark broadening of the H(α) transition was estimated from static-ion calculations performed in the early 1970's and found to be negligible in comparison with the Doppler broadening. However, more recent dynamic-ion calculations have shown the Stark broadening to be considerably larger than was previously assumed, resulting in inaccurate temperature measurements. We present a reanalysis of the fluorescence data, taking into account the improved Stark broadening calculations. The correct atomic hydrogen translation temperature and electron number density are obtained from the Doppler and Stark broadening components of the measured line shape. The results indicate a substantial drop in temperature from those previously reported. PMID:21102917

  3. Photon storage in {lambda}-type optically dense atomic media. III. Effects of inhomogeneous broadening

    SciTech Connect

    Gorshkov, Alexey V.; Andre, Axel; Lukin, Mikhail D.; Soerensen, Anders S.

    2007-09-15

    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)] and in the two preceding papers [Gorshkov et al., this issue, Phys. Rev. A 76, 033804 (2006); 76, 033805 (2006)], we used a universal physical picture to optimize and demonstrate equivalence between a wide range of techniques for storage and retrieval of photon wave packets in homogeneously broadened {lambda}-type atomic media, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo-based techniques. In the present paper, we generalize this treatment to include inhomogeneous broadening. In particular, we consider the case of Doppler-broadened atoms and assume that there is a negligible difference between the Doppler shifts of the two optical transitions. In this situation, we show that, at high enough optical depth, all atoms contribute coherently to the storage process as if the medium were homogeneously broadened. We also discuss the effects of inhomogeneous broadening in solid state samples. In this context, we discuss the advantages and limitations of reversing the inhomogeneous broadening during the storage time, as well as suggest a way for achieving high efficiencies with a nonreversible inhomogeneous profile.

  4. Non-symmetric broadening of the reflection notch in polymer stabilized cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Natarajan, Lalgudi V.; Voss, Jimmy R.; Tondiglia, Vincent P.; Yang, Deng-Ke; White, Timothy J.; Bunning, Timothy J.

    2010-08-01

    Non-symmetric broadening (to the blue side) of a cholesteric reflection notch was observed when a cell containing diacrylate and monoacrylate nematic LC monomers, a chiral dopant, nematic LC and a photoinitiator was exposed to very low intensity (microwatts) of 335 nm UV light. At very low intensity, the polymerization rate is very slow and takes a long time to complete as observed by real-time monitoring experiments. The polymerized scaffold templates the original liquid crystal helical structure. The 335 nm light is highly absorbed by the system which generates an intensity gradient throughout the thickness of the cell. This gradient produces a free radical density gradient in the later stage of the polymerization when diffusion is slowed by the growing polymer network. Since more monomer is consumed at the front half of the cell, a counter diffusion of chiral dopant towards the cell backside is observed. This leads to a local increase in the HTP causing a local blue shift of the notch wavelength. The net result observed in transmission is a broadening of the reflection bandwidth from 70 nm to 200 nm where the broadening occurs only to the blue side of the original notch. By varying the intensity of the UV source on one side of the substrate, the broadening magnitude could be controlled. Simultaneous UV illumination from both sides of the cell reduced the broadening considerably. The broadened notch was switchable at high electrical field (20V/μm).

  5. Long-pathlength infrared absorption measurements in the 8- to 14-{mu}m atmospheric window: Self-broadening coefficient data

    SciTech Connect

    Kulp, T.J.; Shinn, J.

    1995-04-01

    The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and 14 {mu}m, this absorption can be attributed primarily to water vapor. It consists of (1) weak lines originating from the edge of the water vapor pure rotational band (at low wavenumbers) and the trailing P-branch of the v{sub 2} rovibrational band (at the high-wavenumber boundary of the window); and (2) the water vapor continuum absorption. The goal of our project has been to improve our quantitative and physical understanding of both of these absorption processes. Specifically, our immediate aims are to fill gaps in the experimental radiative transfer databases pertaining to the line parameters (i.e., line intensities and broadening coefficients) and to the self- and foreign-broadened water vapor continuum. To accomplish our goals, we have made long-pathlength absorption measurements using a Fourier transform infrared spectrometer (FTIR) (for the continuum and line measurements, at low resolution) and a tunable diode laser absorption spectrometer (TDLAS) (for the line measurements, at high resolution). These measurements were made on gas samples contained in a 400-m maximum pathlength Horn Pimentel multipass cell designed and constructed for this project.

  6. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  7. Chiral Bands and Triaxiality

    SciTech Connect

    Petrache, C.M.

    2004-02-27

    The results obtained with the GASP array in the A=130 mass region are reviewed, emphasizing the discovery excited highly-deformed bands and their decay out, the study of the odd-odd Pr nuclei up to high spins, the discovery of stable triaxial bands in Nd nuclei close to the N=82 shell closure. The very recent studies of nuclei near the proton drip line are described. A discussion of the origin of the various doublet bands observed in odd-odd nuclei of the A=130 mass region is presented.

  8. Observation of blue satellite bands and photoassociation at ultracold temperatures

    SciTech Connect

    Pichler, Marin; Qi Jianbing; Stwalley, William C.; Beuc, Robert; Pichler, Goran

    2006-02-15

    We have observed atomic line self-broadening of Cs near 7P{sub 3/2} and 7P{sub 1/2} atomic lines at ultracold temperatures using a magneto-optical trap and resonant ionization detection. We have observed blue satellite band features at detunings of 560 and 800 MHz, respectively, as well as sharp hyperfine-split photoassociative spectra on the red wings of each line and also on the blue wings. Possible explanations of these features are discussed.

  9. Assessment of autonomic response by broad-band respiration

    NASA Technical Reports Server (NTRS)

    Berger, R. D.; Saul, J. P.; Cohen, R. J.

    1989-01-01

    We present a technique for introducing broad-band respiratory perturbations so that the response characteristics of the autonomic nervous system can be determined noninvasively over a wide range of physiologically relevant frequencies. A subject's respiratory bandwidth was broadened by breathing on cue to a sequence of audible tones spaced by Poisson intervals. The transfer function between the respiratory input and the resulting instantaneous heart rate was then computed using spectral analysis techniques. Results using this method are comparable to those found using traditional techniques, but are obtained with an economy of data collection.

  10. The origin and implementation of the Broadening Experiences in Scientific Training programs: an NIH common fund initiative.

    PubMed

    Meyers, Frederick J; Mathur, Ambika; Fuhrmann, Cynthia N; O'Brien, Theresa C; Wefes, Inge; Labosky, Patricia A; Duncan, D'Anne S; August, Avery; Feig, Andrew; Gould, Kathleen L; Friedlander, Michael J; Schaffer, Chris B; Van Wart, Audra; Chalkley, Roger

    2016-02-01

    Recent national reports and commentaries on the current status and needs of the U.S. biomedical research workforce have highlighted the limited career development opportunities for predoctoral and postdoctoral trainees in academia, yet little attention is paid to preparation for career pathways outside of the traditional faculty path. Recognizing this issue, in 2013, the U.S. National Institutes of Health (NIH) Common Fund issued a request for application titled "NIH Director's Biomedical Research Workforce Innovation Award: Broadening Experiences in Scientific Training (BEST)." These 5-yr 1-time grants, awarded to 17 single or partnering institutions, were designed to develop sustainable approaches to broaden graduate and postgraduate training, aimed at creating training programs that reflect the range of career options that trainees may ultimately pursue. These institutions have formed a consortium in order to work together to develop, evaluate, share, and disseminate best practices and challenges. This is a first report on the early experiences of the consortium and the scope of participating BEST programs. In this report, we describe the state of the U.S. biomedical workforce and development of the BEST award, variations of programmatic approaches to assist with program design without BEST funding, and novel approaches to engage faculty in career development programs. To test the effectiveness of these BEST programs, external evaluators will assess their outcomes not only over the 5 yr grant period but also for an additional 10 yr beyond award completion. PMID:26432783

  11. Investigating Ca II Emission in the RS Canum Venaticorum Binary ER Vulpeculae Using the Broadening Function Formalism

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya; Walker, Gordon A. H.; Rucinski, Slavek M.; Bohlender, David A.; Davidge, Tim J.

    2005-08-01

    The synchronously rotating G stars in the detached, short-period (0.7 days), partially eclipsing binary ER Vul are the most chromospherically active solar-type stars known. We have monitored activity in the Ca II H and K reversals for almost an entire orbit. Rucinski's broadening function formalism allows the photospheric contribution to be objectively subtracted from the highly blended spectra. The power of the broadening function technique is also demonstrated by the good agreement of radial velocities with those measured by others from less crowded spectral regions. In addition to strong Ca II emission from the primary and secondary, there appears to be a high-velocity stream flowing onto the secondary, where it stimulates a large active region on the surface 30°-40° in advance of the subbinary longitude. A model light curve with a spot centered on the same longitude also gives the best fit to the observed light curve. A flare with ~13% more power than at other phases was detected in one spectrum. We suggest that ER Vul may offer a magnified view of the more subtle chromospheric effects synchronized to planetary revolution seen in certain 51 Peg-type systems.

  12. VAMDC FP7 project and STARK-B database: C II Stark broadening parameters for white dwarf atmospheres research

    SciTech Connect

    Larbi-Terzi, Neila; Ben Nessib, Nebil; Sahal-Brechot, Sylvie; Dimitrijevic, Milan S.

    2010-11-23

    Stark broadening parameters of C II lines were determined within 3s-np spectral series within the semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, calculated additionally using the Coulomb approximation (the method of Bates and Damgaard). The both results were compared and the disagreement is found only in one case where the configuration mixing allows a forbidden transition to a close perturbing energy level. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al.. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e-Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  13. Simultaneous forward--backward Raman scattering studies of D sub 2 broadened by D sub 2 , He, and Ar

    SciTech Connect

    Rosasco, G.J.; Bowers, W.J. Jr.; Hurst, W.S. ); Looney, J.P. ); Smyth, K.C. ); May, A.D. )

    1991-06-15

    Unavoidable beam crossings within a spherical-mirror, multipass stimulated Raman gain cell give rise simultaneously to forward- and backward-scattering Raman signals. In the Doppler-broadened/Dicke-narrowed regime of density, the lineshape is a function of the momentum transfer in the scattering process and thus the observed spectra will have more complex lineshapes than those seen with simple forward or backward scattering geometries. The analyses necessary to quantitatively account for such forward--backward spectra are summarized. These spectra enable unique experimental tests of the lineshape functions used for the description of the Raman {ital Q}-branch spectrum under conditions where Doppler contributions and Dicke narrowing are significant. Results for the D{sub 2}:D{sub 2} and D{sub 2}:He systems support the well-known Galatry, or soft collision, lineshape function. However, in the case of D{sub 2}:Ar, our results suggest the need to employ the more general, complex soft collision function. In addition, these studies have provided data on linear-with-density line broadening coefficients (previously published) and line shifting coefficients (reported here) for these molecular systems.

