Science.gov

Sample records for additional band broadening

  1. Frequency band broadening of magnetospheric VLF emissions near the equator

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Lin, C. S.

    1981-01-01

    The broadening of the whistler mode VLF emission band has frequently been observed by the equatorially orbiting S3-A (Explorer 45) satellite outside the midnight sector of the plasmasphere, during periods of geomagnetic disturbance. Prior to the broadening, the band of this emission is narrow with a sharp gap at the half electron gyrofrequency. The gradual broadening of the emission band on the low-frequency side is associated with the simultaneously observed spreading of the anisotropy of the ring current electrons to higher and wider energy ranges. Using the modeled distribution function, the linear growth rates of the cyclotron instability are calculated numerically. The results suggest that broadening of the VLF emission band near the plasmasphere can be caused by spreading of the ring current electron anisotropy toward higher energies.

  2. Band-broadening in capillary zone electrophoresis with axial temperature gradients.

    PubMed

    Xuan, Xiangchun; Li, Dongqing

    2005-01-01

    It is widely accepted that Joule heating effects yield radial temperature gradients in capillary zone electrophoresis (CZE). The resultant parabolic profile of electrophoretic velocity of analyte molecules is believed to increase the band-broadening via Taylor-Aris dispersion. This typically insignificant contribution, however, cannot explain the decrease in separation efficiency at high electric fields. We show that the additional band-broadening due to axial temperature gradients may provide the answer. These axial temperature variations result from the change of heat transfer condition along the capillary, which is often present in CZE with thermostating. In this case, the electric field becomes nonuniform due to the temperature dependence of fluid conductivity, and hence the induced pressure gradient is brought about to meet the mass continuity. This modification of the electroosmotic flow pattern can cause significant band-broadening. An analytical model is developed to predict the band-broadening in CZE with axial temperature gradients in terms of the theoretical plate height. We find that the resultant thermal plate height can be very high and even comparable to that due to molecular diffusion. This thermal plate height is much higher than that due to radial temperature gradients alone. The analytical model explains successfully the phenomena observed in previous experiments.

  3. Line parameters for CO2 broadening in the ν2 band of HD16O

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.

    2017-01-01

    CO2-rich planetary atmospheres such as those of Mars and Venus require accurate knowledge of CO2 broadened HDO half-width coefficients and their temperature dependence exponents for reliable abundance determination. Although a few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, laboratory measurements of those parameters are thus far non-existent. In this work, we report the first measurements of CO2-broadened half-width and pressure-shift coefficients and their temperature dependences for over 220 transitions in the ν2 band. First measurements of self-broadened half-width and self-shift coefficients at room temperature are also obtained for majority of these transitions. In addition, the first experimental determination of collisional line mixing has been reported for 11 transition pairs for HDO-CO2 and HDO-HDO systems. These results were obtained by analyzing ten high-resolution spectra of HDO and HDO-CO2 mixtures at various sample temperatures and pressures recorded with the Bruker IFS-125HR Fourier transform spectrometer at the Jet Propulsion Laboratory (JPL). Two coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to record the spectra. The various line parameters were retrieved by fitting all ten spectra simultaneously using a multispectrum nonlinear least squares fitting algorithm. The HDO transitions in the 1100-4100 cm-1 range were extracted from the HITRAN2012 database. For the ν2 and 2ν2 -ν2 bands there were 2245 and 435 transitions, respectively. Modified Complex Robert-Bonamy formalism (MCRB) calculations were made for the half-width coefficients, their temperature dependence and the pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. MCRB calculations are compared with the measured values.

  4. Measurements of H2O-broadening coefficients of O2 A-band lines

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Landsheere, X.; Pangui, E.; Huet, F.; Hartmann, J.-M.; Tran, H.

    2016-11-01

    We report laboratory measurements of H2O-broadening coefficients of O2 absorption lines in the A-band near 13,000 cm-1. For this, four spectra of oxygen gas mixed with water vapor were recorded with a high resolution Fourier transform spectrometer for total pressures ranging from 125 to 175 Torr at 323 K, and a fifth at 175 Torr and 365 K. Broadening coefficients of 39 transitions (up to J″ = 21) were retrieved from the measured spectra through fits using Galatry line profiles. Values at room temperature (296 K) were then extrapolated and compared with previous determinations in the A-band and millimeter waves region. This enables to resolve some controversial issues related to the inconsistencies between these studies. Finally, comparing our results with the line broadening coefficients by dry air confirms that H2O-broadenings of oxygen lines are, on average, 10% larger than those by dry air.

  5. Argon-broadened line parameters in the ν3 band of 12CH4.

    NASA Astrophysics Data System (ADS)

    Gabard, T.

    1997-02-01

    Prompted by improved measurements of collisional line shapes in the ν3 band P, Q and R branches of 12CH4, The author has performed semi-classical line broadening calculations for methane perturbed by argon. He has used the theoretical approach developed by Robert and Bonamy (1979) as an extension of the well-known Anderson-Tsao-Curnutte theory. The semi-classical theory as reformulated here is shown to fully account for the tetrahedral symmetry of methane type molecules. The variation of argon-broadened linewidth coefficients in the ν3 band of 12CH4 with the branch, J, symmetry and energy level fine structure is discussed.

  6. Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Holladay, Christopher; Heung, Henry; Bouanich, Jean-Pierre; Mellau, Georg Ch.; Keller, Reimund; Hurtmans, Daniel R.

    2008-09-01

    We report measurements for N 2-broadening, pressure-shift and line mixing coefficients for 55 oxygen transitions in the A-band retrieved using a multispectrum fitting technique. Nineteen laboratory absorption spectra were recorded at 0.02 cm -1 resolution using a multi-pass absorption cell with path length of 1636.9 cm and the IFS 120 Fourier transform spectrometer located at Justus-Liebig-University in Giessen, Germany. The total sample pressures ranged from 8.8 to 3004.5 Torr with oxygen volume mixing ratios in nitrogen ranging between 0.057 and 0.62. An Exponential Power Gap (EPG) scaling law was used to calculate the N 2-broadening and N 2-line mixing coefficients. The line broadening and shift coefficients for the A-band of oxygen self-perturbed and perturbed by N 2 are modeled using semiclassical calculations based on the Robert-Bonamy formalism and two intermolecular potentials. These potentials involve electrostatic contributions including the hexadecapole moment of the molecules and (a) a simple dispersion contribution with one adjustable parameter to fit the broadening coefficients or (b) the atom-atom Lennard-Jones model without such adjustable parameters. The first potential leads to very weak broadening coefficients for high J transitions whereas the second potential gives much more improved results at medium and large J values, in reasonable agreement with the experimental data. For the line shifts which mainly arise in our calculation from the electronic state dependence of the isotropic potential, their general trends with increasing J values can be well predicted, especially from the first potential. From the theoretical results, we have derived air-broadening and air-induced shift coefficients with an agreement comparable to that obtained for O 2-O 2 and O 2-N 2.

  7. Experimental air-broadened line parameters in the nu(2) band of CH3D

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.

    2007-02-01

    In this study, we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu(2) fundamental band of CH3D. These results were obtained from analysis of 17 room-temperature laboratory absorption spectra recorded at 0.0056 cm(-1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Ariz. Three absorption cells with path lengths of 10.2, 25, and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129 x 10(-2) to 52.855 x 10(-2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum nonlinear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J'' D 20 and K D 15, where K'' D K' equivalent to K (for a parallel band). The measured air-broadening coefficients range from 0.0205 to 0.0835 cm(-1)atm(-1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(-1) atm(-1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J'', and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m D -J'', J'', and J'' + 1 in the P-Q-, (Q)Q-, and R-Q-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.

  8. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  9. A theoretical and experimental study of pressure broadening of the oxygen A-band by helium

    SciTech Connect

    Grimminck, Dennis L. A. G.; Spiering, Frans R.; Janssen, Liesbeth M. C.; Avoird, Ad van der; Zande, Wim J. van der; Groenenboom, Gerrit C.

    2014-05-28

    The rotationally resolved magnetic dipole absorption spectrum of the oxygen A-band b{sup 1}Σ{sub g}{sup +}(v=0)←X{sup 3}Σ{sub g}{sup −}(v=0) perturbed by collisions with helium was studied theoretically using the impact approximation. To calculate the relaxation matrix, scattering calculations were performed on a newly computed helium-oxygen (b{sup 1}Σ{sub g}{sup +}) interaction potential as well as on a helium-oxygen (X{sup 3}Σ{sub g}{sup −}) interaction potential from the literature. The calculated integrated line cross sections and broadening coefficients are in good agreement with experimental results from the literature. Additionally, cavity ring-down experiments were performed in the wings of the spectral lines for a quantitative study of line-mixing, i.e., the redistribution of rotational line intensities by helium-oxygen collisions. It is shown that inclusion of line-mixing in the theory is required to reproduce the experimentally determined absolute absorption strengths as a function of the density of the helium gas.

  10. The 0 --> 3 Overtone Band of CO: Precise Linestrengths and Broadening Parameters.

    PubMed

    Henningsen; Simonsen; Møgelberg; Trudsø

    1999-02-01

    Linestrengths and self-broadening parameters are determined with a standard uncertainty of 1% for 21 lines in the R branch of the 0 --> 3 overtone band of CO around 1.57 µm. The values are lower than those given in the Hitran database by 6-8% for the linestrengths and 1-5% for the collision broadening parameters, and they agree within 0-2% with more recent results obtained with FTIR. Also, results are given for foreign gas broadening by N2 and H2O. The line profiles show clear evidence for collisional narrowing with deviations corresponding to those expected for a Galatry profile. When analyzed in terms of a Voigt profile, this effect causes a reduction in effective Doppler width of about 5%. The linestrengths determined for gas mixtures are used for producing independent values for the CO concentrations. These results are derived without reference to any certified gas standard, and it is suggested that optical spectroscopy satisfies the criteria of a primary method set up by the Consultative Committee for Quantity of Matter (CCQM). Copyright 1999 Academic Press.

  11. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2015-07-17

    Supercritical fluid chromatography, where a low-viscosity mobile phase such as carbon dioxide is used, proves to be an excellent technique for fast and efficient separations, especially when sub-2μm particles are used. However, to achieve high velocities when using these small particles, and in order to stay within the flow rate range of current SFC-instruments, narrow columns (e.g. 2.1mm ID) must be used. Unfortunately, state-of-the-art instrumentation is limiting the full separation power of these narrower columns due to significant extra-column band broadening effects. The present work identifies and quantifies the different contributions to extra-column band broadening in SFC such as the influence of the sample solvent, injection volume, extra-column volumes and detector cell volume/design. When matching the sample solvent to the mobile phase in terms of elution strength and polarity (e.g. using hexane/ethanol/isopropanol 85/10/5vol%) and lowering the injection volume to 0.4μL, the plate count can be increased from 7600 to 21,300 for a low-retaining compound (k'=2.3) on a 2.1mm×150mm column (packed with 1.8μm particles). The application of a water/acetonitrile mixture as sample solvent was also investigated. It was found that when the volumetric ratio of water/acetonitrile was optimized, only a slightly lower plate count was measured compared to the hexane-based solvent when minimizing injection and extra-column volume. This confirms earlier results that water/acetonitrile can be used if water-soluble samples are considered or when a less volatile solvent is preferred. Minimizing the ID of the connection capillaries from 250 to 65μm, however, gives no further improvement in obtained efficiency for early-eluting compounds when a standard system configuration with optimized sample solvent was used. When switching to a state-of-the-art detector design with reduced (dispersion) volume (1.7-0.6μL), an increase in plate count is observed (from 11,000 to 14

  12. [Effect of an anomalous broadening of the synchronization band after electric stimulation of heart tissues].

    PubMed

    Mazurov, M E

    1987-01-01

    Synchronization effects of the second order induced by a change of the action potential (AP) shape in relation to the frequency of periodic stimulation were studied. Mechanism of anomalous increase of the synchronization band at periodic stimulation of the heart fibers was explained. By means of a modified method of synchronization diagrams the synchronization bands were calculated for possible stimulation regimes taking into account a change in RP shape and dynamic threshold (DT) depending on the frequency of the initiated regimes. Regions of stimulating signals parameters (multiplicity regions or prolonging regions) were discovered, within the range of which the same stimulating signal may induce different synchronization regimes. Physiological meaning of the existence of anomalous synchronization regimes which significantly broaden the adaptation possibilities of the heart is discussed.

  13. Temperature dependences of self- and N2-broadened line-shape parameters in the ν3 and ν5 bands of 12CH3D: Measurements and calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, A.; Malathy Devi, V.; Sutradhar, P.; Sinyakova, T.; Buldyreva, J.; Sung, K.; Smith, M. A. H.; Mantz, A. W.

    2016-07-01

    This paper presents the results of a spectroscopic line shape study of self- and nitrogen-broadened 12CH3D transitions in the ν3 and ν5 bands in the Triad region. We combined five pure gas spectra with eighteen spectra of lean mixtures of 12CH3D and nitrogen, all recorded with a Bruker IFS-125 HR Fourier transform spectrometer. The spectra have been analyzed simultaneously using a multispectrum nonlinear least squares fitting technique. N2-broadened line parameters for 184 transitions in the ν3 band and 205 transitions in the ν5 band were measured. In addition, line positions and line intensities were measured for 168 transitions in the ν3 band and 214 transitions in the ν5 band. We have observed 10 instances of weak line mixing corresponding to K″=3 A1 or A2 transitions. Comparisons were made for the N2-broadening coefficients and associated temperature exponents with corresponding values calculated using a semi-classical Robert Bonamy type formalism that involved an inter-molecular potential with terms corresponding to short- and long-range interactions, and exact classical molecular trajectories. The theoretical N2-broadened coefficients are overestimated for high J values, but are in good agreement with the experimental values for small and middle range J values.

  14. Experimental and Theoretical He-BROADENED Line Parameters of Carbon Monoxide in the Fundamental Band

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Rosario, Hoimonti; Esteki, Koorosh; Latif, Shamria; Naseri, Hossein; Thibault, Franck; Devi, V. Malathy; Smith, Mary Ann H.; Mantz, Arlan

    2016-06-01

    We report experimental measurements and theoretical calculations for He-broadened Lorentz half-width coefficients and He- pressure-shift coefficients of 45 carbon monoxide transitions in the 1-0 band. The high-resolution spectra analyzed in this study were recorded over a range of sample temperatures between 296 and 80 K. The He-broadened line parameters and their temperature dependences were retrieved using a multispectrum nonlinear least squares analysis program. A previous analysis of these spectra used only the Voigt line shape. In the present study four line shape models were compared including Voigt, speed dependent Voigt, Rautian (to take into account confinement narrowing) and Rautian with speed dependence. The line mixing coefficients have been calculated using the Exponential Power Gap scaling law. We were unable to retrieve the temperature dependence of the line mixing coefficients. The current measurements and theoretical results are compared with other published results, where appropriate. A. W. Mantz et al., J. Molec. Structure 742 (2005) 99-110

  15. Band broadening in gel electrophoresis: scaling laws for the dispersion coefficient measured by FRAP.

    PubMed

    Tinland, B; Pernodet, N; Pluen, A

    1998-10-05

    We determined quantitatively the band broadening effect during gel electrophoresis by measuring the longitudinal dispersion coefficient Dx, with a fluorescence recovery after photobleaching setup, coupled to an electrophoretic cell. We carried out measurements as a function of the electric field, the average pore size, and the molecular length of DNA fragments. Our results are in good agreement with the predictions of the biased reptation model with fluctuations described by T. A. Duke et al. [(1992) Physics Review Letters, vol. 69, pp. 3260-3263]. This agreement is observed on single-stranded DNA [persistence length approximately equal to 4 nm; B. Tinland et al. (1997) Macromolecules, vol. 30, pp. 5763-5765] in polyacrylamide gels and on double-stranded DNA (persistence length approximately equal to 50 nm) in agarose gels, two systems where the ratio between the average pore size and the Kuhn length is larger than 1.

  16. Temperature Dependences of Air-Broadening and Shift Parameters in the ν_3 Band of Ozone

    NASA Astrophysics Data System (ADS)

    Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    2015-06-01

    Line parameter errors can contribute significantly to the total errors in retrievals of terrestrial atmospheric ozone concentration profiles using the strong 9.6-μm band, particularly for nadir-viewing experiments Detailed knowledge of the interfering ozone signal is also needed for retrievals of other atmospheric species in this spectral region. We have determined Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for a number of transitions in the ν_3 fundamental band of 16O_3. These results were obtained by applying the multispectrum nonlinear least-squares fitting technique to a set of 31 high-resolution infrared absorption spectra of O_3 recorded at temperatures between 160 and 300 K with several different room-temperature and coolable sample cells at the McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak. We compare our results with other available measurements and with the ozone line parameters in the HITRAN database. J.~Worden et al., J.~Geophys.~Res. 109 (2004) 9308-9319. R.~Beer et al., Geophys.~Res.~Lett. 35 (2008) L09801. D.~Chris Benner et al., JQSRT 53 (1995) 705-721. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 4. JQSRT 130 (2013) 4-50.

  17. Air-Broadening and Shift Parameters in the ν_3 Band of Ozone

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Devi, V. Malathy; Benner, D. Chris

    2013-06-01

    Line parameter errors can contribute significantly to the total errors in retrievals of terrestrial atmospheric ozone concentration profiles using the strong 9.6-μm band, particularly for nadir-viewing experiments Detailed knowledge of the interfering ozone signal is also needed for retrievals of other atmospheric species in this spectral region. We have determined Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for a number of transitions in the ν_3 fundamental band of ^{16}O_3. These results were obtained by applying the multispectrum nonlinear least-squares fitting technique to a set of 31 high-resolution infrared absorption spectra of O_3 previously recorded at temperatures between 160 and 300 K with several different room-temperature and coolable sample cells at the McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak. We compare our results with other available measurements and with the ozone line parameters in the 2008 HITRAN database. J. Worden {et al., J. Geophys. Res. {109} (2004) 9308-9319.}. R. Beer {et al., Geophys. Res. Lett. {35} (2008) L09801. D. Chris Benner {et al., JQSRT {53} (1995) 705-721. L. S. Rothman {et al., JQSRT {110} (2009) 533-572.

  18. - and H_2-BROADENED Line Parameters of Carbon Monoxide in the First Overtone Band

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Esteki, Koorosh; Naseri, Hossein; Devi, V. Malathy; Smith, Mary Ann H.; Mantz, Arlan; Ivanov, Sergei V.

    2016-06-01

    In this study we have re-analyzed high-resolution spectra of pure CO and CO broadened by hydrogen recorded in the spectral range of the first overtone band. We have used four different line shapes in the multispectrum analysis (Voigt, speed dependent Voigt, Rautian, and Rautian with speed dependence) and compared the resulting line shape parameters. The line mixing coefficients have been calculated using the Exponential Power Gap and the Energy Corrected Sudden scaling laws. A classical approach was applied to calculate CO line widths in CO-H_2 and CO-CO collisions. The formulas of classical impact theory are used for calculation of dipole absorption half-widths along with exact 3D Hamilton equations for simulation of molecular motion. The calculations utilize Monte Carlo averaging over collision parameters and simple interaction potential (Tipping-Herman + electrostatic). Molecules are treated as rigid rotors. The dependences of CO half-widths on rotational quantum number J≤ 24 are computed and compared with measured data at room temperature. V. Malathy Devi et al., J. Mol. Spectrosc. 228 (2004) 580-592. R. G. Gordon, J. Chem. Phys. 44 (1966) 3083-3089; ibid., 45 (1966) 1649-1655. J.-P. Bouanich and A. Predoi-Cross, J. Molec. Structure 742 (2005) 183-190 A. Predoi-Cross, J.-P. Bouanich, D. Chris Benner, A. D. May, and J. R. Drummond, J. Chem. Phys. 113 (2000) 158-168

  19. Theoretical calculation of self-broadening coefficients for the ν5 band of methyl chloride at various temperatures

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.; Dhib, M.; Aroui, H.

    2014-02-01

    Self-broadening coefficients of transitions belonging to the ν5 band of methyl chloride have been calculated using a semi-classical model based on the Anderson-Tsao-Curnutte (ATC) theory, including some improvements proposed by Robert and Bonamy. The calculations show the predominance of the dipole-dipole interaction. To better match the experimental measurements performed at room temperature in our previous work, a cut-off of the intermolecular distance has been used. The rotational J and K dependencies of the calculated self-broadening coefficients have been clearly observed and are consistent with our previous measurements.

  20. Measurements and Theoretical Calculations of N2-broadening and N2-shift Coefficients in the v2 band of CH3D

    NASA Technical Reports Server (NTRS)

    Predoi-Cross, A.; Hambrook, Kyle; Brawley-Tremblay, Marco; Bouanich, J. P.; Smith, Mary Ann H.

    2006-01-01

    In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the v2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure- broadening coefficients of 368 v2 transitions with quantum numbers as high as J"= 20 and K = 16, where K" = K' equivalent to K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about 0.0003 to 0.0094 cm(exp -1) atm(exp -1). We have examined the dependence of the measured broadening and shift parameters on the J", and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J", and J" + 1 in the (sup Q)P-, (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressureshift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the (sup Q)Q-branch of self-induced shifts of CH3D, are also in

  1. Temperature-Dependence of Air-Broadened Line Widths and Shifts in the nu3 Band of Ozone

    NASA Technical Reports Server (NTRS)

    Smith, Mary A. H.; Rinsland, Curtis P.; Devi, V. Malathy; Benner, D. Chris; Cox, A. M.

    2006-01-01

    The 9.6-micron bands of O3 are used by many remote-sensing experiments for retrievals of terrestrial atmospheric ozone concentration profiles. Line parameter errors can contribute significantly to the total errors in these retrievals, particularly for nadir-viewing. The McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak was used to record numerous high-resolution infrared absorption spectra of O3 broadened by various gases at temperatures between 160 and 300 K. Over 30 spectra were analyzed simultaneously using a multispectrum nonlinear least squares fitting technique to determine Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for selected transitions in the 3 fundamental band of (16)O3. We compare the present results with other measurements reported in the literature and with the ozone parameters on the 2000 and 2004 editions of the HITRAN database.

  2. Broadening, shifting, and line asymmetries in the 2<--0 band of CO and CO-N2: Experimental results and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Bouanich, J. P.; Benner, D. Chris; May, A. D.; Drummond, J. R.

    2000-07-01

    We have measured the room temperature, widths, pressure shifts, and line asymmetry coefficients for many transitions of the first overtone band of CO and CO perturbed by N2. The broadening coefficients were obtained with an accuracy of about 1%. The pure CO profiles have been fitted by a Voigt profile while the CO-N2 spectral profiles have been fitted with a Lorentz and an empirical line shape model (HCv) that blends together a hard collision model and a speed-dependent Lorentz profile. In addition to the Voigt, Lorentz, and HCv models, we have added a dispersion profile to account for weak line mixing. The line broadening and shift coefficients are compared to semiclassical calculations employing a variety of intermolecular interactions. The line asymmetry results are compared to line mixing calculations based on the energy corrected sudden (ECS) model. The results indicate that effects other than line mixing also contribute to the measured line asymmetry.

  3. Air- and Self-Broadened Half Widths, Pressure-Induced Shifts, and Line Mixing in the Nu(sub 2) Band of (12)CH4

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Benner, D. Chris; Pedroi-Cross, A.; Devi, V. Malathy

    2013-01-01

    Lorentz self- and air-broadened half width and pressure-induced shift coefficients and their dependences on temperature have been measured from laboratory absorption spectra for nearly 130 transitions in the nu(sub 2) band of (12)CH4. In addition line mixing coefficients (using the relaxation matrix element formalism) for both self- and airbroadening were experimentally determined for the first time for a small number of transitions in this band. Accurate line positions and absolute line intensities were also determined. These parameters were obtained by analyzing high-resolution (approx. 0.003 to 0.01 per cm) laboratory spectra of high-purity natural CH4 and air-broadened CH4 recorded at temperatures between 226 and 297 K using the McMath-Pierce Fourier transform spectrometer (FTS) located at the National Solar Observatory on Kitt Peak, Arizona. A multispectrum nonlinear least squares technique was used to fit short (5-15 per cm) spectral intervals in 24-29 spectra simultaneously. Parameters were determined for nu(sub 2) transitions up to J" = 16. The variations of the measured broadening and shift parameters with the rotational quantum number index and tetrahedral symmetry species are examined. The present results are also compared with previous measurements available in the literature.

  4. Theoretical and revisited experimentally retrieved He-broadened line parameters of carbon monoxide in the fundamental band

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, A.; Esteki, K.; Rozario, H.; Naseri, H.; Latif, S.; Thibault, F.; Malathy Devi, V.; Smith, M. A. H.; Mantz, A. W.

    2016-11-01

    We report revisited experimentally retrieved and theoretically calculated He-broadened Lorentz half-width coefficients and He- pressure-shift coefficients of 45 carbon monoxide transitions in the 1←0 band. The spectra analyzed in this study were recorded over a range of temperatures between 79 and 296 K. The He-broadened line parameters and their temperature dependences were retrieved using a multispectrum nonlinear least squares analysis program. The line shape models used in this study include Voigt, speed dependent Voigt, Rautian (to take into account confinement narrowing) and Rautian with speed dependence, all with an asymmetric component added to account for weak line mixing effects. We were unable to retrieve the temperature dependence of line mixing coefficients. A classical method was used to determine the He-narrowing parameters while quantum dynamical calculations were performed to determine He-broadening and He-pressure shifts coefficients at different temperatures. The line mixing coefficients were also derived from the exponential power gap law and the energy corrected sudden approximation. The current measurements and theoretical results are compared with other published results, where appropriate.

  5. Measurements of air-broadened and nitrogen-broadened Lorentz width coefficients and pressure shift coefficients in the nu4 and nu2 bands of C-12H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1988-01-01

    Air-broadened and N2-broadened halfwidth and pressure shift coefficients of 294 transitions in the nu4 and nu2 bands of C-12H4 have been measured from laboratory absorption spectra recorded at room temperature with the Fourier transform spectrometer in the McMath solar telescope facility of the National Solar Observatory. Total pressures of up to 551 Torr were employed with absorption paths of 5-150 cm, CH4 volume mixing ratios of 2.6 percent or less, and resolutions of 0.005 and 0.01/cm. A nonlinear least-squares spectral fitting technique has been utilized in the analysis of the twenty-five measured spectra. Lines up to J double-prime = 18 in the nu4 band and J double-prime = 15 in the nu2 band have been analyzed.

  6. Effect of pre- and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions.

    PubMed

    Vanderlinden, Kim; Broeckhoven, Ken; Vanderheyden, Yoachim; Desmet, Gert

    2016-04-15

    We report on the results of an experimental and theoretical study of the effect of the extra-column band broadening (ECBB) on the performance of narrow-bore columns filled with the smallest particles that are currently commercially available. Emphasis is on the difference between the effect of ECBB under gradient and isocratic conditions, as well as on the ability to model and predict the ECBB effects using well-established band broadening expressions available from the theory of chromatography. The fine details and assumptions that need to be taken into account when using these expressions are discussed. The experiments showed that, the steeper the gradient, the more pronounced the extra-column band broadening losses become. Whereas the pre-column band broadening can in both isocratic and gradient elution be avoided by playing on the possibilities to focus the analytes on top of the column (e.g. by using the POISe injection method when running isocratic separations), the post-column extra-column band broadening is inescapable in both cases. Inducing extra-column band broadening by changing the inner diameter of the post-column tubing from 65 to 250 μm, we found that all peaks in the chromatogram are strongly affected (around a factor of 1.9 increase in relative peak width) when running steep gradients, while usually only the first eluting peak was affected in the isocratic mode or when running shallow gradients (factor 1.6-1.8 increase in relative peak width for the first eluting analyte).

  7. Excitation temperature of C2 and broadening of the 6196 Å diffuse interstellar band

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, M.; Gnaciński, P.; Schmidt, M. R.; Galazutdinov, G.; Bondar, A.; Krełowski, J.

    2009-05-01

    This paper presents a finding of the correlation between the width of a strong diffuse interstellar band at 6196 Å and the excitation temperature of C2 based on high resolution and high signal-to-noise ratio spectra. The excitation temperature was determined from absorption lines of the Phillips A1Π_u-X1Σ+g and Mulliken D1Σ+_u-X1Σ+g systems. The width and shape of the narrow 6196 Å DIB profile apparently depend on the C2 temperature, being broader for higher values. Based on data collected at the ESO (8 m telescope at Paranal, 3.6 m and 2.2 m telescopes at La Silla) and observations made with the 1.8 m telescope in South Korea and the Cassegrain Fiber Environment in Hawaii.

  8. A thermal broadening analysis of absorption spectra of the D1/D2/cytochrome b-559 complex in terms of Gaussian decomposition sub-bands.

    PubMed

    Cattaneo, R; Zucchelli, G; Garlaschi, F M; Finzi, L; Jennings, R C

    1995-11-21

    Absorption spectra of the isolated D1/D2/cytochrome b-559 complex have been measured in the temperature range 80-300 K. All spectra were analyzed in terms of a linear combination of Gaussian bands and the thermal broadening data interpreted in terms of a model in which the spectrum of each pigment site is broadened by (a) a homogeneous component due to linear electron-phonon coupling to a low-frequency protein vibration and (b) an inhomogeneous component associated with stochastic fluctuations at each pigment site. In order to obtain a numerically adequate description of the absorption spectra, a minimum number of five sub-bands is required. Further refinement of this sub-band description was achieved by taking into account published data from hole burning and absorption difference spectroscopy. In this way, both a six sub-band description and a seven sub-band description were generated. In arriving at the seven sub-band description, the original five sub-band wavelength positions were essentially unchanged. Thermal broadening analysis of the seven sub-band description yielded data which displayed the closest correspondence with the literature observations. The wavelength positions of the sub-bands were near 661, 667, 670, and 675 nm, with two bands near 680 and 684 nm. The two almost isoenergetic sub-bands near 680 nm, identified as P680 and pheophytin, have optical reorganization energies around 40 and 16 cm-1, respectively. All other sub-bands, identified as accessory pigments, have optical reorganization energies close to 16 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Theory of controlling band-width broadening in terahertz sideband generation in semiconductors by a direct current electric field

    NASA Astrophysics Data System (ADS)

    Liu, Houquan; Zhang, Xingchu

    2017-03-01

    In a semiconductor, optically excited electron-hole pairs, driven by a strong terahertz (THz) field, can recombine to create THz sidebands in the optical spectrum. The sideband spectrum exhibits a "plateau" up to a cutoff frequency of 3.17Up, where Up is the ponderomotive energy. In this letter, we predict that the bandwidth of this sideband spectrum plateau can be broadened by applying an additional direct-current (DC) electric field. We find that if applying a DC field of EDC=0.2ETHz (where EDC and ETHz are the amplitudes of the DC field and THz field, respectively), the sideband spectrum presents three plateaus with 5.8Up, 10.05Up and 16Up being the cutoff frequencies of the first, second and third plateaus, respectively. This bandwidth broadening occurs because the DC field can increase the kinetic energy that an electron-hole pair can gain from the THz field. This effect means that the bandwidth of the sideband spectrum can be controlled flexibly by changing the DC field, thereby facilitating the ultrafast electro-optical applications of THz sideband generation.

  10. Line Positions, Intensities, - and N_2-BROADENING Parameters in the ν_9 Band of Ethane (C_2H_6)

    NASA Astrophysics Data System (ADS)

    Rinsland, Curtis P.; Devi, V. Malathy; Benner, D. Chris; Sams, Robert L.; Blake, Thomas A.

    2009-06-01

    High-resolution infrared spectra of ethane have been recorded using the Bruker IFS 120 HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Several spectra of pure ethane and ethane in N_2 mixtures were obtained with absorption paths of 20 cm and 3.2 m. Room temperature spectra were obtained in both 20 cm and 3.2 m paths while cold spectra were obtained using only the 20 cm path cell. The spectra were obtained at ˜0.0028 cm^{-1} resolution with sample pressures ranging from 0.3 to ˜36 torr for pure ethane and 11 to 180 torr in ethane-N_2 mixtures. The volume mixing ratios of ethane in the ethane-N_2 mixtures varied between 0.01 and 0.2. The gas temperatures varied from -66^°C to 24^°C. Positions, intensities, self- and N_2-broadening parameters were determined by processing 16 or 17 room temperature spectra using the multispectrum nonlinear least squares spectrum fitting technique. The results obtained for transitions in a few select ^PQ and ^RQ sub-bands will be reported at this time. D. Chris Benner, C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, and D. Atkins, J. Quant. Spectrosc. Radiat. Transfer 53, 705-721 (1995)

  11. CO2-broadening coefficients in the ν4 fundamental band of methane at room temperature and application to CO2-rich planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Fissiaux, Laurent; Delière, Quentin; Blanquet, Ghislain; Robert, Séverine; Vandaele, Ann Carine; Lepère, Muriel

    2014-03-01

    Using a tunable diode-laser spectrometer, we have measured the CO2-broadening coefficients of 28 absorption lines in the ν4 band of CH4. Each line was recorded at room temperature (296 K) and at 4 different pressures, ranging from 8 to 50 mbar. The experimental determination of the CO2-broadening coefficients was performed by fitting a theoretical profile to the experimental profile of each line recorded at each pressure. Voigt, Rautian-Sobel'man and Galatry models were therefore used. The impact of these determinations on atmospheric investigations on CO2-rich planetary atmospheres are addressed.

  12. Air-broadened Lorentz halfwidths and pressure-induced line shifts in the nu(4) band of C-13H4

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1988-01-01

    Air-broadened halfwidths and pressure-induced line shifts in the nu(4) fundamental of C-13H4 were determined from spectra recorded at room temperature and at 0.01/cm resolution using a Fourier transform spectrometer. Halfwidths and pressure shifts were determined for over 180 transitions belonging to J-double prime values of less than or = to 16. Comparisons of air-broadened halfwidths and pressure-induced line shifts made for identical transitions in the nu(4) bands of C-12H4 and C-13H4 have shown that C-13H4 air-broadened halfwidths are about 5 percent smaller than the corresponding C-12H4 halfwidths, and the pressure shifts for C-13H4 lines are about 5-15 percent larger than those for C-12H4.

  13. Measurements and calculations of Ar-broadening and -shifting parameters of water vapor transitions of ν1+ν2+ν3 band

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Starikov, V. I.

    2014-11-01

    The water vapor line broadening and shifting for 94 lines in the ν1+ν2+ν3 band induced by argon pressure are measured with Bruker IFS 125 HR FTIR spectrometer. The measurements were performed at room temperature, at the spectral resolution of 0.01 cm-1 and in a wide pressure range of Ar. The calculations of the broadening coefficients γ and δ were performed in the framework of the semi-classical method. The intermolecular potential was taken as the sum of pair potentials which, in turn, were modeled by the Lennard-Jones potentials. Optimal sets of potential parameters given the best discrepancy of measured broadening coefficients are found. The influence of the rotational dependence of an intermolecular potential and its repulsive part on the calculated coefficients γ and δ is discussed.

  14. Self- and N2-broadening of CH3Br ro-vibrational lines in the ν2 band: The J and K dependence

    NASA Astrophysics Data System (ADS)

    Boussetta, Z.; Kwabia Tchana, F.; Aroui, H.

    2015-02-01

    Methyl bromide (CH3Br) is the major source of inorganic bromine in the atmosphere and contributes significantly to ozone depletion. Indeed, CH3Br is dissociated by UV radiation, producing Br radicals that catalyze the destruction of ozone. In this paper, we report measured Lorentz self- and N2-broadening coefficients of CH3Br in the ν2 fundamental band using a mono-spectrum non-linear least squares fitting of Voigt profiles which appeared to properly model the observed molecular line shapes within the noise level. These measurements were made by analyzing 12 laboratory absorption spectra recorded at high resolution (0.005, 0.003 or 0.002 cm-1) using the Fourier transform spectrometer Bruker IF125HR located at the LISA facility in Créteil. The spectra were obtained at room temperature using a White-type multipass cell with an optical path of 0.849 m and various pressures. We have been able to determine the self- and N2-broadening coefficients of 948 ν2 transitions with quantum numbers as high as J = 49 and K = 10. The measured self-broadening coefficients range from 0.1542 to 0.4930 cm-1 atm-1 and the N2-broadening coefficients range from 0.0737 to 0.1284 cm-1 atm-1 at 295 K. The accuracy of the broadening coefficients measured in this work is between 4% and 8%, depending on the studied transition. Comparisons with measurements taken in the ν5 and ν6 bands of CH3Br did not show any clear vibrational dependence. The J and K dependences of the self- and N2-broadening coefficients have been observed and the rotational K dependence has been modeled using empirical polynomial expression. On average, the empirical expression reproduce the measured broadening coefficients to within 6%. The data obtained represent a significant contribution to the determination of broadening coefficients of CH3Br useful for atmospheric remote sensing and applications. Note: The assignment column gives the isotopologue (79 for CH379Br and 81 for CH381Br) for which the transition is

  15. Measurements of argon broadened Lorentz width and pressure-induced line shift coefficients in the nu4 band of (C-12)H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1989-01-01

    Room temperature argon broadened halfwidth and pressure-induced line shift coefficients have been determined for 118 transitions in the nu4 band of (C-12)H4 from analysis of high resolution laboratory absorption spectra recorded with the McMath Fourier transform spectrometer operated on Kitt Peak by the National Solar Observatory. Transitions up to J-double-prime = 12 have been measured using a nonlinear least-squares spectral fitting procedure. The variation of the measured halfwidth coefficients with symmetry type and rotational quantum number is very similar to that measured previously for N2 and air broadening, but the absolute values of the argon broadening coefficients are all smaller. On average, the ratio of the argon broadened halfwidth coefficient to the corresponding N2 broadened halfwidth coefficient is 0.877 + or - 0.017 (2 Sigma). More than 95 percent of the pressure-induced shifts are negative with values ranging from -0.0081 to +0.0055/cm atm. The pressure shifts in argon are nearly equal to corresponding values measured previously in N2 and air.

  16. Measurements of Lorentz air-broadening coefficients and relative intensities in the H2O-16 pure rotational and nu2 bands from long horizontal path atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Goldman, Aaron; Malathy Devi, V.

    1991-01-01

    Lorentz air-broadening coefficients and relative intensities have been measured for forty-three lines in the pure rotational band and twenty lines in the nu2 band of H2O-16 between 800 and 1150/cm. The results were derived from analysis of nine 0.017/cm-resolution atmospheric absorption spectra recorded over horizontal paths of 0.5-1.5 km with the McMath Fourier transform spectrometer and main solar telescope operated on Kitt Peak by the National Solar Observatory. A nonlinear least-squares spectral fitting technique was used in the spectral analysis. The results are compared with previous measurements and calculations. In most cases, the measured pressure-broadening coefficients and intensities are significantly different from the values in the 1986 HITRAN line parameters compilation.

  17. Design of suitable carrier buffer for free-flow zone electrophoresis by charge-to-mass ratio and band broadening analysis.

    PubMed

    Kong, Fan-Zhi; Yang, Ying; He, Yu-Chen; Zhang, Qiang; Li, Guo-Qing; Fan, Liu-Yin; Xiao, Hua; Li, Shan; Cao, Cheng-Xi

    2016-09-01

    In this work, charge-to-mass ratio (C/M) and band broadening analyses were combined to provide better guidance for the design of free-flow zone electrophoresis carrier buffer (CB). First, the C/M analyses of hemoglobin and C-phycocyanin (C-PC) under different pH were performed by CLC Protein Workbench software. Second, band dispersion due to the initial bandwidth, diffusion, and hydrodynamic broadening were discussed, respectively. Based on the analyses of the C/M and band broadening, a better guidance for preparation of free-flow zone electrophoresis CB was obtained. Series of experiments were performed to validate the proposed method. The experimental data showed high accordance with our prediction allowing the CB to be prepared easily with our proposed method. To further evaluate this method, C-PC was purified from crude extracts of Spirulina platensis with the selected separation condition. Results showed that C-PC was well separated from other phycobiliproteins that have similar physicochemical properties, and analytical grade product with purity up to 4.5 (A620/A280) was obtained.

  18. Self-, Nitrogen-, and Oxygen-Broadening Coefficient Measurements in the ν 1 Band of H 2O Using a Difference Frequency Generation Spectrometer at 3 μm

    NASA Astrophysics Data System (ADS)

    Bruno, A.; Pesce, G.; Rusciano, G.; Sasso, A.

    2002-10-01

    In this paper we investigate the mid-infrared spectrum of the H 216O molecule between 3367 and 3447 cm -1 to study the gas-collision-broadened linewidths. The coherent radiation used in this experiment is produced through difference frequency generation in a periodically poled lithium niobate crystal. The spectroscopic analysis has concerned nine H 2O lines in the ν 1 fundamental vibrational band. For these lines the self-, N 2-, and O 2-broadening coefficients are measured at room temperature. From these data, the widths due to air broadening are also determined. The experimental collisional broadening coefficients are compared with other experimental data and with theoretical calculations based on the Anderson-Tsao-Cornutte and Robert-Bonamy theories. Lineshape analysis is performed using both the standard Voigt profile and the Nelkin-Ghatak profile for the hard collision regime. For all the investigated lines the agreement between the Voigt profile and the measured profiles is found to be good.

  19. Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the v2 band of ammonia near 10.4 μm

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.

    2016-05-01

    We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.

  20. Self-, N2-, O2-broadening coefficients and line parameters of HFC-32 for ν7 band and ground state transitions from infrared and microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Turchetto, Arianna; Puzzarini, Cristina; Stoppa, Paolo; Pietropolli Charmet, Andrea; Giorgianni, Santi

    2014-09-01

    Hydrofluorocarbons have been used as replacement gases of chlorofluorocarbons, since the latter have been phased out by the Montreal Protocol due to their environmental hazardous ozone-depleting effects. This is also the case of difluoromethane (CH2F2, HFC-32), which nowadays is widely used in refrigerant mixtures together with CF3CH3, CF3CH2F, and CF3CHF2. Due to its commercial use, in the last years, the atmospheric concentration of HFC-32 has increased significantly. However, this molecule presents strong absorptions within the 8-12 μm atmospheric window, and hence it is a greenhouse gas which contributes to global warming. Although over the years several experimental and theoretical investigations dealt with the spectroscopic properties of CH2F2, up to now pressure broadening coefficients have never been determined. In the present work, the line-by-line parameters of CH2F2 are retrieved for either ground state or ν7 band transitions by means of microwave (MW) and infrared (IR) absorption spectroscopy, respectively. In particular, laboratory experiments are carried out on 9 pure rotational transitions of the ground state and 26 ro-vibrational transitions belonging to the ν7 band lying around 8.2 μm within the atmospheric region. Measurements are carried out at room temperature on self-perturbed CH2F2 as well as on CH2F2 perturbed by N2 and O2. The line shape analysis leads to the first determination of self-, N2-, O2-, and air-broadening coefficients, and also of line intensities (IR). Upon comparison, broadening coefficients of ground state transitions are larger than those of the ν7 band, and no clear dependence on the rotational quantum numbers can be reported. The obtained results represent basic information for the atmospheric modelling of this compound as well as for remote sensing applications.

  1. Argon-Induced Pressure Broadening, Shifting and Narrowing in the CN ˜{A}^2Π-˜{X}^2Σ^+ (1-0) Band

    NASA Astrophysics Data System (ADS)

    Forthomme, D.; McRaven, C. P.; Sears, T. J.; Hall, G. E.

    2013-06-01

    Selected isolated rotational transitions in the 1-0 band of the red ˜{A}^2Π-˜{X}^2Σ^+ system in CN have been recorded with transient frequency modulation spectroscopy as a function of argon pressure up to 0.2 atmospheres at room temperature. Line shapes were fit using Fourier transforms of a parameterized time correlation function, including Doppler and velocity-dependent collisional broadening, and collisional shifts. Deviations from Voigt line shapes can be equally well fit by modeling the narrowing with a speed-dependent collision model or with a velocity-changing collisional narrowing model. Pressure broadening coefficients were observed with little rotational state dependence, in the range of 0.070 - 0.075 cm^{-1} atm^{-1}. In contrast, a much stronger rotational state dependence is observed for both pressure-dependent blue shift coefficients and the narrowing parameters. No asymmetry in the pressure broadening was observed; any possible speed-dependence to the frequency shift was too small to be detected in these measurements. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

  2. Measurements of the CO_2 15 μm Band System Broadened by Air, N_2 and CO_2 at Terrestrial Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Devi, V. Malathy; Benner, D. Chris; Blake, T. A.; Sams, R. L.

    2009-06-01

    In earth remote sensing, retrievals of atmospheric temperature profiles are often based on observed radiances in infrared spectral regions where emission from atmospheric CO_2 predominates. To achieve improved retrieval accuracy, systematic errors in the forward model must be reduced, especially those associated with errors in the spectroscopic line calculation. We have recorded more than 110 new high-resolution infrared spectra of the 15-μm band system of CO_2 to accurately determine line intensities, self-, air- and N_2-broadened widths and pressure-induced line shifts, along with their temperature dependences. The spectra were recorded with the Bruker IFS 120 HR Fourier transform spectrometer at Pacific Northwest National Laboratory (PNNL) and temperature-controlled sample cells. Sample temperatures were between 206K and 298K. Maximum total pressures were 15 Torr for self-broadening and 613 Torr for air- and N_2-broadening. Analysis is done using a multispectrum fitting technique to retrieve the spectroscopic parameters. Line mixing and other non-Lorentz, non-Voigt line shapes are also assessed. The resulting line parameters are compared with the HITRAN database and with other measurements. D. Chris Benner, C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, and D. Atkins, J. Quant. Spectrosc. Radiat. Transfer 53, 705-721 (1995) L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005) L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, in press (2009)

  3. Observation of Ortho-Para Dependence of Pressure Broadening Coefficient in Acetylene νb{1}+νb{3} Vibration Band Using Dual-Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Iwakuni, Kana; Okubo, Sho; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki; Yamada, Koichi MT

    2016-06-01

    We observe that the pressure-broadening coefficients depend on the ortho-para levels. The spectrum is taken with a dual-comb spectrometer which has the resolution of 48 MHz and the frequency accuracy of 8 digit when the signal-to-noise ratio is more than 20. In this study, about 4.4-Tz wide spectra of the P(31) to R(31) transitions in the νb{1}+νb{3} vibration band of 12C_2H_2 are observed at the pressure of 25, 60, 396, 1047, 1962 and 2654 Pa. Each rotation-vibration absorption line is fitted to Voight function and we determined pressure-broadening coefficients for each rotation-vibration transition. The Figure shows pressure broadening coefficient as a function of m. Here m is J"+1 for R and -J" for P-branch. The graph shows obvious dependence on ortho and para. We fit it to Pade function considering the population ratio of three-to-one for the ortho and para levels. This would lead to detailed understanding of the pressure boarding mechanism. S. Okubo et al., Applied Physics Express 8, 082402 (2015)

  4. Room-temperature Broadening and Pressure-shift Coefficients in the nu(exp 2) Band of CH3D-O2: Measurements and Semi-classical Calculations

    NASA Technical Reports Server (NTRS)

    Predoi-Cross, Adriana; Hambrook, Kyle; Brawley-Tremblay, Shannon; Bouanich, Jean-Pierre; Devi, V. Malathy; Smith, Mary Ann H.

    2006-01-01

    We report measured Lorentz O2-broadening and O2-induced pressure-shift coefficients of CH3D in the nu(exp 2) fundamental band. Using a multispectrum fitting technique we have analyzed 11 laboratory absorption spectra recorded at 0.011 cm(exp 1) resolution using the McMath-Pierce Fourier transform spectrometer, Kitt Peak, Arizona. Two absorption cells with path lengths of 10.2 and 25 cm were used to record the spectra. The total sample pressures ranged from 0.98 to 339.85 Torr with CH3D volume mixing ratios of 0.012 in oxygen. We report measurements for O2 pressure-broadening coefficients of 320 nu(exp 2) transitions with quantum numbers as high as J0(sup w) = 17 and K = 14, where K(sup w) = K' is equivalent to K (for a parallel band). The measured O2-broadening coefficients range from 0.0153 to 0.0645 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shifts are negative. The reported O2-induced pressure-shift coefficients vary from about -0.0017 to -0.0068 cm(exp -1) atm(exp -1). We have examined the dependence of the measured broadening and shift parameters on the J(sup W), and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J(sup W), J(sup W), and J(sup w) + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%. The O2-broadening and pressure shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are generally larger than the experimental data. Using for the trajectory model an isotropic Lennard-Jones potential derived from molecular parameters instead of the spherical average of the atom-atom model, a better agreement is obtained with these data, especially for |m| <= 12

  5. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.