  14. Laparoscopic gastric banding

    MedlinePlus

    ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ... panel on weight loss surgery: executive report update. Obesity . 2009;17:842-62. PMID: 19396063 www.ncbi. ...

  15. Laparoscopic gastric banding

    MedlinePlus

    ... lining), heartburn , or stomach ulcers Infection in the port, which may need antibiotics or surgery Injury to ... may not be able to reach the access port to tighten or loosen the band (you would ...

  16. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  17. CSF oligoclonal banding - slideshow

    MedlinePlus

    ... presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy ... Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous system (CNS) and collect waste products, as well as ...

  18. CSF oligoclonal banding

    MedlinePlus

    ... system. Oligoclonal bands may be a sign of multiple sclerosis. How the Test is Performed A sample of ... Performed This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. ...

  19. Band crossing in isovalent semiconductor alloys with large size mismatch

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Wei, Su-Huai

    2012-02-01

    Mixing isovalent compounds AC with BC to form alloys A1-xBxC has been an effective way in band structure engineering to enhance the availability of material properties. In most cases, the mixed isovalent atoms A and B, such as Al and Ga in Al1-xGaxAs or As and Sb in GaAs1-xSbx are similar in their atomic sizes and chemical potentials; therefore, the physical properties of A1-xBxC change smoothly from AC to BC. However, in some cases when the chemical and size differences between the isovalent atoms A and B are large, adding a small amount of B to AC or vice versa can lead to a discontinuous change in the electronic band structure. These large size- and chemicalmismatched (LSCM) systems often show unusual and abrupt changes in the alloys' material properties, which provide great potential in material design for novel device applications. In this report, based on first-principles band-structure calculations we show that for LSCM GaAs1-xNx and GaAs1-xBix alloys at the impurity limit the N (Bi)-induced impurity level is above (below) the conduction-(valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.

  20. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  1. CRYSIZ: a program for computing crystallite size and strain from the broadening of powder diffraction lines

    SciTech Connect

    Hubbard, C.R.; Morosin, B.; Stewart, J.M.

    1996-09-01

    The program CRYSIZ is designed to take the powder diffraction line profiles for a well-crystallized sample, called a reference pattern, and for a sample of the same substance, called a broadened pattern, to produce measures of the mean crystallite size, the distribution of crystallite sizes, and the root mean square residual microstrain in the broadened sample. The data required are the two powder patterns and a series of directives to signal the calculations and plots to be done during the execution of the program. The program loads files containing the background corrected powder diffraction intensity data for both the reference and broadened patterns. Preliminary calculations find the centroids, full width at half maximums, integral breadths, spans over sum, and second moments. Two methods of deconvoluting the profile to calculate size and strain are allowed. Either the direct or the Stokes Fourier coefficient method of deconvolution may be chosen. In the direct method the profiles are extracted by numerical fitting. This method is slower but produces unfolded profiles free of ringing and the ``hook effect``. In this case the Fourier coefficients required for Warren-Averbach analysis are produced from the deconvoluted profile. In the Stokes method the diffraction pattern of each reference and broadened profile is Fourier transformed to produce a set of Fourier coefficients. The Fourier coefficients of the broadened profiles are divided by those of the reference pattern. The resulting coefficients are the Stokes coefficients. The Stokes coefficients are smoothed by a least- squares procedure in order to remove noise and quell ringing and hooking, then used as input to a reverse Fourier transform. This transform produces an ``unfolded powder line,`` which is a best estimate of the broadened profile with the reference profile and noise removed. The deconvolution of the reference profile gives a broadened profile due only to the crystallite size and strain.

  2. Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Hedges, Christina; Madhusudhan, Nikku

    2016-05-01

    Spectroscopic observations of exoplanets are leading to unprecedented constraints on their atmospheric compositions. However, molecular abundances derived from spectra are degenerate with the absorption cross-sections which form critical input data in atmospheric models. Therefore, it is important to quantify the uncertainties in molecular cross-sections to reliably estimate the uncertainties in derived molecular abundances. However, converting line lists into cross-sections via line broadening involves a series of prescriptions for which the uncertainties are not well understood. We investigate and quantify the effects of various factors involved in line broadening in exoplanetary atmospheres - the profile evaluation width, pressure versus thermal broadening, broadening agent, spectral resolution and completeness of broadening parameters - on molecular absorption cross-sections. We use H2O as a case study as it has the most complete absorption line data. For low-resolution spectra (R ≲ 100) for representative temperatures and pressures (T ˜ 500-3000 K, P ≲ 1 atm) of H2-rich exoplanetary atmospheres, we find the median difference in cross-sections (δ) introduced by various aspects of pressure broadening to be ≲1 per cent. For medium resolutions (R ≲ 5000), including those attainable with James Webb Space Telescope, we find that δ can be up to 40 per cent. For high resolutions (R ˜ 105), δ can be ≳100 per cent, reaching ≳1000 per cent for low temperatures (T ≲ 500 K) and high pressures (P ≳ 1 atm). The effect is higher still for self-broadening. We generate a homogeneous data base of absorption cross-sections of molecules of relevance to exoplanetary atmospheres for which high-temperature line lists are available, particularly H2O, CO, CH4, CO2, HCN, and NH3.

  3. Development of softcopy environment for primary color banding visibility assessment

    NASA Astrophysics Data System (ADS)

    Min, Byungseok; Pizlo, Zygmunt; Allebach, Jan P.

    2008-01-01

    Fine-pitch banding is one of the most unwanted artifacts in laser electrophotographic (EP) printers. It is perceived as a quasiperiodic fluctuation in the process direction. Therefore, it is essential for printer vendors to know how banding is perceived by humans in order to improve print quality. Monochrome banding has been analyzed and assessed by many researchers; but there is no literature that deals with the banding of color laser printers as measured from actual prints. The study of color banding is complicated by the fact that the color banding signal is physically defined in a three-dimensional color space, while banding perception is described in a one-dimensional sense such as more banding or less banding. In addition, the color banding signal arises from the independent contributions of the four primary colorant banding signals. It is not known how these four distinct signals combine to give rise to the perception of color banding. In this paper, we develop a methodology to assess the banding visibility of the primary colorant cyan based on human visual perception. This is our first step toward studying the more general problem of color banding in combinations of two or more colorants. According to our method, we print and scan the cyan test patch, and extract the banding profile as a one dimensional signal so that we can freely adjust the intensity of banding. Thereafter, by exploiting the pulse width modulation capability of the laser printer, the extracted banding profile is used to modulate a pattern consisting of periodic lines oriented in the process direction, to generate extrinsic banding. This avoids the effect of the halftoning algorithm on the banding. Furthermore, to conduct various banding assessments more efficiently, we also develop a softcopy environment that emulates a hardcopy image on a calibrated monitor, which requires highly accurate device calibration throughout the whole system. To achieve the same color appearance as the hardcopy

  4. Temperature dependence of the fundamental band gap parameters in cadmium-rich ZnxCd1-xSe using photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gupta, Lalita; Rath, S.; Abbi, S. C.; Jain, F. C.

    2003-10-01

    Thin films of ternary ZnxCd1-xSe were deposited on GaAs (100) substrate using metalorganic- chemical-vapour-deposition (MOCVD) technique. Temperature dependence of the nearband- edge emission from these Cd-rich ZnxCd1-x Se (for x _ 0_025, 0.045) films has been studied using photoluminescence spectroscopy. Relevant parameters that describe temperature variation of the energy and broadening of the fundamental band gap have been evaluated using various models including the two-oscillator model, the Bose-Einstein model and the Varshni model. While all these models suffice to explain spectra at higher temperatures, the two-oscillator model not only explains low temperature spectra adequately but also provides additional information concerning phonon dispersion in these materials.

  5. BROAD IRON LINES IN NEUTRONS STARS: DYNAMICAL BROADENING OR WIND SCATTERING?

    SciTech Connect

    Cackett, Edward M.; Miller, Jon M.

    2013-11-01

    Broad iron emission lines are observed in many accreting systems from black holes in active galactic nuclei and X-ray binaries to neutron star low-mass X-ray binaries. The origin of the line broadening is often interpreted as due to dynamical broadening and relativistic effects. However, alternative interpretations have been proposed, included broadening due to Compton scattering in a wind or accretion disk atmosphere. Here we explore the observational signatures expected from broadening in a wind, in particular that the iron line width should increase with an increase in the column density of the absorber (due to an increase in the number of scatterings). We study the data from three neutron star low-mass X-ray binaries where both a broad iron emission line and absorption lines are seen simultaneously, and show that there is no significant correlation between line width and column density. This favors an inner disk origin for the line broadening rather than scattering in a wind.

  6. Effect of Surface Adsorption on Temporal and Spatial Broadening in Micro Free Flow Electrophoresis.

    PubMed

    Geiger, Matthew; Harstad, Rachel K; Bowser, Michael T

    2015-12-01

    Analyte adsorption onto surfaces presents a challenge for many separations, often becoming a significant source of peak broadening and asymmetry. We have shown that surface adsorption has no effect on peak position or spatial broadening in micro free flow electrophoresis (μFFE) separations. Surface adsorption does affect the time it takes an analyte to travel through the μFFE separation channel and therefore contributes to temporal broadening. These results were confirmed using μFFE separations of fluorescein, rhodamine 110, and rhodamine 123 in a low ionic strength buffer to promote surface adsorption. Peak widths and asymmetries were measured in both the temporal and spatial dimensions. Under these conditions rhodamine 123 exhibited significant interactions with the separation channel surface, causing increased peak broadening and asymmetry in the temporal dimension. Broadening or asymmetry in the spatial dimension was not significantly different than that of fluorescein, which did not interact with the capillary surface. The effect of strong surface interactions was assessed using μFFE separations of Chromeo P503 labeled myoglobin and cytochrome c. Myoglobin and cytochrome c were well resolved and gave rise to symmetrical peaks in the spatial dimension even under conditions where permanent adsorption onto the separation channel surface occurred. PMID:26496470

  7. A broad-band VLF-burst associated with ring-current electrons. [geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Maeda, K.