    PubMed

    Hao, Feng; Stoumpos, Constantinos C; Chang, Robert P H; Kanatzidis, Mercouri G

    2014-06-04

    Perovskite-based solar cells have recently been catapulted to the cutting edge of thin-film photovoltaic research and development because of their promise for high-power conversion efficiencies and ease of fabrication. Two types of generic perovskites compounds have been used in cell fabrication: either Pb- or Sn-based. Here, we describe the performance of perovskite solar cells based on alloyed perovskite solid solutions of methylammonium tin iodide and its lead analogue (CH3NH3Sn(1-x)Pb(x)I3). We exploit the fact that, the energy band gaps of the mixed Pb/Sn compounds do not follow a linear trend (the Vegard's law) in between these two extremes of 1.55 and 1.35 eV, respectively, but have narrower bandgap (<1.3 eV), thus extending the light absorption into the near-infrared (~1,050 nm). A series of solution-processed solid-state photovoltaic devices using a mixture of organic spiro-OMeTAD/lithium bis(trifluoromethylsulfonyl)imide/pyridinium additives as hole transport layer were fabricated and studied as a function of Sn to Pb ratio. Our results show that CH3NH3Sn(0.5)Pb(0.5)I3 has the broadest light absorption and highest short-circuit photocurrent density ~20 mA cm(-2) (obtained under simulated full sunlight of 100 mW cm(-2)).

  6. Spectral Line Parameters Including Temperature Dependences of Self- and Air-Broadening in the 2 (left arrow) 0 Band of CO at 2.3 micrometers

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.

    2012-01-01

    Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.

  7. Multispectrum Analysis of 12CH4 in the v4 Band: I. Air-Broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing

    NASA Technical Reports Server (NTRS)

    Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi

    2009-01-01

    Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.

  8. Multispectrum measurements of spectral line parameters including temperature dependences of N2- and self-broadened half-width coefficients in the region of the v9 band of 12C2H6

    SciTech Connect

    Malathy Devi, V.; Benner, D. C.; Rinsland, C.P.; Smith, M.A.H.; Sams, Robert L.; Blake, Thomas A.; Flaud, Jean Marie; Sung, Keeyoon; Brown, L.R.; Mantz, A. W.

    2010-11-01

    Ethane is a prominent contributor to the spectrum of Titan, particularly in the region of the v9 band at 12μm. A multispectrum nonlinear least squares fitting program was applied to laboratory spectra of ethane to measure accurate positions, absolute intensities, N2- and selfbroadened half- width coefficients and their temperature dependences for a large number transitions. These measurements include several pQ and rQ sub-bands (and other sub-bands such as pP, rR) in the v9 fundamental band of 12C2H6 centered near 822 cm-1. Positions were measured for 2958 transitions and intensities for 3771 transitions. N2- and self-broadened half-width coefficients were determined for over 1700 transitions while temperature dependence exponents were retrieved for over 1350 of those transitions. Of these, many measurements (mostly line positions and intensities) belong to the v9+v4-v4 hot band, v9+2v4-2v4 hot band, 13C12CH6 v9 band and unidentified transitions. Forty-three high resolution (0.0016-0.005 cm-1) infrared laboratory absorption spectra recorded at temperatures between 148 and 298 K were fitted simultaneously to retrieve these parameters. Forty-one of these spectra were obtained in the temperature range of 211-298 K using the Bruker IFS 120HR interferometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. Two additional spectra at 148 K were recorded using a new temperature stabilized cryogenic cell designed to work inside the sample compartment of the high resolution Bruker IFS 125HR interferometer of the Jet Propulsion Laboratory (JPL) in Pasadena California. The specialized cooling cell developed at Connecticut College and capable of achieving gas sample temperatures down to 70 K with a temperature stability and uniformity of better than ±0.05 K was employed to record the 148 K spectra. Constraints to intensity ratios, doublet separations, half-width coefficients and their temperature dependence exponents were required to

  9. Core-to-Rydberg band shift and broadening of hydrogen bonded ammonia clusters studied with nitrogen K-edge excitation spectroscopy

    SciTech Connect

    Yamanaka, Takeshi; Takahashi, Osamu; Tabayashi, Kiyohiko; Namatame, Hirofumi; Taniguchi, Masaki; Tanaka, Kenichiro

    2012-01-07

    Nitrogen 1s (N ls) core-to-Rydberg excitation spectra of hydrogen-bonded clusters of ammonia (AM) have been studied in the small cluster regime of beam conditions with time-of-flight (TOF) fragment-mass spectroscopy. By monitoring partial-ion-yield spectra of cluster-origin products, ''cluster'' specific excitation spectra could be recorded. Comparison of the ''cluster'' band with ''monomer'' band revealed that the first resonance bands of clusters corresponding to N 1s{yields} 3sa{sub 1}/3pe of AM monomer are considerably broadened. The changes of the experimental core-to-Rydberg transitions {Delta}FWHM (N 1s{yields} 3sa{sub 1}/3pe) ={approx}0.20/{approx}0.50 eV compare well with the x ray absorption spectra of the clusters generated by using density functional theory (DFT) calculation. The broadening of the core-to-Rydberg bands in small clusters is interpreted as being primarily due to the splitting of non-equivalent core-hole N 1s states caused by both electrostatic core-hole and hydrogen-bonding (H{sub 3}N{center_dot}{center_dot}{center_dot}H-NH{sub 2}) interactions upon dimerization. Under Cs dimer configuration, core-electron binding energy of H-N (H-donor) is significantly decreased by the intermolecular core-hole interaction and causes notable redshifts of core-excitation energies, whereas that of lone-pair nitrogen (H-acceptor) is slightly increased and results in appreciable blueshifts in the core-excitation bands. The result of the hydrogen-bonding interaction strongly appears in the n-{sigma}* orbital correlation, destabilizing H-N donor Rydberg states in the direction opposite to the core-hole interaction, when excited N atom with H-N donor configuration strongly possesses the Rydberg component of anti-bonding {sigma}* (N-H) character. Contributions of other cyclic H-bonded clusters (AM){sub n} with n{>=} 3 to the spectral changes of the N 1s{yields} 3sa{sub 1}/3pe bands are also examined.

  10. Spectroscopic Line Parameters of - and Hydrogen-Broadened 12C16O Transitions in the 3-0 Band from 6270 wn to 6402 wn.

    NASA Astrophysics Data System (ADS)

    Reed, Zachary; Hodges, Joseph T.

    2016-06-01

    We present helium- and hydrogen-broadened linewidths, pressure-induced shifts, and collisional narrowing coefficients for selected lines in the P- and R- branch of the second overtone (3-0) band of CO, spanning from 6270 wn to 6402 wn. The contribution of speed dependent effects and partial correlation between velocity-changing and dephasing collisions on the foreign broadened line shapes are also discussed. The data were obtained using the frequency-stabilized cavity ringdown spectroscopy technique. Spectra were collected at room temperature over a pressure range from 13.3 kPa to 100 kPa. The spectrum frequency axis is referenced via an optical frequency comb to a Cs clock, which provides pressure shifting values with uncertainties as low as 100 kHz/atm. The spectra exhibited signal-to-noise ratios as high as 20,000:1, which enables rigorous tests of theoretical line profiles through multi-spectrum least squares data analysis. The partially correlated, quadratic-speed-dependent Nelkin Ghatak profile gives a quality of fit mostly commensurate with the high spectrum signal-to-noise and minimizes structural residuals.

  11. Study of the effect of perturber mass on collisional broadening coefficients of lines in the ν3 band of CS2

    NASA Astrophysics Data System (ADS)

    Kongolo Tshikala, Pardaillan; Blanquet, Ghislain; Lepère, Muriel

    2012-05-01

    Using a tunable diode-laser spectrometer, we have recorded 28 lines in the fundamental ν3 band of carbon disulfide diluted in several rare gases: helium, neon and krypton. These lines are ranged from P(78) to R(72) and located in the spectral range 1514-1548 cm-1. The collisional half-widths of each line have been obtained by fitting to the experimental lineshape, a Voigt profile and also the models developed by Rautian and Sobel'man and by Galatry. These two more elaborate profiles take into account the narrowing due to the molecular confinement (Dicke effect). From these results and those previously obtained for CS2 + Ar, we have compared the collisional broadening coefficients of CS2 lines to put in evidence the effect of the perturber mass.

  12. Air-Broadened Line Parameters for the 2←0 Bands of 13C16O and 12C18O at 2.3 μm

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.

    2012-06-01

    Air-broadened line shape parameters were determined for the first time in the 2←0 bands of 13C16O near 4166.8 cm-1 and 12C18O near 4159.0 cm-1. Spectra were recorded at 0.005 cm-1 resolution using a coolable absorption cell in the sample compartment of the Bruker IFS 125HR Fourier transform spectrometer at Jet Propulsion Laboratory. Gas temperatures and pressures ranged from 150 to 298 K and 20 to 700 Torr, respectively. Line parameters were determined by broad-band multispectrum least-squares fitting of the 4000-4360 cm-1 region in 16 spectra simultaneously; each set included 4 isotope-enriched pure sample scans and 12 air+CO samples (13CO or C18O, as appropriate). The air-broadened parameters measured were Lorentz half-width coefficients, their temperature dependence exponents; pressure-induced shift coefficients, their temperature dependences; and off-diagonal relaxation matrix elements. Speed dependence parameters were included to minimize the fit residuals. For both isotopologues the individual line positions and intensities were constrained to their theoretical relationships in order to obtain the rovibrational (G, B, D, and H) and band intensity parameters, including Herman-Wallis coefficients. The results for 13C16O and 12C18O are compared with those for the 12C16O 2←0 band and discussed. K. Sung, A. W. Mantz, M. A. H. Smith, et al., JMS 262 (2010) 122-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721. V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller and R. A. Toth, JMS 242 (2007) 90-117. V. Malathy Devi, D. C. Benner, M. A. H. Smith, et al., JQSRT (2012) in press. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  13. Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB{sub 6} nanoparticles

    SciTech Connect

    Machida, Keisuke; Adachi, Kenji

    2015-07-07

    An ensemble inhomogeneity of non-spherical LaB{sub 6} nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB{sub 6} particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent −3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB{sub 6} with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.

  14. Temperature Dependences for Air-broadened Widths and Shift Coefficients in the 30013 - 00001 and 30012 - 00001 Bands of Carbon Dioxide near 1600 nm

    NASA Astrophysics Data System (ADS)

    Devi, M.; Predoi-Cross, A.; McKellar, R.; Benner, C.; Miller, C. E.; Toth, R. A.; Brown, L. R.

    2008-12-01

    Nearly 40 high resolution spectra of air-broadened CO2 recorded at temperatures between 215 and 294 K were analyzed using a multispectrum nonlinear least squares technique to determine temperature dependences of air-broadened half width and air-induced pressure shift coefficients in the 30013-00001 and 30012-00001 bands of 12CO2. Data were recorded with two different Fourier transform spectrometers (Kitt Peak FTS at the National Solar Observatory in Arizona and the Bomem FTS at NRC, Ottawa) with optical path lengths ranging between 25 m and 121 m. The sample pressures varied between 11 torr (pure CO2) and 924 torr (CO2-air) with volume mixing ratios of CO2 in air between ~ 0.015 and 0.11. To minimize systematic errors and increase the accuracy of the retrieved parameters, we constrained the multispectrum nonlinear least squares fittings to use quantum mechanical expressions for the rovibrational energies and intensities rather than retrieving the individual positions and intensities line-by-line. The results suggest minimal vibrational dependence for the temperature dependence coefficients.1 1 A. Predoi-Cross and R. Mckellar are grateful for financial support from the National Sciences and Engineering Research Council of Canada. The research at the Jet Propulsion laboratory (JPL), California Institute of Technology, was performed under contract with National Aeronautics and Space Administration. The support received from the National Science Foundation under Grant No. ATM-0338475 to the College of William and Mary is greatly appreciated. The authors thank Mike Dulick of the National Solar Observatory for his assistance in obtaining the data recorded at Kitt Peak.

  15. Spectral Line Shape Parameters for the ν_1, ν_2, and ν_3 Bands of Hdo: Self and CO_2 Broadened

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Mantz, Arlan; Smith, Mary Ann H.; Villanueva, Geronimo L.

    2016-06-01

    To provide precise information relevant to Martian atmospheric remote sensing, high resolution high signal-to-noise ratio spectra of HDO in mixture with CO_2 were recorded in the ν_1, ν_2, and ν_3 fundamental bands between 2.7 and 7 μm regions. The spectra were obtained with the Bruker IFS-125HR Fourier transform spectrometer at the Jet Propulsion Laboratory along with two specially built coolable absorption cells with path lengths of 0.2038 m and 20.941 m at various sample gas temperatures (˜220 - 296 K), total sample pressures and volume mixing ratios. A multispectrum nonlinear least squares technique was applied to fit simultaneously all the spectra obtained. The measured line parameters include accurate line positions, intensities, self- and CO_2-broadened Lorentz halfwidth and pressure-shift coefficients, and temperature dependences of CO_2 broadened HDO halfwidth and pressure-shift coefficients. Line mixing coefficients using the relaxation matrix formalism and quadratic speed dependence parameters were also measured where appropriate. Example results for select transitions in each band will be presented and comparisons made to other measured/calculated values. K. Sung, A.W. Mantz, M.A.H. Smith, L.R. Brown, T.J. Crawford, V.M. Devi, D.C. Benner. J. Mol. Spectrosc. 162 (2010) 124-134. A.W. Mantz, K. Sung, T.J. Crawford, L.R. Brown, M.A.H. Smith, V.M. Devi, D.C. Benner, J. Mol. Spectrosc. 304 (2014) 12-24. D.C. Benner, C.P. Rinsland, V. Malathy Devi, M.A. H. Smith, and D. Atkins. JQSRT 53 (1995) 705-721. Research described in this paper are performed at the College of William and Mary, Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley Research Center under contracts and cooperative agreements with the National Aeronautics and Space Administration. RRG and CLR were supported by the National Science Foundation through Grant # AGS-1156862.

  16. Simultaneous capturing of RGB and additional band images using hybrid color filter array

    NASA Astrophysics Data System (ADS)

    Kiku, Daisuke; Monno, Yusuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2014-03-01

    Extra band information in addition to the RGB, such as the near-infrared (NIR) and the ultra-violet, is valuable for many applications. In this paper, we propose a novel color filter array (CFA), which we call "hybrid CFA," and a demosaicking algorithm for the simultaneous capturing of the RGB and the additional band images. Our proposed hybrid CFA and demosaicking algorithm do not rely on any specific correlation between the RGB and the additional band. Therefore, the additional band can be arbitrarily decided by users. Experimental results demonstrate that our proposed demosaicking algorithm with the proposed hybrid CFA can provide the additional band image while keeping the RGB image almost the same quality as the image acquired by using the standard Bayer CFA.

  17. On the relationship between band broadening and the particle-size distribution of the packing material in liquid chromatography: theory and practice.

    PubMed

    Gritti, Fabrice; Farkas, Tivadar; Heng, Josuah; Guiochon, Georges

    2011-11-11

    The influence of the particle size distribution (PSD) on the band broadening and the efficiency of packed columns is investigated on both theoretical and practical viewpoints. Each of the classical contributions to mass transfer kinetics, those due to longitudinal diffusion, eddy dispersion, and solid-liquid mass transfer resistance are measured and analyzed in terms of their expected and observed intensity as a function of the PSD of mixtures of the commercially available packing materials, 5 and 3 μm Luna-C₁₈ particles (Phenomenex, Torrance, CA, USA). Six 4.6 mm × 150 mm columns were packed with different mixtures of these two materials. The efficiencies of these columns were measured for a non-retained and a retained analytes in a mixture of acetonitrile and water. The longitudinal diffusion coefficient was directly measured by the peak parking method. The solid-liquid mass transfer coefficient was measured from the combination of the peak parking method, the best model of effective diffusion coefficient and the actual PSDs of the different particle mixtures measured by Coulter counter experiments. The eddy diffusion term was measured according to a recently developed protocol, by numerical integration of the peak profiles. Our results clearly show that the PSD has no measurable impact on any of the coefficients of the van Deemter equation. On the contrary and surprisingly, adding a small fraction of large particles to a batch of small particles can improve the quality of the packing of the fine particles. Our results indirectly confirm that the success of sub-3 μm shell particles is due to the roughness of their external surface, which contributes to eliminate most of the nefarious wall effects.

  18. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Boulet, C.

    2016-06-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  19. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3.

    PubMed

    Ma, Q; Boulet, C

    2016-06-14

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  20. Broadening the Recruiting Market.

    ERIC Educational Resources Information Center

    Central All-Volunteer Force Task Force, Washington, DC.

    The purpose of the study is to broaden the enlisted recruiting market, especially for high school graduates and describe measures to complete or expedite actions initiated by ASD (M and RA) (Assistant Secretary of Defense Manpower and Reserve Affairs) and the military services and to take additional actions to enhance recruiting. (Author)

  1. Absolute Rovibrational Intensities, Self-Broadening and Self-Shift Coefficients for the X(sup 1) Sigma(+) V=3 (left arrow) V=0 Band (C-12)(O-16)

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; Freedman, R.; Giver, L. P.; Brown, L. R.

    2001-01-01

    The rotationless transition moment squared for the x(sup 1) sigma (sup +) v=3 (left arrow) v=0 band of CO is measured to be the absolute value of R (sub 3-0) squared = 1.7127(25)x 10(exp -7) Debye squared. This value is about 8.6 percent smaller than the value assumed for HITRAN 2000. The Herman-Wallis intensity factor of this band is F=1+0.01168(11)m+0.0001065(79)m squared. The determination of self-broadening coefficients is improved with the inclusion of line narrowing; self-shifts are also reported.

  2. Corrigendum to "Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012←00001 and 30013←00001 bands" [J. Quant. Spectrosc. Radiat. Transf., 111 (9) (2010) 1065-1079

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Liu, W.; Murphy, Reba; Povey, Chad; Gamache, R.; Laraia, A.; McKellar, A. R. W.; Hurtmans, Daniel; Devi, V. M.

    2015-10-01

    The group of authors would like to make the following clarification: the retrievals of self-broadened temperature dependence coefficients were performed by the authors both using the multispectrum fit program from Ref. [14] and using the multispectrum fit program of D. Chris Benner [Benner DC, Rinsland CP, Devi VM, Smith MAH, Atkins D. A multispectrum nonlinear least-squares fitting technique. J. Quant. Spectrosc. Radiat. Transf. 1995;53:705-21.). To retrieve the room temperature self-broadening parameters, the authors have used the values in Ref. [4]. For reasons of consistency with the results published for air-broadening and air-shift temperature dependence coefficients in A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, R.A. Toth, L.R. Brown, Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO2near 1600 μm, Canadian Journal of Physics, 87 (5) (2009) 517-535, Tables 2 and 3, and Figures 2 and 4 contain only the values retrieved using the multispectrum fit program of D. Chris Benner. We would like to thank D. Chris Benner for allowing us to use his fitting software.

  3. Pressure broadening of oxygen by water

    NASA Astrophysics Data System (ADS)

    Drouin, Brian J.; Payne, Vivienne; Oyafuso, Fabiano; Sung, Keeyoon; Mlawer, Eli

    2014-01-01

    A need for precise air-mass retrievals utilizing the near-infrared O2 A-band has motivated measurements of the water-broadening in oxygen. Experimental challenges have resulted in very little water broadened oxygen data. Existing water broadening data for the O2 A-band is of insufficient precision for application to the atmospheric data. Line shape theory suggests that approximate O2 pressure broadening parameters for one spectral region, such as the A-band, may be obtained from comparable spectral regions such as the O2 60 GHz Q-branch, which is also used prominently in remote sensing. We have measured precise O2-H2O broadening for the 60 GHz Q-branch and the pure-rotational transitions at room temperature with a Zeeman-modulated absorption cell using a frequency-multiplier spectrometer. Intercomparisons of these data and other O2 pressure broadening data sets confirm the expectation of only minor band-to-band scaling of pressure broadening. The measurement provides a basis for fundamental parameterization of retrieval codes for the long-wavelength atmospheric measured values. Finally, we demonstrate the use of these measurements for retrievals of air-mass via remote sensing of the oxygen A-band.

  4. First measurements of nitrous oxide self-broadening and self-shift coefficients in the 0002-0000 band at 2.26 μm using high resolution Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Werwein, Viktor; Brunzendorf, Jens; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-05-01

    Nitrous oxide (N2O) is one of the most important greenhouse gases in the terrestrial atmosphere and is routinely measured with ground-based FTIR networks like the Total Carbon Column Observing Network (TCCON). A spectral window for the TCCON retrievals is the 14N216O 0002-0000-band region from 4375 to 4445 cm-1 (2.250-2.285 μm). In our study, we present the first high-resolution Fourier transform spectrometer measurements of self-broadening and self-shift coefficients in the range of 53-1019 hPa for the lines R0e-R40e of this band. The line parameters were determined at 296 K using metrologically validated temperature, and pressure values, which were traced back to the SI-units. The averaged estimated relative uncertainties for the coverage factor of k = 2 (two times the standard deviation) are 0.3% and 9.5% with a standard deviation of 0.1% and 5.3% for the self-broadening and the self-shift coefficients, respectively. Vacuum line positions, determined for the first time by taking the self-shift coefficients into account are also reported with an estimated averaged relative uncertainty of 1.1 ∗ 10-8 for k = 2 and a standard deviation of 3 ∗ 10-9. A well-defined uncertainty assessment for the measured line parameters is given.

  5. Addition of a 5/cm Spectral Resolution Band Model Option to LOWTRAN5.

    DTIC Science & Technology

    1980-10-01

    FORM I. REPORT NUMBER .GOVT ACCESSION NO. 3 . RECIPIENT’S CATALCI UMISER ARI-RR-232 -9 1 0. T Ct IIIM INNY S TYPE OF REPORT & PERIOD COVERED I ddition of...5r/TPAN (2) the addition of temperature dependent ecular absorption coefficients,’ and ( 3 ) the use of a multi-parameter, Dp 71pForentz band model for...LOWTRA.I5 and LOWTRAN5(IMOD) ..... 2-10 2.8 Comparison of LOWTRAN5 Models to Measurements 2-16 3 . MODIFICATIONS TO LOWTRAN5

  6. Spectral shapes of Ar-broadened HCl lines in the fundamental band by classical molecular dynamics simulations and comparison with experiments

    SciTech Connect

    Tran, H.; Domenech, J.-L.

    2014-08-14

    Spectral shapes of isolated lines of HCl perturbed by Ar are investigated for the first time using classical molecular dynamics simulations (CMDS). Using reliable intermolecular potentials taken from the literature, these CMDS provide the time evolution of the auto-correlation function of the dipole moment, whose Fourier-Laplace transform leads to the absorption spectrum. In order to test these calculations, room temperature spectra of various lines in the fundamental band of HCl diluted in Ar are measured, in a large pressure range, with a difference-frequency laser spectrometer. Comparisons between measured and calculated spectra show that the CMDS are able to predict the large Dicke narrowing effect on the shape of HCl lines and to satisfactorily reproduce the shapes of HCl spectra at different pressures and for various rotational quantum numbers.

  7. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO2

    NASA Astrophysics Data System (ADS)

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-01

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO2 (a-SiO2) exposed to 60Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a-SiO2, and the peak energy is larger for α-quartz than that for a-SiO2. The full width at half maximum for a-SiO2 is larger by ˜40-60% than that for α-quartz, and it increases with an increase in the disorder of the a-SiO2 network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a-SiO2.

  8. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO{sub 2} (a‐SiO{sub 2}) exposed to {sup 60}Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a‐SiO{sub 2}, and the peak energy is larger for α-quartz than that for a‐SiO{sub 2}. The full width at half maximum for a‐SiO{sub 2} is larger by ∼40-60% than that for α-quartz, and it increases with an increase in the disorder of the a‐SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a‐SiO{sub 2}.

  9. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. I. Effects of Line Coupling on Self-Broadened v (sub 1) and Pure Rotational Bands of NH3

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.

    2016-01-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of selfbroadened NH3. The half-widths and shifts in the ?1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  10. Temperature-dependent pressure broadened line shape measurements in the ν 1+ ν 3 band of acetylene using a diode laser referenced to a frequency comb

    NASA Astrophysics Data System (ADS)

    Cich, M. J.; McRaven, C. P.; Lopez, G. V.; Sears, T. J.; Hurtmans, D.; Mantz, A. W.

    2012-11-01

    Using an extended cavity diode laser referenced to a femtosecond frequency comb, the P(11) absorption line in the ν 1+ ν 3 combination band of the most abundant isotopologue of pure acetylene was studied at temperatures of 296, 240, 200, 175, 165, 160, 155, and 150 K to determine pressure-dependent line shape parameters at these temperatures. The laser emission profile, the instrumental resolution, is a Lorentz function characterized by a half width at half the maximum emission (HWHM) of 8.3×10-6 cm-1 (or 250 kHz) for these measurements. Six collision models were tested in fitting the experimental data: Voigt, speed-dependent Voigt, Rautian-Sobel'man, Galatry, and two Rautian-Galatry hybrid models (with and without speed-dependence). Only the speed-dependent Voigt model was able to fit the data to the experimental noise level at all temperatures and for pressures between 3 and nearly 360 torr. The variations of the speed-dependent Voigt profile line shape parameters with temperature were also characterized, and this model accurately reproduces the observations over their entire range of temperature and pressure.

  11. Absolute intensities and foreign gas broadening coefficients of the 11(sub 1,10) from 11(sub 2,10) and 18(sub 0,18) from 18(sub 1,18) lines in the nu(sub 7) band of C2H4

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; Sirota, J. Marcos

    1993-01-01

    Absolute intensities and foreign gas broadening coefficients of the 18(sub 0,18) from 18(sub 1,18) and 11(sub 1,10) from 11(sub 2,10) transitions in the nu(sub 7) band of C2H4 near 948/cm have been measured at a spectral resolution of approximately 5 x 10(exp -4)/cm using tunable diode laser spectrometry. Ar, He, N2, O2 were used as the broadening gases. In order to determine the temperature dependence of the broadening coefficient, data were obtained at temperatures ranging from 150 to 296 K. The absolute intensity of the 5(sub 0,5) from 5(sub 1,5) transition was also found at 296 K. A band strength of 330 +/- 10/sq cm/atm was obtained from weighted averages of the individual line intensities and a rigid asymmetric top calculation.

  12. Measurement of the Temperature Dependence of Line Mixing and Pressure Broadening Parameters between 296 and 90 K in the v3 band of 12CH4 and their Influence on Atmospheric Methane Retrievals

    NASA Technical Reports Server (NTRS)

    Mondelain, Didier; Payan, Sebastien; Deng, Wenping; Camy-Peyret, Claude; Hurtmans, Daniel; Mantz, Arlan W.

    2007-01-01

    We measured the temperature dependence of the nitrogen broadening, narrowing and line-mixing coefficients of four lines of the P9 manifold in the v3 band of 12CH4 for atmospheric purposes. The data were collected using our tunable diode laser (TDL) spectrometer with active wavenumber control coupled to a newly developed cold Herriott cell with a path length of 5.37 m and a temperature uniformity of better than 0.01 K along the cell. We recorded and analyzed spectra recorded at sample temperature between 90 K and room temperature. We have investigate the influence of our new results in the inversion model used to retrieve methane profiles from atmospheric spectra; our new results make it possible to retrieve significantly more precise methane profiles. The atmospheric spectra we utilized were obtained by several of us with a balloon-born Fourier Transform infrared experiment in a limb configuration. Differences up to 7% on the retrieved volume mixing ratio were found compared to an inversion model using only HITRAN04 spectroscopic parameters.

  13. Comparison of Trajectory Models in Calculations of N2-broadened Half-widths and N2-induced Line Shifts for the Rotational Band of H2O-16 and Comparison with Measurements

    NASA Technical Reports Server (NTRS)

    Lamouroux, J.; Gamache, R. R.; Laraia, A. L.; Ma, Q.; Tipping, R. H.

    2012-01-01

    In this work, Complex Robert-Bonamy calculations of half-widths and line shifts were done for N2-broadening of water for 1639 transitions in the rotational band using two models for the trajectories. The first is a model correct to second order in time, the Robert-Bonamy parabolic approximation. The second is the solution of Hamilton's equations. Both models use the isotropic part of the atom-atom potential to determine the trajectories. The present calculations used an intermolecular potential expanded to 20th order to assure the convergence of the half-widths and line shifts. The aim of the study is to assess if the difference in the half-widths and line shifts determined from the two trajectory models is greater than the accuracy requirements of the spectroscopic and remote sensing communities. The results of the calculations are compared with measurements of the half-widths and line shifts. It is shown that the effects of the trajectory model greatly exceed the needs of current remote sensing measurements and that line shape parameters calculated using trajectories determined by solving Hamilton's equations agree better with measurement.

  14. Broadening Transfer Opportunities

    ERIC Educational Resources Information Center

    Dearing, Bruce

    1975-01-01

    Broadened opportunity for transfer offers a potential for bolstering sagging enrollments, and increases capacities for accomodating the educational needs of a broader spectrum of a democratic society. (Author/KE)

  15. The recurrent PPP1CB mutation p.Pro49Arg in an additional Noonan-like syndrome individual: Broadening the clinical phenotype.

    PubMed

    Bertola, Débora; Yamamoto, Guilherme; Buscarilli, Michelle; Jorge, Alexander; Passos-Bueno, Maria Rita; Kim, Chong

    2017-03-01

    We report on a 12-year-old Brazilian boy with the p.Pro49Arg mutation in PPP1CB, a novel gene associated with RASopathies. This is the fifth individual described, and the fourth presenting the same variant, suggesting a mutational hotspot. Phenotypically, he also showed the same hair pattern-sparse, thin, and with slow growing-, similar to the typical ectodermal finding observed in Noonan syndrome-like disorder with loose anagen hair. Additionally, he presented craniosynostosis, a rare clinical finding in RASopathies. This report gives further support that this novel RASopathy-PPP1CB-related Noonan syndrome with loose anagen hair-shares great similarity to Noonan syndrome-like disorder with loose anagen hair, and expands the phenotypic spectrum by adding the cranial vault abnormality. © 2017 Wiley Periodicals, Inc.

  16. Is it worth to report the presence of a single and additional band in the cerebrospinal fluid detected by isoelectrofocusing?

    PubMed

    Lefèvre, Camille; Derache, Nathalie; Grandhomme, Frédérique; Fradin, Sabine; Allouche, Stéphane

    2016-08-01

    Despite the revisions of the Mac Donald criteria of multiple sclerosis (MS) in 2010, the cerebrospinal fluid (CSF) analysis by isoelectrofocusing (IEF) remains useful for atypical presentations of MS. The IEF is considered as positive when at least two or more additional bands are detected in the CSF by comparison with the patient's serum but sometimes, the IEF interpretation is more difficult. The goal of our study was to determine the significance when a single band in the CSF is detected by IEF. We conducted a retrospective study on 990 patients who underwent a lumbar puncture followed by a CSF analysis by IEF. Only 2% display such IEF profile (i.e. single and additional band in the CSF). A diagnosis of clinically isolated syndrome or MS was evidenced in 4 among those 21 patients. In conclusion, our data suggest that even if the presence of a single and additional band in the CSF is a rare situation, it should be mentioned to clinicians to not exclude the hypothesis of an inflammatory demyelinating disease of the central nervous system.

  17. Broadening, Deepening, and Consolidating

    ERIC Educational Resources Information Center

    Cumming, Alister

    2004-01-01

    I encourage the editors of and contributors to "Language Assessment Quarterly" to continue, and to extend, three directions that are integral to the development of the field of language assessment: (a) to broaden the scope of inquiry and contexts that inform knowledge about language assessment; (b) to deepen the theoretical premises and…

  18. Bandwidth broadening for stripline circulator

    NASA Astrophysics Data System (ADS)

    Chao, Hsien-Wen; Wu, Shi-Yao; Chang, Tsun-Hsu

    2017-02-01

    This work provides a detailed analysis and simulation to demonstrate how to broaden the operating bandwidth of a circulator. A double-Y junction circulator is designed, and the shape of the central stripline is optimized with the knowledge of a modified equation. The equation predicts two resonant conditions. The overlapping of the two resonant conditions jointly constitutes the broad bandwidth. The bias magnetic field is simulated and then used in full electromagnetic-wave simulation. The designed circulator was fabricated in the S-band for communication purpose. The measured results agree very well with simulation. The overall operation range is from 1643 to 2027 MHz with the insertion loss less than 0.35 dB, reflection, and isolation better than 20 dB. The mechanism will be discussed.

  19. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  20. Broadening nanotechnology's impact on development

    NASA Astrophysics Data System (ADS)

    Beumer, Koen

    2016-05-01

    Discussions about nanotechnology and development focus on applications that directly address the needs of the world's poor. Nanotechnology can certainly make an impact in the fight against global poverty, but we need to broaden our imagination.

  1. Mixture formation of Er{sub x}Yb{sub 2-x}Si{sub 2}O{sub 7} and Er{sub x}Yb{sub 2-x}O{sub 3} on Si for broadening the C-band in an optical amplifier

    SciTech Connect

    Omi, Hiroo; Tawara, Takehiko; Abe, Yoshiyuki; Anagnosti, Maria

    2013-04-15

    Thin films composed of polycrystalline Er{sub x}Yb{sub 2-x}O{sub 3} grains and crystalline Er{sub x}Yb{sub 2-x}Si{sub 2}O{sub 7} layers were formed on a Si(111) substrate by RF - sputtering and subsequent thermal annealing in Ar gas ambient up to 1100 Degree-Sign C. The films were characterized by synchrotron radiation grazing incidence X-ray diffraction, cross-sectional transmission microscopy, energy dispersive X-ray spectrometry and micro photoluminescence measurements. In the annealed film of 950 Degree-Sign C it is observed that the I{sub 15/2} - I{sub 13/2} Er{sup 3+} photoluminescent transition exhibits simultaneously maximum intensity and peak width at room temperature. This effect satisfies the requirements for broadening the C-band of an optical amplifier on Si.

  2. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  3. Medical vest broadens treatment capability

    NASA Technical Reports Server (NTRS)

    Johnson, G. S.

    1970-01-01

    Universal sized vest, with specially tailored pockets designed to hold medical supplies, provides first aid/first care medical teams with broadened on-site capability. Vest is made of nylon, tough fibrous materials, and polyvinyl chloride. Design facilitates rapid donning, doffing, and adjustment.

  4. Infrared Spectra of N_2-BROADENED 13CH_4 at Titan Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Sung, K.; Brown, L. R.; Crawford, T. J.; Mantz, A. W.; Devi, V. Malathy; Benner, D. Chris

    2010-06-01

    High-resolution spectra of the ν_4 fundamental band of 13CH_4 broadened by N_2 at temperatures relevant to the atmosphere of Titan (80 K to 296 K) have been recorded using new temperature-controlled absorption cells installed in the sample compartment of a Bruker (IFS-125HR) Fourier Transform spectrometer (FTS) at the Jet Propulsion Laboratory (JPL). Details of the cells and spectrometer performance have been discussed in the previous talk. Early analysis of these spectra using multispectrum fitting has determined half widths, pressure-induced shifts, line mixing parameters and their temperature dependences for R-branch transitions from R(0) through R(6). In addition to the initial R(2) study mentioned in the previous talk, the analysis for the other J-manifolds examined in detail whether or not the N_2-broadened half width coefficients follow the simple power-law temperature-dependence over the entire temperature range from 80 K to 296 K. The results are compared with other published measurements of N_2-broadened methane parameters at low temperatures. A. W. Mantz et al., Closed-cycle He-cooled absorption cells designed for a Bruker IFS-125HR: First results between 79 K and 297 K, this session. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  5. Pressure broadening of CO and OCS spectral lines

    NASA Astrophysics Data System (ADS)

    Bouanich, J.-P.; Blanquet, G.

    1988-09-01

    This paper reviews the principal features of two semiclassical impact theories of collisional line-broadening, Anderson (1949) and Tsao-Curnutte (1962) theory and the more recent theory of Robert and Bonamy (1979). These models are applied to the calculation of self-, N2-, O2- and CO2-broadened line widths of CO and of self-, O2-, and N2-broadened linewidths of OCS. In addition to the electrostatic interactions, two anisotropic potentials are considered: a simple one governing dispersion interaction and a more elaborate atom-atom interaction potential. Selected experimental values for broadening coefficients of CO and OCS at room temperature and around 200 K are compared with the theoretical values. Conclusions on the two theories and the intermolecular potentials used are drawn from this comparison.

  6. Inelastic collision processes in ozone and their relation to atmospheric pressure broadening

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.; Flannery, C.; Klaassen, J.; Mizugai, Y.; Spencer, M.

    1990-01-01

    The research task employs infrared double-resonance to determine rotational energy transfer rates and pathways, in both the ground and vibrationally excited states of ozone. The resulting data base will then be employed to test inelastic scattering theories and to assess intermolecular potential models, both of which are necessary for the systematization and prediction of infrared pressure-broadening coefficients, which are in turn required by atmospheric ozone monitoring techniques based on infrared remote sensing. In addition, observation of excited-state absorption transitions will permit us to improve the determination of the 2 nu(sub 3), nu(sub 1) + nu(sub 2), and 2 nu(sub 1) rotational constants and to derive band strengths for hot-band transitions involving these levels.

  7. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  8. Collision Broadening Of Line Spectrum In Sonoluminescence

    SciTech Connect

    Li Chaohui; An Yu

    2008-06-24

    The direct measurement of temperature inside a sonoluminescing bubble as it is at its flashing phase is almost impossible due to the smallness of the bubble and the short duration of the flashing. One may estimate the temperature through fitting the continuum spectrum of sonoluminescence by the black body radiation formula, or fitting the shape of atomic or molecular line spectrum (the different temperature, density and pressure result in the different shape of the line spectrum due to the effect of collision broadening). However, the temperature changes in a huge range at short duration as the bubble flashes, therefore, the observed spectra are some kind of average one, so are those fitted results. To evaluate the instantaneous temperature more accurately, we simulate the processes of the bubble motion and the thermodynamics inside the bubble, in which atomic or molecular line spectra with the collision broadening effect and the continuum spectra contributed from the processes of electron-atom bremsstrahlung, electron-ion bremsstrahlung and recombination radiation and radiative attachment of electrons to atoms and molecules are taken into account in calculating the light emission. If both the calculated continuum spectra and the shape of line spectra can well represent the experimental data, we may deduce that the calculation of the temperature, density and pressure is reliable and we indirectly evaluate those quantities inside the bubble. In the present calculation, the line spectra of OH radical at about 310 nm mixing the electron transition with the vibration and rotational bands are considered. The calculation qualitatively consists with the observation, and we expect that with the more precise bubble dynamics model instead of the uniform model employed in the present calculation we may improve the quantitative result.

  9. Structured ZnO films: Effect of copper nitrate addition to precursor solution on topography, band gap energy and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Kaleva, A.; Hyvärinen, L.; Levänen, E.

    2017-02-01

    ZnO is a widely studied semiconductor material with interesting properties such as photocatalytic activity leading to wide range of applications, for example in the field of opto-electronics and self-cleaning and antimicrobial applications. Doping of photocatalytic semiconductor materials has been shown to introduce variation in the band gap energy of the material. In this work, ZnO rods were grown on a stainless steel substrates using hydrothermal method introducing copper nitrate into the precursor solution. Zinc nitrate and hexamethylenetetramine were used as precursor materials and the growth was conducted at 90 °C for 2 h in order to achieve a well-aligned evenly distributed rod structure. Copper was introduced as copper nitrate that was added in the precursor solution in the beginning of the growth. The as-prepared films were then heat-treated at 350 °C and band gap measurements were performed for prepared films. It was found that increase in the copper concentration in the precursor solution decreased the band gap of the ZnO film. Methylene blue discolouration tests were then performed in order to study the effect of the copper nitrate addition to precursor solution on photocatalytic activity of the structured ZnO films.

  10. Wall-collision line broadening of molecular oxygen within nanoporous materials

    SciTech Connect

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan; Svensson, Tomas; Svanberg, Sune; Adolfsson, Erik

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressure and Doppler broadening.

  11. The apparent spectral broadening of VLF transmitter signals during transionospheric propagation

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Inan, U. S.; Katsufrakis, J. P.; James, H. G.

    1983-01-01

    ISIS 1 and 2 and ISEE 1 VLF/ELF electric field wave data indicate the existence of a novel phenomenon, in which initially narrow band upgoing signals from ground-based VLF transmitters undergo a significant spectral broadening as they propagate through the ionosphere and protonosphere, up to altitudes in the 600-3800 km range. For transmitter signals in the 10-20 kHz range, the spectral broadening can be as high as 10 percent of the input signal's nominal frequency. In many cases, the bandwidth of the spectrally broadened signals is a strong function of the electric dipole antenna orientation with respect to the local direction of the earth's magnetic field. The unusual dispersion in the components of the spectrally broadened pulses suggests that the spectral broadening may be due to a Doppler shift effect in which the initial signals scatter from irregularities in the F region and couple into quasi-electrostatic modes of short wave length.

  12. Multigroup Free-atom Doppler-broadening Approximation. Experiment

    SciTech Connect

    Gray, Mark Girard

    2015-11-06

    The multigroup energy Doppler-broadening approximation agrees with continuous energy Dopplerbroadening generally to within ten percent for the total cross sections of 1H, 56Fe, and 235U at 250 lanl. Although this is probably not good enough for broadening from room temperature through the entire temperature range in production use, it is better than any interpolation scheme between temperatures proposed to date, and may be good enough for extrapolation from high temperatures. The method deserves further study since additional improvements are possible.

  13. Air-broadened linewidths of nitrous oxide: An improved calculation

    NASA Astrophysics Data System (ADS)

    Lacome, Nelly; Levy, Armand; Boulet, Christian

    1983-01-01

    The semiclassical theory developed by Robert and Bonamy was used to obtain the linewidths of N 2O broadened by itself, by N 2 and by O 2. The main features of the formalism are as follows: (a) The anisotropic potential is expressed by using, besides the quadrupole-quadrupole contribution, an atom-atom interaction model (without any adjustable parameter) which takes both long- and short-range forces into account. (b) The geometry of the collision is described through the so-called "equivalent" straight path, more appropriate than the usual one. (c) The matrix elements of the relaxation operator are computed by means of the linked-cluster theorem, so that the treatment remains nonperturbative and no resort to cutoff precedures is needed. In addition to being more realistic the present formalism has the advantage of making the computation tractable for complex molecular systems such as linear-linear ones. Careful comparison was made with the available experimental results. For self-broadened N 2O very satisfactory agreement is obtained both at 300 and 204 K. This is also the case for nitrogen broadening at room temperature. Regarding oxygen-broadened linewidths, very few experimental data exist. Anyway, the present results reveal substantial improvement as compared to the usual calculations based upon Anderson-Tsao-Curnutte model. From these results a predictive tabulation was obtained for the values of air-broadened N 2O linewidths at 300 and 204 K.

  14. Gain and Raman line-broadening with graphene coated diamond-shape nano-antennas.

    PubMed

    Paraskevaidis, Charilaos; Kuykendall, Tevye; Melli, Mauro; Weber-Bargioni, Alexander; Schuck, P James; Schwartzberg, Adam; Dhuey, Scott; Cabrini, Stefano; Grebel, Haim

    2015-10-07

    Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve.

  15. The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers.

    PubMed

    Soh, Daniel B S; Koplow, Jeffrey P; Moore, Sean W; Schroder, Kevin L; Hsu, Wen L

    2010-10-11

    In addition to fiber nonlinearity, fiber dispersion plays a significant role in spectral broadening of incoherent continuous-wave light. In this paper we have performed a numerical analysis of spectral broadening of incoherent light based on a fully stochastic model. Under a wide range of operating conditions, these numerical simulations exhibit striking features such as damped oscillatory spectral broadening (during the initial stages of propagation), and eventual convergence to a stationary, steady state spectral distribution at sufficiently long propagation distances. In this study we analyze the important role of fiber dispersion in such phenomena. We also demonstrate an analytical rate equation expression for spectral broadening.

  16. Stark broadening data for stellar plasma research.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.

  17. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  18. Charge Correlations in Plasma Line Broadening

    SciTech Connect

    Wrighton, Jeffrey M.; Dufty, James W.

    2008-10-22

    The traditional theory of plasma line broadening is re-examined to correct for phenom-enological assumptions regarding charge correlations. Conditions for static ions are assumed, and the ion microfield distribution is introduced without neglecting ion-electron correlations, and with a precise definition for the ion field at the radiator. Radiator and plasma subsystems are defined so as to make a second order calculation of electron broadening valid for the case of high Z radiators. The electron broadening operator is identified in terms of the fluctuation of the electron density at the radiator, averaged over the entire plasma constrained by a given value for the ion microfield.

  19. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins.

    PubMed

    Somsen, O J; van Grondelle, R; van Amerongen, H

    1996-10-01

    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits.

  20. N 2- and O 2-broadening coefficients of C 2H 2 IR lines

    NASA Astrophysics Data System (ADS)

    Bouanich, J. P.; Lambot, D.; Blanquet, G.; Walrand, J.

    1990-04-01

    Pressure-broadening parameters of six lines belonging to the ν5 band of C 2H 2 in collision with N 2 have been measured with a tunable diode-laser spectrometer in order to complete up to J = 33 our earlier measurements (D. Lambot, G. Blanquet, and J. P. Bouanich, J. Mol. Spectrosc.136, 86-92 (1989)) on the broadening of C 2H 2 by N 2 and O 2 at 297 K. These N 2- and O 2-broadening coefficients have been first calculated on the basis of the Anderson-Tsao-Curnutte theory; in this approach, we show that the short-range interactions which contribute significantly to the linewidths are not correctly treated. Next, we consider the improved semiclassical model proposed by Robert and Bonamy. The intermolecular potential consists in the addition of the atom-atom interaction model to the quadrupolar interactions. The limited radial spherical harmonics expansion of the atom-atom potential, from which expressions for the differential cross section were derived, appears to be quite insufficient at short intermolecular distances. Therefore, we use a more accurate representation of this potential, avoiding an inadequate truncation and keeping the analytic expressions obtained by Bonamy and Robert. In the calculations we take into account the contributions derived from the radial functions U000( r), U200( r), and U220( r), as well as from U400( r). A theoretical expression is obtained for the U400 contribution to the differential cross section. The results of the calculations arising from the exact radial expansion of the atom-atom potential appear to be significantly larger for high J lines than those arising from the truncated expansion. The latter results, which do not include adjustable atom-atom parameters, are in good agreement with experimental broadening coefficients for C 2H 2O 2 and in reasonable agreement (except at large J values) for C 2H 2N 2. It is also shown that the contributions to the linewidths derived from U400 are rather small for C 2H 2N 2 and more

  1. He-broadening and shift coefficients of water vapor lines in infrared spectral region

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2015-11-01

    The water vapor line broadening and shift coefficients in the ν1+ν2, ν2+ν3, ν1+ν3, 2ν3, 2ν1, 2ν2+ν3, and ν1+2ν2 vibrational bands induced by helium pressure were measured using a Bruker IFS 125HR spectrometer. The vibrational bands 2ν3 and ν1+2ν2 were investigated for the first time. The interaction potential used in the calculations of broadening and shift coefficients was chosen as the sum of pair potentials, which were modeled by the Lennard-Jones (6-12) potentials. The vibrational and rotational contributions to this potential were obtained by use of the intermolecular potential parameters and intramolecular parameters of H2O molecule. The calculated values of the broadening and shift coefficients were compared with the experimental data.

  2. Theoretical Studies of Laser-Induced Molecular Rate Processes: Topics in Line Broadening and Spectroscopy.

    DTIC Science & Technology

    1985-10-01

    GROUP SU. GRF. MOLECULAR RATE PROCESSES MOLECULAR DYNAMICS LASER-INDUCED LINE BROADENING THEORETICAL STUDIES SPECTROSCOPY 19. ABSI*ACT (Continue On...approaches half the band-gap energy. -q 14 This idea of using a laser to "charge" the surface region has fomed the basis of a semiclassical theory of charge

  3. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    SciTech Connect

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; Rack, Phillip D.; Plank, Harald

    2015-01-01

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.

  4. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    DOE PAGES

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; ...

    2015-01-01

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead to evenmore » more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.« less

  5. Electron momentum densities near Dirac cones: Anisotropic Umklapp scattering and momentum broadening.

    PubMed

    Hiraoka, N; Nomura, T

    2017-04-03

    The relationship between electron momentum densities (EMDs) and a band gap is clarified in momentum space. The interference between wavefunctions via reciprocal lattice vectors, making a band gap in momentum space, causes the scattering of electrons from the first Brillouin zone to the other zones, so-called Umklapp scattering. This leads to the broadening of EMDs. A sharp drop of the EMD in the limit of a zero gap becomes broadened as the gap opens. The broadening is given by a simple quantity, E g /v F , where E g is the gap magnitude and v F the Fermi velocity. As the ideal case to see such an effect, we investigate the EMDs in graphene and graphite. They are basically semimetals, and their EMDs have a hexagonal shape enclosed in the first Brillouin zone. Since the gap is zero at Dirac points, a sharp drop exists at the corners (K/K' points) while the broadening becomes significant away from K/K's, showing the smoothest fall at the centers of the edges (M's). In fact, this unique topology mimics a general variation of the EMDs across the metal-insulator transition in condensed matters. Such an anisotropic broadening effect is indeed observed by momentum-density-based experiments e.g. x-ray Compton scattering.

  6. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  7. Broadening the definition of autoinflammation.

    PubMed

    Masters, Seth L

    2015-07-01

    Initially, the concept of autoinflammation posited that there be no involvement of autoreactive B or T cells, and no evidence of infection. These criteria served well to help establish the concept, and distinguish autoinflammatory diseases from autoimmune or infectious conditions. However, the characterisation of additional monogenic autoinflammatory diseases has established that a primary trigger of the innate immune system may also be accompanied by infection or manifestations of autoimmunity, which may even contribute to pathogenesis. This issue of Seminars in Immunopathology draws out these themes and also shows how autoinflammation can help to maintain homeostasis, which is its primary evolutionary function. Elucidating the fundamental innate immune pathways underlying autoinflammatory disease leads back to these same homeostatic parameters, to inform about how infection is sensed, and providing for new targets against chronic inflammatory disease.

  8. Does interest broaden or narrow attentional scope?

    PubMed

    Sung, Billy; Yih, Jennifer

    2015-08-10

    Theory proposes that interest is a positive emotion that may either broaden attention to facilitate processing of new information, or narrow attention to preserve engagement with new information. To our knowledge, no research has directly examined the effect of interest on attentional scope. Across four experiments, we show that traits associated with the propensity to experience interest-specifically, trait curiosity and internal boredom proneness-are associated with a narrower scope of attention. We also find that, instead of broadening, interest actually narrows attentional scope in comparison to a neutral state and awe. Challenging the conventional notion that all positive emotions broaden cognition and attention, our findings suggest that specific emotions influence attention in ways that extend beyond a general emotional valence effect.

  9. Sound pulse broadening in stressed granular media

    NASA Astrophysics Data System (ADS)

    Langlois, Vincent; Jia, Xiaoping

    2015-02-01

    The pulse broadening and decay of coherent sound waves propagating in disordered granular media are investigated. We find that the pulse width of these compressional waves is broadened when the disorder is increased by mixing the beads made of different materials. To identify the responsible mechanism for the pulse broadening, we also perform the acoustic attenuation measurement by spectral analysis and the numerical simulation of pulsed sound wave propagation along one-dimensional disordered elastic chains. The qualitative agreement between experiment and simulation reveals a dominant mechanism by scattering attenuation at the high-frequency range, which is consistent with theoretical models of sound wave scattering in strongly random media via a correlation length.

  10. Measurement of self-broadening of the ozone nu(3) transitions

    NASA Technical Reports Server (NTRS)

    Flannery, C.; Klaassen, J. J.; Gojer, M.; Steinfeld, J. I.; Spencer, M.; Chackerian, C., Jr.

    1991-01-01

    Self-broadening coefficients have been measured for a number of rovibrational lines in the nu(3) band of ozone, in the frequency range 1015-1058/cm, with J values between 0 and 27, and over a range of K(a) values. A multiparameter nonlinear least-squares fitting procedure is used to reduce the data, and the sensitivity of the procedure to instrument line width, weak satellite features, and absolute intensity has been examined. The retrieved coefficients are compared with millimeter-wave broadening coefficients, direclty measured rotational relaxation times, and recently suggested empirical representations.

  11. Multiplex ligation-dependent probe amplification assay identifies additional copy number changes compared with R-band karyotype and provide more accuracy prognostic information in myelodysplastic syndromes

    PubMed Central

    Xu, Zefeng; Zhang, Yue; Liu, Jinqin; Li, Bing; Fang, Liwei; Zhang, Hongli; Pan, Lijuan; Hu, Naibo; Qu, Shiqiang; Cai, Wenyu; Ru, Kun; Jia, Yujiao; Huang, Gang; Xiao, Zhijian

    2017-01-01

    Cytogenetic analysis provides important diagnostic and prognostic information for patients with Myelodysplastic syndromes (MDS) and plays an essential role in the International Prognostic Scoring System (IPSS) and the revised International Prognostic Scoring System (IPSS-R). Multiplex ligation-dependent probe amplification (MLPA) assay is a recently developed technique to identify targeted cytogenetic aberrations in MDS patients. In the present study, we evaluated the results obtained using an MLPA assay in 437 patients with MDS to determine the efficacy of MLPA analysis. Using R-banding karyotyping, 45% (197/437) of MDS patients had chromosomal abnormalities, whereas MLPA analysis detected that 35% (153/437) of MDS cases contained at least one copy-number variations (CNVs) .2/5 individuals (40%) with R-band karyotype failures had trisomy 8 detected using only MLPA. Clonal cytogenetic abnormalities were detected in 20/235 (8.5%) MDS patients with a normal R-band karyotype, and 12/20 (60%) of those patients were reclassified into a higher-risk IPSS-R prognostic category. When sequencing and cytogenetics were combined, the fraction of patients with MDS-related oncogenic lesions increased to 87.3% (233/267 cases). MLPA analysis determined that the median OS of patients with a normal karyotype (n=218) was 65 months compared with 27 months in cases with an aberrant karyotype (P=0.002) in 240 patients with normal or failed karyotypes by R-banding karyotyping. The high-resolution MPLA assay is an efficient and reliable method that can be used in conjunction with R-band karyotyping to detect chromosomal abnormalities in patients with suspected MDS. MLPA may also provide more accurate prognostic information. PMID:27906673

  12. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Van Laer, R.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.

    2016-02-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and inter-mode forward SBS the existence of two broadening mechanisms with opposite sign also opens the possibility to compensate the effect of geometry-induced broadening. Our results can be transferred to other micro- and nano-structured waveguide geometries such as photonic crystal fibres.

  13. Characteristics of yttrium oxide laser ceramics with additives

    SciTech Connect

    Osipov, V V; Solomonov, V I; Orlov, A N; Shitov, V A; Maksimov, R N; Spirina, A V

    2013-03-31

    Neodymium- or ytterbium-doped laser ceramics with a disordered crystal-field structure formed by introduction of iso- and heterovalent elements into yttrium oxide are studied. It is shown that these additives broaden the spectral band of laser transitions, which makes it possible to use ceramics as active laser media emitting ultrashort pulses. Lasing was obtained in several samples of this ceramics. At the same time, it is shown that addition of zirconium and hafnium stimulates the Foerster quenching of upper laser levels and pump levels. (extreme light fields and their applications)

  14. Broadening Our View of Linguistic Diversity

    ERIC Educational Resources Information Center

    O'Neal, Debra; Ringler, Marjorie

    2010-01-01

    The definition of English language learners needs to be broadened to include the marginalized dialects of English. Not all native speakers speak Standard English, and even those who do need to learn Academic English to succeed in school. By using strategies developed for ELLs, teachers can help all students become fluent in the language of school.

  15. Unified classical path theories of pressure broadening.

    NASA Technical Reports Server (NTRS)

    Bottcher, C.

    1971-01-01

    Derivation of a unified classical path theory of pressure broadening, using only elementary concepts. It is shown that the theory of Smith, Cooper and Vidal (1969) is only correct at all frequencies to first order in the number density of perturbers.

  16. Distribution of Chern number by Landau level broadening in Hofstadter butterfly

    NASA Astrophysics Data System (ADS)

    Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao

    2015-04-01

    We discuss the relationship between the quantum Hall conductance and a fractal energy band structure, Hofstadter butterfly, on a square lattice under a magnetic field. At first, we calculate the Hall conductance of Hofstadter butterfly on the basis of the linear responce theory. By classifying the bands into some groups with a help of continued fraction expansion, we find that the conductance at the band gaps between the groups accord with the denominators of fractions obtained by aborting the expansion halfway. The broadening of Landau levels is given as an account of this correspondance.

  17. OBSERVATIONAL EVIDENCE FOR A CORRELATION BETWEEN MACROTURBULENT BROADENING AND LINE-PROFILE VARIATIONS IN OB SUPERGIANTS

    SciTech Connect

    Simon-Diaz, S.; Herrero, A.; Castro, N.; Uytterhoeven, K.; Puls, J.

    2010-09-10

    The spectra of O and B supergiants (Sgs) are known to be affected by a significant form of extra line broadening (usually referred to as macroturbulence) in addition to that produced by stellar rotation. Recent analyses of high-resolution spectra have shown that the interpretation of this line broadening as a consequence of large-scale turbulent motions would imply highly supersonic velocity fields in photospheric regions, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. As part of a long-term observational project, we are investigating the macroturbulent broadening in O and B Sgs and its possible connection with spectroscopic variability phenomena and stellar oscillations. In this Letter, we present the first encouraging results of our project, namely, firm observational evidence for a strong correlation between the extra broadening and photospheric line-profile variations in a sample of 13 Sgs with spectral types ranging from O9.5 to B8.

  18. Influence of resonant collisions on the self-broadening of acetylene

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.

    2017-03-01

    Iwakuni et al. [Phys. Rev. Lett. 117, 143902 (2016)] have reported an ortho-para alternation of ˜10% in the self pressure broadening coefficients for ro-vibrational lines of the C2H2 transitions in the ν1+ν3 C-H (local mode) overtone band near 197 THz (1.52 μm). These authors attributed this effect to the contribution of resonant collisions, where the rotational energy change of one molecule is exactly compensated by the rotational energy change of its collision partner. Resonant collisions are known to be important in the case of self pressure broadening of highly polar molecules, such as HCN, but have not previously been invoked in the case of nonpolar molecules, such as acetylene, where the long range potential is dominated by the quadrupole-quadrupole electrostatic interaction. In the present work, the simple semiclassical Anderson-theory approach is used to estimate the rates of C2H2-C2H2 rotationally inelastic collisions and these used to predict pressure broadening rates, ignoring other contributions to the broadening, which should not have resonant enhancements. It is found that exactly resonant collisions do not make a major contribution to the broadening and these calculations predict an ortho-para alternation of the pressure broadening coefficients far below what was inferred by Iwakuni et al. The present results are consistent with a large body of published work that reported self-broadening coefficients of C2H2 ro-vibrational transitions that found negligible dependence on the vibrational transition and no even-odd alternation, even for Q and S branch transitions where any such effect is predicted to be much larger than for the P and R branch transitions studied by Iwakuni et al.

  19. Spectral line broadening in magnetized black holes

    SciTech Connect

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  20. Stark broadening effect and zirconium conflict problem

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Popović, Luka Č.; Milovanović, Nenad

    2001-04-01

    Using the Modified Semiempirical Method we have calculated the electron-impact widths for four singly and doubly ionized zirconium UV lines of astrophysical importance. Using the SYNTH and ATLAS9 codes for stellar atmospheres similar to that of the HgMn star χ Lupi we have synthesized the line profiles and found equivalent widths for these lines. The influence of the Stark broadening effect on abundance determination and its contribution to the so-called ``zirconium conflict'' are discussed. .

  1. Line Broadening and the Solar Opacity Problem

    NASA Astrophysics Data System (ADS)

    Krief, M.; Feigel, A.; Gazit, D.

    2016-06-01

    The calculation of line widths constitutes theoretical and computational challenges in the calculation of opacities of hot, dense plasmas. Opacity models use line broadening approximations that are untested at stellar interior conditions. Moreover, calculations of atomic spectra of the Sun indicate a large discrepancy in the K-shell line widths between several atomic codes and the Opacity-Project (OP). In this work, the atomic code STAR is used to study the sensitivity of solar opacities to line broadening. Variations in the solar opacity profile due to an increase of the Stark widths resulting from discrepancies with OP, are compared, in light of the solar opacity problem, with the required opacity variations of the present day Sun, as imposed by helioseismic and neutrino observations. The resulting variation profile is much larger than the discrepancy between different atomic codes, agrees qualitatively with the missing opacity profile, recovers about half of the missing opacity nearby the convection boundary, and has a little effect in the internal regions. Since it is hard to estimate quantitatively the uncertainty in the Stark widths, we show that an increase of all line widths by a factor of about ˜100 recovers quantitatively the missing opacity. These results emphasize the possibility that photoexcitation processes are not modeled properly, and more specifically, highlight the need for a better theoretical characterization of the line broadening phenomena at stellar interior conditions, and of the uncertainty due to the way it is implemented by atomic codes.

  2. Action potential broadening in a presynaptic channelopathy

    PubMed Central

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  3. Action potential broadening in a presynaptic channelopathy

    NASA Astrophysics Data System (ADS)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  4. Commitment to Broadening Participation at NOAO

    NASA Astrophysics Data System (ADS)

    Garmany, Catharine D.; Norman, D.

    2011-01-01

    AURA and NOAO take seriously the importance of Broadening Participation in Astronomy. At the request of the AURA President, each of the AURA centers (NOAO, NSO, STSCI, Gemini) appointed a Diversity Advocates (DA). At NOAO this job is shared by Dara Norman and Katy Garmany, who were appointed by Dave Silva in Jan 2009. The DA's are members of the AURA Committee on Workforce and Diversity (WDC), a designated subcommittee of the AURA Board of Directors. The role of this committee includes reviewing activities and plans on an AURA wide basis aimed at broadening the participation within AURA, and reviewing AURA wide policies on the workforce. At NOAO, the role of the DAs spans a number of departments and activities. They serve on observatory search committees, and offer suggestions on how NOAO job searches can reach the most diverse audience. The DA's job is to insure that NOAO actively pursues every opportunity to increase diversity: to this end they are involved in outreach and educational activities that focus on workplace development and encourage inclusion of woman, minorities and persons with disabilities.

  5. Action potential broadening in a presynaptic channelopathy.

    PubMed

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E; Kullmann, Dimitri M

    2016-07-06

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca(2+) influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  6. Stark Broadening Parameters For White Dwarf Atmospheres Research

    NASA Astrophysics Data System (ADS)

    Larbi-Terzi, N.; Sahal-Brechot, S.; Nessib, N. B.; Dimitrijevic, M. S.

    2010-07-01

    Stark broadening parameters of C II lines were determined within 3d-nf series using semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, which were additionally calculated using the method of Bates and Damgaard. The both results were compared and only insignificant differences were found. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e- Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  7. Broadening of the R(0) and P(2) Lines in the 13CO Fundamental by Helium Atoms from 300 K down to 12 K: Measurements and Comparison with Close-Coupling Calculations

    NASA Technical Reports Server (NTRS)

    Thibault, F.; Mantz, A. W.; Claveau, C.; Valentin, A.; Hurtmans, D.

    2007-01-01

    We present measurements of He-broadening parameters for the R(0) and O(2) lines in the fundamental band of 13CO at different temperatures between 12K and room temperature. The broadening parameters are determined, taking into account confinement narrowing, by simultaneous least-squares fitting of spectra recorded using a frequency stabilized diode laser spectrometer. The pressure broadening cross sections are deduced and compared to close-coupling calculations and earlier results obtained for rotational transitions of 12 CO.

  8. Photoinduced broadening of cholesteric liquid crystal reflectors

    NASA Astrophysics Data System (ADS)

    White, Timothy J.; Freer, Alexander S.; Tabiryan, Nelson V.; Bunning, Timothy J.

    2010-04-01

    The selective reflection of cholesteric liquid crystals (CLCs) is well-known and has been utilized in a number of dynamic optical applications. This work presents a novel approach to passively (e.g., all-optically) cue reflection notch broadening in photoresponsive CLC formulations based on high helical twisting power (HTP) bis(azo) chiral dopants. The original reflection bandwidth of approximately 100 nm is increased to as much as 1700 nm, by exposing 36 μm thick cells to UV light. The maximum attainable bandwidth is shown to be a function of cell thickness, light intensity, and strongly related to the HTP of the photoresponsive chiral dopants. An all-optical technique of simultaneous UV and green light exposure is demonstrated to trap the reflection notch at a predetermined position and bandwidth.

  9. Broadening Participation in the Coastal Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Christian, A.; Hannigan, R.

    2011-12-01

    Embracing diversity of discipline and perspective is central to broadening participation in the ocean sciences. Research focused on coastal environmental issues seen through the lenses of indigenous knowledge, industry, and public-private partnership perspectives engages younger non-ocean science students from minority serving institutions in unique ways. Demonstrating multiple entry points to students interested in a career in the sciences and engaging them in research across spatial and temporal scales is vitally important to the creation of a learning cohort that will sustain these students past their often short summer research experience. By combining recruitment partnerships with select minority serving institutions, engaging younger students in research, and creating a diverse set of cohort building activities ensures that as we embrace the diversity of coastal environmental disciplines we also embrace the diversity of perspectives that these students bring to our research.

  10. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  11. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  12. Analysis of pressure-broadened ozone spectra in the 3 micron region

    NASA Technical Reports Server (NTRS)

    Prochaska, Eleanor S.

    1991-01-01

    This work involves the analysis of a series of McMath Fourier Transform Infrared (FTIR) spectra of ozone broadened by mixing with air (four different pressures), nitrogen (three pressures), or oxygen (three pressures). Each spectrum covers the region from 2396 to 4057 cm(-1). This study focused on the 3 sub nu sub 3 band in t 3000 to 3060 cm(-1). The band is analyzed by first dividing its region into small intervals containing a few well isolated absorption lines of reasonable intensity. Each of these small intervals is fit by multiple iterations of the nonlinear least squares program until residuals (the difference between calculated and observed spectrum, as a percent of the strongest intensity in the interval) are minimized to a reasonable value which corresponds to the noise level of the measured spectrum. Position, intensity, and half-width are recorded for later analysis. From the measured half-widths, a pressure broadening coefficient was determined for each absorption line. Pressure shifts were determined by comparing observed line positions in the spectra of the diluted ozone samples to tabulated line positions determined from spectra of pure gas samples. Comparisons to other work on ozone indicate that the broadening and shift coefficients determined in this study are consistent with those determined in other spectral regions.

  13. Deep Impurity Band Silicon for Subbandgap Photodetection

    DTIC Science & Technology

    2014-05-02

    Our prior research had demonstrated an insulator-to-metal transition in silicon hyperdoped with sulfur or selenium when the chalcogen concentration...silicon hyperdoped with selenium , from [1]. Filled defect band broadens until it intersects conduction band at 0.4% Se caus- ing insulator-to-metal...Aziz, T. Buonassisi, and J.C. Grossman, "Insulator-to-Metal Transition in Selenium -Hyperdoped Silicon: Observation and Origin", Physical Review Letters

  14. Mechanism of frequency-dependent broadening of molluscan neurone soma spikes.

    PubMed

    Aldrich, R W; Getting, P A; Thompson, S H

    1979-06-01

    1. Action potentials recorded from isolated dorid neurone somata increase in duration, i.e. broaden, during low frequency repetitive firing. Spike broadening is substantially reduced by external Co ions and implicates an inward Ca current. 2. During repetitive voltage clamp steps at frequencies slower than 1 Hz, in 100 mM-tetraethyl ammonium ions (TEA) inward Ca currents do not increase in amplitude. 3. Repetitive action potentials result in inactivation of delayed outward current. Likewise, repetitive voltage clamp steps which cause inactivation of delayed outward current also result in longer duration action potentials. 4. The frequency dependence of spike broadening and inactivation of the voltage dependent component (IK) of delayed outward current are similar. 5. Inactivation of IK is observed in all cells, however, only cells with relative large inward Ca currents show significant spike broadening. Spike broadening apparently results from the frequency dependent inactivation of IK which increases the expression of inward Ca current as a prominent shoulder on the repolarizing phase of the action potential. In addition, the presence of a prolonged Ca current increases the duration of the first action potential thereby allowing sufficient time for inactivation of IK.

  15. Doppler Broadening Thermometry Based on Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sun, Yu Robert; Cheng, Cunfeng; Tao, Lei-Gang; Tan, Yan; Kang, Peng; Liu, An-Wen; Hu, Shui-Ming

    2016-06-01

    A Doppler broadening thermometry (DBT) instrument is implemented based on a laser-locked cavity ring-down spectrometer. [1,2] It can be used to determine the Boltzmann constant by measuring the Doppler width of a molecular ro-vibrational transition in the near infrared. Compared with conventional direct absorption methods, the high-sensitivity of CRDS allows to reach satisfied precision at lower sample pressures, which reduces the influence due to collisions. By measuring the ro-vibrational transition of C_2H_2 at 787 nm, we demonstrate a statistical uncertainty of 6 ppm (part per million) in the determined linewidth by several hours' measurement at a sample pressure of 1.5 Pa. [3] However, the complicity in the spectrum of a polyatomic molecule induces potential systematic influence on the line profile due to nearby ``hidden'' lines from weak bands or minor isotopologues. Recently, the instrument has been upgraded in both sensitivity and frequency accuracy. A narrow-band fiber laser frequency-locked to a frequency comb is applied, and overtone transitions at 1.56 μm of the 12C16O molecule are used in the CRDS-DBT measurements. The simplicity of the spectrum of the diatomic CO molecule eliminates the potential influence from ``hidden'' lines. Our preliminary measurements and analysis show that it is feasible to pursue a DBT measurement toward the 1 ppm precision. H. Pan, et al., Rev. Sci. Instrum. 82, 103110 (2011) Y. R. Sun, et al., Opt. Expr., 19, 19993 (2011) C.-F. Cheng, et al., Metrologia, 52, S385 (2015)

  16. Implementation of on-the-fly doppler broadening in MCNP

    SciTech Connect

    Martin, W. R.; Wilderman, S.; Brown, F. B.; Yesilyurt, G.

    2013-07-01

    A new method to obtain Doppler broadened cross sections has been implemented into MCNP, removing the need to generate cross sections for isotopes at problem temperatures. When a neutron of energy E enters a material region that is at some temperature T, the cross sections for that material at temperature T are immediately obtained 'on-the-fly' (OTF) by interpolation using a high order functional expansion for the temperature dependence of the Doppler-broadened cross section for that isotope at the neutron energy E. The OTF cross sections agree with the NJOY-based cross sections for all neutron energies and all temperatures in the range specified by the user, e.g., 250 K - 3200 K. The OTF methodology has been successfully implemented into the MCNP Monte Carlo code and has been tested on several test problems by comparing MCNP with conventional ACE cross sections versus MCNP with OTF cross sections. The test problems include the Doppler defect reactivity benchmark suite and two full-core VHTR configurations, including one with multiphysics coupling using RELAP5-3D/ATHENA for the thermal-hydraulic analysis. The comparison has been excellent, verifying that the OTF libraries can be used in place of the conventional ACE libraries generated at problem temperatures. In addition, it has been found that the OTF methodology greatly reduces the complexity of the input for MCNP, resulting in an order of magnitude decrease in the number of input lines for full-core configurations. Finally, for full-core problems with multiphysics feedback, the memory required to store the cross section data is considerably reduced with OTF cross sections and the additional computational effort with OTF is modest, on the order of 10-15%. (authors)

  17. Exact expression of the impact broadening operator for hydrogen Stark broadening

    NASA Astrophysics Data System (ADS)

    Gigosos, M. A.; González, M. Á.; Talin, B.; Calisti, A.

    2007-05-01

    Aims:Recent measurements on the Stark broadening of radio recombination lines show values and trends in disagreement with conventional theories. Different attemps to explain those disagreements have not been successfull for any of the employed theoretical models. In particular, the impact model that describes well the physical conditions at which the studied broadenings occur, shows a functional trend upon the principal quantum number of the studied transitions that does not correspond to the experimental observations. Methods: High values of the principal quantum number require computable formulas for the calculation of transition probabilities. Some of those expressions have been published, leading to approximate formulas on the dependence of the line width versus the principal quantum number of the upper level of the transition. Results: In this work an exact expression for the hydrogen Stark width in the frame of impact approximation is given.

  18. A study of the spectral broadening of simulated Doppler signals using FFT and AR modelling.

    PubMed

    Keeton, P I; Schlindwein, F S; Evans, D H

    1997-01-01

    Doppler ultrasound is used clinically to detect stenosis in the carotid artery. The presence of stenosis may be identified by disturbed flow patterns distal to the stenosis that cause spectral broadening in the spectrum of the Doppler signal around peak systole. This paper investigates the behaviour of the spectral broadening index (SBI) derived from wide-band spectra obtained using autoregressive modelling (AR), compared with the SBI based on the fast-Fourier transform (FFT) spectra. Simulated Doppler signals were created using white noise and shaped filters to analyse spectra typically found around the systolic peak and to assess the magnitude and variance of AR and FFT-SBI for a range of signal-to-noise ratios. The results of the analysis show a strong correlation between the indices calculated using the FFT and AR algorithms. Despite the qualitative improvement of the AR spectra over the FFT, the estimation of SBI for short data frames is not significantly improved using AR.

  19. Broadening of optical transitions in polycrystalline CdS and CdTe thin films

    SciTech Connect

    Li Jian; Chen Jie; Collins, R. W.

    2010-11-01

    The dielectric functions {epsilon} of polycrystalline CdS and CdTe thin films sputter deposited onto Si wafers were measured from 0.75 to 6.5 eV by in situ spectroscopic ellipsometry. Differences in {epsilon} due to processing variations are well understood using an excited carrier scattering model. For each sample, a carrier mean free path {lambda} is defined that is found to be inversely proportional to the broadening of each of the band structure critical points (CPs) deduced from {epsilon}. The rate at which broadening occurs with {lambda}{sup -1} is different for each CP, enabling a carrier group speed {upsilon}{sub g} to be identified for the CP. With the database for {upsilon}{sub g}, {epsilon} can be analyzed to evaluate the quality of materials used in CdS/CdTe photovoltaic heterojunctions.

  20. Low Temperature Measurements of HCN Broadened by N2 in the 14-micron Spectral Region

    SciTech Connect

    Smith, M.A.H.; Rinsland, Curtis P.; Blake, Thomas A.; Sams, Robert L.; Benner, D. C.; Devi, V. M.

    2008-04-01

    N2-broadening and N2-pressure-induced shift coefficients; and the temperature dependence exponent of the N2-broadening and the temperature dependent coefficients of N2-pressure-induced shifts have been measured for transitions in the v2 band of HCN from analysis of high-resolution absorption spectra recorded with two different Fourier transform spectrometers. A total of 34 laboratory spectra recorded at 0.002-0.005 cm-1 resolution and at temperatures ranging from 211 to 300 K were used in the determination of various spectral line parameters. A multispectrum nonlinear least squares curve fitting technique employing a modified Voigt line profile including speed dependence was used in the P- and R-branch measurements. In analyzing the Q branch transitions, the off-diagonal relaxation matrix element coefficients were included in analysis to fit the data. Present results are compared to previous measurements reported in the literature.

  1. Laboratory Pressure Broadening Coefficients To Support SOIR/VEx And SOIR-NOMAD

    NASA Astrophysics Data System (ADS)

    Drummond, Rachel; Földes, T.; Vander Auwera, J.; Mahieux, A.; Robert, S.; Vandaele, A.; Wilquet, V.

    2010-10-01

    Precise spectroscopic data to describe CO2 pressure-broadened lineshapes of trace gases in the Venus and Mars atmospheres are rather scarce. In an attempt to compensate for such a situation, we recorded in the laboratory CO2 broadened absorption spectra of the 1-0 band of HCl near 2886 cm-1 and the ν3 band of CH4 near 3019 cm-1 at several pressures between 150 and 700 Torr, using a high-resolution Fourier transform spectrometer. CO2 pressure broadening half-width coefficients are extracted by least-squares fitting of suitable molecular line profiles, including instrumental effects. Sensitivity studies have been performed using the characteristics of the SOIR instrument. This instrument is currently on board the Venus Express mission (ESA) and has been proposed as payload for the future ExoMars 2016 TGO mission (ESA/NASA). The SOIR instrument is designed to measure atmospheric transmission in the near-IR (2.2 - 4.3 µm) at high resolution (0.12 cm-1) through solar occultation observations. It therefore allows the derivation of unique remote sensing information about the vertical structure and composition of the Venus mesosphere, with very good spatial resolution. At Venus, SOIR is able to provide HCl vertical profiles ranging typically from 80 to 105 km, at both morning and evening terminators, where the dynamics of the planetary atmosphere are relatively unknown. At Mars, the high resolution of the instrument will make it possible to observe CH4, if any. We show here how these two approaches, laboratory and space missions, are complimentary, as broadening coefficients measured in the laboratory allow us to simulate perfectly HCl and CH4 lines as seen by SOIR.

  2. Line Parameters for the Oxygen a Band

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun; Sung, Keeyoon; Hodges, Joseph T.; Long, David A.; Bui, Thinh; Rupasinghe, Priyanka Milinda; Okumura, Mitchio

    2013-06-01

    Simulation of the oxygen A band to a level that is sufficient for accurate studies of the Earth's atmosphere is complex in that not only are Doppler and Lorentz broadening important, but also Dicke narrowing, pressure shifts, line mixing and speed dependence. In addition all of these parameters except the speed dependence require temperature dependence parameters as well. To measure all of the required line parameters with the multispectrum nonlinear least squares fitting technique, spectra were acquired by the Bruker IFS125-HR Fourier Transform Spectrometer at the Jet Propulsion Laboratory in combination with various multpass cells, a cavity ring down spectrometer at NIST and a photoacoustic spectrometer at the California Institute of Technology. The combination of the data from these three very different types of spectrometers in a single simultaneous fit of the entire band enables the measurement of all of these quantities. The results to this point will be summarized. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, JQSRT 1995;53:705-21. Support for the work at William and Mary was provided by JPL and the NIST Greenhouse Gas Measurements and Climate Research Program. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology under contracts with National Aeronautics and Space Administration. Support for the work at NIST was provided by at the NIST Greenhouse Gas Measurements and Climate Research Program and an Innovations in Measurement Sciences (IMS) award.

  3. Helium broadening parameters of water vapor in the 10,200-11,200 cm-1 spectral region

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2017-01-01

    The He-broadening (γ) and shift (δ) coefficients of 76 rovibrational transitions belonging to the 3ν1, 3ν3, ν1 + 2ν2 + ν3, and 2ν1 + ν3 vibrational bands of H2O molecule were measured in the spectral range between 10,200 and 11,200 cm-1 with the spectral resolution of 0.01 cm-1 using a Bruker IFS 125HR FTIR spectrometer. The calculations of γ and δ were performed in the framework of the semi-classical method. It was shown that the vibrational dependence of the long-range as well as the short-range parts of an isotropic H2O-He interaction potential influence substantially the calculated broadening coefficients γ. The vibrationally and rotationally dependent analytical model for the broadening coefficients calculation is presented and discussed.

  4. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Drag, Cyril; Blondel, Christophe; Guaitella, Olivier; Golda, Judith; Klarenaar, Bart; Engeln, Richard; Schulz-von der Gathen, Volker; Booth, Jean-Paul

    2016-12-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations. The pressure broadening coefficients determined were {γ{{\\text{O}2}}}   =  0.40  ±  0.08  cm-1/bar for oxygen molecules and {γ\\text{He}}   =  0.46  ±  0.03 cm-1/bar for helium atoms. These correspond to pressure broadening rate constants k\\text{PB}{{\\text{O}2}}   =  9 · 10-9 cm3 s-1 and k\\text{PB}\\text{He}   =  4 · 10-9 cm3 s-1, respectively. The well-known quenching rate constants of O(3p 3 P J ) by O2 and He are at least one order of magnitude smaller, which signifies that non-quenching collisions constitute the main line-broadening mechanism. In addition to providing new insights into collisional processes of oxygen atoms in electronically excited 3p 3 P J state, reported pressure broadening parameters are important for quantification of oxygen TALIF line profiles when both collisional and Doppler broadening mechanisms are important. Thus, the Doppler component (and hence the temperature of oxygen atoms) can be accurately determined from high resolution TALIF measurements in a broad range of conditions.

  5. Band Structures of Plasmonic Polarons

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Lambert, Henry; Giustino, Feliciano

    2015-03-01

    In angle-resolved photoemission spectroscopy (ARPES), the acceleration of a photo-electron upon photon absorption may trigger shake-up excitations in the sample, leading to the emission of phonons, electron-hole pairs, and plasmons, the latter being collective charge-density fluctuations. Using state-of-the-art many-body calculations based on the `GW plus cumulant' approach, we show that electron-plasmon interactions induce plasmonic polaron bands in group IV transition metal dichalcogenide monolayers (MoS2, MoSe2, WS2, WSe2). We find that the energy vs. momentum dispersion relations of these plasmonic structures closely follow the standard valence bands, although they appear broadened and blueshifted by the plasmon energy. Based on our results we identify general criteria for observing plasmonic polaron bands in the angle-resolved photoelectron spectra of solids.

  6. Envelope broadening and scattering attenuation of a scalar wavelet in random media having power-law spectra

    NASA Astrophysics Data System (ADS)

    Sato, Haruo

    2016-01-01

    Peak delay and envelope broadening of an S-wavelet with travel distance increasing are seen in short-period seismograms of small earthquakes. Those phenomena are results of scattering by random velocity inhomogeneities in the earth medium. As shown in sonic well-log data we may suppose that random velocity fluctuation has power-law spectra even in the seismic spectral range. As a simple mathematical model, we study how the envelope of a scalar wavelet varies in von Kármán-type random media, which have power-law spectra at large wavenumbers. Since the centre wavenumber of a wavelet is a unique scale in the power-law spectral range, using it as a reference, we divide the random media into the low-wavenumber spectral (long-scale) component and the high-wavenumber spectral (short-scale) component. For the wave propagation through the long-scale component of random media, we may apply the parabolic approximation to the wave equation. Using the Markov approximation, which is a stochastic extension of the phase screen method, we directly synthesize the energy density, which is the mean-square (MS) envelope of a wavelet in a given frequency band. The envelope duration increases according to the second power of travel distance. There is an additional factor, the wandering effect which increases the envelope duration according to the traveltime fluctuation. Wide angle scattering caused by the short-scale component of random media attenuates wave amplitude with travel distance increasing. We use the total scattering coefficient of the short-scale component as a measure of scattering attenuation per distance, which is well described by the Born approximation. Multiplying the exponential scattering attenuation factor by the MS envelope derived by the Markov approximation, we can synthesize the MS envelope reflecting all the spectral components of random media. When the random medium power spectra have a steep role-off at large wavenumbers, the envelope broadening is small and

  7. Photonic band gap enhancement in frequency-dependent dielectrics.

    PubMed

    Toader, Ovidiu; John, Sajeev

    2004-10-01

    We illustrate a general technique for evaluating photonic band structures in periodic d -dimensional microstructures in which the dielectric constant epsilon (omega) exhibits rapid variations with frequency omega . This technique involves the evaluation of generalized electromagnetic dispersion surfaces omega ( k--> ,epsilon) in a (d+1) -dimensional space consisting of the physical d -dimensional space of wave vectors k--> and an additional dimension defined by the continuous, independent, variable epsilon . The physical band structure for the photonic crystal is obtained by evaluating the intersection of the generalized dispersion surfaces with the "cutting surface" defined by the function epsilon (omega) . We apply this method to evaluate the band structure of both two- and three-dimensional (3D) periodic microstructures. We consider metallic photonic crystals with free carriers described by a simple Drude conductivity and verify the occurrence of electromagnetic pass bands below the plasma frequency of the bulk metal. We also evaluate the shift of the photonic band structure caused by free carrier injection into semiconductor-based photonic crystals. We apply our method to two models in which epsilon (omega) describes a resonant radiation-matter interaction. In the first model, we consider the addition of independent, resonant oscillators to a photonic crystal with an otherwise frequency-independent dielectric constant. We demonstrate that for an inhomogeneously broadened distribution of resonators impregnated within an inverse opal structure, the full 3D photonic band gap (PBG) can be considerably enhanced. In the second model, we consider a coupled resonant oscillator mode in a photonic crystal. When this mode is an optical phonon, there can be a synergetic interplay between the polaritonic resonance and the geometrical scattering resonances of the structured dielectric, leading to PBG enhancement. A similar effect may arise when resonant atoms that are

  8. Band heterotopia.

    PubMed

    Alam, M S; Naila, N

    2010-01-01

    Band heterotopias are one of the rarest groups of congenital disorder that result in variable degree of structural abnormality of brain parenchyma. Band of heterotopic neurons result from a congenital or acquired deficiency of the neuronal migration. MRI is the examination of choice for demonstrating these abnormalities because of the superb gray vs. white matter differentiation, detail of cortical anatomy and ease of multiplanar imaging. We report a case of band heterotopia that showed a bilateral band of gray matter in deep white matter best demonstrated on T2 Wt. and FLAIR images.

  9. Droplet spectral broadening in marine stratus

    SciTech Connect

    Hudson, J.G.; Yum, Seong Soo

    1997-11-15

    Broadening of the cloud droplet (diameter < 50 {mu}m) spectrum with increased droplet size was found to depend on the vertical profiles of cloud water. Clouds with liquid water profiles resembling adiabatic conditions displayed constant spectral widths. Other clouds displayed broader droplet spectra and increasing broadness with mean droplet sizes. Less than adiabatic cloud liquid water profiles may be accounted for by conversion to drops (diameter > 50 {mu}m, i.e., drizzle). Broad droplet spectra were most closely associated with drizzle drops. Both the concentration, C and slope, k, of the cloud condensation nuclei (CCN) spectra were theoretically found to affect droplet spectral width. For individual cloud parcels a higher C and lower k each contributed to broader droplet spectra. When mixing among cloud parcels with different updrafts was considered, the predictions deviated especially at larger mean droplet diameters. Variations in updraft velocity result in differences in droplet concentrations and mean droplet sizes. The predictions for this internal mixing process showed greater droplet spectral widths for CCN spectra with higher k, especially at the larger mean droplet diameters. Instead of the individual parcel predictions of narrower droplet spectra at larger mean droplet sizes, internal mixing predicted increasing droplet spectral width with increasing mean droplet size. These predictions are consistent with the observations. First, when only cloud parcels with small mean droplet diameters (< 1 {mu}m) were considered, the polluted clouds that formed on CCN with higher C and lower k displayed broader droplet spectra than clean clouds. Cloud parcels with large mean droplet diameters (>12 {mu}m) and large {sigma} were observed only in clean conditions where k was high. Increasing droplet spectral width with mean droplet diameter (especially > 12 {mu}m) is typical of many observations here and elsewhere.

  10. Nitrogen-Broadened 13CH_4 at 80 TO 296 K

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Sung, K.; Brown, L. R.; Crawford, T. J.; Mantz, A. W.; Devi, V. Malathy; Benner, D. Chris

    2011-06-01

    High-resolution spectra of the ν_4 fundamental band of 13CH_4 broadened by N_2 at temperatures relevant to the atmosphere of Titan were recorded using temperature-controlled absorption cells installed in the sample compartment of a Bruker IFS-125HR Fourier Transform spectrometer (FTS) at the Jet Propulsion Laboratory (JPL). Analysis of these spectra using multispectrum fitting has determined half widths, pressure-induced shifts, line mixing parameters and their temperature dependences for transitions belonging to a number of P- and R-branch J-manifolds. The analysis examined in detail the temperature-dependence of N_2-broadened half width and pressure-induced shift coefficients over the entire temperature range from 80 K to 296 K. The results are compared with other published measurements of N_2- and air-broadened methane parameters. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. K. Sung, A. W. Mantz, M. A. H. Smith, L. R. Brown, T. J. Crawford, V. Malathy Devi and D. C. Benner, JMS 262 (2010) 122-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721.

  11. Medium induced transverse momentum broadening in hard processes

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Wu, Bin; Xiao, Bo-Wen; Yuan, Feng

    2017-02-01

    Using deep inelastic scattering on a large nucleus as an example, we consider the transverse momentum broadening of partons in hard processes in the presence of medium. We find that one can factorize the vacuum radiation contribution and medium related PT broadening effects into the Sudakov factor and medium dependent distributions, respectively. Our derivations can be generalized to other hard processes, such as dijet productions, which can be used as a probe to measure the medium PT broadening effects in heavy ion collisions when Sudakov effects are not overwhelming.

  12. abo-cross: Hydrogen broadening cross-section calculator

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.; Anstee, S. D.; O'Mara, B. J.

    2015-07-01

    Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O'Mara (1995), Barklem & O'Mara (1997) and Barklem, O'Mara & Ross (1998) for s-p, p-s, p-d, d-p, d-f and f-d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.

  13. Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening.

    PubMed

    Yang, Ming; Kosterin, Paul; Salzberg, Brian M; Milovanova, Tatyana N; Bhopale, Veena M; Thom, Stephen R

    2013-11-01

    The study goal was to use membrane voltage changes during neurohypophysial action potential (AP) propagation as an index of nerve function to evaluate the role that circulating microparticles (MPs) play in causing central nervous system injury in response to decompression stress in a murine model. Mice studied 1 h following decompression from 790 kPa air pressure for 2 h exhibit a 45% broadening of the neurohypophysial AP. Broadening did not occur if mice were injected with the MP lytic agent polyethylene glycol telomere B immediately after decompression, were rendered thrombocytopenic, or were treated with an inhibitor of nitric oxide synthase-2 (iNOS) prior to decompression, or in knockout (KO) mice lacking myeloperoxidase or iNOS. If MPs were harvested from control (no decompression) mice and injected into naive mice, no AP broadening occurred, but AP broadening was observed with injections of equal numbers of MPs from either wild-type or iNOS KO mice subjected to decompression stress. Although not required for AP broadening, MPs from decompressed mice, but not control mice, exhibit NADPH oxidase activation. We conclude that inherent differences in MPs from decompressed mice, rather than elevated MPs numbers, mediate neurological injury and that a component of the perivascular response to MPs involves iNOS. Additional study is needed to determine the mechanism of AP broadening and also mechanisms for MP generation associated with exposure to elevated gas pressure.

  14. SOLAR WIND STRAHL BROADENING BY SELF-GENERATED PLASMA WAVES

    SciTech Connect

    Pavan, J.; Gaelzer, R.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F. E-mail: rudi@ufpel.edu.br E-mail: yoonp@umd.edu

    2013-06-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  15. Level broadening and quantum interference effects in insulators

    NASA Astrophysics Data System (ADS)

    Medina, Ernesto; Pastawski, Horacio

    2000-03-01

    We study quantum interference effects in the context of the Nguyen-Spivak-Shklovskii (NSS) model including level broadening due to inelastic events. Improving on a recent mean-field approach, we incorporate path correlations and study both the log-conductance and its fluctuations. In contrast with mean field, we find that all changes in the conductance, due to broadening, imply corrections to the localization length. Furthermore, the change in the magnetoconductance sign, predicted by mean field, is not borne out by direct solution of the NSS model within reasonable broadening parameters. We compute a phase diagram for the magnetoconductance in the broadening parameter space and propose a replica theory for weak inelastic events.

  16. Probing transverse momentum broadening in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Wu, Bin; Xiao, Bo-Wen; Yuan, Feng

    2016-12-01

    We study the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects of a high energy jet traversing the quark-gluon plasma. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet PT-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable PT-broadening effects in the measurement of dijet azimuthal correlations in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the PT-broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.

  17. Solar Wind Strahl Broadening by Self-Generated Plasma Waves

    NASA Technical Reports Server (NTRS)

    Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.

    2013-01-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  18. Coherent and incoherent spectral broadening in a photonic crystal fiber.

    PubMed

    Gross, C; Best, Th; van Oosten, D; Bloch, I

    2007-07-01

    The coherence of the spectral broadening process is the key requisite for the application of supercontinua in frequency combs. We investigate the coherence of two subsequent supercontinuum pulses created in a photonic crystal fiber pumped by a femtosecond laser. We measure Young interference fringes from a Michelson-type interferometer at different wavelengths of the output spectrum and analyze their dependence on pump intensity and polarization. The visibility of these fringes is a direct measure of the coherence of the spectral broadening processes.

  19. Self-phase-modulation induced spectral broadening in silicon waveguides.

    PubMed

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-08

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm(2) peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  20. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  1. The broaden-and-build theory of positive emotions.

    PubMed Central

    Fredrickson, Barbara L

    2004-01-01

    The broaden-and-build theory describes the form and function of a subset of positive emotions, including joy, interest, contentment and love. A key proposition is that these positive emotions broaden an individual's momentary thought-action repertoire: joy sparks the urge to play, interest sparks the urge to explore, contentment sparks the urge to savour and integrate, and love sparks a recurring cycle of each of these urges within safe, close relationships. The broadened mindsets arising from these positive emotions are contrasted to the narrowed mindsets sparked by many negative emotions (i.e. specific action tendencies, such as attack or flee). A second key proposition concerns the consequences of these broadened mindsets: by broadening an individual's momentary thought-action repertoire--whether through play, exploration or similar activities--positive emotions promote discovery of novel and creative actions, ideas and social bonds, which in turn build that individual's personal resources; ranging from physical and intellectual resources, to social and psychological resources. Importantly, these resources function as reserves that can be drawn on later to improve the odds of successful coping and survival. This chapter reviews the latest empirical evidence supporting the broaden-and-build theory and draws out implications the theory holds for optimizing health and well-being. PMID:15347528

  2. Quasiparticle Lifetime Broadening in Resonant X-ray Scattering of NH4NO3

    PubMed Central

    Vinson, John; Jach, Terrence; Müller, Matthias; Unterumsberger, Rainer; Beckhoff, Burkhard

    2016-01-01

    It has been previously shown that two effects cause dramatic changes in the x-ray absorption and emission spectra from the N K edge of the insulating crystal ammonium nitrate. First, vibrational disorder causes major changes in the absorption spectrum, originating not only from the thermal population of phonons, but, significantly, from zero-point motion as well. Second, the anomalously large broadening (~ 4 eV) of the emission originating from nitrate σ states is due to unusually short lifetimes of quasiparticles in an otherwise extremely narrow band. In this work we investigate the coupling of these effects to core and valence excitons that are created as the initial x-ray excitation energy is progressively reduced toward the N edge. Using a GW/Bethe-Salpeter approach, we show the extent to which this anomalous broadening is captured by the GW approximation. The data and calculations demonstrate the importance that the complex self-energies (finite lifetimes) of valence bands have on the interpretation of emission spectra. We produce a scheme to explain why extreme lifetimes should appear in σ states of other similar compounds. PMID:27747308

  3. Low Arousing Positive Affect Broadens Visual Attention and Alters the Thought-Action Repertoire While Broadened Visual Attention Does Not

    PubMed Central

    Jäger, Daniel T.; Rüsseler, Jascha

    2016-01-01

    The Broaden-and-Build Theory states that positive emotions broaden cognition and therefore build personal resources. However, missing theoretical precision regarding the interaction of the cognitive processes involved offers a variety of possible explanations for the mechanisms of broadening and building. In Experiment 1 we tested the causality assumption which states that positive emotions first broaden visual attention which in turn leads to broadened cognition. We examined the effects of a broadened, narrowed or neutral attentional scope of 72 subjects (30 men) on their momentary thought-action repertoire. Results showed that there were no significant differences between groups regarding the breadth or the content of the thought-action repertoire. In Experiment 2 we studied the non-causality hypothesis which assumes a non-causal relationship between cognitive processes. We did so by investigating the effects of negative, neutral, and positive affect on the visual attentional scope of 85 subjects (41 men) in Experiment 2a, as well as on the thought-action repertoire of 85 participants (42 men) in Experiment 2b. Results revealed an attentional broadening effect in Experiment 2a but no differences between groups concerning the breadth of the thought-action repertoire in Experiment 2b. However, a theory driven content analysis showed that positive affect promoted social actions. Thus, our results favor the non-causality assumption. Moreover, results indicate that positive emotions do not target personal resources in general but rather resources associated with social behavior. In conclusion, we argue that the Broaden-and-Build Theory should be refined. PMID:27826276

  4. Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines

    SciTech Connect

    Swann, William C.; Gilbert, Sarah L.