    1982-01-01

    Frequency band broadening takes place just outside of the nighttime plasmasphere, where the density of cold plasma is known to be very low during the later phase of a geomagnetic storm. Instead of the gradual broadening of several hours duration, a burst type broadening of VLF emission lasting less than ten minutes was observed by Explorer 45 in a similar location. The magnetic field component of this emission is very weak and the frequency spreads below the local half electron cyclotron frequency. Corresponding enhancement of the anisotropic ring current electrons is also very sudden and limited below the order of 10 keV without significant velocity dispersion, in contrast to the gradual broadening events. The cause of this type of emission band spreading can be attributed to the generation of the quasielectrostatic whistler mode emission of short wavelength by hot bimaxwellian electrons surging into the domain of relatively low density magnetized cold plasma. The lack of energy dispersion in the enhanced electrons indicates that the inner edge of the plasma sheet, the source of these hot electrons, is not far from the location of this event.

  8. A variable geometry combustor for broadened properties fuels

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Fear, J. S.

    1987-01-01

    A program was conducted to design and develop a variable geometry combustor, sized for the cycle and envelope of a large commercial turbofan engine. The combustor uses a variable area swirl cup to control stoichiometry in the primary combustion zone. Potential advantages of this design include improved capability to burn non-standard fuels, short system length, and increased operating temperature range for advanced high performance engine cycles. After considerable development, key program emissons and performance goals were met with the variable geometry combustor. Primary development efforts were to evolve improved variable swirl cup configurations. In particular, air leakage through the variable area swirl cup had a strong effect on low power emissions and performance, while smoke level at high power was affected by features for improved mixing of the fuel and swirler air flow. Additional design and development is still needed to evolve a practical variable geometry combustor.

  9. Line parameters including temperature dependences of self- and air-broadened line shapes of 12C16O2: 1.6-μm region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Miller, Charles E.; Drouin, Brian J.; Payne, Vivienne H.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Gamache, Robert R.

    2016-07-01

    Pressure-broadened line shapes in the 30013←00001 (ν1+4 ν20 +ν3) band of 12C16O2 at 6228 cm-1 are reanalyzed using new spectra recorded with sample temperatures down to 170 K. High resolution, high signal-to-noise (S/N) laboratory measurements of line shapes (Lorentz air- and self-broadened half-width coefficients, pressure-shift coefficients and off-diagonal relaxation matrix element coefficients) as a function of gas sample temperatures for various pressures and volume mixing ratios are presented. The spectra were recorded using two different Fourier transform spectrometers (FTS): (1) the McMath-Pierce FTS located at the National Solar Observatory on Kitt Peak, Arizona (and reported in Devi et al., J Mol Spectrosc 2007;245:52-80) and, (2) the Bruker IFS-125HR FTS at the Jet Propulsion Laboratory in Pasadena, California. The 19 spectra taken at Kitt Peak were all recorded near room temperature while the 27 Bruker spectra were acquired both at room temperature and colder temperatures (170-296 K). Various spectral resolutions (0.004-0.011 cm-1), absorption path lengths (2.46-121 m) and CO2 samples (natural and 12C-enriched) were included in the dataset. To maximize the accuracies of the various retrieved line parameters, a multispectrum nonlinear least squares spectrum fitting software program was used to adjust the ro-vibrational constants (G,B,D etc.) and intensity parameters (including Herman-Wallis terms) instead of directly measuring the individual line positions and intensities. To minimize systematic residuals, line mixing (via off-diagonal relaxation matrix elements) and quadratic speed dependence parameters were included in the analysis. Contributions from other weakly absorbing bands: the 30013←00001 and 30012←00001 bands of 13C16O2, the 30013←00001 band of 12C16O18O, hot bands 31113←01101 and 32212←02201 of 12C16O2, as well as the 40013←10001 and the 40014←10002 bands of 12C16O2, present within the fitted interval were also measured

  10. A meta-analysis of the magnetic line broadening in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.

    2014-03-01

    A multiline Bayesian analysis of the Zeeman broadening in the solar atmosphere is presented. A hierarchical probabilistic model, based on the simple but realistic Milne-Eddington approximation to the solution of the radiative transfer equation is used to explain the data in the optical and near infrared. Our method makes use of the full line profiles of more than 500 spectral lines from 4000 Å to 1.8 μm. Although the problem suffers from a strong degeneracy between the magnetic broadening and any other remaining broadening mechanism, the hierarchical model allows the magnetic contribution to be isolated with reliability. We obtain the cumulative distribution function for the field strength and use it to put reliable upper limits on the unresolved magnetic field strength in the solar atmosphere. The field is below 160-180 G with a 90% probability.

  11. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  12. Measurements of H2O broadening coefficients of infrared methane lines

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Landsheere, X.; Pangui, E.; Huet, F.; Hartmann, J.-M.; Tran, H.

    2016-04-01

    H2O-broadening and shifting coefficients of 76 ro-vibrational transitions of methane in the mid-and near-infrared regions were measured for the first time. For this, eight spectra of methane diluted in water vapor were recorded with a high resolution Fourier Transform spectrometer for pressures ranging from 20 to 80 Torr and at 323 and 367 K. Line broadening and shifting coefficients were retrieved from the measured spectra through fits using Voigt profiles. Values at room temperature (296 K) were then deduced and compared with those of dry air. The results show that H2O-broadenings of methane lines are, on average, 34% larger than those for dry air.

  13. Spectral broadening in lithium niobate in a self-diffraction geometry using ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Jayashree A.; Dota, Krithika; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-05-01

    We report on broadband light generation in the impulsive regime in an un-doped lithium niobate (LiNbO3) crystal by two femtosecond laser pulses (36 fs) from a Ti-sapphire laser amplifier. We systematically investigate the role of incident intensity on spectral broadening. At relatively low incident intensity (0.7 TW cm-2), spectral broadening in the transmitted beam occurs due to the combined effect of self-phase modulation and cross-phase modulation. At higher incident intensity (10.2 TW cm-2), we observe generation of as many as 21 anti-Stokes orders due to coherent anti-Stokes Raman scattering in self-diffraction geometry. Moreover, we observe order-dependent spectral broadening of anti-Stokes lines that may be attributed to the competition with other nonlinear optical effects like cross-phase modulation.

  14. Influence of Rayleigh-Doppler broadening on the selection of H2O dial system parameters

    NASA Technical Reports Server (NTRS)

    Ismail, S.; Browell, E. V.

    1986-01-01

    Computer simulations have enabled the performance of a H2O Differential Absorption Lidar (DIAL) system to be studied by spectrally analyzing the forward propagating and backscattered laser energy. The simulations were done for a high altitude (21 km) DIAL system operating in a nadir-viewing mode. The influence of Rayleigh Doppler broadening on DIAL measurement accuracies were evaluated and show that the Rayleigh broadening influence, which can be corrected to first order in regions free of large aerosol gradients, reduces the sensitivity of DIAL H2O measurement errors in the upper tropospheric region. The ability to correct the Rayleigh broadening and the selection of H2O DIAL parameters when all the systematic effects are combined, were discussed.

  15. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    SciTech Connect

    Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.; Bowers, John E.

    2015-10-26

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from a comparison of measured and calculated gain versus current relations.

  16. Positive emotions broaden the scope of attention and thought-action repertoires

    PubMed Central

    Fredrickson, Barbara L.; Branigan, Christine

    2011-01-01

    The broaden-and-build theory (Fredrickson, 1998, 2001) hypothesises that positive emotions broaden the scope of attention and thought-action repertoires. Two experiments with 104 college students tested these hypotheses. In each, participants viewed a film that elicited (a) amusement, (b) contentment, (c) neutrality, (d) anger, or (e) anxiety. Scope of attention was assessed using a global-local visual processing task (Experiment 1) and thought-action repertoires were assessed using a Twenty Statements Test (Experiment 2). Compared to a neutral state, positive emotions broadened the scope of attention in Experiment 1 and thought-action repertoires in Experiment 2. In Experiment 2, negative emotions, relative to a neutral state, narrowed thought-action repertoires. Implications for promoting emotional well-being and physical health are discussed. PMID:21852891

  17. Electronic structure of graphene on a reconstructed Pt(100) surface: Hydrogen adsorption, doping, and band gaps

    NASA Astrophysics Data System (ADS)

    Ulstrup, Søren; Nilsson, Louis; Miwa, Jill A.; Balog, Richard; Bianchi, Marco; Hornekær, Liv; Hofmann, Philip

    2013-09-01

    We probe the structure and electronic band structure of graphene grown on a Pt(100) substrate using scanning tunneling microscopy, low energy electron diffraction, and angle-resolved photoemission spectroscopy. It is found that the graphene layer lacks a well-defined azimuthal orientation with respect to the substrate, causing a circular smearing of the π band instead of a well-defined Dirac cone near the Fermi level. The graphene is found to be electron doped placing the Dirac point ˜0.45 eV below the Fermi level, and a gap of 0.15±0.03 eV is found at the Dirac point. We dose atomic hydrogen and monitor the coverage on the graphene by analyzing the impurity-induced broadening of the π-band width. Saturation of graphene on Pt(100) with hydrogen does not expand the band gap, but instead hydrogen-mediated broadening and rehybridization of the graphene sp2 bonds into sp3 leads to a complete disruption of the graphene π band, induces a lifting of the Pt(100) reconstruction, and introduces a dispersing Pt state near the Fermi level. Deposition of rubidium on graphene on Pt(100) leads to further electron doping, pushing the Dirac point to a binding energy of ˜1.35 eV, and increasing the band gap to 0.65±0.04 eV.

  18. Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors

    SciTech Connect

    William Martin

    2012-11-16

    A new method to obtain Doppler broadened cross sections has been implemented into MCNP, removing the need to generate cross sections for isotopes at problem temperatures. Previous work had established the scientific feasibility of obtaining Doppler-broadened cross sections "on-the-fly" (OTF) during the random walk of the neutron. Thus, when a neutron of energy E enters a material region that is at some temperature T, the cross sections for that material at the exact temperature T are immediately obtained by interpolation using a high order functional expansion for the temperature dependence of the Doppler-broadened cross section for that isotope at the neutron energy E. A standalone Fortran code has been developed that generates the OTF library for any isotope that can be processed by NJOY. The OTF cross sections agree with the NJOY-based cross sections for all neutron energies and all temperatures in the range specified by the user, e.g., 250K - 3200K. The OTF methodology has been successfully implemented into the MCNP Monte Carlo code and has been tested on several test problems by comparing MCNP with conventional ACE cross sections versus MCNP with OTF cross sections. The test problems include the Doppler defect reactivity benchmark suite and two full-core VHTR configurations, including one with multiphysics coupling using RELAP5-3D/ATHENA for the thermal-hydraulic analysis. The comparison has been excellent, verifying that the OTF libraries can be used in place of the conventional ACE libraries generated at problem temperatures. In addition, it has been found that using OTF cross sections greatly reduces the complexity of the input for MCNP, especially for full-core temperature feedback calculations with many temperature regions. This results in an order of magnitude decrease in the number of input lines for full-core configurations, thus simplifying input preparation and reducing the potential for input errors. Finally, for full-core problems with multiphysics

  19. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  20. Synthesizing folded band chaos.