    2005-08-01

    We have measured the line centers and pressure-induced shift and broadening of 25 lines in the 2{nu}{sub 3} rotational-vibrational band of hydrogen cyanide H{sup 13}C{sup 14}N. These lines can be used as wavelength references in the optical fiber communication wavelength division multiplexing C-band (approximately 1530-1565 nm). We find that the pressure shift varies with line number from +0.09 pm/kPa to -0.15 pm/kPa (approximately -1.5 to +2.5 MHz/Torr). The pressure broadening also varies with line number and is typically between 1 and 5.4 pm/kPa (17-90 MHz/Torr). We determined the line centers of 21 lines with an expanded uncertainty (2{sigma}) of 0.01 pm ({approx_equal}1 MHz), an improvement of more than 1 order of magnitude over previous line center measurements of this band. We also calculate the molecular constants for the band, yielding improved determination of the band origin frequency and the excited-state molecular constants.

  5. Analysis of broadened Mössbauer spectra using simple mathematical functions. Analysis of broadened Mössbauer spectra

    NASA Astrophysics Data System (ADS)

    Cabral-Prieto, A.

    2014-01-01

    Simulated and experimental broadened Mössbauer spectra are analyzed using several distribution functions. The resolution Hesse and Rübartsch data are reproduced in order to analyze the origin of the oscillations appearing in the recovered distribution function. The lined triangular distribution is used and some of its properties are described. The no implicit nth-nomial distribution function is introduced, complementing the Window and Hesse and Rübartasch no implicit distribution functions. This new no implicit distribution function gives similar results of those of Window's method. In addition, the Window method has also been modified by inserting a smoothing factor λ C . For 0 < λ C < 1 a hyperfine distribution with low resolution may be obtained; for λ C > 1, the opposite is obtained. The Levenberg-Marquardt algorithm is used to solve the involved Fredholm integral equation rather than the typical second order regularized algorithm. From the extracted hyperfine field distribution functions of the Mössbauer spectra of the amorphous and crystallized Fe70Cr2Si5B16 magnetic alloy the short range atomic order for the amorphous state of this alloy can be inferred.

  6. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.

    PubMed

    Ghosal, Sandip

    2004-01-01

    Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged species in capillary electrophoresis unless special precautions are taken to suppress it. The presence of the EOF provides certain advantages in separations. It is an alternative to mechanical pumps, which are inefficient and difficult to build at small scales, for transporting reagents and analytes on microfluidic chips. The downside is that any imperfection that distorts the EOF profile reduces the separation efficiency. In this paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.

  7. [Study on panchromatic band broadening of new high-resolution satellite sensor].

    PubMed

    He, Wen-bin; Zhou, Chuan; Niu, Zheng; Liang, Li-jiao

    2010-07-01

    For developing a remote sensor, the selection of operating waveband is one of the most important factors for detecting and identifying target. In the present paper, the changes of atmospheric effects and imagery quality are simulated due to the increase in the response wave range of optical remote sensor from 0.50-0.85 mm to 0.45-0.90 mm by using MODTRAN4. The experimental results show that there is a slight increase of the adverse factors, including atmospheric transmittance, path radiance, and adjacency effect, after the working waveband has been widened. The disadvantages compared with the improvement in incident radiance, target-background contrast and image quality are negligible. In summary, the scheme of 0.45-0.90 mm is superior to 0.50-0.85 mm and it has been more widely used in the on-orbit operation high-resolution satellite sensor.

  8. Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths.

    PubMed

    Evans, Christopher C; Shtyrkova, Katia; Bradley, Jonathan D B; Reshef, Orad; Ippen, Erich; Mazur, Eric

    2013-07-29

    We observe spectral broadening of femtosecond pulses in single-mode anatase-titanium dioxide (TiO(2)) waveguides at telecommunication and near-visible wavelengths (1565 and 794 nm). By fitting our data to nonlinear pulse propagation simulations, we quantify nonlinear optical parameters around 1565 nm. Our fitting yields a nonlinear refractive index of 0.16 × 10(-18) m(2)/W, no two-photon absorption, and stimulated Raman scattering from the 144 cm(-1) Raman line of anatase with a gain coefficient of 6.6 × 10(-12) m/W. Additionally, we report on asymmetric spectral broadening around 794 nm. The wide wavelength applicability and negligible two-photon absorption of TiO(2) make it a promising material for integrated photonics.

  9. Investigation on the influence of spectral linewidth broadening on beam quality in spectral beam combination

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Yan, Hong; Chen, Li; Ye, Yidong; Li, Jianmin; Luo, Jia; Lu, Fei

    2015-02-01

    Spectral beam combination (SBC) is a promising method to combine multiple fiber outputs for further power scaling with the capability of maintaining high beam quality, but the beam quality will be degraded with spectral linewidth broadening, because it could result in additional angular spread in the output beam. In this paper, we described theoretical calculation as well as experimental investigation on the influence of spectral linewidth broadening on beam quality. The results show that in single SBC system the spectral linewidth should be limited to less than a few GHz in order to avoid beam quality degradation, but the linewidth requirement could be decreased to more than hundreds of GHz using a pair of parallel gratings, which reveals a feasible way to increase the stimulated Brillouin scattering (SBS)-free power output of single fiber laser for overall output scaling and high beam quality.

  10. Broadening and shifting of the Raman Q branch of HD

    SciTech Connect

    Rosasco, G.J.; May, A.D.; Hurst, W.S.; Petway, L.B.; Smyth, K.C.

    1989-02-15

    The line broadening and shifting of the vibrational Q branch in pure HD has was measured for transitions J = 0 to 3 at room temperature over the density range 0.8 to 10.6 amagat. The shifting and broadening coefficients were determined with an uncertainty of + or - .0002/cm/amaget, which now provides a discriminating test for various semiclassical and quantal theoretical calculations. The line broadening coefficients are compared with linewidth data from other spectroscopic branches and with measurements of the rates of state-to-state rotational energy transfer. Use of an exponential gap law for the rates of rotational energy transfer allows estimates to be made of the contributions to the linewidths from rotationally inelastic, elastic vibrational dephasing, and elastic reorientation processes. This analysis suggests that rotational energy transfer occurs approximately 30% faster in v = 1 than in v = 0.

  11. Broadening and shifting of the Raman Q branch of HD

    SciTech Connect

    Rosasco, G.J.; May, A.D.; Hurst, W.S.; Petway, L.B.; Smyth, K.C.

    1989-02-15

    The line broadening and shifting of the vibrational Q branch in pure HD has been measured for transitions J = 0 to 3 at room temperature over the density range 0.8 to 10.6 amagat. The shifting and broadening coefficients have been determined with an uncertainty of +- 0.2 x 10/sup -3/ cm/sup -1/ /amagat, which now provides a discriminating test for various semiclassical and quantal theoretical calculations. The line broadening coefficients are compared with linewidth data from other spectroscopic branches and with measurements of the rates of state-to-state rotational energy transfer. Use of an exponential gap law for the rates of rotational energy transfer allows estimates to be made of the contributions to the linewidths from rotationally inelastic, elastic vibrational dephasing, and elastic reorientation processes. This analysis suggests that rotational energy transfer occurs approximately 30% faster in v = 1 than in v = 0.

  12. Longitudinal broadening of quenched jets in turbulent color fields.

    PubMed

    Majumder, A; Müller, B; Bass, S A

    2007-07-27

    The nearside distribution of particles at intermediate transverse momentum, associated with a high momentum trigger hadron produced in a high energy heavy-ion collision, is broadened in rapidity compared with the jet cone. This broadened distribution is thought to contain the energy lost by the progenitor parton of the trigger hadron. We show that the broadening can be explained as the final-state deflection of the gluons radiated from the hard parton inside the medium by soft, transversely oriented, turbulent color fields that arise in the presence of plasma instabilities. The magnitude of the effect is found to grow with medium size and density and diminish with increasing energy of the associated hadron.

  13. Self- and N2-collisional broadening coefficients of ethylene in the 1800-2350 cm-1 spectral region

    NASA Astrophysics Data System (ADS)

    Hassen, A. Ben; Galalou, S.; Tchana, F. Kwabia; Dhib, M.; Aroui, H.

    2016-08-01

    Self- and N2-broadening coefficients have been retrieved for 566 lines of C2H4 at room temperature in the 5 μm region including the ν7 + ν8, ν4 + ν8, ν6 + ν10, ν6 + ν7, ν4 + ν6 and ν3 + ν10 vibrational bands. Measurements have been performed using Fourier transform infrared spectroscopy. The lines were fitted with a single-spectrum non-linear least squares fitting procedure of Voigt profiles which appeared to properly model the observed molecular line shapes within the noise level. The experimental results are compared with theoretical values calculated using the Robert and Bonamy formalism which reproduces the measured broadening coefficients. For the self- and N2-broadening coefficients, the average discrepancy <(γmea - γcal/γmea) × 100> for 566 lines, is (-1.6 ± 7.8)% and (-2.8 ± 9.9)%, respectively. One standard deviation is given after ±. These coefficients show dependence with both rotational quantum numbers J and Ka. Comparisons with previous measurements taken in the ν7 band of C2H4 show difference range between 7% and 15%. These differences not insignificant can come from inconsistency between experimental measurements.

  14. Combustion technology overview. [the use of broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1980-01-01

    An overview of combustor technology developments required for use of broadened property fuels in jet aircraft is presented. The intent of current investigations is to determine the extent to which fuel properties can be varied, to obtain a data base of combustion - fuel quality effects, and to determine the trade-offs associated with broadened property fuels. Subcomponents of in-service combustors such as fuel injectors and liners, as well as air distributions and stoichiometry, are being altered to determine the extent to which fuel flexibility can be extended. Finally, very advanced technology consisting of new combustor concepts is being evolved to optimize the fuel flexibility of gas turbine combustors.

  15. Trace Isotope Detection Enhanced by Coherent Elimination of Power Broadening

    SciTech Connect

    Conde, Alvaro Peralta; Brandt, Lukas; Halfmann, Thomas

    2006-12-15

    The selectivity and spectral resolution of traditional laser-based trace isotope analysis, i.e., resonance ionization mass spectrometry (RIMS), is limited by power broadening of the radiative transition. We use the fact that power broadening does not occur in coherently driven quantum systems when the probing and excitation processes are temporally separated to demonstrate significant improvement of trace element detection, even under conditions of strong signals. Specifically, we apply a coherent variant of RIMS to the detection of traces of molecular nitric oxide (NO) isobars. For large laser intensities, the detected isotope signal can be increased by almost 1 order of magnitude without any loss in spectral resolution.

  16. Multigroup Free-atom Doppler-broadening Approximation. Theory

    SciTech Connect

    Gray, Mark Girard

    2015-11-06

    Multigroup cross sections at a one target temperature can be Doppler-broadened to multigroup cross sections at a higher target temperature by matrix multiplication if the group structure suf- ficiently resolves the original temperature continuous energy cross section. Matrix elements are the higher temperature group weighted averages of the integral over the lower temperature group boundaries of the free-atom Doppler-broadening kernel. The results match theory for constant and 1/v multigroup cross sections at 618 lanl group structure resolution.

  17. Trace isotope detection enhanced by coherent elimination of power broadening.

    PubMed

    Conde, Alvaro Peralta; Brandt, Lukas; Halfmann, Thomas

    2006-12-15

    The selectivity and spectral resolution of traditional laser-based trace isotope analysis, i.e., resonance ionization mass spectrometry (RIMS), is limited by power broadening of the radiative transition. We use the fact that power broadening does not occur in coherently driven quantum systems when the probing and excitation processes are temporally separated to demonstrate significant improvement of trace element detection, even under conditions of strong signals. Specifically, we apply a coherent variant of RIMS to the detection of traces of molecular nitric oxide (NO) isobars. For large laser intensities, the detected isotope signal can be increased by almost 1 order of magnitude without any loss in spectral resolution.

  18. On the Stark Broadening of Single Ionized Argon Lines

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Truong-Bach

    1986-06-01

    Using a semi-classical formalism which includes Debye shielding, Stark broadening parameters of various components within the 4 s 2P - 4 p ´ 2P0 multiplet and the 4 p - 4 d (2P 0 - 2P, 2D0 - 2 P, 2D0 - 2D) supermutiplet of Ar II are computed. We show that when various components of a multiplet (supermultiplet or transition array) are broadened inequally by an embedded closelying perturbing level, use of a perturber param eter cut-off at the Debye length can restrain the calculated differences between Stark widths within the multiplet.

  19. Portable Hyperspectral Imaging Broadens Sensing Horizons

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Broadband multispectral imaging can be very helpful in showing differences in energy being radiated and is often employed by NASA satellites to monitor temperature and climate changes. In addition, hyperspectral imaging is ideal for advanced laboratory uses, biomedical imaging, forensics, counter-terrorism, skin health, food safety, and Earth imaging. Lextel Intelligence Systems, LLC, of Jackson, Mississippi purchased Photon Industries Inc., a spinoff company of NASA's Stennis Space Center and the Institute for Technology Development dedicated to developing new hyperspectral imaging technologies. Lextel has added new features to and expanded the applicability of the hyperspectral imaging systems. It has made advances in the size, usability, and cost of the instruments. The company now offers a suite of turnkey hyperspectral imaging systems based on the original NASA groundwork. It currently has four lines of hyperspectral imaging products: the EagleEye VNIR 100E, the EagleEye SWIR 100E, the EagleEye SWIR 200E, and the EagleEye UV 100E. These Lextel instruments are used worldwide for a wide variety of applications including medical, military, forensics, and food safety.

  20. Beam broadening in transmission and conventional EBSD.

    PubMed

    Rice, Katherine P; Chen, Yimeng; Keller, Robert R; Stoykovich, Mark P

    2017-04-01

    Transmission electron backscatter diffraction (t-EBSD) has become a routine technique for crystal orientation mapping when ultrahigh resolution is needed and has demonstrated advantages in the characterization of nanoscale and micron-sized samples (Babinsky et al., 2015). In this work, we use experimental measurements and simulations to compare the resolution of the transmission and conventional reflection EBSD techniques across a range of sample volumes and characterization conditions. Monte Carlo simulations of electron trajectories provide the opportunity to estimate beam size and effective resolution, as well as electron flux, as a function of sample thickness or incident beam energy in t-EBSD. Increasing incident beam energy is shown to negatively impact beam diameter in some cases, and the effect of thinning a sample for conventional EBSD is shown to improve characterization resolution but dramatically decrease the number of high-loss electrons backscattered to the detector. In addition to considering spatial resolution when implementing EBSD techniques, it is found that maintaining a high yield of diffracted electrons to the detector is also of critical importance, which is supported by experimental results. Consequently, this work provides key insights into the nature of electron scattering and probe volume for the practical implementation of both transmission and reflection EBSD techniques.

  1. Communicating Science with Batiks: Broadening the Audience

    NASA Astrophysics Data System (ADS)

    Pilkey, O. H.; Fraser, M. E.

    2012-12-01

    Batik artist Fraser and coastal geologist Pilkey began their collaboration in 1994 at the Smithsonian Air and Space Museum. Since that time they have made over 25 joint presentations and produced 25 educational art exhibitions, some with as many as 60 batiks on silk, each large-scale artwork accompanied by a brief wall description of its geologic significance. Among other venues, the exhibitions have been housed at The National Academy of Sciences, The National Science Foundation, Duke University's Museum of Art, and the North Carolina Museum of Natural Sciences. They were also featured in a National Geographic TV special and have been widely picked up in cyberspace. In addition, the duo has published 2 books. One, A Celebration of the World's Barrier Islands (2003), combines color images with batiks, and the second, Global Climate Change: A Primer (2011), is illustrated exclusively with batiks. The creation of each batik is preceded by a scientist-artist conference wherein they discuss the salient features of the natural system to be depicted. The objective is to show the majesty of selected natural features or processes and at the same time to communicate the science behind them. From the artist's standpoint, this collaboration has given focus and purpose to her art and fulfills her desire to support environmental causes. The science-art alliance has been highly successful in attracting a new audience to the problems facing barrier islands and also to the broader subject of global climate change. A feared backlash from hardnosed science colleagues over "dilution" or "softening" of science has not materialized. A future collaboration with the "American Rivers" society will highlight the problems facing rivers.A batik of an iceberg showing the typical proportion of underwater versus above-water ice volumes.

  2. Measurements of Methane at 7.5 μm Broadened by Nitrogen at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Crawford, T. J.; Malathy Devi, V.; Benner, D. Chris

    2010-10-01

    Since the ν4 band system of methane (CH4) at 7.5 µm appears prominently in infrared spectra of Titan's atmosphere, we are conducting laboratory studies to examine the temperature-dependence of infrared transitions of CH4 broadened by N2 in this spectral region. Spectra of methane-nitrogen mixtures at temperatures from 79 to 297 K were obtained at 0.006 cm-1 resolution (resolving power = 2x105) using the Bruker IFS 125HR Fourier transform spectrometer at the Jet Propulsion Laboratory with new temperature-controlled gas cells designed specifically to fit in the spectrometer's sample compartment. Details of the cells and spectrometer performance [1] are described in an adjacent poster by Sung et al. A multispectrum nonlinear least squares technique [2] is used to fit selected intervals of 9 or more spectra simultaneously to obtain the temperature dependences of line broadening, pressure-induced shift and line mixing parameters. Results for 13CH4 at 80 to 297 K are discussed relative to our previous high-resolution studies of air- and self-broadened 12CH4 and 13CH4 [3-5] at terrestrial atmospheric temperatures (210 to 314 K). This research is supported by NASA's Planetary Atmospheres Program. 1. K. Sung et al., J. Mol. Spectrosc. (2010) doi:10.1016/j.jms.2010.05.004. 2. D. Chris Benner et al., J. Quant. Spectrosc. Radiat. Transfer 53 (1995) 705-721. 3. M. A. H. Smith et al., J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 639-653. 4. M. A. H. Smith et al., J. Quant. Spectrosc. Radiat. Transfer 111 (2010) 1152-1166. 5. M. A. H. Smith et al., J. Quant. Spectrosc. Radiat. Transfer (2010) submitted.

  3. Tunable diode laser measurements of formaldehyde foreign-gas broadening parameters and line strengths in the 9-11-micron region

    NASA Technical Reports Server (NTRS)

    Nadler, Shachar; Reuter, Dennis C.; Daunt, Stephen J.

    1987-01-01

    A tunable diode laser spectrometer has been used to determine pressure broadening coefficients due to collision with the foreign gases air, H2, O2, and N2 in the nu4 and nu6 bands of H2CO between 9 and 11 microns. Absolute line strengths for twenty-eight transitions have also been determined. The broadening coefficients are very similar to theoretical literature values in the cases of air, N2, and O2. The H2-H2CO values are in good agreement with earlier experimental millimeter-wave results.

  4. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking

    PubMed Central

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric

    2016-01-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301

  5. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking.

    PubMed

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J; Grillot, Frédéric

    2016-06-15

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%.

  6. Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds

    NASA Astrophysics Data System (ADS)

    Burger, Miloš; Hermann, Jörg

    2016-08-01

    We present a method for the measurement of Stark broadening parameters of atomic and ionic spectral lines based on laser ablation of hydrogen containing compounds. Therefore, plume emission spectra, recorded with an echelle spectrometer coupled to a gated detector, were compared to the spectral radiance of a plasma in local thermal equilibrium. Producing material ablation with ultraviolet nanosecond laser pulses in argon at near atmospheric pressure, the recordings take advantage of the spatially uniform distributions of electron density and temperature within the ablated vapor. By changing the delay between laser pulse and detector gate, the electron density could be varied by more than two orders of magnitude while the temperature was altered in the range from 6,000 to 14,000 K. The Stark broadening parameters of transitions were derived from their simultaneous observation with the hydrogen Balmer alpha line. In addition, assuming a linear increase of Stark widths and shifts with electron density for non-hydrogenic lines, our measurements indicate a change of the Stark broadening-dependence of Hα over the considered electron density range. The presented results obtained for hydrated calcium sulfate (CaSO4ṡ2H2O) can be extended to any kind of hydrogen containing compounds.

  7. Laparoscopic gastric banding

    MedlinePlus

    ... adjustable gastric banding; Bariatric surgery - laparoscopic gastric banding; Obesity - gastric banding; Weight loss - gastric banding ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ...

  8. Origins of extreme broadening mechanisms in near-edge x-ray spectra of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Elam, W. T.; Denlinger, J. D.

    2014-11-01

    We demonstrate the observation of many-body lifetime effects in valence-band x-ray emission. A comparison of the N K α emission of crystalline ammonium nitrate to molecular-orbital calculations revealed an unexpected, extreme broadening of the NO σ recombination—so extensively as to virtually disappear. GW calculations establish that this disappearance is due to a large imaginary component of the self-energy associated with the NO σ orbitals. Building upon density-functional theory, we have calculated radiative transitions from the nitrogen 1 s level of ammonium nitrate and ammonium chloride using a Bethe-Salpeter method to include electron-hole interactions. The absorption and emission spectra of both crystals evince large, orbital-dependent sensitivity to molecular dynamics. We demonstrate that many-body effects as well as thermal and zero-point motion are vital for understanding observed spectra. A computational approach using average atomic positions and uniform broadening to account for lifetime and phonon effects is unsatisfactory.

  9. Beyond the Lorentzian Model in Quantum Transport: Energy-Dependent Resonance Broadening in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenfei; Neaton, Jeffrey B.

    In quantum transport calculations, transmission functions of molecular junctions, as well as spectral functions of metal-organic interfaces, often feature peaks originating from molecular resonances. These resonance peaks are often assumed to be Lorentzian, with an energy-independent broadening function Γ. However, in the general case, the wide-band-limit breaks down, and the Lorentzian approximation is no longer valid. Here, we develop a new energy-dependent broadening function Γ (E) , based on diagonalization of non-Hermitian matrices within a non-equilbrium Green's function (NEGF) formalism. As defined, Γ (E) can describe resonances of non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively; and it is particularly useful in understanding transport properties in terms of molecular orbitals in asymmetric junctions. We compute this quantity via an ab initio NEGF approach based on density functional theory and illustrate its utility with several junctions of experimental relevance, including recent work on rectification in Au-graphite junctions. This work is supported by the DOE, and computational resources are provided by NERSC.

  10. Molecular dynamic simulations of N2-broadened methane line shapes and comparison with experiments

    NASA Astrophysics Data System (ADS)

    Le, Tuong; Doménech, José-Luis; Lepère, Muriel; Tran, Ha

    2017-03-01

    Absorption spectra of methane transitions broadened by nitrogen have been calculated for the first time using classical molecular dynamic simulations. For that, the time evolution of the auto-correlation function of the dipole moment vector, assumed along a C-H axis, was computed using an accurate site-site intermolecular potential for CH4-N2. Quaternion coordinates were used to treat the rotation of the molecules. A requantization procedure was applied to the classical rotation and spectra were then derived as the Fourier-Laplace transform of the auto-correlation function. These computed spectra were compared with experimental ones recorded with a tunable diode laser and a difference-frequency laser spectrometer. Specifically, nine isolated methane lines broadened by nitrogen, belonging to various vibrational bands and having rotational quantum numbers J from 0 to 9, were measured at room temperature and at several pressures from 20 to 945 mbar. Comparisons between measured and calculated spectra were made through their fits using the Voigt profile. The results show that ab initio calculated spectra reproduce with very high fidelity non-Voigt effects on the measurements and that classical molecular dynamic simulations can be used to predict spectral shapes of isolated lines of methane perturbed by nitrogen.

  11. Broadening the Horizons: Organizational Communication in the Real World.

    ERIC Educational Resources Information Center

    Swanson, Georgia

    Working in the microcosm of an individual class, organizational communication instructors can broaden the student's horizon by starting with what are local types of diversity and then expanding the classroom understanding to include the larger world where that student is going to live and work. Speech communication teachers/scholars have seen…

  12. Quality's Higher Education Dividends: Broadened Custodianship and Global Public Scholarship

    ERIC Educational Resources Information Center

    Jacobs, Gerrie J.

    2010-01-01

    This paper speculates on the possible contribution of the quality movement to higher education and the perceived dividends received from this, in general, over the past two decades but also, more specifically, with reference to the author's institution in South Africa. The first major quality contribution is a gradual broadening of higher…

  13. Phase dynamics in a Doppler broadened optically-pumped laser

    NASA Astrophysics Data System (ADS)

    Roldán, E.; de Valcárcel, G. J.; Vilaseca, R.; Silva, F.; Pujol, J.; Corbalán, R.; Laguarta, F.

    1989-11-01

    The dynamic behavior of the phase of the generated field in a Doppler-broadened optically-pumped far-infrared laser is theoretically investigated for the first time. The phase undergoes sudden jumps of approximately π radians, which allow to establish the actual symmetry of the main attractor in the phase space, explaining the heteroclynic character of the chaotic behavior observed in experiments.

  14. The STARS Alliance: Viable Strategies for Broadening Participation in Computing

    ERIC Educational Resources Information Center

    Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey

    2011-01-01

    The Students and Technology in Academia, Research, and Service (STARS) Alliance is a nationally-connected system of regional partnerships among higher education, K-12 schools, industry and the community with a mission to broaden the participation of women, under-represented minorities and persons with disabilities in computing (BPC). Each regional…

  15. On-The-Fly Neutron Doppler Broadening in MCNP

    NASA Astrophysics Data System (ADS)

    Martin, William R.; Brown, Forrest B.; Wilderman, Scott; Yesilyurt, Gokhan

    2014-06-01

    Multi-physics calculations may involve coupling continuous-energy Monte Carlo neutronics codes to CFD codes that provide many thousands or even millions of region temperatures. The traditional Monte Carlo approach - using precalculated Doppler broadened nuclear cross-sections - is not feasible for these large multiphysics problems. Instead, an On-the-Fly (OTF) Doppler broadening methodology is required, whereby neutron cross-sections are broadened during the Monte Carlo transport. To this end, we have developed a methodology for MCNP to provide OTF broadening based on cell temperatures during neutron tracking. The method enables the use of many thousands or more temperatures in MCNP Monte Carlo calculations for multiphysics applications, significantly advancing the state-of-the-art by permitting the solution of problems that were not previously possible with continuous-energy Monte Carlo codes. A production library with an extended set of isotopes has been developed for use with MCNP6. Calculations of test problems with MCNP6 and the new library demonstrate the accuracy and effectiveness of the OTF approach.

  16. Coincidence doppler broadening study in electron-irradiated polyurethane

    NASA Astrophysics Data System (ADS)

    Yang, D. J.; Zhang, J. D.; Leung, J. K. C.; Beling, C. D.; Liu, L. B.

    2007-06-01

    Coincidence doppler broadening measurements on electron-irradiated polyurethanes were performed in the presence of air. It is shown that, after a certain electron irradiation, the momentum density distributions of annihilation electrons have obvious changes for the high crosslinking polyurethane, but no significant changes have been observed for the low crosslinking polyurethane. The results were performed to analyse by irradiation crosslinking and degradation principles.

  17. Community Colleges Broadening Horizons through Service Learning, 2006-2009

    ERIC Educational Resources Information Center

    Robinson, Gail

    2007-01-01

    This brief introduces "Community Colleges Broadening Horizons through Service Learning," the American Association of Community Colleges' (AACC's) fifth national Learn and Serve America grant project and describes its grantee college programs. The goals of this grant project are to build on established foundations to integrate service…

  18. Relational Themes in Counseling Supervision: Broadening and Narrowing Processes

    ERIC Educational Resources Information Center

    Gazzola, Nicola; Theriault, Anne

    2007-01-01

    This study investigated the experiences of broadening (i.e., thinking and acting creatively and being open to exploring new ways of being) and narrowing (i.e., the experience of perceiving one's choices as limited) in the supervisory process with the aim of identifying key relational themes from the perspective of supervisees. We interviewed 10…

  19. Critical tests of line broadening theories by precision measurements

    SciTech Connect

    Glenzer, S.H.

    1996-02-22

    The spectral line profiles of ionized emitters in plasmas play an important role in the calculation of opacity, for short-wavelength laser studies, and for the diagnostics of inertial confinement fusion plasmas. Sophisticated theoretical methods and modeling have been advanced and applied in recent years to calculate spectral line profiles in the limits where broadening by electron collisions or by ion microfield dominates. Here, the authors describe recent measurements of spectral line profiles of a z-pinch experiment employing precision plasma diagnostic techniques. In particular, the electron-collisional-broadened 2s--2p transitions in B{sub III} have been investigated because their line profiles provide an excellent test for electron-impact line shape theories and electron collision strength calculations. Although they find good agreement with semiclassical calculations, a factor of two discrepancy with the most elaborate quantum-mechanical five-state close coupling calculations is observed. They discuss the experimental error estimates of the various measured quantities and show that the observed discrepancy can not be explained by experimental shortcomings. They further discuss measurements of non-isolated spectral lines of some {Delta}n = 1 transitions in C{sub IV}--O{sub VI}. For these transitions ion broadening dominates. Excellent agreement for the whole line profile with line broadening calculations is obtained for all cases only when including ion dynamic effects. The latter are calculated using the frequency-fluctuation model and account for about 10--25% of the line width of the considered ions.

  20. Phenomenological plasmon broadening and relation to the dispersion

    NASA Astrophysics Data System (ADS)

    Hobbiger, Raphael; Drachta, Jürgen T.; Kreil, Dominik; Böhm, Helga M.

    2017-02-01

    Pragmatic ways of including lifetime broadening of collective modes in the electron liquid are critically compared. Special focus lies on the impact of the damping parameter onto the dispersion. It is quantitatively exemplified for the two-dimensional case, for both, the charge ('sheet'-)plasmon and the spin-density plasmon. The predicted deviations fall within the resolution limits of advanced techniques.

  1. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  2. Broadening horizons: engaging advanced practice nursing students in faculty research.

    PubMed

    Weiss, Josie A

    2009-01-01

    Inviting advanced practice nursing students to participate in faculty research can be an innovative way to interest students in using current evidence as the basis for their practice. The author discusses strategies for effectively engaging graduate nursing students into research projects in ways that broaden the students' perspectives and strengthen their healthcare decision-making skills.

  3. ECRH microwave beam broadening in the edge turbulent plasma

    SciTech Connect

    Sysoeva, E. V.; Gusakov, E. Z.; Popov, A. Yu.; Silva, F. da; Heuraux, S.

    2014-02-12

    The influence of turbulent plasma density fluctuations on angular and spatial beam width is treated analytically in the framework of WKB based eikonal method. Reasonable agreement of analytical and numerical treatment results is demonstrated within the domain of quasi-optical approximation validity. Significant broadening of microwave beams is predicted for future ECRH experiments at ITER.

  4. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  5. Observation of Doppler broadening in β -delayed proton- γ decay

    DOE PAGES

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; ...

    2015-09-14

    Background: The Doppler broadening of gamma-ray peaks is due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using beta-delayed proton emission or applied to a recoil heavier than A = 10. Purpose: To test and apply this Doppler broadening method using gamma-ray peaks from the P-26(beta p gamma)Al-25 decay sequence. Methods: A fast beam of P-26 was implanted into a planar Ge detector, which was used as a P-26 beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays frommore » the P-26(beta p gamma)Al-25 decay sequence. Results: Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. Moreover, the Doppler broadening analysis method was verified using the 1613-keV gamma-ray line for which the proton energies were previously known. The 1776-keV gamma ray de-exciting the 2720 keV Al-25 level was observed in P-26(beta p gamma)Al-25 decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a Si-26 excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV for the proton-emitting level. Conclusions: Finally, the Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.« less

  6. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han; Tremblay, Pier-Emmanuel; Brown, Stephen; Carlsson, Mats; Osten, Rachel A.; Wisniewski, John P.; Hawley, Suzanne L.

    2017-03-01

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a “multithread” model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a “hot spot” atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: ∼0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  7. Doppler broadening of annihilation radiation measurements on 3d and 4f ferromagnets using polarized positrons

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Maekawa, M.; Fukaya, Y.; Yabuuchi, A.; Mochizuki, I.

    2012-01-01

    We measured the Doppler broadening of annihilation radiation (DBAR) spectra of 3d (Fe, Co, and Ni) and 4f (Gd, Tb, and Dy) ferromagnets under a magnetic field by using spin-polarized positrons from a 68Ge-68Ga source. The results showed that the DBAR spectra of these metals have notably different magnetic-field dependences. The differences among Fe, Co, and Ni reflect that the upper minority spin bands of Fe and Co are nearly empty while those of Ni are still mostly occupied. For the rare-earth metals instead of the inner 4f electrons, 5d electrons that mediate the exchange interaction of the 4f electrons are primarily responsible for the magnetic-field effects on the DBAR spectra. Furthermore, the magnetic-field effects on the DBAR spectra of Gd, Tb, and Dy vanished above the Curie temperatures of the magnetic-phase transition for these metals.

  8. Semi-classical calculations of self-broadening coefficients of OCS and HCN at temperatures between 200 K and 298 K.

    PubMed

    Jellali, C; Galalou, S; Cuisset, A; Dhib, M; Aroui, H

    2016-11-01

    For some temperatures of atmospheric interest from 200 to 298 K, the self-broadening coefficients of OCS-OCS and HCN-HCN collisional systems, at different strengths of electrostatic interactions, were calculated respectively for ν1 and ν2 bands for a wide range of rotational quantum numbers J. In particular, we have considered some lines that were not studied previously. We have employed the approximation of bi-resonance functions (Starikov, 2012) in the frame of the semiclassical model of Robert and Bonamy with exact trajectory (RBE). The calculated results are found to be fully consistent with the available experimental values of self-broadening coefficients of OCS and HCN. A comparative study shows that the RBE calculations reproduce the dependence of broadening coefficients on quantum number J much better than the simpler Robert and Bonamy model with parabolic trajectory (RB) for all considered temperatures.

  9. Line-shape study of self-broadened O{sub 2} transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy

    SciTech Connect

    Wojtewicz, S.; Lisak, D.; Cygan, A.; Domyslawska, J.; Trawinski, R. S.; Ciurylo, R.

    2011-09-15

    We present high-sensitivity and high-spectral-resolution line-shape and line-intensity measurements of self-broadened O{sub 2} b {sup 1}{Sigma}{sub g}{sup +}(v=1)(leftarrow)X {sup 3}{Sigma}{sub g}{sup -}(v=0) band transitions measured using the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy technique. We give collisional broadening parameters and take into account the line-narrowing effects described by Dicke narrowing or the speed dependence of collisional broadening. We compare line intensities measured with relative uncertainties below 0.4% to data available in the HITRAN spectroscopic database.

  10. Semi-classical calculations of self-broadening coefficients of OCS and HCN at temperatures between 200 K and 298 K

    NASA Astrophysics Data System (ADS)

    Jellali, C.; Galalou, S.; Cuisset, A.; Dhib, M.; Aroui, H.

    2016-11-01

    For some temperatures of atmospheric interest from 200 to 298 K, the self-broadening coefficients of OCS-OCS and HCN-HCN collisional systems, at different strengths of electrostatic interactions, were calculated respectively for ν1 and ν2 bands for a wide range of rotational quantum numbers J. In particular, we have considered some lines that were not studied previously. We have employed the approximation of bi-resonance functions (Starikov, 2012) in the frame of the semiclassical model of Robert and Bonamy with exact trajectory (RBE). The calculated results are found to be fully consistent with the available experimental values of self-broadening coefficients of OCS and HCN. A comparative study shows that the RBE calculations reproduce the dependence of broadening coefficients on quantum number J much better than the simpler Robert and Bonamy model with parabolic trajectory (RB) for all considered temperatures.

  11. A Global Fitting Approach For Doppler Broadening Thermometry

    NASA Astrophysics Data System (ADS)

    Amodio, Pasquale; Moretti, Luigi; De Vizia, Maria Domenica; Gianfrani, Livio

    2014-06-01

    Very recently, a spectroscopic determination of the Boltzmann constant, kB, has been performed at the Second University of Naples by means of a rather sophisticated implementation of Doppler Broadening Thermometry (DBT)1. Performed on a 18O-enriched water sample, at a wavelength of 1.39 µm, the experiment has provided a value for kB with a combined uncertainty of 24 parts over 106, which is the best result obtained so far, by using an optical method. In the spectral analysis procedure, the partially correlated speed-dependent hard-collision (pC-SDHC) model was adopted. The uncertainty budget has clearly revealed that the major contributions come from the statistical uncertainty (type A) and from the uncertainty associated to the line-shape model (type B)2. In the present work, we present the first results of a theoretical and numerical work aimed at reducing these uncertainty components. It is well known that molecular line shapes exhibit clear deviations from the time honoured Voigt profile. Even in the case of a well isolated spectral line, under the influence of binary collisions, in the Doppler regime, the shape can be quite complicated by the joint occurrence of velocity-change collisions and speed-dependent effects. The partially correlated speed-dependent Keilson-Storer profile (pC-SDKS) has been recently proposed as a very realistic model, capable of reproducing very accurately the absorption spectra for self-colliding water molecules, in the near infrared3. Unfortunately, the model is so complex that it cannot be implemented into a fitting routine for the analysis of experimental spectra. Therefore, we have developed a MATLAB code to simulate a variety of H218O spectra in thermodynamic conditions identical to the one of our DBT experiment, using the pC-SDKS model. The numerical calculations to determine such a profile have a very large computational cost, resulting from a very sophisticated iterative procedure. Hence, the numerically simulated spectra

  12. Positive emotions and the social broadening effects of Barack Obama.

    PubMed

    Ong, Anthony D; Burrow, Anthony L; Fuller-Rowell, Thomas E

    2012-10-01

    Past experiments have demonstrated that the cognitive broadening produced by positive emotions may extend to social contexts. Building on this evidence, we hypothesized that positive emotions triggered by thinking about Barack Obama may broaden and expand people's sense of self to include others. Results from an expressive-writing study demonstrated that African American college students prompted to write about Obama immediately prior to and after the 2008 presidential election used more plural self-references, fewer other-references, and more social references. Mediation analyses revealed that writing about Obama increased positive emotions, which in turn increased the likelihood that people thought in terms of more-inclusive superordinate categories (we and us rather than they and them). Implications of these findings for the role of positive emotions in perspective-taking and intergroup relations are considered.

  13. Fundamental edge broadening effects during focused electron beam induced nanosynthesis.

    PubMed

    Schmied, Roland; Fowlkes, Jason D; Winkler, Robert; Rack, Phillip D; Plank, Harald

    2015-01-01

    The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. Moreover, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.

  14. Correction for inhomogeneous line broadening in spin labels, II

    NASA Astrophysics Data System (ADS)

    Bales, Barney L.

    Our methods to correct for inhomogeneous line broadening in the EPR of nitroxide spin labels are extended. Previously, knowledge of the hyperfine pattern of the nuclei responsible for the inhomogeneous broadening was necessary in order to carry out the corrections. This normally meant that either a separate NMR experiment or EPR spectral simulation was needed. Here a very simple method is developed, based upon measurement of four points on the experimental EPR spectrum itself, that allows one to carry out the correction procedure with precision rivaling that attained using NMR or spectral simulation. Two associated problems are solved: (1) the EPR signal strength is estimated without the need to carry out double integrations and (2) linewidth ratios, important in calculating rotational correlation times, are corrected. In all cases except one, the corrections are effected from the four measured points using only a hand-held programmable calculator. Experimental examples illustrate the methods and show them to be amazingly accurate.

  15. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  16. Hydrogen Stark broadening by different kinds of model microfields

    NASA Astrophysics Data System (ADS)

    Seidel, J.

    1980-07-01

    A new model microfield is defined (the theta process) which in conjunction with the kangaroo process, is used to demonstrate the effects of different model microfields on hydrogen line profiles. The differences in the statistical features of the models give an estimate of the uncertainties associated with the method of model microfields. Stark broadening of hydrogen Lyman lines by either electrons or ions is investigated specifically.

  17. Inhomogeneous broadening effects in multimode CW chemical lasers

    NASA Astrophysics Data System (ADS)

    Mirels, H.

    1981-01-01

    The performance of a multiple longitudinal mode CW chemical laser is investigated with reference to the effects of inhomogeneous broadening for the case where the longitudinal mode spacing is small compared with the characteristic Doppler and homogeneous widths of the lasing medium. Both a Fabry-Perot resonator and a saturated amplifier are considered, using a two-vibrational-level model. Closed form solutions are obtained which are shown to be in good agreement with the numerical results of Bullock and Lipkis (1979).

  18. Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Archer, A.; Benbow, W.; Buchovecky, M.; Bugaev, V.; Cerruti, M.; Connolly, M. P.; Cui, W.; Falcone, A.; Fernández Alonso, M.; Finley, J. P.; Fleischhack, H.; Fortson, L.; Furniss, A.; Griffin, S.; Hütten, M.; Hervet, O.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; Maier, G.; McArthur, S.; Moriarty, P.; Nieto, D.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Sadeh, I.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Weisgarber, T.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2017-02-01

    We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron–positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron–positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadened emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10‑14 G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.

  19. Collisional broadening of CO2 IR lines. II. Calculations

    NASA Astrophysics Data System (ADS)

    Rosenmann, L.; Hartmann, J. M.; Perrin, M. Y.; Taine, J.

    1988-03-01

    The ability of available theoretical models in describing broadening mechanisms is tested for the CO2-O2, CO2-CO2, and CO2-N2 systems. It is shown that the Anderson-Tsao-Curnutte theory is inaccurate since short-range forces can contribute significantly to broadening. We use the approach of Robert and Bonamy, but the usual expansion of the atom-atom potential to the fourth order around the intermolecular distance appears insufficient at short distances for these particular systems. We propose a better representation of the radial dependence of the atom-atom potential, while keeping the previous analytical expression of the cross section. Satisfactory results are obtained for both the rotational quantum number dependence of room-temperature CO2-O2, CO2-CO2, and CO2-N2 half-widths and the evolution of CO2-N2 broadening with temperature. It is shown that the isotropic part of the potential involved in the trajectory calculation must be coherently deduced from the atom-atom interaction potential.

  20. Tunable diode laser measurements of line widths in the nu1-fundamental band of (N-14)2(O-16) at atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Chudamani, S.

    1989-01-01

    A tunable diode-laser spectrometer and a low-temperature absorption cell have been employed to measure the N2-broadened and O2-broadened half-widths of rotational lines in the nu1 fundamental band of (N-14)2(O-16) at 185, 235, 263, and 295 K. The temperature dependence of the line widths has been observed to be practically identical, thereby leading to the suggestion that air-broadening would exhibit the same dependence.

  1. Broadening of CO2 lines in the 4.3 μm region by H2O

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Landsheere, X.; Pangui, E.; Huet, F.; Hartmann, J.-M.; Tran, H.

    2016-08-01

    Transmission spectra of CO2 highly diluted in water vapor have been recorded at 50 and 95 °C for four pressures between 0.02 and 0.1 atm using a high resolution Fourier Transform spectrometer. The collisional (Lorentz) widths of many lines of the ν3 band (and of some of the ν3 + ν2 - ν2 hot band) have been retrieved from each spectrum through fits using Voigt line shapes. Our result are about 4% lower than the values recommended in a previous study but they confirm the relative variations of the line broadening on the rotational quantum numbers. We also provide the first determination of H2O-induced line shifts of CO2 lines.

  2. Origins of the broadening in 1.5 μm emission of Er3+-doped glasses

    NASA Astrophysics Data System (ADS)

    Dousti, M. Reza

    2015-11-01

    The broadband emission (4I13/2 → 4I15/2) of the Er3+-doped glasses has been always an attractive topic of research due to its explicit role in the progress of optical fibers science and technology. Few characteristics, such as the full-width at half-maximum, shape and excited state lifetime of this band are determinant parameters to obtain practically appropriate materials for high-tech applications. In this work, the broadening of the latter near-infrared emission of erbium ions, centered around 1.53 μm in C-band region, is briefly discussed as a function of the host glass, glass modifiers, temperature and thickness of the sample, excitation power and energy, as well as the concentration of the dopant.

  3. Regimes of Generation in Low-Q Distributed-Feedback Lasers with Strong Inhomogeneous Broadening of the Active Medium

    NASA Astrophysics Data System (ADS)

    Kocharovskaya, E. R.; Ginzburg, N. S.; Sergeev, A. S.; Kocharovsky, V. V.; Kocharovsky, Vl. V.

    2016-11-01

    We study the influence of the ratio between the relaxation rates of the field in a cavity and the polarization of active centers on the dynamic properties of the distributed-feedback lasers by means of 1D numerical simulation. The model of a two-level active medium with strong inhomogeneous broadening of the spectral line under CW wide-band pumping that provides two- or several-mode lasing in the vicinity of the Bragg photonic band gap is used. Evolution of the dynamic spectra and oscillograms of the laser emission with decreasing Q-factor of the Bragg resonator is analyzed. It is shown, in particular, that under conditions of the dominant role of the superradiant effects, there are unique opportunities for control of both quantitative and qualitative characteristics of lasing, including the spectral width, duration, and coherence length of various pulse components of the output radiation.

  4. Band anticrossing in dilute nitrides

    SciTech Connect

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  5. Numerical computation of doppler-broadening in the resonance domain

    SciTech Connect

    Sanchez, R.

    2013-07-01

    We have implemented an accurate and fast calculation of the Doppler-broadened kernel PT(E {yields} E') for neutron elastic scattering based on a gas model. An exponential cutoff which accounts for the asymptotic behavior of the error function helps limit the range of integration while eliminating difference effects. This allows for calculating a kernel library for {sup 238}U over a very fine energy grid covering the resonance range in only a few hours in a laptop. We give an example showing the impact of {sup 238}U elastic up-scattering on the values of self shielded cross sections. (authors)

  6. Fatigue damage in superalloys determined using Doppler broadening positron annihilation

    NASA Technical Reports Server (NTRS)

    Hoeckelman, Donald; Leighly, H. P., Jr.

    1990-01-01

    Axial fatigue specimens of three superalloys, Inconel 718, Incoloy 903 and Haynes 188, were machined from solution-heat-treated material and artificially aged. They were subjected to cyclic loading for a selected number of cycles after which the S parameter was determined using Doppler broadening positron annihilation. Initially, the S parameter decreased, followed by a large increase and a subsequent decline leading to fracture. This has been interpreted as the removal of residual vacancies, the introduction of new defects by cyclic loading, and, finally, a clustering of the defects as microcracks which grow to cause failure.

  7. Curves of growth for van der Waals broadened spectral lines

    NASA Technical Reports Server (NTRS)

    Park, C.

    1980-01-01

    Curves of growth are evaluated for a spectral line broadened by the van der Waals interactions during collisions. The growth of the equivalent widths of such lines is shown to be dependent on the product of the perturber density and the 6/10 power of the van der Waals potential coefficient. When the parameter is small, the widths grow as the 1/2 power of the optical depth as they do for the Voigt profile: but when the parameter is large, they grow as 2/3 power and, hence, faster than the Voigt profile. An approximate analytical expression for the computed growth characteristics is given.

  8. Strategies for broadening public involvement in space developments

    NASA Technical Reports Server (NTRS)

    Harris, Philip R.

    1992-01-01

    There is widespread public interest in and goodwill toward the space program. For NASA's plans for the next 25 years to be achieved, this public reservoir of support needs to be tapped and channeled. NASA endeavors have to reach out beyond the scientific, technological, and aerospace communities to foster wider participation in space exploration and exploitation. To broaden NASA support and spread out the financing of space activities, recommendations for consideration are offered in the area of economics, political, institutional, international, and managerial areas.

  9. Commercial observation satellites: broadening the sources of geospatial data

    NASA Astrophysics Data System (ADS)

    Baker, John C.; O'Connell, Kevin M.; Venzor, Jose A.

    2002-09-01

    Commercial observation satellites promise to broaden substantially the sources of imagery data available to potential users of geospatial data and related information products. We examine the new trend toward private firms acquiring and operating high-resolution imagery satellites. These commercial observation satellites build on the substantial experience in Earth observation operations provided by government-owned imaging satellites for civilian and military purposes. However, commercial satellites will require governments and companies to reconcile public and private interests in allowing broad public access to high-resolution satellite imagery data without creating national security risks or placing the private firms at a disadvantage compared with other providers of geospatial data.

  10. Anomalous excitation facilitation in inhomogeneously broadened Rydberg gases

    NASA Astrophysics Data System (ADS)

    Letscher, F.; Thomas, O.; Niederprüm, T.; Ott, H.; Fleischhauer, M.

    2017-02-01

    When atomic gases are laser driven to Rydberg states in an off-resonant way, a single Rydberg atom may enhance the excitation rate of surrounding atoms. This leads to a facilitated excitation referred to as Rydberg antiblockade. In the usual facilitation scenario, the detuning of the laser from resonance compensates the interaction shift. Here, we discuss a different excitation mechanism, which we call anomalous facilitation. This occurs on the "wrong side" of the resonance and originates from inhomogeneous broadening. The anomalous facilitation may be seen in experiments of attractively interacting atoms on the blue detuned side, where facilitation is not expected to appear.

  11. Broadening the potential bandwidth of piezoelectric transducers by partial depolarization

    SciTech Connect

    Hariti, Sid Ahmed; Hole, Stephane; Lewiner, Jacques

    2001-06-18

    Elastic waves are used more and more in a nondestructive way to probe the physical properties of materials. The resolution of the images or the accuracy of the measurements is directly associated with the ultrasonic signal bandwidth and amplitude a system can generate or detect. The authors propose a technique to broaden the potential bandwidth of piezoelectric generators and sensors, which is based on utilizing a nonuniformly-polarized piezoelectric material. Both simulated and experimental responses are shown. They are in good agreement and exhibit a useful bandwidth over several natural harmonics of the piezoelectric transducer. {copyright} 2001 American Institute of Physics.

  12. Stark broadening of hydrogen lines in magnetic fusion plasmas

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Stamm, R.

    2017-03-01

    We report on a Stark line shape model for the diagnostic of tokamak edge plasmas. In specific scenarios, plasma discharges are carried out at high density regimes, sufficiently so that the spectral lines emitted by the neutral atoms present in the edge and in the divertor region are affected by the plasma microscopic electric field (Stark broadening). We present new line shape calculations, carried out for diagnostic purposes in the context of the MST1 (Medium Sized Tokamak) European campaign. The role of the magnetic field (Zeeman effect) on line spectra is discussed.

  13. Corrigendum to "N2- and (H2+He)-broadened cross sections of benzene (C6H6) in the 7-15 μm region for the Titan and Jovian atmospheres" [Icarus, 271 (2016) 438-452

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Toon, Geoffrey C.; Crawford, Timothy J.

    2017-01-01

    We regret that there was a typographical error in the integrated band intensity of C6H6 in the abstract, in which the exponent was incorrectly given as 10-17 rather than 10-19. The integrated band intensities from N2-broadened C6H6 spectra quoted in the abstract should be 177.0(73), 14.0(10), 27.2(9) × 10-19 cm-1/(molecule · cm-2) for the v4, v14, v13 band regions, respectively. From (H2+He) mixture-broadened C6H6 spectra, the integrated v4 band intensity should be 168.8(17) × 10-19 cm-1/(molecule · cm-2). No other part of the manuscript was affected by this typographical error. We thank Conor A. Nixon for having brought this error to our attention.

  14. Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Cotting, J. E.; Hoskins, L. C.; Levan, M. E.

    1982-08-01

    The resonance Raman excitation profiles for the ν1, ν2, and ν3 vibrations of lycopene in ethyl alcohol, toluene, and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found, thus emphasizing the need to interpret resonance Raman data using a multimode vibrational model. The results indicate that the major broadening mechanism is homogeneous broadening, with about a 25% contribution from inhomogeneous broadening. The excitation profiles in carbon disulfide gave the largest inhomogeneous broadening.

  15. Broad-Band Spectroscopy of Hercules X-1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Asami, Fumi; Enoto, Teruaki; Iwakiri, Wataru; Yamada, Shin'ya; Tamagawa, Toru; Mihara, Tatehiro; Nagase, Fumiaki

    2014-01-01

    Hercules X-1 was observed with Suzaku in the main-on state from 2005 to 2010. The 0.4- 100 keV wide-band spectra obtained in four observations showed a broad hump around 4-9 keV in addition to narrow Fe lines at 6.4 and 6.7 keV. The hump was seen in all the four observations regardless of the selection of the continuum models. Thus it is considered a stable and intrinsic spectral feature in Her X-1. The broad hump lacked a sharp structure like an absorption edge. Thus it was represented by two different spectral models: an ionized partial covering or an additional broad line at 6.5 keV. The former required a persistently existing ionized absorber, whose origin was unclear. In the latter case, the Gaussian fitting of the 6.5-keV line needs a large width of sigma = 1.0-1.5 keV and a large equivalent width of 400-900 eV. If the broad line originates from Fe fluorescence of accreting matter, its large width may be explained by the Doppler broadening in the accretion flow. However, the large equivalent width may be inconsistent with a simple accretion geometry.

  16. Cross Functional Career Navigation: The Way to Broaden Your Career Options

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Todd

    2000-03-01

    In today's rapid paced global environment, broadening career options for career development depends on successful cross-functional career navigation. For scientists and engineers, this means developing a diversity of skills in addition to a strong technical foundation. Fortunately, companies use cross-functional teams as one of the key tools for rapidly developing and commercializing products and services. Participation on these teams carries with it the additional benefit of allowing an individual to develop new skills, and to gain valuable expertise in areas that are critical to the growth of their company, their industry and, most importantly, their career. This talk will outline some of the important cross functional skills that can propel your career ahead and ways in which you can take charge of your career mapping and enhance your value and employability.

  17. The IACOB project . III. New observational clues to understand macroturbulent broadening in massive O- and B-type stars

    NASA Astrophysics Data System (ADS)

    Simón-Díaz, S.; Godart, M.; Castro, N.; Herrero, A.; Aerts, C.; Puls, J.; Telting, J.; Grassitelli, L.

    2017-01-01

    Context. The term macroturbulent broadening is commonly used to refer to a certain type of non-rotational broadening affecting the spectral line profiles of O- and B-type stars. It has been proposed to be a spectroscopic signature of the presence of stellar oscillations; however, we still lack a definitive confirmation of this hypothesis. Aims: We aim to provide new empirical clues about macroturbulent spectral line broadening in O- and B-type stars to evaluate its physical origin. Methods: We used high-resolution spectra of 430 stars with spectral types in the range O4 - B9 (all luminosity classes) compiled in the framework of the IACOB project. We characterized the line broadening of adequate diagnostic metal lines using a combined Fourier transform and goodness-of-fit technique. We performed a quantitative spectroscopic analysis of the whole sample using automatic tools coupled with a huge grid of fastwind models to determine their effective temperatures and gravities. We also incorporated quantitative information about line asymmetries into our observational description of the characteristics of the line profiles, and performed a comparison of the shape and type of line-profile variability found in a small sample of O stars and B supergiants with still undefined pulsational properties and B main-sequence stars with variable line profiles owing to a well-identified type of stellar oscillations or to the presence of spots in the stellar surface. Results: We present a homogeneous and statistically significant overview of the (single snapshot) line-broadening properties of stars in the whole O and B star domain. We find empirical evidence of the existence of various types of non-rotational broadening agents acting in the realm of massive stars. Even though all these additional sources of line-broadening could be quoted and quantified as a macroturbulent broadening from a practical point of view, their physical origin can be different. Contrarily to the early- to

  18. Improving Program Design and Assessment with Broadening Participation Resources

    NASA Astrophysics Data System (ADS)

    Siegfried, D.; Johnson, A.; Thomas, S. H.; Fauver, A.; Detrick, L.

    2012-12-01

    Many theoretical and research-based approaches suggest how to best use mentoring to enhance an undergraduate research program. The Institute for Broadening Participation's Pathways to Engineering and Pathways to Ocean Sciences projects synthesized a set of mentoring studies, theoretical sources, and other texts pertinent to undergraduate research program design into a suite of practical tools that includes an online mentoring manual, an online reference library of mentoring and diversity literature, and practical guides such as Using Social Media to Build Diversity in Your REU. The overall goal is to provide easy-to-access resources that can assist faculty and program directors in implementing or honing the mentoring elements in their research programs for undergraduates. IBP's Online Mentoring Manual addresses common themes, such as modeling, student self-efficacy, career development, retention and evaluation. The Online Diversity Reference Library provides a comprehensive, annotated selection of key policy documents, research studies, intervention studies, and other texts on broadening participation in science, technology, engineering and mathematics. IBP's suite of tools provides the theoretical underpinnings and research findings that can help leaders in education integrate site-appropriate mentoring elements into their educational programs. Program directors and faculty from a variety of program types and disciplines have benefitted from using the Manual and other resources. IBP continues the work of translating and synthesizing theory to practice and welcomes your participation and partnership in that effort.

  19. Rotational relaxation contributions to infrared pressure broadening in ozone

    NASA Technical Reports Server (NTRS)

    Flannery, C.; Mizugai, Y.; Steinfeld, J. I.; Spencer, M. N.

    1990-01-01

    The time-resolved IR double-resonance spectroscopy apparatus and procedures described by Millot et al. (1988) are used to measure the relaxation times of rotational levels in the v3 =1 state of O3. Findings reported include (1) total rotational cross sections about 20-70 percent larger than the Lennard-Jones collision cross section, consistent with an interaction dominated by dipole-dipole forces; (2) equal relaxation cross sections in the upper and lower vibrational states; (3) an estimated pressure-broadening cross section of 185 sq A, with less than 10 percent due to dephasing; (4) no strong Ka dependence of rotational relaxation rates at Ka = 4-8 in J of about 16; (5) a rate for J = 8 and Ka = 7 about 40 percent larger than the other values measured, in agreement with the pressure-broadening model of Gamache and Rothman (1985); and (6) a V-V energy-transfer rate between v3 = 1 and v1 = 1 of (2.5 + or - 0.5) x 10 to the 6th/torr sec.

  20. Momentum broadening in unstable quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Carrington, M. E.; Mrówczyński, St.; Schenke, B.

    2017-02-01

    Quark-gluon plasma produced at the early stage of ultrarelativistic heavy-ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes much exceeding typical values of the fields in equilibrated plasma. We consider a high-energy test parton traversing an unstable plasma that is populated with strong fields. We study the momentum broadening parameter q ̂ which determines the radiative energy loss of the test parton. We develop a formalism which gives q ̂ as the solution of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant for relativistic heavy-ion collisions. The parameter q ̂ is found to be strongly dependent on time. For short times it is of the order of the equilibrium value, but at later times q ̂ grows exponentially due to the interaction of the test parton with unstable modes and becomes much bigger than the value in equilibrium. The momentum broadening is also strongly directionally dependent and is largest when the test parton velocity is transverse to the beam axis. Consequences of our findings for the phenomenology of jet quenching in relativistic heavy-ion collisions are briefly discussed.

  1. Non-thermal line-broadening in solar prominences

    NASA Astrophysics Data System (ADS)

    Stellmacher, G.; Wiehr, E.

    2015-09-01

    Aims: We show that the line broadening in quiescent solar prominences is mainly due to non-thermal velocities. Methods: We have simultaneously observed a wide range of optically thin lines in quiescent prominences, selected for bright and narrow Mg b emission without line satellites from macro-shifts. Results: We find a ratio of reduced widths, ΔλD/λ0, of Hγ and Hδ of 1.05 ± 0.03, which can hardly be attributed to saturation, since both are optically thin for the prominences observed: τγ ≤ 0.3, τδ ≤ 0.15. We confirm the ratio of reduced widths of He 4772 (triplet) and He 5015 (singlet) of 1.1 ± 0.05 at higher significance and detect a width ratio of Mg b2 and Mg 4571 (both from the triplet system) of 1.3 ± 0.1. Conclusions: The discrepant widths of lines from different atoms, and even from the same atom, cannot be represented by a unique pair [Tkin; Vnth]. Values of Tkin deduced from observed line radiances using models indicate low temperatures down to Tkin ≈ 5000 K. Non-thermal velocities, related to different physical states of the respective emitting prominence region, seem to be the most important line broadening mechanism.

  2. High-resolution TALIF measurements of atomic oxygen: determination of gas temperature and collisional broadening coefficients

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Marinov, Daniil; Guaitella, Olivier; Drag, Cyril; Engeln, Richard; Golda, Judith; Schultz-von der Gathern, Volker

    2016-09-01

    Two-photon Absorption Laser-Induced Fluorescence (TALIF) is a well-established technique to measure relative (and with appropriate calibration techniques, absolute) densities of atoms in plasmas and flames. The excitation line profiles can provide additional information, but this is usually overlooked due to the mediocre spectral resolution of commercial pulsed dye laser systems. We have investigated O-atom TALIF excitation line profiles using a house-built narrow line-width pulsed UV laser system, based on pulsed Ti:Sa ring laser seeded by a cw infrared diode laser. The observed Doppler profiles allow unambiguous measurement of gas temperature with high precision in O2 and CO2 DC glow discharges. Sub-Doppler measurements, performed by reflecting the laser beam back through excitation zone, allow the pressure-broadened line shapes to be observed, both in a pure O2 DC discharge (up to 10 Torr pressure) and in an atmospheric pressure RF plasma jet in He/O2. Pressure broadening coefficients of the 3p3PJ state of O were determined for O2 and He bath gases, and were found to be an order of magnitude bigger than that predicted from the measured quenching rate. Work performed in the LABEX Plas@par project, with financial state aid (ANR-11-IDEX-0004-02 and ANR-13-BS09-0019).

  3. The assembly of ant-farmed gardens: mutualism specialization following host broadening.

    PubMed

    Chomicki, Guillaume; Janda, Milan; Renner, Susanne S

    2017-03-15

    Ant-gardens (AGs) are ant/plant mutualisms in which ants farm epiphytes in return for nest space and food rewards. They occur in the Neotropics and Australasia, but not in Africa, and their evolutionary assembly remains unclear. We here use phylogenetic frameworks for important AG lineages in Australasia, namely the ant genus Philidris and domatium-bearing ferns (Lecanopteris) and flowering plants in the Apocynaceae (Hoya and Dischidia) and Rubiaceae (Myrmecodia, Hydnophytum, Anthorrhiza, Myrmephytum and Squamellaria). Our analyses revealed that in these clades, diaspore dispersal by ants evolved at least 13 times, five times in the Late Miocene and Pliocene in Australasia and seven times during the Pliocene in Southeast Asia, after Philidris ants had arrived there, with subsequent dispersal between these two areas. A uniquely specialized AG system evolved in Fiji at the onset of the Quaternary. The farming in the same AG of epiphytes that do not offer nest spaces suggests that a broadening of the ants' plant host spectrum drove the evolution of additional domatium-bearing AG-epiphytes by selecting on pre-adapted morphological traits. Consistent with this, we found a statistical correlation between the evolution of diaspore dispersal by ants and domatia in all three lineages. Our study highlights how host broadening by a symbiont has led to new farming mutualisms.

  4. Broadening Participation of Women and Underrepresented Minorities in STEM through a Hybrid Online Transfer Program

    PubMed Central

    Drew, Jennifer C.; Galindo-Gonzalez, Sebastian; Ardissone, Alexandria N.; Triplett, Eric W.

    2016-01-01

    The Microbiology and Cell Science (MCS) Department at the University of Florida (UF) developed a new model of a 2 + 2 program that uses a hybrid online approach to bring its science, technology, engineering, and mathematics (STEM) curriculum to students. In this paradigm, 2-year graduates transfer as online students into the Distance Education in MCS (DE MCS) bachelor of science program. The program has broadened access to STEM with a steadily increasing enrollment that does not draw students away from existing on-campus programs. Notably, half of the DE MCS students are from underrepresented minority (URM) backgrounds and two-thirds are women, which represents a greater level of diversity than the corresponding on-campus cohort and the entire university. Additionally, the DE MCS cohort has comparable retention and academic performance compared with the on-campus transfer cohort. Of those who have earned a BS through the DE MCS program, 71% are women and 61% are URM. Overall, these data demonstrate that the hybrid online approach is successful in increasing diversity and provides another viable route in the myriad of STEM pathways. As the first of its kind in a STEM field, the DE MCS program serves as a model for programs seeking to broaden their reach. PMID:27587859

  5. Broadening Participation of Women and Underrepresented Minorities in STEM through a Hybrid Online Transfer Program.

    PubMed

    Drew, Jennifer C; Galindo-Gonzalez, Sebastian; Ardissone, Alexandria N; Triplett, Eric W

    2016-01-01

    The Microbiology and Cell Science (MCS) Department at the University of Florida (UF) developed a new model of a 2 + 2 program that uses a hybrid online approach to bring its science, technology, engineering, and mathematics (STEM) curriculum to students. In this paradigm, 2-year graduates transfer as online students into the Distance Education in MCS (DE MCS) bachelor of science program. The program has broadened access to STEM with a steadily increasing enrollment that does not draw students away from existing on-campus programs. Notably, half of the DE MCS students are from underrepresented minority (URM) backgrounds and two-thirds are women, which represents a greater level of diversity than the corresponding on-campus cohort and the entire university. Additionally, the DE MCS cohort has comparable retention and academic performance compared with the on-campus transfer cohort. Of those who have earned a BS through the DE MCS program, 71% are women and 61% are URM. Overall, these data demonstrate that the hybrid online approach is successful in increasing diversity and provides another viable route in the myriad of STEM pathways. As the first of its kind in a STEM field, the DE MCS program serves as a model for programs seeking to broaden their reach.

  6. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Berger-By, G.; Decampy, J.; Antar, G. Y.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Tore Supra Team

    2014-02-01

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 1019 m-3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  7. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  8. Role of Lorentz-Stark broadening of hydrogen spectral lines in magnetized plasmas: Applications to magnetic fusion and solar physics

    NASA Astrophysics Data System (ADS)

    Oks, Eugene

    2015-05-01

    Broadening of hydrogen spectral lines in plasmas is an important diagnostic tool for many applications (here and below by "hydrogen atoms" and "hydrogen spectral lines" we mean atoms and spectral lines of hydrogen, deuterium, and tritium). In magnetized plasmas radiating hydrogen atoms moving with the velocity v across the magnetic field B experience a Lorentz electric field EL=v×B/c in addition to other electric fields. Since the velocity v has a distribution, so does the Lorentz field, thus making an additional contribution to the broadening of spectral lines. Compared to previous studies of this contribution, we cover the following new aspects. First, we consider the Lorentz-Doppler broadening of highly-excited hydrogen lines and produce new analytical results for arbitrary strength of the magnetic field B. We show for the first time that in the high-B case, the π-components of hydrogen lines are significantly suppressed compared to the σ-components. Second, we derive analytically Lorentz-broadened profiles of highly-excited hydrogen lines. We obtain expressions for the principal quantum number nmax of the last observable hydrogen line in the spectral series. These expressions differ very significantly from the corresponding Inglis-Teller result and constitute a new diagnostic method allowing to measure the product T1/2B, where T is the atomic temperature. Third, we consider magnetized plasmas containing a low-frequency electrostatic turbulence. This kind of turbulence causes anomalous transport phenomena (e.g., the anomalous resistivity) and is therefore very important to be diagnosed. We derive analytically distributions of the total electric field and the corresponding Stark profiles of hydrogen lines. We demonstrate that our findings lead to a significantly revised interpretation of the previous and future experimental data in magnetic fusion and the observational data in solar physics.

  9. Standard line broadening impact theory for hydrogen including penetrating collisions

    NASA Astrophysics Data System (ADS)

    Alexiou, S.; Poquérusse, A.

    2005-10-01

    In recent years there has been significant interest in the emission spectra from high-density plasmas, as manifested by a number of experiments. At these high densities short range (small impact parameter) interactions become important and these cannot be adequately handled by the standard theory, whose predictions depend on some cutoffs, necessary to preserve unitarity, the long range approximation, and to ensure the validity of a semiclassical picture. Very recently, as a result of a debate concerning the broadening of isolated ion lines, the importance of penetration of bound electron wave functions by plasma electrons has been realized. By softening the interaction, penetration makes perturbative treatments more valid. The penetration effect has now been included analytically into the standard theory. It turns out that the integrations may be done in closed form in terms of the modified Bessel functions K0 and K1 . This work develops the new theory and applies it to experimental measurements.

  10. Photosynthetic innovation broadens the niche within a single species.

    PubMed

    Lundgren, Marjorie R; Besnard, Guillaume; Ripley, Brad S; Lehmann, Caroline E R; Chatelet, David S; Kynast, Ralf G; Namaganda, Mary; Vorontsova, Maria S; Hall, Russell C; Elia, John; Osborne, Colin P; Christin, Pascal-Antoine

    2015-10-01

    Adaptation to changing environments often requires novel traits, but how such traits directly affect the ecological niche remains poorly understood. Multiple plant lineages have evolved C4 photosynthesis, a combination of anatomical and biochemical novelties predicted to increase productivity in warm and arid conditions. Here, we infer the dispersal history across geographical and environmental space in the only known species with both C4 and non-C4 genotypes, the grass Alloteropsis semialata. While non-C4 individuals remained confined to a limited geographic area and restricted ecological conditions, C4 individuals dispersed across three continents and into an expanded range of environments, encompassing the ancestral one. This first intraspecific investigation of C4 evolutionary ecology shows that, in otherwise similar plants, C4 photosynthesis does not shift the ecological niche, but broadens it, allowing dispersal into diverse conditions and over long distances. Over macroevolutionary timescales, this immediate effect can be blurred by subsequent specialisation towards more extreme niches.

  11. E-cigarettes: a need to broaden the debate.

    PubMed

    Latif, E; Nair, M

    2016-11-01

    The unregulated market for e-cigarettes continues to grow, with debates on their efficacy and impact on global public health. E-cigarettes, or electronic nicotine delivery systems (ENDs), are marketed as a 'safe' alternative to tobacco products and a tool for 'harm reduction'. Some public health experts are calling it a 'game changer' and favour the 'harm reduction' strategy, while others dispute this claim. In our opinion, the debate needs to be broadened to encompass other related concerns and effects on non-users and affected stakeholders. As with tobacco control, a holistic approach is needed to build a raft of policies that effectively address the issue from all angles and look beyond the direct health implications of e-cigarette use to explore the social, economic, political and environmental aspects of this debate, putting 'harm reduction' in context.

  12. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  13. America's economic future: environmentalists broaden the industrial policy debate

    SciTech Connect

    Not Available

    1984-01-01

    America's future economic health depends on the condition of our natural resources, our human resources, and our agricultural, energy, service, and high-technology industries, as well as on the traditional manufacturing industries. Industrial structure and output will do much to determine future levels of pollutants and resource use, and the shape of our economy will influence the character of American society and the quality of American life. The debate over proposals for government intervention in the growth and decline of specific industries changes the focus to microeconomic issues and broadens the discussion of economic goals. Environmentalists offer five goals for (1) a sustainable global economy, (2) a higher quality of life, (3) a sustainable environment and resource base, (4) total employment, and (5) widespread participation in decisions. They offer specific courses of action to meet these goals.

  14. Workshops Without Walls: broadening access to science around the world.

    PubMed

    Arslan, Betül K; Boyd, Eric S; Dolci, Wendy W; Dodson, K Estelle; Boldt, Marco S; Pilcher, Carl B

    2011-08-01

    The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two "Workshops Without Walls" during 2010 that enabled global scientific exchange--with no travel required. The second of these was on the topic "Molecular Paleontology and Resurrection: Rewinding the Tape of Life." Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel.

  15. Comparing the line broadened quasilinear model to Vlasov code

    NASA Astrophysics Data System (ADS)

    Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.

    2014-03-01

    The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.

  16. Effects of Doppler broadening on Autler-Townes splitting in six-wave mixing

    SciTech Connect

    Niu Jinyan; Pei Liya; Lu Xiaogang; Wang Ruquan; Wu Lingan; Fu Panming

    2011-09-15

    The effects of Doppler broadening on Autler-Townes (AT) splitting in six-wave mixing (SWM) are investigated by the dressed-state model. We analyze the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting and find that, depending on the wave-number ratio, there may be two resonant velocities which can originate from resonance with one of the dressed states or from resonance with two different dressed states. Based on this model, we discuss a novel type of AT doublet in the SWM spectrum, where macroscopic effects play an important role. Specifically, the existence of resonant peaks requires polarization interference between atoms of different velocities in addition to a change in the number of resonant atoms involved. Our model can also be employed to analyze electromagnetically induced transparency resonance and other types of Doppler-free high-resolution AT spectroscopy.

  17. Creation of problem-dependent Doppler-broadened cross sections in the KENO Monte Carlo code

    SciTech Connect

    Hart, Shane W. D.; Celik, Cihangir; Maldonado, G. Ivan; Leal, Luiz C.

    2015-11-06

    In this paper, we introduce a quick method for improving the accuracy of Monte Carlo simulations by generating one- and two-dimensional cross sections at a user-defined temperature before performing transport calculations. A finite difference method is used to Doppler-broaden cross sections to the desired temperature, and unit-base interpolation is done to generate the probability distributions for double differential two-dimensional thermal moderator cross sections at any arbitrarily user-defined temperature. The accuracy of these methods is tested using a variety of contrived problems. In addition, various benchmarks at elevated temperatures are modeled, and results are compared with benchmark results. Lastly, the problem-dependent cross sections are observed to produce eigenvalue estimates that are closer to the benchmark results than those without the problem-dependent cross sections.

  18. THEORY AND SIMULATIONS OF REFRACTIVE SUBSTRUCTURE IN RESOLVED SCATTER-BROADENED IMAGES

    SciTech Connect

    Johnson, Michael D.; Gwinn, Carl R.

    2015-06-01

    At radio wavelengths, scattering in the interstellar medium distorts the appearance of astronomical sources. Averaged over a scattering ensemble, the result is a blurred image of the source. However, Narayan and Goodman and Goodman and Narayan showed that for an incomplete average, scattering introduces refractive substructure in the image of a point source that is both persistent and wideband. We show that this substructure is quenched but not smoothed by an extended source. As a result, when the scatter-broadening is comparable to or exceeds the unscattered source size, the scattering can introduce spurious compact features into images. In addition, we derive efficient strategies to numerically compute realistic scattered images, and we present characteristic examples from simulations. Our results show that refractive substructure is an important consideration for ongoing missions at the highest angular resolutions, and we discuss specific implications for RadioAstron and the Event Horizon Telescope.

  19. Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahim, Pourmand; Ghasem, Rezaei

    2015-12-01

    Spectroscopic properties of flashlamp pumped Nd3+:YAG laser are studied as a function of temperature in a range from -30 °C to 60 °C. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of 4F3/2 → 4I9/2 are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature. The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is, thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. Project supported by Estahban Branch, Islamic Azad University.

  20. Creation of problem-dependent Doppler-broadened cross sections in the KENO Monte Carlo code

    DOE PAGES

    Hart, Shane W. D.; Celik, Cihangir; Maldonado, G. Ivan; ...

    2015-11-06

    In this paper, we introduce a quick method for improving the accuracy of Monte Carlo simulations by generating one- and two-dimensional cross sections at a user-defined temperature before performing transport calculations. A finite difference method is used to Doppler-broaden cross sections to the desired temperature, and unit-base interpolation is done to generate the probability distributions for double differential two-dimensional thermal moderator cross sections at any arbitrarily user-defined temperature. The accuracy of these methods is tested using a variety of contrived problems. In addition, various benchmarks at elevated temperatures are modeled, and results are compared with benchmark results. Lastly, the problem-dependentmore » cross sections are observed to produce eigenvalue estimates that are closer to the benchmark results than those without the problem-dependent cross sections.« less

  1. Theory and Simulations of Refractive Substructure in Resolved Scatter-broadened Images

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Gwinn, Carl R.

    2015-06-01

    At radio wavelengths, scattering in the interstellar medium distorts the appearance of astronomical sources. Averaged over a scattering ensemble, the result is a blurred image of the source. However, Narayan & Goodman and Goodman & Narayan showed that for an incomplete average, scattering introduces refractive substructure in the image of a point source that is both persistent and wideband. We show that this substructure is quenched but not smoothed by an extended source. As a result, when the scatter-broadening is comparable to or exceeds the unscattered source size, the scattering can introduce spurious compact features into images. In addition, we derive efficient strategies to numerically compute realistic scattered images, and we present characteristic examples from simulations. Our results show that refractive substructure is an important consideration for ongoing missions at the highest angular resolutions, and we discuss specific implications for RadioAstron and the Event Horizon Telescope.

  2. Temperature dependence of Lorentz air-broadening and pressure-shift coefficients of (12)CH4 lines in the 2.3-micron spectral region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Rinsland, C. P.

    1994-01-01

    High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.

  3. Adaptive broadening to improve spectral resolution in the numerical renormalization group

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Sup B.; Weichselbaum, Andreas

    2016-12-01

    We propose an adaptive scheme of broadening the discrete spectral data from numerical renormalization group (NRG) calculations to improve the resolution of dynamical properties at finite energies. While the conventional scheme overbroadens narrow features at large frequency by broadening discrete weights with constant width in log-frequency, our scheme broadens each discrete contribution individually based on its sensitivity to a z -shift in the logarithmic discretization intervals. We demonstrate that the adaptive broadening better resolves various features in noninteracting and interacting models at comparable computational cost. The resolution enhancement is more significant for coarser discretization as typically required in multiband calculations. At low frequency below the energy scale of temperature, the discrete NRG data necessarily needs to be broadened on a linear scale. Here we provide a method that minimizes transition artifacts in between these broadening kernels.

  4. Spectroscopic measurements of SO(2) line parameters in the 9.2 mum atmospheric region and theoretical determination of self-broadening coefficients.

    PubMed

    Tasinato, Nicola; Charmet, Andrea Pietropolli; Stoppa, Paolo; Giorgianni, Santi; Buffa, Giovanni

    2010-01-28

    Sulfur dioxide is still the subject of numerous spectroscopic studies since it plays an active role in the chemistry of Earth's atmosphere and it is a molecule of proven astrophysical importance. In the present work we have determined the self-broadening and integrated absorption coefficients for several lines in the nu(1) band spectral region around 9.2 mum. Besides the parameters of the lines belonging to the nu(1) fundamental of (32)SO(2), also those for some rovibrational lines of the nu(1)+nu(2)-nu(2) hot band of the (32)SO(2) isotopologue and the nu(1) band of the (34)SO(2) isotopic species have been determined. The measurements have been carried out at 297 K using a tunable diode laser spectrometer. The self-broadening parameters have also been theoretically determined employing a semiclassical formalism based on the Anderson-Tsao-Curnutte approximation. The study has been completed with the determination of the vibrational cross sections of the three fundamental bands measured from the spectra recorded at a resolution of 0.2 cm(-1) using a Fourier transform infrared spectrometer.

  5. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  6. Analysis of pressure-broadened ozone spectra in the 3 micron region

    NASA Technical Reports Server (NTRS)

    Prochaska, Eleanor S.

    1990-01-01

    The Molecular Spectroscopy Lab at NASA-Langley has been involved in a long term effort to carefully characterize the infrared spectra of small molecules of atmospheric interest, including methane, water vapor, ozone, and their isotopic counterparts. High resolution gas phase infrared spectra are obtained using both a tunable diode laser system, and the McMath Fourier transform spectrometer at the Kitt Peak Solar Observatory. Spectra are obtained at various pressures and temperatures for pure gas samples, and for samples containing mixtures of the species of interest in nitrogen, oxygen, or air. From these spectra, using a nonlinear least squares fitting technique, spectral parameters of position, intensity, and half-width were determined for varying laboratory conditions that approximate atmospheric conditions experienced in remote sensing situations. These parameters are of interest in theoretical studies of these species, as well as in allowing more accurate interpretation of remote sensing data. The current work involves the analysis of a series of McMath FTIR spectra of ozone broadened by mixing with air, nitrogen, or oxygen. Each spectrum covers the region from 2396 to 4057/cm. Each vibrational band is analyzed by first diving its region into small intervals containing a few well isolated absorption lines of reasonable intensity. Each of these small intervals is fit by multiple iterations of the nonlinear least square program until residuals are minimized to a reasonable value which corresponds to the noise level of the measured spectrum. Intervals for the 3 nu(sub 3) ozone band in the region from 3000 to 3060 wavenumbers are being examined.

  7. Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman, and ab Initio Methods: Band Strengths for Atmospheric Measurements

    SciTech Connect

    Lindenmaier, Rodica; Tipton, Nicole; Sams, Robert L.; Brauer, Carolyn S.; Blake, Thomas A.; Williams, Stephen D.; Johnson, Timothy J.

    2016-08-04

    Hydroxyacetone (acetol) is a simple organic molecule of interest in both the astrophysical and atmospheric communities, having recently been observed in biomass burning events, as well as a known degradation product of isoprene oxidation. However, its vibrational assignment has never been fully completed, and few quantitative data are available for its detection via infrared spectroscopy. Our recent acquisition of both the pressure-broadened gas-phase data and the far-IR spectra now allow for unambiguous assignment of several (new) bands. In particular, the observed C-type bands of several fundamentals (particularly in the far-infrared) and a few combination bands demonstrate that the monomer is in a planar (Cs) conformation, at least a majority of the time. As suggested by other researchers, the monomer is a cis-cis conformer stabilized by an intramolecular O—H···O=C hydrogen bond forming a five-membered planar ring structure. Band assignments in the Cs point group are justified (at least for a good fraction of the molecules in the ensemble) by the presence of the C-type bands. The results and band assignments are well confirmed by both ab initio MP2-ccpvtz calculations as well as GAMESS (B3LYP) theoretical calculations. In addition, using vetted methods for quantitative measurements, we report the first IR absorption band strengths of acetol (also in electronic format) that can be used for atmospheric monitoring and other applications.

  8. Experimental studies by complementary terahertz techniques and semi-classical calculations of N2- broadening coefficients of CH335Cl

    NASA Astrophysics Data System (ADS)

    Guinet, M.; Rohart, F.; Buldyreva, J.; Gupta, V.; Eliet, S.; Motiyenko, R. A.; Margulès, L.; Cuisset, A.; Hindle, F.; Mouret, G.

    2012-07-01

    Room-temperature N2-broadening coefficients of methyl chloride rotational lines are measured over a large interval of quantum numbers (6≤J≤50, 0≤K≤18) by a submillimeter frequency-multiplication chain (J≤31) and a terahertz photomixing continuous-wave spectrometer (J≥31). In order to check the accuracy of both techniques, the measurements of identical lines are compared for J=31. The pressure broadening coefficients are deduced from line fits using mainly a Voigt profile model. The excellent signal-to-noise ratio of the frequency-multiplication scheme highlights some speed dependence effect on the line shape. Theoretical values of these coefficients are calculated by a semi-classical approach with exact trajectories. An intermolecular potential including atom-atom interactions is used for the first time. It is shown that, contrary to the previous theoretical predictions, the contributions of short-range forces are important for all values of the rotational quantum numbers. Additional testing of modifications required in the semi-classical formalism for a correct application of the cumulant expansion is also performed. It is stated that the use of the cumulant average on the rotational states of the perturbing molecule leads, for high J and small K values, to slightly higher line-broadening coefficients, as expected for the relatively strong interacting CH3Cl-N2 system. The excellent agreement between the theoretical and the experimental results ensures the reliability of these data.

  9. Photoacoustic measurement of differential broadening of the Lambda doublets in NO(X 2Pi 1/2,v = 2-0) by Ar

    NASA Technical Reports Server (NTRS)

    Pine, A. S.

    1989-01-01

    A differential broadening of the Lambda doublets in the v = 2-0 overtone band of the 2pi1/2 ground electronic state of NO in an Ar buffer gas has been observed by photoacoustic spectroscopy using a tunable color-center laser. The broadening coefficients for the f symmetry components are larger than for the e symmetry components by up to about 6 percent for J of about 16.5. This differential depends on J and vanishes at low J, implicating the anisotropy of the unpaired electron Pi orbital in the plane of rotation. The 2Pi3/2 transitions are slightly broader than the 2Pi1/2 as a result of spin-flipping collisional relaxation. The observed line shapes also exhibit collisional or Dicke narrowing due to velocity-changing collisions.

  10. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  11. Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot

    SciTech Connect

    Wu, Chung-Lun; Lin, Gong-Ru

    2012-12-15

    The SiO{sub x} (SiO{sub x}:Si-QDs) with buried Si quantum dots (Si-QDs) is synthesized by plasma-enhanced chemical vapor deposition (PECVD), and the size-dependent wave-function of Si-QDs embedded in Si-rich SiO{sub 2} matrix is experimentally and theoretically analyzed to reformulate its bandgap energy as E{sub g}(d) = 1.12+5.83/d{sup 1.78}. The photoluminescent lifetime of Si-QDs is dominated by the non-phonon assisted radiative recombination. Shrinking the Si-QD size from 4.3 to 1.9 nm increases the overlapping probability of electron-hole wave-functions in Si-QD to shorten the non-phonon assisted radiative lifetime from 6.3 {mu}s to 83 ns. Fitting the time-resolved photoluminescence trace with a stretched exponential decay function reveals a lifetime dispersion factor. The lifetime dispersion greatly reduced from 0.8 to 0.39 by enlarging the size distribution of Si-QDs from 0.2 to 1.1 nm, which elucidates the inhomogeneous linewidth broadening feature of Si-QDs. Based on the simulation of non-phonon assisted recombination process, the full-band stretched exponential decay analysis confirms the correlation between inhomogeneous linewidth broadening and lifetime dispersion in Si-QDs.

  12. Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation: southeastern Honshu, Japan

    NASA Astrophysics Data System (ADS)

    Sato, Haruo

    1989-12-01

    Analyzing horizontal component seismograms of small earthquakes with intermediate hypocentral distances in southeastern Honshu, Japan, we found that time widths of seismogram envelopes around direct S waves are much longer than source duration times estimated from their magnitudes. The time lags of the maximum amplitude and the half maximum after the peak were measured from the onset of the direct S wave arrival from band-pass-filtered seismograms from 2 to 32 Hz. Even though there is considerable scatter, both the time lags are found to increase with increasing hypocentral distance up to 305 km. We hypothesize that pulse shape broadens and the maximum amplitude is reduced after propagating through the random structure of the lithosphere. The parabolic approximation theoretically predicts that the long-wavelength component of velocity inhomogeneities compared with the wavelength of seismic waves produces diffraction fluctuations and makes seismogram envelopes broaden with increasing travel distance in the saturated regime. Supposing a Gaussian autocorrelation function for the randomness and an empirical frequency dependent attenuation, we propose a formula for the temporal change in the power spectral density of seismic waves. Applying this formula to the observed data, we statistically evaluated the scale of random inhomogeneities: the mean square fractional velocity fluctuation was estimated to be 10-3 times the correlation distance a in kilometers.

  13. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  14. Preprophase band formation and cortical division zone establishment: RanGAP behaves differently from microtubules during their band formation

    PubMed Central

    Yabuuchi, Takatoshi; Nakai, Tomonori; Sonobe, Seiji; Yamauchi, Daisuke; Mineyuki, Yoshinobu

    2015-01-01

    Correct positioning of the division plane is a prerequisite for plant morphogenesis. The preprophase band (PPB) is a key intracellular structure of division site determination. PPB forms in G2 phase as a broad band of microtubules (MTs) that narrows in prophase and specializes few-micrometer-wide cortical belt region, named the cortical division zone (CDZ), in late prophase. The PPB comprises several molecules, some of which act as MT band organization and others remain in the CDZ marking the correct insertion of the cell plate in telophase. Ran GTPase-activating protein (RanGAP) is accumulated in the CDZ and forms a RanGAP band in prophase. However, little is known about when and how RanGAPs gather in the CDZ, and especially with regard to their relationships to MT band formation. Here, we examined the spatial and temporal distribution of RanGAPs and MTs in the preprophase of onion root tip cells using confocal laser scanning microscopy and showed that the RanGAP band appeared in mid-prophase as the width of MT band was reduced to nearly 7 µm. Treatments with cytoskeletal inhibitors for 15 min caused thinning or broadening of the MT band but had little effects on RanGAP band in mid-prophase and most of late prophase cells. Detailed image analyses of the spatial distribution of RanGAP band and MT band showed that the RanGAP band positioned slightly beneath the MT band in mid-prophase. These results raise a possibility that RanGAP behaves differently from MTs during their band formation. PMID:26237087

  15. Estimates Of Magnetic Plage Filling Factors Using The Cn Band

    NASA Astrophysics Data System (ADS)

    Saar, Steven H.; Judge, Philip

    2016-12-01

    The 388nm CN band (like the better known "G band" of CH) is used in the Sun to locate strong magnetic concentrations. Magnetic network and plage are bright in these molecular bands, since the enhanced chromospheric heating there destroys the molecule, erasing its absorption and allowing the continuum to shine through. We take advantage of this to estimate the filling factor of strong fields in active dwarf stars. CN band depths in active stars can be compared with those of inactive stars of very similar temperature and metallicity, and after an adjustment for line-blanketing, used to estimate a magnetic plage filling factor. We estimate filling factors for a two stars, and compare them to direct Stokes I line-broadening measurements. Limitations, caveats, and future directions are briefly considered.

  16. Temperature dependence of 13CH4 line shapes broadened by N2

    NASA Astrophysics Data System (ADS)

    Sung, K.; Mantz, A. M.; Brown, L. R.; Smith, M. H.; Benner, D. C.; Devi, V.; Crawford, T. J.

    2009-12-01

    In order to support remote sensing of Titan’s atmosphere, the temperature dependences for the 13CH4 nitrogen broadening and frequency shift coefficients were measured for several transitions from 1200 to 1400 cm-1 (8.33 to 7.14 μm) using a Fourier transform spectrometer (Bruker IFS-125HR) newly configured with a temperature stabilized cryogenic absorption cell at the Jet Propulsion Laboratory. The cryogenic cell is mounted on the cold finger of a closed cycle helium refrigerator, and the temperatures are monitored with Si diode sensors. The wedged ZnSe cell windows are vacuum sealed with crushed indium gaskets. The cell has an optical path of 24 cm and is suspended from the top cover of the evacuated sample compartment. It has demonstrated a temperature stability of better than ±0.01 K at all temperatures between 300 K and 90 K. To test the system performance, we first recorded 10 spectra of the ν4 band of 13CH4 broadened by nitrogen at 0.0056 cm-1 instrumental resolution (Resolving power = 232000) using a HgCdTe detector. The pressures of 13CH4+N2 mixtures ranged from 140 to 796 torr with the volume mixing ratios of 13CH4 varying between 0.001 and 0.012 at 296, 255, 225 and 180 K. Line shape parameters in the spectral region from 1200 to 1400 cm-1 were retrieved using the nonlinear least squares multispectrum technique1, fitting selected wavenumber intervals of all spectra simultaneously to determine temperature dependence. Preliminary results from the temperature dependence measurements at planetary and astrophysical temperatures are reported along with detailed discussion of the instrumental setup. This new spectroscopic capability at the Jet Propulsion Laboratory will enable future research in studies of planetary science and astrophysics2. 1 Benner DC, Rinsland CP, Devi VM, Smith MAH, Atkins D. A multispectrum nonlinear least squares fitting technique. JQSRT 53, 705 - 721 (1995). 2 The research at the Jet Propulsion Laboratory (JPL), California Institute

  17. The Oxygen a Band

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun; Hodges, Joseph; Long, David A.; Sung, Keeyoon; Drouin, Brian; Okumura, Mitchio; Bui, Thinh Quoc; Rupasinghe, Priyanka

    2014-06-01

    The oxygen A band is used for numerous atmospheric experiments, but spectral line parameters that sufficiently describe the spectrum to the level required by OCO2 and other high precision/accuracy experiments are lacking. Fourier transform spectra from the Jet Propulsion Laboratory and cavity ring down spectra from the National Institute of Standards and Technology were fitted simultaneously using the William and Mary multispectrum nonlinear least squares fitting technique into a single solution including the entire band. In addition, photoacoustic spectra already available from the California Institute of Technology will be added to the solution. The three types of spectrometers are complementary allowing the strengths of each to fill in the weaknesses of the others. With this technique line positions, intensities, widths, shifts, line mixing, Dicke narrowing, temperature dependences and collision induced absorption have been obtained in a single physically consistent fit. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at The College of William and Mary, the, Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration and the Jet Propulsion Laboratory. Support for the National Institute of Standards and Technology was provided by the NIST Greenhouse Gas Measurements and Climate Research Program and a NIST Innovations in Measurement Science (IMS) award.

  18. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  19. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2015-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  20. Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing.

    PubMed

    Dutta, Debashis

    2017-02-10

    Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system.

  1. A SYSTEMATIC SURVEY FOR BROADENED CO EMISSION TOWARD GALACTIC SUPERNOVA REMNANTS

    SciTech Connect

    Kilpatrick, Charles D.; Bieging, John H.; Rieke, George H.

    2016-01-01

    We present molecular spectroscopy toward 50 Galactic supernova remnants (SNRs) taken at millimeter wavelengths in {sup 12}CO J = 2 − 1. These observations are part of a systematic survey for broad molecular line (BML) regions indicative of interactions with molecular clouds (MCs). We detected BML regions toward 19 SNRs, including 9 newly identified BML regions associated with SNRs (G08.3–0.0, G09.9–0.8, G11.2–0.3, G12.2+0.3, G18.6–0.2, G23.6+0.3, 4C–04.71, G29.6+0.1, and G32.4+0.1). The remaining 10 SNRs with BML regions confirm previous evidence for MC interaction in most cases (G16.7+0.1, Kes 75, 3C 391, Kes 79, 3C 396, 3C 397, W49B, Cas A, and IC 443), although we confirm that the BML region toward HB 3 is associated with the W3(OH) H ii region, not the SNR. Based on the systemic velocity of each MC, molecular line diagnostics, and cloud morphology, we test whether these detections represent SNR–MC interactions. One of the targets (G54.1+0.3) had previous indications of a BML region, but we did not detect broadened emission toward it. Although broadened {sup 12}CO J = 2 − 1 line emission should be detectable toward virtually all SNR–MC interactions, we find relatively few examples; therefore, the number of interactions is low. This result favors mechanisms other than supernova feedback as the basic trigger for star formation. In addition, we find no significant association between TeV gamma-ray sources and MC interactions, contrary to predictions that SNR–MC interfaces are the primary venues for cosmic ray acceleration.

  2. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    SciTech Connect

    Berger-By, G.; Decampy, J.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Antar, G. Y.; Collaboration: Tore Supra Team

    2014-02-12

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 10{sup 19} m−3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  3. Broadening Participation: Mentoring Community College Students in a Geoscience REU

    NASA Astrophysics Data System (ADS)

    Smith, M.; Osborn, J.

    2015-12-01

    Increasingly, REUs are recruiting from community colleges as a means of broadening participation of underrepresented minorities, women, and low-income students in STEM. As inclusion of community college students becomes normalized, defining the role of science faculty and preparing them to serve as mentors to community college students is a key component of well-designed programs. This session will present empirical research regarding faculty mentoring in the first two years of an NSF-REU grant to support community college students in a university's earth and environmental science labs. Given the documented benefits of undergraduate research on students' integration into the scientific community and their career trajectory in STEM, the focus of the investigation has been on the processes and impact of mentoring community college STEM researchers at a university serving a more traditionally privileged population; the degree to which the mentoring relationships have addressed community college students needs including their emotional, cultural and resource needs; and gaps in mentor training and the mentoring relationship identified by mentors and students.

  4. Transmissivity of carbon monoxide in the 2.3 microns band region

    NASA Technical Reports Server (NTRS)

    Drayson, S. R.; Tallamraju, R. K.; Chaney, L. W.; Matthias, A. D.

    1975-01-01

    Line strengths and self and nitrogen broadened half-widths have been determined from high resolution spectroscopic measurements of selected lines in the 2.3 micrometer band region of CO. The CO 0-2 total band strength is estimated to be 2.086 + or - 0.146 cm/1 (ATM-cm)/1 STP which is higher than most previously reported values. The line half-widths are also generally higher than those in the literature.

  5. Conformational statistics of molecules with inner rotation and shapes of their electronic absorption bands

    SciTech Connect

    Aver`yanov, E.M.

    1994-10-01

    The effect of conformational statistics of molecules with inner rotation of {pi}-conjugated fragments on the position, intensity, and electronic absorption band shapes is studied in isotropic molecular media. It is shown that the conformational disorder of molecules with one inner rotation degree of freedom exerts an appreciable effect on the shift, inhomogeneous broadening, and asymmetry of the electronic absorption bands. An interpretation of the available experimental data is give. 19 refs., 1 fig.

  6. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  7. Optoelectronic Workshops. Dynamical Instabilities in Homogeneously Broadened Lasers (9th) (23 August 1988)

    DTIC Science & Technology

    1988-08-23

    Broadened Lasers: Dye Lasers Karl Koch Modulation Techniques: Alexandrite Lasers Stephen Chakmakjian Summary Carlos R. Stroud B. CECOM Center for Night... alexandrite , another phonon assisted homogeneously broadened laser. He described in some detail modulation spectroscopic techniques developed in Rochester that...measurement determines the population cycling rate slow decay from level 1 may cause instabilities Single Laser AM Experiments ruby alexandrite modulator

  8. Adjustable gastric banding (image)

    MedlinePlus

    ... normal digestive process. In this procedure, a hollow band made of special material is placed around the ... pouch and causes a feeling of fullness. The band can be tightened or loosened over time to ...

  9. Rabi-split states broadened by a continuum

    SciTech Connect

    Maialle, M. Z.; Degani, M. H.; Madureira, J. R.