    PubMed

    Corron, Ned J; Hayes, Scott T; Pethel, Shawn D; Blakely, Jonathan N

    2007-04-01

    A randomly driven linear filter that synthesizes Lorenz-like, reverse-time chaos is shown also to produce Rössler-like folded band wave forms when driven using a different encoding of the random source. The relationship between the topological entropy of the random source, dissipation in the linear filter, and the positive Lyapunov exponent for the reverse-time wave form is exposed. The two drive encodings are viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing both the Lorenz butterfly and Rössler folded band paradigms of nonlinear dynamics. PMID:17500950

  1. GEANT4 simulation of the effects of Doppler energy broadening in Compton imaging.

    PubMed

    Uche, C Z; Cree, M J; Round, W H

    2011-09-01

    A Monte Carlo approach was used to study the effects of Doppler energy broadening on Compton camera performance. The GEANT4 simulation toolkit was used to model the radiation transport and interactions with matter in a simulated Compton camera. The low energy electromagnetic physics model of GEANT4 incorporating Doppler broadening developed by Longo et al. was used in the simulations. The camera had a 9 × 9 cm scatterer and a 10 × 10 cm absorber with a scatterer to-absorber separation of 5 cm. Modelling was done such that only the effects of Doppler broadening were taken into consideration and effects of scatterer and absorber thickness and pixelation were not taken into account, thus a 'perfect' Compton camera was assumed. Scatterer materials were either silicon or germanium and the absorber material was cadmium zinc telluride. Simulations were done for point sources 10 cm in front of the scatterer. The results of the simulations validated the use of the low energy model of GEANT4. As expected, Doppler broadening was found to degrade the Compton camera imaging resolution. For a 140.5 keV source the resulting full-width-at-half-maximum (FWHM) of the point source image without accounting for Doppler broadening and using a silicon scatterer was 0.58 mm. This degraded to 7.1 mm when Doppler broadening was introduced and degraded further to 12.3 mm when a germanium scatterer was used instead of silicon. But for a 511 keV source, the FWHM was better than for a 140 keV source. The FWHM improved to 2.4 mm for a silicon scatterer and 4.6 mm for a germanium scatterer. Our result for silicon at 140.5 keV is in very good agreement with that published by An et al. PMID:21556971

  2. Band structure of 235U

    NASA Astrophysics Data System (ADS)

    Ward, D.; Macchiavelli, A. O.; Clark, R. M.; Cline, D.; Cromaz, M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Görgen, A.; Hayes, A. B.; Lane, G. J.; Lee, I.-Y.; Nakatsukasa, T.; Schmidt, G.; Stephens, F. S.; Svensson, C. E.; Teng, R.; Vetter, K.; Wu, C. Y.

    2012-12-01

    Over a period of several years we have performed three separate experiments at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron in which 235U (thick target) was Coulomb-excited. The program involved stand-alone experiments with Gammmasphere and with the 8pi Spectrometer using 136Xe beams at 720 MeV, and a CHICO-Gammasphere experiment with a 40Ca beam at 184 MeV. In addition to extending the known negative-parity bands to high spin, we have assigned levels in some seven positive-parity bands which are in some cases (e.g., [631]1/2, [624]7/2, and [622]5/2) strongly populated by E3 excitation. The CHICO data have been analyzed to extract E2 and E3 matrix elements from the observed yields. Additionally, many M1 matrix elements could be extracted from the γ-ray branching ratios. A number of new features have emerged, including the unexpected attenuation of magnetic transitions between states of the same Nilsson multiplet, the breakdown of Coriolis staggering at high spin, and the effect of E3 collectivity on Coriolis interactions.

  3. How two-dimensional brick layer J-aggregates differ from linear ones: Excitonic properties and line broadening mechanisms.

    PubMed

    Dijkstra, Arend G; Duan, Hong-Guang; Knoester, Jasper; Nelson, Keith A; Cao, Jianshu

    2016-04-01

    We study the excitonic coupling and homogeneous spectral line width of brick layer J-aggregate films. We begin by analysing the structural information revealed by the two-exciton states probed in two-dimensional spectra. Our first main result is that the relation between the excitonic couplings and the spectral shift in a two-dimensional structure is different (larger shift for the same nearest neighbour coupling) from that in a one-dimensional structure, which leads to an estimation of dipolar coupling in two-dimensional lattices. We next investigate the mechanisms of homogeneous broadening-population relaxation and pure dephasing-and evaluate their relative importance in linear and two-dimensional aggregates. Our second main result is that pure dephasing dominates the line width in two-dimensional systems up to a crossover temperature, which explains the linear temperature dependence of the homogeneous line width. This is directly related to the decreased density of states at the band edge when compared with linear aggregates, thus reducing the contribution of population relaxation to dephasing. Pump-probe experiments are suggested to directly measure the lifetime of the bright state and can therefore support the proposed model. PMID:27059573

  4. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.

    PubMed

    Peled, Itay; Kaminsky, Ron; Kotler, Zvi

    2015-06-01

    In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%. PMID:26192666

  5. Electromagnetically induced transparency in a five-level cascade system under Doppler broadening: an analytical approach

    NASA Astrophysics Data System (ADS)

    Khoa, Dinh Xuan; Van Trong, Pham; Van Doai, Le; Bang, Nguyen Huy

    2016-03-01

    We develop an analytical approach on electromagnetically induced transparency (EIT) in a Doppler broadened medium consisting of five-level cascade systems excited by a strong coupling and weak probe laser fields. In a weak field limit of the probe light, EIT spectrum is interpreted as functions of controllable parameters of the coupling light and temperature of the medium. The theoretical interpretation of EIT spectrum is applied to the case of 85Rb atoms and compared with available experimental observation. Such an analytical interpretation provides quantitative parameters to control properties of the Doppler broadened EIT medium, and it is useful to find related applications.

  6. Measurement of electron density by Stark broadening in an ablative pulsed plasma thruster

    SciTech Connect

    Liu Feng; Nie Zongfu; Xu Xu; Zhou Qianhong; Li Linsen; Liang Rongqing

    2008-09-15

    Electron density was measured by Stark broadening in an ablative pulsed plasma thruster. The asymmetrical deconvolution is used to obtain Stark broadening. The result shows that the electron density in the discharge channel is 2.534x10{sup 22} m{sup -3} when the discharge energy is 5 J and the measured electron temperature is 18 000 K, and it is in excellent agreement with other experimental and theoretical data. The electron density in the discharge channel increases very minimally with increasing discharge energy.

  7. Cooling of cesium atomic beam with light from spectrally broadened diode lasers

    NASA Astrophysics Data System (ADS)

    Chan, Yat; Bhaskar, Natarajan D.

    1995-12-01

    We have used spectrally broadened counterpropagating radiation from tunable diode lasers to cool an atomic beam of cesium. This produces a continuous beam of cold atoms. The injection current to the single-mode diode laser is modulated at 10 MHz, resulting in spectrally broadened light for atomic cooling and optical pumping. The atomic beam is probed with a weak single-mode laser. This is a simple and relatively inexpensive method for producing a continuous supply of cold atoms. Copyright (c) 1995 Optical Society of America

  8. Collisional Shift and Broadening of Iodine Spectral Lines in Air Near 543 nm

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; McDaniel, J. C.

    1995-01-01

    The collisional processes that influence the absorption of monochromatic light by iodine in air have been investigated. Measurements were made in both a static cell and an underexpanded jet flow over the range of properties encountered in typical compressible-flow aerodynamic applications. Experimentally measured values of the collisional shift and broadening coefficients were 0.058 +/- 0.004 and 0.53 +/- 0.010 GHz K(exp 0.7)/torr, respectively. The measured shift value showed reasonable agreement with theoretical calculations based on Lindholm-Foley collisional theory for a simple dispersive potential. The measured collisional broadening showed less favorable agreement with the calculated value.

  9. Covariance Matrix of a Double-Differential Doppler-broadened Elastic Scattering Cross Section

    SciTech Connect

    Arbanas, Goran; Becker, B.; Dagan, R; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L

    2012-01-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on {sup 238}U are computed near the 6.67 eV resonance at temperature T = 10{sup 3} K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments.

  10. Experimental transition probabilities and Stark-broadening parameters of neutral and single ionized tin

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1979-01-01

    Strengths and Stark-effect widths of the Sn I and Sn II lines prominent between 3200 and 7900 A are measured with a spectroscopic shock tube. Absolute strengths of 17 ionic lines are obtained with estimated (22-50)% accuracy and conform to appropriate quantum-mechanical sum rules. Relative transition probabilities for nine prominent neutral tin lines, normalized to radiative-lifetime data, are compared with other experiments and theoretical predictions. Parameters for Stark-effect broadening are measured over a range of plasma electron densities. Broadening data (with accuracies of 15-35%) for one neutral and ten ionic lines of tin are compared to theoretical predictions.

  11. Enhancement of self-phase modulation induced spectral broadening in silicon suspended membrane waveguides

    NASA Astrophysics Data System (ADS)

    Zhang, Yaojing; Cheng, Zhenzhou; Liu, Linghai; Zhu, Bingqing; Wang, Jiaqi; Zhou, Wen; Wu, Xinru; Tsang, Hon Ki

    2016-05-01

    We experimentally observed a possibly enhanced self-phase modulation (SPM) in silicon suspended membrane waveguides (SMWs) by measuring the spectral broadening of optical pulses. The nonlinear coefficient n 2 and the two-photon absorption coefficient β 2 of silicon SMWs were measured to be (4.6 ± 0.9) × 10-18 m2 W-1 and 0.46 cm GW-1 at 1555 nm wavelength. We also proposed a method of using SPM-induced spectral broadening to obtain the coupling loss of a single grating coupler and experimentally compared the spectra of two grating couplers in silicon SMWs and in silicon-on-insulator waveguides.