    2013-12-04

    In this work we theoretically investigate a Λ-like three-level system. Our model consists of a onedimensional quantum well with a nearby continuum. The Λ level structure is formed by the ground state (a valence band state) and two excited states (both in conduction band), one being a localized and the other a quasi-bound state which is interacting with the continuum. An infrared (IR) field is used to drive the excited states into dressed states creating Autler-Townes doublets. We solve the semiconductor Bloch equation, in real space and in time domain, to follow the interband optical excitation dynamics. The optical absorption and the photocurrent spectra are calculated for different potential barriers separating the well and the continuum. We show how this affects the Autler-Townes doublets since this is a possible way of changing the relationship between the IR Rabi frequency and the dephasing rates.

  10. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  11. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  12. A Serendipitous Line Survey of Titan in the 1.3mm Band

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.; Butler, B. J.; Moullet, A.

    2012-10-01

    The millimeter and submillimeter bands are rich in rotational transitions from many molecular species detected and/or expected in the atmosphere of Titan. The lines are typically well-separated, and their line shapes, governed by both pressure broadening in the low- to mid-stratosphere and thermal broadening at higher altitudes, can be used to determine vertical abundance profiles given sufficient spectral resolution. This quantity of spectral lines have made Titan a popular target for millimeter and submillimeter radiotelescopes, which have reported detections of many nitriles along with CO (e.g. Muhleman et al 1984; Marten et al 1988; Tanguy et al 1990; Hidayat et al 1995; Gurwell & Muhleman 1995; Hidayat et al 1997; Marten et al 2002; Gurwell 2004; etc). The submillimeter bands are also covered by instruments on Cassini (CIRS) and Herschel (HIFI,SPIRE). The Submillimeter Array has been in operation for nearly 9 years, and during that time has observed Titan several times as a science target. In addition, Titan is utilized at the SMA as a primary standard for flux calibration in the 1.3mm, 1.1mm and 870 micron transmission windows. While each observation used for flux calibration is typically only 10-20 minutes in length, there have been many such observations during the SMA's operation. Thus, while in many small chunks, this SMA calibration data represents a sizable investment of telescope time, and presents an opportunity for use in a serendipitous line survey. This presentation will describe some initial results from an archival project to locate, calibrate, and combine data from multiple SMA observations of Titan, starting in the 1.3mm band. This will include, to our knowledge, the first reported detections in the millimeter bands of vibrationally excited HC3N (v7=1 and v7=2) and also CH3C2H as well as ongoing searches for HC5N and C2H3CN, and isotopic ratios in HC3N and CH3CN.

  13. Correction of Doppler-broadened Rayleigh backscattering effects in H2O dial measurements

    NASA Technical Reports Server (NTRS)

    Ansmann, A.; Bosenberg, J.

    1986-01-01

    A general method of solutions for treating effects of Doppler-broadened Rayleigh backscattering in H2O Differential Absorption Lidar (DIAL) measurements are described and discussed. Errors in vertical DIAL measuremtns caused by this laser line broadening effect can be very large and, therfore, this effect has to be accounted for accurately. To analyze and correct effects of Doppler-broadened Rayleigh backscattering in DIAL experiments, a generalized DIAL approximation was derived starting from a lidar equation, which includes Doppler broadening. To evaluate the accuracy of H2O DIAL measurements, computer simulations were performed. It was concluded that correction of Doppler broadened Rayleigh backscattering is possible with good accuracy in most cases of tropospheric H2O DIAL measurements, but great care has to be taken when layers with steep gradients of Mie backscattering like clouds or inversion layers are present.

  14. Low Power Band to Band Tunnel Transistors

    DTIC Science & Technology

    2010-12-15

    the E-field and tunneling at the source- pocket junction you form a parasitic NPN + transistor and the injection mechanism of carriers into the...hypothesis that the 1000 ° C, 5s anneal split lead to a very wide pocket and the accidental formation of a NPN + transistor , while the 1000 ° C, 1s anneal...Low Power Band to Band Tunnel Transistors Anupama Bowonder Electrical Engineering and Computer Sciences University of California at Berkeley

  15. Cardiovascular RNA interference therapy: the broadening tool and target spectrum.

    PubMed

    Poller, Wolfgang; Tank, Juliane; Skurk, Carsten; Gast, Martina

    2013-08-16

    Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.

  16. Doppler broadening induced spectral shift effects on reactor safety

    SciTech Connect

    Alapour, A.

    1980-01-01

    It is commonly accepted that the resonance reaction rate of any material increases when the temperature is raised. However, in a nuclear reactor the increase in resonance reaction rates with temperature at relatively high energy shifts the neutron spectrum in such a way that a net decrease in the neutron flux results at lower energies. This finding suggested that the spectral shift could significantly affect the Doppler reactivity change, warranting further investigations. The objective was to study the physical characteristics of this new phenomenon and its effects on reactor safety. The desirability of studying this effect was strengthened by the presence of discrepancies between the calculated and measured integral experiments. An exact Doppler broadening kernel, based on the Maxwellian distribution of nuclear velocities, and an accurate integral transport method NDCRAB, capable of including resonance overlap of all materials present in the reactor cell, were used in this study. The ZPR-6 Assembly 7 benchmark, a typical LMFBR reactor, was used to quantify the Doppler reactivity change for an increase in fuel temperature and to analyze the natural UO/sub 3/ sample Doppler worth in this assembly. The quantification of the various components of the Doppler reactivity change shows that the fissile material, /sup 239/Pu, has a large negative Doppler effect and contributes a large fraction to the total negative effect. The calculated Doppler effect of the natural UO/sub 3/ sample in this assembly was in good agreement with the measured value. The calculated and measured values for an increase in sample temperature from 293-0K to 1100/sup 0/K wre -0.887 Ih/kgU and -0.868 Ih/kgU.

  17. Doppler Broadening Thermometry Based on Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Shui-Ming; Cheng, Cunfeng; Wang, Jin; Tan, Yan; Sun, Yu Robert; Liu, An-Wen; Zhang, Jin-Tao

    2014-06-01

    A Doppler broadening thermometry is implemented using a laser-locked cavity ring-down spectrometer [1,2] combined with a temperature-stabilized sample cell. The temperature fluctuation of the gas sample cell is kept below 1 mK for hours. The probing laser is frequency locked at a longitudinal mode of a Fabry-Pérot interferometer made of ultra-low-expansion glass, and the spectral scan is implemented by scanning the sideband produced by an electro-optic modulator. As a result, a kHz precision has been maintained during the measurement of the spectrum of 10 GHz wide. A ro-vibrational line of C_2H_2 is measured at sample pressures of a few Pa. Using a pair of mirrors with a reflectivity of 0.99997 at 787 nm, we are able to detect absorption line profiles with a signal-to-noise ratio of 10^5. Fitting of the recorded spectra allows us to determine the Doppler width with a statistical uncertainty of 10 ppm. Further improvements on the experimental reproducibility and investigations on the collision effects will probably lead to an optical determination of the Boltzmann constant with an uncertainty of a few ppm. H. Pan, C.-F. Cheng, Y. R. Sun, B. Gao, A.-W. Liu, S.-M. Hu, ``Laser-locked, continuously tunable high resolution cavity ring-down spectrometer," Rev. Sci. Instrum. 82, 103110 (2011) Y. R. Sun, H. Pan, C.-F. Cheng, A.-W. Liu, J.-T. Zhang, S.-M. Hu, ``Application of cavity ring-down spectroscopy to the Boltzmann constant determination," Opt. Express, 19, 19993 (2011)

  18. Theory of Self-Phase Modulation and Spectral Broadening

    NASA Astrophysics Data System (ADS)

    Shen, Y. R.; Yang, Guo-Zhen

    Self-phase modulation refers to the phenomenon in which a laser beam propagating in a medium interacts with the medium and imposes a phase modulation on itself. It is one of those very fascinating effects discovered in the early days of nonlinear optics (Bloembergen and Lallemand, 1966; Brewer, 1967; Cheung et al., 1968; Lallemand, 1966; Jones and Stoicheff, 1964; Shimizu, 1967; Stoicheff, 1963). The physical origin of the phenomenon lies in the fact that the strong field of a laser beam is capable of inducing an appreciable intensity-dependent refractive index change in the medium. The medium then reacts back and inflicts a phase change on the incoming wave, resulting in self-phase modulation (SPM). Since a laser beam has a finite cross section, and hence a transverse intensity profile, SPM on the beam should have a transverse spatial dependence, equivalent to a distortion of the wave front. Consequently, the beam will appear to have self-diffracted. Such a self-diffraction action, resulting from SPM in space, is responsible for the well-known nonlinear optical phenomena of self-focusing and self-defocusing (Marburger, 1975; Shen, 1975). It can give rise to a multiple ring structure in the diffracted beam if the SPM is sufficiently strong (Durbin et al., 1981; Santamato and Shen, 1984). In the case of a pulsed laser input, the temporal variation of the laser intensity leads to an SPM in time. Since the time derivative of the phase of a wave is simply the angular frequency of the wave, SPM also appears as a frequency modulation. Thus, the output beam appears with a self-induced spectral broadening (Cheung et al., 1968; Gustafson et al., 1969; Shimizu, 1967).

  19. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-03

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.

  20. Diffuse interstellar bands in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.

    1994-01-01

    A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.

  1. Consequences and mechanisms of spike broadening of R20 cells in Aplysia californica.

    PubMed

    Ma, M; Koester, J

    1995-10-01

    We studied frequency-dependent spike broadening in the two electrically coupled R20 neurons in the abdominal ganglion of Aplysia. The peptidergic R20 cells excite the R25/L25 interneurons (which trigger respiratory pumping) and inhibit the RB cells. When fired at 1-10 Hz, the duration of the falling phase of the action potential in R20 neurons increases 2-10 fold during a spike train. Spike broadening recorded from the somata of the R20 cells affected synaptic transmission to nearby follower cells. Chemically mediated synaptic output was reduced by approximately 50% when recorded trains of nonbroadened action potentials were used as command signals for a voltage-clamped R20 cell. Electrotonic EPSPs between the R20 cells, which normally facilitated by two- to fourfold during a high frequency spike train, showed no facilitation when spike broadening was prevented under voltage-clamp control. To examine the mechanism of frequency-dependent spike broadening, we applied two-electrode voltage-clamp and pharmacological techniques to the somata of R20 cells. Several voltage-gated ionic currents were isolated, including INa, a multicomponent ICa, and three K+ currents--a high threshold, fast transient A-type K+ current (IAdepol), a delayed rectifier K+ current (IK-V), and a Ca(2+)-sensitive K+ current (IK-Ca), made up of two components. The influences of different currents on spike broadening were determined by using the recorded train of gradually broadening action potentials as the command for the voltage clamp. We found the following. (1) IAdepol is the major outward current that contributes to repolarization of nonbroadened spikes. It undergoes pronounced cumulative inactivation that is a critical determinant of spike broadening. (2) Activity-dependent changes in IK-V, IK-Ca, and ICa have complex effects on the kinetics and extent of broadening. (3) The time integral of ICa during individual action potentials increases approximately threefold during spike broadening.

  2. Method for separation of homogeneous and inhomogeneous components of spectral broadening of rigid systems

    SciTech Connect

    Litvinyuk, I.V.

    1997-01-30

    A method is suggested that allows separation of the contributions from homogeneous and inhomogeneous broadening (IB) to a total spectral contour of rigid systems. Based upon a simple convolution model of inhomogeneous broadening, the method allows calculation of homogeneously broadened spectra and an inhomogeneous distribution function (IDF) from the measured excitation-wavelength-dependent fluorescence spectra of the system. The method is applied successfully to the solid solution of coumarin 334 (C334) in poly(methyl methacrylate) (PMMA) glass at 293 K. 16 refs., 5 figs.

  3. Computing the inhomogeneous broadening of electronic transitions in solution: a first-principle quantum mechanical approach.

    PubMed

    Avila Ferrer, Francisco José; Improta, Roberto; Santoro, Fabrizio; Barone, Vincenzo

    2011-10-14

    Starting from Marcus's relationship connecting the inhomogeneous broadening with the solvent reorganization energy and exploiting recent state-specific developments in PCM/TD-DFT calculations, we propose a procedure to estimate the polar broadening of optical transitions. When applied to two representative molecular probes, coumarin C153 and 4-aminophthalimide, in different solvents, our approach provides for the polar broadening values fully consistent with the experimental ones. Thanks to these achievements, for the first time fully ab initio vibrationally resolved absorption spectra in solution are computed, obtaining spectra for coumarin C153 in remarkable agreement with experiments.

  4. Determination of Van der Waals broadening at temperatures of astrophysical interest.

    NASA Technical Reports Server (NTRS)

    Evans, J. M., Jr.; Cooper, J.

    1972-01-01

    Discussion of the results of experiments analyzing the widths of shock-excited emission lines at temperatures of about 5000 K. The width of two neutral silicon lines (4102 and 5948 A) were measured as broadened by argon, and the shift of one of these lines (4102 A) was determined. Likewise, the width one of the lines of cesium (4593 A) was measured as broadened by argon and neon. These data are compared with other experimental data to determine the temperature dependence of the broadening. Significant disagreements with simple theory are found, the experimental values of the widths being larger than the theoretical values by factors of 1.5-2.

  5. Saturation effects and inhomogeneous broadening in Doppler-free degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Steel, D. G.; Lam, J. F.

    1981-12-01

    We have performed experiments to study the saturation properties of degenerate four-wave mixing (DFWM) in inhomogeneously broadened material. The experiments were performed on line-center in SF 6 using a CW CO 2 laser on the P16 line at 10.6 μm. Measured peak reflectivities of 1.7 x 10 -4 are in reasonable agreement with a simple two-level model. This model also appears to correctly account for the observed saturation effects. While the material is clearly inhomogeneously broadened, both the experimental and theoretical reflectivity scale as though the material was homogeneously broadened.

  6. Pressure broadening calculations for OH in collisions with argon: Rotational, vibrational, and electronic transitions

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2017-03-01

    Collisional parameters describing both the pressure-induced broadening and shifting of isolated lines in the spectrum of the hydroxyl radical in collisions with argon have been determined through quantum scattering calculations using accurate potential energy surfaces describing the OH(X2 Π , A2Σ+)-Ar interactions. These calculations have been carried for pure rotational, vibrational, and electronic transitions. The calculated pressure broadening coefficients are in good agreement with the available measurements in the microwave, infrared, and ultraviolet spectral regions. Computed pressure broadening coefficients as a function of temperature are reported for these three types of transitions.

  7. Si 6142 and 6155 Å lines in stellar atmospheres: Stark broadening effect

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Popović, L. Č.; Ryabchikova, T.

    2002-07-01

    We study the influence of Stark broadening effect on Si I lines in the roAp 10 Aql star, where the lines are asymmetrical and shifted. First we have calculated Stark broadening parameters using by the semi-classical method for two Si I lines: 6142.48 Å and 6155.13 Å. We have adopted SYNTH code to include into account both Stark width and shift for these lines. From comparison of our calculation data with observations we found that Stark broadening plus stratification effect can explain the width and the asymmetry of the Si I lines in the atmosphere of roAp 10 Aql star.

  8. Lifetime broadening in the rotationally resolved electronic spectra of dibenzothiophene, 2,5-diphenylfuran, and 2,5-diphenyl-1,3,4-oxadiazole in the gas phase. Intersystem crossing dynamics in the statistical limit.

    PubMed

    Alvarez-Valtierra, Leonardo; Yi, John T; Pratt, David W

    2009-03-19

    The fluorescence lifetime of the zero point vibrational level of the first excited electronic state of dibenzothiophene (DBT) has been determined to be 1.0 ns by analysis of its rotationally resolved S1 <-- S0 fluorescence excitation spectrum. The S1 lifetime of DBT is substantially shorter than those observed for fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF), analogs of DBT in which the heavy sulfur atom is replaced by lighter ones. The electronic origin bands through the series CAR, FLU, DBF, and DBT exhibit a monotonic increase in Lorentzian broadening in their Voigt line shape profiles. Two other heterocyclic molecules manifest similar photophysical properties; 2,5-diphenylfuran and 2,5-diphenyl-1,3,4-oxadiazole. Lorentzian line shape broadenings of approximately 76 MHz were observed in the high-resolution spectra of their origin bands. Possible reasons for the short fluorescence lifetimes of these heterocycles are discussed.

  9. Unfolding the band structure of non-crystalline photonic band gap materials.

    PubMed

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-08-20

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain.

  10. Unfolding the band structure of non-crystalline photonic band gap materials

    PubMed Central

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  11. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    NASA Technical Reports Server (NTRS)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  12. Wide Band to ''Double Band'' upgrade

    SciTech Connect

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs.

  13. Progress with On-The-Fly Neutron Doppler Broadening in MCNP

    SciTech Connect

    Brown, Forrest B.; Martin, William R.; Yesilyurt, Gokhan; Wilderman, Scott

    2012-06-18

    The University of Michigan, ANL, and LANL have been collaborating on a US-DOE-NE University Programs project 'Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors.' This talk describes the project and provides results from the initial implementation of On-The-Fly Doppler broadening (OTF) in MCNP and testing. The OTF methodology involves high precision fitting of Doppler broadened cross-sections over a wide temperature range (the target for reactor calculations is 250-3200K). The temperature dependent fits are then used within MCNP during the neutron transport, for OTF broadening based on cell temperatures. It is straightforward to extend this capability to cover any temperature range of interest, allowing the Monte Carlo simulation to account for a continuous distribution of temperature ranges throughout the problem geometry.

  14. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  15. Hyperfine dipole-dipole broadening of selective reflection spectroscopy at the gas-solid interface

    NASA Astrophysics Data System (ADS)

    Meng, Tengfei; Ji, Zhonghua; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We theoretically and experimentally investigate hyperfine dipole-dipole broadening in the selective reflection (SR) spectroscopy at the gas-solid interface with the atomic density of 1014-1015 cm-3. The two-level SR theory considering pump beam and dipole-dipole interaction between excited-state atom and ground-state atom is presented. The numerical simulation of the SR spectrum is in agreement with experimental results. The reduction of spectral width is observed by introducing a pump beam which is an effective technique to improve the resolution of spectroscopy. We analyze the dependence of dipole-dipole broadening on atomic density and pump beam power. This study is helpful for the description of the SR spectroscopy at the gas-solid interface where the Doppler broadening is comparable with dipole-dipole broadening.

  16. Spectral broadening of VLF transmitter signals observed on DE 1 - A quasi-electrostatic phenomenon?

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Bell, T. F.

    1985-01-01

    Spectrally broadened VLF transmitter signals are observed on the DE 1 satellite using alternatively both electric and magnetic field sensors. It is found that at times when the electric field component undergoes significant bandwidth expansion (up to about 110 Hz) the magnetic field component has a bandwidth of less than 10 Hz. The results support the theory that the off-carrier components are quasi-electrostatic in nature. Measurement of the absolute E and B field magnitudes of the broadened signals are used to determine the wave Poynting vector. It is found that the observed power levels can be understood without invoking any strong amplification process that operates in conjunction with the spectral broadening. The implications of this finding in distinguishing among the various possible mechanisms for spectral broadening are discussed.

  17. A study of Stark broadening for the diagnostic of runaway electrons in ITER

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Pandya, S. P.; Logeais, Ch.; Meireni, M.; Hannachi, I.; Reichle, R.; Barnsley, R.; Marandet, Y.; Stamm, R.

    2017-03-01

    We investigate the Stark broadening of hydrogen lines in tokamak edge plasma conditions in the presence of a beam of relativistic "runaway" electrons. The possibility for a diagnostic involving passive spectroscopy is discussed.

  18. High resolution diode laser spectroscopy of H2O spectra broadened by nitrogen and noble gases

    NASA Astrophysics Data System (ADS)

    Kapitanov, Venedikt A.; Osipov, Konstantin Yu.; Protasevich, Alexander E.; Ponurovskiy, Yakov Ya.

    2014-11-01

    The absorption spectra of pure H2O with mixtures of broadening gases N2, Ar, Xe, He, Ar and air have been measured in 1.39 mμ spectral region by high resolution spectrometer based on diode laser (DFB NEL, Japan). For the processing of pure water spectra and it's mixtures with a different broadening gases in a wide pressure range we used a multispectrum fitting procedure developed at IAO. The program is based on a relatively simple Rautian-Sobel'man line profile and linear pressure dependence of the line profile parameters. H2O measured spectra bulk processing results in the retrieving of such line parameters: zero-pressure line center positions, intensities, self-broadening and self-shift coefficients of pure water, broadening and shift coefficients for other gases which are describes the experiment with the minimum residuals in a wide pressure range.

  19. The influence of Stark broadening on Cr II spectral line shapes in stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Ryabchikova, T.; Simić, Z.; Popović, L. Č.; Dačić, M.

    2007-07-01

    Aims:We consider the effect of Stark broadening on the shapes of Cr ii spectral lines observed in stellar atmospheres of the middle part of the main sequence. Methods: Stark broadening parameters were calculated by the semiclassical perturbation approach. For stellar spectra synthesis, the improved version synth3 of the code synth for synthetic spectrum calculations was used. Results: Stark broadening parameters for Cr ii spectral lines of seven multiplets belonging to 4s-4p transitions were calculated. New calculated Stark parameters were applied to the analysis of Cr ii line profiles observed in the spectrum of Cr-rich star HD 133792. Conclusions: We found that Stark broadening mechanism is very important and should be taken into account, especially in the study of Cr abundance stratification.

  20. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  1. Atomic-Based Calculations of Two-Detector Doppler-Broadening Spectra

    SciTech Connect

    Asoka-Kumar, P; Howell, R

    2001-10-11

    We present a simplified approach for calculating Doppler broadening spectra based purely on atomic calculations. This approach avoids the need for detailed atomic positions, and can provide the characteristic Doppler broadening momentum spectra for any element. We demonstrate the power of this method by comparing theory and experiment for a number of elemental metals and alkali halides. In the alkali halides, the annihilation appears to be entirely with halide electrons.

  2. A method for measuring magnetic fields in sunspots using Zeeman-broadened absorption lines

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2017-04-01

    We present measurements of magnetic fields in several sunspots using high-resolution spectra obtained with the ESPARTACO spectrograph at the Universidad de los Andes, with the aim to explore experimental possibilities for students. Because the Zeeman line splitting is smaller than the line width, our work only observes broadened absorption lines. This broadening, however, can be measured and suitably modeled, giving realistic quantitative results.

  3. Strategies for broadening participation in the Maryland Sea Grant REU program

    NASA Astrophysics Data System (ADS)

    Moser, F. C.; Kramer, J.; Allen, J. R.

    2011-12-01

    A core goal of the ocean science community is to increase gender and ethnic diversity in its scientific workforce. Maryland Sea Grant strives to provide women and students from underrepresented groups in marine science opportunities to participate in its NSF-supported Research Experiences for Undergraduates (REU) program in estuarine processes. While women currently dominate the applicant student pool, and often the accepted student pool, we are trying a variety of strategies to increase the number of applicants and accepted students from underrepresented groups who might not otherwise be lured into marine science research and, ultimately, careers. For example, we have built partnerships with multicultural-focused undergraduate research programs and institutions, which can raise awareness about our REU program and its commitment to broadening diversity. Further, we work to attract first generation college students, students from small colleges with limited marine science opportunities and students from varied racial and ethnic backgrounds using such strategies as: 1) developing trust and partnerships with faculty at minority serving institutions; 2) expanding our outreach in advertising our program; 3) recruiting potential applicants at professional meetings; 4) targeting minority serving institutions within and beyond our region; 5) encouraging our REU alumni to promote our REU program among their peers; and 6) improving our application process. We believe these efforts contribute to the increase in the diversity of our summer-supported students and the change in the composition of our applicant pool over the last decade. Although we cannot definitively identify which strategies are the most effective at broadening participation in our program, we attribute most of our improvements to some combination of these strategies. In addition, pre- and post-surveying of our REU students improves our understanding of effective tools for recruiting and adapting our program

  4. Photonic band structure

    SciTech Connect

    Yablonovitch, E.

    1993-05-01

    We learned how to create 3-dimensionally periodic dielectric structures which are to photon waves, as semiconductor crystals are to electron waves. That is, these photonic crystals have a photonic bandgap, a band of frequencies in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Photonic bandgaps provide for spontaneous emission inhibition and allow for a new class of electromagnetic micro-cavities. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces {open_quotes}donor{close_quotes} modes. Conversely, the local removal of dielectric material from the photonic crystal produces {open_quotes}acceptor{close_quotes} modes. Therefore, it will now be possible to make high-Q electromagnetic cavities of volume {approx_lt}1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric micro-resonators can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

  5. Broadening perspectives on trauma and recovery: a socio-interpersonal view of PTSD†

    PubMed Central

    Maercker, Andreas; Hecker, Tobias

    2016-01-01

    Posttraumatic stress disorder (PTSD) is one of the very few mental disorders that requires by definition an environmental context—a traumatic event or events—as a precondition for diagnosis. Both trauma sequelae and recovery always occur in the context of social–interpersonal contexts, for example, in interaction with a partner, family, the community, and the society. The present paper elaborates and extends the social–interpersonal framework model of PTSD. This was developed to complement other intrapersonally focused models of PTSD, which emphasize alterations in an individual's memory, cognitions, or neurobiology. Four primary reasons for broadening the perspective from the individual to the interpersonal–societal contexts are discussed. The three layers of the model (social affects, close relationships, and culture and society) are outlined. We further discuss additional insights and benefits of the social–interpersonal perspective for the growing field of research regarding resilience after traumatic experiences. The paper closes with an outlook on therapy approaches and interventions considering this broader social–interpersonal perspective on PTSD. PMID:26996533

  6. Fabrication of a 2-DOF electromagnetic energy harvester with in-phase vibrational bandwidth broadening

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Jui; Wu, Jia-Yin

    2016-09-01

    A vibration structure with two-degrees-of-freedom is proposed to increase the usable bandwidth of a micromachined electromagnetic energy harvester. Compared with the structure of a pure cantilever harvester, the proposed structure is formed by integrating a spiral diaphragm into a U-shaped cantilever diaphragm. By performing finite element analysis, the resonance frequencies of the two diaphragms are designed with a slight shift, both lower than 300 Hz. In addition, to achieve output bandwidth broadening, electroplated copper coils on the spiral and the U-shaped cantilever are coupled and the connection sequences of the coupled coils are arranged such that single- or duo-mode tuning of the energy harvester can be realized. The harvester delivers powers of 22.1 and 21.5 nW at two resonance frequencies of 211 and 274 Hz, respectively, in the duo-mode operation. The proposed spiral-cantilever coupled energy harvester has lower resonance frequencies and broader bandwidth than a pure cantilever-type harvester of equal area, and can therefore harvest more energy from the environment.

  7. A computational study of the role of spike broadening in synaptic facilitation of Hermissenda.

    PubMed

    Flynn, Mark; Cai, Yidao; Baxter, Douglas A; Crow, Terry

    2003-01-01

    Pavlovian conditioning in Hermissenda produces a decrease in voltage-dependent (I(K,A) and I(Ca)) and Ca2+-dependent (I(K,Ca)) currents, and an increase in the action potential (AP) duration in type B-photoreceptors. In addition, synaptic connections between B and A photoreceptors and B photoreceptor and type I interneurons are facilitated. The increase in AP duration, produced by decreasing one or more K+ currents, may account for synaptic facilitation. The present study examined this issue by using a mathematical model of the B-photoreceptor and the neurosimulator SNNAP. In the model, decreasing g(K,A) by 70% increased the duration of the AP in the terminal by 41% and Ca2+ influx by 30%. However, if the decrease in g(K,A) was combined with a decrease in g(Ca), similar to what has been reported experimentally, the Ca2+ influx decreased by 54%. Therefore, the concomitant change in I(Ca) counter-acted the broadening-induced increase in Ca2+ influx in the synaptic terminal. This result suggests that a spike-duration independent process must contribute to the synaptic facilitation observed following Pavlovian conditioning.

  8. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    ERIC Educational Resources Information Center

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these…

  9. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.

    PubMed

    Storm, P V; Cappelli, M A

    1996-08-20

    Laser-induced fluorescence of the H(α) transition of atomic hydrogen has previously been performed in the plume of a hydrogen arcjet thruster. Measurements of plasma velocity and temperature, based on the Doppler shift and broadening of the H(α) line shape, were previously published [Appl. Opt. 32, 6117 (1993)]. In that paper the Stark broadening of the H(α) transition was estimated from static-ion calculations performed in the early 1970's and found to be negligible in comparison with the Doppler broadening. However, more recent dynamic-ion calculations have shown the Stark broadening to be considerably larger than was previously assumed, resulting in inaccurate temperature measurements. We present a reanalysis of the fluorescence data, taking into account the improved Stark broadening calculations. The correct atomic hydrogen translation temperature and electron number density are obtained from the Doppler and Stark broadening components of the measured line shape. The results indicate a substantial drop in temperature from those previously reported.

  10. An In-situ method for the study of strain broadening usingsynchrotronx-ray diffraction

    SciTech Connect

    Tang, Chiu C.; Lynch, Peter A.; Cheary, Robert W.; Clark, Simon M.

    2006-12-15

    A tensonometer for stretching metal foils has beenconstructed for the study of strain broadening in x-ray diffraction lineprofiles. This device, which is designed for use on the powderdiffractometer in Station 2.3 at Daresbury Laboratory, allows in-situmeasurements to be performed on samples under stress. It can be used fordata collection in either transmission or reflection modes using eithersymmetric or asymmetric diffraction geometries. As a test case,measurements were carried out on a 18mum thick copper foil experiencingstrain levels of up to 5 percent using both symmetric reflection andsymmetric transmission diffraction. All the diffraction profilesdisplayed peak broadening and asymmetry which increased with strain. Themeasured profiles were analysed by the fundamental parameters approachusing the TOPAS peak fitting software. All the observed broadenedprofiles were modelled by convoluting a refineable diffraction profile,representing the dislocation and crystallite size broadening, with afixed instrumental profile pre-determined usinghigh quality LaB6reference powder. The de-convolution process yielded "pure" sampleintegral breadths and asymmetry results which displayed a strongdependence on applied strain and increased almost linearly with appliedstrain. Assuming crystallite size broadening in combination withdislocation broadening arising from fcc a/2<110>111 dislocations,we have extracted the variation of mechanic al property with strain. Theobservation of both peak asymmetry and broadening has been interpreted asa manifestation of a cellular structure with cell walls and cellinteriors possessing high and low dislocation densities.

  11. Semi-classical H2-broadening coefficients of 12CH3D rovibrational lines and their temperature dependence for planetary atmosphere modeling

    NASA Astrophysics Data System (ADS)

    Sinyakova, T.; Buldyreva, J.

    2017-01-01

    Theoretical hydrogen-broadening coefficients and associated temperature exponents for 12CH3D (J, K) lines in parallel (ΔK = 0) bands are calculated by a semi-classical approach based on a rigorous consideration of the active molecule as a symmetric top, a model intermolecular potential comprising both short- and long-range interactions, and exact classical trajectories. The leading potential terms are shown to provide a realistic description of line broadening in comparison with scarce measurements available in the literature. The calculations performed for 296, 240 and 190 K are used to extract the line-width temperature-dependence exponents for the typical temperature range of atmospheric interest ∼200-300 K. Detailed P-Q-R-line lists are provided for large intervals of quantum numbers (0 ≤ J ≤ 20, 0 ≤ K ≤ J) requested for remote sensing of planetary atmospheres, in particular those of outer planets and their moons. With negligible vibrational dependence of CH3D line-widths and estimated as negligible their sub-branch dependence, these data can be also employed for perpendicular bands.

  12. Singing with the Band

    ERIC Educational Resources Information Center

    Altman, Timothy Meyer; Wright, Gary K.

    2012-01-01

    Usually band, orchestra, and choir directors work independently. However, the authors--one a choral director, the other a band director--have learned that making music together makes friends. Not only can ensemble directors get along, but joint concerts may be just the way to help students see how music can reach the heart. Combined instrumental…

  13. Rubber Band Science

    ERIC Educational Resources Information Center

    Cowens, John

    2005-01-01

    Not only are rubber bands great for binding objects together, but they can be used in a simple science experiment that involves predicting, problem solving, measuring, graphing, and experimenting. In this article, the author describes how rubber bands can be used to teach the force of mass.

  14. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  15. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, Anatolii M.

    2013-02-01

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening γ and shift Δ of the absorption line on the velocity of resonance particles, ν. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency.

  16. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2013-02-28

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening {gamma} and shift {Delta} of the absorption line on the velocity of resonance particles, {nu}. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency. (nonlinear optical phenomena)

  17. Progressive Band Selection

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin; Chang, Chein-I

    2009-01-01

    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  18. 5 CFR 9701.344 - Special within-band increases.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Special within-band increases. 9701.344... within-band increases. DHS may issue implementing directives regarding special within-band basic pay... other circumstances determined by DHS. Increases under this section are in addition to any...

  19. 5 CFR 9701.344 - Special within-band increases.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Special within-band increases. 9701.344... within-band increases. DHS may issue implementing directives regarding special within-band basic pay... other circumstances determined by DHS. Increases under this section are in addition to any...

  20. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  1. Observation of blue satellite bands and photoassociation at ultracold temperatures

    SciTech Connect

    Pichler, Marin; Qi Jianbing; Stwalley, William C.; Beuc, Robert; Pichler, Goran

    2006-02-15

    We have observed atomic line self-broadening of Cs near 7P{sub 3/2} and 7P{sub 1/2} atomic lines at ultracold temperatures using a magneto-optical trap and resonant ionization detection. We have observed blue satellite band features at detunings of 560 and 800 MHz, respectively, as well as sharp hyperfine-split photoassociative spectra on the red wings of each line and also on the blue wings. Possible explanations of these features are discussed.

  2. Assessment of autonomic response by broad-band respiration

    NASA Technical Reports Server (NTRS)

    Berger, R. D.; Saul, J. P.; Cohen, R. J.

    1989-01-01

    We present a technique for introducing broad-band respiratory perturbations so that the response characteristics of the autonomic nervous system can be determined noninvasively over a wide range of physiologically relevant frequencies. A subject's respiratory bandwidth was broadened by breathing on cue to a sequence of audible tones spaced by Poisson intervals. The transfer function between the respiratory input and the resulting instantaneous heart rate was then computed using spectral analysis techniques. Results using this method are comparable to those found using traditional techniques, but are obtained with an economy of data collection.

  3. VAMDC FP7 project and STARK-B database: C II Stark broadening parameters for white dwarf atmospheres research

    NASA Astrophysics Data System (ADS)

    Larbi-Terzi, Neila; Sahal-Bréchot, Sylvie; Ben Nessib, Nebil; Dimitrijević, Milan S.

    2010-11-01

    Stark broadening parameters of C II lines were determined within 3s-np spectral series within the semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, calculated additionally using the Coulomb approximation (the method of Bates and Damgaard). The both results were compared and the disagreement is found only in one case where the configuration mixing allows a forbidden transition to a close perturbing energy level. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al.. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e-Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  4. VAMDC FP7 project and STARK-B database: C II Stark broadening parameters for white dwarf atmospheres research

    SciTech Connect

    Larbi-Terzi, Neila; Ben Nessib, Nebil; Sahal-Brechot, Sylvie; Dimitrijevic, Milan S.

    2010-11-23

    Stark broadening parameters of C II lines were determined within 3s-np spectral series within the semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, calculated additionally using the Coulomb approximation (the method of Bates and Damgaard). The both results were compared and the disagreement is found only in one case where the configuration mixing allows a forbidden transition to a close perturbing energy level. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al.. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e-Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  5. Iliotibial band friction syndrome

    PubMed Central

    2010-01-01

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy. PMID:21063495

  6. CSF oligoclonal banding

    MedlinePlus

    ... system. Oligoclonal bands may be a sign of multiple sclerosis. How the Test is Performed A sample of ... Performed This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. ...

  7. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  8. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  9. Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High-k Dielectrics

    PubMed Central

    2017-01-01

    We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport. PMID:28084725

  10. Determination of low pressure broadening and shift rates for K, Rb, and Cs collisions with rare gases from Anderson Tallman theory

    NASA Astrophysics Data System (ADS)

    Hager, Gordon D.; Rotondaro, Matthew D.; Perram, Glen P.

    2012-11-01

    A mathematical method is described to compute the pressure dependent spectrum of the D1 and D2 lines of atomic cesium in the presence of argon. The method is based on the Anderson Tallman unified theory of pressure broadening in which the spectrum is determined form the Fourier transform of the auto-correlation function. The method uses modified potential energy surfaces of the ground and excited states that correlate to the 2S1/2 ground state and the 2P1/2 and 2P3/2excited states at large inter-nuclear separation. These surfaces are used to form interaction difference potentials to determine the auto-correlation function. In addition to being able to compute pressure dependent spectra that exhibit symmetry and far wing structure the method also allows us to compute the low pressure shift and broadening rates of the Lorentzian line core.

  11. Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High-k Dielectrics.

    PubMed

    Nugraha, Mohamad I; Häusermann, Roger; Watanabe, Shun; Matsui, Hiroyuki; Sytnyk, Mykhailo; Heiss, Wolfgang; Takeya, Jun; Loi, Maria A

    2017-02-08

    We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport.

  12. Differential effects of K(+) channel blockers on frequency-dependent action potential broadening in supraoptic neurons.

    PubMed

    Hlubek, M D; Cobbett, P

    2000-09-15

    Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.

  13. Absorption Spectra of Broadened Sodium Resonance Lines in Presence of Rare Gases

    SciTech Connect

    Chung, H-K; Shurgalin, M; Babb, J F

    2002-09-11

    The pressure broadening of alkali-metal lines is a fundamental problem with numerous applications. For example, the sodium resonance lines broadened by xenon are important in the production of broad spectra emitted in the HPS (High-Pressure Sodium) lamp and they potentially can be used for gas condition diagnostics. Broadened absorption lines of alkali-metal atoms are prominent in the optical spectra of brown dwarfs and understanding the broadening mechanism will help elucidate the chemical composition and atmospheric properties of those stars. The far-line wing spectra of sodium resonance lines broadened by rare gases are found to exhibit molecular characteristics such as satellites and hence the total absorption coefficients for vapors of Na atoms and perturbing rare gas atoms can be modeled as Na-RG (rare gas) molecular absorption spectra. In this work, using carefully chosen interatomic potentials for Na-RG molecules we carry out quantum-mechanical calculations for reduced absorption coefficients for vapors composed of Na-He, Na-Ar, and Na-Xe. Calculated spectra are compared to available experimental results and the agreement is good in the measured satellite positions and shapes.

  14. A broad-band VLF-burst associated with ring-current electrons. [geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Maeda, K.

    1982-01-01

    Frequency band broadening takes place just outside of the nighttime plasmasphere, where the density of cold plasma is known to be very low during the later phase of a geomagnetic storm. Instead of the gradual broadening of several hours duration, a burst type broadening of VLF emission lasting less than ten minutes was observed by Explorer 45 in a similar location. The magnetic field component of this emission is very weak and the frequency spreads below the local half electron cyclotron frequency. Corresponding enhancement of the anisotropic ring current electrons is also very sudden and limited below the order of 10 keV without significant velocity dispersion, in contrast to the gradual broadening events. The cause of this type of emission band spreading can be attributed to the generation of the quasielectrostatic whistler mode emission of short wavelength by hot bimaxwellian electrons surging into the domain of relatively low density magnetized cold plasma. The lack of energy dispersion in the enhanced electrons indicates that the inner edge of the plasma sheet, the source of these hot electrons, is not far from the location of this event.

  15. Line parameters including temperature dependences of self- and air-broadened line shapes of 12C16O2: 1.6-μm region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Miller, Charles E.; Drouin, Brian J.; Payne, Vivienne H.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Gamache, Robert R.

    2016-07-01

    Pressure-broadened line shapes in the 30013←00001 (ν1+4 ν20 +ν3) band of 12C16O2 at 6228 cm-1 are reanalyzed using new spectra recorded with sample temperatures down to 170 K. High resolution, high signal-to-noise (S/N) laboratory measurements of line shapes (Lorentz air- and self-broadened half-width coefficients, pressure-shift coefficients and off-diagonal relaxation matrix element coefficients) as a function of gas sample temperatures for various pressures and volume mixing ratios are presented. The spectra were recorded using two different Fourier transform spectrometers (FTS): (1) the McMath-Pierce FTS located at the National Solar Observatory on Kitt Peak, Arizona (and reported in Devi et al., J Mol Spectrosc 2007;245:52-80) and, (2) the Bruker IFS-125HR FTS at the Jet Propulsion Laboratory in Pasadena, California. The 19 spectra taken at Kitt Peak were all recorded near room temperature while the 27 Bruker spectra were acquired both at room temperature and colder temperatures (170-296 K). Various spectral resolutions (0.004-0.011 cm-1), absorption path lengths (2.46-121 m) and CO2 samples (natural and 12C-enriched) were included in the dataset. To maximize the accuracies of the various retrieved line parameters, a multispectrum nonlinear least squares spectrum fitting software program was used to adjust the ro-vibrational constants (G,B,D etc.) and intensity parameters (including Herman-Wallis terms) instead of directly measuring the individual line positions and intensities. To minimize systematic residuals, line mixing (via off-diagonal relaxation matrix elements) and quadratic speed dependence parameters were included in the analysis. Contributions from other weakly absorbing bands: the 30013←00001 and 30012←00001 bands of 13C16O2, the 30013←00001 band of 12C16O18O, hot bands 31113←01101 and 32212←02201 of 12C16O2, as well as the 40013←10001 and the 40014←10002 bands of 12C16O2, present within the fitted interval were also measured

  16. Lifetime measurement for the possible antimagnetic rotation band in 101Pd

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Hayakawa, T.; Oshima, M.; Toh, Y.; Osa, A.; Matsuda, M.; Shizuma, T.; Hatsukawa, Y.; Kusakari, H.; Morikawa, T.; Gan, Z. G.; Czosnyka, T.

    2015-08-01

    Lifetime measurements were made for the ν h11 /2 band in 101Pd , which had been interpreted as a possible antimagnetic rotation band based on the comparison of I -ω behavior with the calculation of a semiclassical particle-rotor model in our previous study. Doppler broadened line shapes were analyzed for the decaying γ rays in the band following the reaction 68Zn (37Cl ,1p3n)101Pd . The semiclassical particle-rotor model was modified to reproduce both the I -ω plot and the B (E 2 ) behavior simultaneously for the antimagnetic rotation bands in Pd and Cd nuclei, for which B (E 2 ) values had been measured so far. Reasonable agreements between the experiment and the calculation were obtained. It is concluded that the lower part of the ν h11 /2 band in 101Pd can be interpreted as an antimagnetic rotor.

  17. A holographic method to measure the source size broadening in STEM.

    PubMed

    Verbeeck, Jo; Béché, Armand; Van den Broek, Wouter

    2012-09-01

    Source size broadening is an important resolution limiting effect in modern STEM experiments. Here, we propose an alternative method to measure the source size broadening making use of a holographic biprism to create interference patterns in an 'empty' Ronchigram. This allows us to measure the exact shape of the source size broadening with a much better sampling than previously possible. We find that the shape of the demagnified source deviates considerably from a Gaussian profile that is often assumed. We fit the profile with a linear combination of a Gaussian and a bivariate Cauchy distribution showing that even though the full width at half maximum is similar to previously reported measurements, the tails of the profile are considerable wider. This is of fundamental importance for quantitative comparison of STEM simulations with experiments as these tails make the image contrast dependent on the interatomic distance, an effect that cannot be reproduced by a single Gaussian profile of fixed width alone.

  18. Positive emotions broaden the scope of attention and thought-action repertoires

    PubMed Central

    Fredrickson, Barbara L.; Branigan, Christine

    2011-01-01

    The broaden-and-build theory (Fredrickson, 1998, 2001) hypothesises that positive emotions broaden the scope of attention and thought-action repertoires. Two experiments with 104 college students tested these hypotheses. In each, participants viewed a film that elicited (a) amusement, (b) contentment, (c) neutrality, (d) anger, or (e) anxiety. Scope of attention was assessed using a global-local visual processing task (Experiment 1) and thought-action repertoires were assessed using a Twenty Statements Test (Experiment 2). Compared to a neutral state, positive emotions broadened the scope of attention in Experiment 1 and thought-action repertoires in Experiment 2. In Experiment 2, negative emotions, relative to a neutral state, narrowed thought-action repertoires. Implications for promoting emotional well-being and physical health are discussed. PMID:21852891

  19. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    SciTech Connect

    Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.; Bowers, John E.

    2015-10-26

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from a comparison of measured and calculated gain versus current relations.

  20. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  1. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields.

    PubMed

    Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  2. Near and Far Wing Pressure Broadening Theory for Application to Atmospheric Absorption.

    DTIC Science & Technology

    1980-02-01

    WING CALCULATIONS OF 1120 PRESSURE BROADENING 23 3.1 Pressure Broadening of 1120 Transitions by P112 and Air 23 3.2 H20 Self-Broadening 25 4.0...terms of the two-body16/ T-matrix,--6 according to (CI-z) - I = (H0 -z) - (it 0 -z) T(z) (H0 -z)- , ( 25 ) where T(z) satisfies T :z) V - V(h0-z) -I T...z), (2) and 1* * T(z) T(z ). (27) Now from Eqs. (23), ( 25 ) we obtain 6(H-L) 6(H 0 -E) 1 +)-i - {(1 0-E-io T(E+io+) (H -E-io + ) - - (H0-E+io +- I T(E

  3. Influence of Rayleigh-Doppler broadening on the selection of H2O dial system parameters

    NASA Technical Reports Server (NTRS)

    Ismail, S.; Browell, E. V.

    1986-01-01

    Computer simulations have enabled the performance of a H2O Differential Absorption Lidar (DIAL) system to be studied by spectrally analyzing the forward propagating and backscattered laser energy. The simulations were done for a high altitude (21 km) DIAL system operating in a nadir-viewing mode. The influence of Rayleigh Doppler broadening on DIAL measurement accuracies were evaluated and show that the Rayleigh broadening influence, which can be corrected to first order in regions free of large aerosol gradients, reduces the sensitivity of DIAL H2O measurement errors in the upper tropospheric region. The ability to correct the Rayleigh broadening and the selection of H2O DIAL parameters when all the systematic effects are combined, were discussed.

  4. Spectral broadening in lithium niobate in a self-diffraction geometry using ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Jayashree A.; Dota, Krithika; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-05-01

    We report on broadband light generation in the impulsive regime in an un-doped lithium niobate (LiNbO3) crystal by two femtosecond laser pulses (36 fs) from a Ti-sapphire laser amplifier. We systematically investigate the role of incident intensity on spectral broadening. At relatively low incident intensity (0.7 TW cm-2), spectral broadening in the transmitted beam occurs due to the combined effect of self-phase modulation and cross-phase modulation. At higher incident intensity (10.2 TW cm-2), we observe generation of as many as 21 anti-Stokes orders due to coherent anti-Stokes Raman scattering in self-diffraction geometry. Moreover, we observe order-dependent spectral broadening of anti-Stokes lines that may be attributed to the competition with other nonlinear optical effects like cross-phase modulation.

  5. [Analysis of lorentzian line shape function broadened by non-sinusoidal wavelength modulation].

    PubMed

    Sun, You-Qun; Wang, Yun-Tao; Ruan, Chi; Xu, Song-Song

    2014-03-01

    In the present work, the Fourier analysis of Lorentzian line shape broadened by non-sinusoidal wavelength modulation was investigated, in which the third order and above harmonic items were ignored. The analytical expression of n-order Fourier coefficient was brought out, where a variable K named harmonic distortion to characterize the ratio of the second harmonic to the first harmonic was introduced. Numerical simulations based on the cases of K > 0.01 and K < 0.01 were carried out, and the result shows: non-sinusoidal modulation has little effect compared with the sinusoidal modulation when K value is less than 0.01, however, if K value is about 0.1 or higher, the center of the Fourier amplitude curve would deviate from the origin of coordinates. With the increase in the harmonic distortion, the deviation of the curve grows, and high order harmonics are more sensitive to the non-sinusoidal modulation compared with the low order harmonics. In addition, when harmonic distortion cannot be ignored, for example K > 0.01, the effect of different depths of modulation on the odd and even order harmonic amplitude curve is significant. And the numerical simulation shows there exists an optimum value of modulation depth which could minimize the impact of the harmonic distortion, and both large K value and small K value would cause a great error. The conclusion of this work could be applied in error analysis of wavelength modulation spectroscopy system And the results are helpful to deepening understanding of WMS and would be the important reference for some kind of frequency stabilization technology in laser instrument.

  6. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.