  12. Pressure broadening of vibrational Raman lines in N2 at temperatures below 300 K

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; South, B. W.

    1994-01-01

    Using quasi-cw stimulated Raman gain spectroscopy, the pressure broadening coefficients for the N2 vibrational Q-branch transitions have been measured over the temperature range 113-297 K for the rotational components J = 4, 6, 8, 10, and 12. The experimental results are fit to a simple power law to give an empirical formula for the temperature dependence of the pressure broadening over the 100-300 K range. These results are also compared to previously published scaling laws that are based on collision induced rotational transition rates.

  13. Atom localization in a Doppler broadened medium via two standing-wave fields

    NASA Astrophysics Data System (ADS)

    Abd-Elnabi, Somia; Osman, Kariman I.

    2016-01-01

    The atom localization has been achieved in a four-level V-type atomic system interacting with two classical unidirectional standing-wave fields and weak probe field in a Doppler broadened medium under several conditions at very low temperature. The precision of the atom localization is compared with the system in the presence and absence of the Doppler broadened medium. The influence of some parameters such as the amplitude, wave vectors and the phase shift of the standing-wave fields on the atom localization is studied and has been found to obtain various atom localization patterns with symmetric shape.

  14. Homogeneous and inhomogeneous sources of optical transition broadening in room temperature CdSe/ZnS nanocrystal quantum dots

    SciTech Connect

    Wolf, M.; Berezovsky, J.

    2014-10-06

    We perform photoluminescence excitation measurements on individual CdSe/ZnS nanocrystal quantum dots (NCQDs) at room temperature to study optical transition energies and broadening. The observed features in the spectra are identified and compared to calculated transition energies using an effective mass model. The observed broadening is attributed to phonon broadening, spectral diffusion, and size and shape inhomogeneity. The former two contribute to the broadening transitions in individual QDs, while the latter contributes to the QD-to-QD variation. We find that phonon broadening is often not the dominant contribution to transition line widths, even at room temperature, and that broadening does not necessarily increase with transition energy. This may be explained by differing magnitude of spectral diffusion for different quantum-confined states.

  15. Meaningful Engagement to Enhance Diversity: Broadened Impact Actualized

    NASA Astrophysics Data System (ADS)

    Whitney, V. W.; Pyrtle, A. J.

    2008-12-01

    The MS PHD'S Professional Development Program was established by and for UR/US populations to facilitate increased and sustained participation within the Earth system science community. MS PHD'S is jointly funded by NSF and NASA. Fourteen (14) minority Earth system scientists served as Program mentors and one- hundred fifteen (115) minority and non-minority scientists served as Meeting Mentors to student participants. Representatives from fifty-six (56) agencies and institutions provided support and exposure to MS PHD'S student participants. Two hundred fifty-eight (258) highly qualified UR/US students completed on-line applications to participate in the MS PHD'S Professional Development Program. Because of funding limitations, slightly fewer than 50% of the applicants were selected to participate. One-hundred twenty-six (126) undergraduate and graduate students from 26 states and Puerto Rico participated in the MS PHD'S program. Sixty-eight (68) MS PHD'S student participants self-identified as African American; thirty-four (34) as Puerto Rican; nine (9) as Hispanic/Mexican American, ten (10) as Native American and one (1) each as African, Asian, Pacific Islander, Hispanic and Multi-Ethnic. During the five year span of MS PHD'S programming, sixteen (16) student participants completed BS degrees, twelve (12) completed MS degrees and ten (10) completed the Doctoral degrees. How did MS PHD'S establish meaningful engagement to enhance diversity within the Earth system science community? This case study reveals replicable processes and constructs to enhance the quality of meaningful collaboration and engagement. In addition, the study addresses frequently asked questions (FAQ's) on outreach, recruitment, engagement, retention and success of students from underrepresented populations within diversity-focused programs.

  16. Future issues including broadening the scope of the GLP principles.

    PubMed

    Liem, Francisca E; Lehr, Mark J

    2008-01-01

    When the principles of good laboratory practice (GLP) were drafted in 1982 by the Organisation for Economic Cooperation and Development (OECD) the electronic era was in its infant stages and many of the issues surrounding what may affect the environment and human health was not expected. Today, advances in technology for capturing and recording data for the reconstruction of a study are available and are being developed operating at speeds which could not have been known or understood in years past. Since that time, the United States Environmental Protection Agency (EPA) has required the conduct of additional studies in support of a pesticide registration in accordance with the GLP regulations. However, not all of these studies are required in other countries or may not require adherence to the principles of GLP. Companies are using computer models as virtual studies instead of inlife or bench type regulated research. Studies are often conducted at institutions of higher learning because of the academic expertise they offer. What is the overall impact advancing technology has on the principles of GLP? Are monitoring authorities (MAs) ready? The medical products field faces similar issues. Development and testing of these products and devices is being conducted similar to development and testing in the pesticide arena. To garner trust in mutual acceptance of data, each participating country must adhere to practices that ensure the highest standards of quality and integrity. The GLP inspector will need to have a good understanding of the science supporting the study conduct and the electronic systems that generate process and maintain study records. PMID:19351991

  17. Completely Flat Band in a Crystal of Finite Thickness

    NASA Astrophysics Data System (ADS)

    Hirashima, Dai S.

    2016-04-01

    Conditions for the existence of a completely flat band in a crystal of finite thickness are clarified. Furthermore, the condition for the localization of the flat band states near the surfaces is also discussed. It is also found that a completely flat band can appear in a crystal where a lattice point has multiple orbital states. In addition to the known results for honeycomb and diamond lattices, a localized completely flat band is found in a crystal of the wurtzite structure of finite thickness. A completely flat band is also found in many other crystals, but it is extended in the direction perpendicular to the surface.

  18. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  19. Multi-Band-SWIFT

    PubMed Central

    Corum, Curtis A.; Garwood, Michael

    2015-01-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials. PMID:25557859

  20. Colloquium: Topological band theory

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Lin, Hsin; Das, Tanmoy

    2016-04-01

    The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.

  1. Multi-Band-SWIFT

    NASA Astrophysics Data System (ADS)

    Idiyatullin, Djaudat; Corum, Curtis A.; Garwood, Michael

    2015-02-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials.

  2. The Steel Band.

    ERIC Educational Resources Information Center

    Weil, Bruce

    1996-01-01

    Describes studying the steel drum, an import from Trinidad, as an instrument of intellectual growth. Describes how developing a steel drum band provided Montessori middle school students the opportunity to experience some important feelings necessary to emotional growth during this difficult age: competence, usefulness, independence, and…

  3. Europa Triple Band

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This picture of Europa, a moon of Jupiter, was obtained on February 20, 1997, by the Solid State Imaging system onboard the Galileo spacecraft during its sixth orbit around Jupiter. The area is centered at 9.3 degrees north latitude, 275.7 degrees west longitude, on the trailing hemisphere of Europa. As Europa moves in its orbit around Jupiter, the trailing hemisphere is the portion which is always on the moon's backside opposite to its direction of motion. The area depicted is about 32 kilometers by 40 kilometers (20 miles by 25 miles). Resolution is 54 meters (59 yards). The Sun illuminates the scene from the right (east).

    A section of a triple band crosses the upper left of the picture and extends for hundreds of miles across the surface. Triple bands derive their name from their appearance at lower resolution as a narrow bright band flanked by a pair of darker bands. At the high resolution of this picture, however, the triple band is much more complex and is composed of a system of ridges 6 kilometers (4 miles) across. Some ridges reach heights of about 180 meters (200 yards). Other features include a hill in the center of the picture about 480 meters (500 yards) high. Two mounds about 6 kilometers across (4 miles) are seen in the bottom of the picture. The ridges, hills and mounds probably all represent uplifts of the icy crust of Europa by processes originating from the interior.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.

  4. An automated astronomical scanning complex for parallel and independent operation in two spectral bands.

    NASA Astrophysics Data System (ADS)

    Vdovichenko, V. D.; Gajsin, S. M.; Lukichev, A. G.; Mosina, S. A.

    A new medium-resolution spectrometer for the 1.5-meter telescope is described. To improve efficiency and broaden the working band in the spectrum, the beam is split by a dichroic filter after reflection from the collimator and directed into two spectral channels, each with its own diffraction grating and camera. The first ("blue") channel works in the spectral range 300 - 780 nm, and the second ("red") channel at 760 - 1100 nm. The FEU-39, -79, -136, and -83 photomultiplier radiation detectors used in these channels are operated in the photon-counting mode. The information in each channel is registered independently and concurrently. In addition to the spectral channels there is a reference photometric channel for atmospheric-transparency monitoring. A diaphragm unit is placed in the plane of the spectrometer entrance slit so that the photometric profiles of extended objects can be obtained by image scanning. All mechanical operations are performed with the aid of computer-controlled stepping motors and electromagnets.

  5. New results on the superdeformed {sup 196}Pb nucleus: The decay of the excited bands to the yrast band

    SciTech Connect

    Bouneau, S.; Azaiez, F.; Duprat, J.

    1996-12-31

    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. In addition to the known yrast and two lowest excited SD bands, a third excited SD band has been seen. All of the three excited bands were found to decay to the yrast SD band through, presumably, E1 transitions, allowing relative spin and excitation energy assignments. Comparisons with calculations using the random-phase approximation suggest that all three excited bands can be interpreted as octupole vibrational structures.

  6. Sr-Ba combinational effect on spectral broadening of blue (Sr, Ba)5(PO4)3Cl:Ce3+ phosphor for a high color-rendering index

    NASA Astrophysics Data System (ADS)

    Deressa, G.; Park, K. W.; Kim, J. S.

    2016-02-01

    Spectral broadening of blue apatite phosphors (Sr, Ba)5(PO4)3Cl:Ce3+ was achieved by changing Sr-Ba combinations. The blue colors came from 5d1 to 4f1 transitions of Ce3+ ions, and the excitation bands were ranged from 250 nm to 400 nm. The broad Raman spectrum in Sr2.45Ba2.45(PO4)3Cl:Ce3+ supported its highest disorder, leading to the spectral broadening with a half width of 95.5 nm. The temperature dependence showed the emission maintenance of 80% around 100 °C. The 310 nm-pumped white LED was simulated so as to show a color rendering index (Ra) of 74 at white point.

  7. Line shape parameters of PH3 transitions in the Pentad near 4-5 μm: Self-broadened widths, shifts, line mixing and speed dependence

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Benner, D. Chris; Kleiner, Isabelle; Sams, Robert L.; Fletcher, Leigh N.

    2014-08-01

    Accurate knowledge of spectroscopic line parameters of PH3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν4, ν2 + ν4, ν1 and ν3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH3 pressures (∼2-50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν4, ν1 and ν3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν1 and ν3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν2 and ν4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C3v symmetry in general, and of PH3

  8. Issues, Challenges, and Opportunities in Geoscience Education and Broadening Participation in the Geosciences at Two-year Colleges

    NASA Astrophysics Data System (ADS)

    van der Hoeven Kraft, K.; Guertin, L. A.; Filson, R. H.; Macdonald, H.; McDaris, J. R.

    2011-12-01

    A workshop on The Role of Two-Year Colleges in Geoscience Education and Broadening Participation in the Geosciences was held at Northern Virginia Community College in June 2010 to identify issues, challenges, and opportunities for geoscience faculty and students in two-year colleges (2YC) and to make recommendations for strengthening this component of the geoscience community. Given the wide diversity of 2YC students, a long term goal for this workshop was to work toward broadening the participation of underrepresented students to the geosciences. The workshop included sessions on strategies for supporting all students to be successful, the role of 2YC in broadening participation in the geosciences, and preparing geoscience students for the future (recruiting and retaining students in the geosciences, career preparation and workforce development, and transfer and 2YC and 4YC partnerships). Conversations between participants and professional organizations and societies focused on how increased communication with 2YC faculty could support faculty and students from two-year colleges. Participants considered strategies for addressing isolation and building community including interdisciplinary collaborations, scholarly practices, using Web 2.0, and working with adjunct faculty. Working groups addressed the following topics: establishment of a geoscience 2YC community, best practices for geoscience 2YC programs, faculty professional development, recruitment and retention of students, diversity in the geosciences, the role of 2YC in K-12 teacher preparation, and ocean science education in 2YC. Recommendations included the need to collect and disseminate information about 2YC including demographic information and best practices of 2YC geoscience programs, the desire to establish an organization for 2YC geoscience faculty, more opportunities to communicate (workshops and electronic communications), and other approaches for supporting 2YC students, faculty, and programs

  9. Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx.

    PubMed

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2014-04-17

    The organic-inorganic hybrid perovskites methylammonium lead iodide (CH3NH3PbI3) and the partially chlorine-substituted mixed halide CH3NH3PbI3-xClx emit strong and broad photoluminescence (PL) around their band gap energy of ∼1.6 eV. However, the nature of the radiative decay channels behind the observed emission and, in particular, the spectral broadening mechanisms are still unclear. Here we investigate these processes for high-quality vapor-deposited films of CH3NH3PbI3-xClx using time- and excitation-energy dependent photoluminescence spectroscopy. We show that the PL spectrum is homogenously broadened with a line width of 103 meV most likely as a consequence of phonon coupling effects. Further analysis reveals that defects or trap states play a minor role in radiative decay channels. In terms of possible lasing applications, the emission spectrum of the perovskite is sufficiently broad to have potential for amplification of light pulses below 100 fs pulse duration. PMID:26269971

  10. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    SciTech Connect

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.

  11. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.

    PubMed

    Choi, Ju Won; Chen, George F R; Ng, D K T; Ooi, Kelvin J A; Tan, Dawn T H

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  12. PROBLEM DEPENDENT DOPPLER BROADENING OF CONTINUOUS ENERGY CROSS SECTIONS IN THE KENO MONTE CARLO COMPUTER CODE

    SciTech Connect

    Hart, S. W. D.; Maldonado, G. Ivan; Celik, Cihangir; Leal, Luiz C

    2014-01-01

    For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.

  13. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    PubMed Central

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  14. Broadening the definition of resilience and "reappraising" the use of appetitive motivation.

    PubMed

    Soenke, Melissa; O'Connor, Mary-Frances; Greenberg, Jeff

    2015-01-01

    Kalisch et al.'s PASTOR model synthesizes current knowledge of resilience, focusing on mechanisms as a common pathway to outcomes and highlighting neuroscience as a method for exploring this. We propose the model broaden its definition of resiliency to include positive indices of recovery, include positive affect as a mechanism, and approach motivation as distinct from overcoming aversive motivation. PMID:26785906

  15. Pulse sequences for dynamical decoupling in an optical lattice broadened by temporal frequency drift

    NASA Astrophysics Data System (ADS)

    Paul, Christopher R.; Zhuang, Chao; Cruz, Luciano S.; Maneshi, Samansa; Steinberg, Aephraim M.

    2009-05-01

    Despite the very long internal coherence time, transverse drift through an inhomogeneously broadened lattice leads to a rapid decay of a pulse-echo signal. We use higher-order echoes, or dynamical decoupling, to probe and subsequently eliminate the effects of this drift. We study the optimal structure of these pulse sequences for simultaneously canceling out different orders of the effect.

  16. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    DOE PAGESBeta

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore » by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less

  17. Improving Enzyme Activity and Broadening Selectivity for Biological Desulfurization and Upgrading of Petroleum Feedstocks

    SciTech Connect

    Abhijeet P. Borole; Choo Y. Hamilton; Karen Miller; Brian Davison; Matthew Grossman; Robert Shong

    2003-05-12

    The objective of this project was to develop improved biocatalysts for desulfurization and upgrading of petroleum feedstocks. The goal was to improve the activity and broaden the selectivity of desulfurization enzymes using directed evolution as a tool as well as to explore the impact of ring-opening on biological desulfurization

  18. Community Colleges Broadening Horizons through Service Learning, 1997-2000. Project Brief.

    ERIC Educational Resources Information Center

    Robinson, Gail

    This project brief provides a summary of the Community Colleges Broadening Horizons through Service Learning project, supported by the Corporation for National Service and administered by the American Association of Community Colleges. The project was developed to increase the number, quality, and sustainability of service learning programs in…

  19. Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies

    SciTech Connect

    Fister, T. T.; Seidler, G. T.; Rehr, J. J.; Kas, J. J.; Nagle, K. P.; Elam, W. T.; Cross, J. O.

    2007-05-01

    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of {approx}9.3 eV full width at half maximum broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.

  20. Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Fister, T. T.; Seidler, G. T.; Rehr, J. J.; Kas, J. J.; Elam, W. T.; Cross, J. O.; Nagle, K. P.

    2007-05-01

    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K -edge XAS of Ag, we find nearly complete removal of ˜9.3eV full width at half maximum broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.

  1. Broadening Educational Outcomes: Social Relations, Skills Development, and Employability for Youth

    ERIC Educational Resources Information Center

    Dejaeghere, Joan; Wiger, Nancy Pellowski; Willemsen, Laura Wangsness

    2016-01-01

    This article argues that, if a global development aim is to address educational inequalities, the post-2015 agenda needs to conceptually and practically broaden the focus of learning to include social relations as important processes and outcomes for achieving educational equity. We draw on Sen's capability approach and Bourdieu's forms of capital…

  2. The origins of quantum interference and uncertainty broadening. A linear ribbon model approach

    SciTech Connect

    Tang, J.

    1996-02-01

    As an alternative to the orthodox Schroedinger wave mechanics or Heisenberg matrix mechanics approach, a simple linear ribbon model for quantum theory is presented. A different perspective and better physical insights into the origins of quantum interference and the mechanisms for uncertainty broadening are offered. Quantum interference in the atomic scale and superconducting behaviour in the macroscopic scale are compared.

  3. PULSE BROADENING MEASUREMENTS FROM THE GALACTIC CENTER PULSAR J1745-2900

    SciTech Connect

    Spitler, L. G.; Lee, K. J.; Eatough, R. P.; Kramer, M.; Karuppusamy, R.; Desvignes, G.; Champion, D. J.; Falcke, H.; Bassa, C. G.; Lyne, A. G.; Stappers, B. W.; Cognard, I.; Cordes, J. M.

    2014-01-01

    We present temporal scattering measurements of single pulses and average profiles of PSR J1745-2900, a magnetar recently discovered only 3 arcsec away from Sagittarius A* (Sgr A*), from 1.2 to 18.95 GHz using the Effelsberg 100 m Radio Telescope, the Nançay Decimetric Radio Telescope, and the Jodrell Bank Lovell Telescope. Single pulse analysis shows that the integrated pulse profile above 2 GHz is dominated by pulse jitter, while below 2 GHz the pulse profile shape is dominated by scattering. This is the first object in the Galactic center (GC) with both pulse broadening and angular broadening measurements. We measure a pulse broadening time scale at 1 GHz of τ{sub 1GHz} = 1.3 ± 0.2 and pulse broadening spectral index of α = –3.8 ± 0.2, which is several orders of magnitude lower than predicted by the NE2001 model (Cordes and Lazio 2002). If this scattering time scale is representative of the GC as a whole, then previous surveys should have detected many pulsars. The lack of detections implies either our understanding of scattering in the GC is incomplete or there are fewer pulsars in the GC than previously predicted. Given that magnetars are a rare class of radio pulsar, there are likely many canonical and millisecond pulsars in the GC, and not surprisingly, scattering in the GC is spatially complex.

  4. Attitudes and Motivation of Poor and Good Spellers: Broadening Planned Behavior Theory

    ERIC Educational Resources Information Center

    Sideridis, Georgios D.

    2005-01-01

    The purpose of the present study was to broaden planned behavior theory and examine its applicability to predict the academic achievement of students of low and high spelling ability. Two hundred fifty seven students, 54 low spellers and 203 high spellers from thirty elementary schools in northern Greece, participated in the study. Between groups…

  5. Three Response Types for Broadening the Conception of Mathematical Problem Solving in Computerized Tests.

    ERIC Educational Resources Information Center

    Bennett, Randy Elliot; Morley, Mary; Quardt, Dennis

    2000-01-01

    Describes three open-ended response types that could broaden the conception of mathematical problem solving used in computerized admissions tests: (1) mathematical expression (ME); (2) generating examples (GE); and (3) and graphical modeling (GM). Illustrates how combining ME, GE, and GM can form extended constructed response problems. (SLD)

  6. An Experiment to Demonstrate the Energy Broadening of Annihilation Gamma Rays

    ERIC Educational Resources Information Center

    Ouseph, P. J.; DuBard, James L.