    PubMed

    Gilmore, Rachel H; Lee, Elizabeth M Y; Weidman, Mark C; Willard, Adam P; Tisdale, William A

    2017-02-08

    Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σhom(2):σinh(2) > 19:1, σinh/kBT < 0.4) can be realized if quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.

  7. Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors

    SciTech Connect

    William Martin

    2012-11-16

    A new method to obtain Doppler broadened cross sections has been implemented into MCNP, removing the need to generate cross sections for isotopes at problem temperatures. Previous work had established the scientific feasibility of obtaining Doppler-broadened cross sections "on-the-fly" (OTF) during the random walk of the neutron. Thus, when a neutron of energy E enters a material region that is at some temperature T, the cross sections for that material at the exact temperature T are immediately obtained by interpolation using a high order functional expansion for the temperature dependence of the Doppler-broadened cross section for that isotope at the neutron energy E. A standalone Fortran code has been developed that generates the OTF library for any isotope that can be processed by NJOY. The OTF cross sections agree with the NJOY-based cross sections for all neutron energies and all temperatures in the range specified by the user, e.g., 250K - 3200K. The OTF methodology has been successfully implemented into the MCNP Monte Carlo code and has been tested on several test problems by comparing MCNP with conventional ACE cross sections versus MCNP with OTF cross sections. The test problems include the Doppler defect reactivity benchmark suite and two full-core VHTR configurations, including one with multiphysics coupling using RELAP5-3D/ATHENA for the thermal-hydraulic analysis. The comparison has been excellent, verifying that the OTF libraries can be used in place of the conventional ACE libraries generated at problem temperatures. In addition, it has been found that using OTF cross sections greatly reduces the complexity of the input for MCNP, especially for full-core temperature feedback calculations with many temperature regions. This results in an order of magnitude decrease in the number of input lines for full-core configurations, thus simplifying input preparation and reducing the potential for input errors. Finally, for full-core problems with multiphysics

  8. Why Is Non-thermal Line Broadening of Lower Transition Region Lines Independent of Spatial Resolution?

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Mcintosh, S. W.; Martínez-Sykora, J.; Peter, H.; Pereira, T. M. D.

    2014-12-01

    Spectral observations of the solar transition region (TR) and corona typically show broadening of the spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (10-30 km/s), correlated with the intensity, and has been attributed to waves, macro and micro turbulence, nanoflares, etc... Here we study spectra of the low TR Si IV 1403 Angstrom line obtained at high spatial and spectral resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.33 arcsec) of IRIS compared to previous spectrographs (2 arcsec) does not resolve the non-thermal line broadening which remains at pre-IRIS levels of 20 km/s. This surprising invariance to spatial resolution indicates that the physical processes behind the non-thermal line broadening either occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the low TR leading to strong non-thermal line broadening from line-of-sight integration across the shock at the time of impact. This scenario is confirmed by advanced MHD simulations. In regions where the LOS is perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and the correlation with intensity.

  9. GEANT4 simulation of the effects of Doppler energy broadening in Compton imaging.

    PubMed

    Uche, C Z; Cree, M J; Round, W H

    2011-09-01

    A Monte Carlo approach was used to study the effects of Doppler energy broadening on Compton camera performance. The GEANT4 simulation toolkit was used to model the radiation transport and interactions with matter in a simulated Compton camera. The low energy electromagnetic physics model of GEANT4 incorporating Doppler broadening developed by Longo et al. was used in the simulations. The camera had a 9 × 9 cm scatterer and a 10 × 10 cm absorber with a scatterer to-absorber separation of 5 cm. Modelling was done such that only the effects of Doppler broadening were taken into consideration and effects of scatterer and absorber thickness and pixelation were not taken into account, thus a 'perfect' Compton camera was assumed. Scatterer materials were either silicon or germanium and the absorber material was cadmium zinc telluride. Simulations were done for point sources 10 cm in front of the scatterer. The results of the simulations validated the use of the low energy model of GEANT4. As expected, Doppler broadening was found to degrade the Compton camera imaging resolution. For a 140.5 keV source the resulting full-width-at-half-maximum (FWHM) of the point source image without accounting for Doppler broadening and using a silicon scatterer was 0.58 mm. This degraded to 7.1 mm when Doppler broadening was introduced and degraded further to 12.3 mm when a germanium scatterer was used instead of silicon. But for a 511 keV source, the FWHM was better than for a 140 keV source. The FWHM improved to 2.4 mm for a silicon scatterer and 4.6 mm for a germanium scatterer. Our result for silicon at 140.5 keV is in very good agreement with that published by An et al.

  10. Band gaps by design: Tailoring ZnO based semiconductor alloy films

    NASA Astrophysics Data System (ADS)

    Che, Hui

    This dissertation presents the research on the synthesis of ZnO based ternary semiconductor alloy films with tailored band gaps and the studies in their structural and optical properties. MgxZn1-xO alloys expanded the band gaps from 3.20 eV to deeper UV region of 5.67 eV. While ZnSxO1-x reduced the band gaps into the visible region of 2.9 eV. The alloy films were grown via reactive sputtering deposition, which is a cost effective and environment-friendly technique. An analytical method was developed for accurately determining the band gaps of alloys via transmission spectroscopy. The structural inhomogeneity issues in the Mg xZn1-xO alloys were studied via Selective Resonant Raman Scattering. Urbach energy analysis and Raman spectral line width analysis indicated that structural defects and alloy composition fluctuations in the MgxZn1-xO alloy films are the dominant origins of the localized electronic tail states and the Raman line broadening. While the Raman line broadening due to the anharmonicity of the alloys is not significant. The achievement of ZnSxO1-x alloy films with reduced band gaps paved the way for further research on band gap engineering of ZnO in the visible region.

  11. Covariance Matrix of a Double-Differential Doppler-broadened Elastic Scattering Cross Section

    SciTech Connect

    Arbanas, Goran; Becker, B.; Dagan, R; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L

    2012-01-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on {sup 238}U are computed near the 6.67 eV resonance at temperature T = 10{sup 3} K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments.

  12. Broadening of the spectral lines of a buffer gas and target substance in laser ablation

    SciTech Connect

    Kask, Nikolai E; Michurin, Sergei V

    2012-11-30

    The broadening of discrete spectral lines from the plasma produced in the laser ablation of metal targets in a broad pressure range (10{sup 2} - 10{sup 7} Pa) of the ambient gas (Ar, He, H{sub 2}) was studied experimentally. The behaviour of spectral line broadening for the buffer gases was found to be significantly different from that for the atoms and ions of the target material. In comparison with target atoms, the atoms of buffer gases radiate from denser plasma layers, and their spectral line profiles are complex in shape. (interaction of laser radiation with matter. laser plasma)

  13. On spectral line Stark broadening parameters needed for stellar and laboratory plasma investigations.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    1995-03-01

    This paper presents a review of semiclassical calculations of Stark broadening parameters and a comparison of different semiclassical procedures is discussed, as well as the agreement with critically selected experimental data and more sophisticated, close coupling calculations. Approximate methods for the calculation of Stark broadening parameters, useful especially in such astrophysical problems where large scale calculations and analyses must be performed and where a good average accuracy is expected, have also been discussed. The beginning and development of line shapes investigations in Yugoslavia has been described as well.

  14. Stark broadening experiments on a vacuum arc discharge in tin vapor.

    PubMed

    Kieft, E R; van der Mullen, J J A M; Kroesen, G M W; Banine, V; Koshelev, K N

    2004-12-01

    Pinched discharge plasmas in tin vapor are candidates for application in future semiconductor lithography tools. This paper presents time-resolved measurements of Stark broadened linewidths in a pulsed tin discharge. Stark broadening parameters have been determined for four lines of the Sn III spectrum in the range from 522 to 538 nm, based on a cross-calibration to a Sn II line with a previously known Stark width. The influence of the electron temperature on the Stark widths is discussed. Results for the electron densities in the discharge are presented and compared to Thomson scattering results.

  15. Broadening and shift of the spectral lines of hydrogen atoms and silicon ions in laser plasma

    SciTech Connect

    Kask, N E; Leksina, E G; Michurin, S V; Fedorov, G M; Chopornyak, D B

    2015-06-30

    We report an experimental investigation of the broadening and shift of discrete lines in the plasma spectrum produced in the laser ablation of silicon in a broad pressure range (10{sup 2} – 10{sup 7} Pa) of the ambient gas (Ar, He, H{sub 2}). The broadening and line shifts are measured in relation to the distance from the target and initial gas pressure. The threshold nature of the resulting dependences is found to be related to the formation of virtual percolation clusters proceeding in the hot dense plasma. (laser plasma)

  16. Collisional Shift and Broadening of Iodine Spectral Lines in Air Near 543 nm

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; McDaniel, J. C.

    1995-01-01

    The collisional processes that influence the absorption of monochromatic light by iodine in air have been investigated. Measurements were made in both a static cell and an underexpanded jet flow over the range of properties encountered in typical compressible-flow aerodynamic applications. Experimentally measured values of the collisional shift and broadening coefficients were 0.058 +/- 0.004 and 0.53 +/- 0.010 GHz K(exp 0.7)/torr, respectively. The measured shift value showed reasonable agreement with theoretical calculations based on Lindholm-Foley collisional theory for a simple dispersive potential. The measured collisional broadening showed less favorable agreement with the calculated value.

  17. Experimental transition probabilities and Stark-broadening parameters of neutral and single ionized tin

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1979-01-01

    Strengths and Stark-effect widths of the Sn I and Sn II lines prominent between 3200 and 7900 A are measured with a spectroscopic shock tube. Absolute strengths of 17 ionic lines are obtained with estimated (22-50)% accuracy and conform to appropriate quantum-mechanical sum rules. Relative transition probabilities for nine prominent neutral tin lines, normalized to radiative-lifetime data, are compared with other experiments and theoretical predictions. Parameters for Stark-effect broadening are measured over a range of plasma electron densities. Broadening data (with accuracies of 15-35%) for one neutral and ten ionic lines of tin are compared to theoretical predictions.

  18. Dynamic broadening of the crystal-fluid interface of colloidal hard spheres.

    PubMed

    Dullens, Roel P A; Aarts, Dirk G A L; Kegel, Willem K

    2006-12-01

    We investigate the structure and dynamics of the crystal-fluid interface of colloidal hard spheres in real space by confocal microscopy. Tuning the buoyancy of the particles allows us to study the interface close to and away from equilibrium. We find that the interface broadens from 8-9 particle diameters close to equilibrium to 15 particle diameters away from equilibrium. Furthermore, the interfacial velocity, i.e., the velocity by which the interface moves upwards, increases significantly. The increasing gravitational drive leads to supersaturation of the fluid above the crystal surface. This dramatically affects crystal nucleation and growth, resulting in the observed dynamic broadening of the crystal-fluid interface.

  19. Origin of asymmetric broadening of Raman peak profiles in Si nanocrystals

    PubMed Central

    Gao, Yukun; Yin, Penggang

    2017-01-01

    The asymmetric peak broadening towards the low-frequency side of the Raman-active mode of Si nanocrystals with the decreasing size has been extensively reported in the literatures. In this study, an atomic coordination model is developed to study the origin of the ubiquitous asymmetric peak on the optical phonon fundamental in the Raman spectra of Si nanocrystals. Our calculation results accurately replicate the line shape of the experimentally measured optical Raman curves. More importantly, it is revealed that the observed asymmetric broadening is mainly caused by the surface bond contraction and the quantum confinement. PMID:28240325

  20. X-Ray Diffraction Line Broadening: Modeling and Applications to High-Tc Superconductors

    PubMed Central

    Balzar, Davor

    1993-01-01

    A method to analyze powder-diffraction line broadening is proposed and applied to some novel high-Tc superconductors. Assuming that both size-broadened and strain-broadened profiles of the pure-specimen profile are described with a Voigt function, it is shown that the analysis of Fourier coefficients leads to the Warren-Averbach method of separation of size and strain contributions. The analysis of size coefficients shows that the “hook” effect occurs when the Cauchy content of the size-broadened profile is underestimated. The ratio of volume-weighted and surface-weighted domain sizes can change from ~1.31 for the minimum allowed Cauchy content to 2 when the size-broadened profile is given solely by a Cauchy function. If the distortion co-efficient is approximated by a harmonic term, mean-square strains decrease linearly with the increase of the averaging distance. The local strain is finite only in the case of pure-Gauss strain broadening because strains are then independent of averaging distance. Errors of root-mean-square strains as well as domain sizes were evaluated. The method was applied to two cubic structures with average volume-weighted domain sizes up to 3600 Å, as well as to tetragonal and orthorhombic (La-Sr)2CuO4, which exhibit weak line broadenings and highly overlapping reflections. Comparison with the integral-breadth methods is given. Reliability of the method is discussed in the case of a cluster of the overlapping peaks. The analysis of La2CuO4 and La1.85M0.15CuO4(M = Ca, Ba, Sr) high-Tc superconductors showed that microstrains and incoherently diffracting domain sizes are highly anisotropic. In the superconductors, stacking-fault probability increases with increasing Tc; microstrain decreases. In La2CuO4, different broadening of (h00) and (0k0) reflections is not caused by stacking faults; it might arise from lower crystallographic symmetiy. The analysis of Bi-Cu-O superconductors showed much higher strains in the [001] direction than in

  1. Broadening the application of evolutionarily based genetic pest management.

    PubMed

    Gould, Fred

    2008-02-01

    Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and postharvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.

  2. Enhanced transmittance of a dual pass-band metamaterial filter

    NASA Astrophysics Data System (ADS)

    Wang, XiaoZhi; Zhu, Honghui; Liu, Zhigang

    2017-03-01

    A broad pass-band metamaterial-based optical filter is experimentally and numerically studied. The designed structure consists of periodically arranged composite metallic arrays and dielectric layer that exhibits transmission responses composed of two flat pass-bands. The coupling of localized surface plasmon (LSP) modes results in the low-frequency pass-band, while the internal surface plasmon polaritons (ISPPs) between the upper and lower metal layers leads to the high-frequency pass-band. Structural parameters (L and R) are experimentally considered from the viewpoint of exploiting their effects on the pass-bands and resonance frequencies. The bandwidths of these pass-bands both can reach to maximums by optimization of these structural parameters. In addition, the two pass-bands can be modulated to be a single pass-band with a bandwidth of 10.7 THz by optimizing L and R simultaneously.

  3. Ka-band and X-band observations of the solar corona acquired during the Cassini 2001 superior conjunction

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.

    2002-01-01

    Simultaneous dual-frequency Ka-band (32 GHz) and X-band (8.4 GHz) carrier signal data have been acquired during the superior conjunction of the Cassini spacecraft June 2001, using the NASA Deep Space Network's facilities located in Goldstone, California. The solar elongation angle of the observations varied from -4.1 degrees (-16 solar radii) to -0.6 degrees (-2.3 solar radii). The observed coronal and solar effects on the signals include spectral broadening, amplitude scintillation, phase scintillation, and increased noise. The measurements were generally consistent with existing solar models, except during solar transient events when the signatures of the measurements were observed to increase significantly above the quiet background levels. This is the second solar conjunction of Cassini for which simultaneous X/Ka data were acquired. Both solar conjunctions, conducted in May 2000 and June 2001, occurred near the peak of the current 11 year solar cycle.

  4. Meaningful Engagement to Enhance Diversity: Broadened Impact Actualized

    NASA Astrophysics Data System (ADS)

    Whitney, V. W.; Pyrtle, A. J.

    2008-12-01

    The MS PHD'S Professional Development Program was established by and for UR/US populations to facilitate increased and sustained participation within the Earth system science community. MS PHD'S is jointly funded by NSF and NASA. Fourteen (14) minority Earth system scientists served as Program mentors and one- hundred fifteen (115) minority and non-minority scientists served as Meeting Mentors to student participants. Representatives from fifty-six (56) agencies and institutions provided support and exposure to MS PHD'S student participants. Two hundred fifty-eight (258) highly qualified UR/US students completed on-line applications to participate in the MS PHD'S Professional Development Program. Because of funding limitations, slightly fewer than 50% of the applicants were selected to participate. One-hundred twenty-six (126) undergraduate and graduate students from 26 states and Puerto Rico participated in the MS PHD'S program. Sixty-eight (68) MS PHD'S student participants self-identified as African American; thirty-four (34) as Puerto Rican; nine (9) as Hispanic/Mexican American, ten (10) as Native American and one (1) each as African, Asian, Pacific Islander, Hispanic and Multi-Ethnic. During the five year span of MS PHD'S programming, sixteen (16) student participants completed BS degrees, twelve (12) completed MS degrees and ten (10) completed the Doctoral degrees. How did MS PHD'S establish meaningful engagement to enhance diversity within the Earth system science community? This case study reveals replicable processes and constructs to enhance the quality of meaningful collaboration and engagement. In addition, the study addresses frequently asked questions (FAQ's) on outreach, recruitment, engagement, retention and success of students from underrepresented populations within diversity-focused programs.

  5. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  6. Multi-Band-SWIFT

    NASA Astrophysics Data System (ADS)

    Idiyatullin, Djaudat; Corum, Curtis A.; Garwood, Michael

    2015-02-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials.

  7. Multi-Band-SWIFT.

    PubMed

    Idiyatullin, Djaudat; Corum, Curtis A; Garwood, Michael

    2015-02-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials.

  8. Banded Sunflower Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The banded sunflower moth, Cochylis hospes Walsingham, is an important insect pest of cultivated sunflower. Eggs are deposited on the bracts of sunflower heads. Larvae develop through five instars within the heads and are present in fields from mid-July to mid-September. Larvae feed initially on the...

  9. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  10. PROBLEM DEPENDENT DOPPLER BROADENING OF CONTINUOUS ENERGY CROSS SECTIONS IN THE KENO MONTE CARLO COMPUTER CODE

    SciTech Connect

    Hart, S. W. D.; Maldonado, G. Ivan; Celik, Cihangir; Leal, Luiz C

    2014-01-01

    For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.

  11. Infantile nystagmus syndrome: Broadening the high-foveation-quality field with contact lenses

    PubMed Central

    Taibbi, Giovanni; Wang, Zhong I; Dell’Osso, Louis F

    2008-01-01

    We investigated the effects of contact lenses in broadening and improving the high-foveation-quality field in a subject with infantile nystagmus syndrome (INS). A high-speed, digitized video system was used for the eye-movement recording. The subject was asked to fixate a far target at different horizontal gaze angles with contact lenses inserted. Data from the subject while fixating at far without refractive correction and at near (at a convergence angle of 60 PD), were used for comparison. The eXpanded Nystagmus Acuity Function (NAFX) was used to evaluate the foveation quality at each gaze angle. Contact lenses broadened the high-foveation-quality range of gaze angles in this subject. The broadening was comparable to that achieved during 60 PD of convergence although the NAFX values were lower. Contact lenses allowed the subject to see “more” (he had a wider range of high-foveation-quality gaze angles) and “better” (he had improved foveation at each gaze angle). Instead of being contraindicated by INS, contact lenses emerge as a potentially important therapeutic option. Contact lenses employ afferent feedback via the ophthalmic division of the V cranial nerve to damp INS slow phases over a broadened range of gaze angles. This supports the proprioceptive hypothesis of INS improvement. PMID:19668758

  12. Experimental Evidence of Edge Fluctuation Broadening of ECH Deposition at DIII-D

    NASA Astrophysics Data System (ADS)

    Brookman, M. W.; Austin, M. E.; Gentle, K. W.; Petty, C. C.; Peysson, Y.; Decker, J.; Barada, K.; Ernst, D. E.

    2016-10-01

    This work provides experimental evidence for broadening of the ECH and ECCD deposition by edge density fluctuations. Results on the DIII-D tokamak suggest a deposition FWHM 1.7-2.8 times wider than TORAY-GA. A 1D ECH deposition profile was measured through gyrotron power modulation. From 500 kHz, 48-channel ECE measurements and trial ECH deposition functions, a Fourier transformed heat flux is found and fit to transport drive terms. Radially broader ECH deposition best fit calculated fluxes in discharges with higher levels of edge density turbulence. Broadening of deposition does not arise from anomalous transport, which is minimal on DIII-D. Simulation and theory suggest edge (ρ.9) turbulent n _ e fluctuations refract RF waves that pass through them, broadening radial deposition of ECH and ECCD. On ITER, this effect could hinder NTM suppression by broadening ECCD deposition outside the 3/2 island. Work supported by the U.S. DOE under Award DE-FC02-04ER54698.

  13. High Temporal and Spatial Resolution Electron Density Diagnostic for the Edge Plasma based on Stark Broadening

    NASA Astrophysics Data System (ADS)

    Zafar, Abdullah; Martin, Elijah; Shannon, Steve; Isler, Ralph; Caughman, John

    2016-10-01

    Passive spectroscopic measurements of Stark broadening have been reliably used to determine electron density for decades. However, a low-density limit ( 1014 cm-3) exists due to Doppler and instrument broadening of the spectral line profile. A synthetic electron density diagnostic capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free, spectral line profile of a Balmar series transition by using an active laser based technique. The diagnostic approach outlined here greatly reduces both of these broadening contributions using Doppler-free saturation spectroscopy (DFSS), allowing access to lower density regimes. The measured profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The modeling and experimental results for this active spectroscopic technique are presented for a magnetized (<=5 T), low-density (1011-1013 cm-3) plasma. Details of applying DFSS to the plasma edge are also discussed.

  14. cSELF (Computer Science Education from Life): Broadening Participation through Design Agency

    ERIC Educational Resources Information Center

    Bennett, Audrey; Eglash, Ron

    2013-01-01

    The phrase "broadening participation" is often used to describe efforts to decrease the race and gender gap in science and engineering education, and in this paper the authors describe an educational program focused on addressing the lower achievement rates and career interests of underrepresented ethnic groups (African American, Native…

  15. Broaden Engineering Technology students' knowledge through hands-on with motion robotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The skills and knowledge that employers value most are not always well-aligned with undergraduate engineering technology programs. With the support of a federal grant, we identify and propose to broaden the undergraduate student experience to include training in transferable skills with agricultura...

  16. Broadening Educational Outcomes: Social Relations, Skills Development, and Employability for Youth

    ERIC Educational Resources Information Center

    Dejaeghere, Joan; Wiger, Nancy Pellowski; Willemsen, Laura Wangsness

    2016-01-01

    This article argues that, if a global development aim is to address educational inequalities, the post-2015 agenda needs to conceptually and practically broaden the focus of learning to include social relations as important processes and outcomes for achieving educational equity. We draw on Sen's capability approach and Bourdieu's forms of capital…

  17. An Assessment of Air Force Civil Engineering Officer Perceptions of Assignments to Career Broadening Positions.

    DTIC Science & Technology

    1986-09-01

    effort to study the important variable of organizational commitment. Steers developed and tested a model concerning employee commitment to organizations...where they can use their skills and satisfy personal needs and desires. Employee commitment is enhanced in organizations that satisfy these requirements...to remain, and achievement opportunities increase, employee commitment to the organization increases. Career Broadening in General There were

  18. An Experiment to Demonstrate the Energy Broadening of Annihilation Gamma Rays

    ERIC Educational Resources Information Center

    Ouseph, P. J.; DuBard, James L.

    1978-01-01

    Shows that when positions annihilate in solid materials the energy distribution of the annihilation gamma rays is much broader than that of a 0.511-Mev gamma peak. This broadening is caused by the momentum distribution of the electrons in the material. (Author/GA)

  19. PULSE BROADENING MEASUREMENTS FROM THE GALACTIC CENTER PULSAR J1745-2900

    SciTech Connect

    Spitler, L. G.; Lee, K. J.; Eatough, R. P.; Kramer, M.; Karuppusamy, R.; Desvignes, G.; Champion, D. J.; Falcke, H.; Bassa, C. G.; Lyne, A. G.; Stappers, B. W.; Cognard, I.; Cordes, J. M.

    2014-01-01

    We present temporal scattering measurements of single pulses and average profiles of PSR J1745-2900, a magnetar recently discovered only 3 arcsec away from Sagittarius A* (Sgr A*), from 1.2 to 18.95 GHz using the Effelsberg 100 m Radio Telescope, the Nançay Decimetric Radio Telescope, and the Jodrell Bank Lovell Telescope. Single pulse analysis shows that the integrated pulse profile above 2 GHz is dominated by pulse jitter, while below 2 GHz the pulse profile shape is dominated by scattering. This is the first object in the Galactic center (GC) with both pulse broadening and angular broadening measurements. We measure a pulse broadening time scale at 1 GHz of τ{sub 1GHz} = 1.3 ± 0.2 and pulse broadening spectral index of α = –3.8 ± 0.2, which is several orders of magnitude lower than predicted by the NE2001 model (Cordes and Lazio 2002). If this scattering time scale is representative of the GC as a whole, then previous surveys should have detected many pulsars. The lack of detections implies either our understanding of scattering in the GC is incomplete or there are fewer pulsars in the GC than previously predicted. Given that magnetars are a rare class of radio pulsar, there are likely many canonical and millisecond pulsars in the GC, and not surprisingly, scattering in the GC is spatially complex.

  20. Classical trajectory versus quantum interference. A linear chain model for the origin of uncertainty broadening

    SciTech Connect

    Tang, Jau

    1996-02-01

    A simple linear chain model, as an alternative to the orthodox Schroedinger approach, is proposed to explain the origin of the uncertainty broadening and to improve our physical insight into the difference between classical and quantum worlds. Quantum interference in space is manifested as a result of fast exchange between adjacent particles of different internal degrees of freedom.

  1. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    PubMed Central

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  2. Ghost features in Doppler-broadened spectra of rovibrational transitions in trapped HD+ ions

    NASA Astrophysics Data System (ADS)

    Patra, Sayan; Koelemeij, J. C. J.

    2017-02-01

    Doppler broadening plays an important role in laser rovibrational spectroscopy of trapped deuterated molecular hydrogen ions (HD+), even at the millikelvin temperatures achieved through sympathetic cooling by laser-cooled beryllium ions. Recently, Biesheuvel et al. (2016) presented a theoretical lineshape model for such transitions which not only considers linestrengths and Doppler broadening, but also the finite sample size and population redistribution by blackbody radiation, which are important in view of the long storage and probe times achievable in ion traps. Here, we employ the rate equation model developed by Biesheuvel et al. to theoretically study the Doppler-broadened hyperfine structure of the (v, L) : (0, 3) → (4, 2) rovibrational transition in HD+ at 1442 nm. We observe prominent yet hitherto unrecognized ghost features in the simulated spectrum, whose positions depend on the Doppler width, transition rates, and saturation levels of the hyperfine components addressed by the laser. We explain the origin and behavior of such features, and we provide a simple quantitative guideline to assess whether ghost features may appear. As such ghost features may be common to saturated Doppler-broadened spectra of rotational and vibrational transitions in trapped ions composed of partly overlapping lines, our work illustrates the necessity to use lineshape models that take into account all the relevant physics.

  3. Proton disorder in ice Ih and inhomogeneous broadening in two-dimensional infrared spectroscopy.

    PubMed

    Shi, L; Skinner, J L

    2013-12-12

    It is well-known that in ice Ih the oxygen atoms form a regular hexagonal lattice while the positions of the hydrogen atoms are disordered, called proton disorder in the literature. Various OH (OD) stretch vibrational spectroscopies (e.g., IR, Raman, two-dimensional IR (2DIR), and hole burning) have been used to probe this proton disorder in the past several decades. However, the presence and the magnitude of the inhomogeneous broadening due to this proton disorder in the vibrational spectroscopy is still controversial. In this work, we calculate 2DIR spectroscopy for HOD in D2O ice Ih at 80 K with a mixed quantum/classical approach, and make comparison to a recent 2DIR experiment on the same system. Fair agreement is achieved between theory and experiment, although the calculated 2DIR line shape shows inhomogeneous broadening that was not observed in the experiment. However, the theory reproduces the linear IR for the same system fairly well, and the inhomogeneous broadening from the calculation is consistent with the extrapolation of the experimental IR line-widths in the literature. The effect of this proton disorder on the 2DIR line shape is explored in detail. We also calculate the vibrational three-pulse photon echo peak shift signal, which shows signatures of both low-frequency dynamics and inhomogeneous broadening.

  4. Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams.

    PubMed

    Wang, Shihe; Ren, Liyong; Liu, Yu; Tomita, Yasuo

    2008-05-26

    A new method of tailoring stimulated Brillouin scattering (SBS) gain spectrum for slow light propagation is proposed by use of two Gaussian-shaped broadband pump beams with different powers and spectral widths. The central frequency interval between the two pump beams are carefully set to be two inherent Brillouin frequency shift, ensuring that the gain spectrum of one pump has the same central frequency with the loss spectrum of the other one. Different gain profiles are obtained and analyzed. Among them a special gain profile is found that ensures a zero-broadening of the signal pulse independent of the Brillouin gain. This is owing to the compensation between the positive gain-dependent broadening and the negative GVD (group velocity dispersion) dependent broadening. The relationship of two pump beams is also found for constructing such a gain profile. It provides us a new idea of managing the broadening of SBS-based slow pulse by artificially constructing and optimizing the profile of gain spectrum.

  5. Solitons and spectral broadening in long silicon-on- insulator photonic wires.

    PubMed

    Ding, W; Benton, C; Gorbach, A V; Wadsworth, W J; Knight, J C; Skryabin, D V; Gnan, M; Sorrel, M; De La Rue, R M

    2008-03-03

    We report measurements and numerical modeling of spectral broadening and soliton propagation regimes in silicon-on-insulator photonic wire waveguides of 3 to 4 dispersion lengths using 100fs pump pulses. We also present accurate measurements of the group index and dispersion of the photonic wire.

  6. Visual observations of macroscopic inhomogeneous broadening of the R1 line in ruby

    NASA Astrophysics Data System (ADS)

    Jessop, P. E.; Szabo, A.

    1980-09-01

    Observation of sharp spatial variations of the R1 fluorescence of ruby at 5 K resonantly excited by a 1-MHz-linewidth scanning cw dye laser indicates the presence of gross macroscopic strain broadening in Czochralski and Verneuil crystals. The implications of these results in several current studies are discussed.

  7. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    DOE PAGES

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; ...

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore » by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less

  8. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    SciTech Connect

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.

  9. Second harmonic generation of spectrally broadened femtosecond ytterbium laser radiation in a gas-filled capillary

    SciTech Connect

    Didenko, N V; Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

    2011-09-30

    A 300-fs radiation pulse of an ytterbium laser with a wavelength of 1030 nm and energy of 150 {mu}J were converted to a 15-fs pulse with a wavelength of 515 nm by broadening the emission spectrum in a capillary filled with xenon and by generating the second harmonic in a KDP crystal. The energy efficiency of the conversion was 30 %.

  10. Stark broadening of heavy metal spectral lines in atmospheres of chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Simić, Zoran

    2010-11-01

    Data on the Stark broadening of heavy metal spectral lines are of interest not only for laboratory but also for astrophysical plasma research as e.g. for stellar spectra analysis and synthesis. Here, we investigated theoretically the influence of collisions with charged particles on heavy metal spectral line profiles for Te I, Cr II, Mn II, Au II, Cu III, Zn III, Se III, In III and Sn III in spectra of A stars and white dwarfs. We applied semiclassical theory of Sahal-Bréchot since the most of published results in literature until now are determined using this method. When it can not be applied in an adequate way, due to the lack of reliable atomic data, we used modified semiempirical theory of Dimitrijević & Konjević, Dimitrijević & Kršljanin. Stark broadening parameters, widths and shifts, were obtained for spectral lines of neutral emitter Te I, singly charged emitters Cr II, Mn II and Au II and doubly charged emitters Cu III, Zn III, Se III, In III and Sn III. We considered as well the contributions of different collision processes to the total Stark width in comparison with Doppler one. In this case we obtained contributions for elastic, strong and inelastic collisions for upper and lower levels. For example, chromium lines are interesting due to their presence in stellar atmospheres, so that they give possibility to determine chromium abundance and investigate chromium stratification in stelar atmospheres and to be used for the diagnostics of stellar plasma and for more refined synthesis of stellar spectra. We consider the effect of Stark broadening on the shapes of Cr II spectral lines observed in the spectra of stars in the middle part of the main sequence. Stark broadening parameters were calculated by the semiclassical perturbation approach. For stellar spectra synthesis, the improved version SYNTH3 of the code SYNTH for synthetic spectrum calculations was used. Stark broadening parameters for Cr II spectral lines of seven multiplets belonging to 4s

  11. New results on the superdeformed {sup 196}Pb nucleus: The decay of the excited bands to the yrast band

    SciTech Connect

    Bouneau, S.; Azaiez, F.; Duprat, J.

    1996-12-31

    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. In addition to the known yrast and two lowest excited SD bands, a third excited SD band has been seen. All of the three excited bands were found to decay to the yrast SD band through, presumably, E1 transitions, allowing relative spin and excitation energy assignments. Comparisons with calculations using the random-phase approximation suggest that all three excited bands can be interpreted as octupole vibrational structures.

  12. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.

    PubMed

    Jackson, M B; Konnerth, A; Augustine, G J

    1991-01-15

    Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were enhanced by high-frequency stimuli, all with a frequency dependence similar to that of hormone release. Furthermore, brief voltage clamp pulses inactivated a K+ current with a very similar frequency dependence. These results support a model for frequency-dependent facilitation in which the inactivation of a K+ current broadens action potentials, leading to an enhancement of [Ca2+]i signals. Further experiments tested for a causal relationship between action potential broadening and facilitation of [Ca2+]i changes. First, increasing the duration of depolarization, either by broadening action potentials with the K(+)-channel blocker tetraethylammonium or by applying longer depolarizing voltage clamp steps, increased [Ca2+]i changes. Second, eliminating frequency-dependent changes in duration, by voltage clamping the terminal with constant duration pulses, substantially reduced the frequency-dependent enhancement of [Ca2+]i changes. These results indicate that action potential broadening contributes to frequency-dependent facilitation of [Ca2+]i changes. However, the small residual frequency dependence of [Ca2+]i changes seen with constant duration stimulation suggests that a second process, distinct from action potential broadening, also contributes to facilitation. These two frequency-dependent mechanisms may also contribute to activity-dependent plasticity in synaptic terminals.

  13. Pressure-broadening and narrowing coefficients and temperature dependence measurements of CO2 at 2.68 μm by laser diode absorption spectroscopy for atmospheric applications.

    PubMed

    Ghysels, M; Durry, G; Amarouche, N

    2013-04-15

    By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.

  14. Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves

    NASA Astrophysics Data System (ADS)

    Antikainen, Aku; Arteaga-Sierra, Francisco R.; Agrawal, Govind P.

    2017-03-01

    We show that temporal reflections off a moving refractive index barrier play a major role in the spectral broadening of a dual-wavelength input inside a highly nonlinear, dispersion-decreasing fiber. We also find that a recently developed linear theory of temporal reflections works well in predicting the reflected frequencies. Successive temporal reflections from multiple closely spaced solitons create a blueshifted spectral band, while continuous narrowing of solitons inside the dispersion-decreasing fiber enhances Raman-induced redshifts, leading to supercontinuum generation at relatively low pump powers. We also show how dispersive wave emission can be considered a special case of the more general process of temporal reflections. Hence our findings have implications on all systems able to support solitons.

  15. DAC-board based X-band EPR spectrometer with arbitrary waveform control

    PubMed Central

    Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi

    2013-01-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8–10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles “seen” by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤250 ps resolution. The implications and potential applications of these capabilities will be discussed. PMID:23999530

  16. DAC-board based X-band EPR spectrometer with arbitrary waveform control

    NASA Astrophysics Data System (ADS)

    Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi

    2013-10-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ⩽250 ps resolution. The implications and potential applications of these capabilities will be discussed.

  17. DAC-board based X-band EPR spectrometer with arbitrary waveform control.

    PubMed

    Kaufmann, Thomas; Keller, Timothy J; Franck, John M; Barnes, Ryan P; Glaser, Steffen J; Martinis, John M; Han, Songi

    2013-10-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤ 250 ps resolution. The implications and potential applications of these capabilities will be discussed.

  18. Using line broadening to determine the electron density in an argon surface-wave discharge at atmospheric pressure

    SciTech Connect

    Christova, M.; Christov, L.; Castanos-Martinez, E.; Moisan, M.; Dimitrijevic, M. S.

    2008-10-22

    Broadening due to collisions with charged particles (Stark broadening ) and neutral atoms, was determined for Ar I 522.1, 549.6 and 603.2 nm spectral lines from the spectral series 3p{sup 5}nd-3p{sup 5}4p, in order to evaluate the electron density in a surface-wave discharge at atmospheric pressure.

  19. Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala.

    PubMed

    Faber, E S Louise; Sah, Pankaj

    2003-10-15

    In many neurons, trains of action potentials show frequency-dependent broadening. This broadening results from the voltage-dependent inactivation of K+ currents that contribute to action potential repolarisation. In different neuronal cell types these K+ currents have been shown to be either slowly inactivating delayed rectifier type currents or rapidly inactivating A-type voltage-gated K+ currents. Recent findings show that inactivation of a Ca2+-dependent K+ current, mediated by large conductance BK-type channels, also contributes to spike broadening. Here, using whole-cell recordings in acute slices, we examine spike broadening in lateral amygdala projection neurons. Spike broadening is frequency dependent and is reversed by brief hyperpolarisations. This broadening is reduced by blockade of voltage-gated Ca2+ channels and BK channels. In contrast, broadening is not blocked by high concentrations of 4-aminopyridine (4-AP) or alpha-dendrotoxin. We conclude that while inactivation of BK-type Ca2+-activated K+ channels contributes to spike broadening in lateral amygdala neurons, inactivation of another as yet unidentified outward current also plays a role.

  20. Calculation of gain and luminescence spectra of quantum-cascade laser structures taking into account asymmetric emission line broadening

    SciTech Connect

    Ushakov, D V; Manak, I S; Kononenko, V K

    2010-05-26

    The energy levels, wave functions, and matrix elements of optical dipole transitions are calculated numerically for superlattice quantum-cascade structures. The effect of spectral broadening on the shape of emission spectra is estimated and semiphenomenological asymmetric profiles of emission line broadening are proposed. It is shown that the electroluminescence spectra well agree with the calculated spontaneous recombination spectra. (lasers)

  1. Rotational excitation in collisions between two rigid rotors - Alternate angular momentum coupling and pressure broadening of HCl by H2

    NASA Technical Reports Server (NTRS)

    Green, S.

    1977-01-01

    In order to compute relaxation 'cross sections' for molecule-molecule collisions, it is convenient to employ a coupled angular-momentum representation which differs from that generally used. An explicit expression for collision-induced spectral pressure broadening in this representation is given, and this is used to examine the difference between para- and ortho-H2 for broadening of HCl.

  2. Orff Techniques to Freshen Up Band Rehearsal

    ERIC Educational Resources Information Center

    Misenhelter, Dale

    2004-01-01

    Experienced band directors know they need teaching strategies and activities that are not only innovative but also provide creative and engaging breaks in the routine for students. In addition, expectations based on the National Standards suggest new approaches to many of the performance-polishing strategies directors have come to rely on.…

  3. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  4. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  5. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  6. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  7. Wideband S Band Transmitter

    DTIC Science & Technology

    1989-10-01

    the phase variations across a +/-I nanosecond compressed pulse . During experimentation in the RADC Module Evaluation Lab the paired echos could be...22 4-11. Pulsing Interlock ....................................... 23 4-12. Pulse Fault Detector and Fault Summary...band transmitter was built by RCA Corporation under contract F30602-78-C-0122, titled "Wideband Amplifier, P/O Digitally Coded Radar’. After use by

  8. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    PubMed Central

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these approaches for researchers who study diversity and inclusion issues in the life sciences through examples from two critical mixed-methods studies of prominent issues in science, technology, engineering, and mathematics (STEM) participation and recognition. The first study pairs critical discourse analysis of the STEM workforce literature, data, and underlying surveys with quantitative analyses of STEM pathways into the workforce. This example illustrates the necessity of questioning popular models of retention. It also demonstrates the importance of intersecting demographic categories to reveal patterns of experience both within and between groups whose access to and participation in STEM we aim to improve. The second study’s critical approach applies research on inequities in prizes awarded by STEM professional societies toward organizational change. This example uses data from the life sciences professional societies to show the importance of placing data within context to broaden participation and understand challenges in creating sustainable change. PMID:27521238

  9. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  10. Electrical anharmonicity in hydrogen bonded systems: complete interpretation of the IR spectra of the Cl-H[combining right harpoon above] stretching band in the gaseous (CH3)2OHCl complex.

    PubMed

    Rekik, Najeh; Suleiman, Jamal; Blaise, Paul; Wojcik, Marek J; Flakus, Henryk T; Nakajima, Takahito

    2017-02-22

    Following the previous developments to simulate the fully infrared spectra of weak hydrogen bond systems within the linear response theory, an extension of the adiabatic model is presented here. A general formulation including the electrical anharmonicities in the calculation of the damped autocorrelation function of weak H-bonds is adopted to facilitate the support of the additional properties, and thus the IR spectra of the Cl-H[combining right harpoon above] stretching band in the gaseous (CH3)2OHCl complex. We have explored the origins of the broadening of the Cl-H[combining right harpoon above] stretching band. We found that the main features of the lineshape are attributed to electrical anharmonicity as a consequence of the large mixed second derivatives of the dipole moment with respect to the Cl-H[combining right harpoon above] bond and of the intermonomer elongations . In addition to providing more accurate theoretical band shapes, inclusion of the electrical anharmonicity in the present model paves the way for a more complete interpretation by generating three new Franck-Condon superposed distributions.

  11. Capitalizing on Education and Outreach (E/O) Expertise to Broaden Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Girguis, P. R.; Herren, C.; Decharon, A.

    2010-12-01

    Academic scientists have a number of avenues through which they can participate in education and outreach (E/O) programs to address the mandate for broader impacts. As a principal investigator (PI) at an R1 institution, I (Girguis) have both developed and participated in a variety of E/O programs that span the spectrum from ad hoc groups (e.g. informal high school internships in my laboratory) to regional efforts (e.g. Harvard’s Microbial Science Initiative) and national organizations (e.g. RIDGE 2000; Centers for Ocean Sciences Education Excellence, COSEE). Each of these E/O efforts required varying degrees of preparation and participation by my laboratory members (e.g. graduate students and postdoctoral researchers) and I, and yielded different outcomes and products. Ad hoc programs typically require a higher degree of effort on the part of the PI and have a high, though local, impact on the audience. These programs can be personally rewarding for the PI, who likely has played a major role in developing the program. In contrast, working with regional and national groups requires PIs to understand the nature of each program to successfully integrate within the existing structure. The net time and effort invested by scientists in larger-scale E/O efforts may be equal to that of ad hoc programs. However, interaction with high-quality program facilitators ensures that the outcomes are grounded in best educational practices and that outputs are educator-vetted, well maintained (online or through publications), and broadly disseminated. In addition, program facilitators also collect and analyze evaluation data to provide constructive feedback to PIs, enabling the latter to refine their presentation styles and content levels to improve future E/O efforts. Thus involvement with larger programs can effectively broaden one’s impact. During this presentation, we will present one scientist’s perspective on the advantages and limitations of these different modes of E

  12. Stark Broadening Of Heavy Metal Spectral Lines In Atmospheres Of Chemically Peculiar Stars

    NASA Astrophysics Data System (ADS)

    Simic, Z.

    2010-07-01

    Data on the Stark broadening of heavy metal spectral lines are of interest not only for laboratory but also for astrophysical plasma research as e.g. for stellar spectra analysis and synthesis. Here, we investigated theoretically the influence of collisions with charged particles on heavy metal spectral line profiles for Te I, Cr II, Mn II, Au II, Cu III, Zn III, Se III, In III and Sn III in spectra of A stars and white dwarfs. We applied semiclassical theory of Sahal-Bréchot since the most of published results in literature until now are determined using this method. When it can not be applied in an adequate way, due to the lack of reliable atomic data, we used modified semiempirical theory of Dimitrijevic & Konjevic, Dimitrijevic & Králjanin. Stark broadening parameters, widths and shifts, were obtained for spectral lines of neutral emitter Te I, singly charged emitters Cr II, Mn II and Au II and doubly charged emitters Cu III, Zn III, Se III, In III and Sn III. We considered as well the contributions of different collision processes to the total Stark width in comparison with Doppler one. In this case we obtained distributions for elastic, strong, inelastic collisions from upper and lower levels. For example, chromium lines are interesting due to their presence in stellar atmospheres, so that they give possibility to determine chromium abundance and investigate chromium stratification in stelar atmospheres and to be used for the diagnostics of stellar plasma and for more rafined synthesis of stellar spectra. We consider the effect of Stark broadening on the shapes of Cr II spectral lines observed in the spectra of stars in the middle part of the main sequence. Stark broadening parameters were calculated by the semic- lassical perturbation approach. For stellar spectra synthesis, the improved version SYNTH3 of the code SYNTH for synthetic spectrum calculations was used. Stark broadening parameters for Cr II spectral lines of seven multiplets belonging to 4s-4p

  13. Edge configurational effect on band gaps in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Deepika, Kumar, T. J. Dhilip; Shukla, Alok; Kumar, Rakesh

    2015-03-01

    In this article, we put forward a resolution to the prolonged ambiguity in energy band gaps between theory and experiments of fabricated graphene nanoribbons (GNRs). Band structure calculations using density functional theory are performed on oxygen-passivated GNR supercells of customized edge configurations without disturbing the inherent s p2 hybridization of carbon atoms. Direct band gaps are observed for both zigzag and armchair GNRs, consistent with the experimental reports. In addition, we provide an explanation of the experimentally observed scattered band gap values of GNRs as a function of width in a crystallographic orientation on the basis of edge configurations. We conclude that edge configurations of GNRs significantly contribute to band gap formation in addition to its width for a given crystallographic orientation and will play a crucial role in band gap engineering of GNRs for future research on fabrication of nanoelectronic devices.

  14. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Knox, Kevin R.

    2011-12-01

    vicinal Cu(111)-Cu (775) surfaces, over the photon energy range from 3.9 to 5 eV. Since the time scale for excitation of the metal image state from the Cu surface state is comparable with the electron-electron equilibration time scale, sharp features are measured due to resonant excitation in the photoelectron energy distribution curves. In addition, I explore the range of photon energies and optical intensities which may be used for this approach and show that despite the relatively high pump intensity, the 250 kHz repetition rate of this laser ameliorates the space-charge broadening and electron-energy shifting even for photon energies close to the vacuum edge. The strong excitation conditions generated by a femtosecond laser pulse applied to a Cu surface also allow the excitation and observation of a recently measured bulk state. In this dissertation I show that angle-resolved, tunable, two-photon photoemission (2PPE) can be used to map a bulk unoccupied band, viz. the Cu sp-band 0 to 1 eV below the vacuum level, in the vicinity of the L point. (Abstract shortened by UMI.)

  15. Band crossing in a shears band of {sup 108}Cd

    SciTech Connect

    Roy, Santosh; Datta, Pradip; Pal, S.; Chattopadhyay, S.; Bhattacharya, S.; Goswami, A.; Jain, H. C.; Joshi, P. K.; Bhowmik, R. K.; Kumar, R.; Muralithar, S.; Singh, R. P.; Madhavan, N.; Rao, P. V. Madhusudhana

    2010-05-15

    The level lifetimes have been measured for a shears band of {sup 108}Cd that exhibits band crossing. The observed level energies and B(M1) rates have been successfully described by a semiclassical geometric model based on shear mechanism. In this geometric model, the band crossing in the shears band has been described as the reopening of the angle between the blades of a shear.

  16. Efficient, Narrow-Pass-Band Optical Filters

    NASA Technical Reports Server (NTRS)

    Sandford, Stephen P.

    1996-01-01

    Optical filters with both narrow pass bands and high efficiencies fabricated to design specifications. Offer tremendous improvements in performance for number of optical (including infrared) systems. In fiber-optic and free-space communication systems, precise frequency discrimination afforded by narrow pass bands of filters provide higher channel capacities. In active and passive remote sensors like lidar and gas-filter-correlation radiometers, increased efficiencies afforded by filters enhance detection of small signals against large background noise. In addition, sizes, weights, and power requirements of many optical and infrared systems reduced by taking advantage of gains in signal-to-noise ratios delivered by filters.