    1978-01-01

    Shows that when positions annihilate in solid materials the energy distribution of the annihilation gamma rays is much broader than that of a 0.511-Mev gamma peak. This broadening is caused by the momentum distribution of the electrons in the material. (Author/GA)

  7. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    NASA Astrophysics Data System (ADS)

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-06-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W‑1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

  8. Electromagnetically-induced-transparency intensity-correlation power broadening in a buffer gas

    NASA Astrophysics Data System (ADS)

    Zheng, Aojie; Green, Alaina; Crescimanno, Michael; O'Leary, Shannon

    2016-04-01

    Electromagnetically-induced-transparency (EIT) noise correlation spectroscopy holds promise as a simple, robust method for performing high-resolution spectroscopy used in optical magnetometry and clocks. Of relevance to these applications, we report on the role of buffer gas pressure and magnetic field gradients on power broadening of Zeeman-EIT noise correlation resonances.

  9. LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2012-10-01

    The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.

  10. Broaden Engineering Technology students' knowledge through hands-on with motion robotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The skills and knowledge that employers value most are not always well-aligned with undergraduate engineering technology programs. With the support of a federal grant, we identify and propose to broaden the undergraduate student experience to include training in transferable skills with agricultura...

  11. Orff Techniques to Freshen Up Band Rehearsal

    ERIC Educational Resources Information Center

    Misenhelter, Dale

    2004-01-01

    Experienced band directors know they need teaching strategies and activities that are not only innovative but also provide creative and engaging breaks in the routine for students. In addition, expectations based on the National Standards suggest new approaches to many of the performance-polishing strategies directors have come to rely on.…

  12. DAC-board based X-band EPR spectrometer with arbitrary waveform control.

    PubMed

    Kaufmann, Thomas; Keller, Timothy J; Franck, John M; Barnes, Ryan P; Glaser, Steffen J; Martinis, John M; Han, Songi

    2013-10-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤ 250 ps resolution. The implications and potential applications of these capabilities will be discussed. PMID:23999530

  13. DAC-board based X-band EPR spectrometer with arbitrary waveform control

    PubMed Central

    Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi

    2013-01-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8–10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles “seen” by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤250 ps resolution. The implications and potential applications of these capabilities will be discussed. PMID:23999530

  14. Observation of Doppler broadening in β -delayed proton-γ decay

    NASA Astrophysics Data System (ADS)

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Pérez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-09-01

    Background: The Doppler broadening of γ -ray peaks due to nuclear recoil from β -delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using β -delayed proton emission or applied to a recoil heavier than A =10 . Purpose: To test and apply this Doppler broadening method using γ -ray peaks from the 26P(β p γ )25Al decay sequence. Methods: A fast beam of 26P was implanted into a planar Ge detector, which was used as a 26P β -decay trigger. The SeGA array of high-purity Ge detectors was used to detect γ rays from the 26P(β p γ )25Al decay sequence. Results: Radiative Doppler broadening in β -delayed proton-γ decay was observed for the first time. The Doppler broadening analysis method was verified using the 1613-keV γ -ray line for which the proton energies were previously known. The 1776-keV γ ray de-exciting the 2720 keV 25Al level was observed in 26P(β p γ )25Al decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 ±1.0 (stat.) ±0.6 (syst.) MeV, corresponding to a 26Si excitation energy of 13.3 ±1.0 (stat.) ±0.6 (syst.) MeV for the proton-emitting level. Conclusions: The Doppler broadening method has been demonstrated to provide practical measurements of the energies for β -delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A =25 .

  15. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  16. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  17. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  18. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  19. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  20. High Resolution Laboratory FTIR Spectroscopy at Planetary and Astrophysical Temperatures: Temperature Dependence of 13CH4 Line Shapes Broadened by N2

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Mantz, A. M.; Brown, L. R.; Smith, M. A. H.; Devi, V. M.; Benner, D. C.; Crawford, T. J.

    2009-12-01

    We present engineering results obtained with a Michelson Interferometer (Bruker IFS-125HR) newly configured with a temperature stabilized cryogenic absorption cell that hangs from the top cover of the evacuated sample compartment. The cell has an optical path of 24.29 cm and a demonstrated temperature stability of better than 0.01 K at all temperatures between 300 K and 90 K. The cryogenic cell is mounted on the cold finger of a closed cycle helium refrigerator, and the temperatures are monitored with Si diode sensors. The wedged ZnSe cell windows are vacuum sealed with crushed indium gaskets. To test the system performance, we first recorded spectra of the ν4 band of 13CH4 broadened by nitrogen at 0.0056 cm-1 instrumental resolution (Resolving power = 232000) using a HgCdTe detector . The 13CH4+N2 mixture pressures ranged from 140 to 796 torr with the volume mixing ratios of 13CH4 varying between 0.003 to 0.01 at 296, 255, 225 and 180 K. Line shape parameters of the R(4) manifold at 1324 cm-1 (7.55 μm) were retrieved using the nonlinear least squares multispectrum technique, fitting all spectra simultaneously to determine the temperature dependences for the 13CH4 nitrogen broadening and shift coefficients. The analysis of the entire band from 1200 to 1400 cm-1 (8.33 to 7.14 μm) is currently underway to support remote sensing of Titan. This new spectroscopic capability at the Jet Propulsion Laboratory will enable future research in studies of planetary science and astrophysics. The research at the Jet Propulsion Laboratory (JPL), California Institute of Technology, the College of William and Mary and Connecticut College was performed under contracts and grants with National Aeronautics and Space Administration.

  1. Band widening of piezoelectric vibration energy harvesters by utilizing mechanical stoppers and magnets

    NASA Astrophysics Data System (ADS)

    Maeguchi, T.; Masuda, A.; Katsumura, H.; Kagata, H.; Okumura, H.

    2015-12-01

    This paper presents a design of a piezoelectric hardening-type nonlinear vibration energy harvester which has widened resonance band while maintaining the same peak performance at the resonance frequency as that of the reference linear harvester. To this end, a pair of mechanical stoppers and a pair of repulsive magnets are introduced in this study. An experimental prototype device is designed by using a stainless steel-based piezoelectric cantilever, and numerical simulations and experiments are conducted to examine the validity of the presented design strategy. It is concluded that using the magnets to shift the resonance peak toward the lower frequency and using stoppers to expanding the resonance band toward the higher frequency can broaden the resonance band effectively maintaining the peak response. The damping due to the contact of the tip mass with the stopper is one of the key parameters which should be as small as possible to enhance the band widening effect.

  2. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Knox, Kevin R.

    2011-12-01

    vicinal Cu(111)-Cu (775) surfaces, over the photon energy range from 3.9 to 5 eV. Since the time scale for excitation of the metal image state from the Cu surface state is comparable with the electron-electron equilibration time scale, sharp features are measured due to resonant excitation in the photoelectron energy distribution curves. In addition, I explore the range of photon energies and optical intensities which may be used for this approach and show that despite the relatively high pump intensity, the 250 kHz repetition rate of this laser ameliorates the space-charge broadening and electron-energy shifting even for photon energies close to the vacuum edge. The strong excitation conditions generated by a femtosecond laser pulse applied to a Cu surface also allow the excitation and observation of a recently measured bulk state. In this dissertation I show that angle-resolved, tunable, two-photon photoemission (2PPE) can be used to map a bulk unoccupied band, viz. the Cu sp-band 0 to 1 eV below the vacuum level, in the vicinity of the L point. (Abstract shortened by UMI.)

  3. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    PubMed Central

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these approaches for researchers who study diversity and inclusion issues in the life sciences through examples from two critical mixed-methods studies of prominent issues in science, technology, engineering, and mathematics (STEM) participation and recognition. The first study pairs critical discourse analysis of the STEM workforce literature, data, and underlying surveys with quantitative analyses of STEM pathways into the workforce. This example illustrates the necessity of questioning popular models of retention. It also demonstrates the importance of intersecting demographic categories to reveal patterns of experience both within and between groups whose access to and participation in STEM we aim to improve. The second study’s critical approach applies research on inequities in prizes awarded by STEM professional societies toward organizational change. This example uses data from the life sciences professional societies to show the importance of placing data within context to broaden participation and understand challenges in creating sustainable change. PMID:27521238

  4. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation.

    PubMed

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these approaches for researchers who study diversity and inclusion issues in the life sciences through examples from two critical mixed-methods studies of prominent issues in science, technology, engineering, and mathematics (STEM) participation and recognition. The first study pairs critical discourse analysis of the STEM workforce literature, data, and underlying surveys with quantitative analyses of STEM pathways into the workforce. This example illustrates the necessity of questioning popular models of retention. It also demonstrates the importance of intersecting demographic categories to reveal patterns of experience both within and between groups whose access to and participation in STEM we aim to improve. The second study's critical approach applies research on inequities in prizes awarded by STEM professional societies toward organizational change. This example uses data from the life sciences professional societies to show the importance of placing data within context to broaden participation and understand challenges in creating sustainable change. PMID:27521238

  5. Capitalizing on Education and Outreach (E/O) Expertise to Broaden Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Girguis, P. R.; Herren, C.; Decharon, A.

    2010-12-01

    Academic scientists have a number of avenues through which they can participate in education and outreach (E/O) programs to address the mandate for broader impacts. As a principal investigator (PI) at an R1 institution, I (Girguis) have both developed and participated in a variety of E/O programs that span the spectrum from ad hoc groups (e.g. informal high school internships in my laboratory) to regional efforts (e.g. Harvard’s Microbial Science Initiative) and national organizations (e.g. RIDGE 2000; Centers for Ocean Sciences Education Excellence, COSEE). Each of these E/O efforts required varying degrees of preparation and participation by my laboratory members (e.g. graduate students and postdoctoral researchers) and I, and yielded different outcomes and products. Ad hoc programs typically require a higher degree of effort on the part of the PI and have a high, though local, impact on the audience. These programs can be personally rewarding for the PI, who likely has played a major role in developing the program. In contrast, working with regional and national groups requires PIs to understand the nature of each program to successfully integrate within the existing structure. The net time and effort invested by scientists in larger-scale E/O efforts may be equal to that of ad hoc programs. However, interaction with high-quality program facilitators ensures that the outcomes are grounded in best educational practices and that outputs are educator-vetted, well maintained (online or through publications), and broadly disseminated. In addition, program facilitators also collect and analyze evaluation data to provide constructive feedback to PIs, enabling the latter to refine their presentation styles and content levels to improve future E/O efforts. Thus involvement with larger programs can effectively broaden one’s impact. During this presentation, we will present one scientist’s perspective on the advantages and limitations of these different modes of E

  6. Direct measurements of collisional Raman line broadening in the S-branch transitions of acetylene (C2H2)

    NASA Astrophysics Data System (ADS)

    Hsu, Paul S.; Stauffer, Hans U.; Jiang, Naibo; Gord, James R.; Roy, Sukesh

    2013-10-01

    We report direct measurements of the self- and N2-broadened Raman S-branch linewidths of acetylene (C2H2), obtained by employing time-resolved picosecond rotational coherent anti-Stokes Raman scattering spectroscopy. Using broadband 115-ps pump and Stokes pulses (˜135 cm-1 bandwidth) and a spectrally narrowed 90-ps probe pulse (˜0.2 cm-1 bandwidth), Raman-coherence lifetimes are measured at room temperature for the S-branch (ΔJ = +2) transitions associated with rotational quantum number J = 3-25. These directly measured Raman-coherence lifetimes, when converted to collisional linewidth broadening coefficients, differ from the previously reported broadening coefficients extracted from theoretical calculations by 6%-35% for self-broadening for C2H2 and by up to 60% for N2-broadened C2H2.

  7. Noise exposure in marching bands

    NASA Astrophysics Data System (ADS)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  8. A positron beam Doppler broadening analysis of formation and recovery of defects produced by ion irradiation in Fe‒C‒Cu alloys

    NASA Astrophysics Data System (ADS)

    Iwai, Takeo

    2013-04-01

    Mechanisms of radiation embrittlement of reactor pressure vessel steels remain to be fully understood, particularly the nature of so-called 'matrix defects'. One possible mechanism is vacancy cluster formation, probably assisted by cascade damage. In order to investigate the effect of copper on the formation and annealing processes of vacancy clusters, ion-irradiated Fe‒C and Fe‒C‒Cu were investigated using a variable energy positron beam. Doppler broadening analysis revealed that vacancy-type defects are produced by ion irradiation and that copper addition reduces the open volume of the defects. Post irradiation annealing suggested the vacancy clusters do not have a substantial role in irradiation hardening.

  9. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  10. Octupole and hexadecapole bands in 152Sm

    SciTech Connect

    Garrett, P E; Kulp, W D; Wood, J L; Bandyopadhyay, D; Christen, S; Choudry, S; Dewald, A; Fitzler, A; Fransen, C; Jessen, K; Jolie, J; Kloezer, A; Kudejova, P; Kumar, A; Lesher, S R; Linnemann, A; Lisetskiy, A; Martin, D; Masur, M; McEllistrem, M T; Moller, O; Mynk, M; Orce, J N; Pejovic, P; Pissulla, T; Regis, J; Schiller, A; Tonev, D; Yates, S W

    2005-05-13

    The nucleus {sup 152}Sm is characterized by a variety of low-energy collective modes, conventionally described as rotations, {beta} vibrations, and {gamma} vibrations. Recently, it has been suggested that {sup 152}Sm is at a critical point between spherical and deformed collective phases. Consequently, {sup 152}Sm is being studied by a variety of techniques, including radioactive decay, multi-step Coulomb excitation, in-beam ({alpha},2n{gamma}) {gamma}-ray spectroscopy, and (n,n'{gamma}) spectroscopy. The present work focuses on the latter two reactions; these have been used to investigate the low-lying bands associated with the octupole degree of freedom, including one built on the first excited 0{sup +} band. In addition, the K{sup {pi}} = 4{sup +} hexadecapole vibrational band has been identified.

  11. Steel Band Repertoire: The Case for Original Music

    ERIC Educational Resources Information Center

    Tanner, Chris

    2010-01-01

    In the past few decades, the steel band art form has experienced consistent growth and development in several key respects. For example, in the United States, the sheer number of steel band programs has steadily increased, and it appears that this trend will continue in the future. Additionally, pan builders and tuners have made great strides in…

  12. Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Hsu, Paul S.; Jiang, Naibo; Gord, Joseph R.; Kulatilaka, Waruna D.; Stauffer, Hans U.; Gord, James R.

    2013-01-01

    We report direct measurements of S-branch Raman-coherence lifetimes of CO2 resulting from CO2-CO2 and CO2-N2 collisions by employing time-resolved picosecond coherent anti-Stokes Raman scattering spectroscopy. The S-branch (ΔJ = +2) transitions of CO2 with rotational quantum number J = 0-52 were simultaneously excited using a broadband (˜5 nm) laser pulse with a full-width-at-half-maximum duration of ˜115 ps. The coherence lifetimes of CO2 for a pressure range of 0.05-1 atm were measured directly by probing the rotational coherence with a nearly transform-limited, 90-ps-long laser pulse. These directly measured Raman-coherence lifetimes, when converted to collisional linewidth broadening coefficients, differ from the previously reported broadening coefficients extracted from frequency-domain rotational Raman and infrared-absorption spectra and from theoretical calculations by 7%-25%.

  13. Collisional shift and broadening of the transition lines in pionic helium

    NASA Astrophysics Data System (ADS)

    Obreshkov, Boyan; Bakalov, Dimitar

    2016-06-01

    We calculate the density shift and broadening of selected dipole transition lines of pionic helium in gaseous helium at low temperatures up to T =12 K and pressure up to a few bars. In the approximation of binary collisions the shift and broadening depend linearly on the density; we evaluate the slope of this linear dependence for a few spectral lines of known experimental interest and also investigate its temperature dependence. We find a blueshift of the resonance frequencies of the (n ,l )=(16 ,15 )→(16 ,14 ) , (17 ,16 )→(17 ,15 ) , and (16 ,15 )→(17 ,14 ) unfavored transitions and a redshift for the favored one, (17 ,16 )→(16 ,15 ) . The results are intended to significantly increase the efficiency of the laser spectroscopy investigations of pionic helium and help with the interpretation of the experimental data.

  14. Nonperturbative finite T broadening of the {rho} meson and dilepton emission in heavy-ion collisions

    SciTech Connect

    Ruppert, Joerg; Renk, Thorsten

    2005-06-01

    We study self-consistently the finite T broadening of the {rho} meson and its implications for dilepton emission in heavy-ion collisions. For this purpose finite width effects at finite temperature due to the {rho}-{pi} interaction are investigated in a self-consistent {phi}-functional approach. The temperature dependence of the {rho} meson and pion spectral functions and self-energies is discussed. The spectral functions show considerable broadening in comparison with a perturbative calculation on the one-loop level. Using these spectral functions, we make a comparison to dilepton emission data from the CERES NA49 Collaboration employing a parametrized fireball evolution model of collision. We demonstrate that these nonperturbative finite width effects are in-medium modifications relevant to the understanding of the enhancement of the low invariant mass spectrum of dileptons emitted in A-A collisions.

  15. Calculation of pressure broadening parameters for the CO-He system at low temperatures

    NASA Technical Reports Server (NTRS)

    Green, S.

    1985-01-01

    Theoretical pressure broadening parameters were computed for the 0-1 and 1-2 rotational transitions of CO in He at very low temperatures and compared with the recent experimental measurements at 4.2 K. The interaction potential was taken from extensive SCF-CI calculations, molecular collision dynamics were described by essentially exact converged close coupling calculations, and pressure broadening cross sections were obtained from the collisional S matrices within the accurate Fano-Ben Reuven framework. Resonances at low collision energies give rise to an increase in the thermally averaged cross sections at low temperatures. Although previous calculations for this system at higher temperatures (77-300 K) were in good accord with experiment, at 4.2 K predicted values are about two times larger than experiment; possible sources of this discrepancy are discussed.

  16. Spectral broadening effects of spontaneous emission and density of state on plasmonic enhancement in cermet waveguides.

    PubMed

    Chen, Keyong; Feng, Xue; Zhang, Chao; Cui, Kaiyu; Huang, Yidong

    2013-01-14

    Based on the full integration formula of Purcell factor (PF) deduced from Fermi's Golden Rule, the plasmonic enhancement in Au(1-α)S3N4(α) cermet waveguides is evaluated with the joint impact of finite emission linewidth and the broadening of PF spectrum. The calculation results indicate that the PF would be significantly degraded by the two broadening effects though the SPP resonance frequency can be tuned with different volume fractions (α) of Si3N4. It is also found that the critical emission linewidth is approximately linear to the PF spectrum linewidth. Thus in order to achieve strong plasmonic enhancement, both the emission and PF spectrum linewidths should be dramatically reduced. PMID:23388935

  17. Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo; Teaney, Derek

    2015-10-01

    We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include ↔ scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.

  18. Parton Energy Loss and Momentum Broadening at NLO in High Temperature QCD Plasmas

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo; Teaney, Derek

    We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 2 ↔ 2 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.

  19. N2 pressure - broadened O3 line widths and strengths near 1129.4 cm-1

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.; Majorana, L. N.; Harward, C. N.; Steinkamp, R. J.

    1982-01-01

    A Beer's Law experiment was performed with a tunable diode laser to find the N2 pressure broadening characteristics of a single 03 absorption line at 1129.426 cm for N2 pressures from 10 to 100 torr (O3 pressure = 3.16 torr). SO2 line positions were used for wavelength calibration. Line shapes were interatively fitted to a Lorentz function. Results were delta (HWHM in MHz) = 47.44 (+ or - 5.34) MHz + 1.730 (+ or - 0.088) MHz/torr *p(torr) with sigma = 0.9897. This intercept compares well with the Doppler O3 - O3 broadened (at 3.16 torr) width of 44.52 Hz. This result in a HWHM line width of 0.44 cm atm at 760 torr and 285 K. The line strengths integrated over delta nu = 0.55 cm were found to be N2 pressure dependent.

  20. Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin

    NASA Astrophysics Data System (ADS)

    Xie, Jieshuo; He, Yinghui; Lü, Haibin; Chen, Zhiwu; Xu, Jiexin; Cai, Shuqun

    2016-07-01

    Internal solitary waves (ISWs) with peculiar fronts are frequently observed in the world ocean by satellite images, though with quite few explanations. In this study a distorted and broadening ISW front across the northeastern South China Sea deep basin is presented by using synthetic aperture radar (SAR) image. To illustrate this peculiar front, a nonlinear refraction model is developed to simulate and evaluate the effects of realistic bottom topography, current, and stratification on its transformation. Simulated results in realistic oceanic environments show good agreements with this SAR-observed front. Based on separate and comparative results in different background environments, we demonstrate that the distortion is actually caused by the strong mesoscale currents at periphery of an anticyclonic eddy. Moreover, the broadening is due to the difference in change of wave half width at different rays, which is associated with the different transformation of ISWs across variable bottom topography in the deep basin.