  17. Spectral broadening and inhibition of amplitude and frequency modulation in Nd: glass regenerative amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Yuqi; Pan, Xue; Wang, Jiangfeng; Li, Xuechun

    2014-11-01

    In order to broaden the spectrum of laser pulse and reduce the gain narrowing effect in Nd:glass regenerative amplifier to realize the ambition of inhibiting amplitude and frequency modulation, proper quartz birefringence crystal plate is inserted into the cavity. The influence factors of central wavelength, depth of modulation and range of modulation are obtained theoretically. The width of the spectrum is broadened by controlling all the factors. Two kinds of thickness, 5mm and 6mm, are inserted into the regenerative amplifier cavity. The results of theoretical calculation and experiment both show that the effect of spectrum widening is evident, which reduces the gain narrowing effect to some extent. The amplitude and frequency modulation resulted from gain narrowing effect is inhibited when the central wavelength deflects. The simulated results show that inhibited effect of amplitude and frequency modulation is remarkable. And the method is a potential effective technique for amplitude and frequency modulation inhibition.

  18. Broadening participation in Natural Sciences and Mathematics at the University of Maryland Baltimore County

    NASA Astrophysics Data System (ADS)

    Rous, Philip

    2013-03-01

    Over the past two decades, UMBC has undertaken a series of efforts to broaden participation in the natural sciences and mathematics, beginning with the establishment of the Meyerhoff program. Using as examples the multiple initiatives that followed, and with a focus on the challenge of increasing access and success of all students who enter as both freshmen and transfer students, I will describe a model of culture change that we have employed repeatedly to understand and guide our efforts in broadening participation. Particular attention will be paid to the concept of cultural capital, the role of innovators and the challenge of scaling small-scale innovations towards institutional change. Supported by the National Science Foundation and the Bill and Melinda Gates Foundation.

  19. Calculation of pressure broadening parameters for the CO-He system at low temperatures

    NASA Technical Reports Server (NTRS)

    Green, S.

    1985-01-01

    Theoretical pressure broadening parameters were computed for the 0-1 and 1-2 rotational transitions of CO in He at very low temperatures and compared with the recent experimental measurements at 4.2 K. The interaction potential was taken from extensive SCF-CI calculations, molecular collision dynamics were described by essentially exact converged close coupling calculations, and pressure broadening cross sections were obtained from the collisional S matrices within the accurate Fano-Ben Reuven framework. Resonances at low collision energies give rise to an increase in the thermally averaged cross sections at low temperatures. Although previous calculations for this system at higher temperatures (77-300 K) were in good accord with experiment, at 4.2 K predicted values are about two times larger than experiment; possible sources of this discrepancy are discussed.

  20. Effect of nuclear motion on spectral broadening of high-order harmonic generation.

    PubMed

    Yuan, Xiaolong; Wei, Pengfei; Liu, Candong; Ge, Xiaochun; Zheng, Yinghui; Zeng, Zhinan; Li, Ruxin

    2016-04-18

    High-order harmonic generation (HHG) in molecular targets is experimentally investigated in order to reveal the role of the nuclear motion played in the harmonic generation process. An obvious broadening in the harmonic spectrum from the H2 molecule is observed in comparison with the harmonic spectrum generated from other molecules with relatively heavy nuclei. We also find that the harmonic yield from the H2 molecule is much weaker than the yield from those gas targets with the similar ionization potentials, such as Ar atom and N2 molecule. The yield suppression and the spectrum broadening of HHG can be attributed to the vibrational motion of nuclear induced by the driving laser pulse. Moreover, the one-dimensional (1D) time-dependent Schrödinger equation (TDSE) with the non-Born-Oppenheimer (NBO) treatment is numerically solved to provide a theoretical support to our explanation.

  1. Position sensitivity in large spectroscopic LaBr3:Ce crystals for Doppler broadening correction

    NASA Astrophysics Data System (ADS)

    Blasi, N.; Giaz, A.; Boiano, C.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.

    2016-12-01

    The position sensitivity of a large LaBr3:Ce crystal was investigated with the aim of correcting for the Doppler broadening in nuclear physics experiments. The crystal was cylindrical, 3 in×3 in (7.62 cm x 7.62 cm) and with diffusive surfaces as typically used in nuclear physics basic research to measure medium or high energy gamma rays (0.5 MeVbroadening induced by relativistic beams in Nuclear Physics experiments.

  2. Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas

    NASA Technical Reports Server (NTRS)

    Gamache, Robert R.; Pollack, James B.

    1995-01-01

    Halfwidths were calculated for H2O with H2 as a broadening gas and were estimated for He as the broadening species. The calculations used the model of Robert and Bonamy with parabolic trajectories and all relevant terms in the interaction potential. The calculations investigated the dependence of the halfwidth on the order of the atom-atom expansion, the rotational states, and the temperature in the range 200 to 400K. Finally, calculations were performed for many transitions of interest in the 5 micrometer window region of the spectrum. The resulting data will be supplied to Dr. R. Freedman for extracting accurate water mixing ratios from the analysis of the thermal channels for the Net Flux experiment on the Galileo probe.

  3. N2 pressure - broadened O3 line widths and strengths near 1129.4 cm-1

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.; Majorana, L. N.; Harward, C. N.; Steinkamp, R. J.

    1982-01-01

    A Beer's Law experiment was performed with a tunable diode laser to find the N2 pressure broadening characteristics of a single 03 absorption line at 1129.426 cm for N2 pressures from 10 to 100 torr (O3 pressure = 3.16 torr). SO2 line positions were used for wavelength calibration. Line shapes were interatively fitted to a Lorentz function. Results were delta (HWHM in MHz) = 47.44 (+ or - 5.34) MHz + 1.730 (+ or - 0.088) MHz/torr *p(torr) with sigma = 0.9897. This intercept compares well with the Doppler O3 - O3 broadened (at 3.16 torr) width of 44.52 Hz. This result in a HWHM line width of 0.44 cm atm at 760 torr and 285 K. The line strengths integrated over delta nu = 0.55 cm were found to be N2 pressure dependent.

  4. Photoacoustic measurements of Lorentz broadening in CO2 between 25° C and 450° C

    NASA Astrophysics Data System (ADS)

    Hammerich, M.; Vildrik-Sørensen, L.; de Vries, H.; Henningsen, J.

    1991-09-01

    A variable temperature photoacoustic cell has been constructed and tested by studying the interplay of CO2, H2O, and NH3 in synthetic smoke. Saturation effects for CO2 and NH3 have been modeled and compared with experiments, and results are obtained for the vibrational relaxation rate associated with NH3-H2O collisions. The cell has been used for studying the temperature dependence of self-broadening and N2 broadening of CO2 lines. The temperature dependence of the scattering rate is well described by a T - n law with n=0.77 in both cases. This result agrees with previous results obtained by tunable diode laser spectroscopy, but disagrees with results obtained by indirect methods.

  5. Transverse momentum broadening in semi-inclusive deep inelastic scattering at next-to-leading order

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Wang, Enke; Wang, Xin-Nian; Xing, Hongxi

    2016-12-01

    Within the framework of higher-twist collinear factorization, transverse momentum broadening for the final hadrons in semi-inclusive deeply inelastic e +A collisions is studied at the next-to-leading order (NLO) in perturbative QCD. Through explicit calculations of real and virtual corrections at twist 4, the transverse-momentum-weighted differential cross section due to double scattering is shown to factorize at NLO and can be expressed as a convolution of twist-4 nuclear parton correlation functions, the usual twist-2 fragmentation functions and hard parts which are finite and free of any divergences. A QCD evolution equation is also derived for the renormalized twist-4 quark-gluon correlation function which can be applied to future phenomenological studies of transverse momentum broadening and jet quenching at NLO.

  6. On the mode-coupling theory of vibrational line broadening in near-critical fluids.

    PubMed

    Lawrence, C P; Skinner, J L

    2004-05-08

    Molecular-dynamics simulations of a neat atomic fluid, coupled with a simple model for vibrational frequency perturbations, are used to investigate vibrational line broadening near the liquid-gas critical point. All features of our simulations are in qualitative agreement with recent Raman experiments on nitrogen. We also use our simulation results to assess the validity of the mode-coupling theories that have been used to analyze experiment. We find that the theoretical results are not in good agreement with simulation, both for the temperature dependence of the linewidth, and for the frequency time-correlation functions. However, the mode-coupling prediction that critical line broadening is due to the diverging correlation time of the frequency fluctuations is shown to be correct.

  7. Parton Energy Loss and Momentum Broadening at NLO in High Temperature QCD Plasmas

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo; Teaney, Derek

    We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 2 ↔ 2 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.

  8. Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo; Teaney, Derek

    2015-10-01

    We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include ↔ scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.

  9. An evaluation of algorithms for the deconvolution of Doppler broadening positron annihilation radiation spectroscopy spectra

    NASA Astrophysics Data System (ADS)

    Woo, Teresa K. C.; Cheng, Vincent K. W.; Beling, Christopher D.; Ng, Michael K. P.

    2005-06-01

    Two least squares minimization methods for the deconvolution of 1D Doppler Broadening Annihilation Radiation Spectroscopy (DBARS) spectra have been tested with spectra generated by Monte Carlo simulation according to the following functional forms: inverted triangle, inverted parabola, Laplace, Lorentz and a model DBARS spectrum for a metal composed of an inverted parabola and a Gaussian function. These reference spectra were firstly convoluted with a Gaussian broadening factor and then restored to its original form with the algorithms. The method with Tikhonov regularizer and non-negativity constraint still failed to restore the sharp features of these spectral functions although the negative signal found in an earlier study was removed. On the other hand, the method with the Huber regularizer was successful. Optimization of the deconvolution in terms of regularization parameters is necessary to achieve good deconvolution. The optimization of the deconvolution was checked with visual matching and a quality factor which takes into account the number of counts in the spectrum.

  10. Stochastic analysis of spectral broadening by a free turbulent shear layer

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Preisser, J. S.

    1981-01-01

    The effect of the time-varying shear layer between a harmonic acoustic source and an observer on the frequency content of the observed sound is considered. Experimental data show that the spectral content of the acoustic signal is considerably broadened upon passing through such a shear layer. Theoretical analysis is presented which shows that such spectral broadening is entirely consistent with amplitude modulation of the acoustic signal by the time-varying shear layer. Thus, no actual frequency shift need be hypothesized to explain the spectral phenomenon. Experimental tests were conducted at 2, 4, and 6 kHz and at free jet flow velocities of 10, 20, and 30 m/s. Analysis of acoustic pressure time histories obtained from these tests confirms the above conclusion, at least for the low Mach numbers considered.

  11. Phorbol esters broaden the action potential in CA1 hippocampal pyramidal cells.

    PubMed

    Storm, J F

    1987-03-20

    Intracellular recordings were made from CA1 pyramidal cells in rat hippocampal slices. Single action potentials were elicited by injection of brief current pulses. Bath application of phorbol esters (4 beta-phorbol-12,13-diacetate, 0.3-5 microM; or 4 beta-phorbol-12,13-dibutyrate, 5-10 microM) broadened the action potential in each of the cells tested (n = 9). The broadening reflected slowing of the repolarization, whereas the upstroke of the spike was unchanged. This effect may enhance transmitter release from synaptic terminals, and contribute to enhancement of synaptic transmission through activation of protein kinase C, a mechanism which has been associated with long term potentiation.

  12. Excitatory amino acids acting on metabotropic glutamate receptors broaden the action potential in hippocampal neurons.

    PubMed

    Hu, G Y; Storm, J F

    1991-12-24

    Activation of metabotropic glutamate receptors (mGluRs, QP or ACPD receptors) has recently been shown to cause depolarization, blockade of the slow after-hyperpolarization and depression of calcium currents in hippocampal pyramidal cells. Here, we report evidence for a new mGluR-mediated effect: slowing of the spike repolarization in CA1 cells in rat hippocampal slices. During blockade of the ionotropic glutamate receptors, the mGluR agonists trans-1-amino-cyclopentyl-1,3-dicarboxylate (t-ACPD), quisqualate or L-glutamate caused spike broadening. In contrast, the ionotropic receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) was ineffective. The spike broadening may act in concert with the other mGluR effects, e.g. by further increasing the influx of Ca2+ ions which, in turn, may contribute to synaptic modulation.

  13. Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system.

    PubMed

    Lee, Yoon-Seok; Lee, Sang Min; Kim, Heonoh; Moon, Han Seb

    2016-11-28

    We report a bright photon-pair source with a coincidence counting rate per input power (cps/mW) of tens of thousands, obtained via spontaneous four-wave mixing from a Doppler-broadened atomic ensemble of the 5S1/2-5P3/2-5D5/2 transition of 87Rb. The photon-pair generation rate is enhanced by the two-photon coherence contributions from almost all the atomic velocity groups in the Doppler-broadened ladder-type atomic system. We obtained the violation of the Cauchy-Schwarz inequality by a factor of 2370 ± 150. We believe that our scheme for highly bright paired photons is important as a useful quantum light source for quantum entanglement swapping between completely autonomous sources.

  14. Noise exposure in marching bands

    NASA Astrophysics Data System (ADS)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  15. Doppler broadening effect on collision cross section functions - Deconvolution of the thermal averaging

    NASA Technical Reports Server (NTRS)

    Bernstein, R. B.

    1973-01-01

    The surprising feature of the Doppler problem in threshold determination is the 'amplification effect' of the target's thermal energy spread. The small thermal energy spread of the target molecules results in a large dispersion in relative kinetic energy. The Doppler broadening effect in connection with thermal energy beam experiments is discussed, and a procedure is recommended for the deconvolution of molecular scattering cross-section functions whose dominant dependence upon relative velocity is approximately that of the standard low-energy form.

  16. A mode-coupling theory of vibrational line broadening in near-critical fluids.

    PubMed

    Egorov, S A; Lawrence, C P; Skinner, J L

    2005-04-14

    We present a fully microscopic mode-coupling theory of near-critical line broadening. All the structural and dynamical input required by the theory is calculated directly from intermolecular potentials. We compute vibrational frequency time-correlation functions and line shapes as the critical point is approached along both the critical isochore and the liquid-gas coexistence curve. Theory is shown to be in good agreement with simulation.

  17. Broadening and shift of Fe I lines perturbed by atomic hydrogen

    SciTech Connect

    Gomez, M.T.; Marmolino, C.; Roberti, R.; Severino, G.

    1987-01-01

    The broadening and shift parameters for a number of Fe I lines perturbed by atomic hydrogen are computed using the interatomic potential due to Hindmarsh et al (1967, 1970). It is also shown that the rms radius and the effective radius of the radiating atom, which determine the force constants in the interatomic potential, can be simply related to each other depending on the orbital quantum number of the atomic level.

  18. Broadening and Shifting of Atomic Strontium and Diatomic Bismuth Spectral Lines

    DTIC Science & Technology

    2003-05-01

    Lifetime in Sr,” Physical Review A, 13: 1269-70 (1976). BIB-2 23. Herzberg , Gerhard . Atomic Spectra and Atomic Structure. New York: Dover...Publications, Incorporated, 1944. 24. Herzberg , Gerhard . Molecular Spectra and Molecular Structure, Volume I: Spectra of Diatomic Molecules (2nd...the respective line broadening rates were measured. All spectroscopic constants in this table are gleaned from Herzberg [24]. The computations of

  19. Multiple relaxation and inhomogeneous broadening in resonance enhanced Raman scattering - Application to tunable infrared generation

    NASA Technical Reports Server (NTRS)

    Ryan, J. C.; Lawandy, N. M.

    1989-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for differing sets of relaxation rates with emphasis on alkali metal vapors which have spontaneous emission dominated relaxation. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled alexandrite laser-pumped cesium vapor gain cell.

  20. Improving resolution in proton solid-state NMR by removing nitrogen-14 residual dipolar broadening

    NASA Astrophysics Data System (ADS)

    Stein, Robin S.; Elena, Bénédicte; Emsley, Lyndon

    2008-06-01

    Residual dipolar coupling between quadrupolar and other nuclei under MAS has not usually been thought to be important in high field NMR spectroscopy. We show that coupling to 14N broadens 1H lineshapes significantly even at 11.7 T, and that we can decouple 14N from 1H during 1H homonuclear decoupling to successfully improve 1H resolution. The method used for decoupling is the application of evenly spaced pulses to the quadrupolar nucleus.

  1. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  2. Dead Band Controls Guide.

    DTIC Science & Technology

    1978-11-01

    n o m i z e r c on t ro l , damper repair may re quire c onsideration. 2. No tubin g costs are included in the above estima tes . Typically 150 to...guidelines include techniques for estimating construction and maintenance cost , and performing economic analysis for each system . N \\ 0~c...43 Cost Estimate 43 Payback Anal ysis 43 PART I V A P P E N D I C E S A EXAMPLE - COST ESTIMATE OF DEAD BAND RETROFIT 52 B E X A M P L E - P A Y B A

  3. Line mixing in H broadening of the Na 3P-3D lines

    NASA Astrophysics Data System (ADS)

    Sanchez-Fortún Stoker, J.; Dickinson, A. S.

    2003-04-01

    Line mixing of the Na 3P-3D lines broadened by atomic hydrogen has been calculated in the impact approximation. The required S-matrix elements are calculated using a time-dependent close-coupling rectilinear-path approximation, the ab initio NaH potentials used by Leininger et al (2000 J. Phys. B: At. Mol. Opt. Phys. 33 1805) being employed. At energies of less than 25 000 cm-1, the real and imaginary parts of the mixing cross sections were found to be about 50 and about 25 times smaller, respectively, than the broadening coefficients, while at about 105 cm-1, the real and imaginary parts were found to be smaller in magnitude by factors of about 200 and 10, respectively. On thermally averaging the cross sections, the line-shape parameters leading to mixing were found to be 50-100 times smaller than the corresponding broadening coefficients for the isolated lines. For a number density of 1016 - 1017 cm-3 and temperature of 6000 K, the mixed and unmixed line shapes were found to deviate by less than 3% over the range of frequencies for which the application of the impact approximation was valid.

  4. Pathways to Ocean Sciences: Broadening Participation in Ocean Sciences REU Programs

    NASA Astrophysics Data System (ADS)

    Fauver, A.; Johnson, A.; Detrick, L.; Cash, C.; Siegfried, D.; Valaitis, S.; Saywell, D.; Thomas, S. H.

    2011-12-01

    Increasing the number and diversity of students who successfully pursue careers in Ocean Sciences is key to addressing the growing demand for professionals in our fields who genuinely understand and make a contribution to cutting edge research. Summer research programs for undergraduates play a critical role in this process by creating environments in which students can develop the strategies and professional skills necessary to pursue meaningful careers in various STEM fields and by supporting students as they "bridge" between undergraduate and graduate studies. Within the framework of a diversity briefing illuminating the context behind efforts to broaden participation, the Institute for Broadening Participation (IBP) will provide a short overview on the current state of diversity in the Ocean Sciences community in general and the NSF Ocean Sciences REU community in particular, as well as offer a shared resource pool of studies, references, practical tools and strategies focusing on broadening the participation of women and underrepresented groups in higher education. IBP has been supporting diversity by fostering an on-going exchange of ideas and resources between students, faculty and administrators since 2002. Their web portal, www.pathwaystoscience.org, provides easy access to many resources that support students in successful careers in the STEM fields and support faculty and administrators in enhancing their efforts to increase diversity.

  5. Laboratory spectroscopy of nitrogen-broadened methane at 79 K to 297 K

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Crawford, T. J.; Malathy Devi, V.; Benner, D. Chris

    2010-04-01

    To support the remote sensing of Titan's atmosphere, we studied the temperature dependence of the nitrogen-broadened spectrum of the three most abundant methane isotopomers (12CH4, 13CH4, and CH3D) in the 7.5-micron region. For this purpose a temperature stabilized cryogenic cell, cooled by a closed-cycle helium refrigerator, was designed to be fit into the sample compartment of a Bruker high-resolution Fourier transform spectrometer. Two generations of this cell, built at Connecticut College, have been used to record N2-broadened methane spectra with the Bruker IFS-125HR spectrometer at the Jet Propulsion Laboratory (JPL). Nitrogen-broadened spectra of all three methane isotopomers were recorded at temperatures between 79.3 K and 297.1 K. The spectra are analyzed using a multispectrum fitting technique to determine the temperature-dependences of line widths, pressure-induced shifts, and line mixing parameters. Preliminary results will be shown and compared with the few available literature values. The research described in this paper was performed at NASA Langley, the Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and the College of William and Mary under contracts and grants with the National Aeronautics and Space Administration.

  6. Spectroscopic study of unique line broadening and inversion in low-pressure microwave generated water plasmas

    NASA Astrophysics Data System (ADS)

    Mills, R. L.; Ray, P. C.; Mayo, R. M.; Nansteel, M.; Dhandapani, B.; Phillips, J.

    2005-12-01

    It was demonstrated that low pressure (˜0.2 torr) water vapor plasmas generated in a 10 mm inner diameter quartz tube with an Evenson microwave cavity show at least two features that are not explained by conventional plasma models. First, significant (gt2.5Å) hydrogen Balmer alpha line broadening, of constant width, up to 5 cm from the microwave coupler was recorded. Only hydrogen, and not oxygen, showed significant line broadening. This feature, observed previously in hydrogen-containing mixed gas plasmas generated with high voltage dc and rf discharges, was explained by some researchers as resulting from acceleration of hydrogen ions near the cathode. This explanation cannot apply to the line broadening observed in the (electrodeless) microwave plasmas generated in this work, particularly at distances as great as 5 cm from the microwave coupler. Second, inversion of the line intensities of both the Lyman and Balmer series, again at distances up to 5 cm from the coupler, were observed. The line inversion suggests the existence of a hitherto unknown source of pumping of the optical power in plasmas. Finally, it is notable that other aspects of the plasma including the OH* rotational temperature and low electron concentrations are quite typical of plasmas of this type.

  7. Labeling strategy and signal broadening mechanism of Protein NMR spectroscopy in Xenopus laevis oocytes.

    PubMed

    Ye, Yansheng; Liu, Xiaoli; Chen, Yanhua; Xu, Guohua; Wu, Qiong; Zhang, Zeting; Yao, Chendie; Liu, Maili; Li, Conggang

    2015-06-08

    We used Xenopus laevis oocytes, a paradigm for a variety of biological studies, as a eukaryotic model system for in-cell protein NMR spectroscopy. The small globular protein GB1 was one of the first studied in Xenopus oocytes, but there have been few reports since then of high-resolution spectra in oocytes. The scarcity of data is at least partly due to the lack of good labeling strategies and the paucity of information on resonance broadening mechanisms. Here, we systematically evaluate isotope enrichment and labeling methods in oocytes injected with five different proteins with molecular masses of 6 to 54 kDa. (19) F labeling is more promising than (15) N, (13) C, and (2) H enrichment. We also used (19) F NMR spectroscopy to quantify the contribution of viscosity, weak interactions, and sample inhomogeneity to resonance broadening in cells. We found that the viscosity in oocytes is only about 1.2 times that of water, and that inhomogeneous broadening is a major factor in determining line width in these cells.

  8. Proton Lateral Broadening Distribution Comparisons Between GRNTRN, MCNPX, and Laboratory Beam Measurements

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John

    2010-01-01

    Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.

  9. Proton lateral broadening distribution comparisons between GRNTRN, MCNPX, and laboratory beam measurements

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John

    2010-04-01

    Recent developments in NASA’s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light-ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.

  10. Spectral broadening of parametric instability in lower hybrid current drive at a high density

    NASA Astrophysics Data System (ADS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Napoli, F.; Paoletti, F.; De Arcangelis, D.; Ferrari, M.; Galli, A.; Gallo, G.; Pullara, E.; Schettini, G.; Tuccillo, A. A.

    2014-04-01

    The important goal of adding to the bootstrap current a more flexible tool, capable of producing and controlling steady-state profiles with a high fraction of non-inductive plasma current, could be reached using the lower hybrid current drive (LHCD) effect. Experiments performed on FTU (Frascati Tokamak Upgrade) demonstrated that LHCD can occur at reactor-graded high plasma density, provided that the parametric instability (PI)-produced broadening of the spectrum launched by the antenna is reduced under proper operating conditions, capable of producing relatively high temperature in the outer region of plasma column. This condition was produced by operations that reduce particle recycling from the vessel walls, and enhance the gas fuelling in the core by means of fast pellet. New results of FTU experiments are presented documenting that the useful effect of temperature at the periphery, which reduces the LH spectral broadening and enhances the LH-induced hard-x ray emission level, occurs in a broader range of plasma parameters than in previous work. Modelling results show that a further tool for helping LHCD at a high density would be provided by electron cyclotron resonant heating of plasma periphery. New information is provided on the modelling, able determining frequencies, growth rates and LH spectral broadening produced by PI, which allowed assessing the new method for enabling LHCD at high densities. Further robustness is provided to theoretical and experimental fundaments of the method for LHCD at a high density.

  11. The meaning of DAPI bands observed after C-banding and FISH procedures.

    PubMed

    Barros e Silva, A E; Guerra, M

    2010-04-01

    Under specific technical conditions chromosome staining with 4',6-diamidino-2-phenylindole (DAPI) permits characterization of heterochromatic regions as AT-rich (DAPI(+)) or AT-poor (DAPI(-)), especially when the chromosomes are counterstained with chromomycin A(3) (CMA), which preferentially binds to GC-rich DNA. DAPI(+) bands also often have been observed after C-banding or FISH. In these cases, however, it is not clear whether only AT-rich regions stain positively with DAPI or other heterochromatins with different base compositions also are stained. We evaluated the meaning of DAPI bands observed after C-banding and FISH using three plant species bearing different types of heterochromatin: DAPI(+)/CMA(-), DAP(-)/CMA(+) and DAPI(0)/CMA(0) (neutral bands). Additional tests were performed using propidium iodide, a fluorochrome without preferential affinity for AT or GC. Our results indicate that AT-rich heterochromatin stains as DAPI(+) bands after C-banding or FISH, but other kinds of heterochromatin also may be stained by DAPI.

  12. Steel Band Repertoire: The Case for Original Music

    ERIC Educational Resources Information Center

    Tanner, Chris

    2010-01-01

    In the past few decades, the steel band art form has experienced consistent growth and development in several key respects. For example, in the United States, the sheer number of steel band programs has steadily increased, and it appears that this trend will continue in the future. Additionally, pan builders and tuners have made great strides in…

  13. 76 FR 56657 - Unlicensed Operation in the TV Broadcast Bands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... COMMISSION 47 CFR Parts 0 and 15 Unlicensed Operation in the TV Broadcast Bands AGENCY: Federal..., In the Matter of ``Unlicensed Operation in the TV Broadcast Bands; Additional Spectrum for Unlicensed... concerning the rules for operation of unlicensed transmitting devices in the television broadcast...

  14. Surface Material Characterization from Multi-band Optical Observations

    DTIC Science & Technology

    2010-09-01

    telescope provides visible-band and long- wavelength thermal infrared images with adaptive optics compensation to remove atmospheric blurring. In...addition, the AMOS Gemini 1.6m telescope system provides daytime visible-band and near- infrared speckle images. These systems reveal a great deal of

  15. Shell model description of band structure in 48Cr

    SciTech Connect

    Vargas, Carlos E.; Velazquez, Victor M.

    2007-02-12

    The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements.

  16. Hazard banding in compliance with the new Globally Harmonised System (GHS) for use in control banding tools.

    PubMed

    Arnone, Mario; Koppisch, Dorothea; Smola, Thomas; Gabriel, Stefan; Verbist, Koen; Visser, Remco

    2015-10-01

    Many control banding tools use hazard banding in risk assessments for the occupational handling of hazardous substances. The outcome of these assessments can be combined with advice for the required risk management measures (RMMs). The Globally Harmonised System of Classification and Labelling of Chemicals (GHS) has resulted in a change in the hazard communication elements, i.e. Hazard (H) statements instead of Risk-phrases. Hazard banding schemes that depend on the old form of safety information have to be adapted to the new rules. The purpose of this publication is to outline the rationales for the assignment of hazard bands to H statements under the GHS. Based on this, this publication proposes a hazard banding scheme that uses the information from the safety data sheets as the basis for assignment. The assignment of hazard bands tiered according to the severity of the underlying hazards supports the important principle of substitution. Additionally, the set of assignment rules permits an exposure-route-specific assignment of hazard bands, which is necessary for the proposed route-specific RMMs. Ideally, all control banding tools should apply the same assignment rules. This GHS-compliant hazard banding scheme can hopefully help to establish a unified hazard banding strategy in the various control banding tools.

  17. Design investigation of a cost-effective dual-band (MWIR/LWIR) and a wide band optically athermalized application

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Washer, Joe; Morgen, Daniel

    2016-10-01

    Dual-band and wide-band lenses covering both the MWIR and LWIR spectral bands are increasingly needed as dualband MWIR/LWIR detectors have become prevalent and broadband applications have expanded. Currently in dual-band /wide-band applications, the use of more than three elements per lens group and the use of chalcogenide glass is common. This results in expensive systems. Also, many chalcogenides are available only in small diameters, which is a problem for large aperture broadband lenses. In this paper an investigation of cost-effective designs for dual-band MWIR/LWIR lens using only widely available IR materials, specifically Ge, ZnSe and ZnS were performed. An athermalized dual-band MWIR/LWIR using these three materials is presented. The performance analysis of this lens shows that this design form with these three common IR materials works well in certain applications. The required large size blanks of these materials can be easily obtained. Traditional chromatic aberration correction without diffraction for either wide-band or dual-band application was employed. In addition, the methods of harmonic diffraction for dual-band applications, especially with one narrow band, were used for two different presented designs.

  18. Valence band anticrossing in highly mismatched alloys

    NASA Astrophysics Data System (ADS)

    Alberi, Kirstin Mclean

    Semiconductor alloys offer the ability to tune certain material parameters such as the band gap or carrier effective mass through precise control of the alloy composition, allowing them to be optimized for specific device requirements. While many alloys demonstrate near linear composition dependencies in these properties, those containing isoelectronic anion species that are significantly mismatched in electronegativity or ionization energy, known as highly mismatched alloys (HMA), exhibit substantial deviation from this trend. Here, the optical and electrical properties of HMAs containing dilute concentrations of large metallic anions are investigated in the context of a valence band anticrossing (VBAC) theory. Minority species with low ionization energies often introduce localized p-states near the valence band edge of the host semiconductor. Hybridization of these localized states with the extended p-states of the host may be described by a 12 x 12 Hamiltonian and produces a splitting of the alloy valence band into E+ and E - states. Photomodulated reflectance studies coupled with the VBAC theory confirm that the band gap bowing observed in GaSbxAs1-x and GaBixAs1-x is caused by an upward movement of the valence band edge as a result of the anticrossing interaction between the E+ and E- states. The valence band restructuring also adversely affects hole transport in these alloys through an increase in the heavy hole effective mass and the addition of an alloy disorder scattering mechanism. Finally, the VBAC theory has been extended to group IV HMAs as well as to the dilute magnetic semiconductor Ga1-x MnxAs, both of which exhibit strong hole localization at the minority species sites.

  19. Spectral broadening and compression of high-intensity laser pulses in quasi-periodic systems with Kerr nonlinearity

    SciTech Connect

    Vlasov, Sergei N; Koposova, E V; Yashin, V E

    2012-11-30

    We report the results of theoretical studies and numerical simulations of optical high-power pulse compression systems based on the spectral broadening in a Kerr nonlinear medium with subsequent pulse compression in a dispersive delay line. It is shown that the effective spectral broadening requires suppressing a smallscale instability arising due to self-focusing, which is possible in quasi-periodic systems consisting of a nonlinear medium and optical relay telescopes transmitting images of the laser beam through the system. The numerical calculations have shown the possibility of broadening the spectrum, followed by 15-fold pulse compression until the instability is excited. (control of laser radiation parameters)

  20. Block 3 X-band receiver-exciter

    NASA Technical Reports Server (NTRS)

    Johns, C. E.

    1987-01-01

    The development of an X-band exciter, for use in the X-Band Uplink Subsystem, was completed. The exciter generates the drive signal for the X-band transmitter and also generates coherent test signals for the S- and X-band Block 3 translator and a Doppler reference signal for the Doppler extractor system. In addition to the above, the exciter generates other reference signals that are described. Also presented is an overview of the exciter design and some test data taken on the prototype. A brief discussion of the Block 3 Doppler extractor is presented.

  1. Progress in the measurement of temperature-dependent N2-N2 collision-induced absorption and H2-broadening of cold and hot CH4

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Wishnow, Ed; Venkataraman, Malathy; Brown, Linda R.; Ozier, Irving; Benner, D. Chris; Crawford, Tomithy J.; Mantz, Arlan; Smith, Mary-Ann H.

    2016-10-01

    We report preliminary measurements from two separate laboratory studies: (A) collision-induced absorption (CIA) of nitrogen in the far-infrared at temperatures between 78 and 130 K; and (B) temperature dependence of H2-broadening of CH4 in the near infrared at temperatures between 100 and 370 K.(A) Nitrogen collision-induced absorption provides the primary opacity of Titan at long wavelengths, thereby playing a critical role in determining the heat balance as well as the atmospheric composition and dynamics. Our new measurements of the nitrogen absorption spectrum at temperatures from 78 to 130 K are consistently ~20% higher than predictions made using theoretical models of Borysow and Frommhold (1986) [ApJ, 311, 1043] and of Karman et al. (2015)[J Chem Phys, 142, 084306]. However, the new data are consistent with the previous measurements at 78 K by the UBC group (Wishnow et al. 1996)[J Chem Phys, 104, 3511]. We present preliminary results for the N2-N2 CIA coefficients and their temperature dependence between 78 and 130 K, and comparisons with the above theoretical calculations.(B) In support of the Jovian and exoplanet atmospheric remote sensing in the near infrared, we have measured the temperature dependence of H2-broadened half width and pressure shift coefficients of CH4, both of which are known to be rotational quantum number dependent. We studied both cold and hot CH4 in the K band (~2.2 μm) with the focus on a) weaker lines in the v2+v3 band at low temperatures for cold giant planets and b) stronger lines in the v3+v4 band at elevated temperatures for extra-solar planets (e.g., hot-Jupiters). Three custom-built gas absorption cells (two cold and one hot) were used to obtain the spectra of CH4 and H2 mixtures at temperatures between 100 and 370 K. We will discuss our on-going spectrum analysis for a few select J manifolds and provide comparisons with published values, which are available only at room temperature.

  2. Wide Band Artificial Pulsar

    NASA Astrophysics Data System (ADS)

    Parsons, Zackary

    2017-01-01

    The Wide Band Artificial Pulsar (WBAP) is an instrument verification device designed and built by the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virgina. The site currently operates the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) and the Versatile Green Bank Astronomical Spectrometer (VEGAS) digital backends for their radio telescopes. The commissioning and continued support for these sophisticated backends has demonstrated a need for a device capable of producing an accurate artificial pulsar signal. The WBAP is designed to provide a very close approximation to an actual pulsar signal. This presentation is intended to provide an overview of the current hardware and software implementations and to also share the current results from testing using the WBAP.

  3. False Color Bands

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    In a gray scale image, the suble variations seen in this false color image are almost impossible to identify. Note the orange band in the center of the frame, and the bluer bands to either side of it.

    Image information: VIS instrument. Latitude 87, Longitude 65.5 East (294.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  5. Formaldehyde: the 5.7μm and 3.6μm Bands

    NASA Astrophysics Data System (ADS)

    Jacquemart, D.; Lacome, N.; Perrin, A.; Tchana, F. Kwabia; Laraia, A.; Gamache, R. R.

    2010-06-01

    The goal of this study was to achieve absolute line intensities and reliable line broadening parameters for the strong 5.7 μm and 3.6 μm bands of formaldehyde (H_2CO) and to generate, for both spectral regions, a complete linelist for atmospheric applications. High-resolution Fourier transform spectra were recorded at LADIR for the whole 1600 - 3200 cm-1 spectral range and for different path-length-pressure products conditions. Using these spectra, a large set of H_2CO individual line intensities and of self- and N_2-broadening linewidths were measured. The calculated band intensities derived for the 5.7 μm and 3.6 μm bands are in excellent agreement with the values achieved recently by medium resolution band intensity measurements. It has to be mentioned that intensities in the 3.6 μm achieved in this work are, on the average, about 28 % stronger than those quoted in the HITRAN 2004 database. The linelist of positions and intensities based on this worka has been included in the HITRAN 2008 database. Concerning the linewidths, empirical expansions and theoretical calculations (semi-classical Robert-Bonamy formalism) have been performed and compared to the measurements. Rotational dependences have been studied, and the temperature dependence of the N_2-broadening coefficients has been calculated. A. Perrin, D. Jacquemart, F. Kwabia-Tchana, and N. Lacome, JQSRT 110,700-716,2009. D. Jacquemart, A. Laraia F. Kwabia-Tchana, R.R. Gamache A. Perrin and N. Lacome, JQSRT in press.

  6. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-01

    Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2) taken at relatively high incoming electron energies (5-40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E - Egap)1.5. For CaCO3, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first experimental estimate.

  7. Blue Satellite Bands and Photoassociation Spectra of Ultracold Cesium

    SciTech Connect

    Pichler, Marin; Qi Jainbing; Stwalley, William C.; Beuc, Robert; Pichler, Goran

    2006-11-22

    Atomic line self-broadening was observed in ultracold cesium. Using resonant ionization detection we were able to photoassociate atoms into excited states of ultracold molecules below the second excited PJ atomic asymptotes Cs(6S1/2) + Cs(7P1/2) and Cs(6S1/2) + Cs(7P3/2). We were able to observe blue detuned satellite band features at 560 MHz and 800 MHz above the 7P1/2 and 7P3/2 atomic limits, respectively, as well as sharp hyperfine split features on the blue and red side of the atomic resonances. Such spectral features can be qualitatively supported by the local maxima in the long range molecular structure beyond 50 A.

  8. Flat Chern Band in a Two-Dimensional Organometallic Framework

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a “romance of flatland” could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.

  9. Interstellar scattering effects on the detection of narrow-band signals

    SciTech Connect

    Cordes, J.M.; Lazio, T.J. )

    1991-07-01

    The detection and decoding of narrow-band radio signals are investigated after propagation through the turbulent, ionized interstellar medium. For most lines of sight through the Galaxy, spectral broadening due to scattering below about 0.1 Hz at 1 GHz occurs. Spectral broadening is therefore unimportant for the detection of hypothesized signals from extraterrestrial intelligence. Intensity scintillations, however, are of considerable importance. They both help and hinder detection: signals too weak to be detected without the scattering medium may be modulated above the detection threshold while, conversely, signals above threshold can be modulated below. In strong scattering (distances above about 100 pc at 1 GHz), multiple observations of a given target comprise a strategy that is superior to single observations even when the total time per target is held fixed. Decoding information carrying signals may encounter difficulties due to intensity scintillations. 49 refs.

  10. Spectral Broadening of Excitation induced by Ultralong-range Interaction in a Cold Gas of Rydberg Atoms

    SciTech Connect

    Loboda, A. V.; Mischenko, E. V.; Gurnitskaya, E. P.; Glushkov, A. V.; Khetselius, O. Yu.

    2008-10-22

    Preliminary results of calculating the broadening of spectral lines of excited atoms induced by ultralong- range (100 Bohr radii) interactions in a cold gas of Rb atoms within the 'own pressure' approximation and perturbation theory formalism are presented.

  11. Case studies on recent Stark broadening calculations and STARK-B database development in the framework of the European project VAMDC (Virtual Atomic and Molecular Data Center)

    NASA Astrophysics Data System (ADS)

    Sahal-Bréchot, S.

    2010-11-01

    Stark broadening theories and calculations have been extensively developed for about 50 years. The theory can now be considered as mature for many applications, especially for accurate spectroscopic diagnostics and modelling. In astrophysics, with the increasing sensitivity of observations and spectral resolution, in all domains of wavelengths from far UV to infrared, it has become possible to develop realistic models of interiors and atmospheres of stars and interpret their evolution and the creation of elements through nuclear reactions. For hot stars, especially white dwarfs, Stark broadening is the dominant collisional line broadening process. This requires the knowledge of numerous profiles, especially for trace elements, which are used as useful probes for modern spectroscopic diagnostics. Hence, calculations based on a simple but enough accurate and fast method, are necessary for obtaining numerous results. Ab initio calculations are a growing domain of development. Nowadays, the access to such data via an on line database becomes crucial. This is the object of STARK-B, which is a collaborative project between the Paris Observatory and the Astronomical Observatory of Belgrade. It is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. It is devoted to modelling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is relevant to laboratory plasmas, laser equipments and technological plasmas. It is a part of VAMDC (Virtual Atomic and Molecular Data Centre), which is an European Union funded collaboration between groups involved in the generation and use of atomic and molecular data.

  12. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

    PubMed

    Kim, Jinhyun; Wei, Dong-Sheng; Hoffman, Dax A

    2005-11-15

    A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and the various neuronal functions performed by voltage-gated K(+) channels is lacking. Here we used a combination of molecular, electrophysiological and imaging techniques to show that one such gene, Kv4.2, controls AP half-width, frequency-dependent AP broadening and dendritic action potential propagation. Using a modified Sindbis virus, we expressed either the enhanced green fluorescence protein (EGFP)-tagged Kv4.2 or an EGFP-tagged dominant negative mutant of Kv4.2 (Kv4.2g(W362F)) in CA1 pyramidal neurones of organotypic slice cultures. Neurones expressing Kv4.2g(W362F) displayed broader action potentials with an increase in frequency-dependent AP broadening during a train compared with control neurones. In addition, Ca(2)(+) imaging of Kv4.2g(W362F) expressing dendrites revealed enhanced AP back-propagation compared to control neurones. Conversely, neurones expressing an increased A-type current through overexpression of Kv4.2 displayed narrower APs with less frequency dependent broadening and decreased dendritic propagation. These results point to Kv4.2 as the major contributor to the A-current in hippocampal CA1 neurones and suggest a prominent role for Kv4.2 in regulating AP shape and dendritic signalling. As Ca(2)(+) influx occurs primarily during AP repolarization, Kv4.2 activity can regulate cellular processes involving Ca(2)(+)-dependent second messenger cascades such as gene expression and synaptic plasticity.

  13. Effects of color bands on Semipalmated Sandpipers banded at hatch

    USGS Publications Warehouse

    Bart, J.; Battaglia, D.; Senner, N.

    2001-01-01

    Effects of color bands on adult birds have been investigated in many studies, but much less is known about the effects of bands on birds banded at hatch. We captured Semipalmated Sandpiper (Calidris pusilla) chicks at hatch on the Alaskan North Slope and attached 0-3 bands to them. The chicks were resighted and reweighed during the subsequent two weeks. The number of chicks banded varied from 18 to 21 among treatments; 6-9 were resighted, and 6-7 were reweighed, per treatment. The proportion resighted varied from 0.33 to 0.45. The estimated resighting probability, given that we encountered a brood, was 82%. We tested for effects of the bands on survival and mass gain by analyzing whether the proportion of chicks resighted, or their mass, varied with the number of bands. We found no evidence that bands affected the chicks and were able to rule out (with 95% confidence) a decline in survivorship of more than 13% and a loss of mass of more than 10%. Although bands had little if any effect on chicks in our study, we believe their effects should be evaluated whenever survivorship or mass gain are estimated using color-marked chicks.

  14. Broadening engineering education: bringing the community in : commentary on "social responsibility in French engineering education: a historical and sociological analysis".

    PubMed

    Conlon, Eddie

    2013-12-01

    Two issues of particular interest in the Irish context are (1) the motivation for broadening engineering education to include the humanities, and an emphasis on social responsibility and (2) the process by which broadening can take place. Greater community engagement, arising from a socially-driven model of engineering education, is necessary if engineering practice is to move beyond its present captivity by corporate interests.

  15. Diode laser spectra of CCl2F2 near 10.8 muon M: Air-broadening effects

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.

    1977-01-01

    Laboratory spectra of CCL2F2 in the 10.8 micron region was recorded, using a tuneable diode laser spectrometer. Effects of air-broadening at pressures up to 48 Torr show that spectral structure should be exhibited under high resolution at altitudes as low as 19 Km. The single line, pressure-broadening coefficient for CCL2F2 was estimated to be 8 MHz/Torr FWHM.

  16. Time sequence spectroscopy of AW UMa. The 518 nm Mg I triplet region analyzed with broadening functions

    SciTech Connect

    Rucinski, Slavek M.

    2015-02-01

    High-resolution spectroscopic observations of AW UMa, obtained on three consecutive nights with a median time resolution of 2.1 minutes, have been analyzed using the broadening function method in the spectral window of 22.75 nm around the 518 nm Mg i triplet region. Doppler images of the system reveal the presence of vigorous mass motions within the binary system; their presence puts into question the solid-body rotation assumption of the contact binary model. AW UMa appears to be a very tight, semi-detached binary; the mass transfer takes place from the more massive to the less massive component. The primary, a fast-rotating star with Vsini=181.4±2.5 km s{sup −1}, is covered with inhomogeneities: very slowly drifting spots and a dense network of ripples more closely participating in its rotation. The spectral lines of the primary show an additional broadening component (called the “pedestal”) that originates either in the equatorial regions, which rotate faster than the rest of the star by about 50 km s{sup −1}, or in an external disk-like structure. The secondary component appears to be smaller than predicted by the contact model. The radial velocity field around the secondary is dominated by accretion of matter transferred from (and possibly partly returned to) the primary component. The parameters of the binary are Asini=2.73±0.11 R{sub ⊙} and M{sub 1}sin{sup 3}i=1.29±0.15 M{sub ⊙}, M{sub 2}sin{sup 3}i=0.128±0.016 M{sub ⊙}. The mass ratio, q{sub sp}=M{sub 2}/M{sub 1}=0.099±0.003, while still the most uncertain among the spectroscopic elements, is substantially different from the previous numerous and mutually consistent photometric investigations which were based on the contact model. It should be studied why photometry and spectroscopy give such discrepant results and whether AW UMa is an unusual object or if only very high-quality spectroscopy can reveal the true nature of W UMa-type binaries.

  17. Momentum-Dependent Lifetime Broadening of Electron Energy Loss Spectra: A Self-Consistent Coupled-Plasmon Model.

    PubMed

    Bourke, J D; Chantler, C T

    2015-02-05

    The complex dielectric function and associated energy loss spectrum of a condensed matter system is a fundamental material parameter that determines both the optical and electronic scattering behavior of the medium. The common representation of the electron energy loss function (ELF) is interpreted as the susceptibility of a system to a single- or bulk-electron (plasmon) excitation at a given energy and momentum and is commonly derived as a summation of noninteracting free-electron resonances with forms constrained by adherence to some externally determined optical standard. This work introduces a new causally constrained momentum-dependent broadening theory, permitting a more physical representation of optical and electronic resonances that agrees more closely with both optical attenuation and electron scattering data. We demonstrate how the momentum dependence of excitation resonances may be constrained uniquely by utilizing a coupled-plasmon model, in which high-energy excitations are able to relax into lower-energy excitations within the medium. This enables a robust and fully self-consistent theory with no free or fitted parameters that reveals additional physical insight not present in previous work. The new developments are applied to the scattering behavior of solid molybdenum and aluminum. We find that plasmon and single-electron lifetimes are significantly affected by the presence of alternate excitation channels and show for molybdenum that agreement with high-precision electron inelastic mean free path data is dramatically improved for energies above 20 eV.

  18. Banding the world together; the global growth of control banding and qualitative occupational risk management.

    PubMed

    Zalk, David M; Heussen, Ga Henri

    2011-12-01

    Control Banding (CB) strategies to prevent work-related illness and injury for 2.5 billion workers without access to health and safety professionals has grown exponentially this last decade. CB originates from the pharmaceutical industry to control active pharmaceutical ingredients without a complete toxicological basis and therefore no occupational exposure limits. CB applications have broadened into chemicals in general - including new emerging risks like nanomaterials and recently into ergonomics and injury prevention. CB is an action-oriented qualitative risk assessment strategy offering solutions and control measures to users through "toolkits". Chemical CB toolkits are user-friendly approaches used to achieve workplace controls in the absence of firm toxicological and quantitative exposure information. The model (technical) validation of these toolkits is well described, however firm operational analyses (implementation aspects) are lacking. Consequentially, it is often not known if toolkit use leads to successful interventions at individual workplaces. This might lead to virtual safe workplaces without knowing if workers are truly protected. Upcoming international strategies from the World Health Organization Collaborating Centers request assistance in developing and evaluating action-oriented procedures for workplace risk assessment and control. It is expected that to fulfill this strategy's goals, CB approaches will continue its important growth in protecting workers.

  19. Shuttle Ku-band and S-band communications implementation study

    NASA Astrophysics Data System (ADS)

    Dodds, J. G.; Huth, G. K.; Nilsen, P. W.; Polydoros, A.; Simon, M. K.; Weber, C. L.

    1980-05-01

    Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed.

  20. Shuttle Ku-band and S-band communications implementation study

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Huth, G. K.; Nilsen, P. W.; Polydoros, A.; Simon, M. K.; Weber, C. L.

    1980-01-01

    Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed.