Science.gov

Sample records for additional carbon atom

  1. Combined ab initio molecular dynamics and experimental studies of carbon atom addition to benzene.

    PubMed

    McKee, Michael L; Reisenauer, Hans Peter; Schreiner, Peter R

    2014-04-17

    Car-Parrinello molecular dynamics was used to explore the reactions between triplet and singlet carbon atoms with benzene. The computations reveal that, in the singlet C atom reaction, products are very exothermic where nearly every collision yields a product that is determined by the initial encounter geometry. The singlet C atom reaction does not follow the minimum energy path because the bimolecular reaction is controlled by dynamics (i.e., initial orientation of encounter). On the other hand, in a 10 K solid Ar matrix, ground state C((3)P) atoms do tend to follow RRKM kinetics. Thus, ab initio molecular dynamics (AIMD) results indicate that a significant fraction of C-H insertion occurs to form phenylcarbene whereas, in marked contrast to previous theoretical and experimental conclusions, the Ar matrix isolation studies indicate a large fraction of direct cycloheptatetraene formation, without the intermediacy of phenylcarbene. The AIMD calculations are more consistent with vaporized carbon atom experiments where labeling studies indicate the initial formation of phenylcarbene. This underlines that the availability of thermodynamic sinks can completely alter the observed reaction dynamics. PMID:24661002

  2. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    PubMed Central

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  3. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms.

    PubMed

    Bangert, U; Pierce, W; Boothroyd, C; Pan, C-T; Gwilliam, R

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  4. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-06-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  5. Theory of atomic additivity in molecular hyperpolizabilities

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1987-01-01

    Hyperpolarizability is a function of frequency. This is called dispersion. Because of the Kramers-Kronig relations, researchers expect that a material that is dispersing light is also absorbing it. Where there is both dispersion and absorption, the molecular polarizabilities are complex functions of the frequency. This led researchers to consider atomic additivity in both the real and imaginary parts of the ordinary and hyperpolarizabilities. This effort is desirable not only from a theoretical point of view, but also because of the existence of a large body of complex refractive index data, which may be used to test the additivity principle with the complex valued ordinary dipole polarizability.

  6. Submillimetre observations of atomic carbon

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Keene, J.

    1982-01-01

    Emission from the ground state fine structure transition of atomic carbon at 610 microns has been observed in Galactic sources. From comparison of the observations with CO emission, it can be deduced that the abundance of neutral carbon relative to CO is high (approximately 0.1-3). The spatial and velocity distribution of CI and CO are often very similar. If molecular clouds are older than 1 x 10 to the 6th power years, the observations necessitate a mechanism which can maintain a high abundance of neutral carbon in cloud material, either by hindering complete conversion of C into CO or by physically and chemically rejuvenating the material.

  7. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  8. Functionalization of Carbon Nanotubes using Atomic Hydrogen

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Cassell, Alan M.; Nguyen, Cattien V.; Meyyappan, M.; Han, Jie; Arnold, Jim (Technical Monitor)

    2001-01-01

    We have investigated the irradiation of multi walled and single walled carbon nanotubes (SWNTs) with atomic hydrogen. After irradiating the SWNT sample, a band at 2940/cm (3.4 microns) that is characteristic of the C-H stretching mode is observed using Fourier transform infrared (FTIR) spectroscopy. Additional confirmation of SWNT functionalization is tested by irradiating with atomic deuterium. A weak band in the region 1940/cm (5.2 micron) to 2450/cm (4.1 micron) corresponding to C-D stretching mode is also observed in the FTIR spectrum. This technique provides a clean gas phase process for the functionalization of SWNTs, which could lead to further chemical manipulation and/or the tuning of the electronic properties of SWNTs for nanodevice applications.

  9. Local Atomic Density of Microporous Carbons

    SciTech Connect

    Dmowski, Wojtek; Contescu, Cristian I.; Llobet, Anna; Gallego, Nidia C.; Egami, Takeskhi

    2012-07-12

    We investigated the structure of two disordered carbons: activated carbon fibers (ACF) and ultramicroporous carbon (UMC). These carbons have highly porous structure with large surface areas and consequently low macroscopic density that should enhance adsorption of hydrogen. We used the atomic pair distribution function to probe the local atomic arrangements. The results show that the carbons maintain an in-plane local atomic structure similar to regular graphite, but the stacking of graphitic layers is strongly disordered. Although the local atomic density of these carbons is lower than graphite, it is only {approx}20% lower and is much higher than the macroscopic density due to the porosity of the structure. For this reason, the density of graphene sheets that have optimum separation for hydrogen adsorption is lower than anticipated.

  10. Local atomic density of microporous carbons

    SciTech Connect

    Dmowski, Wojtek; Contescu, Cristian I; Llobet, Anna; Gallego, Nidia C; Egami, Takeshi

    2011-01-01

    We investigated the structure of two disordered carbons: activated carbon fibers (ACF) and ultramicroporous carbon (UMC). These carbons have highly porous structure with large surface areas and consequently low macroscopic density that should enhance adsorption of hydrogen. We used the atomic pair distribution function to probe the local atomic arrangements. The results show that the carbons maintain an in-plane local atomic structure similar to regular graphite, but the stacking of graphitic layers is strongly disordered. Although the local atomic density of these carbons is lower than graphite, it is only ~20% lower and is much higher than the macroscopic density due to the porosity of the structure. For this reason, the density of graphene sheets that have optimum separation for hydrogen adsorption is lower than anticipated.

  11. Atom economical synthesis of di- and trithiocarbonates by the lithium tert-butoxide catalyzed addition of carbon disulfide to epoxides and thiiranes.

    PubMed

    Diebler, J; Spannenberg, A; Werner, T

    2016-08-21

    Alkali metal alkoxides were studied as catalysts for the addition of CS2 to epoxides. A screening of several commercially available alkoxides revealed lithium tert-butoxide as an active and selective catalyst for this reaction. The influence of different reaction parameters as well as the substrate scope under optimized reaction conditions has been studied. Terminal and highly substituted epoxides as well as thiiranes were converted. In total 28 products were prepared and isolated in yields up to 95%. Notably, the reactions were performed under mild conditions without additional solvents. The regio- and stereoselectivity of the reaction has been studied e.g. by converting (R)-styrene and (R)-propylene oxide. Moreover, the test reaction was monitored by (13)C NMR and a plausible mechanism for the conversion of terminal and internal epoxides is given. This proposal is in agreement with the observed regio- and stereoselectivity of the reaction. PMID:27339808

  12. Atomic carbon in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1982-01-01

    The densities of atomic carbon in the Venusian thermosphere are computed for a model which includes both chemistry and transport. The maximum density of C is 2.8 x 10 to the 7th per cu cm near 150 km for an assumed O2 mixing ratio of 0.0001. Photoionization of atomic carbon is found to be the major source of C(+) above 200 km, and resonance scattering of sunlight by atomic carbon may be the major source of the C I emissions at 1561 A, 1657 A, and 1931 A. The computed C(+) densities are found to be in substantial agreement with those measured by Pioneer Venus.

  13. The atomic carbon distribution in the coma of Comet Halley

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Feldman, P. D.; Dymond, K. F.

    1986-01-01

    The radial distribution of CO, OI, Ci, and CII emissions in the coma of comet Halley were measured by a long-slit far ultraviolet spectrograph aboard a sounding rocket on 26 Feb. and 13 Mar. 1986. While the CO profiles strongly suggest that CO is vaporized directly from the nucleus, the observed carbon distribution is not consistent with a radial outflow model of CO, suggesting an additional source of atomic carbon in the inner coma. Based on the in situ plasma measurements from the Vega and Giotto spacecraft, it is possible that this additional source of carbon could be the recombination of ionized CO in the inner coma.

  14. Kagome lattices for ultracold atoms induced by additional lightfields

    NASA Astrophysics Data System (ADS)

    Zhang, Huirong; Chen, Xuzong; Ma, Zhaoyuan; Zhou, Yuqing

    2016-06-01

    We propose a novel method for the realization of an optical Kagome lattice due to the Raman processes driven by additional light fields applied to the ultracold atoms of two hyperfine internal states trapped in a planar optical triangular lattice. The tunneling between the different internal states of the nearest-neighbor atoms in Kagome lattices can be adjusted by the additional light fields independently of the on-site interaction. This optical lattice protocol can be used to investigate the magnetic quantum phenomena and the nearest-neighbor magnetic coupling becomes strong enough by increasing the intensities of the additional light fields.

  15. Atomic resolution studies of carbonic anhydrase II

    SciTech Connect

    Behnke, Craig A.; Le Trong, Isolde; Godden, Jeff W.; Merritt, Ethan A.; Teller, David C.; Bajorath, Jürgen; Stenkamp, Ronald E.

    2010-05-01

    The structure of human carbonic anhydrase II has been solved with a sulfonamide inhibitor at 0.9 Å resolution. Structural variation and flexibility is seen on the surface of the protein and is consistent with the anisotropic ADPs obtained from refinement. Comparison with 13 other atomic resolution carbonic anhydrase structures shows that surface variation exists even in these highly ordered isomorphous crystals. Carbonic anhydrase has been well studied structurally and functionally owing to its importance in respiration. A large number of X-ray crystallographic structures of carbonic anhydrase and its inhibitor complexes have been determined, some at atomic resolution. Structure determination of a sulfonamide-containing inhibitor complex has been carried out and the structure was refined at 0.9 Å resolution with anisotropic atomic displacement parameters to an R value of 0.141. The structure is similar to those of other carbonic anhydrase complexes, with the inhibitor providing a fourth nonprotein ligand to the active-site zinc. Comparison of this structure with 13 other atomic resolution (higher than 1.25 Å) isomorphous carbonic anhydrase structures provides a view of the structural similarity and variability in a series of crystal structures. At the center of the protein the structures superpose very well. The metal complexes superpose (with only two exceptions) with standard deviations of 0.01 Å in some zinc–protein and zinc–ligand bond lengths. In contrast, regions of structural variability are found on the protein surface, possibly owing to flexibility and disorder in the individual structures, differences in the chemical and crystalline environments or the different approaches used by different investigators to model weak or complicated electron-density maps. These findings suggest that care must be taken in interpreting structural details on protein surfaces on the basis of individual X-ray structures, even if atomic resolution data are available.

  16. Detection of gas atoms with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  17. Detection of gas atoms with carbon nanotubes

    PubMed Central

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  18. Oxygen atom loss coefficient of carbon nanowalls

    NASA Astrophysics Data System (ADS)

    Mozetic, Miran; Vesel, Alenka; Stoica, Silviu Daniel; Vizireanu, Sorin; Dinescu, Gheorghe; Zaplotnik, Rok

    2015-04-01

    Extremely high values of atomic oxygen loss coefficient on carbon nanowall (CNW) surface are reported. CNW layers consisting of interconnected individual nanostructures with average length of 1.1 μm, average thickness of 66 nm and surface density of 3 CNW/μm2 were prepared by plasma jet enhanced chemical-vapor deposition using C2H2/H2/Ar gas mixtures. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectrometry (RS) as well as X-ray photoelectron spectroscopy (XPS). The surface loss coefficient was measured at room temperature in a flowing afterglow at different densities of oxygen atoms supplied from inductively coupled radiofrequency O2 plasma. The RF generator operated at 13.56 MHz and different nominal powers up to 900 W corresponding to different O-atom density in the afterglow up to 1.3 × 1021 m-3. CNW and several different samples of known coefficients for heterogeneous surface recombination of neutral oxygen atoms have been placed separately in the afterglow chamber and the O-atom density in their vicinity was measured with calibrated catalytic probes. Comparison of measured results allowed for determination of the loss coefficient for CNWs and the obtained value of 0.59 ± 0.03 makes this material an extremely effective sink for O-atoms.

  19. Reactions of carbon atoms in pulsed molecular beams

    SciTech Connect

    Reisler, H.

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  20. Reaction studies of hot silicon, germanium and carbon atoms

    SciTech Connect

    Gaspar, P.P.

    1986-11-15

    Research has been continued on hot silicon, germanium and carbon atoms. Progress in the period November 16, 1985 to November 15, 1986 is reviewed in the following areas: (1) Recoil atom reaction studies. (2) Reactions of thermally generated free atoms.

  1. Carbon nanotube atomic force microscopy probes

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  2. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  3. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  4. Roles of additives and surface control in slurry atomization

    SciTech Connect

    Tsai, S.C.

    1992-01-01

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy at 25[degrees]C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.

  5. Reaction studies of hot silicon, germanium and carbon atoms

    SciTech Connect

    Gaspar, P.P.

    1989-02-01

    Research has been continued on hot silicon, germanium and carbon atoms. The results of experiments directed toward attaining the goals of this research program are briefly presented for the period September 1, 1987 to January 31, 1989 in sections entitled: (1) The mechanism of hydrogen acquisition by high energy silicon atoms. (2) The mechanism of disilene formation in the reactions of recoiling silicon atoms with silane. (3) The contribution of ionic processes to the primary reactions of recoiling silicon atoms. (4) The role of phosphine in hydrogen acquisition by recoiling silicon atoms. (5) Mechanism of reaction of recoiling carbon atoms with aromatic molecules.

  6. Atomic Carbon in the Southern Milky Way

    NASA Astrophysics Data System (ADS)

    Oka, Tomoharu; Kamegai, Kazuhisa; Hayashida, Masaaki; Nagai, Makoto; Ikeda, Masafumi; Kuboi, Nobuyuki; Tanaka, Kunihiko; Bronfman, Leonardo; Yamamoto, Satoshi

    2005-04-01

    We present a coarsely sampled longitude-velocity (l-V) map of the region l=300deg-354°, b=0deg in the 492 GHz fine-structure transition of neutral atomic carbon (C0 3P1-3P0 [C I]), observed with the Portable 18 cm Submillimeter-wave Telescope (POST18). The l-V distribution of the [C I] emission resembles closely that of the CO J=1-0 emission, showing a widespread distribution of atomic carbon on the Galactic scale. The ratio of the antenna temperatures, RCI/CO, concentrates on the narrow range from 0.05 to 0.3. A large velocity gradient (LVG) analysis shows that the [C I] emission from the Galactic disk is dominated by a population of neutral gas with high C0/CO abundance ratios and moderate column densities, which can be categorized as diffuse translucent clouds. The ratio of bulk emissivity, JCI/JCO, shows a systematic trend, suggesting the bulk C0/CO abundance ratio increasing with the Galactic radius. A mechanism related to kiloparsec-scale structure of the Galaxy may control the bulk C0/CO abundance ratio in the Galactic disk. Two groups of high-ratio (RCI/CO>0.3) areas reside in the l-V loci several degrees inside of tangential points of the Galactic spiral arms. These could be gas condensations just accumulated in the potential well of spiral arms and be in the early stages of molecular cloud formation.

  7. Structurally uniform and atomically precise carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Segawa, Yasutomo; Ito, Hideto; Itami, Kenichiro

    2016-01-01

    Nanometre-sized carbon materials consisting of benzene units oriented in unique geometric patterns, hereafter named nanocarbons, conduct electricity, absorb and emit light, and exhibit interesting magnetic properties. Spherical fullerene C60, cylindrical carbon nanotubes and sheet-like graphene are representative forms of nanocarbons, and theoretical simulations have predicted several exotic 3D nanocarbon structures. At present, synthetic routes to nanocarbons mainly lead to mixtures of molecules with a range of different structures and properties, which cannot be easily separated or refined into pure forms. Some researchers believe that it is impossible to synthesize these materials in a precise manner. Obtaining ‘pure’ nanocarbons is a great challenge in the field of nanocarbon science, and the construction of structurally uniform nanocarbons, ideally as single molecules, is crucial for the development of functional materials in nanotechnology, electronics, optics and biomedical applications. This Review highlights the organic chemistry approach — more specifically, bottom-up construction with atomic precision — that is currently the most promising strategy towards this end.

  8. Carbon based thirty six atom spheres

    DOEpatents

    Piskoti, Charles R.; Zettl, Alex K.; Cohen, Marvin L.; Cote, Michel; Grossman, Jeffrey C.; Louie, Steven G.

    2005-09-06

    A solid phase or form of carbon is based on fullerenes with thirty six carbon atoms (C.sub.36). The C.sub.36 structure with D.sub.6h symmetry is one of the two most energetically favorable, and is conducive to forming a periodic system. The lowest energy crystal is a highly bonded network of hexagonal planes of C.sub.36 subunits with AB stacking. The C.sub.36 solid is not a purely van der Waals solid, but has covalent-like bonding, leading to a solid with enhanced structural rigidity. The solid C.sub.36 material is made by synthesizing and selecting out C.sub.36 fullerenes in relatively large quantities. A C.sub.36 rich fullerene soot is produced in a helium environment arc discharge chamber by operating at an optimum helium pressure (400 torr). The C.sub.36 is separated from the soot by a two step process. The soot is first treated with a first solvent, e.g. toluene, to remove the higher order fullerenes but leave the C.sub.36. The soot is then treated with a second solvent, e.g. pyridine, which is more polarizable than the first solvent used for the larger fullerenes. The second solvent extracts the C.sub.36 from the soot. Thin films and powders can then be produced from the extracted C.sub.36. Other materials are based on C.sub.36 fullerenes, providing for different properties.

  9. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  10. Roles of additives and surface control in slurry atomization

    SciTech Connect

    Tsai, S.C.

    1990-07-10

    Airblast atomization of micronized coal water slurry is carried out using twin-fluid jet atomizers of various distributor designs. Drop size and size distribution are measured using the laser diffraction technique. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. We also found that the atomized drop size, represented by the mass median diameter (MMD) can be described by the wave mechanism-based models in terms of three non-dimensional groups, namely, slurry-to-air mass ratio, the Weber number, and the Ohnesorge number. 11 refs.

  11. Chains of carbon atoms: A vision or a new nanomaterial?

    PubMed

    Banhart, Florian

    2015-01-01

    Linear strings of sp(1)-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp(2)-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed. PMID:25821697

  12. Chains of carbon atoms: A vision or a new nanomaterial?

    PubMed Central

    2015-01-01

    Summary Linear strings of sp1-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp2-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed. PMID:25821697

  13. Carbon additives for electrical double layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  14. Reaction studies of hot silicon, germanium and carbon atoms

    SciTech Connect

    Gaspar, P.P.

    1990-11-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs.

  15. Roles of additives and surface control in slurry atomization

    SciTech Connect

    Tsai, S.C.

    1990-01-01

    This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation and thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.

  16. Nitrogenases-A Tale of Carbon Atom(s).

    PubMed

    Hu, Yilin; Ribbe, Markus W

    2016-07-11

    Named after its ability to catalyze the reduction of nitrogen to ammonia, nitrogenase has a surprising rapport with carbon-both through the interstitial carbide that resides in the central cavity of its cofactor and through its ability to catalyze the reductive carbon-carbon coupling of small carbon compounds into hydrocarbon products. Recently, a radical-SAM-dependent pathway was revealed for the insertion of carbide, which signifies a novel biosynthetic route to complex bridged metalloclusters. Moreover, a sulfur-displacement mechanism was proposed for the activation of carbon monoxide by nitrogenase, which suggests an essential role of the interstitial carbide in maintaining the stability while permitting a certain flexibility of the cofactor structure during substrate turnover. PMID:27206025

  17. ATOMIC CARBON IN THE UPPER ATMOSPHERE OF TITAN

    SciTech Connect

    Zhang, X.; Yung, Y. L.; Ajello, J. M.

    2010-01-01

    The atomic carbon emission C I line feature at 1657 A ({sup 3} P {sup 0} {sub J}-{sup 3} P{sub J} ) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations.

  18. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  19. Magnetism and spin-polarized transport in carbon atomic wires

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.; Sheng, W.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H.

    2009-09-01

    We report ab initio calculations of magnetic and spin-polarized quantum transport properties of pure and nitrogen-doped carbon atomic wires. For finite-sized wires with even number of carbon atoms, total magnetic moment of 2μB is found. On the other hand, wires with odd number atoms have no net magnetic moment. Doped with one or two nitrogen atom(s), the carbon atomic wires exhibit a spin-density-wave-like state. The magnetic properties can be rationalized through bonding patterns and unpaired states. When the wire is sandwiched between Au electrodes to form a transport junction, perfect spin filtering effect can be induced by slightly straining the wire.

  20. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  1. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  2. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  3. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  4. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  5. Carbon-atom wires: 1-D systems with tunable properties

    NASA Astrophysics Data System (ADS)

    Casari, C. S.; Tommasini, M.; Tykwinski, R. R.; Milani, A.

    2016-02-01

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp2-carbon architectures.

  6. Carbon-atom wires: 1-D systems with tunable properties.

    PubMed

    Casari, C S; Tommasini, M; Tykwinski, R R; Milani, A

    2016-02-28

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp(2)-carbon architectures. PMID:26847474

  7. Oxidative addition of carbon-carbon bonds to gold.

    PubMed

    Joost, Maximilian; Estévez, Laura; Miqueu, Karinne; Amgoune, Abderrahmane; Bourissou, Didier

    2015-04-20

    The oxidative addition of strained CC bonds (biphenylene, benzocyclobutenone) to DPCb (diphosphino-carborane) gold(I) complexes is reported. The resulting cationic organogold(III) complexes have been isolated and fully characterized. Experimental conditions can be adjusted to obtain selectively acyl gold(III) complexes resulting from oxidative addition of either the C(aryl)C(O) or C(alkyl)C(O) bond of benzocyclobutenone. DFT calculations provide mechanistic insight into this unprecedented transformation. PMID:25727203

  8. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  9. Automated manipulation of carbon nanotubes using atomic force microscopy.

    PubMed

    Zhang, Chao; Wu, Sen; Fu, Xing

    2013-01-01

    The manipulation of carbon nanotubes is an important and essential step for carbon-based nanodevice or nanocircuit assembly. However, the conventional push-and-image approach of manipulating carbon nanotubes using atomic force microscopy has low efficiency on account of the reduplicated scanning process during manipulation. In this article, an automated manipulation system is designed and tested. This automated manipulation system, which includes an atomic force microscope platform and a self-developed computer program for one-dimensional manipulation, is capable of automatically moving any assigned individual carbon nanotube to a defined target location without any intermediate scanning procedure. To demonstrate the high-efficiency of this automated manipulation system and its potential applications in nanoassembly, two experiments were conducted. The first experiment used this system to manipulate a carbon nanotube to a defined target location. In the second experiment, this system was used to automatically manipulate several carbon nanotubes for generating and translating a defined pattern of nanotubes. PMID:23646781

  10. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors.

    PubMed

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C

    2015-01-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level. PMID:26691537

  11. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    NASA Astrophysics Data System (ADS)

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-12-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.

  12. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    PubMed Central

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-01-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level. PMID:26691537

  13. Improvement of cement concrete strength properties by carbon fiber additives

    NASA Astrophysics Data System (ADS)

    Nevsky, Andrey; Kudyakov, Konstantin; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The paper presents the results of studies of fiber-reinforced concrete with carbon fibers. The effectiveness of carbon fibers uniform distribution in the concrete was obtained as a result of its preliminary mechanical mixing in water solution with chemical additives. Additives are to be used in the concrete technology as modifiers at initial stage of concrete mix preparing. The technology of preparing of fiber-reinforced concrete mix with carbon fibers is developed. The superplasticizer is based on ether carboxylates as a separator for carbon fibers. The technology allows increasing of concrete compressive strength up to 43.4% and tensile strength up to 17.5% as well as improving stability of mechanical properties.

  14. Atomic migration of carbon in hard turned layers of carburized bearing steel

    SciTech Connect

    Bedekar, Vikram; Poplawsky, Jonathan D.; Guo, Wei; Shivpuri, Rajiv; Scott Hyde, R.

    2016-01-01

    In grain finement and non-equilibrium there is carbon segregation within grain boundaries alters the mechanical performance of hard turning layers in carburized bearing steel. Moreover, an atom probe tomography (APT) study on the nanostructured hard turning layers reveals carbon migration to grain boundaries as a result of carbide decomposition during severe plastic deformation. In addition, samples exposed to different cutting speeds show that the carbon migration rate increases with the cutting speed. For these two effects lead to an ultrafine carbon network structure resulting in increased hardness and thermal stability in the severely deformed surface layer.

  15. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  16. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  17. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  18. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  19. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  20. Trapping cold atoms using surface-grown carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Petrov, P. G.; Machluf, S.; Younis, S.; Macaluso, R.; David, T.; Hadad, B.; Japha, Y.; Keil, M.; Joselevich, E.; Folman, R.

    2009-04-01

    We present a feasibility study for loading cold atomic clouds into magnetic traps created by single-wall carbon nanotubes grown directly onto dielectric surfaces. We show that atoms may be captured for experimentally sustainable nanotube currents, generating trapped clouds whose densities and lifetimes are sufficient to enable detection by simple imaging methods. This opens the way for a different type of conductor to be used in atomchips, enabling atom trapping at submicron distances, with implications for both fundamental studies and for technological applications.

  1. Neutral atomic carbon in dense molecular clouds

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.; Betz, A. L.; Boreiko, R. T.; Goldhaber, D. M.

    1988-01-01

    The 370 micron 3P2-3P1 fine-structure line of neutral carbon was detected in seven sources: OMC 1, NGC 2024, S140, W3, DR 21, M17, and W51. Simultaneous analysis of J = 2-1 data and available observations of the J = 1-0 line make it possible to deduce optical depths and excitation temperatures for these lines. These data indicate that both C I lines are likely to be optically thin, and that the ratio of C I to CO column densities in these clouds is typically about 0.1.

  2. The influence hydrogen atom addition has on charge switching during motion of the metal atom in endohedral Ca@C60H4 isomers.

    PubMed

    Raggi, G; Besley, E; Stace, A J

    2016-09-13

    Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4](+) isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501967

  3. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-01

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures. PMID:24328147

  4. Atomic Structures of Molecules Based on Additivity of Atomic and/or Ionic Radii (abstract)

    NASA Astrophysics Data System (ADS)

    Heyrovska, Raji; Narayan, Sara

    2009-04-01

    We have shown in recent years that interatomic and interionic distances are sums of the radii of the adjacent atoms or ions. Many examples are provided and it is shown how the experimental bond lengths agree with the radii sums. The examples include inorganic compounds such as alkali halides, metal hydrides, and graphene; organic compounds such as aliphatic and aromatic compounds; and biochemical compounds such as nucleic acids, amino acids, caffeine-related compounds, and vitamins.

  5. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    SciTech Connect

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer; Bengu, Erman; Kulakci, Mustafa; Turan, Rasit; Gulseren, Oguz

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantation were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.

  6. Chemical control of electrical contact to sp2 carbon atoms

    PubMed Central

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-01-01

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures. PMID:24736561

  7. Abundance of atomic carbon /C I/ in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Huggins, P. J.

    1981-01-01

    The abundance of interstellar neutral atomic carbon is investigated by means of its ground state fine-structure line emission at 492 GHz using the 91.5 cm telescope of NASAs Kuiper Airborne Observatory. Atomic carbon is found to be very abundant in dense interstellar molecular clouds with column densities of about 10 to the 19th per sq cm. Because the observations have considerably greater column densities than current theories of carbon chemistry, it is suggested that the physical conditions of these clouds are not as simple as assumed in the models. Various situations are discussed which would lead to large C I abundances, including the possibility that the chemical lifetimes of the clouds are relatively short.

  8. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of 3P atomic carbon with propene

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-01

    We investigated the dynamics of the reaction of 3P atomic carbon with propene (C3H6) at reactant collision energy 3.8 kcal mol-1 in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C4H5, C4H4, C3H3, and CH3 were observed and attributed to exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a 3P carbon atom to the C=C bond of propene, cyclic complex c-H2C(C)CHCH3 undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H2CCCHCH3. Both the isomers of H2CCCHCH3 in turns decompose to C4H5 + H and C3H3 + CH3. A portion of C4H5 that has enough internal energy further decomposes to C4H4 + H. The three exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3 have average translational energy releases 13.5, 3.2, and 15.2 kcal mol-1, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH3-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of 3P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  9. Testing Carbon Sequestration in Soil Through the Addition of Gypsum

    NASA Astrophysics Data System (ADS)

    Han, Y.; Tokunaga, T. K.; Wan, J.; Conrad, M. E.; Salve, R.

    2011-12-01

    In order to help control adverse effects of increased atmospheric concentrations of CO2, effective methods for fixing carbon need to be developed. Given the large C inventories and fluxes associated with soils, it is important to identify cost- and energy-effective means for increasing long-term C retention within soil profiles. This study investigates the alternative strategy of increasing carbon retention in soils through accelerating calcite (CaCO3) precipitation and promoting soil organic carbon (SOC) complexation on mineral surfaces. With the addition of calcium ion to soils with pH > 8 often found in arid and semi-arid regions, the slow process of calcite precipitation may be accelerated. Calcium also promotes SOC binding onto mineral surfaces, diminishing leaching of SOC. Addition of flue gas desulfurization gypsum (FGDG) represents an inexpensive source of calcium to natural, slightly alkaline soil surfaces which might promote the fixation of CO2 as calcite and decrease leaching losses of organic carbon. To test this hypothesis, we prepared laboratory soil columns (7.5 cm in diameter and 85 cm in height) with and without calcium sulfate-amended layers. The distribution of carbon in the columns was monitored in gaseous, aqueous and solid phases over a period of several months to test the effect of adding calcium ions. In some columns, a relatively high fraction of 13C-labeled bicarbonate was injected to differentiate the newly precipitated calcite from the initial calcite present in the soil. The potential for more distinct calcite precipitation within the soil root zone will be investigated in vegetated soil columns. Through obtaining C mass balances in soil profiles, this study is quantifying the efficiency of gypsum amendments for mitigating C losses to the atmosphere.

  10. Integrated atom detector based on field ionization near carbon nanotubes

    SciTech Connect

    Gruener, B.; Jag, M.; Stibor, A.; Visanescu, G.; Haeffner, M.; Kern, D.; Guenther, A.; Fortagh, J.

    2009-12-15

    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10{sup 9} V/m, which ionize ground-state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10{sup -10} s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.

  11. Electroanalytical performance of carbon films with near-atomic flatness.

    PubMed

    Ranganathan, S; McCreery, R L

    2001-03-01

    Physicochemical and electrochemical characterization of carbon films obtained by pyrolyzing a commercially available photoresist has been performed. Photoresist spin-coated on to a silicon wafer was pyrolyzed at 1,000 degrees C in a reducing atmosphere (95% nitrogen and 5% hydrogen) to produce conducting carbon films. The pyrolyzed photoresist films (PPF) show unusual surface properties compared to other carbon electrodes. The surfaces are nearly atomically smooth with a root-mean-square roughness of <0.5 nm. PPF have a very low background current and oxygen/carbon atomic ratio compared to conventional glassy carbon and show relatively weak adsorption of methylene blue and anthraquinone-2,6-disulfonate. The low oxygen/carbon ratio and the relative stability of PPF indicate that surfaces may be partially hydrogen terminated. The pyrolyzed films were compared to glassy carbon (GC) heat treated under the same conditions as pyrolysis to evaluate the electroanalytical utility of PPF. Heterogeneous electron-transfer kinetics of various redox systems were evaluated. For Ru(NH3)6(3+/2+), Fe(CN)6(3-/4-), and chlorpromazine, fresh PPF surfaces show electron-transfer rates similar to those on GC, but for redox systems such as Fe3+/2+, ascorbic acid, dopamine, and oxygen, the kinetics on PPF are slower. Very weak interactions between the PPF surface and these redox systems lead to their slow electron-transfer kinetics. Electrochemical anodization results in a simultaneous increase in background current, adsorption, and electron-transfer kinetics. The PPF surfaces can be chemically modified via diazonium ion reduction to yield a covalently attached monolayer. Such a modification could help in the preparation of low-cost, high-volume analyte-specific electrodes for diverse electroanalytical applications. Overall, pyrolysis of the photoresist yields an electrode surface with properties similar to a very smooth version of glassy carbon, with some important differences in surface

  12. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    adhesion and durability in the environment. Though these coatings are efficient in protecting polymer composites, their application imposes severe constraints. Their thermal expansion coefficients may differ markedly from those of polymer composite substrates: as a result, cracks develop in the coatings on thermal cycling and AO can penetrate through them to the substrate. In addition to the technicalities of forming an effective barrier, such factors as cost, convenience of application and ease of repair are important considerations in the selection of a coating for a particular application. The latter issues drive the aerospace research toward the development of novel light composite materials, like the so called polymer nanocomposites, which are materials with a polymer matrix and a filler with at least one dimension less than 100 nanometers. Current interest in nanocomposites has been generated and maintained because nanoparticle-filled polymers exhibit unique combinations of properties not achievable with traditional composites. These combinations of properties can be achieved because of the small size of the fillers, the large surface area the fillers provide, and in many cases the unique properties of the fillers themselves. In particular, the carbon fiber-based polymeric composite materials are the basic point of interest: the aim of the present study is to find new solution to produce carbon fiber-based composites with even more upgraded performances. One intriguing strategy to tackle such an issue has been picked out in the coupling between the carbon fibers and the carbon nanostructures. That for two main reasons: first, carbon nanostructures have shown fancy potentialities for any kind of technological applications since their discovery, second, the chemical affinity between fiber and nanostructure (made of the same element) should be a likely route to approach the typical problems due to thermo-mechanical compatibility. This work is joined in such framework

  13. Encapsulating "armchair" carbon nanotubes with "zigzag" chains of Fe atoms

    NASA Astrophysics Data System (ADS)

    Boutko, V. G.; Gusev, A. A.; Shevtsova, T. N.; Pashkevich, Yu. G.

    2016-05-01

    Ab initio calculations of structural, electron, and magnetic properties of "armchair" carbon nanotubes (NT) encapsulated by a "zigzag" chain of Fe atoms Fe2@(n,n)m (m = 1, 2; n = 4, 5, 6, 7, 8, 9), are performed within the framework of the density functional theory. It is shown that optimizing the structure along the NT axis can significantly impact the binding energy of the NT and the Fe atom chain. It follows from the calculations that Fe2@(5,5) is the most stable of all the investigated encapsulated nanotubes. A two-fold decrease in the concentration of Fe in an encapsulated NT converts the system from exothermic to endothermic (Fe2@(5,5)m) and vice versa (Fe2@(6,6)m)). For large radii of an encapsulated NT (>4.13 Å) the binding energy of the NT and the Fe atom chain goes to zero, and the magnetic moments of the Fe atoms and the deviation of the Fe atoms from the NT axis go toward analogous values of the free "zigzag" Fe atom chain.

  14. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  15. Interpretation of Hund's multiplicity rule for the carbon atom.

    PubMed

    Hongo, Kenta; Maezono, Ryo; Kawazoe, Yoshiyuki; Yasuhara, Hiroshi; Towler, M D; Needs, R J

    2004-10-15

    Hund's multiplicity rule is investigated for the carbon atom using quantum Monte Carlo methods. Our calculations give an accurate account of electronic correlation and obey the virial theorem to high accuracy. This allows us to obtain accurate values for each of the energy terms and therefore to give a convincing explanation of the mechanism by which Hund's rule operates in carbon. We find that the energy gain in the triplet with respect to the singlet state is due to the greater electron-nucleus attraction in the higher spin state, in accordance with Hartree-Fock calculations and studies including correlation. The method used here can easily be extended to heavier atoms. PMID:15473780

  16. Probing the improbable: imaging carbon atoms in alumina

    SciTech Connect

    Marquis, E A; Yahia, Noor; Larson, David J.; Miller, Michael K; Todd, Richard

    2010-01-01

    Atom-probe tomography has proven very powerful to analyze the detailed structure and chemistry of metallic alloys and semiconductor structures while ceramic materials have remained outside its standard purview. In the current work, we demonstrate that bulk alumina can be quantitatively analyzed and microstructural features observed. The analysis of grain boundary carbon segregation - barely achievable by electron microscopy - opens the possibility of understanding the mechanistic effects of dopants on mechanical properties, fracture and wear properties of bulk oxides.

  17. Stability of conductance oscillations in carbon atomic chains

    NASA Astrophysics Data System (ADS)

    Yu, Jing-Xin; Hou, Zhi-Wei; Liu, Xiu-Ying

    2015-06-01

    The conductance stabilities of carbon atomic chains (CACs) with different lengths are investigated by performing theoretical calculations using the nonequilibrium Green’s function method combined with density functional theory. Regular even-odd conductance oscillation is observed as a function of the wire length. This oscillation is influenced delicately by changes in the end carbon or sulfur atoms as well as variations in coupling strength between the chain and leads. The lowest unoccupied molecular orbital in odd-numbered chains is the main transmission channel, whereas the conductance remains relatively small for even-numbered chains and a significant drift in the highest occupied molecular orbital resonance toward higher energies is observed as the number of carbon atoms increases. The amplitude of the conductance oscillation is predicted to be relatively stable based on a thiol joint between the chain and leads. Results show that the current-voltage evolution of CACs can be affected by the chain length. The differential and second derivatives of the conductance are also provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11404094, and 51201059), the Priority Scientific and Technological Project of Henan Province, China (Grant No. 14A140027), the School Fund (Grant No. 2012BS055), and the Plan of Natural Science Fundamental Research of Henan University of Technology, China (Grant No. 2014JCYJ15).

  18. Carbon Nanotube Atomic Force Microscopy for Proteomics and Biological Forensics

    SciTech Connect

    Noy, A; De Yoreo, J J; Malkin, A J

    2002-01-01

    The Human Genome Project was focused on mapping the complete genome. Yet, understanding the structure and function of the proteins expressed by the genome is the real end game. But there are approximately 100,000 proteins in the human body and the atomic structure has been determined for less than 1% of them. Given the current rate at which structures are being solved, it will take more than one hundred years to complete this task. The rate-limiting step in protein structure determination is the growth of high-quality single crystals for X-ray diffraction. Synthesis of the protein stock solution as well as X-ray diffraction and analysis can now often be done in a matter of weeks, but developing a recipe for crystallization can take years and, especially in the case of membrane proteins, is often completely unsuccessful. Consequently, techniques that can either help to elucidate the factors controlling macromolecular crystallization, increase the amount of structural information obtained from crystallized macromolecules or eliminate the need for crystallization altogether are of enormous importance. In addition, potential applications for those techniques extend well beyond the challenges of proteomics. The global spread of modern technology has brought with it an increasing threat from biological agents such as viruses. As a result, developing techniques for identifying and understanding the operation of such agents is becoming a major area of forensic research for DOE. Previous to this project, we have shown that we can use in situ atomic force microscopy (AFM) to image the surfaces of growing macromolecular crystals with molecular resolution (1-5) In addition to providing unprecedented information about macromolecular nucleation, growth and defect structure, these results allowed us to obtain low-resolution phase information for a number of macromolecules, providing structural information that was not obtainable from X-ray diffraction(3). For some virus systems

  19. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina

    NASA Astrophysics Data System (ADS)

    Peterson, Eric J.; Delariva, Andrew T.; Lin, Sen; Johnson, Ryan S.; Guo, Hua; Miller, Jeffrey T.; Hun Kwak, Ja; Peden, Charles H. F.; Kiefer, Boris; Allard, Lawrence F.; Ribeiro, Fabio H.; Datye, Abhaya K.

    2014-09-01

    Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the γ-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 °C. The catalyst activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts.

  20. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina.

    PubMed

    Peterson, Eric J; DeLaRiva, Andrew T; Lin, Sen; Johnson, Ryan S; Guo, Hua; Miller, Jeffrey T; Hun Kwak, Ja; Peden, Charles H F; Kiefer, Boris; Allard, Lawrence F; Ribeiro, Fabio H; Datye, Abhaya K

    2014-01-01

    Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the γ-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 °C. The catalyst activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts. PMID:25222116

  1. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    adhesion and durability in the environment. Though these coatings are efficient in protecting polymer composites, their application imposes severe constraints. Their thermal expansion coefficients may differ markedly from those of polymer composite substrates: as a result, cracks develop in the coatings on thermal cycling and AO can penetrate through them to the substrate. In addition to the technicalities of forming an effective barrier, such factors as cost, convenience of application and ease of repair are important considerations in the selection of a coating for a particular application. The latter issues drive the aerospace research toward the development of novel light composite materials, like the so called polymer nanocomposites, which are materials with a polymer matrix and a filler with at least one dimension less than 100 nanometers. Current interest in nanocomposites has been generated and maintained because nanoparticle-filled polymers exhibit unique combinations of properties not achievable with traditional composites. These combinations of properties can be achieved because of the small size of the fillers, the large surface area the fillers provide, and in many cases the unique properties of the fillers themselves. In particular, the carbon fiber-based polymeric composite materials are the basic point of interest: the aim of the present study is to find new solution to produce carbon fiber-based composites with even more upgraded performances. One intriguing strategy to tackle such an issue has been picked out in the coupling between the carbon fibers and the carbon nanostructures. That for two main reasons: first, carbon nanostructures have shown fancy potentialities for any kind of technological applications since their discovery, second, the chemical affinity between fiber and nanostructure (made of the same element) should be a likely route to approach the typical problems due to thermo-mechanical compatibility. This work is joined in such framework

  2. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

    SciTech Connect

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-17

    In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  3. Diamond like carbon coatings: Categorization by atomic number density

    NASA Technical Reports Server (NTRS)

    Angus, John C.

    1986-01-01

    Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.

  4. Improvement of capacitive performances of symmetric carbon/carbon supercapacitors by addition of nanostructured polypyrrole powder

    NASA Astrophysics Data System (ADS)

    Benhaddad, L.; Gamby, J.; Makhloufi, L.; Pailleret, A.; Pillier, F.; Takenouti, H.

    2016-03-01

    A nanostructured polypyrrole powder was synthesized in a previous work from the oxidation of pyrrole by a nanostructured MnO2 powder used simultaneously as an oxidizing agent and a sacrificial template in a redox heterogeneous mechanism. In this study, this original PPy powder was used as an active additive material with different ratio in carbon/carbon symmetrical supercapacitors whose performances were studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) using a Swagelok-type cell. From the EIS spectra, the complex capacitance was extracted using a model involving two Cole-Cole type complex capacitances linked in series. The specific capacitance values evaluated by EIS and cyclic voltammetry are in a good agreement between them. The results show that the addition of nanostructured polypyrrole powder improves significantly the specific capacitance of the carbon electrode and consequently the performances of carbon/carbon supercapacitors. The original and versatile synthesis method used to produce this polypyrrole powder appears to be attractive for large scale production of promising additives for electrode materials of supercapacitors.

  5. Reactions of atomic carbon with oxygenated compounds and the investigation of fullerene chemistry

    SciTech Connect

    Chang, Tsongming.

    1993-01-01

    The reaction of atomic carbon with oxygenated organics produces CO and an energetic fragment. Reactions involving deoxygenation of carbonyl compounds to carbenes, epoxides to alkenes, and ethers to a pair of radicals have been investigated. Carbon atom deoxygenation of cyclopentanone and cylcopentene oxide give the cleavage products, ethylene and allene, along with cyclopentene. The use of 2,2,5,5-d[sub 4]-cyclopentanone as the substrate reveals the direct cleavage of cyclopentanylidene carbene is occurring. A calculation of the energetics of this reaction at the MP4/6-31G[sup *]//6-31G[sup *] level suggests a nonconcerted cleavage via a biradical intermediate. Carbon atoms deoxygenate cyclohexene. Inert gas deactivated energetic cyclohexene. The deoxygenation of other oxygenated compounds by atomic carbon, such as 7-oxabicyclo[2.2.1]heptane to cyclohexane-1,4-diyl biradical, 1,2-epoxy-5-hexane to energetic 1,S-hexadiene, allyl ether to allyl radicals, and [gamma]-butyrolactone to trimethylene-1,3-diyl biradical have also been carried out. Methylketene was deoxygenated to vinylidene carbene which rearranges to propyne via a 1,2-H shift. Dimethylketene was deoxygenated to dimethylethylidene carbene which gives 2-butyne via a 1,2-methyl shift and 1,3-butadiene via a vicinal C-H bond insertion. The addition of hydrogen donors to systems in which C[sub 60] is generated results in the formation of polycyclic aromatic hydrocarbons whose carbon skeleton might represent intermediates in fullerene formation. Based on this result, the author proposed a mechanism of fullerene formation. The use of various amounts of propene as a trap showed that the yield of fullerenes decreases as the amount of the trapped product increases. Attempts to trap intermediates in fullerene formation using halides and metals have been studied. The author has attempted metal encapsulation reactions and investigated some possible chemical reactions of fullerenes.

  6. Current-induced dynamics in carbon atomic contacts

    PubMed Central

    Gunst, Tue

    2011-01-01

    Summary Background: The effect of electric current on the motion of atoms still poses many questions, and several mechanisms are at play. Recently there has been focus on the importance of the current-induced nonconservative forces (NC) and Berry-phase derived forces (BP) with respect to the stability of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects. Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed. Molecular dynamics including current-induced forces enables an energy redistribution mechanism among the modes, mediated by anharmonic interactions, which is found to be vital in the description of the electrical heating. Conclusion: We have developed a semiclassical Langevin equation approach that can be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system. PMID:22259765

  7. Theoretical two-atom thick semiconducting carbon sheet.

    PubMed

    Hu, Meng; Shu, Yu; Cui, Lin; Xu, Bo; Yu, Dongli; He, Julong

    2014-09-14

    A two-dimensional carbon allotrope, H-net, is proposed using first principle calculations. H-net incorporates C4 distorted squares, C6 hexagons, and C8 octagons. Unlike previously reported planar graphene and other theoretical carbon sheets, H-net is a two-atom thick polymorph with identical C6 + C4 + C6 components cross-facing and covalently buckled to feature a handshake-like model. The feasibility of H-net is evident from its dynamic stability as confirmed by phonon-mode analysis and its lower total energy. H-net is energetically more favorable than synthesized graphdiyne and theoretical graphyne, BPC, S-graphene, polycyclic net, α-squarographite, and lithographite. We explored a possible route for the synthesis of H-net from graphene nanoribbons. Electronic band structure calculations indicated that H-net is a semiconductor with an indirect band gap of 2.11 eV, whereas graphene and many other two-dimensional carbon sheets are metallic. We also explored the electronic structure of one-dimensional nanoribbons derived from H-net. The narrowest H-net nanoribbon showed metallic behavior, whereas the other nanoribbons are semiconductors with band gaps that increase as the nanoribbons widen. H-net and its tailored nanoribbons are expected to possess more electronic properties than graphene because of their exceptional crystal structure and different energy band gaps. PMID:25053451

  8. First principles study of foreign interstitial atom (carbon, nitrogen) interactions with intrinsic defects in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Song, Chi; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Liu, C. S.

    2012-11-01

    center, as presented in Fig. 2. The differential charge density is defined as the difference between the charge density of the interstitial-containing tungsten system and the superposition densities of tungsten host and the free interstitial. In Fig. 2, there are significant charge accumulations around the FIA and depletions on tungsten. This shows that the FIA not only attracts electrons from metals, but also induces electron redistribution nearby. The charge depletion on tungsten atoms around FIA leads to the weakening of the W-W bond, which in turn results in the decrease of vacancy formation energy. The charge transfer between the FIA and its nearest-neighbors is more significant for nitrogen than for carbon. This explains why nitrogen reduces the vacancy formation energy much more than carbon. To give a further confirmation, we list the charges of neighbor tungsten atoms from bader charge analysis [35,36] in Table 3. The bader charge analysis uses as sole input the charge density and considers the zero-flux surfaces as the borders between different atoms. Using these borders to define the volume related to each atom, the charge of each atom is obtained by integrating the density over this volume. Here, the bader charge is calculated using a grid based on the algorithm developed by Henkelman et al. [35,36] As can be seen, the charges of tungsten atoms nearest-neighbor to nitrogen are more positive than that to carbon. In addition, as shown in Fig. 2, for carbon, the charge transfer is only clearly visible between the FIA and its 1nn, while for nitrogen, both the 1nn and 2nn contribute remarkably. This implies that the influence range is larger for a nitrogen atom than for a carbon atom.Besides the charge differences, the partial density of states for FIA (p-DOS) and its 1nn and 2nn tungsten atoms (d-DOS) are shown in Fig. 3. The depletion in the tungsten 5d states of the density of states is observed compared to that of pure bcc tungsten. There is a hybridization

  9. Atomic-Scale Investigations of Multiwall Carbon Nanotube Growth

    NASA Astrophysics Data System (ADS)

    Behr, Michael John

    The combination of unique mechanical, thermal, optical, and electronic properties of carbon nanotubes (CNTs) make them a desirable material for use in a wide range of applications. Many of these unique properties are highly sensitive to how carbon atoms are arranged within the graphene nanotube wall. Precise structural control of this arrangement remains the key challenge of CNT growth to realizing their technological potential. Plasma-enhanced chemical vapor deposition (PECVD) from methane-hydrogen gas mixtures using catalytic nanoparticles enables large-scale growth of CNT films and controlled spatial placement of CNTs on a substrate, however, much is still unknown about what happens to the catalyst particle during growth, the atomistic mechanisms involved, and how these dictate the final nanotube structure. To investigate the fundamental processes of CNT growth by PECVD, a suite of characterization techniques were implemented, including attenuated total-reflection Fourier transform infrared spectroscopy (ATR-FTIR), optical emission spectroscopy (OES), Raman spectroscopy, convergent-beam electron diffraction (CBED), high-resolution transmission and scanning-transmission electron microscopy (TEM, STEM), energy dispersive x-ray spectroscopy, and electron energy-loss spectroscopy (EELS). It is found that hydrogen plays a critical role in determining the final CNT structure through controlling catalyst crystal phase and morphology. At low hydrogen concentrations in the plasma iron catalysts are converted to Fe3C, from which high-quality CNTs grow; however, catalyst particles remain as pure iron when hydrogen is in abundance, and produce highly defective CNTs with large diameters. The initially faceted and equiaxed catalyst nanocrystals become deformed and are elongated into a teardrop morphology once a tubular CNT structure is formed around the catalyst particles. Although catalyst particles are single crystalline, they exhibit combinations of small-angle (˜1°-3

  10. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.

    PubMed

    Wodyński, Artur; Malkina, Olga L; Pecul, Magdalena

    2016-07-21

    The (2)JCC, (3)JCC, and (4)JCC spin-spin coupling constants in the systems with a heavy atom (Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po) in the coupling path have been calculated by means of density functional theory. The main goal was to estimate the relativistic effects on spin-spin coupling constants and to explore the factors which may influence them, including the nature of the heavy atom and carbon hybridization. The methods applied range, in order of reduced complexity, from the Dirac-Kohn-Sham (DKS) method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component zeroth-order regular approximation (ZORA) Hamiltonians, to scalar effective core potentials (ECPs) with the nonrelativistic Hamiltonian. The use of DKS and ZORA methods leads to very similar results, and small-core ECPs of the MDF and MWB variety reproduce correctly the scalar relativistic effects. Scalar relativistic effects usually are larger than the spin-orbit coupling effects. The latter tend to influence the most the coupling constants of the sp(3)-hybridized carbon atoms and in compounds of the p-block heavy atoms. Large spin-orbit coupling contributions for the Po compounds are probably connected with the inverse of the lowest triplet excitation energy. PMID:27177252

  11. Carbon–carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Jin, Zhichao; Zheng, Pengcheng; Ganguly, Rakesh; Chi, Yonggui Robin

    2015-01-01

    The activation of carbon–carbon (C–C) bonds is an effective strategy in building functional molecules. The C–C bond activation is typically accomplished via metal catalysis, with which high levels of enantioselectivity are difficult to achieve due to high reactivity of metal catalysts and the metal-bound intermediates. It remains largely unexplored to use organocatalysis for C–C bond activation. Here we describe an organocatalytic activation of C–C bonds through the addition of an NHC to a ketone moiety that initiates a C–C single bond cleavage as a key step to generate an NHC-bound intermediate for chemo- and stereo-selective reactions. This reaction constitutes an asymmetric functionalization of cyclobutenones using organocatalysts via a C–C bond activation process. Structurally diverse and multicyclic compounds could be obtained with high optical purities via an atom and redox economic process. PMID:25652912

  12. The initial flow dynamics of light atoms through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cannon, James; Kim, Daejoong; Hess, Ortwin

    2011-04-01

    Carbon nanotubes are becoming increasingly viable as membranes for application in a wide variety of nano-fluidic applications, such as nano-scale nozzles. For potential applications that utilize switching on and off of flow through nanotube nozzles, it is important to understand the initial flow dynamics. Furthermore, when the nanotube interacts strongly with the fluid, the flow may be very different from conventional simulations, which consider atoms (such as argon, for example) that interact only weakly with the nanotube. Therefore, to better understand such flows and explore the potential manipulation of flow that can be achieved, we consider the initial flow dynamics of a light fluid through carbon nanotube nozzles, using non-equilibrium molecular dynamics simulations. Our studies show that if the conditions are controlled carefully, unusual phenomena can be generated, such as pulsed flow and very nonlinear increases in flow rate with nanotube diameter. We detail the physical reasons for such phenomena and describe how the pulsation can be controlled using temperature.

  13. Atomic Layer Deposition on Carbon Nanotubes and their Assemblies

    NASA Astrophysics Data System (ADS)

    Stano, Kelly Lynn

    Global issues related to energy and the environment have motivated development of advanced material solutions outside of traditional metals ceramics, and polymers. Taking inspiration from composites, where the combination of two or more materials often yields superior properties, the field of organic-inorganic hybrids has recently emerged. Carbon nanotube (CNT)-inorganic hybrids have drawn widespread and increasing interest in recent years due to their multifunctionality and potential impact across several technologically important application areas. Before the impacts of CNT-inorganic hybrids can be realized however, processing techniques must be developed for their scalable production. Optimization in chemical vapor deposition (CVD) methods for synthesis of CNTs and vertically aligned CNT arrays has created production routes both high throughput and economically feasible. Additionally, control of CVD parameters has allowed for growth of CNT arrays that are able to be drawn into aligned sheets and further processed to form a variety of aligned 1, 2, and 3-dimensional bulk assemblies including ribbons, yarns, and foams. To date, there have only been a few studies on utilizing these bulk assemblies for the production of CNT-inorganic hybrids. Wet chemical methods traditionally used for fabricating CNT-inorganic hybrids are largely incompatible with CNT assemblies, since wetting and drying the delicate structures with solvents can destroy their structure. It is therefore necessary to investigate alternative processing strategies in order to advance the field of CNT-inorganic hybrids. In this dissertation, atomic layer deposition (ALD) is evaluated as a synthetic route for the production of large-scale CNT-metal oxide hybrids as well as pure metal oxide architectures utilizing CNT arrays, ribbons, and ultralow density foams as deposition templates. Nucleation and growth behavior of alumina was evaluated as a function of CNT surface chemistry. While highly graphitic

  14. Additives to reduce susceptibility of thermosets and thermoplastics to erosion from atomic oxygen

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1990-01-01

    Polymeric materials have many attractive features such as light weight, high strength, and broad applicability in the form of films, fibers, and molded objects. In low earth orbit (LEO), these materials, when exposed on the exterior of the spacecraft, have the serious disadvantage of being susceptible to erosion by atomic oxygen (AO). AO is the most common chemical species at LEO altitudes. AO can be an extremely efficient oxidizing agent as was apparent from the extensive erosion of organic films exposed in STS missions. The mechanism for erosion involves the reaction of oxygen atoms at the surface of the substrate to form small molecular species. The susceptibility of polymeric materials varies with their chemical composition. Films with silicon atoms incorporated in the molecular structures have large coefficients of thermal expansion. This limits their utility. In an alternative approach additives were sought that mix physically and form a protective oxide layer when the film is exposed to AO. A large number of organic compounds containing silicon, germanium, or tin atoms were screened. Most were found to have very limited solubility in the polyetherimide (Ultem) films that were being protected from AO. However, one, bis(triphenyl tin) oxide, (BTO), is miscible in Ultem up to about 25 percent. Films of Ultem polyimide containing up to 25 wt percent BTO were prepared by evaporation of solvent from a solution of Ultem and BTO. The effects of AO on these films were simulated in the oxygen atmosphere of a radio frequency glow-discharge chamber. In the second part of this study, atoms were incorporated in epoxy resins. Experiments are in progress to measure the resistance of films of the cured epoxy to AO in the discharge chamber.

  15. Electronic and magnetic properties of a carbon atom chemisorbed on model clusters simulating the (100) surface of nickel

    NASA Astrophysics Data System (ADS)

    Fournier, R.; Andzelm, J.; Goursot, A.; Russo, N.; Salahub, D. R.

    1990-08-01

    Both spin-polarized and unpolarized linear combinations of Gaussian-type orbitals-model core potential-local spin density (LCGTO-MCP-LSD) calculations have been performed for clusters representing the three possible high symmetry chemisorption sites for carbon on the (100) surface of nickel. We found that the most stable chemisorption site is the fourfold hollow, in agreement with the experimental evidence. For this site, the computed equilibrium NiC distances are 1.79 and 1.77 Å at the spin-polarized and unpolarized levels, very close to the most recent experimental measurements. The calculated spin-polarized vibrational frequency perpendicular to the surface is found to be 407 cm-1 (410 cm-1 expt). The values of the binding energy are 11.5 and 11.8 eV at polarized and unpolarized levels, respectively (˜7 eV, expt); the carbon atom is strongly bound, essentially by a triple bond formed by interaction of the px, py, and pz orbitals of carbon with, primarily, the d orbitals of the four nearby surface nickel atoms. The effect of carbon chemisorption on the nickel magnetism has also been studied. The addition of the carbon atom reduces the spin magnetic moment of pure nickel by 2 or 4 μB depending on which of the two nearly degenerate nickel cluster states is taken as reference. The reduction of atomic spin magnetic moments is clearly larger on the 4 nickel atoms nearest to the carbon. The global and local (atomic) reduction in spin magnetic moments originate from some up-spin d density of states being pushed above EF, through antibonding interactions with the carbon 2p orbitals, and hence emptied.

  16. LETTER TO THE EDITOR: Enhancement of neutron radiation dose by the addition of sulphur-33 atoms

    NASA Astrophysics Data System (ADS)

    Porras, I.

    2008-04-01

    The use of neutrons in radiotherapy allows the possibility of producing nuclear reactions in a specific target inserted in the medium. 10B is being used to induce reactions (n, α), a technique called boron neutron capture therapy. I have studied the possibility of inducing a similar reaction using the nucleus of 33S, for which the reaction cross section presents resonances for keV neutrons, the highest peak occurring at 13.5 keV. Here shown, by means of Monte Carlo simulation of point-like sources of neutrons in this energy range, is an enhancement effect on the absorbed dose in water by the addition of 33S atoms. In addition to this, as the range of the alpha particle is of the order of a mammalian cell size, the energy deposition via this reaction results mainly inside the cells adjacent to the interaction site. The main conclusion of the present work is that the insertion of these sulphur atoms in tumoral cells would enhance the effect of neutron irradiation in the keV range.

  17. CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates

    PubMed Central

    Mallajosyula, Sairam S.; Guvench, Olgun; Hatcher, Elizabeth; MacKerell, Alexander D.

    2012-01-01

    Presented is an extension of the CHARMM additive all-atom carbohydrate force field to enable the modeling of phosphate and sulfate linked to carbohydrates. The parameters are developed in a hierarchical fashion using model compounds containing the key atoms in the full carbohydrates. Target data for parameter optimization included full two-dimensional energy surfaces defined by the glycosidic dihedral angle pairs in the phosphate/sulfate model compound analogs of hexopyranose monosaccharide phosphates and sulfates, as determined by quantum mechanical (QM) MP2/cc-pVTZ single point energies on MP2/6-31+G(d) optimized structures. In order to achieve balanced, transferable dihedral parameters for the dihedral angles, surfaces for all possible anomeric and conformational states were included during the parametrization process. In addition, to model physiologically relevant systems both the mono- and di-anionic charged states were studied for the phosphates. This resulted in over 7000 MP2/cc-pVTZ//MP2/6-31G+(d) model compound conformational energies which, supplemented with QM geometries, were the main target data for the parametrization. Parameters were validated against crystals of relevant monosaccharide derivatives obtained from the Cambridge Structural Database (CSD) and larger systems, namely inositol-(tri/tetra/penta) phosphates non-covalently bound to the pleckstrin homology (PH) domain and oligomeric chondroitin sulfate in solution and in complex with cathepsin K protein. PMID:22685386

  18. Atomic investigation of alloying Cr, Ti, Y additions in a grain boundary of vanadium

    NASA Astrophysics Data System (ADS)

    Zhang, Pengbo; Li, Xiaojie; Zhao, Jijun; Zheng, Pengfei; Chen, Jiming

    2016-01-01

    The effect of alloying additions (Cr, Ti and Y) in a vanadium (V) ∑3 (111) grain boundary (GB) is investigated by first-principles calculations. To determine site preference and segregation properties of Cr, Ti and Y in the GB and bulk, we calculate the formation energies and segregation energies for different interstitial and substitutional sites. Cr/Ti/Y atom prefers to segregate to the substitutional sites of the GB from bulk environment, whereas Cr segregation to GB is very weak. Based on the Rice and Wang's model, Cr acts as the GB cohesion, while Ti and Y are strong embrittlers. The analysis of atomic and electronic structures provides a reasonable expansion for the embrittlement behavior. Moreover, the effect of Cr, Ti and Y in the GB on solution of interstitial impurities C, N, O, H, and He are determined. The results show that Cr restrains solution of these impurities in the GB, while Ti tends to form Ti-N complex by absorbing N impurities and Y can absorbs O and He impurities. The present calculations are helpful for understanding the behavior of alloying Cr, Ti, Y additions at the grain boundary of vanadium.

  19. CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates and Inositol

    PubMed Central

    Hatcher, Elizabeth; Guvench, Olgun; MacKerell, Alexander D.

    2009-01-01

    Parametrization of the additive all-atom CHARMM force field for acyclic polyalcohols, acyclic carbohydrates and inositol is conducted. Initial parameters were transferred from the alkanes and hexopyranose carbohydrates, with subsequent development and optimization of parameters unique to the molecules considered in this study. Using the model compounds acetone and acetaldehyde, nonbonded parameters for carbonyls were optimized targeting quantum mechanical interaction data for solute-water pairs and pure solvent thermodynamic data. Bond and angle parameters were adjusted by comparing optimized geometries to small molecule crystal survey data and by performing vibrational analyses on acetone, acetaldehyde and glycerol. C-C-C-C, C-C-C-O, C-C-OH and O-C-C-O torsional parameters for polyol chains were fit to quantum mechanical dihedral potential energy scans comprising over 1500 RIMP2/cc-pVTZ//MP2/6-31G(d) conformations using an automated Monte Carlo simulated annealing procedure. Comparison of computed condensed-phase data, including crystal lattice parameters and densities, NMR proton-proton couplings, densities and diffusion coefficients of aqueous solutions, to experimental data validated the optimized parameters. Parameter development for these compounds proved particularly challenging because of the flexibility of the acyclic sugars and polyalcohols as well as the intramolecular hydrogen bonding between vicinal hydroxyls for all of the compounds. The newly optimized additive CHARMM force field parameters are anticipated to be of utility for atomic level of detail simulations of acyclic polyalcohols, acyclic carbohydrates and inositol in solution. PMID:20160980

  20. Biofunctionalization of carbon nanotubes for atomic force microscopy imaging.

    PubMed

    Woolley, Adam T

    2004-01-01

    The study of biological processes relies increasingly on methods for probing structure and function of biochemical machinery (proteins, nucleic acids, and so on) with submolecular resolution. Atomic force microscopy (AFM) has recently emerged as a promising approach for imaging biological structures with resolution approaching the nanometer scale. Two important limitations of AFM in biological imaging are (1) resolution is constrained by probe tip dimensions, and (2) typical probe tips lack chemical specificity to differentiate between functional groups in biological structures. Single-walled carbon nanotubes (SWNTs) offer an intriguing possibility for providing both high resolution and chemical selectivity in AFM imaging, thus overcoming the enumerated limitations. Procedures for generating SWNT tips for AFM will be described. Carboxylic acid functional groups at the SWNT ends can be functionalized using covalent coupling chemistry to attach biological moieties via primary amine groups. Herein, the focus will be on describing methods for attaching biotin to SWNT tips and probing streptavidin on surfaces; importantly, this same coupling chemistry can also be applied to other biomolecules possessing primary amine groups. Underivatized SWNT tips can also provide high-resolution AFM images of DNA. Biofunctionalization of SWNT AFM tips offers great potential to enable high-resolution, chemically selective imaging of biological structures. PMID:15197321

  1. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    SciTech Connect

    Zope, Rajendra R. Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  2. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    NASA Astrophysics Data System (ADS)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  3. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions.

    PubMed

    Zope, Rajendra R; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability. PMID:26328842

  4. Evaluation of phenyl carbonates as electrolyte additives in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Petibon, R.; Rotermund, L. M.; Dahn, J. R.

    2015-08-01

    The impact of the electrolyte additives methyl phenyl carbonate, ethyl phenyl carbonate, and diphenyl carbonate was evaluated in Li[Ni0.33Mn0.33Co0.33]O2/graphite pouch cells with or without 2% vinylene carbonate. Experiments included high precision coulometry, automated storage, electrochemical impedance spectroscopy on symmetric cells and gas chromatography coupled with mass spectrometry. Gas chromatography/mass spectrometry analysis, electrochemical studies during the first charge and impedance spectroscopy on symmetric cells indicated that phenyl carbonates act as solid electrolyte interphase modifiers rather than formers. High precision coulometry showed that cells containing 1-4 wt% methyl phenyl carbonate, ethyl phenyl carbonate or diphenyl carbonate had similar coulombic efficiencies and charge-endpoint capacity slippage as cells filled with 2 wt% vinylene carbonate. Impedance spectroscopy showed that cells containing phenyl carbonates have substantially lower impedance than cells filled with 2 wt% vinylene carbonate and produced minimal volumes of gas during cell use. Results presented in the report show that phenyl carbonates are competitive additives for 4.2 V class cells and should lead to good cycle life, low polarization and low gas evolution during normal use. Phenyl carbonates can also be used as gas-producing safety agents (to trip pressure activated disconnects) in combination with vinylene carbonate in cylindrical or prismatic cells without adverse effects.

  5. Roles of additives and surface control in slurry atomization. Final project report

    SciTech Connect

    Tsai, S.C.

    1992-12-31

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy at 25{degrees}C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.

  6. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  7. Highly oriented carbon fiber–polymer composites via additive manufacturing

    DOE PAGESBeta

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; Duty, Chad E.; Love, Lonnie J.; Naskar, Amit K.; Blue, Craig A.; Ozcan, Soydan

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  8. Highly oriented carbon fiber–polymer composites via additive manufacturing

    SciTech Connect

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; Duty, Chad E.; Love, Lonnie J.; Naskar, Amit K.; Blue, Craig A.; Ozcan, Soydan

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructure and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.

  9. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    PubMed

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to < 3 nm. The effect of atomic oxygen (AO) exposure on this oxidized carbon phosphide layer was subsequently probed in situ using XPS. Initially AO exposure resulted in a loss of carbon atoms from the surface, but increased the surface concentration of phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers. PMID:16853637

  10. A simple and clean source of low-energy atomic carbon

    SciTech Connect

    Krasnokutski, S. A.; Huisken, F.

    2014-09-15

    A carbon source emitting low-energy carbon atoms from a thin-walled, sealed tantalum tube via thermal evaporation has been constructed. The tube is made from a 0.05 mm thick tantalum foil and filled with {sup 12}C or {sup 13}C carbon powder. After being sealed, it is heated by direct electric current. The solvated carbon atoms diffuse to the outer surface of the tube and, when the temperature rises over 2200 K, the evaporation of atomic carbon from the surface of the tantalum tube is observed. As the evaporated species have low energy they are well-suited for the incorporation into liquid helium droplets by the pick-up technique. Mass analysis of the incorporated species reveals the dominant presence of atomic carbon and very low abundances of C{sub 2} and C{sub 3} molecules (<1%). This is in striking contrast to the thermal evaporation of pure carbon, where C{sub 3} molecules are found to be the dominant species in the gas phase. Due to the thermal evaporation and the absence of high-energy application required for the dissociation of C{sub 2} and C{sub 3} molecules, the present source provides carbon atoms with rather low energy.

  11. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-01

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species. PMID:27070292

  12. Ab initio study of semiconductor atoms impurities in zigzag edge (10,0) carbon nanotubes

    SciTech Connect

    Muttaqien, Fahdzi Suprijadi

    2015-04-16

    The substitutional impurities in zigzag edge (10,0) carbon nanotubes have been studied by using first principles calculations. Silicon (Si), gallium (Ga), and arsenic (As) atom have been chosen as semiconductor based-atom for replacing carbon atoms in CNT’s surface. The silicon atom changes the energy gap of pristine zigzag (10,0) CNT, it is 0.19 eV more narrow than that of pristine CNT. Geometrically, the silicon atom creates sp{sup 3} bond with three adjacent carbon atoms, where the tetrahedral form of its sp{sup 3} bond is consisted of free unoccupied state. The silicon atom does not induce magnetism to zigzag CNT. Due to gallium (Ga) and arsenic (As) atom substitution, the zigzag CNT becomes metallic and has magnetic moment of 1 µ{sub B}. The valance and conduction band are crossed each other, then the energy gap is vanished. The electronic properties of GaAs-doped CNT are dominantly affected by gallium atom and its magnetic properties are dominantly affected by arsenic atom. These results prove that the CNT with desired properties can be obtained with substitutional impurities without any giving structural defect.

  13. Effects of Atomic-Scale Structure on the Fracture Properties of Amorphous Carbon - Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    The fracture of carbon materials is a complex process, the understanding of which is critical to the development of next generation high performance materials. While quantum mechanical (QM) calculations are the most accurate way to model fracture, the fracture behavior of many carbon-based composite engineering materials, such as carbon nanotube (CNT) composites, is a multi-scale process that occurs on time and length scales beyond the practical limitations of QM methods. The Reax Force Field (ReaxFF) is capable of predicting mechanical properties involving strong deformation, bond breaking and bond formation in the classical molecular dynamics framework. This has been achieved by adding to the potential energy function a bond-order term that varies continuously with distance. The use of an empirical bond order potential, such as ReaxFF, enables the simulation of failure in molecular systems that are several orders of magnitude larger than would be possible in QM techniques. In this work, the fracture behavior of an amorphous carbon (AC) matrix reinforced with CNTs was modeled using molecular dynamics with the ReaxFF reactive forcefield. Care was taken to select the appropriate simulation parameters, which can be different from those required when using traditional fixed-bond force fields. The effect of CNT arrangement was investigated with three systems: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. For each arrangement, covalent bonds are added between the CNTs and AC, with crosslink fractions ranging from 0-25% of the interfacial CNT atoms. The SWNT and MWNT array systems represent ideal cases with evenly spaced CNTs; the SWNT bundle system represents a more realistic case because, in practice, van der Waals interactions lead to the agglomeration of CNTs into bundles. The simulation results will serve as guidance in setting experimental processing conditions to optimize the mechanical properties of CNT

  14. Structure and stability of a silicon cluster on sequential doping with carbon atoms

    NASA Astrophysics Data System (ADS)

    AzeezullaNazrulla, Mohammed; Joshi, Krati; Israel, S.; Krishnamurty, Sailaja

    2016-02-01

    SiC is a highly stable material in bulk. On the other hand, alloys of silicon and carbon at nanoscale length are interesting from both technological as well fundamental view point and are being currently synthesized by various experimental groups (Truong et. al., 2015 [26]). In the present work, we identify a well-known silicon cluster viz., Si10 and dope it sequentially with carbon atoms. The evolution of electronic structure (spin state and the structural properties) on doping, the charge redistribution and structural properties are analyzed. It is interesting to note that the ground state SiC clusters prefer to be in the lowest spin state. Further, it is seen that carbon atoms are the electron rich centres while silicon atoms are electron deficient in every SiC alloy cluster. The carbon-carbon bond lengths in alloy clusters are equivalent to those seen in fullerene molecules. Interestingly, the carbon atoms tend to aggregate together with silicon atoms surrounding them by donating the charge. As a consequence, very few Si-Si bonds are noted with increasing concentrations of C atoms in a SiC alloy. Physical and chemical stability of doped clusters is studied by carrying out finite temperature behaviour and adsorbing O2 molecule on Si9C and Si8C2 clusters, respectively.

  15. Theoretical study of addition reactions of carbene, silylene, and germylene to carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Ying; Su, Ming-Der

    2004-08-01

    A theoretical study of the mechanism of the reaction of a single-walled carbon nanotube (SWCNT) with carbene (H 2C), silylene (H 2Si), and germylene (H 2Ge) has been carried out using a two-layered ONIOM(B3LYP/6-311G ∗:PM3) approach. The main findings are as follows: (1) The computational results based on the method used in this work are in good agreement with recent theoretical findings [Angew. Chem. Int. Ed. 41 (2002) 1853]. That is, SWCNTs with H 2C, H 2Si, and H 2Ge addends favor opened structures rather than three-membered rings. (2) The greater the atomic number of the carbene center, the larger the activation energy and the less exothermic (or the more endothermic) the cycloaddition reaction becomes. Therefore, addition to the C dbnd C bond of a SWCNT is more difficult the heavier the carbene center. (3) The theoretical observations suggest that the singlet-triplet splitting of a carbene can be used as a guide to its reactivity during the SWCNT cycloaddition process.

  16. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube.

    PubMed

    Bondarev, I V

    2015-02-23

    Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation. PMID:25836436

  17. Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon.

    PubMed

    Bhaskaran, Harish; Gotsmann, Bernd; Sebastian, Abu; Drechsler, Ute; Lantz, Mark A; Despont, Michel; Jaroenapibal, Papot; Carpick, Robert W; Chen, Yun; Sridharan, Kumar

    2010-03-01

    Understanding friction and wear at the nanoscale is important for many applications that involve nanoscale components sliding on a surface, such as nanolithography, nanometrology and nanomanufacturing. Defects, cracks and other phenomena that influence material strength and wear at macroscopic scales are less important at the nanoscale, which is why nanowires can, for example, show higher strengths than bulk samples. The contact area between the materials must also be described differently at the nanoscale. Diamond-like carbon is routinely used as a surface coating in applications that require low friction and wear because it is resistant to wear at the macroscale, but there has been considerable debate about the wear mechanisms of diamond-like carbon at the nanoscale because it is difficult to fabricate diamond-like carbon structures with nanoscale fidelity. Here, we demonstrate the batch fabrication of ultrasharp diamond-like carbon tips that contain significant amounts of silicon on silicon microcantilevers for use in atomic force microscopy. This material is known to possess low friction in humid conditions, and we find that, at the nanoscale, it is three orders of magnitude more wear-resistant than silicon under ambient conditions. A wear rate of one atom per micrometre of sliding on SiO(2) is demonstrated. We find that the classical wear law of Archard does not hold at the nanoscale; instead, atom-by-atom attrition dominates the wear mechanisms at these length scales. We estimate that the effective energy barrier for the removal of a single atom is approximately 1 eV, with an effective activation volume of approximately 1 x 10(-28) m. PMID:20118919

  18. STEM Imaging of Single Pd Atoms in Activated Carbon Fibers Considered for Hydrogen Storage

    SciTech Connect

    Van Benthem, Klaus; Bonifacio, Cecile S; Contescu, Cristian I; Pennycook, Stephen J; Gallego, Nidia C

    2011-01-01

    Aberration corrected scanning transmission electron microscopy was used to demonstrate the feasibility of imaging individual Pd atoms that are highly dispersed throughout the volume of activated carbon fibers. Simultaneous acquisition of high-angle annular dark-field and bright-field images allows correlation of the location of single Pd atoms with microstructural features of the carbon host material. Sub-Angstrom imaging conditions revealed that 18 wt% of the total Pd content is dispersed as single Pd atoms in three re-occurring local structural arrangements. The identified structural configurations may represent effective storage sites for molecular hydrogen through Kubas complex formation as discussed in detail in the preceding article.

  19. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  20. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms.

    PubMed

    Büschleb, Martin; Dorich, Stéphane; Hanessian, Stephen; Tao, Daniel; Schenthal, Kyle B; Overman, Larry E

    2016-03-18

    Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information. PMID:26836448

  1. Study on nitrogen doped carbon atom chains with negative differential resistance effect

    NASA Astrophysics Data System (ADS)

    Shen, Ji-Mei; Liu, Jing; Min, Yi; Zhou, Li-Ping

    2016-05-01

    Recent calculations (Mahmoud and Lugli, 2013, [21]) of gold leads sandwiching carbon chains which are separated by diphenyl-dimethyl demonstrated that the negative differential resistance (NDR) effect appears only for "odd" numbers of carbon atoms. In this paper, according to a first-principles study based on non-equilibrium Green's function combining density functional theory, we find that the NDR effect appears both for "odd" and for "even" numbers of carbon atoms when the chains are doped by nitrogen atom. Our calculations remove the restriction of "odd/even" chains for the NDR effect, which may promise the potential applications of carbon chains in the nano-scale or molecular devices in the future.

  2. A nine-atom rhodium–aluminum oxide cluster oxidizes five carbon monoxide molecules

    PubMed Central

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium–aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  3. Optically promoted bipartite atomic entanglement in hybrid metallic carbon nanotube systems

    SciTech Connect

    Gelin, M. F.; Bondarev, I. V.; Meliksetyan, A. V.

    2014-02-14

    We study theoretically a pair of spatially separated extrinsic atomic type species (extrinsic atoms, ions, molecules, or semiconductor quantum dots) near a metallic carbon nanotube, that are coupled both directly via the inter-atomic dipole-dipole interactions and indirectly by means of the virtual exchange by resonance plasmon excitations on the nanotube surface. We analyze how the optical preparation of the system by using strong laser pulses affects the formation and evolution of the bipartite atomic entanglement. Despite a large number of possible excitation regimes and evolution pathways, we find a few generic scenarios for the bipartite entanglement evolution and formulate practical recommendations on how to optimize and control the robust bipartite atomic entanglement in hybrid carbon nanotube systems.

  4. A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules.

    PubMed

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  5. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers

    NASA Astrophysics Data System (ADS)

    Gong, Yongji; Shi, Gang; Zhang, Zhuhua; Zhou, Wu; Jung, Jeil; Gao, Weilu; Ma, Lulu; Yang, Yang; Yang, Shubin; You, Ge; Vajtai, Robert; Xu, Qianfan; MacDonald, Allan H.; Yakobson, Boris I.; Lou, Jun; Liu, Zheng; Ajayan, Pulickel M.

    2014-01-01

    Graphene and hexagonal boron nitride are typical conductor and insulator, respectively, while their hybrids hexagonal boron carbonitride are promising as a semiconductor. Here we demonstrate a direct chemical conversion reaction, which systematically converts the hexagonal carbon lattice of graphene to boron nitride, making it possible to produce uniform boron nitride and boron carbonitride structures without disrupting the structural integrity of the original graphene templates. We synthesize high-quality atomic layer films with boron-, nitrogen- and carbon-containing atomic layers with full range of compositions. Using this approach, the electrical resistance, carrier mobilities and bandgaps of these atomic layers can be tuned from conductor to semiconductor to insulator. Combining this technique with lithography, local conversion could be realized at the nanometre scale, enabling the fabrication of in-plane atomic layer structures consisting of graphene, boron nitride and boron carbonitride. This is a step towards scalable synthesis of atomically thin two-dimensional integrated circuits.

  6. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    NASA Astrophysics Data System (ADS)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  7. Chemical and biological consequences of using carbon dioxide versus acid additions in ocean acidification experiments

    USGS Publications Warehouse

    Yates, Kimberly K.; DuFore, Christopher M.; Robbins, Lisa L.

    2013-01-01

    Use of different approaches for manipulating seawater chemistry during ocean acidification experiments has confounded comparison of results from various experimental studies. Some of these discrepancies have been attributed to whether addition of acid (such as hydrochloric acid, HCl) or carbon dioxide (CO2) gas has been used to adjust carbonate system parameters. Experimental simulations of carbonate system parameter scenarios for the years 1766, 2007, and 2100 were performed using the carbonate speciation program CO2SYS to demonstrate the variation in seawater chemistry that can result from use of these approaches. Results showed that carbonate system parameters were 3 percent and 8 percent lower than target values in closed-system acid additions, and 1 percent and 5 percent higher in closed-system CO2 additions for the 2007 and 2100 simulations, respectively. Open-system simulations showed that carbonate system parameters can deviate by up to 52 percent to 70 percent from target values in both acid addition and CO2 addition experiments. Results from simulations for the year 2100 were applied to empirically derived equations that relate biogenic calcification to carbonate system parameters for calcifying marine organisms including coccolithophores, corals, and foraminifera. Calculated calcification rates for coccolithophores, corals, and foraminifera differed from rates at target conditions by 0.5 percent to 2.5 percent in closed-system CO2 gas additions, from 0.8 percent to 15 percent in the closed-system acid additions, from 4.8 percent to 94 percent in open-system acid additions, and from 7 percent to 142 percent in open-system CO2 additions.

  8. CHARMM Additive All-Atom Force Field for Aldopentofuranoses, Methyl-Aldopentofuranosides and Fructofuranose

    PubMed Central

    Hatcher, Elizabeth; Guvench, Olgun; MacKerell, Alexander D.

    2009-01-01

    An additive all-atom empirical force field for aldopentofuranoses, methyl-aldopentofuranosides (Me-aldopentofuranosides) and fructofuranose carbohydrates, compatible with existing CHARMM carbohydrate parameters, is presented. Building on existing parameters transferred from cyclic ethers and hexopyranoses, parameters were further developed using target data for complete furanose carbohydrates as well as O-methyl tetrahydrofuran. The bond and angle equilibrium parameters were adjusted to reproduce target geometries from a survey of furanose crystal structures, and dihedral parameters were fit to over 1700 quantum mechanical (QM) MP2/cc-pVTZ//MP2/6-31G(d) conformational energies. The conformational energies were for a variety of complete furanose monosaccharides, and included two-dimensional ring pucker energy surfaces. Bonded parameter optimization led to the correct description of the ring pucker for a large set of furanose compounds, while furanose-water interaction energies and distances reproduced QM HF/6-31G(d) results for a number of furanose monosaccharides, thereby validating the nonbonded parameters. Crystal lattice unit cell parameters and volumes, aqueous-phase densities, and aqueous NMR ring pucker and exocyclic data were used to validate the parameters in condensed-phase environments. Conformational sampling analysis of the ring pucker and exocyclic group showed excellent agreement with experimental NMR data, demonstrating that the conformational energetics in aqueous solution are accurately described by the optimized force field. Overall, the parameters reproduce available experimental data well and are anticipated to be of utility in future computational studies of carbohydrates, including in the context of proteins, nucleic acids and/or lipids when combined with existing CHARMM biomolecular force fields. PMID:19694450

  9. Carbon additions and grain defect formation in directionally solidified nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Tin, Sammy

    Over the past fifty years, technological advances leading up to the development of modern high-performance turbine engines for aircraft and power generation applications have coincided with significant engineering accomplishments in the area of Ni-base superalloy metallurgy. As the levels of refractory alloying additions to these Ni-base superalloys increase to enhance high-temperature mechanical properties, grain defect formation, particularly the development of freckle chains, during directional solidification has become an increasingly important problem. In this dissertation, the effect of carbon additions on the solidification characteristics of single crystal Ni-base superalloys has been investigated over a wide range of composition. Using statistically designed experiments, carbon additions of 0.1 to 0.125 wt. % were shown to be beneficial in stabilizing against the formation of grain defects due to thermosolutal convective instabilities. Detailed analyses were performed on the single crystal castings to identify the underlying mechanisms by which the carbon additions improve the solidification characteristics. In addition to forming Ta-rich MC carbides during solidification, the carbon additions were also revealed to influence the segregation behavior of the constituent elements in a manner that was beneficial in suppressing the formation of freckle defects during solidification. Using a segregation mapping technique, less segregation of rhenium, tungsten and tantalum was measured in the carbon containing alloys. Carbide formation during solidification was studied using differential thermal analysis. The influence of carbon additions on the solidification characteristics of the experimental single crystal alloys was assessed using a dimensionless Rayleigh analysis. Based on these analyses, the physical presence of carbides during the initial stages of solidification was also shown to inhibit the formation of freckle defects. In this investigation, carbon

  10. Strain-induced metal–semiconductor transition observed in atomic carbon chains

    PubMed Central

    La Torre, A.; Botello-Mendez, A.; Baaziz, W.; Charlier, J. -C.; Banhart, F.

    2015-01-01

    Carbyne, the sp1-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. While the bulk phases of carbyne remain elusive, the elementary constituents, that is, linear chains of carbon atoms, have already been observed using the electron microscope. Isolated atomic chains are highly interesting one-dimensional conductors that have stimulated considerable theoretical work. Experimental information, however, is still very limited. Here we show electrical measurements and first-principles transport calculations on monoatomic carbon chains. When the 1D system is under strain, the chains are semiconducting corresponding to the polyyne structure with alternating bond lengths. Conversely, when the chain is unstrained, the ohmic behaviour of metallic cumulene with uniform bond lengths is observed. This confirms the recent prediction of a metal–insulator transition that is induced by strain. The key role of the contacting leads explains the rectifying behaviour measured in monoatomic carbon chains in a nonsymmetric contact configuration. PMID:25818506

  11. Design-atom approach for the QM/MM covalent boundary: A design-carbon atom with five valence electrons

    PubMed Central

    Xiao, Chuanyun; Zhang, Yingkai

    2009-01-01

    A critical issue underlying the accuracy and applicability of the combined quantum mechanical/molecular mechanical (QM/MM) methods is how to describe the QM/MM boundary across covalent bonds. Inspired by the ab initio pseudo-potential theory, here we introduce a novel design-atom approach for a more fundamental and transparent treatment of this QM/MM covalent boundary problem. The main idea is to replace the boundary atom of the active part with a design-atom, which has a different number of valence electrons but very similar atomic properties. By modifying the Troullier-Martins scheme, which has been widely employed to construct norm-conserving pseudo-potentials for density functional calculations, we have successfully developed a design-carbon atom with five valence electrons. Tests on a series of molecules yield very good structural and energetic results, and indicate its transferability in describing a variety of chemical bonds, including double and triple bonds. PMID:17902888

  12. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    SciTech Connect

    Bai, Liu Zhenyu, Zhao; Lirui, Liu

    2014-08-28

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600 K. After it cooled to 100 K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q{sub 6} and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1){sub Ni} was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1{sup ¯}, 1{sup ¯},2] crystal orientation.

  13. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bai, Liu; Lirui, Liu; Zhenyu, Zhao

    2014-08-01

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600 K. After it cooled to 100 K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q6 and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1)Ni was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1¯, 1¯,2] crystal orientation.

  14. Possibilities of Application of Carbon-Fluorine Containing Additions in Submerged-Arc Welding

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Kryukov, N. E.; Kryukov, R. E.; Igushev, V. F.; Kovalskii, I. I.

    2015-09-01

    The paper provides results of comparative analysis of the effect of carbonaceous components introduced into welding fluxes on molten metal - slag interaction. A positive influence of carbonaceous additives on gas content and mechanical properties of welds is demonstrated. Carbon and fluorine containing additives are emphasized to be promising for automatic submerged arc welding.

  15. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  16. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    DOEpatents

    Johnsen, Richard; Yuh, Chao-Yi; Farooque, Mohammad

    2011-05-10

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  17. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide.

    PubMed

    Gao, Guoping; Jiao, Yan; Waclawik, Eric R; Du, Aijun

    2016-05-18

    Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e., Pd/g-C3N4 and Pt/g-C3N4, respectively, acting as photocatalysts for CO2 reduction were investigated by density functional theory calculations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from the hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, deposition of atom catalysts on g-C3N4 significantly enhances the visible-light absorption, rendering them ideal for visible-light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply. PMID:27116595

  18. Quantifying Sequestration of Carbon in the Ocean following Addition of Macronutrient

    NASA Astrophysics Data System (ADS)

    Harrison, D. P.; Lawrence, M. W.

    2011-12-01

    The effects of addition of limiting nutrients to the surface waters of the deep ocean has been investigated for the last twenty years, partly to explore ocean biogeochemical processes and partly because of the potential for sequestration of carbon in the deep ocean. Investigations have been performed for micronutrients (iron) and macronutrients (nitrogen and phosphorous). A methodology of estimating carbon stored is introduced here based on fertilization with nitrogen in those regions in which nitrogen is the limiting nutrient. The basis of the methodology is a combination of measurements in the photic zone and numerical modelling of the biogeochemical cycle. The calculation of the quantity of sequestered carbon is, after allowance for losses, equal to the carbon that is taken up by photosynthesis (new primary production equals export production) resulting from the added nitrogen. An essential feature of the biogeochemical process is that the added nitrogen is not lost from the upper waters by export to the deep ocean unless accompanied by carbon, in approximately the Redfield ratio. Determination of the quantity of carbon sequestered consists of three steps: (1.) Determination of the quantity of carbon converted by photosynthesis to biological form (new primary production). (2.) Allowance for factors potentially affecting carbon sequestration, such as: Loss of reactive nitrogen from the ocean; Greenhouse Gas (GHG) production by photosynthesis; GHG production by denitrification; GHG production following upwelling; Air-sea carbon transfer efficiency; Calcium carbonate production; Alkalinity change; and Respiration. (3.) Allowance for carbon dioxide released to the atmosphere during the manufacture and transport processes involved in providing added nutrients to the ocean. With these three steps, the net quantity of carbon sequestered by fertilisation may be determined.

  19. Synthesis of novel amorphous calcium carbonate by sono atomization for reactive mixing.

    PubMed

    Kojima, Yoshiyuki; Kanai, Makoto; Nishimiya, Nobuyuki

    2012-03-01

    Droplets of several micrometers in size can be formed in aqueous solution by atomization under ultrasonic irradiation at 2 MHz. This phenomenon, known as atomization, is capable of forming fine droplets for use as a reaction field. This synthetic method is called SARM (sono atomization for reactive mixing). This paper reports on the synthesis of a novel amorphous calcium carbonate formed by SARM. The amorphous calcium carbonate, obtained at a solution concentration of 0.8 mol/dm(3), had a specific surface area of 65 m(2)/g and a composition of CaCO(3)•0.5H(2)O as determined using thermogravimetric/differential thermal analysis (TG-DTA). Because the ACC had a lower hydrate composition than conventional amorphous calcium carbonate (ACC), the ACC synthesized in this paper was very stable at room temperature. PMID:21788149

  20. Ultra-low-temperature Reactions of Carbon Atoms with Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Krasnokutski, S. A.; Kuhn, M.; Renzler, M.; Jäger, C.; Henning, Th.; Scheier, P.

    2016-02-01

    The reactions of carbon atoms with dihydrogen have been investigated in liquid helium droplets at T = 0.37 K. A calorimetric technique was applied to monitor the energy released in the reaction. The barrierless reaction between a single carbon atom and a single dihydrogen molecule was detected. Reactions between dihydrogen clusters and carbon atoms have been studied by high-resolution mass spectrometry. The formation of hydrocarbon cations of the type {{{C}}}m{{{{H}}}n}+ with m = 1-4 and n = 1-15 was observed. With enhanced concentration of dihydrogen, the mass spectra demonstrated the main “magic” peak assigned to the {{{CH}}5}+ cation. A simple formation pathway and the high stability of this cation suggest its high abundance in the interstellar medium.

  1. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng; Hirose-Takai, Kaori; Krasheninnikov, Arkady V.; Suenaga, Kazu

    2014-11-01

    Materials with reduced dimensionality have attracted much interest in various fields of fundamental and applied science. True one-dimensional (1D) crystals with single-atom thickness have been realized only for few elemental metals (Au, Ag) or carbon, all of which showed very short lifetimes under ambient conditions. We demonstrate here a successful synthesis of stable 1D ionic crystals in which two chemical elements, one being a cation and the other an anion, align alternately inside carbon nanotubes. Unusual dynamical behaviours for different atoms in the 1D lattice are experimentally corroborated and suggest substantial interactions of the atoms with the nanotube sheath. Our theoretical studies indicate that the 1D ionic crystals have optical properties distinct from those of their bulk counterparts and that the properties can be engineered by introducing atomic defects into the chains.

  2. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth.

    PubMed

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-13

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about 'high temperature methods' because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of 'medium or low temperature methods' is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process. PMID:22433510

  3. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth

    NASA Astrophysics Data System (ADS)

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-01

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about ‘high temperature methods’ because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of ‘medium or low temperature methods’ is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process.

  4. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of {sup 3}P atomic carbon with propene

    SciTech Connect

    Lee, Shih-Huang Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-07

    We investigated the dynamics of the reaction of {sup 3}P atomic carbon with propene (C{sub 3}H{sub 6}) at reactant collision energy 3.8 kcal mol{sup −1} in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C{sub 4}H{sub 5}, C{sub 4}H{sub 4}, C{sub 3}H{sub 3}, and CH{sub 3} were observed and attributed to exit channels C{sub 4}H{sub 5} + H, C{sub 4}H{sub 4} + 2H, and C{sub 3}H{sub 3} + CH{sub 3}; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a {sup 3}P carbon atom to the C=C bond of propene, cyclic complex c-H{sub 2}C(C)CHCH{sub 3} undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H{sub 2}CCCHCH{sub 3}. Both the isomers of H{sub 2}CCCHCH{sub 3} in turns decompose to C{sub 4}H{sub 5} + H and C{sub 3}H{sub 3} + CH{sub 3}. A portion of C{sub 4}H{sub 5} that has enough internal energy further decomposes to C{sub 4}H{sub 4} + H. The three exit channels C{sub 4}H{sub 5} + H, C{sub 4}H{sub 4} + 2H, and C{sub 3}H{sub 3} + CH{sub 3} have average translational energy releases 13.5, 3.2, and 15.2 kcal mol{sup −1}, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH{sub 3}-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of {sup 3}P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  5. Determination of cadmium in the livers and kidneys of puffins by carbon furnace atomic absorption spectrometry.

    PubMed

    Ottaway, J M; Campbell, W C

    1976-01-01

    A carbon furnace atomic absorption procedure is described for the determination of cadmium in the livers and kidneys of puffins, fratercula arctica. Samples are dried and weighed and 2 to 100 mg are dissolved in sulphuric and nitric acids. These solutions are analysed directly in the carbon furnace against aqueous standards and provide accurate results in the range 0-1 to 100 micrograms/g dry weight. The method is simple and rapid and requires much less of the small total sample than would be required for flame atomic absorption. PMID:1030692

  6. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  7. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis.

    PubMed

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-01-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm(-2) and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis. PMID:26861684

  8. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-02-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm-2 and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis.

  9. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis

    PubMed Central

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-01-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel–carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm−2 and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis. PMID:26861684

  10. Atom-scale insights into carbonate organic-mineral interfaces

    NASA Astrophysics Data System (ADS)

    Branson, O.; Perea, D. E.; Spero, H. J.; Winters, M. A.; Gagnon, A.

    2015-12-01

    Biominerals are formed by the complex interaction between guiding biological structures and the kinetics of inorganic mineral growth. Inorganic crystal growth experiments have advanced our understanding of mineral precipitation in the context of biological systems, but the structure and chemistry of the mineralizing interface between these two systems has remained elusive. We have used laser-pulsed Atom Probe Tomography to reveal the first atom-scale 3D view of an organic-mineral interface in calcite produced by the planktic foraminifera Orbulina universa. We observe elevated Na and Mg throughout the organic, and a 9-fold increase in Na in the surface 2 nm of the organic layer, relative to the adjacent calcite. The surface-specificity of this Na maximum suggests that Na may play an integral role in conditioning the organic layer for calcite nucleation. Na could accomplish this by modifying surface hydration or structure, to modify organic-fluid and/or organic-calcite interfacial energies. Our data constitute the first evidence of the role of 'spectator' ions in facilitating biomineralisation, which could be an overlooked but crucial aspect of the initial steps of skeleton formation in calcifying organisms.

  11. Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage

    SciTech Connect

    Contescu, Cristian I; van Benthem, Klaus; Li, Sa; Bonifacio, Cecile S; Pennycook, Stephen J; Jena, Puru; Gallego, Nidia C

    2011-01-01

    Palladium-modified activated carbon fibers (Pd-ACF) were synthesized by meltspinning, carbonization and activation of an isotropic pitch carbon precursor premixed with an organometallic Pd compound. The hydrogen uptake at 25 oC and 20 bar on Pd- ACF exceeded the expected capacity based solely on Pd hydride formation and hydrogen physisorption on the microporous carbon support. Aberration-corrected scanning transmission electron microscopy (STEM) with sub- ngstrom spatial resolution provided unambiguous identification of isolated Pd atoms occurring in the carbon matrix that coexist with larger Pd particles. First principles calculations revealed that each single Pd atom can form Kubas-type complexes by binding up to three H2 molecules in the pressure range of adsorption measurements. Based on Pd atom concentration determined from STEM images, the contribution of various mechanisms to the excess hydrogen uptake measured experimentally was evaluated. With consideration of Kubas binding as a viable mechanism (along with hydride formation and physisorption to carbon support) the role of hydrogen spillover in this system may be smaller than previously thought.

  12. Atomic data for opacity calculations. XI - The carbon isoelectronic sequence

    NASA Technical Reports Server (NTRS)

    Luo, D.; Pradhan, A. K.

    1989-01-01

    Close-coupling calculations are carried out for radiative processes in neutral carbon and a number of carbon-like ions; energy levels, oscillator strengths, and photoionization cross sections have been computed for all bound states of the type 2 s(j)2p(k)nl with n not above 10 and 1 not above 3. The R-matrix method is employed to solve the coupled equations with a ten-state eigenfunction expansion for the parent ion C II and an eight-state expansion for the other boron-like target ions. A number of selected results for oscillator strengths are presented and compared with earlier data, as well as for photoionization cross sections with autoionizing resonance structures. Isoelectronic trends are discussed. The present results for the oscillator strengths of C I and N II are found to differ significantly from some earlier theoretical works for a number of transitions. However, the present C I f values are in excellent agreement with recent calculations and experimental results.

  13. Atom Vacancies on a Carbon Nanotube: To What Extent Can We Simulate their Effects?

    PubMed

    Kroes, Jaap M H; Pietrucci, Fabio; van Duin, Adri C T; Andreoni, Wanda

    2015-07-14

    Atom vacancies are intrinsic defects of carbon nanotubes. Using a zigzag nanotube as reference, this paper focuses on the comparison of calculations performed within density functional theory and a number of classical force fields widely used for carbon systems. The results refer to single and double vacancies and, in particular, to the induced structural changes, the formation energies, and the energy barriers relative to elementary processes such as reconstruction, migration, and coalescence. Characterization of these processes is remarkably different in the different approaches. These findings are meant to contribute to the construction of DFT-based classical schemes for carbon nanostructures. PMID:26575773

  14. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2000-08-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation before and/or during carbonation may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for cost optimization of any lamellar-hydroxide-based mineral carbonation sequestration process.

  15. Migration behaviour of carbon atoms on clean diamond (0 0 1) surface: A first principle study

    NASA Astrophysics Data System (ADS)

    Liu, Xuejie; Xia, Qing; Li, Wenjuan; Luo, Hao; Ren, Yuan; Tan, Xin; Sun, Shiyang

    2016-01-01

    The adsorption and migration energies of a single carbon atom and the configuration evolution energies of two carbon atoms on a clean diamond (0 0 1) surface were calculated using the first principle method based on density functional theory to investigate the formation of ultra-nanocrystalline diamond (UNCD) film. The activation energy of a single atom diffusing along a dimer row is 1.96 eV, which is almost the same as that of a CH2 migrating along a dimer row under hydrogen-rich conditions. However, the activation energy of a single atom diffusing along a dimer chain is 2.66 eV, which is approximately 1.55 times greater than that of a CH2 migrating along a dimer chain in a hydrogen-rich environment. The configuration evolution of the two carbon atoms is almost impossible at common diamond film deposition temperatures (700-900 °C) because the activation energies reach 4.46 or 5.90 eV. Therefore, the high-energy barrier could result in insufficient migration of adatoms, leading to the formation of amorphous in UNCD films in hydrogen-poor CVD environment.

  16. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  17. The Reception of J. H. van't Hoff's Theory of the Asymmetric Carbon Atom

    ERIC Educational Resources Information Center

    Snelders, H. A. M.

    1974-01-01

    Discusses Jacobus Henricus van't Hoff's revolutionary theory of the asymmetric carbon atom and its early reception among his contemporaries in the Netherlands. Indicates that the extension of the new idea to practical problems gives the impetus to the development of stereochemistry. (CC)

  18. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes.

    PubMed

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  19. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-07-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes.

  20. Impacts of biochar (black carbon) additions on the sorption and efficacy of herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is renewed interest in the soil application of charcoal (biochar) as a means of increasing carbon sequestration and combating climate change. The land areas that are targeted for biochar applications are agricultural land, due to the potential positive impacts that charcoal additions have on o...

  1. RAINFALL AND RUNOFF AS A SOURCE OF ORGANIC CARBON ADDITIONS TO BAYOU TEXAR, FLORIDA

    EPA Science Inventory

    Rainfall and Runoff as a Source of Organic Carbon Additions to Bayou Texar, Florida (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ERL,GB R852).

    T...

  2. EVALUATION OF FULL SCALE ACTIVATED SLUDGE SYSTEMS UTILIZING POWDERED ACTIVATED CARBON ADDITION WITH WET AIR REGENERATION

    EPA Science Inventory

    The addition of powdered activated carbon (PAC) to activated sludge systems is a proven method of wastewater treatment. Of eleven POTWs in the U.S. that were designed for PAC use, ten included wet air regeneration (WAR) for the destruction of secondary sludge solids and recovery ...

  3. Rare Potassium-Bearing Mica in Allan Hills 84001: Additional Constraints on Carbonate Formation

    NASA Technical Reports Server (NTRS)

    Brearley, A. J.

    1998-01-01

    There have been presented several intriguing observations suggesting evidence of fossil life in martian orthopyroxenite ALH 84001. These exciting and controversial observations have stimulated extensive debate over the origin and history of ALH 84001, but many issues still remain unresolved. Among the most important is the question of the temperature at which the carbonates, which host the putative microfossils, formed. Oxygen- isotopic data, while showing that the carbonates are generally out of isotopic equilibria with the host rock, cannot constrain their temperature of formation. Both low- and high-temperature scenarios are plausible depending on whether carbonate growth occurred in an open or closed system. Petrographic arguments have generally been used to support a high-temperature origin but these appear to be suspect because they assume equilibrium between carbonate compositions that are not in contact. Some observations appear to be consistent with shock mobilization and growth from immiscible silicate-carbonate melts at high temperatures. Proponents of a low-temperature origin for the carbonates are hampered by the fact that there is currently no evidence of hydrous phases that would indicate low temperatures and the presence of a hydrous fluid during the formation of the carbonates. However, the absence of hydrous phases does not rule out carbonate formation at low temperatures, because the carbonate forming fluids may have been extremely CO2 rich, such that hydrous phases would not have been stabilized. In this study, I have carried out additional Transmission electron microscopy (TEM) studies of ALH-84001 and have found evidence of very rare phyllosilicates, which appear to be convincingly of pre-terrestrial origin. At present these observations are limited to one occurrence: further studies are in progress to determine if the phyllosilicates are more widespread.

  4. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale

    NASA Astrophysics Data System (ADS)

    Chamberlain, Thomas W.; Meyer, Jannik C.; Biskupek, Johannes; Leschner, Jens; Santana, Adriano; Besley, Nicholas A.; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N.

    2011-09-01

    Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion.

  5. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale.

    PubMed

    Chamberlain, Thomas W; Meyer, Jannik C; Biskupek, Johannes; Leschner, Jens; Santana, Adriano; Besley, Nicholas A; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N

    2011-09-01

    Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion. PMID:21860464

  6. Atomic-scale imaging of albite feldspar, calcium carbonate, rectorite, and bentonite using atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Drake, Barney; Hellmann, Roland; Sikes, C. Steven; Occelli, Mario L.

    1992-05-01

    Atomic force microscopy (AFM) was used to investigate the (010) surface of Amelia albite, the basal and (001) planes of CaCO3 (calcite), and the basal planes of rectorite and bentonite. Atomic scale images of the albite surface show six sided, interconnected en-echelon rings. Fourier transforms of the surface scans reveal two primary nearest neighbor distances of 4.7 and 4.9 +/- 0.5 angstroms. Analysis of the images using a 6 angstroms thick projection of the bulk structure was performed. Close agreement between the projection and the images suggests the surface is very close to an ideal termination of the bulk structure. Images of the calcite basal plane show a hexagonal array of Ca atoms measured to within +/- 0.3 angstroms of the 4.99 angstroms predicted by x-ray diffraction data. Putative images of the (001) plane of carbonate ions, with hexagonal 5 angstroms spacing, are also presented and discussed. Basal plane images of rectorite show hexagonal symmetry with 9.1 +/- 2.5 angstroms spacing, while bentonite results reveal a 4.9 +/- 0.5 angstroms nearest neighbor spacing.

  7. Spatial Distributions of Metal Atoms During Carbon SWNTs Formation: Measurements and Modelling

    NASA Technical Reports Server (NTRS)

    Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. L.; Loiseau, A.; Farhat, S.; Hinkov, I.; Scott, C. D.

    2004-01-01

    Experiments and modelling have been undertaken to clarify the role of metal catalysts during single-wall carbon nanotube formation. For instance, we wonder whether the metal catalyst is active as an atom, a cluster, a liquid or solid nanoparticle [1]. A reactor has been developed for synthesis by continuous CO2-laser vaporisation of a carbon-nickel-cobalt target in laminar helium flow. The laser induced fluorescence technique [2] is applied for local probing of gaseous Ni, Co and CZ species throughout the hot carbon flow of the target heated up to 3500 K. A rapid depletion of C2 in contrast to the spatial extent of metal atoms is observed in the plume (Fig. 1). This asserts that C2 condenses earlier than Ni and Co atoms.[3, 4]. The depletion is even faster when catalysts are present. It may indicate that an interaction between metal atoms and carbon dimers takes place in the gas as soon as they are expelled from the target surface. Two methods of modelling are used: a spatially I-D calculation developed originally for the arc process [5], and a zero-D time dependent calculation, solving the chemical kinetics along the streamlines [6]. The latter includes Ni cluster formation. The peak of C2 density is calculated close to the target surface where the temperature is the highest. In the hot region, C; is dominant. As the carbon products move away from the target and mix with the ambient helium, they recombine into larger clusters, as demonstrated by the peak of C5 density around 1 mm. The profile of Ni-atom density compares fairly well with the measured one (Fig. 2). The early increase is due to the drop of temperature, and the final decrease beyond 6 mm results from Ni cluster formation at the eutectic temperature (approx.1600 K).

  8. Ultrasmooth submicrometer carbon spheres as lubricant additives for friction and wear reduction.

    PubMed

    Alazemi, Abdullah A; Etacheri, Vinodkumar; Dysart, Arthur D; Stacke, Lars-Erik; Pol, Vilas G; Sadeghi, Farshid

    2015-03-11

    Ultrasmooth submicrometer carbon spheres are demonstrated as an efficient additive for improving the tribological performance of lubricating oils. Carbon spheres with ultrasmooth surfaces are fabricated by ultrasound assisted polymerization of resorcinol and formaldehyde followed by controlled heat treatment. The tribological behavior of the new lubricant mixture is investigated in the boundary and mixed lubrication regimes using a pin-on-disk apparatus and cylinder-on-disk tribometer, respectively. The new lubricant composition containing 3 wt % carbon spheres suspended in a reference SAE 5W30 engine oil exhibited a substantial reduction in friction and wear (10-25%) compared to the neat oil, without change in the viscosity. Microscopic and spectroscopic investigation of the carbon spheres after the tribological experiments illustrated their excellent mechanical and chemical stability. The significantly better tribological performance of the hybrid lubricant is attributed to the perfectly spherical shape and ultrasmooth surface of carbon sphere additive filling the gap between surfaces and acting as a nanoscale ball bearing. PMID:25690952

  9. Suppression of hydrogenated carbon film deposition and hydrogen isotope retention by nitrogen addition into cold remote H/D and CH4 mixture plasmas

    NASA Astrophysics Data System (ADS)

    Iida, K.; Notani, M.; Uesugi, Y.; Tanaka, Y.; Ishijima, T.

    2015-08-01

    Control of tritium retention and its removal from the first wall of future fusion devices are one of the most crucial issues for safety and effective use for fuel. Nitrogen addition into remote edge plasmas has been considered and tested as an effective method for suppression of carbon film deposition and reduction of hydrogen isotope absorption in the deposited films. In this paper we have investigated the scavenger effects of nitrogen injected into low temperature D2/CH4 plasmas on hydrogenated carbon film growth using a small helical device. The result of the deposition shows that the key reactive particles with CN and ND(H) bonds to suppression of hydrogenated carbon film growth and hydrogen isotope absorption are much slowly generated compared with hydrocarbon particles such as CD(H)x and C2D(H)x. This may be due to the slow atomic nitrogen diffusion into hydrogenated carbon layer and the chemical equilibrium between nitrogen absorption.

  10. Reaction studies of hot silicon, germanium and carbon atoms: Progress report, February 1, 1985-July 31, 1987

    SciTech Connect

    Gaspar, P.P.

    1987-08-01

    The experimental approach toward attaining the goals of this research program is briefly outlined, and the progress made in the 1985 to 1987 period is reviewed in sections entitled: (1) reactions of recoiling silicon atoms; (2) reactions of recoiling carbon atoms; and (3) reactions of thermally evaporated germanium atoms.

  11. Reassessing carbon sequestration in the North China Plain via addition of nitrogen.

    PubMed

    Dong, Wenxu; Duan, Yongmei; Wang, Yuying; Hu, Chunsheng

    2016-09-01

    Soil inorganic carbon (SIC) exerts a strong influence on the carbon (C) sequestered in response to nitrogen (N) additions in arid and semi-arid ecosystems, but limited information is available on in situ SIC storage and dissolution at the field level. This study determined the soil organic/inorganic carbon storage in the soil profile at 0-100cm depths and the concentration of dissolved inorganic carbon (DIC) in soil leachate in 4N application treatments (0, 200, 400, and 600kgNha(-1)yr(-)(1)) for 15years in the North China Plain. The objectives were to evaluate the effect of nitrogen fertilizer on total amount of carbon sequestration and the uptake of atmospheric CO2 in an agricultural system. Results showed that after 15years of N fertilizer application the SOC contents at depths of 0-100cm significantly increased, whereas the SIC contents significantly decreased at depths of 0-60cm. However, the actual measured loss of carbonate was far higher than the theoretical maximum values of dissolution via protons from nitrification. Furthermore, the amount of HCO3(-) and the HCO3(-)/(Ca(2+)+Mg(2+)) ratio in soil leachate were higher in the N application treatments than no fertilizer input (CK) for the 0-80cm depth. The result suggested that the dissolution of carbonate was mainly enhanced by soil carbonic acid, a process which can absorb soil or atmosphere CO2 and less influenced by protons through the nitrification which would release CO2. To accurately evaluate soil C sequestration under N input scenarios in semi-arid regions, future studies should include both changes in SIC storage as well as the fractions of dissolution with different sources of acids in soil profiles. PMID:27135576

  12. Atoms in carbon cages as a source of interstellar diffuse lines

    NASA Technical Reports Server (NTRS)

    Ballester, J. L.; Antoniewicz, P. R.; Smoluchowski, R.

    1990-01-01

    A model to describe the resonance absorption lines of various atoms trapped in closed carbon cages is presented. These systems may be responsible for some of the as yet unexplained diffuse interstellar bands. Model potentials for possible atom-C60 systems are obtained and used to calculate the resonance lines. The trapped atoms considered are O, N, Si, Mg, Al, Na, and S, and in all cases the resonance lines are shifted toward the red as compared to the isolated atoms. The calculated wavelengths are compared to the range of wavelengths observed for the diffuse interstellar bands, and good agreement is found for Mg and Si resonance lines. Other lines may be caused by other than resonance transitions or by trapped molecules. The oscillator strengths and the abundances are evaluated and compared with observation. Mechanisms to explain the observed band width of the lines and the existence of certain correlated pairs of lines are discussed.

  13. An atomic view of additive mutational effects in a protein structure

    SciTech Connect

    Skinner, M.M.; Terwilliger, T.C.

    1996-04-01

    Substitution of a single amino acid in a protein will often lead to substantial changes in properties. If these properties could be altered in a rational way then proteins could be readily generated with functions tailored to specific uses. When amino acid substitutions are made at well-separated locations in a single protein, their effects are generally additive. Additivity of effects of amino acid substitutions is very useful because the properties of proteins with any combination of substitutions can be inferred directly from those of the proteins with single changes. It would therefore be of considerable interest to have a means of knowing whether substitutions at a particular pair of sites in a protein are likely to lead to additive effects. The structural basis for additivity of effects of mutations on protein function was examined by determining crystal structures of single and double mutants in the hydrophobic core of gene V protein. Structural effects of mutations were found to be cumulative when two mutations were made in a single protein. Additivity occurs in this case because the regions structurally affected by mutations at the two sites do not overlap even though the sites are separated by only 9 {angstrom}. Structural distortions induced by mutations in gene V protein decrease rapidly, but not isotropically, with distance from the site of mutation. It is anticipated that cases where structural and functional effects of mutations will be additive could be identified simply by examining whether the regions structurally affected by each component mutation overlap.

  14. Atomic Force Microscopy of DNA-wrapped Single-walled Carbon Nanotubes in Aqueous Solution.

    PubMed

    Hayashida, Takuya; Umemura, Kazuo

    2016-07-01

    We evaluated hybrids of DNA and single-walled carbon nanotubes (SWNTs) in aqueous solution and in air using atomic force microscopy (AFM). Although intensive AFM observations of these hybrids were previously carried out for samples in air, this is the first report on AFM observations of these hybrids in solution. As expected, diameters of DNA-SWNT hybrids dramatically increased in tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid (TE) buffer solution. The data suggest that DNA molecules maintain their structures even on the SWNT surfaces. Furthermore, we simultaneously observed single DNA-SWNT hybrids using three different AFM modes in air and in the TE buffer solution. Height value of the hybrids was largest in the solution, and lowest for the mode that repulsive force is expected in air. For the bare SWNT molecules, height differences among the three AFM modes were much lower than those of the DNA-SWNT hybrids. DNA molecules adsorbed on SWNT surfaces flexibly changed their morphology as well as DNA molecules on flat surfaces such as mica. This is hopeful results for biological applications of DNA-SWNT hybrids. In addition, our results revealed the importance of the single-molecule approach to evaluate DNA structures on SWNT surfaces. PMID:27045980

  15. Optimization of membrane bioreactors by the addition of powdered activated carbon.

    PubMed

    Ng, Choon Aun; Sun, Darren; Bashir, Mohammed J K; Wai, Soon Han; Wong, Ling Yong; Nisar, Humaira; Wu, Bing; Fane, Anthony G

    2013-06-01

    It was found that with replenishment, powdered activated carbon (PAC) in the membrane bioreactor (MBR) would develop biologically activated carbon (BAC) which could enhance filtration performance of a conventional MBR. This paper addresses two issues (i) effect of PAC size on MBR (BAC) performance; and (ii) effect of sludge retention time (SRT) on the MBR performance with and without PAC. To interpret the trends, particle/floc size, concentration of mixed liquor suspended solid (MLSS), total organic carbon (TOC), short-term filtration properties and transmembrane pressure (TMP) versus time are measured. The results showed improved fouling control with fine, rather than coarse, PAC provided the flux did not exceed the deposition flux for the fine PAC. Without PAC, the longer SRT operation gave lower fouling at modest fluxes. With PAC addition, the shorter SRT gave better fouling control, possibly due to greater replenishment of the fresh PAC. PMID:23612160

  16. Is atomic carbon a good tracer of molecular gas in metal-poor galaxies?

    NASA Astrophysics Data System (ADS)

    Glover, Simon C. O.; Clark, Paul C.

    2016-03-01

    Carbon monoxide (CO) is widely used as a tracer of molecular hydrogen (H2) in metal-rich galaxies, but is known to become ineffective in low-metallicity dwarf galaxies. Atomic carbon has been suggested as a superior tracer of H2 in these metal-poor systems, but its suitability remains unproven. To help us to assess how well atomic carbon traces H2 at low metallicity, we have performed a series of numerical simulations of turbulent molecular clouds that cover a wide range of different metallicities. Our simulations demonstrate that in star-forming clouds, the conversion factor between [C I] emission and H2 mass, XCI, scales approximately as XCI ∝ Z-1. We recover a similar scaling for the CO-to-H2 conversion factor, XCO, but find that at this point in the evolution of the clouds, XCO is consistently smaller than XCI, by a factor of a few or more. We have also examined how XCI and XCO evolve with time. We find that XCI does not vary strongly with time, demonstrating that atomic carbon remains a good tracer of H2 in metal-poor systems even at times significantly before the onset of star formation. On the other hand, XCO varies very strongly with time in metal-poor clouds, showing that CO does not trace H2 well in starless clouds at low metallicity.

  17. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    USGS Publications Warehouse

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  18. Synthesis of barium and strontium carbonate crystals with unusual morphologies using an organic additive

    NASA Astrophysics Data System (ADS)

    Chen, Long; Jiang, Jizhong; Bao, Zuben; Pan, Jian; Xu, Weibing; Zhou, Lili; Wu, Zhigang; Chen, Xu

    2013-12-01

    In this paper, strontium carbonate (SrCO3) and barium carbonate (BaCO3) crystals were synthesized in the presence of an organic additive-hexamethylenetetramine (HMT) using two CO2 sources. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the products. The results showed that the morphologies of orthorhombic strontianite SrCO3 transformed from branch-like to flower-like, and to capsicum-like at last, while the morphologies of BaCO3 change from fiber-like to branchlike, and to rod-like finally with an increase of the molar ratio HMT/Sr2+ and HMT/Ba2+ from 0.2 to 10 using ammonium carbonate as CO2 source. When using diethyl carbonate instead of ammonium carbonate as CO2 source, SrCO3 flowers aggregated by rods and BaCO3 shuttles were formed. The possible formation mechanisms of SrCO3 and BaCO3 crystals obtained in different conditions were also discussed.

  19. Quantum Monte Carlo calculation of the properties of atomic carbon and diamond

    SciTech Connect

    Fahy, S.; Wang, X.W.; Louie, S.G.

    1988-06-01

    A new method of calculating total energies of solids using non-local pseudopotentials in conjunction with the variational quantum Monte Carlo approach is presented. By using pseudopotentials, the large fluctuations of the energies in the core region of the atoms which occur in quantum Monte Carlo all-electron schemes are avoided. The method is applied to calculate the cohesive energy and structural properties of diamond and the first ionization energy and electron affinity of the carbon atom. Results are in excellent agreement with experiment. 8 refs., 1 fig., 2 tabs.

  20. Effects of Boron Addition to the Atomic Structure and Soft Magnetic Properties of FeCoB Films

    SciTech Connect

    Yang,A.; Imrane, H.; Lou, J.; Kirkland, J.; Vittoria, C.; Sun, N.; Harris, V.

    2008-01-01

    The magnetic, microwave, and the atomic structure properties of (Fe0.7Co0.3)1?xBx sputtered films on glass substrates were investigated. The addition of boron induced a decrease in coercivity and ferromagnetic resonance linewidth. The amorphous structure was formed at x ? 0.075. Extended x-ray absorption fine structure (EXAFS) of Fe and Co showed the reduced Fourier transform (FT) amplitude, and increased Debye-Waller factors as x was increased, indicating the increased disorder due to the thermal and structural displacements. Possible Fe-B bonding was observed with a reduced bond length, which indicates boron atoms' preference for staying in the interstitial sites in bcc unit cell.

  1. Effects of boron addition to the atomic structure and soft magnetic properties of FeCoB films

    NASA Astrophysics Data System (ADS)

    Yang, Aria; Imrane, Hassan; Lou, Jing; Kirkland, Johnny; Vittoria, Carmine; Sun, Nian; Harris, Vincent G.

    2008-04-01

    The magnetic, microwave, and the atomic structure properties of (Fe0.7Co0.3)1-xBx sputtered films on glass substrates were investigated. The addition of boron induced a decrease in coercivity and ferromagnetic resonance linewidth. The amorphous structure was formed at x ˜0.075. Extended x-ray absorption fine structure (EXAFS) of Fe and Co showed the reduced Fourier transform (FT) amplitude, and increased Debye-Waller factors as x was increased, indicating the increased disorder due to the thermal and structural displacements. Possible Fe-B bonding was observed with a reduced bond length, which indicates boron atoms' preference for staying in the interstitial sites in bcc unit cell.

  2. PCB bioavailability control in Lumbriculus variegatus through different modes of activated carbon addition to sediments

    SciTech Connect

    Xueli Sun; Upal Ghosh

    2007-07-01

    PCB bioavailability to a freshwater oligochaete (Lumbriculus variegatus) was studied using sediments from a PCB-impacted river that was treated with different modes of granular activated carbon (GAC) addition. The GAC used was bituminous coal-based type TOP. For sediment treated with 2.6% GAC and mixed for 2 min prior to L. variegatus addition, the reduction in total PCB biouptake was 70% for 75-300 {mu}m size carbon, and 92% for the 45-180 {mu}m size carbon. For the case where the GAC was placed as a thin layer on top of the sediments without mixing, the reduction in total PCB uptake was 70%. PCB biouptake kinetics study using treated and untreated sediment showed that the maximum PCB uptake in tissue was achieved at 28 days and decreased after that time. Although the absolute uptake of PCB changed over time, the percent reduction in total PCB uptake upon GAC amendment remained constant after the first few days. Our results indicated that PCB bioavailability was reduced upon the addition and little or no mixing of GAC into sediments. PCB aqueous equilibrium concentration and desorption rates were greatly reduced after GAC amendment, indicating reductions in the two primary mechanisms of PCB bioavailability in sediments: chemical activity and chemical accessibility. 29 refs., 5 figs., 1 tab.

  3. Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.

  4. Fabrication and Characterization of Oriented Carbon Atom Wires Assembled on Gold

    SciTech Connect

    Xue,K.H.; Wu,L.; Chen, S.-P.; Wanga, L.X.; Wei, R.-B.; Xu, S.-M.; Cui, L.; Mao, B.-W.; Tian, Z.-Q.; Zen, C.-H.; Sun, S.-G.; Zhu, Y.-M.

    2009-02-17

    Carbon atom wires (CAWs) are of the sp-hybridized allotrope of carbon. To augment the extraordinary features based on sp-hybridization, we developed an approach to make CAWs be self-assembled and orderly organized on Au substrate. The self-assembling process was investigated in situ by using scanning tunneling microscopy (STM) and electrochemical quartz crystal microbalance (EQCM). The properties of the assembled film were characterized by voltammetry, Raman spectroscopy, electron energy loss spectroscopy (EELS), and the contact angle measurements. Experimental results indicated that the assembled CAW film was of the good structural integrity and well organized, with the sp-hybridized features enhanced.

  5. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications. PMID:23171130

  6. The interaction between Boron-carbon-nitride heteronanotubes and lithium atoms: Role of composition proportion

    NASA Astrophysics Data System (ADS)

    Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min

    2016-08-01

    A series of Li@BCN models were systematically investigated to explore the physical origin of the interaction between lithium atoms and BCNs. Theoretical results show that the crucial electron population in the BCNs of Li@B-BCN and Li@N-BCN series is dramatically different. As results, the first hyperpolarizability of Li@B-BCN series increases with the increase of carbon proportion whereas that of Li@N-BCN series significantly decreases with the increase of carbon proportion. The results indicate that the physical properties of Li@BCN models are significantly dependent on the different chemical environment of the tube termination.

  7. Carbamate deposit control additives

    SciTech Connect

    Honnen, L.R.; Lewis, R.A.

    1980-11-25

    Deposit control additives for internal combustion engines are provided which maintain cleanliness of intake systems without contributing to combustion chamber deposits. The additives are poly(oxyalkylene) carbamates comprising a hydrocarbyloxyterminated poly(Oxyalkylene) chain of 2-5 carbon oxyalkylene units bonded through an oxycarbonyl group to a nitrogen atom of ethylenediamine.

  8. The abundance of atomic carbon near the ionization fronts in M17 and S140

    NASA Technical Reports Server (NTRS)

    Keene, J.; Blake, G. A.; Phillips, T. G.; Huggins, P. J.; Beichman, C. A.

    1985-01-01

    The 492 GHz ground-state line of atomic carbon in the edge-on ionization fronts in M17 and S140 were observed. It was found that, contrary to expectation, the C I emission peaks farther into the molecular cloud from the ionization front than does the CO. In fact the peak C I abundance in M17 occurs more than 60 mag of visual extinction into the cloud from the ionization front. Calculations of the ratio of C I to CO column densities yield values of 0.1-0.2. These observations do not support chemical models which predict that neutral atomic carbon should be found only near the edges of molelcular clouds. Other models are discussed which may explain the observations.

  9. Determination of gold in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry.

    PubMed

    Dobrowolski, Ryszard; Kuryło, Michał; Otto, Magdalena; Mróz, Agnieszka

    2012-09-15

    A simple and cost effective preconcentration method on modified activated carbons is described for the determination of traces of gold (Au) in geological samples by carbon slurry sampling graphite furnace atomic absorption spectrometry (GFAAS). The basic parameters affecting the adsorption capacity of Au(III) ions on modified activated carbons were studied in detail and the effect of activated carbons modification has been determined by studying the initial runs of adsorption isotherms. The influence of chlorides and nitrates on adsorption ability of Au(III) ions onto the modified activated carbons for diluted aqueous solution was also studied in detail in respect to the determination of gold in solid materials after digestion steps in the analytical procedure, which usually involves the application of aqua regia. SEM-EDX and XPS studies confirmed that the surface reduction of Au(III) ions to Au(0) is the main gold adsorption mechanism on the activated carbon. Determination of gold after its preconcentration on the modified activated carbon was validated by applying certified reference materials. The experimental results are in good agreement with the certified values. The proposed method has been successfully applied for the determination of Au in real samples using aqueous standards. PMID:22967620

  10. Does the Use of Diamond-Like Carbon Coating and Organophosphate Lubricant Additive Together Cause Excessive Tribochemical Material Removal?

    DOE PAGESBeta

    Zhou, Yan; Leonard, Donovan N.; Meyer, Harry M.; Luo, Huimin; Qu, Jun

    2015-08-22

    We observe unexpected wear increase on a steel surface that rubbed against diamond-like carbon (DLC) coatings only when lubricated by phosphate-based antiwear additives. Contrary to the literature hypothesis of a competition between zinc dialkyldithiophosphate produced tribofilms and DLC-induced carbon transfer, here a new wear mechanism based on carbon-catalyzed tribochemical interactions supported by surface characterization is proposed

  11. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2002-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (1) its structural and chemical simplicity, (2) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (3) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This final report covers the overall progress of this grant.

  12. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2001-10-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This report covers the third year progress of this grant, as well as providing an integrated overview of the progress in years 1-3, as we have been granted a one-year no-cost extension to wrap up a few studies and publications to optimize project impact.

  13. X-ray radiation-induced addition of oxygen atoms to protein residues.

    PubMed

    Wang, Jimin

    2016-08-01

    The additions of oxygen and peroxide to residues that result when proteins are exposed to the free radicals produced using the Fenton reaction or X-rays have been studied for over a century. Nevertheless little is known about the impact these modifications have on protein crystal structures. Here evidence is presented that both kinds of modifications occur in protein crystals on a significant scale during the collection of X-ray diffraction data. For example, at least 538 of the 5,351 residues of protein molecules in the crystal used to obtain the structure for photosystem II described by the PDB accession number 3ARC became oxygenated during data collection. PMID:27074249

  14. Detection of the 610 micron /492 GHz/ line of interstellar atomic carbon

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Huggins, P. J.; Kuiper, T. B. H.; Miller, R. E.

    1980-01-01

    The ground-state transition of neutral atomic carbon, 3P1-3P0, has been detected in the interstellar medium at the frequency of 492.162 GHz determined in the laboratory by Saykally and Evenson (1980). The observations were made from the NASA Kuiper Airborne Observatory using an InSb heterodyne bolometer receiver. The line was detected as strong emission from eight molecular clouds and apparently provides a widely useful probe of the interstellar medium.

  15. The atomic configuration of graphene/vanadium carbide interfaces in vanadium carbide-encapsulating carbon nanocapsules.

    PubMed

    Yazaki, Gaku; Matsuura, Daisuke; Kizuka, Tokushi

    2014-03-01

    Carbon nanocapsules (CNCs) encapsulating vanadium carbide (VC) nanocrystals with a NaCI structure were synthesized by a gas-evaporation method using arc-discharge heating. The CNCs were observed by high-resolution transmission electron microscopy. The VC nanocrystals within the nanospaces of CNCs were truncated by low-index facets and were coated with several graphene layers, forming graphene/VC interfaces. The atomic configuration and interlayer spacings at the interfaces were found. PMID:24745251

  16. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization.

    PubMed

    Farmer, Damon B; Gordon, Roy G

    2006-04-01

    Alternating exposures of nitrogen dioxide gas and trimethylaluminum vapor are shown to functionalize the surfaces of single-walled carbon nanotubes with a self-limited monolayer. Functionalized nanotube surfaces are susceptible to atomic layer deposition of continuous, radially isotropic material. This allows for the creation of coaxial nanotube structures of multiple materials with precisely controlled diameters. Functionalization involves only weak physical bonding, avoiding covalent modification, which should preserve the unique optical, electrical, and mechanical properties of the nanotubes. PMID:16608267

  17. Carbon atom, dimer and trimer chemistry on diamond surfaces from molecular dynamics simulations

    SciTech Connect

    Valone, S.M.

    1995-07-01

    Spectroscopic studies of various atmospheres appearing in diamond film synthesis suggest evidence for carbon atoms, dimers, or trimers. Molecular dynamics simulations with the Brenner hydrocarbon potential are being used to investigate the elementary reactions of these species on a hydrogen-terminated diamond (111) surface. In principle these types of simulations can be extended to simulations of growth morphologies, in the 1-2 monolayer regime presently.

  18. Electronic transport in large systems through a QUAMBO-NEGF approach: Application to atomic carbon chains

    NASA Astrophysics Data System (ADS)

    Fang, X. W.; Zhang, G. P.; Yao, Y. X.; Wang, C. Z.; Ding, Z. J.; Ho, K. M.

    2011-10-01

    The conductance of single-atom carbon chain (SACC) between two zigzag graphene nanoribbons (GNR) is studied by an efficient scheme utilizing tight-binding (TB) parameters generated via quasi-atomic minimal basis set orbitals (QUAMBOs) and non-equilibrium Green's function (NEGF). Large systems (SACC contains more than 50 atoms) are investigated and the electronic transport properties are found to correlate with SACC's parity. The SACCs provide a stable off or on state in broad energy region (0.1-1 eV) around Fermi energy. The off state is not sensitive to the length of SACC while the corresponding energy region decreases with the increase of the width of GNR.

  19. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    PubMed

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor. PMID:26504991

  20. Iodinated (Perfluoro)alkyl Quinoxalines by Atom Transfer Radical Addition Using ortho-Diisocyanoarenes as Radical Acceptors.

    PubMed

    Leifert, Dirk; Studer, Armido

    2016-09-12

    A simple method for the preparation of functionalized quinoxalines is reported. Starting from readily accessible ortho-diisocyanoarenes and (perfluoro)alkyl iodides, the quinoxaline core is constructed during (perfluoro)alkylation by atom transfer radical addition (ATRA), resulting in 2-iodo-3-(perfluoro)alkylquinoxalines. The radical cascades are readily initiated either with visible light or by using α,α'-azobisisobutyronitrile (AIBN). The heteroarene products are obtained in high yields (up to 94 %), and the method can be readily scaled up. Useful follow-up chemistry documents the value of the novel radical quinoxaline synthesis. PMID:27510610

  1. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon

    NASA Astrophysics Data System (ADS)

    Semiletov, Igor; Pipko, Irina; Gustafsson, Örjan; Anderson, Leif G.; Sergienko, Valentin; Pugach, Svetlana; Dudarev, Oleg; Charkin, Alexander; Gukov, Alexander; Bröder, Lisa; Andersson, August; Spivak, Eduard; Shakhova, Natalia

    2016-05-01

    Ocean acidification affects marine ecosystems and carbon cycling, and is considered a direct effect of anthropogenic carbon dioxide uptake from the atmosphere. Accumulation of atmospheric CO2 in ocean surface waters is predicted to make the ocean twice as acidic by the end of this century. The Arctic Ocean is particularly sensitive to ocean acidification because more CO2 can dissolve in cold water. Here we present observations of the chemical and physical characteristics of East Siberian Arctic Shelf waters from 1999, 2000-2005, 2008 and 2011, and find extreme aragonite undersaturation that reflects acidity levels in excess of those projected in this region for 2100. Dissolved inorganic carbon isotopic data and Markov chain Monte Carlo simulations of water sources using salinity and δ18O data suggest that the persistent acidification is driven by the degradation of terrestrial organic matter and discharge of Arctic river water with elevated CO2 concentrations, rather than by uptake of atmospheric CO2. We suggest that East Siberian Arctic Shelf waters may become more acidic if thawing permafrost leads to enhanced terrestrial organic carbon inputs and if freshwater additions continue to increase, which may affect their efficiency as a source of CO2.

  2. Development of carbon electrodes for electrochemistry, solid-state electronics and multimodal atomic force microscopy imaging

    NASA Astrophysics Data System (ADS)

    Morton, Kirstin Claire

    Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.

  3. Enhancement of nitrate removal at the sediment-water interface by carbon addition plus vertical mixing.

    PubMed

    Chen, Xuechu; He, Shengbing; Zhang, Yueping; Huang, Xiaobo; Huang, Yingying; Chen, Danyue; Huang, Xiaochen; Tang, Jianwu

    2015-10-01

    Wetlands and ponds are frequently used to remove nitrate from effluents or runoffs. However, the efficiency of this approach is limited. Based on the assumption that introducing vertical mixing to water column plus carbon addition would benefit the diffusion across the sediment-water interface, we conducted simulation experiments to identify a method for enhancing nitrate removal. The results suggested that the sediment-water interface has a great potential for nitrate removal, and the potential can be activated after several days of acclimation. Adding additional carbon plus mixing significantly increases the nitrate removal capacity, and the removal of total nitrogen (TN) and nitrate-nitrogen (NO3(-)-N) is well fitted to a first-order reaction model. Adding Hydrilla verticillata debris as a carbon source increased nitrate removal, whereas adding Eichhornia crassipe decreased it. Adding ethanol plus mixing greatly improved the removal performance, with the removal rate of NO3(-)-N and TN reaching 15.0-16.5 g m(-2) d(-1). The feasibility of this enhancement method was further confirmed with a wetland microcosm, and the NO3(-)-N removal rate maintained at 10.0-12.0 g m(-2) d(-1) at a hydraulic loading rate of 0.5 m d(-1). PMID:25556005

  4. Tuning the oscillation of nested carbon nanotubes by insertion of an additional inner tube

    NASA Astrophysics Data System (ADS)

    Motevalli, B.; Liu, Jefferson Z.

    2013-12-01

    Different mechanisms of nano-oscillators with telescopic oscillations have attracted lots of attention due to the possible generation of GHz frequencies. In particular, nested carbon nanotubes are of special interest for which different mechanisms have been examined. In this paper, we will show that insertion of an additional inner tube into a conventional double walled carbon nanotube (DWCNT) oscillator not only can increase the oscillatory frequency considerably but also provides a wide range of system parameters for tuning the oscillatory behavior as well as its frequency. The insertion of an additional tube results in a number of different vdW force profiles (which only depend on the length ratios of the three tubes). Being subject to these different vdW force profiles and trigged with different initial velocity, an oscillating tube can exhibit various types of motions. We use a phase division diagram to discriminate the system parameters according to the different types of motions. Accordingly, a comprehensive study of the oscillatory frequency is also carried out. To perceive an insight into the effectiveness of insertion, a comparison is also made with the counterpart DWCNT oscillator. It is observed that this new mechanism offers a number of new possibilities in designing and characterizing a carbon nanotube based oscillator.

  5. 12 Years of NPK Addition Diminishes Carbon Sink Potential of a Nutrient Limited Peatland

    NASA Astrophysics Data System (ADS)

    Larmola, T.; Bubier, J. L.; Juutinen, S.; Moore, T. R.

    2011-12-01

    Peatlands store about a third of global soil carbon. Our aim was to study whether the vegetation feedbacks of nitrogen (N) deposition lead to stronger carbon sink or source in a nutrient limited peatland ecosystem. We investigated vegetation structure and ecosystem CO2 exchange at Mer Bleue Bog, Canada, that has been fertilized for 7-12 years. We have applied 5 and 20 times ambient annual wet N deposition (0.8 g N m-2) with or without phosphorus (P) and potassium (K). Gross photosynthesis, ecosystem respiration and net CO2 exchange (NEE) were measured weekly during the growing season using chamber technique. Under the highest N(PK) treatments, the light saturated photosynthesis (PSmax) was reduced by 20-30% compared to the control treatment, whereas under moderate N and PK additions PSmax slightly increased or was similar to the control. The ecosystem respiration showed similar trends among the treatments, but changes in the rates were less pronounced. High nutrient additions led to up to 65% lower net CO2 uptake than that in the control: In the NPK plots with cumulative N additions of 70, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.3), 2.0 (se. 0.4), and 2.4 (se. 0.3) μmol m-2 s-1, respectively. In the N only plots with cumulative N additions of 45, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.2), 2.6 (se. 0.4), and 1.8 (se. 0.3) μmol m-2 s-1, respectively. The reduced plant photosynthetic capacity and diminished carbon sink potential in the highest nutrient treatments correlated with the loss of peat mosses and were not compensated for by the increased vascular plant biomass that has mainly been allocated to woody shrub stems.

  6. Microstructure development in hot-pressed silicon carbide: Effects of aluminum, boron, and carbon additives

    SciTech Connect

    Zhang, Xiao Feng; Yang, Qing; De Jonghe, Lutgard C.

    2002-12-18

    SiC was hot-pressed with aluminum, boron, and carbon additives. The Al content was modified either to obtain SiC samples containing a continuous Al gradient, or to vary the average Al content. In both cases, dramatic changes in microstructure, phase composition, and grain boundary structure were observed as a result of the Al variation. Similar processing and characterization were done with modified boron and carbon average contents. The systematic experiments allowed identification of the roles of Al, B, and C in developing grain morphology and phase composition. The experiments also clarified the mechanical property responses to microstructural modification. Tailoring of the SiC microstructure to suit different applications would be possible.

  7. Investigation of the Interactions and Bonding between Carbon and Group VIII Metals at the Atomic Scale.

    PubMed

    Zoberbier, Thilo; Chamberlain, Thomas W; Biskupek, Johannes; Suyetin, Mikhail; Majouga, Alexander G; Besley, Elena; Kaiser, Ute; Khlobystov, Andrei N

    2016-03-01

    The nature and dynamics of bonding between Fe, Ru, Os, and single-walled carbon nanotubes (SWNTs) is studied by aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM). The metals catalyze a wide variety of different transformations ranging from ejection of carbon atoms from the nanotube sidewall to the formation of hollow carbon shells or metal carbide within the SWNT, depending on the nature of the metal. The electron beam of AC-HRTEM serves the dual purpose of providing energy to the specimen and simultaneously enabling imaging of chemical transformations. Careful control of the electron beam parameters, energy, flux, and dose allowed direct comparison between the metals, demonstrating that their chemical reactions with SWNTs are determined by a balance between the cohesive energy of the metal particles and the strength of the metal-carbon σ- or π-bonds. The pathways of transformations of a given metal can be drastically changed by applying different electron energies (80, 40, or 20 keV), thus demonstrating AC-HRTEM as a new tool to direct and study chemical reactions. The understanding of interactions and bonding between SWNT and metals revealed by AC-HRTEM at the atomic level has important implications for nanotube-based electronic devices and catalysis. PMID:26848826

  8. Effects of Nitrogen and Phosphorus Additions on Carbon Cycling of Tropical Mountain Rainforests in Hainan, China

    NASA Astrophysics Data System (ADS)

    Lai, J.

    2015-12-01

    Nitrogen (N) and Phosphorus (P) deposition is projected to increase significantly in tropical regions in the coming decades, which has changed and will change the structure and function of ecosystems, and affects on ecosystem Carbon (C) cycle. As an important part in global C cycle, how the C cycle of tropical rainforests will be influenced by the N and P deposition should be focused on. This study simulated N and P deposition in a primary and secondary forest of tropical mountain rainforest in Jianfengling, Hainan, China, during five-year field experiment to evaluate the effects of N and P deposition on C cycling processes and relate characteristics. Six levels of N and P treatments were treated: Control, Low-N, Medium-N, High-N, P and N+P. The relative growth rates (RGR) of tree layer in treatment plots were different from that in control plots after years of N and P addition. Simulated N and P deposition also increased ANPP in primary forest. N and P addition changed the growth of trees by altering soil nutrient and microbial activities. N and P addition increased soil organic carbon (SOC) and total N (TN) content, and significantly increased soil total P (TP) content, not changing soil pH. During the whole process of N and P addition, as net nitrification rate and net N mineralization rate were promoted by N and P addition, and effective N content (nitrate) of soil increased in the plot treated with N treatments compared to the control treatment. The microbial P content was increased by N and P addition, and microbial N was not changed. The increasing N deposition may enhance soil nutrient and stimulate growth of trees, which will lead to an increase of the C sequestration.

  9. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    NASA Astrophysics Data System (ADS)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  10. Atom Probe Tomography Examination of Carbon Redistribution in Quenched and Tempered 4340 Steel

    SciTech Connect

    Clarke, Amy J.; Miller, Michael K.; Alexander, David J.; Field, Robert D.; Clarke, Kester D.

    2012-08-07

    Quenching and tempering produces a wide range of mechanical properties in medium carbon, low alloyed steels - Study fragmentation behavior as a function of heat-treatment. Subtle microstructural changes accompany the mechanical property changes that result from quenching and tempering - Characterize the location and distribution of carbon and alloying elements in the microstructure using atom probe tomography (APT). Perform complementary transmission electron microscopy (TEM). Tempering influences the mechanical properties and fragmentation of quenched 4340 (hemi-shaped samples). APT revealed carbon-enriched features that contain a maximum of {approx}12-14 at.% carbon after quenching to RT (the level of carbon is perhaps associated with the extent of autotempering). TEM confirmed the presence of twinned martensite and indicates {var_epsilon} ({eta}) transition carbides after oil quenching to RT. Tempering at 325 C resulted in carbon-enriched plates (> 25 at.% C) with no significant element partitioning (transition carbides?). Tempering at 450 C and 575 C resulted in cementite ({approx} 25 at.% C) during late stage tempering; Cr, Mn, Mo partitioned to cementite and Si partitioned to ferrite. Tempering at 575 C resulted in P segregation at cementite interfaces and the formation of Cottrell atmospheres.

  11. Artificial neural network approach for atomic coordinate prediction of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Acı, Mehmet; Avcı, Mutlu

    2016-07-01

    In this paper, four artificial neural network (ANN) models [i.e., feed-forward neural network (FFNN), function fitting neural network (FITNET), cascade-forward neural network (CFNN) and generalized regression neural network] have been developed for atomic coordinate prediction of carbon nanotubes (CNTs). The research reported in this study has two primary objectives: (1) to develop ANN prediction models that calculate atomic coordinates of CNTs instead of using any simulation software and (2) to use results of the ANN models as an initial value of atomic coordinates for reducing number of iterations in calculation process. The dataset consisting of 10,721 data samples was created by combining the atomic coordinates of elements and chiral vectors using BIOVIA Materials Studio CASTEP (CASTEP) software. All prediction models yield very low mean squared normalized error and mean absolute error rates. Multiple correlation coefficient (R) results of FITNET, FFNN and CFNN models are close to 1. Compared with CASTEP, calculation times decrease from days to minutes. It would seem possible to predict CNTs' atomic coordinates using ANN models can be successfully used instead of mathematical calculations.

  12. The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.

    2009-12-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  13. [Effects of nitrogen and carbon addition and arbuscular mycorrhiza on alien invasive plant Ambrosia artemisiifolia].

    PubMed

    Huang, Dong; Sang, Wei-guo; Zhu, Li; Song, Ying-ying; Wang, Jin-ping

    2010-12-01

    A greenhouse control experiment was conducted to explore the effects of nitrogen and carbon addition and arbuscular mycorrhiza (AM) on the growth of alien invasive plant Ambrosia artemisiifolia (common ragweed). Nitrogen addition had no significant effects on the morphological indices, biomass and its allocation, and absolute growth rate of A. artemisiifolia, but increased the nitrogen content in the aboveground and underground parts of the plant significantly. Carbon addition increased the content of soil available nitrogen. In this case, the biomass allocation in root system for nutrient (nitrogen) absorption promoted, resulting in a remarkable decrease of branch number, total leaf area, specific leaf area (SLA), and leaf mass ratio. As a result, the total biomass decreased significantly. The symbiosis of A. artemisiifolia and AM fungi had great influence on the common ragweed's soil nitrogen acclimation, which enhanced its resource-capture by the increase of SLA, and this effect was more significant when the soil nitrogen content was low. AM fungi played an important role in the growth of A. artemisiifolia in low-nitrogen environment. PMID:21442989

  14. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    PubMed

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  15. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    PubMed Central

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  16. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  17. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    deBoer, Gary; Scott, Carl

    2003-01-01

    atoms survive for several milliseconds while the gaseous carbon atoms and small molecules nucleate more rapidly. Additional experiments and the development of in situ methods for carbon nanotube detection would allow these results to be interpreted from the perspective of carbon nanotube formation.

  18. Microwave-induced electrophilic addition of single-walled carbon nanotubes with alkylhalides

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Wang, Xianbao; Tian, Rong; Li, Shaoqing; Wan, Li; Li, Mingjian; You, Haijun; Li, Qin; Wang, Shimin

    2008-02-01

    We report the microwave-induced electrophilic addition of single-walled carbon nanotubes (SWNTs) with alkylhalides using Lewis acid as a catalyst followed by hydrolysis. The reaction results in the attachment of alkyl and hydroxyl groups to the surface of the nanotubes. This rapid and high-energy microwave radiation is found to be highly efficient for this reaction, which only needs as low as several minutes. The resulting nanotubes were characterized with FTIR, UV-vis-NIR, Raman, TGA, TEM and AFM. It demonstrates that iodo-alkanes show higher reaction activity with SWNTs than chloro- and bromo-alkanes.

  19. Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, H. R.; Shaat, M.; Abdelkefi, A.

    2016-08-01

    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler-Bernoulli beam with von Kármán type geometric nonlinearity. Eringen's nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue problem analysis. An atom of xenon (Xe) is first considered as a specific case where the results show that the natural frequencies and mode shapes of the CNT are strongly dependent on the location of the deposited Xe and the nonlocal parameter of the CNT. It is also indicated that the first vibrational mode is the most sensitive when the mass is deposited at the middle of a single-walled carbon nanotube. However, when deposited in other locations, it is demonstrated that the second or third vibrational modes may be more sensitive. To investigate the sensitivity of bridged single-walled CNTs as mass sensors, different noble gases are considered, namely Xe, argon (Ar), and helium (He). It is shown that the sensitivity of the single-walled CNT to the Ar and He gases is much lower than the Xe gas due to the significant decrease in their masses. The derived model and performed analysis are so needed for mass sensing applications and particularly when the detected mass is randomly deposited.

  20. First principles study of foreign interstitial atom (carbon, nitrogen) interactions with intrinsic defects in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Song, Chi; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Liu, C. S.

    2012-11-01

    We performed a series of first-principles calculations to investigate the foreign interstitial atom (FIA) interactions with intrinsic defects in tungsten. We found the following: (i) The introduction of the FIA reduces the vacancy formation energy, resulting in the increase of the equilibrium concentration of vacancies. (ii) The positive binding energy between two FIAs suggests that the FIA can attract other FIAs. (iii) The FIA is easily trapped by the vacancy, and a single vacancy can accommodate up to 4 and 6 atoms in a stable manner for carbon and nitrogen, respectively. (iv) There is an attraction interaction between the FIA and the self-interstitial atom (SIA), and the FIA can reduce the SIA jump frequency and enhance the formation of SIA clusters in tungsten. Moreover, the difference between carbon and nitrogen are also discussed with respect to the formation of FIA-FIA covalent bond and the accumulation around the saturated -, where d is the ith nearest-neighbor (inn) solute-tungsten distance before relaxation and ▵di=(di-d) is the change in distance due to relaxation. The calculated relaxations are presented in Table 3. The relaxations of 1nn of octahedral interstitial carbon and nitrogen atoms are 23.30% and 22.42%, respectively, which are greatly larger than the relaxations of other nearest-neighbor atoms (0.1-2%). These results indicate that the influence range of FIA is very local. The lattice distortions introduced by the octahedral interstitial carbon or nitrogen atom can be characterized by determining the dipolar tensor from Kanzaki forces. Here, to obtain the dipolar tensor, we adopt a similar calculation procedure as used in Ref. [14], where the dipolar tensor P is calculated from the Kanzaki forces on all the tungsten atoms. The detailed procedure could be found in Ref. [14]. Due to the symmetry of the configuration, the dipolar tensor has two independent values: P11 and P33, which are listed in Table 3. Similarly with Ref. [14], approximate

  1. Influence of atomic vacancies on the dynamic characteristics of nanoresonators based on double walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Patel, Ajay M.; Joshi, Anand Y.

    2015-06-01

    The dynamic analysis of double walled carbon nanotubes (DWCNTs) with different boundary conditions has been performed using atomistic finite element method. The double walled carbon nanotube is modeled considering it as a space frame structure similar to a three dimensional beam. The elastic properties of beam element are calculated by considering mechanical characteristics of covalent bonds between the carbon atoms in the hexagonal lattice. Spring elements are used to describe the interlayer interactions between the inner and outer tubes caused due to the van der Waals forces. The mass of each beam element is assumed as point mass at nodes coinciding with carbon atoms at inner and outer wall of DWCNT. It has been reported that atomic vacancies are formed during the manufacturing process in DWCNT which tend to migrate leading to a change in the mechanical characteristics of the same. Simulations have been carried out to visualize the behavior of such defective DWCNTs subjected to different boundary conditions and when used as mass sensing devices. The variation of such atomic vacancies in outer wall of Zigzag and Armchair DWCNT is performed along the length and the change in response is noted. Moreover, as CNTs have been used as mass sensors extensively, the present approach is focused to explore the use of zigzag and armchair DWCNT as sensing device with a mono-atomic vacancy in it. The results clearly state that the dynamic characteristics are greatly influenced by defects like vacancies in it. A higher frequency shift is observed when the vacancy is located away from the fixed end for both Armchair as well as zigzag type of CNTs. A higher frequency shift is reported for armchair CNT for a mass of 10-22 g which remains constant for 10-21 g and then decreases gradually. Comparison with the other experimental and theoretical studies exhibits good association which suggests that defective DWCNTs can further be explored for mass sensing. This investigation is helpful

  2. Effects of light and autochthonous carbon additions on microbial turnover of allochthonous organic carbon and community composition.

    PubMed

    Attermeyer, Katrin; Tittel, Jörg; Allgaier, Martin; Frindte, Katharina; Wurzbacher, Christian; Hilt, Sabine; Kamjunke, Norbert; Grossart, Hans-Peter

    2015-02-01

    The fate of allochthonous dissolved organic carbon (DOC) in aquatic systems is primarily controlled by the turnover of heterotrophic bacteria. However, the roles that abiotic and biotic factors such as light and DOC release by aquatic primary producers play in the microbial decomposition of allochthonous DOC is not well understood. We therefore tested if light and autochthonous DOC additions would increase allochthonous DOC decomposition rates and change bacterial growth efficiencies and community composition (BCC). We established continuous growth cultures with different inocula of natural bacterial communities and alder leaf leachates (DOCleaf) with and without light exposure before amendment. Furthermore, we incubated DOCleaf together with autochthonous DOC from lysed phytoplankton cultures (DOCphyto). Our results revealed that pretreatments of DOCleaf with light resulted in a doubling of bacterial growth efficiency (BGE), whereas additions of DOCphyto or combined additions of DOCphyto and light had no effect on BGE. The change in BGE was not accompanied by shifts in the phylogenetic structure of the BCC, but BCC was influenced by the DOC source. Our results highlight that a doubling of BGE is not necessarily accompanied by a shift in BCC and that BCC is more strongly affected by resource properties. PMID:25515425

  3. Controlling a toxic shock of pentachlorophenol (PCP) to anaerobic digestion using activated carbon addition.

    PubMed

    Xiao, Yeyuan; De Araujo, Cecilia; Sze, Chun Chau; Stuckey, David C

    2015-04-01

    Several powdered and granular activated carbons (PACs and GACs) were tested for adsorption of pentachlorophenol (PCP) in bench-scale anaerobic digestion reactors to control the toxicity of PCP to acetoclastic methanogenesis. Results showed that the adsorption capacities of PAC were reduced by 21-54%, depending on the PAC addition time, in the presence of the methanogenic sludge compared to the controls without sludge. As a preventive measure, PAC at a low dose of 20% (mass ratio to the VSS) added 24 h prior to, or simultaneously with, the addition of PCP could completely eliminate the toxic effects of PCP. At the same dose, PAC also enabled methanogenesis to recover immediately after the sludge had been exposed to PCP for 24h. GAC was not effective in enabling the recovery of methanogenesis due to its slow adsorption kinetics; however, at a dose of 80% it could partially ameliorate the toxic shock of PCP. PMID:25665874

  4. On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame

    SciTech Connect

    Guo, Hongsheng; Thomson, Kevin A.; Smallwood, Gregory J.

    2009-06-15

    The effect of carbon monoxide addition on soot formation in an ethylene/air diffusion flame is investigated by experiment and detailed numerical simulation. The paper focuses on the chemical effect of carbon monoxide addition by comparing the results of carbon monoxide and nitrogen diluted flames. Both experiment and simulation show that although overall the addition of carbon monoxide monotonically reduces the formation of soot, the chemical effect promotes the formation of soot in an ethylene/air diffusion flame. The further analysis of the details of the numerical result suggests that the chemical effect of carbon monoxide addition may be caused by the modifications to the flame temperature, soot surface growth and oxidation reactions. Flame temperature increases relative to a nitrogen diluted flame, which results in a higher surface growth rate, when carbon monoxide is added. Furthermore, the addition of carbon monoxide increases the concentration of H radical owing to the intensified forward rate of the reaction CO + OH = CO{sub 2} + H and therefore increases the surface growth reaction rates. The addition of carbon monoxide also slows the oxidation rate of soot because the same reaction CO + OH = CO{sub 2} + H results in a lower concentration of OH. (author)

  5. Atomic scale enhancement of the adhesion of beryllium films to carbon substrates

    SciTech Connect

    Musket, R.G.; Wirtenson, G.R.

    1995-12-01

    We have used 200 keV carbon ions to enhance the adhesion of 240-nm thick Be films to polished, vitreous carbon substrates. Adhesion of the as-deposited films was below that necessary to pass the scotch-tape test. Carbon ion fluences less than 1.6x10{sup 14} C/cm{sup 2} were sufficient to ensure the passage of the tape test without affecting the optical properties of the films. Adhesion failure of the as-deposited film was attributed to an inner oxide layer between the Be and the carbon. Because this oxide ({approximately}5 nm of BeO) was not measurably changed by the irradiation process, these results are consistent with adhesion enhancement occurring on the atomic scale at the interface between the inner oxide and the carbon substrate. This conclusion was supported by Rutherford backscattering (RBS) data, and potential adhesion mechanisms are discussed with consideration of relative contributions from electronic and nuclear stopping.

  6. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    SciTech Connect

    Erikat, I. A.; Hamad, B. A.

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir–C and Ir–Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  7. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface.

    PubMed

    Erikat, I A; Hamad, B A

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule. PMID:24206318

  8. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  9. Effects of addition of different carbon materials on the electrochemical performance of nickel hydroxide electrode

    NASA Astrophysics Data System (ADS)

    Sierczynska, Agnieszka; Lota, Katarzyna; Lota, Grzegorz

    Nickel hydroxide is used as an active material in positive electrodes of rechargeable alkaline batteries. The capacity of nickel-metal hydride (Ni-MH) batteries depends on the specific capacity of the positive electrode and utilization of the active material because of the Ni(OH) 2/NiOOH electrode capacity limitation. The practical capacity of the positive nickel electrode depends on the efficiency of the conductive network connecting the Ni(OH) 2 particle with the current collector. As β-Ni(OH) 2 is a kind of semiconductor, the additives are necessary to improve the conductivity between the active material and the current collector. In this study the effect of adding different carbon materials (flake graphite, multi-walled carbon nanotubes (MWNT)) on the electrochemical performance of pasted nickel-foam electrode was established. A method of production of MWNT special type of catalysts had an influence on the performance of the nickel electrodes. The electrochemical tests showed that the electrode with added MWNT (110-170 nm diameter) exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage and cycling stability. The nickel electrodes with MWNT addition (110-170 nm diameter) have exhibited a specific capacity close to 280 mAh g -1 of Ni(OH) 2, and the degree of active material utilization was ∼96%.

  10. Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth.

    PubMed

    Zhang, Hong-Bo; Hou, Dingyu; Law, Chung K; You, Xiaoqing

    2016-02-11

    Using density functional theory and master equation modeling, we have studied the kinetics of small unsaturated aliphatic molecules reacting with polycyclic aromatic hydrocarbon (PAH) molecules having a diradical character. We have found that these reactions follow the mechanism of carbon addition and hydrogen migration (CAHM) on both spin-triplet and open-shell singlet potential energy surfaces at a rate that is about ten times those of the hydrogen-abstraction-carbon-addition (HACA) reactions at 1500 K in the fuel-rich postflame region. The results also show that the most active reaction sites are in the center of the zigzag edges of the PAHs. Furthermore, the reaction products are more likely to form straight rather than branched aliphatic side chains in the case of reacting with diacetylene. The computed rate constants are also found to be independent of pressure at conditions of interest in soot formation, and the activation barriers of the CAHM reactions are linearly correlated with the diradical characters. PMID:26799641

  11. Singly Bonded Monoadduct rather than Methanofullerene: Manipulating the Addition Pattern of Trimetallic Nitride Clusterfullerene through One Endohedral Metal Atom Substitution.

    PubMed

    Wang, Song; Huang, Jing; Gao, Congli; Jin, Fei; Li, Qunxiang; Xie, Suyuan; Yang, Shangfeng

    2016-06-01

    Bingel-Hirsch reactions of trimetallic nitride clusterfullerenes (NCFs) generally yield methanofullerene (cyclopropane) adducts instead of singly bonded derivatives, which have been reported for monometallofullerenes. Herein, we report the synthesis and characterization of the Bingel-Hirsch derivative of a mixed metal nitride clusterfullerene (MMNCF) TiY2 N@Ih -C80 . Surprisingly, in contrast to the reported Bingel-Hirsch cyclopropane adducts of the analogous NCF Y3 N@Ih -C80 , the Bingel-Hirsch derivative of TiY2 N@Ih -C80 is the first singly bonded monoadduct (labeled as TiY2 N@C80 -Mono) to be reported, which was determined unambiguously by single-crystal X-ray crystallography. Besides, the reactivity of TiY2 N@Ih -C80 was found to be significantly improved relative to that of Y3 N@Ih -C80 . Upon substituting one endohedral yttrium (Y) atom of Y3 N@Ih -C80 with titanium (Ti), the Bingel-Hirsch derivative changes from the cyclopropane to the singly bonded monoadduct, revealing that not only the reactivity but also the addition pattern of NCFs can be manipulated simultaneously through one endohedral metal atom substitution. PMID:27115985

  12. Tetragonality and the distribution of carbon atoms in the Fe-C martensite: Molecular-dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chirkov, P. V.; Mirzoev, A. A.; Mirzaev, D. A.

    2016-01-01

    In the statistical theory of the ordering of carbon atoms in the z sublattice of martensite, the most important role is played by the parameter of the strain interaction of carbon atoms λ0, which determines the critical temperature of the bcc-bct transition. The values of this parameter (6-11 eV/atom) obtained in recent years by the methods of computer simulation differ significantly from the value λ0 = 2.73 eV/atom obtained by A. G. Khachaturyan. In this article, we calculated the value of λ0 by two methods based on the molecular-dynamics simulation of the ordering of carbon atoms in the lattice of martensite at temperatures of 500, 750, 900, and 1000 K in a wide range of carbon concentrations, which includes c crit. No tails of ordering below c crit have been revealed. It has been shown analytically that there is an inaccuracy in the Khachaturyan theory of ordering for the crystal in an elastic environment. After eliminating this inaccuracy, no tails of the order parameter appear; the tetragonality changes jumpwise from η = 0 to ηcrit = 0.75 at c crit = 2.9 kT/λ0 instead of ηcrit = 0.5 and c crit= 2.77 kT/λ0 for an isolated crystal. Upon the simulation, clustering of carbon atoms was revealed in the form of platelike pileups along {102} planes separated by flat regions where no carbon atoms were present. The influence of short-range order in the arrangement of neighboring carbon atoms on the thermodynamics of ordering is discussed.

  13. Inelastic and reactive scattering of hyperthermal atomic oxygen from amorphous carbon

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Brinza, David E.; Liang, Ranty H.

    1991-01-01

    The reaction of hyperthermal oxygen atoms with an amorphous carbon-13 surface was studied using a modified universal crossed molecular beams apparatus. Time-of-flight distributions of inelastically scattered O-atoms and reactively scattered CO-13 and CO2-13 were measured with a rotatable mass spectrometer detector. Two inelastic scattering channels were observed, corresponding to a direct inelastic process in which the scattered O-atoms retain 20 to 30 percent of their initial kinetic energy and to a trapping desorption process whereby O-atoms emerge from the surface at thermal velocities. Reactive scattering data imply the formation of two kinds of CO products, slow products whose translational energies are determined by the surface temperature and hyperthermal (Approx. 3 eV) products with translational energies comprising roughly 30 percent of the total available energy (E sub avl), where E sub avl is the sum of the collision energy and the reaction exothermicity. Angular data show that the hyperthermal CO is scattered preferentially in the specular direction. CO2 product was also observed, but at much lower intensities than CO and with only thermal velocities.

  14. The influence of atomic nitrogen flux on the composition of carbon nitride thin films

    SciTech Connect

    Merel, P.; Chaker, M.; Tabbal, M.; Moisan, M.

    1997-12-01

    Carbon nitride (CN{sub x}) thin films have been deposited using a hybrid system combining pulsed laser deposition of graphite with the surface-wave discharge atomic nitrogen source (3{percent} N{sub 2} in Ar). Using this system, an experiment is designed to study the influence of the atomic nitrogen flux on the composition of the CN{sub x} thin films at various laser intensities. The nitrogen percentage in the thin films is positively correlated with the N atom flux impinging on the substrate surface but it is counter-productive to use excessively high values of laser intensities on the graphite target. For a laser intensity of 6{times}10{sup 8}W/cm{sup 2}, the nitrogen percentage increases with the N atom flux and saturates at only about 16 at.{percent}. On the other hand, a maximum nitrogen percentage of 30 at.{percent} is obtained at the much lower laser intensity of 5{times}10{sup 7}W/cm{sup 2}. {copyright} {ital 1997 American Institute of Physics.}

  15. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition.

    PubMed

    Huang, Wenjuan; Zhou, Guoyi; Liu, Juxiu; Zhang, Deqiang; Liu, Shizhong; Chu, Guowei; Fang, Xiong

    2015-01-01

    Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), copper (Cu) and manganese (Mn) in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol(-1)) and N addition (100 kg N ha(-1) yr(-1)) from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics. PMID:25794046

  16. Mineral Elements of Subtropical Tree Seedlings in Response to Elevated Carbon Dioxide and Nitrogen Addition

    PubMed Central

    Huang, Wenjuan; Zhou, Guoyi; Liu, Juxiu; Zhang, Deqiang; Liu, Shizhong; Chu, Guowei; Fang, Xiong

    2015-01-01

    Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), copper (Cu) and manganese (Mn) in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol-1) and N addition (100 kg N ha-1 yr-1) from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics. PMID:25794046

  17. Atomic electron affinities and the role of symmetry between electron addition and subtraction in a corrected Koopmans approach.

    PubMed

    Teale, A M; De Proft, F; Geerlings, P; Tozer, D J

    2014-07-28

    The essential aspects of zero-temperature grand-canonical ensemble density-functional theory are reviewed in the context of spin-density-functional theory and are used to highlight the assumption of symmetry between electron addition and subtraction that underlies the corrected Koopmans approach of Tozer and De Proft (TDP) for computing electron affinities. The issue of symmetry is then investigated in a systematic study of atomic electron affinities, comparing TDP affinities with those from a conventional Koopmans evaluation and electronic energy differences. Although it cannot compete with affinities determined from energy differences, the TDP expression yields results that are a significant improvement over those from the conventional Koopmans expression. Key insight into the results from both expressions is provided by an analysis of plots of the electronic energy as a function of the number of electrons, which highlight the extent of symmetry between addition and subtraction. The accuracy of the TDP affinities is closely related to the nature of the orbitals involved in the electron addition and subtraction, being particularly poor in cases where there is a change in principal quantum number, but relatively accurate within a single manifold of orbitals. The analysis is then extended to a consideration of the ground state Mulliken electronegativity and chemical hardness. The findings further emphasize the key role of symmetry in determining the quality of the results. PMID:24406854

  18. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study.

    PubMed

    Okuno, Yukihiro; Ushirogata, Keisuke; Sodeyama, Keitaro; Tateyama, Yoshitaka

    2016-03-28

    Additives in the electrolyte solution of lithium-ion batteries (LIBs) have a large impact on the performance of the solid electrolyte interphase (SEI) that forms on the anode and is a key to the stability and durability of LIBs. We theoretically investigated effects of fluoroethylene carbonate (FEC), a representative additive, that has recently attracted considerable attention for the enhancement of cycling stability of silicon electrodes and the improvement of reversibility of sodium-ion batteries. First, we intensively examined the reductive decompositions by ring-opening, hydrogen fluoride (HF) elimination to form a vinylene carbonate (VC) additive and intermolecular chemical reactions of FEC in the ethylene carbonate (EC) electrolyte, by using density functional theory (DFT) based molecular dynamics and the blue-moon ensemble technique for the free energy profile. The results show that the most plausible product of the FEC reductive decomposition is lithium fluoride (LiF), and that the reactivity of FEC to anion radicals is found to be inert compared to the VC additive. We also investigated the effects of the generated LiF on the SEI by using two model systems; (1) LiF molecules distributed in a model aggregate of organic SEI film components (SFCs) and (2) a LiF aggregate interfaced with the SFC aggregate. DFT calculations of the former system show that F atoms form strong bindings with the Li atoms of multiple organic SFC molecules and play as a joint connecting them. In the latter interface system, the LiF aggregate adsorbs the organic SFCs through the F-Li bindings. These results suggest that LiF moieties play the role of glue in the organic SFC within the SEI film. We also examined the interface structure between a LiF aggregate and a lithiated silicon anode, and found that they are strongly bound. This strong binding is likely to be related to the effectiveness of the FEC additive in the electrolyte for the silicon anode. PMID:26948716

  19. Atomic force microscopy studies of carbon nanotubes synthesized in porous alumina film

    NASA Astrophysics Data System (ADS)

    Sui, Yucheng; Sellmyer, David J.

    2002-03-01

    Mechanical properties of carbon nanotubes (CNTs) have been investigated with atomic force microscopy (AFM) [1]. Tubes used in the corresponding investigations are CNTs consisting of long and straight coaxial cylindrical units. But CNTs made by chemical vapor deposition (CVD) in porous anodic alumina film have a different tube wall structure, which consist of numerous stacked flakes or chips of carbon atomic layers [2]. It should be especially noted that these nanotubes also possess interesting electronic properties. For example, they exhibit intrinsically nonlinear transport and reproducible rectifying behavior at room temperature [3]. In this study, non contact-mode (NC), intermittent contact-mode (IC mode) and contact-mode (C mode) of atomic force microscopy were adopted to investigate the axial deformation and cutting of carbon nanotubes. It was found that IC mode and NC mode exert similar force on the tube under the same scanning height, while contact mode deformed the CNTs more completely than the former two testing modes. No irreversible deformation can be found after repeated scanning under contact mode. No deformation was found by NC and IC mode for CNTs with larger wall thickness. Tube cutting was observed by both contact and non contact mode. Research was supported by AFOSR, NSF, NRI and CMRA. References: 1. M.F. Yu, T. Kowalewski, R.S. Ruoff, Phys. Rev. Lett. 85, 1456 (2000). 2. Y. C. Sui, D. R. Acosta, J. A. Gonz¨¢lez-Le¨®n, A. Berm¨2dez, J. Feuchtwanger, B. Z. Cui, J. O. Flores, and J. M. Saniger, J. Phys. Chem. B. 105 1523 (2001) 3. C. Papadopoulos, A. Rakitin, J. Li, A.S. Vedeneev, J.M. Xu, Phys. Rev. Lett. 85, 3476 (2000).

  20. Synthesis and characterization of carbon fibers functionalized with poly (glycidyl methacrylate) via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Yongwei; Xiong, Lei; Qin, Xiaokang; Wang, Zhengyue; Ding, Bei; Ren, Huan; Pi, Xiaolong

    2015-07-01

    In this work, polyacrylonitrile (PAN)-based carbon fibers (CF) were chemically modified with poly (glycidyl methacrylate) (PGMA) via atom transfer radical polymerization (ATRP) to improve the interaction between the CF and polymer matrix. The FT-IR, TGA, and XPS were used to determine the chemical structure of the resulting products and the quantities of PGMA chains grafted from the CF surface. The experimental results confirm that the CF surface was functionalized and glycidyl methacrylate was graft-polymerized onto the CF, and the grafting content of polymer could reach 10.2%.

  1. Fabrication process of carbon nanotube field effect transistors using atomic layer deposition passivation for biosensors.

    PubMed

    Nakashima, Yasuhiro; Ohno, Yutaka; Kishimoto, Shigeru; Okochi, Mina; Honda, Hiroyuki; Mizutani, Takashi

    2010-06-01

    Fabrication process of the carbon nanotube (CNT) field effect transistors (FETs) for biosensors was studied. Atomic layer deposition (ALD) of HfO2 was applied to the deposition of the passivation/gate insulator film. The CNT-FETs did not show the drain current degradation after ALD passivation even though the passivation by Si3N4 deposited by plasma-enhanced chemical vapor deposition (PECVD) resulted in a significant drain current decrease. This indicates the advantage of the present ALD technique in terms of the damage suppression. The biosensing operation was confirmed using thus fabricated CNT-FETs. PMID:20355371

  2. Sc3CH@C80: selective (13)C enrichment of the central carbon atom.

    PubMed

    Junghans, Katrin; Rosenkranz, Marco; Popov, Alexey A

    2016-05-01

    Sc3CH@C80 is synthesized and characterized by (1)H, (13)C, and (45)Sc NMR. A large negative chemical shift of the proton, -11.73 ppm in the Ih and -8.79 ppm in the D5h C80 cage isomers, is found. (13)C satellites in the (1)H NMR spectrum enabled indirect determination of the (13)C chemical shift for the central carbon at 173 ± 1 ppm. Intensity of the satellites allowed determination of the (13)C content for the central carbon atom. This unique possibility is applied to analyze the cluster/cage (13)C distribution in mechanistic studies employing either (13)CH4 or (13)C powder to enrich Sc3CH@C80 with (13)C. PMID:27109443

  3. Redistribution of carbon atoms in Pt substrate for high quality monolayer graphene synthesis

    NASA Astrophysics Data System (ADS)

    Yinying, Li; Xiaoming, Wu; Huaqiang, Wu; He, Qian

    2015-01-01

    The two-dimensional material graphene shows its extraordinary potential in many application fields. As the most effective method to synthesize large-area monolayer graphene, chemical vapor deposition has been well developed; however, it still faces the challenge of a high occurrence of multilayer graphene, which causes the small effective area of monolayer graphene. This phenomenon limits its applications in which only a big size of monolayer graphene is needed. In this paper, by introducing a redistribution stage after the decomposition of carbon source gas to redistribute the carbon atoms dissolved in Pt foils, the number of multilayer flakes on the monolayer graphene decreases. The mean area of monolayer graphene can be extended to about 16 000 μm2, which is eight times larger than that of the graphene grown without the redistribution stage. A Raman spectrograph is used to demonstrate the high quality of the monolayer graphene grown by the improved process.

  4. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples

    PubMed Central

    Kenig, Fabien; Simons, Dirk-Jan H.; Crich, David; Cowen, James P.; Ventura, Gregory T.; Rehbein-Khalily, Tatiana; Brown, Todd C.; Anderson, Ken B.

    2003-01-01

    A pseudohomologous series of branched aliphatic alkanes with a quaternary substituted carbon atom (BAQCs, specifically 2,2-dimethylalkanes and 3,3- and 5,5-diethylalkanes) were identified in warm (65°C) deep-sea hydrothermal waters and Late Cretaceous black shales. 5,5-Diethylalkanes were also observed in modern and Holocene marine shelf sediments and in shales spanning the last 800 million years of the geological record. The carbon number distribution of BAQCs indicates a biological origin. These compounds were observed but not identified in previous studies of 2.0 billion- to 2.2 billion-year-old metasediments and were commonly misidentified in other sediment samples, indicating that BAQCs are widespread in the geological record. The source organisms of BAQCs are unknown, but their paleobiogeographic distribution suggests that they have an affinity for sulfides and might be nonphotosynthetic sulfide oxidizers. PMID:14551322

  5. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  6. Additive-induced morphological tuning of self-assembled silica-barium carbonate crystal aggregates

    NASA Astrophysics Data System (ADS)

    Kellermeier, Matthias; Glaab, Fabian; Carnerup, Anna M.; Drechsler, Markus; Gossler, Benjamin; Hyde, Stephen T.; Kunz, Werner

    2009-04-01

    Crystallisation of barium carbonate from alkaline silica solutions results in the formation of extraordinary micron-scale architectures exhibiting non-crystallographic curved shapes, such as helical filaments and worm-like braids. These so-called "silica biomorphs" consist of a textured assembly of uniform elongated witherite nanocrystallites, which is occasionally sheathed by a skin of amorphous silica. Although great efforts have been devoted to clarifying the physical origin of these fascinating materials, to date little is known about the processes underlying the observed self-organisation. Herein, we describe the effect of two selected additives, a cationic surfactant and a cationic polymer, on the morphology of the forming crystal aggregates, and relate changes to experiments conducted in the absence of additives. Minor amounts of both substances are shown to exert a significant influence on the growth process, leading to the formation of predominantly flower-like spherulitic aggregates. The observed effects are discussed in terms of feasible morphogenesis pathways. Based on the assumption of a template membrane steering biomorph formation, it is proposed that the two additives are capable of performing specific bridging functions promoting the aggregation of colloidal silica which constitutes the membrane. Morphological changes are tentatively ascribed to varying colloid coordination effecting distinct membrane curvatures.

  7. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent.

    PubMed

    Satyawali, Yamini; Balakrishnan, Malini

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8L reactor was equipped with a submerged 30 microm nylon mesh filter with 0.05 m(2) filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m(-3)d(-1). PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh. PMID:19467782

  8. Enhancing the adsorption of ionic liquids onto activated carbon by the addition of inorganic salts

    PubMed Central

    Neves, Catarina M. S. S.; Lemus, Jesús; Freire, Mara G.; Palomar, Jose; Coutinho, João A. P.

    2014-01-01

    Most ionic liquids (ILs) are either water soluble or present a non-negligible miscibility with water that may cause some harmful effects upon their release into the environment. Among other methods, adsorption of ILs onto activated carbon (AC) has shown to be an effective technique to remove these compounds from aqueous solutions. However, this method has proved to be viable only for hydrophobic ILs rather than for the hydrophilic that, being water soluble, have a larger tendency for contamination. In this context, an alternative approach using the salting-out ability of inorganic salts is here proposed to enhance the adsorption of hydrophilic ILs onto activated carbon. The effect of the concentrations of Na2SO4 on the adsorption of five ILs onto AC was investigated. A wide range of ILs that allow the inspection of the IL cation family (imidazolium- and pyridinium-based) and the anion nature (accounting for its hydrophilicity and fluorination) through the adsorption onto AC was studied. In general, it is shown that the use of Na2SO4 enhances the adsorption of ILs onto AC. In particular, this effect is highly relevant when dealing with hydrophilic ILs that are those that are actually poorly removed by AC. In addition, the COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used aiming at complementing the experimental data obtained. This work contributes with the development of novel methods to remove ILs from water streams aiming at creating “greener” processes. PMID:25516713

  9. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    PubMed Central

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco

    2015-01-01

    Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  10. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires.

    PubMed

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco; Casari, Carlo S

    2015-01-01

    Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single-triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  11. Effect of small additions of carbon nanotubes on the electrical conductivity of polyurethane elastomer

    NASA Astrophysics Data System (ADS)

    Novikov, G. F.; Rabenok, E. V.; Estrin, Ya. I.; Ol'hov, Yu. A.; Badamshina, E. R.

    2014-10-01

    The effect of small (0.002-0.018 wt %) additions of single-walled carbon nanotubes on the dielectric properties and electrical conductivity of crosslinked polyurethane elastomer is studied in the temperature range of 133-453 K and the 10-3 to 105 Hz range of electric field frequencies. It is shown that the dependence of direct current conductivity σ dc on temperature deviates significantly from the Arrhenius dependence and is described by the Vogel-Fulcher-Tamman equation σ dc = σ dc0exp{- DT 0/( T - T 0)}, where T 0 is the Vogel temperature and D is the strength parameter. A correlation is found between the nonmonotonic dependences of the glass transition temperature ( T g), D parameter, and σ dc and the concentration of nanotubes with earlier results for their effects on the physicomechanical characteristics (strength and Young's modulus) of these systems.

  12. Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi

    2015-06-01

    The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.

  13. Freshwater ecology. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems.

    PubMed

    Rosemond, Amy D; Benstead, Jonathan P; Bumpers, Phillip M; Gulis, Vladislav; Kominoski, John S; Manning, David W P; Suberkropp, Keller; Wallace, J Bruce

    2015-03-01

    Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that average terrestrial organic C residence time was reduced by ~50% as compared to reference conditions as a result of nutrient pollution. Annual inputs of terrestrial organic C were rapidly depleted via release of detrital food webs from N and P co-limitation. This magnitude of terrestrial C loss can potentially exceed predicted algal C gains with nutrient enrichment across large parts of river networks, diminishing associated ecosystem services. PMID:25745171

  14. Effects of Litter and Nutrient Additions on Soil Carbon Cycling in a Tropical Forest

    NASA Astrophysics Data System (ADS)

    Cusack, D. F.; Halterman, S.; Turner, B. L.; Tanner, E.; Wright, S. J.

    2014-12-01

    Soil carbon (C) dynamics present one of the largest sources of uncertainty in global C cycle models, with tropical forest soils containing some of the largest terrestrial C stocks. Drastic changes in soil C storage and loss are likely to occur if global change alters plant net primary production (NPP) and/or nutrient availability in these ecosystems. We assessed the effects of litter removal and addition, as well as fertilization with nitrogen (N), phosphorus (P), and/or potassium (K), on soil C stocks in a tropical seasonal forest in Panama after ten and sixteen years, respectively. We used a density fractionation scheme to assess manipulation effects on rapidly and slowly cycling pools of C. Soil samples were collected in the wet and dry seasons from 0-5 cm and 5-10 cm depths in 15- 45x45 m plots with litter removal, 2x litter addition, and control (n=5), and from 32- 40x40 m fertilization plots with factorial additions of N, P, and K. We hypothesized that litter addition would increase all soil C fractions, but that the magnitude of the effect on rapidly-cycling C would be dampened by a fertilization effect. Results for the dry season show that the "free light" C fraction, or rapidly cycling soil C pool, was significantly different among the three litter treatments, comprising 5.1 ± 0.9 % of total soil mass in the litter addition plots, 2.7 ± 0.3 % in control plots, and 1.0 ± 0.1 % in litter removal plots at the 0-5cm depth (means ± one standard error, p < 0.05). Bulk soil C results are similar to observed changes in the rapidly cycling C pool for the litter addition and removal. Fertilization treatments on average diminished this C pool size relative to control plots, although there was substantial variability among fertilization treatments. In particular, addition of N and P together did not significantly alter rapidly cycling C pool sizes (4.1 ± 1.2 % of total soil mass) relative to controls (3.5 ± 0.4 %), whereas addition of P alone resulted in

  15. Computations on the primary photoreaction of Br2 with CO2: stepwise vs concerted addition of Br atoms.

    PubMed

    Xu, Kewei; Korter, Timothy M; Braiman, Mark S

    2015-04-01

    It was proposed previously that Br2-sensitized photolysis of liquid CO2 proceeds through a metastable primary photoproduct, CO2Br2. Possible mechanisms for such a photoreaction are explored here computationally. First, it is shown that the CO2Br radical is not stable in any geometry. This rules out a free-radical mechanism, for example, photochemical splitting of Br2 followed by stepwise addition of Br atoms to CO2-which in turn accounts for the lack of previously observed Br2+CO2 photochemistry in gas phases. A possible alternative mechanism in liquid phase is formation of a weakly bound CO2:Br2 complex, followed by concerted photoaddition of Br2. This hypothesis is suggested by the previously published spectroscopic detection of a binary CO2:Br2 complex in the supersonically cooled gas phase. We compute a global binding-energy minimum of -6.2 kJ mol(-1) for such complexes, in a linear geometry. Two additional local minima were computed for perpendicular (C2v) and nearly parallel asymmetric planar geometries, both with binding energies near -5.4 kJ mol(-1). In these two latter geometries, C-Br and O-Br bond distances are simultaneously in the range of 3.5-3.8 Å, that is, perhaps suitable for a concerted photoaddition under the temperature and pressure conditions where Br2 + CO2 photochemistry has been observed. PMID:25767936

  16. Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose

    SciTech Connect

    Hashsham, S.A.; Freedman, D.L.

    1999-10-01

    The objective of this study was to evaluate the effect of hydroxocobalamin (OH-Cbl) on transformation of high concentrations of carbon tetrachloride (CT) by Acetobacterium woodii. Complete transformation of 470 {micro}M CT was achieved by A. woodii within 2.5 days, when 10 {micro}M OH-Cbl was added along with 25.2 mM fructose. This was approximately 30 times faster than A. woodii cultures and medium that did not receive OH-Cbl and 5 times faster than those controls that did receive OH-Cbl, but either live A. woodii or fructose was missing. CT transformation in treatments with only OH-Cbl was indicative of the important contribution of nonenzymatic reactions. Besides increasing the rate of CT transformation, addition of fructose and OH-Cbl to live cultures increased the percentage of [{sup 14}C]CT transformed to {sup 14}CO{sub 2} and {sup 14}C-labeled soluble materials, while decreasing the percentage of CT reduced to chloroform and abiotically transformed to carbon disulfide. {sup 14}CS{sub 2} represented more than 35% of the [{sup 14}C]CT in the presence of reduced medium and OH-Cbl. Conversion of CT to CO was a predominant pathway in formation of CO{sub 2} in the presence of live cells and added fructose and OH-Cbl. These results indicate that the rate and distribution of products during cometabolic transformation of CT by A. woodii can be improved by the addition of fructose and OH-Cbl.

  17. Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose.

    PubMed

    Hashsham, S A; Freedman, D L

    1999-10-01

    The objective of this study was to evaluate the effect of hydroxocobalamin (OH-Cbl) on transformation of high concentrations of carbon tetrachloride (CT) by Acetobacterium woodii (ATCC 29683). Complete transformation of 470 microM (72 mg/liter [aqueous]) CT was achieved by A. woodii within 2.5 days, when 10 microM OH-Cbl was added along with 25.2 mM fructose. This was approximately 30 times faster than A. woodii cultures (live or autoclaved) and medium that did not receive OH-Cbl and 5 times faster than those controls that did receive OH-Cbl, but either live A. woodii or fructose was missing. CT transformation in treatments with only OH-Cbl was indicative of the important contribution of nonenzymatic reactions. Besides increasing the rate of CT transformation, addition of fructose and OH-Cbl to live cultures increased the percentage of [(14)C]CT transformed to (14)CO(2) (up to 31%) and (14)C-labeled soluble materials (principally L-lactate and acetate), while decreasing the percentage of CT reduced to chloroform and abiotically transformed to carbon disulfide. (14)CS(2) represented more than 35% of the [(14)C]CT in the presence of reduced medium and OH-Cbl. Conversion of CT to CO was a predominant pathway in formation of CO(2) in the presence of live cells and added fructose and OH-Cbl. These results indicate that the rate and distribution of products during cometabolic transformation of CT by A. woodii can be improved by the addition of fructose and OH-Cbl. PMID:10508086

  18. Nitrogen Additions Increase the Diversity of Carbon Compounds Degraded by Fungi in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Gartner, T. B.; Turner, K. M.; Treseder, K. K.

    2004-12-01

    Boreal forest soils in North America harbor a large reservoir of organic C, and this region is increasingly exposed to long-range atmospheric N transport from Eurasia. By examining the responses of decomposers to N deposition in these forests, we hope to improve predictions of the fate of boreal carbon pools under global change. We tested the hypothesis that the functional diversity of decomposer fungi would increase under N fertilization in boreal forests where fungal growth was otherwise N-limited, owing to a reduction in competitive exclusion of fungal groups. We collected soil and leaf litter from three Alaskan sites that represent different successional stages at 5, 17, or 80 years following severe forest fire. Each site had been exposed for two years to nitrogen and phosphorus fertilization in a factorial design, with four plots per treatment. Nutrient limitation of fungal growth varied depending on successional stage. The standing hyphal length of decomposer fungi in soil (i.e. Ascomycota and Basidiomycota) responded to neither N nor P in the 5-year old site, increased under N fertilization in the 17-year old site, and increased where N and P was added simultaneously in the 80-year old site (site x N x P interaction: P = 0.001). We used BIOLOG microplates for filamentous fungi to obtain an index of the diversity of carbon use by decomposer fungi; each of 95 wells of these plates contains a different carbon-based compound, as well as a dye that changes color upon metabolism of the compound. Saline leaf litter extracts were mixed with fungal growth medium and then added to the microplates. The number of wells displaying metabolic activity was counted following incubation for five days. We found that N fertilization raised the average number of positive wells per plate from 14 to 27 (P = 0.012), with no significant differences in responses among sites. Phosphorus additions did not alter functional diversity of fungi in any site. Since increases in functional

  19. Modulation of the Reactivity of a WO3/Al Energetic Material with Graphitized Carbon Black as Additive

    NASA Astrophysics Data System (ADS)

    Bach, Arnaud; Gibot, Pierre; Vidal, Loïc; Gadiou, Roger; Spitzer, Denis

    2015-10-01

    Although pyrotechnic performance is fundamental, the strong mechanical and electrostatic intrinsic sensitivities of nanothermite energetic composites represent an obstacle to their development. The addition of a ternary component to the classical binary energetic composite appears to be a promising idea to overcome the problem. A carbon black additive (V3G) was used on a WO3/Al nanothermite. The effect of the pristine and modified carbon particles on the mechanical and electrical sensitivities of the composites was measured together with the pyrotechnic properties. The results show a complete desensitization to friction with a ball-milled carbon when the combustion velocity is slightly reduced.

  20. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina

    SciTech Connect

    Peterson, Eric J.; DelaRiva, Andrew T.; Lin, Sen; Johnson, Ryan S.; Guo, Hua; Miller, Jeffrey T.; Kwak, Ja Hun; Peden, Charles H.F.; Kiefer, Boris; Allard, Lawrence F.; Ribeiro, Fabio H.; Datye, Abhaya K.

    2014-09-15

    Catalysis by single isolated atoms of precious metals has attracted much recent interest since it promises the ultimate economy in atom efficiency. Previous reports have been confined to reducible oxide supports such as FeOx, TiO₂ or CeO₂. Here we show that isolated Pd atoms can be stabilized on industrially relevant gamma-alumina supports. At low Pd loadings (≤0.5 wt%) these catalysts contain exclusively atomically dispersed Pd species. The addition of lanthanum-oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated Pd atoms. Aberration-corrected scanning transmission electron microscopy (AC-STEM) confirms the presence of intermingled Pd and La on the gamma-alumina surface. Operando X-ray absorption spectroscopy, performed on Pd/La-alumina and Pd/gamma-alumina (0.5 wt% Pd) demonstrates the presence of catalytically active atomically dispersed ionic Pd in the Pd/La-doped gamma-alumina system. CO oxidation reactivity measurements show onset of catalytic activity at 40 °C, indicating that the ionic Pd species are not poisoned by CO. The reaction order in CO and O₂ is positive, suggesting a reaction mechanism that is different from that on metallic Pd. The catalyst activity is lost if the Pd species are reduced to their metallic form, but the activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability of these ionic Pd species on commercial alumina supports makes this catalyst system of potential interest for low-temperature exhaust treatment catalysts.

  1. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum

    PubMed Central

    Qiao, Na; Xu, Xingliang; Hu, Yuehua; Blagodatskaya, Evgenia; Liu, Yongwen; Schaefer, Douglas; Kuzyakov, Yakov

    2016-01-01

    Decomposition of organic matter (OM) in soil, affecting carbon (C) cycling and climate feedbacks, depends on microbial activities driven by C and nitrogen (N) availability. However, it remains unknown how decomposition of various OMs vary across global supplies and ratios of C and N inputs. We examined OM decomposition by incubating four types of OM (leaf litter, wood, organic matter from organic and mineral horizons) from a decay continuum in a subtropical forest at Ailao Mountain, China with labile C and N additions. Decomposition of wood with high C:N decreased for 3.9 to 29% with these additions, while leaf decomposition was accelerated only within a narrow C:N range of added C and N. Decomposition of OM from organic horizon was accelerated by high C:N and suppressed by low C:N, but mineral soil was almost entirely controlled by high C:N. These divergent responses to C and N inputs show that mechanisms for priming (i.e. acceleration or retardation of OM decomposition by labile inputs) vary along this decay continuum. We conclude that besides C:N ratios of OM, those of labile inputs control the OM decay in the litter horizons, while energy (labile C) regulates decomposition in mineral soil. This suggests that OM decomposition can be predicted from its intrinsic C:N ratios and those of labile inputs. PMID:26806914

  2. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum

    NASA Astrophysics Data System (ADS)

    Qiao, Na; Xu, Xingliang; Hu, Yuehua; Blagodatskaya, Evgenia; Liu, Yongwen; Schaefer, Douglas; Kuzyakov, Yakov

    2016-01-01

    Decomposition of organic matter (OM) in soil, affecting carbon (C) cycling and climate feedbacks, depends on microbial activities driven by C and nitrogen (N) availability. However, it remains unknown how decomposition of various OMs vary across global supplies and ratios of C and N inputs. We examined OM decomposition by incubating four types of OM (leaf litter, wood, organic matter from organic and mineral horizons) from a decay continuum in a subtropical forest at Ailao Mountain, China with labile C and N additions. Decomposition of wood with high C:N decreased for 3.9 to 29% with these additions, while leaf decomposition was accelerated only within a narrow C:N range of added C and N. Decomposition of OM from organic horizon was accelerated by high C:N and suppressed by low C:N, but mineral soil was almost entirely controlled by high C:N. These divergent responses to C and N inputs show that mechanisms for priming (i.e. acceleration or retardation of OM decomposition by labile inputs) vary along this decay continuum. We conclude that besides C:N ratios of OM, those of labile inputs control the OM decay in the litter horizons, while energy (labile C) regulates decomposition in mineral soil. This suggests that OM decomposition can be predicted from its intrinsic C:N ratios and those of labile inputs.

  3. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum.

    PubMed

    Qiao, Na; Xu, Xingliang; Hu, Yuehua; Blagodatskaya, Evgenia; Liu, Yongwen; Schaefer, Douglas; Kuzyakov, Yakov

    2016-01-01

    Decomposition of organic matter (OM) in soil, affecting carbon (C) cycling and climate feedbacks, depends on microbial activities driven by C and nitrogen (N) availability. However, it remains unknown how decomposition of various OMs vary across global supplies and ratios of C and N inputs. We examined OM decomposition by incubating four types of OM (leaf litter, wood, organic matter from organic and mineral horizons) from a decay continuum in a subtropical forest at Ailao Mountain, China with labile C and N additions. Decomposition of wood with high C:N decreased for 3.9 to 29% with these additions, while leaf decomposition was accelerated only within a narrow C:N range of added C and N. Decomposition of OM from organic horizon was accelerated by high C:N and suppressed by low C:N, but mineral soil was almost entirely controlled by high C:N. These divergent responses to C and N inputs show that mechanisms for priming (i.e. acceleration or retardation of OM decomposition by labile inputs) vary along this decay continuum. We conclude that besides C:N ratios of OM, those of labile inputs control the OM decay in the litter horizons, while energy (labile C) regulates decomposition in mineral soil. This suggests that OM decomposition can be predicted from its intrinsic C:N ratios and those of labile inputs. PMID:26806914

  4. Salt additions alter short-term nitrogen and carbon mobilization in a coastal Oregon Andisol.

    PubMed

    Compton, Jana E; Church, M Robbins

    2011-01-01

    Deposition of sea salts is commonly elevated along the coast relative to inland areas, yet little is known about the effects on terrestrial ecosystem biogeochemistry. We examined the influence of NaCl concentrations on N, C, and P leaching from a coastal Oregon forest Andisol in two laboratory studies: a rapid batch extraction (approximately 1 d) and a month-long incubation using microlysimeters. In the rapid extractions, salt additions immediately mobilized significant amounts of ammonium and phosphate but not nitrate. In the month-long incubations, salt additions at concentrations in the range of coastal precipitation increased nitrate leaching from the microcosms by nearly 50% and reduced the mobility of dissolved organic carbon. Our findings suggest that coupled abiotic-biotic effects increase nitrate mobility in these soils: exchange of sodium for ammonium, then net nitrification. Changes in sea salt deposition to land and the interactions with coastal soils could alter the delivery of N and C to sensitive coastal waters. PMID:21869523

  5. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    NASA Technical Reports Server (NTRS)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  6. Sensitivity of Arctic Permafrost Carbon in the Mackenzie River Basin: A substrate addition and incubation experiment

    NASA Astrophysics Data System (ADS)

    Hedgpeth, A.; Beilman, D.; Crow, S. E.

    2014-12-01

    Arctic soil organic matter (SOM) mineralization processes are fundamental to the functioning of high latitude soils in relation to nutrients, stability, and feedbacks to atmospheric CO2 and climate. The arctic permafrost zone covers 25% of the northern hemisphere and contains 1672Pg of soil carbon (C). 88% of this C currently resides in frozen soils that are vulnerable to environmental change. For instance, arctic growing seasons may be lengthened, resulting in an increase in plant productivity and rate of below ground labile C inputs as root exudates. Understanding controls on Arctic SOM dynamics requires recognition that labile C inputs have the potential to significantly affect mineralization of previously stable SOM, also known as 'priming effects'. We conducted a substrate addition incubation experiment to quantify and compare respiration in highly organic (42-48 %C) permafrost soils along a north-south transect in western Canada. Near surface soils (10-20 cm) were collected from permafrost peatland sites in the Mackenzie River Basin from 69.2-62.6°N. The surface soils are fairly young (Δ14C values > -140.0) and can be assumed to contain relatively reactive soil carbon. To assess whether addition of labile substrate alters SOM decomposition dynamics, 4.77-11.75 g of permafrost soil were spiked with 0.5 mg D-glucose g-1 soil and incubated at 5°C. A mass balance approach was used to determin substrate-induced respiration and preliminary results suggest a potential for positive priming in these C-rich soils. Baseline respiration rates from the three sites were similar (0.067-0.263 mg CO2 g-1 soil C) yet show some site-specific trends. The rate at which added substrate was utilized within these soils suggests that other factors besides temperature and soil C content are controlling substrate consumption and its effect on SOM decomposition. Microbial activity can be stimulated by substrate addition to such an extent that SOM turnover is enhanced, suggesting that

  7. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  8. Mechanism of hydrofluoric acid formation in ethylene carbonate electrolytes with fluorine salt additives

    NASA Astrophysics Data System (ADS)

    Tebbe, Jonathon L.; Fuerst, Thomas F.; Musgrave, Charles B.

    2015-11-01

    We utilized density functional theory to examine HF generation in lithium-ion battery electrolytes from reactions between H2O and the decomposition products of three electrolyte additives: LiPF6, LiPOF4, and LiAsF6. Decomposition of these additives produces PF5, AsF5, and POF3 along with LiF precipitates. We found PF5 and AsF5 react with H2O in two sequential steps to form two HF molecules and POF3 and AsOF3, respectively. PF5 (or AsF5) complexes with H2O and undergoes ligand exchange to form HF and PF4OH (AsF4OH) with an activation barrier of 114.2 (30.5) kJ mol-1 and reaction enthalpy of 14.6 (-11.3) kJ mol-1. The ethylene carbonate (EC) electrolyte forms a Lewis acid-base complex with the PF4OH (AsF4OH) product, reducing the barrier to HF formation. Reactions of POF3 were examined and are not characterized by complexation of POF3 with H2O or EC, while PF5 and AsF5 complex favorably with H2O and EC. HF formation from POF3 occurs with a reaction enthalpy of -3.8 kJ mol-1 and a 157.7 kJ mol-1 barrier, 43.5 kJ mol-1 higher than forming HF from PF5. HF generation in electrolytes employing LiPOF4 should be significantly lower than those using LiPF6 or LiAsF6 and LiPOF4 should be further investigated as an alternative electrolyte additive.

  9. Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii.

    PubMed

    Sharak Genthner, B R; Bryant, M P

    1987-03-01

    Growth characteristics of Eubacterium limosum and Acetobacterium woodii during one-carbon-compound utilization were investigated. E. limosum RF grew with formate as the sole energy source. Formate also replaced a requirement for CO2 during growth with methanol. Growth with methanol required either rumen fluid, yeast extract, or acetate, but their effects were not additive. Cultures were adapted to grow in concentrations of methanol of up to 494 mM. Growth occurred with methanol in the presence of elevated levels of Na+ (576 mM). The pH optima for growth with methanol, H2-CO2, and carbon monoxide were similar (7.0 to 7.2). Growth occurred with glucose at a pH of 4.7, but not at 4.0. The apparent Km values for methanol and hydrogen were 2.7 and 0.34 mM, respectively. The apparent Vmax values for methanol and hydrogen were 1.7 and 0.11 mumol/mg of protein X min-1, respectively. The Ks value for CO was estimated to be less than 75 microM. Cellular growth yields were 70.5, 7.1, 3.38, and 0.84 g (dry weight) per mol utilized for glucose, methanol, CO, and hydrogen (in H2-CO2), respectively. E. limosum was also able to grow with methoxylated aromatic compounds as energy sources. Glucose apparently repressed the ability of E. limosum to use methanol, hydrogen, or isoleucine but not CO. Growth with mixtures of methanol, H2, CO, or isoleucine was not diauxic. The results, especially the relatively high apparent Km values for H2 and methanol, may indicate why E. limosum does not usually compete with rumen methanogens for these energy sources.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3579266

  10. Thermodynamics and Structure of One Monolayer of Simple Atoms Absorbed on Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Vilches, Oscar

    2007-05-01

    Following the discovery and production of carbon nanotube bundles more than fifteen years ago, ideas about the properties of one-dimensional (1d) lines of atoms which could be formed in or on interstitials or grooves in the bundles were either revisited or generated for the first time. It is well known that in an infinite ideal 1d system there is no long range order and no phase coexistence, an argument first put out by Peierls and discussed in Landau and Lifschitz text. Nevertheless, the possibility of forming finite length 1d chains of atoms with gaseous, fluid, or solid properties, and no phase transitions, was intriguing. The fact that the outside surface of the bundles is a curved basal plane of graphite (graphene) is also interesting, because if films could be grown starting on grooves on the outside of the bundles those lines will grow, eventually, onto the graphene to form long and narrow quasi 2d systems to be compared to those adsorbed on flat basal plane graphite. In this experimental talk I will introduce the subject and some of the techniques used, emphasizing results on two of the simplest physisorbed atoms, ^4He and Ne. The He atom has been studied with DC and AC calorimetry, adsorption isotherms, and neutron diffraction, while Ne is currently being studied with thermodynamic measurements. Ideas from current and future experiments will conclude the presentation. The current work is being done in collaboration with Subramanian Ramachandran, Zenghui Wang and David Cobden. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.A1.2

  11. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    NASA Astrophysics Data System (ADS)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  12. Mineral sequestration of carbon dioxide in San Carlos olivine: An atomic level reaction study

    NASA Astrophysics Data System (ADS)

    Nunez, Ryan

    Since the late 19th century, atmospheric carbon dioxide (CO2) levels have been steadily on the rise. Approximately one third of all human emissions come from fossil fuel power plants. As countries become more dependent on electrical energy and bring on line new power plants, these atmospheric CO2 levels will continue to rise, generating strong environmental concern. Potential avenues to address this problem convert the CO2 from the gaseous phase to a liquid, supercritical fluid, or solid state and store it. Oceans, subsurface reservoirs such as depleted oil fields, and terrestrial carbon pools have all been suggested. The essential problem with all of these possible solutions is the issue of permanency. Mineral sequestration of CO2 is a candidate technology for reducing the amount of anthropogenic CO2 that is being released into the atmosphere. Olivine (e.g. forsterite, Mg2SiO4) is a widely available mineral that reacts with CO2 to form magnesite (MgCO3) and silica (SiO2). Magnesite is capable of immobilizing CO2 over geological time periods. Thus the issue of permanency has been addressed. The most promising mineral sequestration process developed to date is aqueous solution mineral carbonation. The solid/aqueous solution reaction interface provides insight to the mechanisms that govern the carbonation reactivity of olivine. Study of these mechanisms at the atomic level is critically important to facilitate engineering new processes that will enhance the reactivity of olivine with CO2 bearing media and to lower process costs. The study of the olivine carbonation reaction herein can be divided into three separate areas of research. The first area is a comprehensive study of olivine under conditions of electron irradiation. Analyzing radiation damage is critical to the verification and reliability of data collected from the samples using electron beam techniques. The next area of research is the analysis of the reaction layer composition and structure using High

  13. Gas-phase reactions of carbon dioxide with atomic transition-metal and main-group cations: room-temperature kinetics and periodicities in reactivity.

    PubMed

    Koyanagi, Gregory K; Bohme, Diethard K

    2006-02-01

    The chemistry of carbon dioxide has been surveyed systematically with 46 atomic cations at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and allowed to cool radiatively and to thermalize by collisions with Ar and He atoms prior to reaction downstream in a flow tube in helium buffer gas at 0.35 +/- 0.01 Torr and 295 +/- 2 K. Rate coefficients and products were measured for the reactions of first-row atomic ions from K(+) to Se(+), of second-row atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of third-row atomic ions from Cs(+) to Bi(+). CO(2) was found to react in a bimolecular fashion by O atom transfer only with 9 early transition-metal cations: the group 3 cations Sc(+), Y(+), and La(+), the group 4 cations Ti(+), Zr(+), and Hf(+), the group 5 cations Nb(+) and Ta(+), and the group 6 cation W(+). Electron spin conservation was observed to control the kinetics of O atom transfer. Addition of CO(2) was observed for the remaining 37 cations. While the rate of addition was not measurable some insight was obtained into the standard free energy change, DeltaG(o), for CO(2) ligation from equilibrium constant measurements. A periodic variation in DeltaG(o) was observed for first row cations that is consistent with previous calculations of bond energies D(0)(M(+)-CO(2)). The observed trends in D(0) and DeltaG(o) are expected from the variation in electrostatic attraction between M(+) and CO(2) which follows the trend in atomic-ion size and the trend in repulsion between the orbitals of the atomic cations and the occupied orbitals of CO(2). Higher-order CO(2) cluster ions with up to four CO(2) ligands also were observed for 24 of the atomic cations while MO(2)(+) dioxide formation by sequential O atom transfer was seen only with Hf(+), Nb(+), Ta(+), and W(+). PMID:16435784

  14. Effects of ions and atomic hydrogen in plasma-assisted growth of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Denysenko, I.; Ostrikov, K.; Yu, M. Y.; Azarenkov, N. A.

    2007-10-01

    The growth of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a surface diffusion model. It is shown that at low substrate temperatures (⩽1000K), the atomic hydrogen and ion fluxes from the plasma can strongly affect nanotube growth. The ion-induced hydrocarbon dissociation can be the main process that supplies carbon atoms for SWCNT growth and is responsible for the frequently reported higher (compared to thermal chemical vapor deposition) nanotube growth rates in plasma-based processes. On the other hand, excessive deposition of plasma ions and atomic hydrogen can reduce the diffusion length of the carbon-bearing species and their residence time on the nanotube lateral surfaces. This reduction can adversely affect the nanotube growth rates. The results here are in good agreement with the available experimental data and can be used for optimizing SWCNT growth in PECVD.

  15. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Yang, Zhimin; Wang, Qiang; Shan, Xiaoye; Li, Wei-qi; Chen, Guang-hui; Zhu, Hongjun

    2015-02-01

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  16. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    SciTech Connect

    Yang, Zhimin; Wang, Qiang Shan, Xiaoye; Zhu, Hongjun; Li, Wei-qi; Chen, Guang-hui

    2015-02-21

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  17. Effect of additional elements on compositional modulated atomic layered structure of hexagonal Co80Pt20 alloy films with superlattice diffraction

    NASA Astrophysics Data System (ADS)

    Hinata, Shintaro; Yamane, Akira; Saito, Shin

    2016-05-01

    The effect of additional element on compositionally modulated atomic layered structure of hexagonal Co80Pt20 alloy films with superlattice diffraction was investigated. In this study it is found that the addition of Cr or W element to Co80Pt20 alloy film shows less deterioration of hcp stacking structure and compositionally modulated atomic layer stacking structure as compared to Si or Zr or Ti with Ku of around 1.4 or 1.0 × 107 erg/cm3 at 5 at.% addition. Furthermore, for O2 addition of O2 ≥ 5.0 × 10-3 Pa to CoPt alloy, compositionally modulated atomic layer stacking structure will be deteriorated with enhancement of formation of hcp stacking structure which leads higher Ku of 1.0 × 107 erg/cm3.

  18. The Absolute Rates of the Solution Phase Addition of Atomic Hydrogen to a Vinyl Ether and a Vinyl Ester. The Effect of Oxygen Substitution on Hydrogen Atom Reactivity with Olefins

    SciTech Connect

    Tanner, D. D.; Kandanarachchi, P.; Das, N. C.; Franz, James A.

    2003-04-08

    The reactions of vinyl butyl ether and vinyl butyrate with atomic hydrogen and deuterium lead to addition of atomic hydrogen to the terminal position of the olefins. This observation is consistent with the reactions carried out earlier with other olefins. Both the absolute rates of addition to vinylbutyl ether and vinyl butyrate in acetone and hexane were carried out at several temperatures. The relative rates are consistent with only modest stabilization of the transition state of the radical adduct by the ??-o substituent compared with hydrogen atom addition to 1-octene. The relative rates measured in acetone and hexane indicate no significant differential solvation of ground state relative to the transition structures of the hydrogen atom addition. The kinetics reveal that the early transition states of hydrogen atom addition exhibit little selectivity (vinyl ether versus simple olefin) in either abstraction of hydrogen ??- to the oxygen or by terminal addition to the olefinic ether, reflecting the modest influence of the increased enthalpy of reaction associated with resonance stabilization by the oxygen substituent at the developing radical site.

  19. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms.

    PubMed

    Saidi, Wissam A; Norman, Patrick

    2016-07-14

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N(2.2) as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N(2.75) as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N(2.8), which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms. PMID:27421409

  20. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    NASA Astrophysics Data System (ADS)

    Saidi, Wissam A.; Norman, Patrick

    2016-07-01

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N2.2 as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N2.75 as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N2.8, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.

  1. Pulsed addition of limiting-carbon during Aspergillus oryzae fermentation leads to improved productivity of a recombinant enzyme.

    PubMed

    Bhargava, Swapnil; Wenger, Kevin S; Marten, Mark R

    2003-04-01

    Fungal morphology in many filamentous fungal fermentations leads to high broth viscosity which limits oxygen mass transfer, and often results in reduced productivity. The objective in this study was to determine if a simple, fed-batch, process strategy-pulsed addition of limiting-carbon source-could be used to reduce fungal broth viscosity, and increase productivity of an industrially relevant recombinant enzyme (glucoamylase). As a control, three Aspergillus oryzae fed-batch fermentations were carried out with continuous addition of limiting-carbon. To determine the effect of pulse-feeding, three additional fermentations were carried out with limiting-carbon added in 90-second pulses, during repeated five-minute cycles. In both cases, overall carbon feed-rate was used to control dissolved oxygen concentration, such that increased oxygen availability led to increased addition of limiting-carbon. Pulse-fed fermentations were found to have smaller fungal mycelia, lower broth viscosity, and improved oxygen mass transfer. As a result, more carbon was added to pulse-fed fermentations that led to increased enzyme productivity by as much as 75%. This finding has significant implications for the bioprocessing industry, as a simple process modification which is likely to cost very little to implement in most production facilities, has the potential to substantially increase productivity. PMID:12569630

  2. As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition

    NASA Astrophysics Data System (ADS)

    Blackwood, Van Stephen

    The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.

  3. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    PubMed

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  4. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    SciTech Connect

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  5. H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices - an extended view on complex organic molecule formation

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2016-01-01

    Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.

  6. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Hongyuan; Wei, Hanxing; Chen, Minghai; Meng, Fancheng; Li, Hongbo; Li, Qingwen

    2013-10-01

    Functionalized carbon nanotubes (CNTs) were introduced into silicone grease to accompany the subsistent metallic oxide particles (micron-sized Al2O3, submicron-sized ZnO) with the aim of enhancing the thermal contact conductance of the composite grease as thermal interface materials (TIMs). The well-dispersed CNTs located among the metallic oxide particles to construct a three dimensional network structure and cooperated with them to form a highly efficient thermal transferring path. The functionalization of CNTs played a key role in achieving a good dispersion of CNTs in silicone grease matrix. The carboxylated CNTs were observed to show better dispersion in silicone grease and weaker reaction with oxide particles than pristine CNTs and amino-functionalized CNTs. Thus the thermal impedance of the silicone grease could be further decreased by 35% (as low as 0.18 cm2 K/W) with the addition of 2 wt.% carboxylated CNTs. Finally, such CNT-modified silicone grease was used to enhance the performance of high-power light emitting diode and showed the prospective applications in TIMs.

  7. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    PubMed

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. PMID:27396293

  8. Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Namiko; Manohara, Harish; Platzman, Ellen

    2016-02-01

    Novel nanoparticles additives for polymer nanocomposites were prepared by coating carbon nanotubes (CNTs) with ferromagnetic iron (Fe) layers, so that their micro-structures can be bulk-controlled by external magnetic field application. Application of magnetic fields is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanoparticle assembly throughout the uncured polymer matrix. In this work, Fe layers (˜18 nm thick) were deposited on CNTs (˜38 nm diameter and ˜50 μm length) to form thin films with high aspect ratio, resulting in a dominance of shape anisotropy and thus high coercivity of ˜50-100 Oe. The Fe-coated CNTs were suspended in water and applied with a weak magnetic field of ˜75 G, and yet preliminary magnetic assembly was confirmed. Our results demonstrate that the fabricated Fe-coated CNTs are magnetically anisotropic and effectively respond to magnetic fields that are ˜103 times smaller than other existing work (˜105 G). We anticipate this work will pave the way for effective property enhancement and bulk application of CNT-polymer nanocomposites, through controlled micro-structure and scalable manufacturing.

  9. Atomic force microscopy of silica nanoparticles and carbon nanohorns in macrophages and red blood cells

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Farahi, R H; Thundat, Thomas George

    2010-01-01

    The emerging interest in understanding the interactions of nanomaterial with biological systems necessitates imaging tools that capture the spatial and temporal distributions and attributes of the resulting nano-bil amalgam. Studies targeting organ specific response and/ot nanoparticle-specific system toxicity would be profoundly benefited from tools that would allow imaging and tracking of in-vivo or in-vitro processes and particle-fate studies. Recently we demonstrated that mode systhesizing atomic force microscopy (MSAFM) can provide subsurface nanoscale informations on the mechanical properties of materials at the nanoscale. However, the underlying mechanism of this imaging methodology is currently subject to theoretical and experimental investigation. In this paper we present further analysis by investigating tip-sample excitation forces associated with nanomechanical image formation. Images and force curves acquired under various operational frequencies and amplitudes are presented. We examine samples of mouse cells, where buried distributions of single-walled carbon nanohorns and silica nanoparticles are visualized.

  10. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    PubMed

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays. PMID:24778944

  11. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    PubMed Central

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa

    2014-01-01

    Summary Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays. PMID:24778944

  12. 4D electron microscopy visualization of anisotropic atomic motions in carbon nanotubes.

    PubMed

    Park, Sang Tae; Flannigan, David J; Zewail, Ahmed H

    2012-06-01

    We report the anisotropic atomic expansion dynamics of multi-walled carbon nanotubes, using 4D electron microscopy. From time-resolved diffraction on the picosecond to millisecond scale, following ultrafast heating at the rate of 10(13) K/s, it is shown that nanotubes expand only in the radial (intertubule) direction, whereas no significant change is observed in the intratubular axial or equatorial dimensions. The non-equilibrium heating occurs on an ultrafast time scale, indicating that the anisotropy is the result of an efficient electron-lattice coupling and is maintained up to equilibration. The recovery time, which measures the heat dissipation rate for equilibration, was found to be on the order of ∼100 μs. This recovery is reproduced theoretically by considering the composite specimen-substrate heat exchange. PMID:22591381

  13. Carbon kinetic isotope effect in the reaction of CH4 with Cl atoms

    NASA Astrophysics Data System (ADS)

    Saueressig, G.; Bergamaschi, P.; Crowley, J. N.; Fischer, H.; Harris, G. W.

    1995-05-01

    The carbon kinetic isotope effect in the reaction between Cl and CH4 (KIE(sub Cl)) has been measured using tunable diode laser absorption spectroscopy to determine (13)CH4/(12)CH4 ratios. Cl atoms were generated by the irradition of Cl2 in static mixtures of Cl2/CH4/N2 or Cl2/CH4/N2/O2. Both methods resulted in a (KIE(sub Cl)) of 1.066 +/- 0.002 at 297 K. The KIE(sub Cl) displayed a slight temperature dependence, increasing to 1.075 +/- 0.005 at 223 K. This result suggests a significant influence of the title reaction on the stratospheric CH4 isotopic composition and may help to resolve discrepancies between measurements of stratospheric (13)CH4/(12)CH4 profiles and laboratory measurements of KIE(sub OH).

  14. Observation of Suspended Carbon Nanotube Configurations Using an Atomic Force Microscopy Tip

    NASA Astrophysics Data System (ADS)

    Ono, Yuki; Ogino, Toshio

    2009-08-01

    Mechanical behaviors of suspended carbon nanotubes (CNTs) or their bundles over a trench fabricated on a Si substrate were investigated by monitoring the oscillation amplitude of an atomic force microscopy (AFM) tip that interacts with the CNTs. The amplitude was considered as a function of the vertical distance between the center of the oscillating tip and the equilibrium position of the CNTs. The amplitude-distance curve (AD curve) obtained in air is interpreted as a simple model that includes the mechanical response of the suspended CNTs to the oscillating tip, the attachment/detachment of the CNTs onto the tip surface, and the oscillation of the CNTs attached to the tip. Dependences of AD curves on CNT length, bundle configuration, and the type of environment during the oscillation were investigated, and it has been found that this technique can be applied to the in situ monitoring of CNT arrangements during the manipulation of CNT networks.

  15. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    NASA Astrophysics Data System (ADS)

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-12-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM 2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  16. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    PubMed Central

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-01-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  17. Enantioselective Assembly of Spirolactones through NHC-Catalyzed Remote γ-Carbon Addition of Enals with Isatins.

    PubMed

    Rong, Xianfeng; Yao, Hong; Xia, Wenjing; Du, Yonglei; Zhou, Yu; Liu, Hong

    2016-05-01

    A chiral N-heterocyclic carbene (NHC)-catalyzed formal [4 + 2] annulation of β-methyl substituted enals with isatins was developed to construct six-membered spirolactones bearing highly congested quaternary carbon stereocentersin good yields and high enantioselectivities. The strategy realized a challenging remote γ-carbon addition of enals and chiral control of β-methyl substituted enals in the presence of the NHC catalyst only. PMID:27029906

  18. Effect of Additives and pH on the Formation of Carbonate Mineral by CO2 Sequestration of Cement Paste

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hwang, J.; Lee, H.; Son, B. S.; Oh, J.

    2015-12-01

    CO2 in the atmosphere causes a global warming that is a big issue nowadays. Many studies of CO2 capture and storage (CCS) technologies have been studied all over the world. Waste cement is a good source for aqueous carbonation because it is rich in calcium. Therefore, this study was performed to develop the aqueous carbonation method for waste cement powder. Cement paste was made with water/cement ratio of 6:4 and cured for 28 days in water bath. The cement paste was pulverized into a fine powder sizing less than 0.15 mm. To study effect of additives and pH on the formation of carbonate minerals, aqueous carbonation experiments were conducted. The mineral compositions and morphology of carbonate mineral were identified by XRD and SEM/EDS analysis. 1.0 M NaCl and 0.25 M MgCl2 were applied as additives. Aqueous carbonation experiment was conducted with injecting pure CO2 gas (99.9%) to a reactor containing 200 ㎖ of reacting solution. The pH of reacting solution was controled to determine formational condition of carbonate minerals. In 0.25 M MgCl2 solution, calcite was dominant mineral at high pH. More aragonite, however, formed as decreasing pH of solution with injection of CO2. The presence of Mg2+ in solution makes aragonite more dominant than calcite. Aragonite was mainly formed at the high pH of solution with 1.0 M NaCl additive, whereas calcite was more preponderant mineral than aragonite as falling pH. It show that unstable aragonite transformed to calcite as decreasing pH. In no additive solution, vaterite was dominantly formed at the initial stage of experiement, but unstable vaterite transformed to well crystallized calcite with further carbonation.

  19. Forced and natural carbonation of lime-based mortars with and without additives: Mineralogical and textural changes

    SciTech Connect

    Cultrone, G.

    2005-12-15

    We have studied the carbonation process in different types of mortars, with and without pozzolana or air-entraining additives, subject to a CO{sub 2}-rich atmosphere and compared the results with those of similar naturally carbonated mortars. We used X-ray diffraction technique to demonstrate that high CO{sub 2} concentrations favour a faster, more complete carbonation process with 8 days being sufficient to convert portlandite into 90 wt.% calcite. Full carbonation, however, is not reached during the life-span of the tests, not even in forced carbonation experiments. This could be due to at least one of the following phenomena: a premature drying of samples during carbonation reaction, the temperature at which the carbonation process was carried out or the reduction of pore volume occupied by newly formed calcite crystals. This last option seems to be the least probable. We observed a more prolific development of calcite crystals in the pores and fissures through which the carbonic anhydride flows. Under natural conditions, carbonation is much slower and similar levels are not reached for 6 months. These differences suggest that the carbonation process is influenced by the amount of CO{sub 2} used. Both the mineralogy and texture of mortars vary depending on the type of additive used but the speed of the portlandite-calcite transformation does not change significantly. Pozzolana produces hydraulic mortars although the quantity of calcium aluminosilicate crystals is low. The air-entraining agent significantly alters the texture of the mortars creating rounded pores and eliminating or reducing the drying cracks.

  20. Topsoil organic carbon content of Europe, a new map based on a generalised additive model

    NASA Astrophysics Data System (ADS)

    de Brogniez, Delphine; Ballabio, Cristiano; Stevens, Antoine; Jones, Robert J. A.; Montanarella, Luca; van Wesemael, Bas

    2014-05-01

    There is an increasing demand for up-to-date spatially continuous organic carbon (OC) data for global environment and climatic modeling. Whilst the current map of topsoil organic carbon content for Europe (Jones et al., 2005) was produced by applying expert-knowledge based pedo-transfer rules on large soil mapping units, the aim of this study was to replace it by applying digital soil mapping techniques on the first European harmonised geo-referenced topsoil (0-20 cm) database, which arises from the LUCAS (land use/cover area frame statistical survey) survey. A generalized additive model (GAM) was calibrated on 85% of the dataset (ca. 17 000 soil samples) and a backward stepwise approach selected slope, land cover, temperature, net primary productivity, latitude and longitude as environmental covariates (500 m resolution). The validation of the model (applied on 15% of the dataset), gave an R2 of 0.27. We observed that most organic soils were under-predicted by the model and that soils of Scandinavia were also poorly predicted. The model showed an RMSE of 42 g kg-1 for mineral soils and of 287 g kg-1 for organic soils. The map of predicted OC content showed the lowest values in Mediterranean countries and in croplands across Europe, whereas highest OC content were predicted in wetlands, woodlands and in mountainous areas. The map of standard error of the OC model predictions showed high values in northern latitudes, wetlands, moors and heathlands, whereas low uncertainty was mostly found in croplands. A comparison of our results with the map of Jones et al. (2005) showed a general agreement on the prediction of mineral soils' OC content, most probably because the models use some common covariates, namely land cover and temperature. Our model however failed to predict values of OC content greater than 200 g kg-1, which we explain by the imposed unimodal distribution of our model, whose mean is tilted towards the majority of soils, which are mineral. Finally, average

  1. The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals

    NASA Astrophysics Data System (ADS)

    Gower, Laurie Anne

    The addition of low levels of polyaspartate to a supersaturated calcium carbonate (CaCOsb3) solution leads to unusual morphologies in the inorganic phase. Spherulitic vaterite aggregates with helical protrusions, and distorted calcite crystals that contain spiral pits, have been produced. The helical particles are coated with an inorganic membrane that appears to be responsible for the helical twist. The polymer also causes deposition of thin CaCOsb3 tablets and films on the glass substrate. Two distinct types of films are deposited; the first is a mosaic of calcite crystals, and the second is spherulitic vaterite. In situ observations of the crystallization reaction have determined that the thin-film morphology is a result of the phase separation of a hydrated CaCOsb3/polymer liquid-precursor, whereby accumulation of isotropic droplets creates a coating on the substrate, and subsequent dehydration and crystallization yields birefringent CaCOsb3 films. During the amorphous to crystalline transition, incremental growth steps lead to "transition bars" and sectored calcite tablets. This in vitro system was originally modeled after certain aspects of CaCOsb3 biomineralization, in which the soluble proteins extracted from biominerals tend to have high levels of aspartic acid residues. Based on the similarities between features exhibited by the products of this system and those in biominerals, an argument has been presented to suggest that this polymer-induced liquid-precursor (PILP) process is involved in the morphogenesis of CaCOsb3 biominerals. These features include the following: thin CaCOsb3 tablets that grow laterally; tablets that express unstable crystallographic faces; non-faceted single crystals with curved surfaces; spatially-delineated single crystals; sectored calcite tablets; hollow-shell spheres; calcium carbonate cements; and magnesium-bearing calcites. This work has demonstrated that a means of morphological control can be accomplished through non

  2. Increased loss of soil-derived carbon in response to litter addition and temperature

    NASA Astrophysics Data System (ADS)

    Creamer, C.; Krull, E. S.; Sanderman, J.; Farrell, M.

    2013-12-01

    In order to predict the response of soil organic matter (SOM) to increasing temperatures, a mechanistic understanding of the interactions between OM quality, OM availability, and microbial community structure and function is needed. We used short-term incubations of 13C enriched (20 atom%) fresh and pre-incubated eucalyptus leaf litter in an Australian woodland soil to determine changes in allocation of C to various OM pools, as dictated by microbial activity, in response to temperature and substrate quality. The quantity and isotopic composition of microbial phospholipid fatty acids (PLFA) and dissolved organic C (DOC) were measured along with the quantity of dissolved inorganic and organic nitrogen at four destructive time points. The quantity and isotopic composition of respired CO2 was measured throughout the incubation. Although the temperature sensitivities of the two litters were similar (despite different chemical compositions), soil-C was significantly more temperature sensitive than litter-C. We also observed negative priming of soil-C in the fresh litter treatment and positive priming of soil-C in the pre-incubated litter treatment relative to the control (no litter addition). The extent of positive priming in the pre-incubated litter treatment also increased significantly with temperature. The quantity of soil-derived DOC was consistent between both litter treatments and the control, confirming that differences in soil-C availability were not controlling the observed differences in soil-C mineralization. In contrast, dissolved N was significantly higher in the pre-incubated litter treatment and increased with temperature, suggesting enhanced SOM decomposition in the pre-incubated litter treatment resulted in greater N cycling, production, or destabilization from SOM. The pre-incubated litter treatment also had greater proportions of PLFA that predominately cycled soil-derived OM (gram-positive bacteria), and increased in response to elevated temperature

  3. Discovery of a shell of neutral atomic hydrogen surrounding the carbon star IRC+10216

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Gérard, E.; Le Bertre, T.

    2015-05-01

    We have used the Robert C. Byrd Green Bank Telescope to perform the most sensitive search to date for neutral atomic hydrogen (H I) in the circumstellar envelope (CSE) of the carbon star IRC+10216. Our observations have uncovered a low surface brightness H I shell of diameter ˜1300 arcsec (˜0.8 pc), centred on IRC+10216. The H I shell has an angular extent comparable to the far ultraviolet-emitting astrosphere of IRC+10216 previously detected with the GALEX satellite, and its kinematics are consistent with circumstellar matter that has been decelerated by the local interstellar medium. The shell appears to completely surround the star, but the highest H I column densities are measured along the leading edge of the shell, near the location of a previously identified bow shock. We estimate a total mass of atomic hydrogen associated with the IRC+10216 CSE of M_{H I} ˜ 3× 10^{-3} M_{⊙}. This is only a small fraction of the expected total mass of the CSE (<1 per cent) and is consistent with the bulk of the stellar wind originating in molecular rather than atomic form, as expected for a cool star with an effective temperature Teff ≲ 2200 K. H I mapping of a 2° × 2° region surrounding IRC+10216 has also allowed us to characterize the line-of-sight interstellar emission in the region and has uncovered a link between diffuse FUV emission south-west of IRC+10216 and the Local Leo Cold Cloud.

  4. Self-trapping of carbon atoms in α'-Fe during the martensitic transformation: A qualitative picture from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ruban, A. V.

    2014-10-01

    Strain-induced and chemical interactions of interstitial carbon atoms in bcc or α-Fe are obtained in first-principles calculations. Subsequent Monte Carlo simulations show that at low temperatures, carbon atoms prefer to occupy at least two different octahedral sublattices, which is due to quite strong attractive interactions of carbon atoms at the corresponding coordination shells. The direct total-energy calculations of one of the obtained ordered structures with composition Fe16C2, show that it is more stable than the predicted earlier structure with the same composition but carbon atoms occupying only one octahedral sublattice. This indicates that the long-existing thermodynamic mean-field theory of ordering of carbon in α-Fe assuming strong preference of carbon atoms to occupy only one octahedral sublattice is deficient. It is shown that the presence of carbon atoms only at one octahedral sublattice in the experimentally observed martensitic phase, α'-Fe, is a self-trapping effect. It occurs during a displacive martensitic transformation from γ- to α-Fe, which kinematically transfers the carbon atoms from a single fcc octahedral sublattice to one of three octahedral sublattices, where they appear to be locked by a consequent tetragonal distortion minimizing elastic energy of the phase. The latter creates a strong preference for carbon atoms to be only at one already occupied octahedral sublattice preventing them from further distribution over the other sublattices.

  5. In situ study of erosion and deposition of amorphous hydrogenated carbon films by exposure to a hydrogen atom beam

    SciTech Connect

    Markelj, Sabina; Pelicon, Primoz; Cadez, Iztok; Schwarz-Selinger, Thomas; Jacob, Wolfgang

    2012-07-15

    This paper reports on the first dual-beam experiment employing a hydrogen atom beam for sample exposure and an ion beam for analysis, enabling in situ and real-time studies of hydrogen atom interaction with materials. The erosion of an amorphous hydrogenated carbon (a-C:H) layer by deuterium atoms at 580 K sample temperature was studied and the uptake of deuterium during the erosion process was measured in real time. The deuterium areal density increased at the beginning to 7.3 Multiplication-Sign 10{sup 15} D cm{sup -2}, but then stabilized at a constant value of 5.5 Multiplication-Sign 10{sup 15} D cm{sup -2}. Formation of a polymer-like deposit on an a-C:H layer held at room temperature and subjected to the deuterium atom beam was observed and also studied in situ. For both erosion and deposition studies an a-{sup 13}C:H layer on top of an Si substrate was used as a sample, making the experiments isotopically fully specified and thereby differentiating the deposited from the original layer and the interacting D atoms from H atoms present in the layer and in the residual vacuum. From the deposition study it was shown that carbon in the deposited layer originates from carbon-carrying species in the background vacuum that interact with hydrogen atoms. The areal density of the carbon at the surface was determined from the energy shift of the Si edge in the Rutherford backscattering spectrum. The cross section for {sup 7}Li on D at 4.3 MeV Li ion energy and at a recoil angle of 30 Degree-Sign was also determined to be (236 {+-} 16) Multiplication-Sign 10{sup -27} cm{sup 2}/sr. This is a factor of 3 {+-} 0.2 times higher than the Rutherford elastic cross section.

  6. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

    PubMed Central

    Lorenzoni, Matteo; Matsui, Soichiro; Tanemura, Masaki; Perez-Murano, Francesc

    2015-01-01

    Summary Many nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO) is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed with good control of dimensions and placement. LAO through the non-contact mode of atomic force microscopy (AFM) has proven to yield a better resolution and tip preservation than the contact mode and it can be effectively performed in the dynamic mode of AFM. The tip plays a crucial role for the LAO-AFM, because it regulates the minimum feature size and the electric field. For instance, the feasibility of carbon nanotube (CNT)-functionalized tips showed great promise for LAO-AFM, yet, the fabrication of CNT tips presents difficulties. Here, we explore the use of a carbon nanofiber (CNF) as the tip apex of AFM probes for the application of LAO on silicon substrates in the AFM amplitude modulation dynamic mode of operation. We show the good performance of CNF-AFM probes in terms of resolution and reproducibility, as well as demonstration that the CNF apex provides enhanced conditions in terms of field-induced, chemical process efficiency. PMID:25671165

  7. Aligned Carbon Nanotube Array Functionalization for Enhanced Atomic Layer Deposition of Platinum Electrocatalysts

    SciTech Connect

    Dameron, A. A.; Pylypenko, S.; Bult, J. B.; Neyerlin, K. C.; Engtrakul, C.; Bochert, C.; Leong, G. J.; Frisco, S. L.; Simpson, L.; Dinh, H. N.; Pivovar, B.

    2012-04-15

    Uniform metal deposition onto high surface area supports is a key challenge of developing successful efficient catalyst materials. Atomic layer deposition (ALD) circumvents permeation difficulties, but relies on gas-surface reactions to initiate growth. Our work demonstrates that modified surfaces within vertically aligned carbon nanotube (CNT) arrays, from plasma and molecular precursor treatments, can lead to improved catalyst deposition. Gas phase functionalization influences the number of ALD nucleation sites and the onset of ALD growth and, in turn, affects the uniformity of the coating along the length of the CNTs within the aligned arrays. The induced chemical changes for each functionalization route are identified by X-ray photoelectron and Raman spectroscopies. The most effective functionalization routes increase the prevalence of oxygen moieties at defect sites on the carbon surfaces. The striking effects of the functionalization are demonstrated with ALD Pt growth as a function of surface treatment and ALD cycles examined by electron microscopy of the arrays and the individual CNTs. Finally, we demonstrate applicability of these materials as fuel cell electrocatalysts and show that surface functionalization affects their performance towards oxygen reduction reaction.

  8. Addition of Hetero-Atoms to the Polymer Film by Plasma Enhanced Polymerization and its Optical Properties

    NASA Astrophysics Data System (ADS)

    Moriki, Kazunori; Yumoto, Motoshige

    Plasma enhanced polymerization is an attractive technology to fabricate an optical polymer waveguide, because it has capability to provide an uniform thickness film on a substrate with various surface geometry, and to provide change of refractive index by controlling a proportion of source monomer mixing. In the present paper we discuss optical constants and molecule structures of the films added hetero-atoms, O, N and F in the CHx network of polymer. Refractive index of those films changes from 1.52 to 1.63 at 1.0 μm wavelength, depending on the variety of hetero-atoms. Fluorine atoms added into a film decreases refractive index of the film. Oxygen atoms added into a film, which form ester structure (- COO-), decrease refractive index of the film, and some O atoms token into a film as OH base will increase optical absorption in inferred region for optical communication. Nitrogen atoms added increase optical absorption due to forming NH2 base. Finally, sp3/sp2 fraction controlling in the film will be a suitable to control refractive index of the film for an optical waveguide, for example by using mixed monomer of C6H6 and C6H10.

  9. Control of hydrogen and carbon impurity inclusion during the growth of GaAsN thin film by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yuki; Fukuyama, Atsuhiko; Haraguchi, Tomohiro; Yamauchi, Toshihiro; Ikari, Tetsuo; Suzuki, Hidetoshi

    2016-01-01

    The effects of growth temperature and nitrogen (N) source duration on N, carbon (C), and hydrogen (H) concentrations in GaAsN layers grown by atomic layer epitaxy (ALE) were investigated to understand the incorporation mechanisms of these atoms. In addition, the effects of the above growth conditions on the self-limiting mechanism (SLM) were investigated. The SLM was in effect at growth temperatures of 500 and 520 °C. The origin of the residual C was not N but other sources. With increasing N source duration, the N and H concentrations increased and saturated. The N incorporation mechanisms were discussed by a simple model considering the absorption and desorption of N atoms on the gallium (Ga)-covered surface. H atoms originating from the N source were incorporated in to the GaAsN layer. According to the ratio of the H concentration to the N concentration, the difference in the incorporation processes of N and H atoms in ALE-grown GaAsN layers was discussed.

  10. Studies of single walled carbon nanotubes for biomedical, mechanical and electrical applications using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lahiji, Roya Roientan

    The promise of carbon nanotubes to provide high-strength composites implies that carbon nanotubes might find widespread use throughout the world, implying that humans everywhere will be exposed to carbon nanotube-containing materials. In order to study what effects if any carbon nanotubes might have on the function of living cells, we have studied the association of single stranded DNA (ssDNA) with single wall carbon nanotubes (SWCNTs) as a first step toward understanding the interaction of SWCNTs with living matter. Studies have been performed on both as-received and chemically oxidized SWCNTs to better understand the preferential association of ssDNA with SWCNTs. Samples of T30 ssDNA:SWCNT were examined under ambient conditions using non-contact Atomic Force Microscopy (AFM)) techniques. AFM images of well-dispersed, as-received SWCNTs revealed isolated features on the SWCNT that are 1.4 to 2.8 nm higher than the bare SWCNT itself. X-ray Photoemission Spectroscopy (XPS) confirmed these features to be T30 ssDNA in nature. Chemically oxidizing SWCNTs before dispersion by sonication is found to be an effective way to increase the number of T30 ssDNA features. A series of experiments showed that free radical scavengers such as ascorbic acid and trolox can effectively prevent the conjugation of ssDNA to SWCNTs, suggesting a significant role of free radicals in this association. Also hybridization of the complimentary ssDNA sequences showed the covalent nature of this association. These results are important to understanding the precise mechanism of ssDNA:SWCNT association and provide valuable information for future use in electronics, biosensors and as a possible drug carrier into individual cells. If SWCNTs are used in biosensor or circuit design applications then it is important to note how much energy can be stored in a SWCNT based on its shape and configuration before a permanent damage is introduced to it. Therefore a study has been done on bending SWCNTs into

  11. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.

    PubMed

    Persson, Cecilia; López, Alejandro; Fathali, Hoda; Hoess, Andreas; Rojas, Ramiro; Ott, Marjam Karlsson; Hilborn, Jöns; Engqvist, Håkan

    2016-01-01

    With the increasing elderly population an increase in the number of bony fractures associated to age-related diseases such as osteoporosis also follows. The relatively high stiffness of the acrylic bone cements used in these patients has been suggested to give raise to a suboptimal load distribution surrounding the cement in vivo, and hence contribute to clinical complications, such as additional fractures. The aim of this study was to develop a low-modulus bone cement, based on currently used, commercially available poly(methyl methacrylate) (PMMA) cements for vertebroplasty. To this end, acrylate end-functionalized oligo(trimethylene carbonate) (oTMC) was incorporated into the cements, and the resulting compressive mechanical properties were evaluated, as well as the cytotoxic and handling properties of selected formulations. Sixteen wt%oTMC was needed in the vertebroplastic cement Osteopal V to achieve an elastic modulus of 1063 MPa (SD 74), which gave a corresponding compressive strength of 46.1 MPa (SD 1.9). Cement extracts taken at 1 and 12 hours gave a reduced MG-63 cell viability in most cases, while extracts taken at 24 hours had no significant effect on cell behavior. The modification also gave an increase in setting time, from 14.7 min (SD 1.7) to 18.0 min (SD 0.9), and a decrease in maximum polymerization temperature, from 41.5°C (SD 3.4) to 30.7°C (SD 1.4). While further evaluation of other relevant properties, such as injectability and in vivo biocompatibility, remains to be done, the results presented herein are promising in terms of approaching clinically applicable bone cements with a lower stiffness. PMID:26727581

  12. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement

    PubMed Central

    Persson, Cecilia; López, Alejandro; Fathali, Hoda; Hoess, Andreas; Rojas, Ramiro; Ott, Marjam Karlsson; Hilborn, Jöns; Engqvist, Håkan

    2016-01-01

    Abstract With the increasing elderly population an increase in the number of bony fractures associated to age-related diseases such as osteoporosis also follows. The relatively high stiffness of the acrylic bone cements used in these patients has been suggested to give raise to a suboptimal load distribution surrounding the cement in vivo, and hence contribute to clinical complications, such as additional fractures. The aim of this study was to develop a low-modulus bone cement, based on currently used, commercially available poly(methyl methacrylate) (PMMA) cements for vertebroplasty. To this end, acrylate end-functionalized oligo(trimethylene carbonate) (oTMC) was incorporated into the cements, and the resulting compressive mechanical properties were evaluated, as well as the cytotoxic and handling properties of selected formulations. Sixteen wt%oTMC was needed in the vertebroplastic cement Osteopal V to achieve an elastic modulus of 1063 MPa (SD 74), which gave a corresponding compressive strength of 46.1 MPa (SD 1.9). Cement extracts taken at 1 and 12 hours gave a reduced MG-63 cell viability in most cases, while extracts taken at 24 hours had no significant effect on cell behavior. The modification also gave an increase in setting time, from 14.7 min (SD 1.7) to 18.0 min (SD 0.9), and a decrease in maximum polymerization temperature, from 41.5°C (SD 3.4) to 30.7°C (SD 1.4). While further evaluation of other relevant properties, such as injectability and in vivo biocompatibility, remains to be done, the results presented herein are promising in terms of approaching clinically applicable bone cements with a lower stiffness. PMID:26727581

  13. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  14. Absolute Rates of the Solution-Phase Addition of Atomic Hydrogen to a Vinyl Ether and a Vinyl Ester: Effect of Oxygen Substitution on Hydrogen Atom Reactivity with Olefins

    SciTech Connect

    Tanner, D D.; Kandanarachchi, P; Das, N. C.; Franz, James A.

    2003-04-08

    The reactions of vinyl butyl ether and vinyl butyrate with atomic hydrogen and deuterium lead to addition at the terminal position of the olefins. This observation is consistent with the reactions carried out earlier with other olefins. Both of the absolute rates of addition to vinylbutyl ether and vinyl butyrate, in acetone and hexane, were measured at several temperatures. The relative rates are consistent with only modest stabilization of the transition state of the radical adduct by the R-O substituent compared with that of hydrogen atom addition to 1-octene. The relative rates measured in acetone and hexane indicate no significant differential solvation of the ground state relative to the transition structures of the hydrogen atom addition. The kinetics reveal that the early transition states for hydrogen atom addition exhibit little selectivity (vinyl ether versus simple olefin) in either the abstraction of hydrogen R to the oxygen or by terminal addition to the olefinic ether and reflects the modest influence of the increased enthalpy of reaction associated with resonance stabilization by the oxygen substituent at the developing radical site.

  15. Regulation of Soil Microbial Carbon-use Efficiency by Soil Moisture, Substrate Addition, and Incubation Time

    NASA Astrophysics Data System (ADS)

    Stark, J.

    2015-12-01

    Microbial carbon-use efficiency (CUE) is a key variable in biogeochemical cycling that regulates soil C sequestration, greenhouse gas emissions, and retention of inorganic nutrients. Microbial CUE is the fraction of C converted to biomass rather than respired as CO2. Biogeochemical models have been shown to be highly sensitive to variation in CUE; however, we currently have a poor understanding of how CUE responds to environmental variables such as soil moisture and nutrient limitations. We examined the effect of soil moisture and C supply on CUE in soil from a western hemlock / sitka spruce forest in Oregon, USA, using a novel technique which supplies 13C and 15N substrates through the gas phase so that water addition is not necessary. Soil samples (28 g oven-dry equiv. wt) at two water potentials (-0.03 and -3.55 MPa) were exposed to 13C-acetic acid vapor for either 6 or 30 sec to provide two different concentrations of acetate to soil microbial communities. The soils were also injected with small amounts of 15NH3 gas to allow quantification of microbial N assimilation rates and to provide an alternate method of calculating CUE. Rates of 13CO2 respiration were measured continuously during a 48-h incubation using cavity ring-down spectroscopy. Soil samples were extracted at seven time intervals (0, 0.5, 1.5, 4.5, 12, 24, and 48 h) in 0.5 M K2SO4 and analyzed for DO13C, microbial 13C, DO15N, inorganic 15N, and microbial 15N to calculate how gross rates of C and N assimilation and microbial CUE change with incubation time. As expected, microbial C and N assimilation rates and CUE increased with soil moisture and the quantity of acetate added; however, C:N assimilated was higher at lower soil moisture, suggesting that either C-storage compounds were being created, or that fungal communities were responsible for a greater proportion of the assimilation in drier soils. Assimilation rates and CUE also changed with incubation time, demonstrating that estimates of CUE

  16. One-pot atom-efficient synthesis of bio-renewable polyesters and cyclic carbonates through tandem catalysis.

    PubMed

    Jia, Fan; Chen, Xiaoyu; Zheng, Yan; Qin, Yusheng; Tao, Youhua; Wang, Xianhong

    2015-05-18

    One-pot synthesis of well-defined bio-renewable polyesters and cyclic carbonates in high yields was successfully realized for the first time by way of a tandem reaction using metal salen complexes as catalysts. This tandem process offered unprecedented opportunities for the atom-efficient production of two relevant compounds. PMID:25892206

  17. Selective visualization of point defects in carbon nanotubes at the atomic scale by an electron-donating molecular tip.

    PubMed

    Nishino, Tomoaki; Kanata, Satoshi; Umezawa, Yoshio

    2011-07-14

    Electron-donating molecular tips were used for the observation of single-walled carbon nanotubes (SWNTs). Defects in SWNTs were selectively visualized at the atomic scale on the basis of charge-transfer interaction with the molecular tip. PMID:21629907

  18. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    NASA Technical Reports Server (NTRS)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  19. Carbon monoxide exposures from propane-powered floor burnishers following addition of emissions controls

    SciTech Connect

    Demer, F.R.

    1998-11-01

    Previous published work by this author suggests that propane-powered floor burnisher use represents a potentially serious health hazard from carbon monoxide exposures, particularly for susceptible individuals. This earlier study was repeated using burnishers retrofitted with emission controls consisting of self-aspirating catalytic mufflers and computerized air/fuel monitors and alarms. Real-time carbon monoxide detectors with data-logging capabilities were placed on the burnishers in the breathing zones of operators during burnisher use. Carbon monoxide levels were recorded every 30 seconds. Ventilation and physical characteristics of the spaces of burnisher use were characterized, as were burnisher maintenance practices. Thirteen burnishing events were monitored under conditions comparable to previously published monitoring. All carbon monoxide exposures were well below even the most conservative recommended limits from the American Conference of Governmental Industrial Hygienists. Potential failures of the emission controls were also identified and included air filter blockage, spark plug malfunction, and faulty alarm function design.

  20. X-ray diffraction analysis of LiCu2O2 crystals with additives of silver atoms

    NASA Astrophysics Data System (ADS)

    Sirotinkin, V. P.; Bush, A. A.; Kamentsev, K. E.; Dau, H. S.; Yakovlev, K. A.; Tishchenko, E. A.

    2015-09-01

    Silver-containing LiCu2O2 crystals up to 4 × 8 × 8 mm in size were grown by the crystallization of 80(1- x)CuO · 20 x AgNO3 · 20Li2CO3 (0 ≤ х ≤ 0.5) mixture melt. According to the X-ray spectral and Rietveld X-ray diffraction data, the maximum amount of silver incorporated in the LiCu2O2 structure is about 4 at % relative to the copper content. It was established that silver atoms occupy statistically crystallographic positions of lithium atoms. The incorporation of silver atoms is accompanied by a noticeable increase in parameter с of the LiCu2O2 rhombic unit cell, a slight increase in parameter а, and a slight decrease in parameter b.

  1. Engineering the atomic structure of carbon nanotubes by a focused electron beam: new morphologies at the sub-nanometer scale.

    PubMed

    Rodríguez-Manzo, Julio A; Krasheninnikov, Arkady V; Banhart, Florian

    2012-07-16

    Carbon atoms are displaced in pre-selected locations of carbon nanotubes by using a focused electron beam in a scanning transmission electron microscope. Sub-nanometer-sized holes are created that change the morphology of double and triple-walled carbon nanotubes and connect the shells in a unique way. By combining in situ transmission electron microscopy experiments with atomistic simulations, we study the bonding between defective shells in the new structures which are reminiscent of the shape of a flute. We demonstrate that in double-walled nanotubes the shells locally merge by forming nanoarches while atoms with dangling bonds can be preserved in triple-walled carbon nanotubes. In the latter system, nanoarches are formed between the inner- and outermost shells, shielding small graphenic islands with open edges between the neighboring shells. Our results indicate that arrays of quantum dots may be produced in carbon nanotubes by spatially localized electron irradiation, generating atoms with dangling bonds that may give rise to localized magnetic moments. PMID:22407751

  2. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3−) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3− affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3− utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3−. PMID:24324672

  3. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies.

    PubMed

    Hawelek, L; Brodka, A; Dore, J C; Honkimaki, V; Burian, A

    2013-11-13

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp(3) defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered. PMID:24140935

  4. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies

    NASA Astrophysics Data System (ADS)

    Hawelek, L.; Brodka, A.; Dore, J. C.; Honkimaki, V.; Burian, A.

    2013-11-01

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp3 defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.

  5. Soil carbon sequestration in semi-arid soil through the addition of fuel gas desulfurization gypsum (FGDG)

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Tokunaga, Tetsu; Oh, Chamteut

    2014-05-01

    This study investigated a new strategy for increasing carbon retention in slightly alkaline soils through addition of fuel gas desulfurization gypsum (FGDG, CaSO4•2H2O). FGDG is moderately soluble and thus the FGDG amendment may be effective to reduce microbial respiration, to accelerate calcite (CaCO3) precipitation, and to promote soil organic carbon (SOC) complexation on mineral surfaces, but rates of these processes need to be understood. The effects of FGDG addition were tested in laboratory soil columns with and without FGDG-amended layers, and in greenhouse soil columns planted with switchgrass, a biofuel crop. The results of laboratory column experiments demonstrated that additions of FGDG promote soil carbon sequestration through suppressing microbial respiration to the extent of ~200 g per m2 soil per m of supplied water, and promoting calcite precipitation at similar rates. The greenhouse experiments showed that the FGDG treatments did not adversely affect biomass yield (~600 g dry biomass/m2/harvest) at the higher irrigation rate (50 cm/year), but substantially reduced recoverable biomass under the more water-limited conditions (irrigation rate = 20 cm/year). The main achievements of this study are (1) the identification of conditions in which inorganic and organic carbon sequestration is practical in semi-arid and arid soils, (2) development of a method for measuring the total carbon balance in unsaturated soil columns, and (3) the quantification of different pathways for soil carbon sequestration in response to FGDG amendments. These findings provide information for evaluating land use practices for increased soil carbon sequestration under semi-arid region biofuel crop production.

  6. Carbon abundances of reference late-type stars from 1D analysis of atomic C I and molecular CH lines

    NASA Astrophysics Data System (ADS)

    Alexeeva, S. A.; Mashonkina, L. I.

    2015-10-01

    A comprehensive model atom was constructed for C I using the most up-to-date atomic data. We evaluated non-local thermodynamical equilibrium (NLTE) line formation for neutral carbon in classical one-dimensional (1D) models representing atmospheres of late-type stars, where carbon abundance varies from the solar value down to [C/H] = -3. NLTE leads to stronger C I lines compared with their local thermodynamical equilibrium (LTE) strength and negative NLTE abundance corrections, ΔNLTE. The deviations from LTE are large for the strong lines in the infrared (IR), with ΔNLTE = -0.10 to -0.45 dex, depending on stellar parameters, and minor for the weak lines in the visible spectral range, with |ΔNLTE| ≤ 0.03 dex. The NLTE abundance corrections were found to be dependent on the carbon abundance in the model. As the first application of the treated model atom, carbon NLTE abundances were determined for the Sun and eight late-type stars with well-determined stellar parameters that cover the -2.56 ≤ [Fe/H] ≤ -1.02 metallicity range. Consistent abundances from the visible and IR lines were found for the Sun and the most metal-rich star of our sample, when applying a scaling factor of SH = 0.3 to the Drawinian rates of C+H collisions. Carbon abundances were also derived from the molecular CH lines and agree with those from the atomic C I lines for each star. We present the NLTE abundance corrections for lines of C I in the grid of model atmospheres applicable to carbon-enhanced (CEMP) stars.

  7. SUBSTITUENT EFFECTS AND ADDITIVITY IN THE CARBON-13 NUCLEAR MAGNETIC RESONANCE SPECTRA OF CHLORINATED NAPHTHALENES AND THEIR CHLORINATED NAPHTHOL METABOLITES

    EPA Science Inventory

    Carbon-13 and proton nuclear magnetic resonance spectra were obtained for 12 chlorinated naphthalenes and six chlorinated naphthols, some of which are metabolites of the naphthalenes. The validity of the use of additivity of chlorine and hydroxyl substituent effects to predict 13...

  8. C-atom-induced bandgap modulation in two-dimensional (100) silicon carbon alloys

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomohisa; Nagamine, Yoshiki; Omata, Yuhsuke; Suzuki, Yuhya; Urayama, Wako; Aoki, Takashi; Sameshima, Toshiyuki

    2016-04-01

    We experimentally studied the effects of the C atom on bandgap E G modulation in two-dimensional (2D) silicon carbon alloys, Si1- Y C Y , fabricated by hot C+ ion implantation into the (100) SOI substrate in a wide range of Y (4 × 10-5 ≤ Y ≤ 0.13), in comparison with the characteristics of 3D silicon carbide (SiC). X-ray photoelectron spectroscopy (XPS) and UV-Raman analysis confirm the Si-C, C-C, and Si-Si bonds in the 2D-Si1- Y C Y layer. The photoluminescence (PL) method shows that the E G and PL intensity I PL of 2D-Si1- Y C Y drastically increase with increasing Y for high Y (≥0.005), and thus we demonstrated a high E G of 2.5 eV and a visible wavelength λPL less than 500 nm. Even for low Y (<10-3), I PL of 2D-Si1- Y C Y also increases with increasing Y, owing to the compressive strain of the 2D-Si1- Y C Y layer caused by the C atoms, but the Y dependence of E G is very small. E G of 2D-Si1- Y C Y can be controlled by changing Y. Thus, the 2D-Si1- Y C Y technique is very promising for new E G engineering of future high-performance CMOS and Si photonics.

  9. Excited-state intramolecular proton transfer to carbon atoms: nonadiabatic surface-hopping dynamics simulations.

    PubMed

    Xia, Shu-Hua; Xie, Bin-Bin; Fang, Qiu; Cui, Ganglong; Thiel, Walter

    2015-04-21

    Excited-state intramolecular proton transfer (ESIPT) between two highly electronegative atoms, for example, oxygen and nitrogen, has been intensely studied experimentally and computationally, whereas there has been much less theoretical work on ESIPT to other atoms such as carbon. We have employed CASSCF, MS-CASPT2, RI-ADC(2), OM2/MRCI, DFT, and TDDFT methods to study the mechanistic photochemistry of 2-phenylphenol, for which such an ESIPT has been observed experimentally. According to static electronic structure calculations, irradiation of 2-phenylphenol populates the bright S1 state, which has a rather flat potential in the Franck-Condon region (with a shallow enol minimum at the CASSCF level) and may undergo an essentially barrierless ESIPT to the more stable S1 keto species. There are two S1/S0 conical intersections that mediate relaxation to the ground state, one in the enol region and one in the keto region, with the latter one substantially lower in energy. After S1 → S0 internal conversion, the transient keto species can return back to the S0 enol structure via reverse ground-state hydrogen transfer in a facile tautomerization. This mechanistic scenario is verified by OM2/MRCI-based fewest-switches surface-hopping simulations that provide detailed dynamic information. In these trajectories, ESIPT is complete within 118 fs; the corresponding S1 excited-state lifetime is computed to be 373 fs in vacuum. Most of the trajectories decay to the ground state via the S1/S0 conical intersection in the keto region (67%), and the remaining ones via the enol region (33%). The combination of static electronic structure computations and nonadiabatic dynamics simulations is expected to be generally useful for understanding the mechanistic photophysics and photochemistry of molecules with intramolecular hydrogen bonds. PMID:25711992

  10. Density functional theory investigation of the VIIIB transition metal atoms deposited on (5,5) single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Wanno, Banchob

    2013-03-01

    The binding of VIIIB transition metals i.e. Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, and Pt single atoms to single-walled carbon nanotube (SWCNT) was investigated using the density functional theory method. The B3LYP/LanL2DZ calculation shows that all these transition metal atoms have strong binding abilities to SWCNT. The binding abilities of these transition metals onto SWCNT are in following order: Os>Ru>Ir>Fe>Rh>Pt>Ni>Co>Pd. The Os single atom binding on SWCNT is the strongest binding of which the binding energy is -240.66 kcal/mol. The partial charge transfers from transition metal to SWCNT, density of states and energy gaps of metal atoms deposited on SWCNTs were analyzed and reported.

  11. Evaporation of carbon atoms from the open surface of silicon carbide and through graphene cells: Semiempirical quantum-chemical modeling

    NASA Astrophysics Data System (ADS)

    Alekseev, N. I.; Luchinin, V. V.; Charykov, N. A.

    2013-11-01

    The evaporation of silicon atoms during the epitaxial growth of graphene on the singular carbon and silicon faces of silicon carbide SiC was modeled by the semiempirical AM1 and PM3 methods. The analysis was performed for evaporation of atoms both from the open surface of SiC and through the surface of the formed graphene monolayers. The total activation barrier of the evaporation of the silicon atoms, their passage from the graphene cell, and further evaporation from graphene was shown to be lower than the barrier to evaporation of the silicon atom on a free surface of SiC. Passage through graphene is thus not the limiting stage of the process, but contributes significantly to the effective evaporation time.

  12. Microbiological and Mineralogical Characterization of Columbia River Basalts Prior to Supercritical Carbon Dioxide Addition

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Fisk, M. R.; Yip, H.; Schwartz, A.; Briggs, B. R.; Spane, F.

    2009-12-01

    Deep geologic sequestration of supercritical carbon dioxide can remove excess carbon dioxide from the atmosphere but will cause profound changes to the geochemistry and microorganisms in the deep strata where it is injected. Here we report the original subsurface microbial constituents in basalt aquifers where supercritical carbon dioxide will be injected as part of the DOE Big Sky Regional Partnership field pilot investigation. Microbial cells were acquired by filtration of water from five discrete depth intervals in the Columbia River basalts during drilling of the borehole in eastern Washington state. Microbes were present in all five of the groundwater samples collected. DNA extracted from the cells was successfully amplified using 16S rRNA gene primers for bacteria, but not archaea. Terminal restriction fragment length polymorphism suggested that microbial communities in aquifers from the upper Grand Ronde basalt flows (518 to 553 m) were similar to each other, but distinct from those present in groundwater from the shallower, overlying Wanapum and deeper Grand Ronde basalt flows. Quantitative polymerase chain reaction directed at the 16S rRNA gene indicated that the aquifers had approximately 10,000 cells per ml. To date, our analysis demonstrates the presence of diverse microbial communities at and above the depths where a limited field test carbon dioxide injection (ca. 1,000 metric tons) is planned for early in 2010. A variety of secondary mineral assemblages (mainly clay minerals, silicates and carbonates) have been observed in thin section, and X-ray diffraction examination of the basalt cuttings from the pilot characterization borehole. This pre-injection study supports our inquiry of how indigenous microbial communities may be altered by supercritical carbon dioxide injection, and possible processes that may increase basalt reaction/weathering and re-precipitation of carbonate minerals. Microbial communities that become established after the carbon

  13. Additional development of large diameter carbon monofilament. [from boron, hydrogen, and methane gas mixture

    NASA Technical Reports Server (NTRS)

    Jacob, B. A.; Veltri, R. D.

    1974-01-01

    The chemical vapor process for preparing a large diameter carbon-base monofilament from a BCl3, Ch4 and H2 gas mixture with a carbon substrate fiber was studied. The effect of reactor geometry, total gas flows and deposition temperature on the tensile strength of the monofilament were investigated. It was noted that consistent results could only be obtained when the carbon substrate fiber was cleaned. The strength of the monofilament was found to depend on the highest temperature and the temperature profile of the monofilament in the reactor. The strength of monofilament produced in the dc and RF reactors were found to be similar and similar alloy compositions in the monofilament were attained when the same gas ratios were used. The tensile strength of the monofilament at 500 C was found to be 60 to 70% of the room temperature tensile strength. No degradation was noted after exposure to molten aluminum.

  14. Effect of powdered activated carbon (PAC) on MBR performance and effluent trihalomethane formation: At the initial stage of PAC addition.

    PubMed

    Gao, Yue; Ma, Defang; Yue, Qinyan; Gao, Baoyu; Huang, Xia

    2016-09-01

    In this study, the MBR was used to treat municipal wastewater for reuse. Effects of powdered activated carbon (PAC) addition on MBR system in terms of effluent water quality, trihalomethane (THM) formation and membrane organic fouling tendency of MBR sludge supernatant at the initial stage of PAC addition were investigated. Effects of chlorine dose and contact time on THM formation and speciation were also studied. PAC addition enhanced the removal of organic matters, especially aromatic components, which improved the UV254 removal rate from 34% to 83%. PAC addition greatly reduced the membrane organic fouling tendency of MBR sludge supernatant. PAC addition reduced the MBR effluent trihalomethane formation potential (THMFP) from 351.29 to 241.95μg/L, while increased THM formation reactivity by 42%. PAC addition enhanced the formation of higher toxic bromine-containing THMs. High chlorine dose and contact time resulted in higher THM formation but lower proportion of bromine-containing THMs. PMID:27318162

  15. Turnover of soil carbon pools following addition of switchgrass-derived biochar to four soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amendment of soils with biochar may improve plant growth and sequester carbon, especially in marginal soils not suitable for the majority of commodity production. While biochar can persist in soils, it is not clear whether its persistence is affected by soil type. Moreover, we know little of how...

  16. Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System via Copolymerization with Silver Tricyanomethanide.

    PubMed

    Chen, Zupeng; Pronkin, Sergey; Fellinger, Tim-Patrick; Kailasam, Kamalakannan; Vilé, Gianvito; Albani, Davide; Krumeich, Frank; Leary, Rowan; Barnard, Jon; Thomas, John Meurig; Pérez-Ramírez, Javier; Antonietti, Markus; Dontsova, Dariya

    2016-03-22

    Herein, we present an approach to create a hybrid between single-atom-dispersed silver and a carbon nitride polymer. Silver tricyanomethanide (AgTCM) is used as a reactive comonomer during templated carbon nitride synthesis to introduce both negative charges and silver atoms/ions to the system. The successful introduction of the extra electron density under the formation of a delocalized joint electronic system is proven by photoluminescence measurements, X-ray photoelectron spectroscopy investigations, and measurements of surface ζ-potential. At the same time, the principal structure of the carbon nitride network is not disturbed, as shown by solid-state nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy analysis. The synthesis also results in an improvement of the visible light absorption and the development of higher surface area in the final products. The atom-dispersed AgTCM-doped carbon nitride shows an enhanced performance in the selective hydrogenation of alkynes in comparison with the performance of other conventional Ag-based materials prepared by spray deposition and impregnation-reduction methods, here exemplified with 1-hexyne. PMID:26863408

  17. Mechanical and Electrical Properties of a Polyimide Film Significantly Enhanced by the Addition of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2005-01-01

    Single-wall carbon nanotubes have been shown to possess a combination of outstanding mechanical, electrical, and thermal properties. The use of carbon nanotubes as an additive to improve the mechanical properties of polymers and/or enhance their thermal and electrical conductivity has been a topic of intense interest. Nanotube-modified polymeric materials could find a variety of applications in NASA missions including large-area antennas, solar arrays, and solar sails; radiation shielding materials for vehicles, habitats, and extravehicular activity suits; and multifunctional materials for vehicle structures and habitats. Use of these revolutionary materials could reduce vehicle weight significantly and improve vehicle performance and capabilities.

  18. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    SciTech Connect

    Skelly, E.M.

    1982-01-01

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine, blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.

  19. Geometric Characterization of Carbon Nanotubes by Atomic Force Microscopy in Conjunction with a Tip Characterizer

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei; Itoh, Hiroshi; Homma, Yoshikazu; Sun, Jielin; Hu, Jun; Ichimura, Shingo

    2008-07-01

    An atomic force microscopy (AFM) probe tip characterizer with 14 line and space structures and two knife edges was fabricated by means of a superlattice technique. The shape of a probe tip both before and after AFM imaging was acquired by this tip characterizer with general variations <1.5 nm; depending on imaging conditions. The geometric structures of carbon nanotubes (CNTs) on a SiO2 substrate were studied by dynamic mode AFM in conjunction with this tip characterizer. Contact points between the tip and the CNTs were detected by observing changes in the AFM phase images. A modified CNT width correction model was established to calculate the estimated and upper-limit widths of two CNTs. The experimental results showed that imaging under a weak attractive force was suitable for obtaining accurate CNT height measurements, whereas a weak repulsive force provided the most accurate widths. Differing heights and widths between the two CNTs suggested that one CNT was double-walled, whereas the other had more than two walls; these results agree with transmission electron microscopy (TEM) measurements of the CNTs.

  20. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template.

    PubMed

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry. PMID:27188268

  1. Contribution of Chirality to the Adsorption of a Kr Atom on a Single Wall Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Young; Booth, Eric C.; Mbaye, Mamadou T.; Gatica, Silvina M.

    2014-05-01

    Recent theoretical and simulation studies (Lueking et al. Phys Rev B 75:195425, 2007; Kim et al. J Phys Chem 115:7249-7257, 2011) on the adsorption of Kr on suspended nanotubes yielded different commensurate phases at submonolayer coverage than those found in a pioneering experiment (Wang et al. Science 327:552-555, 2010). This controversy between calculations and experiments is yet to be resolved. One of the tentative explanations of the apparent discrepancy is the possibly different chirality as the chirality of the nanotubes used in the experiment is not known. To address the question on chirality, we calculated the adsorption potential of krypton atoms on two sets of single wall carbon nanotubes of same radii with distinct chiralities. We found novel symmetries of the adsorption sites on a nanotube, which systematically vary depending on its chirality with an unexpected, yet intuitive delicacy. The same approach is equally feasible for other gases (Ar, Xe, CH, etc.). The results of classical grand canonical Monte Carlo simulations confirm the predicted behavior of adsorption phases.

  2. A vortex line for K-shell ionization of a carbon atom by electron impact

    NASA Astrophysics Data System (ADS)

    Ward, S. J.; Macek, J. H.

    2014-10-01

    We obtained using the Coulomb-Born approximation a deep minimum in the TDCS for K-shell ionization of a carbon atom by electron impact for the electron ejected in the scattering plane. The minimum is obtained for the kinematics of the energy of incident electron Ei = 1801.2 eV, the scattering angle θf = 4°, the energy of the ejected electron Ek = 5 . 5 eV, and the angle for the ejected electron θk = 239°. This minimum is due to a vortex in the velocity field. At the position of the vortex, the nodal lines of Re [ T ] and Im [ T ] intersect. We decomposed the CB1 T-matrix into its multipole components for the kinematics of a vortex, taking the z'-axis parallel to the direction of the momentum transfer vector. The m = +/- 1 dipole components are necessary to obtain a vortex. We also considered the electron to be ejected out of the scattering plane and obtained the positions of the vortex for different values of the y-component of momentum of the ejected electron, ky. We constructed the vortex line for the kinematics of Ei = 1801.2 eV and θf = 4°. S.J.W. and J.H.M. acknowledge support from NSF under Grant No. PHYS- 0968638 and from D.O.E. under Grant Number DE-FG02-02ER15283, respectively.

  3. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template

    NASA Astrophysics Data System (ADS)

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

  4. Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites.

    PubMed

    Bârsan, Oana A; Hoffmann, Günter G; van der Ven, Leendert G J; de With, Gijsbertus

    2016-08-01

    Conductive atomic force microscopy (C-AFM) is a valuable technique for correlating the electrical properties of a material with its topographic features and for identifying and characterizing conductive pathways in polymer composites. However, aspects such as compatibility between tip material and sample, contact force and area between the tip and the sample, tip degradation and environmental conditions render quantifying the results quite challenging. This study aims at finding the suitable conditions for C-AFM to generate reliable, reproducible, and quantitative current maps that can be used to calculate the resistance in each point of a single-walled carbon nanotube (SWCNT) network, nonimpregnated as well as impregnated with a polymer. The results obtained emphasize the technique's limitation at the macroscale as the resistance of these highly conductive samples cannot be distinguished from the tip-sample contact resistance. Quantitative C-AFM measurements on thin composite sections of 150-350 nm enable the separation of sample and tip-sample contact resistance, but also indicate that these sections are not representative for the overall SWCNT network. Nevertheless, the technique was successfully used to characterize the local electrical properties of the composite material, such as sample homogeneity and resistance range of individual SWCNT clusters, at the nano- and microscale. PMID:27404764

  5. Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy.

    PubMed

    Kwon, Cheong Hoon; Chun, Kyoung-Yong; Kim, Shi Hyeong; Lee, Jae-Hyeok; Kim, Jae-Ho; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2015-02-14

    Torsional behaviors of polymer-infiltrated carbon nanotube (CNT) yarn muscles have been investigated in relation to molecular architecture by using atomic force microscopy (AFM). Two polymers with different stiffnesses, polystyrene (PS) and poly(styrene-b-isoprene-b-styrene) (SIS), were uniformly infiltrated into CNT yarns for electrothermal torsional actuation. The torsional behaviors of hybrid yarn muscles are completely explained by the volume change of each polymer, based on the height and full width at half maximum profiles from the AFM morphological images. The volume expansion of the PS yarn muscle (1.7 nm of vertical change and 22 nm of horizontal change) is much larger than that of the SIS yarn muscle (0.3 nm and 11 nm change in vertical and horizontal directions) at 80 °C, normalized by their values at 25 °C. We demonstrate that their maximum rotations are consequently 29.7 deg mm(-1) for the PS-infiltrated CNT yarn muscle (relatively larger rotation) and 14.4 deg mm(-1) for the SIS-infiltrated CNT yarn muscle (smaller rotation) at 0.75 V m(-1). These hybrid yarn muscles could be applied in resonant controllers or damping magnetoelectric sensors. PMID:25567113

  6. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.

    2016-02-01

    The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.

  7. Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode.

    PubMed

    Guan, Cao; Qian, Xu; Wang, Xinghui; Cao, Yanqiang; Zhang, Qing; Li, Aidong; Wang, John

    2015-03-01

    Co3O4 nanolayers have been successfully deposited on a flexible carbon nanotubes/carbon cloth (CC) substrate by atomic layer deposition. Much improved capacitance and ultra-long cycling life are achieved when the CNTs@Co3O4/CC is tested as a supercapacitor electrode. The improvement can be from the mechanically robust CC/CNTs substrate, the uniform coated high capacitance materials of Co3O4 nanoparticles, and the unique hierarchical structure. The flexible electrode of CNTs@Co3O4/CC with high areal capacitance and excellent cycling ability promises great potential for developing high-performance flexible supercapacitors. PMID:25665549

  8. Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Guan, Cao; Qian, Xu; Wang, Xinghui; Cao, Yanqiang; Zhang, Qing; Li, Aidong; Wang, John

    2015-03-01

    Co3O4 nanolayers have been successfully deposited on a flexible carbon nanotubes/carbon cloth (CC) substrate by atomic layer deposition. Much improved capacitance and ultra-long cycling life are achieved when the CNTs@Co3O4/CC is tested as a supercapacitor electrode. The improvement can be from the mechanically robust CC/CNTs substrate, the uniform coated high capacitance materials of Co3O4 nanoparticles, and the unique hierarchical structure. The flexible electrode of CNTs@Co3O4/CC with high areal capacitance and excellent cycling ability promises great potential for developing high-performance flexible supercapacitors.

  9. Diamond-like carbon charge state conversion surfaces for low-energy neutral atom imaging instruments on future space missions

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Scheer, J. A.; Riedo, A.; Wurz, P.

    2014-04-01

    The technique of surface ionisation for mapping lowenergy neutral atoms in space plasmas was successfully applied in several instruments onboard space missions in the past. We investigated diamond-like carbon surfaces regarding their eligibility as a charge state conversion surface material for future space missions, where improved characteristics of the conversion surfaces are required. Measurements on CVD (chemical vapour deposition) diamond surfaces, which are from stock available, show that the material has high potential to be used in neutral atom imaging detectors on future space missions.

  10. Iridium-Catalyzed Intramolecular Methoxy C-H Addition to Carbon-Carbon Triple Bonds: Direct Synthesis of 3-Substituted Benzofurans from o-Methoxyphenylalkynes.

    PubMed

    Torigoe, Takeru; Ohmura, Toshimichi; Suginome, Michinori

    2016-07-18

    Catalytic hydroalkylation of an alkyne with methyl ether was accomplished. Intramolecular addition of the C-H bond of a methoxy group in 1-methoxy-2-(arylethynyl)benzenes across a carbon-carbon triple bond took place efficiently either in toluene at 110 °C or in p-xylene at 135 °C in the presence of an iridium catalyst. The initial 5-exo cyclization products underwent double-bond migration during the reaction to give 3-(arylmethyl)benzofurans in high yields. PMID:27168516

  11. The effects of fire severity on black carbon additions to forest soils - 10 years post fire

    NASA Astrophysics Data System (ADS)

    Poore, R.; Wessman, C. A.; Buma, B.

    2013-12-01

    Wildfires play an active role in the global carbon cycle. While large amounts of carbon dioxide are released, a small fraction of the biomass consumed by the fire is only partially combusted, yielding soot and charcoal. These products, also called black carbon (BC) make up only 1-5% of the biomass burnt, yet they can have a disproportionate effect on both the atmosphere and fluxes in long-term carbon pools. This project specifically considers the fraction that is sequestered in forest soils. Black carbon is not a specific compound, and exists along a continuum ranging from partially burned biomass to pure carbon or graphite. Increasing aromaticity as the result of partial combustion means charcoal is highly resistant to oxidation. Although debated, most studies indicate a turnover time on the order of 500-1,000 years in warm, wet, aerobic soils. Charcoal may function as a long-term carbon sink, however its overall significance depends on its rate of formation and loss. At the landscape level, fire characteristics are one of the major factors controlling charcoal production. A few studies suggest that charcoal production increases with cooler, less-severe fires. However, there are many factors to tease apart, partly because of a lack of specificity in how fire severity is defined. Within this greater context, our lab has been working on a landscape-level study within Routt National Forest, north of Steamboat Springs, Colorado. In 2002, a large fire swept through a subalpine spruce, fir and lodgepole pine forest. In 2011-2013 we sampled BC pools in 44 plots across a range of fire severities from unburned to severe crown We hypothesized that charcoal stocks will be higher in areas of low severity fire as compared to high severity because of decreased re-combustion of charcoal in the organic soil and increased overall charcoal production due to lower temperatures. In each of our plots we measured charcoal on snags and coarse woody debris, sampled the entire organic

  12. Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam

    SciTech Connect

    Im, Ji Sun; Bae, Tae-Sung; Lee, Sung Kyu; Lee, Sei-Hyun; Jeong, Euigyung; Kang, Phil Hyun; Lee, Young-Seak

    2010-11-15

    We report the synthesis of a polyimide matrix with a low dielectric constant for application as an intercalation material between metal interconnections in electronic devices. Porous activated carbon was embedded in the polyimide to reduce the dielectric constant, and a thin film of the complex was obtained using the spin-coating and e-beam irradiation methods. The surface of the thin film was modified with fluorine functional groups to impart water resistance and reduce the dielectric constant further. The water resistance was significantly improved by the modification with hydrophobic fluorine groups. The dielectric constant was effectively decreased by porous activated carbon. The fluorine modification also resulted in a low dielectric constant on the polyimide surface by reducing the polar surface free energy. The dielectric constant of polyimide film decreased from 2.98 to 1.9 by effects of porous activated carbon additive and fluorine surface modification.

  13. A journey from order to disorder — Atom by atom transformation from graphene to a 2D carbon glass

    NASA Astrophysics Data System (ADS)

    Eder, Franz R.; Kotakoski, Jani; Kaiser, Ute; Meyer, Jannik C.

    2014-02-01

    One of the most interesting questions in solid state theory is the structure of glass, which has eluded researchers since the early 1900's. Since then, two competing models, the random network theory and the crystallite theory, have both gathered experimental support. Here, we present a direct, atomic-level structural analysis during a crystal-to-glass transformation, including all intermediate stages. We introduce disorder on a 2D crystal, graphene, gradually, utilizing the electron beam of a transmission electron microscope, which allows us to capture the atomic structure at each step. The change from a crystal to a glass happens suddenly, and at a surprisingly early stage. Right after the transition, the disorder manifests as a vitreous network separating individual crystallites, similar to the modern version of the crystallite theory. However, upon increasing disorder, the vitreous areas grow on the expense of the crystallites and the structure turns into a random network. Thereby, our results show that, at least in the case of a 2D structure, both of the models can be correct, and can even describe the same material at different degrees of disorder.

  14. Multi-Walled Carbon Nanotube Functionalization by Radical Addition Using Hydroxymethylene Groups.

    PubMed

    Rodríguez-Jiménez, Rubén; Alonso-Núñez, Gabriel; Paraguay-Delgado, Francisco; Espinoza-Gómez, Heriberto; Vélez-López, Ernesto; Rogel-Hernández, Eduardo

    2016-01-01

    Synthetic methodology and characterization of multi-walled carbon nanotubes (MWCNTs) function- alized with hydroxymethylene groups are reported. The MWCNTs were synthesized by the spray pyrolysis technique using toluene as carbon source and ferrocene as catalyst. Hydroxymethylation of MWCNTs was carried out by methanol using benzoyl peroxide (BPO) at different quantities (300 to 900 mg); the optimum BPO quantity was 300 mg. The resulting materials were characterized by FT-IR, Raman Spectroscopy, Thermal Gravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). The presence of the hydroxymethylene group on the MWCNTs surface was demonstrated by FT-IR, Raman Spectroscopy, TGA, EDS, TEM and Mass Spectrometry. The func- tionalized MWCNTs were not damaged by this methodology. PMID:27398563

  15. Fly ash addition affects microbial biomass and carbon mineralization in agricultural soils.

    PubMed

    Nayak, A K; Kumar, Anjani; Raja, R; Rao, K S; Mohanty, Sangita; Shahid, Mohammad; Tripathy, Rahul; Panda, B B; Bhattacharyya, P

    2014-02-01

    The microbial biomass carbon (MBC) and carbon mineralization of fly ash (FA) amended soil at (0 %, 1.25 %, 2.5 %, 5 %, 10 % and 20 % FA; v/v) was investigated under laboratory conditions for 120 days at 60 % soil water-holding capacity and 25 ± 1°C temperature. The results demonstrated that soil respiration and microbial activities were not suppressed up to 2.5 % FA amendment and these activities decreased significantly at 10 % and 20 % FA treatment with respect to control. Application of 10 % and 20 % FA treated soils showed a decreasing trend of soil MBC with time; and the decrease was significant throughout the period of incubation. The study concluded that application of FA up to 2.5 % can thus be safely used without affecting the soil biological activity and thereby improve nutrient cycling in agricultural soils. PMID:24362819

  16. Synergistic catalysis: highly diastereoselective benzoxazole addition to Morita-Baylis-Hillman carbonates.

    PubMed

    Ceban, Victor; Putaj, Piotr; Meazza, Marta; Pitak, Mateusz B; Coles, Simon J; Vesely, Jan; Rios, Ramon

    2014-07-18

    An expedited method has been developed for the diastereoselective synthesis of highly functionalized alkyl-azaarene systems with good yields and high diastereoselectivities (>15 : 1 dr). The methodology includes a synergistic catalysis event involving organometallic (10 mol% AgOAc) activation of an alkyl azaarene and Lewis base (10 mol% DABCO) activation of a Morita-Baylis-Hillman carbonate. The structure and relative configuration of a representative product were confirmed by X-ray analysis. PMID:24875953

  17. Atomic Scale Interface Manipulation, Structural Engineering, and Their Impact on Ultrathin Carbon Films in Controlling Wear, Friction, and Corrosion.

    PubMed

    Dwivedi, Neeraj; Yeo, Reuben J; Yak, Leonard J K; Satyanarayana, Nalam; Dhand, Chetna; Bhat, Thirumaleshwara N; Zhang, Zheng; Tripathy, Sudhiranjan; Bhatia, Charanjit S

    2016-07-13

    Reducing friction, wear, and corrosion of diverse materials/devices using <2 nm thick protective carbon films remains challenging, which limits the developments of many technologies, such as magnetic data storage systems. Here, we present a novel approach based on atomic scale interface manipulation to engineer and control the friction, wear, corrosion, and structural characteristics of 0.7-1.7 nm carbon-based films on CoCrPt:oxide-based magnetic media. We demonstrate that when an atomically thin (∼0.5 nm) chromium nitride (CrNx) layer is sandwiched between the magnetic media and an ultrathin carbon overlayer (1.2 nm), it modifies the film-substrate interface, creates various types of interfacial bonding, increases the interfacial adhesion, and tunes the structure of carbon in terms of its sp(3) bonding. These contribute to its remarkable functional properties, such as stable and lowest coefficient of friction (∼0.15-0.2), highest wear resistance and better corrosion resistance despite being only ∼1.7 nm thick, surpassing those of ∼2.7 nm thick current commercial carbon overcoat (COC) and other overcoats in this work. While this approach has direct implications for advancing current magnetic storage technology with its ultralow thickness, it can also be applied to advance the protective and barrier capabilities of other ultrathin materials for associated technologies. PMID:27267790

  18. Patterned forest-assembly of single-wall carbon nanotubes and carbon nanotube atomic force microscopy nanoprobes

    NASA Astrophysics Data System (ADS)

    Wei, Haoyan

    Single-wall carbon nanotubes (SWNTs) are envisioned to greatly impact future science and technology particularly in the nanoscale range due to their unique one dimensional structure with tunable electrical conductivity. Thus they have received considerable attention in the development of nanodevices, field emitters and biosensors. The ability to place carbon nanotubes (CNTs) with controlled orientation at desired sites presents one major challenge in assembling these remarkable nanostructures into useful functional devices. In this dissertation a metal-assisted self-assembly technique was utilized in which dense rope-lattice-like SWNT forests with upright direction were obtained by immobilizing carboxylated nanotubes from dimethylformamide (DMF) nonaqueous media onto the underlying substrates with the linkage of FeO(OH)/FeOCl crystallites. In comparison with growing CNTs by chemical vapor deposition (CVD) on patterned catalyst pads, this self-assembly approach can take advantage of post-synthesis SWNT separation according to length and type (met allic versus semiconducting). Since FeO(OH)/FeOCl crystallites acted as linkers to bridge CNTs onto the substrates, the appropriate placement of these iron deposits was pivotal to realize the desired SWNT patterns. To assist in localizing these FeO(OH)/FeOCl crystallites, three approaches on diverse substrates including Nafion, Si/SiO x and Au were investigated with the aid of low-energy electron-beam direct writing (on Nafion and Si/SiOx) and photolithography (on Au) by creating preferential precipitation sites for FeO(OH)/FeOCl crystallites. Such differential deposition of FeO(OH)/FeOCl crystallites provided the basis for the patterned site-specific self-assembly of SWNT forests as demonstrated by atomic force microscopy (AFM) and resonance Raman spectroscopy. A second part of this dissertation resulted in CNT nanoprobes on conductive AFM probes fabricated with the help of a positive dielectrophoretic (DEP) process. Under

  19. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. PMID:26750627

  20. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery

    NASA Astrophysics Data System (ADS)

    Saravanan, M.; Ganesan, M.; Ambalavanan, S.

    2014-04-01

    In this work, we report an in situ generated carbon from sugar as additive in the Negative Active Mass (NAM) which enhances the charge-discharge characteristics of the lead-acid cells. In situ formed sugar derived carbon (SDC) with leady oxide (LO) provides a conductive network and excellent protection against NAM irreversible lead sulfation. The effect of SDC and carbon black (CB) added negative plates are characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The results show that subtle changes in the addition of carbon to NAM led to subsequent changes on the performance during partial-state-of-charge (PSoC) operations in lead-acid cells. Furthermore, SDC added cells exhibit remarkable improvement in the rate capability, active material utilization, cycle performance and charge acceptance compared to that of the conventional CB added cells. The impact of SDC with LO at various synthesis conditions on the electrochemical performance of the negative plate is studied systematically.

  1. Regioselective Dichlorination of a Non-Activated Aliphatic Carbon Atom and Phenolic Bismethylation by a Multifunctional Fungal Flavoenzyme.

    PubMed

    Chankhamjon, Pranatchareeya; Tsunematsu, Yuta; Ishida-Ito, Mie; Sasa, Yuzuka; Meyer, Florian; Boettger-Schmidt, Daniela; Urbansky, Barbara; Menzel, Klaus-Dieter; Scherlach, Kirstin; Watanabe, Kenji; Hertweck, Christian

    2016-09-19

    The regioselective functionalization of non-activated carbon atoms such as aliphatic halogenation is a major synthetic challenge. A novel multifunctional enzyme catalyzing the geminal dichlorination of a methyl group was discovered in Aspergillus oryzae (Koji mold), an important fungus that is widely used for Asian food fermentation. A biosynthetic pathway encoded on two different chromosomes yields mono- and dichlorinated polyketides (diaporthin derivatives), including the cytotoxic dichlorodiaporthin as the main product. Bioinformatic analyses and functional genetics revealed an unprecedented hybrid enzyme (AoiQ) with two functional domains, one for halogenation and one for O-methylation. AoiQ was successfully reconstituted in vivo and in vitro, unequivocally showing that this FADH2 -dependent enzyme is uniquely capable of the stepwise gem-dichlorination of a non-activated carbon atom on a freestanding substrate. Genome mining indicated that related hybrid enzymes are encoded in cryptic gene clusters in numerous ecologically relevant fungi. PMID:27559694

  2. Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: effect of electric field.

    PubMed

    Neyts, Erik C; van Duin, Adri C T; Bogaerts, Annemie

    2012-01-18

    Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level. PMID:22126536

  3. Influence of resinous compounds in petroleum oils on formation of protective films by additives with labeled atoms

    SciTech Connect

    Faradzhev, K.F.

    1988-09-01

    The role of resinous compounds present in oil media in terms of their effects of protective film formation and corrosive wear of metal is investigated. Radioactive additives consisting of barium salts of an alkylphenol sulfide and an alkylphenol disulfide, containing a functional group of sulfur 35, were synthesized. These additives were added to the test oil in an amount of 3%. In most cases, the additives tend to form more stable films on the metal surface when they are used in oils containing resinous compounds than when they are used in individual groups of hydrocarbons. The quantity and efficiency of the protective film formed by the additive depends not only on the hydrocarbon structure of the oil hydrocarbons, but also on the quality of the additive, the nature of the metal, and the content of resinous compounds in the oil and the structure of these compounds.

  4. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions

    SciTech Connect

    Husillos Rodriguez, N.; Martinez Ramirez, S.; Blanco Varela, M.T.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J.

    2010-05-15

    This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphous material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.

  5. Spatial evolutions of Co and Ni atoms during single-walled carbon nanotubes formation: measurements and modeling.

    PubMed

    Cau, M; Dorval, N; Cao, B; Attal-Trétout, B; Cochon, J L; Loiseau, A; Farhat, S; Scott, C D

    2006-05-01

    Spatial investigations of nickel and cobalt atoms and of C2 and C3 radicals are performed by laser induced fluorescence (LIF) in a continuous CO2 laser-vaporization reactor during the synthesis of single-walled carbon nanotubes. The chemical composition of the gas vaporized from bimetallic Ni/Co catalysts-carbon targets is determined using a chemical kinetic model. In this model, the evolution of Ni and Co atoms is driven by kinetics of condensation/evaporation process of pure metal clusters. Metal-carbon clusters are assumed to form from soot particles (C80) and 128-atom metal clusters. Spatial profiles of Ni and Co atoms obtained by LIF are compared with the calculations to validate the modeling and to adjust the input data. The value of the initial molar fraction of carbon-metal mixture diluted in helium is determined through a parametric study. Good agreement is found between the measured and the calculated evolution of Ni for a molar fraction of the helium diluent ranging from 10 to 15%. To fit the spatial profile of Co, the activation energy is adjusted in the evaporation rate, changing the cobalt dimer bond energy. The latter is found to be largely uncertain; and three values are tested: 167, 208, and 230 kJ x mol(-1). From comparison, the activation energy is found to be 208 kJ x mol(-1). However, the C2 LIF profiles show that the depletion of C2 is accelerated when cobalt is present. The observed Co evolutions suggest that small Co-C clusters are easier and/or faster to form compared to Ni-C clusters. PMID:16792356

  6. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    SciTech Connect

    Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

    2014-10-01

    Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

  7. Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects

    SciTech Connect

    Huber, Stefan E. E-mail: Michael.probst@uibk.ac.at; Mauracher, Andreas; Probst, Michael E-mail: Michael.probst@uibk.ac.at

    2013-12-15

    Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.

  8. Protection of Diamond-like Carbon Films from Energetic Atomic Oxygen Degradation Through Si-doping Technology

    SciTech Connect

    Yokota, Kumiko; Tagawa, Masahito; Kitamura, Akira; Matsumoto, Koji; Yoshigoe, Akitaka; Teraoka, Yuden; Fontaine, Julien; Belin, Michel

    2009-01-05

    The effect of hyperthermal atomic oxygen (AO) exposure on the surface properties of Si-doped diamond-like carbon (DLC) was investigated. Two types of DLC were tested that contain approximately 10 at% and 20 at% of Si atoms. Surface analytical results of high-resolution x-ray photoelectron spectroscopy using synchrotron radiation (synchrotron radiation photoemission spectroscopy; SR-PES) as well as Rutherford backscattering spectroscopy (RBS) have been used for characterization of the AO-exposed Si-doped DLC. It was identified by SR-PES that a SiO{sub 2} layer was formed by the hyperthermal AO exposure at the Si-doped DLC surface. RBS data indicates that AO exposure leads to severe thickness loss on the undopedd DLC. In contrast, a SiO{sub 2} layer formed by the hyperthermal atomic oxygen reaction of Si-doped DLC protects the DLC underneath the SiO{sub 2} layer.

  9. Survivability of Silicon-Doped Diamond-Like Carbon Films in Energetic Atomic/Molecular Oxygen Beam Environments

    NASA Astrophysics Data System (ADS)

    Tagawa, Masahito; Kishida, Kazuhiro; Yokota, Kumiko; Matsumoto, Koji; Yoshigoe, Akitaka; Teraoka, Yuden; Zhang, Jianming; Minton, Timothy K.

    Volatile products were measured from two types of diamond-like carbon films under the hyperthermal atomic oxygen (AO) beam bombardment. It was clearly observed that CO and CO2 were formed at the conventional hydrogenated DLC surface when exposed to hyperthermal AO beam. Desorption rates of CO and CO2 are constant with AO fluence which reflects the constant erosion rate of the hydrogenated DLC. In contrast, Si-doped DLC shows decrease in amount of CO and CO2 with increasing AO fluence. Oxidation of Si atoms at the DLC surface was detected by X-ray photoelectron spectroscopy, confirming the formation of SiO2 film formed at the DLC surface that could prevent AO reaction with C atoms in DLC which leads to loss of DLC. Since a self-healing capability can be expected on Si-doped DLC, metal doping is a promising technology for space application of DLC.

  10. Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Cheong Hoon; Chun, Kyoung-Yong; Kim, Shi Hyeong; Lee, Jae-Hyeok; Kim, Jae-Ho; Lima, Márcio D.; Baughman, Ray H.; Kim, Seon Jeong

    2015-01-01

    Torsional behaviors of polymer-infiltrated carbon nanotube (CNT) yarn muscles have been investigated in relation to molecular architecture by using atomic force microscopy (AFM). Two polymers with different stiffnesses, polystyrene (PS) and poly(styrene-b-isoprene-b-styrene) (SIS), were uniformly infiltrated into CNT yarns for electrothermal torsional actuation. The torsional behaviors of hybrid yarn muscles are completely explained by the volume change of each polymer, based on the height and full width at half maximum profiles from the AFM morphological images. The volume expansion of the PS yarn muscle (1.7 nm of vertical change and 22 nm of horizontal change) is much larger than that of the SIS yarn muscle (0.3 nm and 11 nm change in vertical and horizontal directions) at 80 °C, normalized by their values at 25 °C. We demonstrate that their maximum rotations are consequently 29.7 deg mm-1 for the PS-infiltrated CNT yarn muscle (relatively larger rotation) and 14.4 deg mm-1 for the SIS-infiltrated CNT yarn muscle (smaller rotation) at 0.75 V m-1. These hybrid yarn muscles could be applied in resonant controllers or damping magnetoelectric sensors.Torsional behaviors of polymer-infiltrated carbon nanotube (CNT) yarn muscles have been investigated in relation to molecular architecture by using atomic force microscopy (AFM). Two polymers with different stiffnesses, polystyrene (PS) and poly(styrene-b-isoprene-b-styrene) (SIS), were uniformly infiltrated into CNT yarns for electrothermal torsional actuation. The torsional behaviors of hybrid yarn muscles are completely explained by the volume change of each polymer, based on the height and full width at half maximum profiles from the AFM morphological images. The volume expansion of the PS yarn muscle (1.7 nm of vertical change and 22 nm of horizontal change) is much larger than that of the SIS yarn muscle (0.3 nm and 11 nm change in vertical and horizontal directions) at 80 °C, normalized by their values at 25

  11. Implications of Export/Import Reporting Requirements in the United States - International Atomic Energy Agency Safeguards Additional Protocol

    SciTech Connect

    Killinger, Mark H.; Benjamin, Eugene L.; McNair, Gary W.

    2001-02-20

    The United States has signed but not ratified the US/IAEA Safeguards Additional Protocol. If ratified, the Additional Protocol will require the US to report to the IAEA certain nuclear-related exports and imports to the IAEA. This document identifies and assesses the issues associated with the US making those reports. For example, some regulatory changes appear to be necessary. The document also attempts to predict the impact on the DOE Complex by assessing the historical flow of exports and imports that would be reportable if the Additional Protocol were in force.

  12. Computational insights into the effect of carbon structures at the atomic level for non-aqueous sodium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Jiang, H. R.; Wu, M. C.; Zhou, X. L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    Carbon materials have been widely used to form air cathodes for non-aqueous sodium-oxygen (Nasbnd O2) batteries due to their large specific surface area, high conductivity and low cost. However, the effect of carbon structures at the atomic level remains poorly understood. In this work, a first-principles study is conducted to investigate how representative carbon structures, including graphite (0001) surface, point defects and fractured edge, influence the discharge and charge processes of non-aqueous Nasbnd O2 batteries. It is found that the single vacancy (SV) defect has the largest adsorption energy (5.81 eV) to NaO2 molecule among the structures studied, even larger than that of the NaO2 molecule on NaO2 crystal (2.81 eV). Such high adsorption energy is attributed to two factors: the dangling atoms in SV defects decrease the distance from NaO2 molecules, and the attachment through oxygen atoms increases the electrons transfer. The findings suggest that SV defects can act as the nucleation sites for NaO2 in the discharge process, and increasing the number of SV defects can facilitate the uniform formation of small-sized particles. The uniformly distributed discharge products lower the possibility for pore clogging, leading to an increased discharge capacity and improved cyclability for non-aqueous Nasbnd O2 batteries.

  13. Structural modifications of graphyne layers consisting of carbon atoms in the sp- and sp{sup 2}-hybridized states

    SciTech Connect

    Belenkov, E. A.; Mavrinskii, V. V.; Belenkova, T. E.; Chernov, V. M.

    2015-05-15

    A model scheme is proposed for obtaining layered compounds consisting of carbon atoms in the sp- and (vnsp){sup 2}-hybridized states. This model is used to find the possibility of existing the following seven basic structural modifications of graphyne: α-, β1-, β2-, β3-, γ1-, γ2-, and γ3-graphyne. Polymorphic modifications β3 graphyne and γ3 graphyne are described. The basic structural modifications of graphyne contain diatomic polyyne chains and consist only of carbon atoms in two different crystallographically equivalent states. Other nonbasic structural modifications of graphyne can be formed via the elongation of the carbyne chains that connect three-coordinated carbon atoms and via the formation of graphyne layers with a mixed structure consisting of basic layer fragments, such as α-β-graphyne, α-γ-graphyne, and β-γ-graphyne. The semiempirical quantum-mechanical MNDO, AM1, and PM3 methods and ab initio STO6-31G basis calculations are used to find geometrically optimized structures of the basic graphyne layers, their structural parameters, and energies of their sublimation. The energy of sublimation is found to be maximal for γ2-graphyne, which should be the most stable structural modification of graphyne.

  14. Atomic-scale wear of amorphous hydrogenated carbon during intermittent contact: a combined study using experiment, simulation, and theory.

    PubMed

    Vahdat, Vahid; Ryan, Kathleen E; Keating, Pamela L; Jiang, Yijie; Adiga, Shashishekar P; Schall, J David; Turner, Kevin T; Harrison, Judith A; Carpick, Robert W

    2014-07-22

    In this study, we explore the wear behavior of amplitude modulation atomic force microscopy (AM-AFM, an intermittent-contact AFM mode) tips coated with a common type of diamond-like carbon, amorphous hydrogenated carbon (a-C:H), when scanned against an ultra-nanocrystalline diamond (UNCD) sample both experimentally and through molecular dynamics (MD) simulations. Finite element analysis is utilized in a unique way to create a representative geometry of the tip to be simulated in MD. To conduct consistent and quantitative experiments, we apply a protocol that involves determining the tip-sample interaction geometry, calculating the tip-sample force and normal contact stress over the course of the wear test, and precisely quantifying the wear volume using high-resolution transmission electron microscopy imaging. The results reveal gradual wear of a-C:H with no sign of fracture or plastic deformation. The wear rate of a-C:H is consistent with a reaction-rate-based wear theory, which predicts an exponential dependence of the rate of atom removal on the average normal contact stress. From this, kinetic parameters governing the wear process are estimated. MD simulations of an a-C:H tip, whose radius is comparable to the tip radii used in experiments, making contact with a UNCD sample multiple times exhibit an atomic-level removal process. The atomistic wear events observed in the simulations are correlated with under-coordinated atomic species at the contacting surfaces. PMID:24922087

  15. Phosphorus-carbon bond formation by lewis Acid catalyzed/mediated addition of silylphosphines.

    PubMed

    Hayashi, Minoru; Matsuura, Yutaka; Nishimura, Yasunobu; Yamasaki, Toshikazu; Imai, Yoshito; Watanabe, Yutaka

    2007-09-28

    Triethylaluminum-catalyzed/mediated addition of a silylphosphine to aldehydes and epoxides is described. Organophosphines containing a silyloxy group at the alpha- or beta-position on the alkyl substituent are successfully prepared in good yields. PMID:17784776

  16. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions.

    PubMed

    Woolf, Dominic; Lehmann, Johannes; Fisher, Elizabeth M; Angenent, Largus T

    2014-06-01

    Coproduction of biofuels with biochar (the carbon-rich solid formed during biomass pyrolysis) can provide carbon-negative bioenergy if the biochar is sequestered in soil, where it can improve fertility and thus simultaneously address issues of food security, soil degradation, energy production, and climate change. However, increasing biochar production entails a reduction in bioenergy obtainable per unit biomass feedstock. Quantification of this trade-off for specific biochar-biofuel pathways has been hampered by lack of an accurate-yet-simple model for predicting yields, product compositions, and energy balances from biomass slow pyrolysis. An empirical model of biomass slow pyrolysis was developed and applied to several pathways for biochar coproduction with gaseous and liquid biofuels. Here, we show that biochar production reduces liquid biofuel yield by at least 21 GJ Mg(-1) C (biofuel energy sacrificed per unit mass of biochar C), with methanol synthesis giving this lowest energy penalty. For gaseous-biofuel production, the minimum energy penalty for biochar production is 33 GJ Mg(-1) C. These substitution rates correspond to a wide range of Pareto-optimal system configurations, implying considerable latitude to choose pyrolysis conditions to optimize for desired biochar properties or to modulate energy versus biochar yields in response to fluctuating price differentials for the two commodities. PMID:24787482

  17. Impacts of powdered activated carbon addition on trihalomethane formation reactivity of dissolved organic matter in membrane bioreactor effluent.

    PubMed

    Ma, Defang; Gao, Yue; Gao, Baoyu; Wang, Yan; Yue, Qinyan; Li, Qian

    2014-12-01

    Characteristics and trihalomethane (THM) formation reactivity of dissolved organic matter (DOM) in effluents from two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition (referred to as PAC/MBR and MBR, respectively) were examined to investigate the effects of PAC addition on THM formation of MBR effluent during chlorination. PAC addition increased the specific UV absorbance. Hydrophobic DOM especially hydrophobic acids in PAC/MBR effluent (50%) were more than MBR effluent (42%). DOM with molecular weight <1 kDa constituted 12% of PAC/MBR effluent DOM, which was less than that of MBR effluent (16%). Data obtained from excitation and emission matrix fluorescence spectroscopy revealed that PAC/MBR effluent DOM contained more simple aromatic protein, but had less fulvic acid-like and soluble microbial by-product-like. PAC addition reduced the formation of bromine-containing THMs during chlorination of effluents, but increased THM formation reactivity of effluent DOM. PMID:25150685

  18. Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition.

    PubMed

    Singh, Raman Jeet; Ahlawat, I P S

    2015-05-01

    Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50% substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100% RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton + peanut-wheat cropping system recorded 21% higher system productivity which ultimately helped to maintain higher net energy return (22%), energy use efficiency (12%), human energy profitability (3%), energy productivity (7%), carbon outputs (20%), carbon efficiency (17%), and 11% lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21%. With substitution of 25% RDN of cotton through FYM, share of renewable energy resources increased in the range of 21% which resulted into higher system productivity (4%), net energy return (5%), energy ratio (6%), human energy profitability (74%), energy productivity (6%), energy profitability (5%), and 5% lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13%. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat

  19. Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests

    SciTech Connect

    Nowinski, Nicole S.; Trumbore, Susan E.; Jimenez, Gloria; Fenn, Mark E.

    2009-04-01

    Nitrogen deposition rates in southern California are the highest in North America and have had substantial effects on ecosystem functioning. We document changes in the belowground C cycle near ponderosa pine trees experiencing experimental nitrogen (N) addition (50 and 150 kg N ha 1 a 1 as slow release urea since 1997) at two end member sites along a pollution gradient in the San Bernardino Mountains, California. Despite considerable differences in N deposition between the two sites, we observed parallel changes in microbial substrate use and soil enzyme activity with N addition. 14C measurements indicate that the mean age of C respired by the Oa horizon declined 10 15 years with N addition at both sites. N addition caused an increase in cellulolytic enzyme activity at the polluted site and a decrease in ligninolytic enzyme activity at the unpolluted site. Given the likely differences in lignin and cellulose ages, this could explain the difference in the age of microbial respiration with N addition. Measurements of fractionated soil organic matter did not show the same magnitude of changes in response to N addition as were observed for respired C. This lesser response was likely because the soils are mostly composed of C having turnover times of decades to centuries, and 9 years of N amendment were not enough to affect this material. Consequently, 14C of respired CO2 provided a more sensitive indicator of the effects of N addition than other methods. Results suggest that enhanced N deposition alone may not result in increased soil C storage in xeric ecosystems.

  20. Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests

    NASA Astrophysics Data System (ADS)

    Nowinski, Nicole S.; Trumbore, Susan E.; Jimenez, Gloria; Fenn, Mark E.

    2009-06-01

    Nitrogen deposition rates in southern California are the highest in North America and have had substantial effects on ecosystem functioning. We document changes in the belowground C cycle near ponderosa pine trees experiencing experimental nitrogen (N) addition (50 and 150 kg N ha-1 a-1 as slow release urea since 1997) at two end-member sites along a pollution gradient in the San Bernardino Mountains, California. Despite considerable differences in N deposition between the two sites, we observed parallel changes in microbial substrate use and soil enzyme activity with N addition. Δ14C measurements indicate that the mean age of C respired by the Oa horizon declined 10-15 years with N addition at both sites. N addition caused an increase in cellulolytic enzyme activity at the polluted site and a decrease in ligninolytic enzyme activity at the unpolluted site. Given the likely differences in lignin and cellulose ages, this could explain the difference in the age of microbial respiration with N addition. Measurements of fractionated soil organic matter did not show the same magnitude of changes in response to N addition as were observed for respired C. This lesser response was likely because the soils are mostly composed of C having turnover times of decades to centuries, and 9 years of N amendment were not enough to affect this material. Consequently, Δ14C of respired CO2 provided a more sensitive indicator of the effects of N addition than other methods. Results suggest that enhanced N deposition alone may not result in increased soil C storage in xeric ecosystems.

  1. Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe

    PubMed Central

    Wang, Yunbo; Jiang, Qi; Yang, Zhiming; Sun, Wei; Wang, Deli

    2015-01-01

    A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation. PMID:26010888

  2. Probing the role of an atomically thin SiNx interlayer on the structure of ultrathin carbon films.

    PubMed

    Dwivedi, Neeraj; Rismani-Yazdi, Ehsan; Yeo, Reuben J; Goohpattader, Partho S; Satyanarayana, Nalam; Srinivasan, Narasimhan; Druz, Boris; Tripathy, S; Bhatia, C S

    2014-01-01

    Filtered cathodic vacuum arc (FCVA) processed carbon films are being considered as a promising protective media overcoat material for future hard disk drives (HDDs). However, at ultrathin film levels, FCVA-deposited carbon films show a dramatic change in their structure in terms of loss of sp3 bonding, density, wear resistance etc., compared to their bulk counterpart. We report for the first time how an atomically thin (0.4 nm) silicon nitride (SiNx) interlayer helps in maintaining/improving the sp3 carbon bonding, enhancing interfacial strength/bonding, improving oxidation/corrosion resistance, and strengthening the tribological properties of FCVA-deposited carbon films, even at ultrathin levels (1.2 nm). We propose the role of the SiNx interlayer in preventing the catalytic activity of Co and Pt in media, leading to enhanced sp3C bonding (relative enhancement~40%). These findings are extremely important in view of the atomic level understanding of structural modification and the development of high density HDDs. PMID:24846506

  3. Probing the Role of an Atomically Thin SiNx Interlayer on the Structure of Ultrathin Carbon Films

    PubMed Central

    Dwivedi, Neeraj; Rismani-Yazdi, Ehsan; Yeo, Reuben J.; Goohpattader, Partho S.; Satyanarayana, Nalam; Srinivasan, Narasimhan; Druz, Boris; Tripathy, S.; Bhatia, C. S.

    2014-01-01

    Filtered cathodic vacuum arc (FCVA) processed carbon films are being considered as a promising protective media overcoat material for future hard disk drives (HDDs). However, at ultrathin film levels, FCVA-deposited carbon films show a dramatic change in their structure in terms of loss of sp3 bonding, density, wear resistance etc., compared to their bulk counterpart. We report for the first time how an atomically thin (0.4 nm) silicon nitride (SiNx) interlayer helps in maintaining/improving the sp3 carbon bonding, enhancing interfacial strength/bonding, improving oxidation/corrosion resistance, and strengthening the tribological properties of FCVA-deposited carbon films, even at ultrathin levels (1.2 nm). We propose the role of the SiNx interlayer in preventing the catalytic activity of Co and Pt in media, leading to enhanced sp3C bonding (relative enhancement ~40%). These findings are extremely important in view of the atomic level understanding of structural modification and the development of high density HDDs. PMID:24846506

  4. Design of a Soil Science practical exercise to understand the soil carbon sequestration after biochar addition

    NASA Astrophysics Data System (ADS)

    Gascó, Gabriel; Cely, Paola; Saa-Requejo, Antonio; Mendez, Ana; Antón, Jose Manuel; Sánchez, Elena; Moratiel, Ruben; Tarquis, Ana M.

    2014-05-01

    The adaptation of the Universities to European Higher Education Area (EHEA) involves changes in the learning system. Students must obtain specific capabilities in the different degrees or masters. For example, in the degree of Agronomy at the Universidad Politécnica de Madrid (UPM, Spain), they must command Soil science, Mathematics or English. Sometimes, There is not a good communication between teachers and it causes that students do not understand the importance of the different subjects of a career. For this reason, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this paper is to explain the followed steps to the design of the practice. Acknowledgement to Universidad Politécnica de Madrid for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012.

  5. ATOMIC-LEVEL MODELING OF CO2 DISPOSAL AS A CARBONATE MINERAL: A SYNERGETIC APPROACH TO OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    A.V.G. Chizmeshya; M.J. McKelvy; J.B. Adams

    2001-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar hydroxide mineral carbonation is a leading process candidate, which generates the stable naturally occurring mineral magnesite (MgCO{sub 3}) and water. Key to process cost and viability are the carbonation reaction rate and its degree of completion. This process, which involves simultaneous dehydroxylation and carbonation is very promising, but far from optimized. In order to optimize the dehydroxylation/carbonation process, an atomic-level understanding of the mechanisms involved is needed. In this investigation Mg(OH){sub 2} was selected as a model Mg-rich lamellar hydrocide carbonation feedstock material due to its chemical and structural simplicity. Since Mg(OH){sub 2} dehydroxylation is intimately associated with the carbonation process, its mechanisms are also of direct interest in understanding and optimizing the process. The aim of the current innovative concepts project is to develop a specialized advanced computational methodology to complement the ongoing experimental inquiry of the atomic level processes involved in CO{sub 2} mineral sequestration. The ultimate goal is to integrate the insights provided by detailed predictive simulations with the data obtained from optical microscopy, FESEM, ion beam analysis, SIMS, TGA, Raman, XRD, and C and H elemental analysis. The modeling studies are specifically designed to enhance the synergism with, and complement the analysis of, existing mineral-CO{sub 2} reaction process studies being carried out under DOE UCR Grant DE-FG2698-FT40112. Direct contact between the simulations and the experimental

  6. Effect of Additional 3d Elements M (M = Fe and Ni) on Atomic Ordered Structure in Cu-M-Pd alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseeb; Takahashi, Miwako; Bashir Ziya, Amer; Ohshima, Ken-ichi

    X-ray diffraction measurements were performed to elucidate the effect of ternary addition of Fe and Ni elements to Cu-rich Cu-Pd binary alloy system on the structure and an atomic ordering. X-ray polycrystalline diffraction patterns of the specimens quenched from 900 °C have shown that a single phase with face-centered cubic (fcc) structure is formed in all the specimens for Ni system and in specimens with Pd composition xPd (at. %) more than 10 for Fe system. After appropriate heat treatment, the Fe system a fcc single phase forms fcc-based Cu3Au-type ordered structure for xPd around 20, and body-centered-cubic based CsCl-type ordered structure xPd for around 40. Assuming that Fe atoms simply substitute for Cu atoms in the ordered structures, the atomic phase coincides well with that of Cu-Pd alloys for the Cu3Au-type structure, but there is a discrepancy for the CsCl-type structure on that it does not appear as a single phase in Cu-Fe-Pd alloys. As for Ni system, no ordered structures are formed except for the alloys with xPd more than 35, in which fcc and CsCl-type structures are found to coexist.

  7. Notable improvement of capacitive performance of highly nanoporous carbon materials simply by a redox additive electrolyte of p-nitroaniline

    NASA Astrophysics Data System (ADS)

    Zhu, Yan Qi; Zhang, Lei; Chen, Xiang Ying; Xiao, Zheng Hui; Zhang, Zhong Jie

    2015-12-01

    Highly nanoporous carbon materials have been produced by a synchronous carbonization/graphitization process, using magnesium citrate serves as the carbon source and nickel nitrate as graphitization catalyst. The carbonization temperature plays a crucial role in determining the porosity and graphitization. The lower temperature favors for the formation of larger porosity, whilst higher temperature for better crystallinity. Resultantly, a high BET surface area of 2587.13 m2 g-1 and large total pore volume of 4.64 cm3 g-1 appear, the case of C-800 sample, thereby resulting in a large specific capacitance of 305.3 F g-1 at 1 A g-1 from the contribution of electric double layer capacitances. More importantly, we demonstrate a novel redox active additive of p-nitroaniline (PNA) into the 6 mol L-1 KOH electrolyte to largely improve the capacitance by the quick self-discharge redox reaction of H+/e-. The C-800-2 sample with the PNA concentration of 2 mmol delivers largely improved capacitance of 502.1 F g-1 at 1 A g-1, which is almost 1.65 fold increase. Apparently, the present PNA is commercially available, and highly effective for elevating the specific capacitance and might be implemented for the wide supercapacitor application.

  8. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source. PMID:26783836

  9. A crossed beams study of the reaction of carbon atoms, C(3Pj), with vinyl cyanide, C2H3CN(X 1A')--investigating the formation of cyano propargyl radicals.

    PubMed

    Guo, Y; Gu, X; Zhang, F; Tang, M S; Sun, B J; H Chang, A H; Kaiser, R I

    2006-12-14

    The chemical dynamics of the reaction of ground state carbon atoms, C(3Pj), with vinyl cyanide, C2H3CN(X 1A'), were examined under single collision conditions at collision energies of 29.9 and 43.9 kJ mol(-1) using the crossed molecular beams approach. The experimental studies were combined with electronic structure calculations on the triplet C4H3N potential energy surface (H. F. Su, R. I. Kaiser, A. H. H. Chang, J. Chem. Phys., 2005, 122, 074320). Our investigations suggest that the reaction follows indirect scattering dynamics via addition of the carbon atom to the carbon-carbon double bond of the vinyl cyanide molecule yielding a cyano cyclopropylidene collision complex. The latter undergoes ring opening to form cis/trans triplet cyano allene which fragments predominantly to the 1-cyano propargyl radical via tight exit transition states; the 3-cyano propargyl isomer was inferred to be formed at least a factor of two less; also, no molecular hydrogen elimination channel was observed experimentally. These results are in agreement with the computational studies predicting solely the existence of a carbon versus hydrogen atom exchange pathway and the dominance of the 1-cyano propargyl radical product. The discovery of the cyano propargyl radical in the reaction of atomic carbon with vinyl cyanide under single collision conditions implies that this molecule can be an important reaction intermediate in combustion flames and also in extraterrestrial environments (cold molecular clouds, circumstellar envelopes of carbon stars) which could lead to the formation of cyano benzene (C6H5CN) upon reaction with a propargyl radical. PMID:17119654

  10. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule

    NASA Astrophysics Data System (ADS)

    Ornelas-Lizcano, J. C.; Guirado-López, R. A.

    2015-03-01

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small AlxOy± clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al2O3, as well as smaller Al2O2 and Al2O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged AlxOy± clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO2 in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO2 subunit. The vibrational spectra of AlxOy + CO2 provides well defined finger prints that may allow the identification of specific isomers. The AlxOy+ clusters are more reactive than the anionic species and the final Al2O+ + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on AlxOy+ clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.

  11. Lead acid battery performance and cycle life increased through addition of discrete carbon nanotubes to both electrodes

    NASA Astrophysics Data System (ADS)

    Sugumaran, Nanjan; Everill, Paul; Swogger, Steven W.; Dubey, D. P.

    2015-04-01

    Contemporary applications are changing the failure mechanisms of lead acid batteries. Sulfation at the negative electrode, acid stratification, and dendrite formation now precede positive electrode failures such as grid corrosion and active material shedding. To attenuate these failures, carbon has been explored as a negative electrode additive to increase charge acceptance, eliminate sulfation, and extend cycle life. Frequently, however, carbon incorporation decreases paste density and hinders manufacturability. Discrete carbon nanotubes (dCNT), also known as Molecular Rebar®, are lead acid battery additives which can be stably incorporated into either electrode to increase charge acceptance and cycle life with no change to paste density and without impeding the manufacturing process. Here, full-scale automotive batteries containing dCNT in the negative electrode or both negative and positive electrodes are compared to control batteries. dCNT batteries show little change to Reserve Capacity, improved Cold Cranking, increased charge acceptance, and enhanced overall system efficiency. Life cycle tests show >60% increases when dCNT are incorporated into the negative electrode (HRPSoC/SBA) and up to 500% when incorporated into both electrodes (SBA), with water loss per cycle reduced >20%. Failure modes of cycled batteries are discussed and a hypothesis of dCNT action is introduced: the dCNT/Had Overcharge Reaction Mechanism.

  12. Reactivity of atomic oxygen radical anions bound to titania and zirconia nanoparticles in the gas phase: low-temperature oxidation of carbon monoxide.

    PubMed

    Ma, Jia-Bi; Xu, Bo; Meng, Jing-Heng; Wu, Xiao-Nan; Ding, Xun-Lei; Li, Xiao-Na; He, Sheng-Gui

    2013-02-27

    Titanium and zirconium oxide cluster anions with dimensions up to nanosize are prepared by laser ablation and reacted with carbon monoxide in a fast low reactor. The cluster reactions are characterized by time-of-flight mass spectrometry and density functional theory calculations. The oxygen atom transfers from (TiO(2))(n)O(-) (n = 3-25) to CO and formations of (TiO(2))(n)(-) are observed, whereas the reactions of (ZrO(2))(n)O(-) (n = 3-25) with CO generate the CO addition products (ZrO(2))(n)OCO(-), which lose CO(2) upon the collisions (studied for n = 3-9) with a crossed helium beam. The computational study indicates that the (MO(2))(n)O(-) (M = Ti, Zr; n = 3-8) clusters are atomic radical anion (O(-)) bonded systems, and the energetics for CO oxidation by the O(-) radicals to form CO(2) is strongly dependent on the metals as well as the cluster size for the titanium system. Atomic oxygen radical anions are important reactive intermediates, while it is difficult to capture and characterize them for condensed phase systems. The reactivity pattern of the O(-)-bonded (TiO(2))(n)O(-) and (ZrO(2))(n)O(-) correlates very well with different behaviors of titania and zirconia supports in the low-temperature catalytic CO oxidation. PMID:23368886

  13. In vitro comparison of the hemocompatibility of diamond-like carbon and carbon nitride coatings with different atomic percentages of N.

    PubMed

    Zhao, Mengli; Li, Dejun; Zhang, Yiteng; Guo, Meixian; Deng, Xiangyun; Gu, Hanqing; Wan, Rongxin

    2012-04-01

    Carbon nitride (CN( x )) and diamond-like carbon (DLC) coatings were prepared by dc magnetron sputtering at room temperature. Different partial pressures of N(2) were used to synthesize CN( x ) to evaluate the relationship between the atomic percentage of nitrogen and hemocompatibility. Auger electron spectroscopy and atomic force microscopy indicated atomic percentages of N of 0.12 and 0.22 and that the CN( x ) coatings were smooth. An in vitro study of the hemocompatibility of the coatings revealed that both CN( x ) coatings had better anticoagulant properties and lower platelet adhesion than DLC. Compared with CN(0.12), the CN(0.22) coating showed longer dynamic clotting time (about 42 min), static clotting time (23.6 min) and recalcification time (45.6 s), as well as lower platelet adhesion (102 cells μm(-2)), aggregation, and activation. The presence of nitrogen in the CN( x ) coatings induced their enhanced hemocompatibility compared with DLC. PMID:22566091

  14. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability.

    PubMed

    Mombelli, D; Mapelli, C; Barella, S; Gruttadauria, A; Le Saout, G; Garcia-Diaz, E

    2014-08-30

    Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour. PMID:25113518

  15. Diamond crystallization in a CO2-rich alkaline carbonate melt with a nitrogen additive

    NASA Astrophysics Data System (ADS)

    Khokhryakov, Alexander F.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Nechaev, Denis V.

    2016-09-01

    Diamond crystallization was experimentally studied in a CO2-bearing alkaline carbonate melt with an increased content of nitrogen at pressure of 6.3 GPa and temperature of 1500 °C. The growth rate, morphology, internal structure of overgrown layers, and defect-impurity composition of newly formed diamond were investigated. The type of growth patterns on faces, internal structure, and nitrogen content were found to be controlled by both the crystallographic orientation of the growth surfaces and the structure of the original faces of diamond seed crystals. An overgrown layer has a uniform structure on the {100} plane faces of synthetic diamond and a fibrillar (fibrous) structure on the faceted surfaces of a natural diamond cube. The {111} faces have a polycentric vicinal relief with numerous twin intergrowths and micro twin lamellae. The stable form of diamond growth under experimental conditions is a curved-face hexoctahedron with small cube faces. The nitrogen impurity concentration in overgrown layers varies depending on the growth direction and surface type, from 100 to 1100 ppm.

  16. Hot isostatic pressing of silicon nitride with boron nitride, boron carbide, and carbon additions

    NASA Technical Reports Server (NTRS)

    Mieskowski, Diane M.; Sanders, William A.

    1989-01-01

    Si3N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900 and 2050 C to 98.9 percent to 99.5 percent theoretical density. Room-temperature strength data on specimens containing 2 wt pct BN and 0.5 wt pct C were comparable to data obtained for Si3N4 sintered with Y2O3, Y2O3 and Al2O3, or ZrO2. The 1370 C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. SEM fractography indicated that, as with other types of Si3N4, room-temperature strength was controlled by processing flaws. The decrease in strength at 1370 C was typical of Si3N4 having an amorphous grain-boundary phase. The primary advantage of nonoxide additions appears to be in facilitating specimen removal from the Ta cladding.

  17. Artificial stimulation of soil amine production by addition of organic carbon and nitrogen transforming enzymes

    NASA Astrophysics Data System (ADS)

    Kieloaho, Antti-Jussi; Parshintsev, Jevgeni; Riekkola, Marja-Liisa; Kulmala, Markku; Pumpanen, Jukka; Heinonsalo, Jussi

    2013-04-01

    The major part of nitrogen (N) in boreal forest soil is in organic form (Soil Organic Nitrogen, SON). One of the main pathways for amine production is the decay of SON in soil. Amino acids react with specific decarboxylase enzymes which transform them to amines. Amino acid turnover time in forest soil is relatively fast (in hours) because amino acids can be used as N and C source by plants and microbes. Therefore, amino acid production by protease enzymes might be the critical step for amine production and release from forest soil. The aim of the study was to artificially introduce enzymes responsible for protein transformation into amino acids (proteases) as well as soil organic matter (SOM) decomposition (laccase and manganese peroxidase) in order to increase SON transformation and amine synthesis. Glucose addition has been shown to induce natural soil protease activity. Bovine serum albumin (BSA) was used as control protein. Treatments were conducted both in Scots pine seedlings containing as well as non-planted microcosms. N transformations were examined, as well as amine concentration in soil. The experiment consisted of eight different treatments; two as controls concerning enzyme addition, four treatments were planted with one year old nursery grown Scots pine (Pinus sylvestris L.) seedlings and four were non-planted. The experiment lasted approximately six months and the treatments with the additions were conducted within one more month. The protease activity was discovered more commonly after the treatment with protease or glucose additions. In planted BSA-control some natural protease activity was found but not in non-planted controls. Different substrate additions did not cause any differences in total N percentage, but the presence of the seedlings diminished soil N% by approximately 20%. In addition, the same effect was clearly seen in dissolved N, NH4+ and NO3-. Plant has exploited the soluble N forms almost entirely from the system, irrespective of

  18. Biochemical Modulation by Carbon and Nitrogen Addition in Cultures of Dictyota menstrualis (Dictyotales, Phaeophyceae) to Generate Oil-based Bioproducts.

    PubMed

    Martins, Aline P; Yokoya, Nair S; Colepicolo, Pio

    2016-06-01

    Dictyota menstrualis (Hoyt) Schnetter, Hörning & Weber-Peukert (Dictyotales, Phaeophyceae) was studied for the production of oil-based bioproducts and co-products. Experiments were performed to evaluate the effect of carbon dioxide (CO2) concentration, under nitrogen (NO3 (-)) limiting and saturation conditions, on growth rate (GR), photosynthesis, as well as nitrate reductase (NR), carbonic anhydrase (CA), and Rubisco activities. In addition, the biochemical composition of D. menstrualis under these conditions was estimated. GR, protein content, and N content in D. menstrualis were higher in treatments containing NO3 (-), irrespective of CO2 addition. However, when CO2 was added to medium saturated with NO3 (-), values of maximum photosynthesis, Rubisco, and NR activity, as well as total soluble carbohydrates and lipids, were increased. CA activity did not vary under the different treatments. The fatty acid profile of D. menstrualis was characterized by a high content of polyunsaturated fatty acids, especially the omega-3 fatty acids, making it a possible candidate for nutraceutical use. In addition, this species presented high GR, photosynthetic rate, and fatty acid content, highlighting its economic importance and the possibility of different biotechnological applications. PMID:26945758

  19. Carbon nanotubes randomly decorated with gold clusters: from nano2hybrid atomic structures to gas sensing prototypes

    NASA Astrophysics Data System (ADS)

    Charlier, J.-C.; Arnaud, L.; Avilov, I. V.; Delgado, M.; Demoisson, F.; Espinosa, E. H.; Ewels, C. P.; Felten, A.; Guillot, J.; Ionescu, R.; Leghrib, R.; Llobet, E.; Mansour, A.; Migeon, H.-N.; Pireaux, J.-J.; Reniers, F.; Suarez-Martinez, I.; Watson, G. E.; Zanolli, Z.

    2009-09-01

    Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano2hybrids is quantified for the detection of toxic species like NO2, CO, C2H5OH and C2H4.

  20. Highly Aligned Carbon Fiber in Polymer Composite Structures via Additive Manufacturing

    DOE PAGESBeta

    Tekinalp, Halil L; Kunc, Vlastimil; Velez-Garcia, Gregorio M; Duty, Chad E; Love, Lonnie J; Naskar, Amit K; Blue, Craig A; Ozcan, Soydan

    2014-01-01

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. This phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  1. Computational design of organometallic oligomers featuring 1,3-metal-carbon bonding and planar tetracoordinate carbon atoms.

    PubMed

    Zhao, Xue-Feng; Yuan, Cai-Xia; Wang, Xiang; Li, Jia-Jia; Wu, Yan-Bo; Wang, Xiaotai

    2016-01-15

    Density functional theory computations (B3LYP) have been used to explore the chemistry of titanium-aromatic carbon "edge complexes" with 1,3-metal-carbon (1,3-MC) bonding between Ti and planar tetracoordinate Cβ . The titanium-coordinated, end-capping chlorides are replaced with OH or SH groups to afford two series of difunctional monomers that can undergo condensation to form oxide- and sulfide-bridged oligomers. The sulfide-linked oligomers have less molecular strain and are more exergonic than the corresponding oxide-linked oligomers. The HOMO-LUMO gap of the oligomers varies with their composition and decreases with growing oligomer chain. This theoretical study is intended to enrich 1,3-MC bonding and planar tetracoordinate carbon chemistry and provide interesting ideas to experimentalists. Organometallic complexes with the TiE2 (E = OH and SH) decoration on the edge of aromatic hydrocarbons have been computationally designed, which feature 1,3-metal-carbon (1,3-MC) bonding between titanium and planar tetracoordinate β-carbon. Condensation of these difunctional monomers by eliminating small molecules (H2O and H2S) produce chain-like oligomers. The HOMO-LUMO gaps of the oligomers decreases with growing oligomer chain, a trend that suggests possible semiconductor properties for oligomers with longer chains. PMID:26399226

  2. Enantioselective Synthesis of Quaternary Carbon Stereocenters: Addition of 3-Substituted Oxindoles to Vinyl Sulfone Catalyzed by Pentanidiums.

    PubMed

    Zong, Lili; Du, Shubo; Chin, Kek Foo; Wang, Chao; Tan, Choon-Hong

    2015-08-01

    A pentanidium-catalyzed highly enantioselective conjugate addition of 3-alkyloxindoles to phenyl vinyl sulfone has been demonstrated. This approach allows the construction of 3,3-dialkyl-substituted oxindole frameworks with high yield and excellent enantioselectivity (up to 99%) under simple phase-transfer conditions. A variety of oxindoles bearing all-carbon quaternary stereogenic centers were obtained in the presence of 0.25 mol% pentanidium. Meanwhile, practicality was illustrated by a gram-scale asymmetric synthesis of two 3,3-dialkyl-substituted oxindoles. The resulting adduct can be smoothly transformed to the natural product analogue in a short synthetic route. PMID:26179829

  3. Use of pyrolyzed carbon black as an additive (part 3. Air-cooled furnace slag). Final report

    SciTech Connect

    Lee, K.H.; Lovell, C.W.; Salgado, R.

    1996-11-20

    Scrap tires, generated at the rate of over 242 million each year in the United States, are recognized as one of the most significant environmental problems. Most of these scrap tires have been disposed of in landfills, stockpiles, and illegal dumps (EPA 1991). There is a need to find more useful, environmentally friendly applications for these tires. Extensive researches have been conducted in the past years on the utilization of the scrap tires. The use of scrap tires for asphalt pavement, which is complicated by the complex behavior of asphalt, has received major attention. This research aims to describe the performance of mixtures of asphalt using pyrolyzed carbon black as an additive.

  4. A high precision study of the electrolyte additives vinylene carbonate, vinyl ethylene carbonate and lithium bis(oxalate)borate in LiCoO2/graphite pouch cells

    NASA Astrophysics Data System (ADS)

    Wang, David Yaohui; Sinha, N. N.; Burns, J. C.; Petibon, R.; Dahn, J. R.

    2014-12-01

    The effects of three well-known electrolyte additives, used singly or in combination, on LiCoO2/graphite pouch cells has been investigated using the ultra high precision charger (UHPC) at Dalhousie University, electrochemical impedance spectroscopy (EIS) and long term cycling Vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and lithium bis(oxalato) borate (LiBOB) were chosen for study. The results show that combinations of electrolyte additives that act synergistically can be more effective than a single electrolyte additive. However, simply using 2% VC yielded cells very competitive in coulombic efficiency (CE), charge endpoint capacity slippage and charge transfer resistance (Rct). For cells with 1% LiBOB and VC (1, 2, 4 or 6%), adding VC above 2% does not increase the CE, but increases the electrode charge transfer impedances. Rct for cells containing 1% LiBOB and VEC (0.5, 1 or 4%) decreased after long term cycling (1800 h), compared to that tested after the UHPC cycling (500 h) indicating that VEC might be useful for the design of power cells. However, the opposite behaviour (increasing Rct with cycle number) was observed for the control cells or cells containing LiBOB and/or VC.

  5. Effects of silicon, carbon and molybdenum additions on IASCC of neutron irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Nakano, J.; Miwa, Y.; Kohya, T.; Tsukada, T.

    2004-08-01

    To study the effects of minor elements on irradiation assisted stress corrosion cracking (IASCC), high purity type 304 and 316 stainless steels (SSs) were fabricated and minor elements, Si or C were added. After neutron irradiation to 3.5 × 10 25 n/m 2 ( E>1 MeV), slow strain rate tests (SSRTs) of irradiated specimens were conducted in oxygenated high purity water at 561 K. Specimen fractured surfaces were examined using a scanning electron microscope (SEM) after the SSRTs. The fraction of intergranular stress corrosion cracking (IGSCC) on the fractured surface after the SSRTs increased with neutron fluence. In high purity SS with added C, the fraction of IGSCC was the smallest in the all SSs, although irradiation hardening level was the largest of all the SSs. Addition of C suppressed the susceptibility to IGSCC.

  6. Multielement determination of heavy metals in water samples by continuous powder introduction microwave-induced plasma atomic emission spectrometry after preconcentration on activated carbon

    NASA Astrophysics Data System (ADS)

    Jankowski, Krzysztof; Yao, Jun; Kasiura, Krzysztof; Jackowska, Adrianna; Sieradzka, Anna

    2005-03-01

    A novel continuous powder introduction microwave-induced plasma atomic emission spectrometry method (CPI-MIP-AES) has been developed for trace determination of metals in ground and tap water samples after preconcentration on activated carbon. The experimental setup consisted of integrated rectangular cavity TE 101 and vertically positioned plasma torch. The technical arrangement of the sample introduction system has been designed based on the fluidized bed concept. The satisfactory signal stability required for sequential analysis was attained owing to the vertical plasma configuration, as well as the plasma gas flow rate compatibility with sample introduction flow rate. The elements of interest (Cd, Cu, Cr, Fe, Mn, Pb, Zn) were preconcentrated in a batch procedure at pH 8-8.5 after addition of activated carbon and then, after filtering and drying of the activated carbon suspension, introduced to the MIP by the CPI system. An enrichment factor of about 1000-fold for a sample volume of 1 l was obtained. The detection limit values for the proposed method were 17-250 ng l -1. The proposed method was validated by analyzing the certified reference materials: SRW "Warta" Synthetic River Water and BCR CRM 399 major elements in freshwater. The method was successfully applied to the determination of the heavy metals in tap water samples.

  7. Solid sampling determination of lithium and sodium additives in microsamples of yttrium oxyorthosilicate by high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Laczai, Nikoletta; Kovács, László; Péter, Ágnes; Bencs, László

    2016-03-01

    Solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS-HR-CS-GFAAS) methods were developed and studied for the fast and sensitive quantitation of Li and Na additives in microsamples of cerium-doped yttrium oxyorthosilicate (Y2SiO5:Ce) scintillator materials. The methods were optimized for solid samples by studying a set of GFAAS conditions (i.e., the sample mass, sensitivity of the analytical lines, and graphite furnace heating programs). Powdered samples in the mass range of 0.099-0.422 mg were dispensed onto graphite sample insertion boats, weighed and analyzed. Pyrolysis and atomization temperatures were optimized by the use of single-element standard solutions of Li and Na (acidified with 0.144 mol/L HNO3) at the Li I 610.353 nm and Na I 285.3013 nm analytical lines. For calibration purposes, the method of standard addition with Li and Na solutions was applied. The correlation coefficients (R values) of the calibration graphs were not worse than 0.9678. The limit of detection for oxyorthosilicate samples was 20 μg/g and 80 μg/g for Li and Na, respectively. The alkaline content of the solid samples were found to be in the range of 0.89 and 8.4 mg/g, respectively. The accuracy of the results was verified by means of analyzing certified reference samples, using methods of standard (solution) addition calibration.

  8. Understanding drivers of the export of dissolved organic carbon from a German headwater catchment using Generalised Additive Models

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Musolff, Andreas; Tittel, Jörg

    2016-04-01

    In the literature, several causes of recently increasing concentrations of dissolved organic carbon (DOC) in headwaters across eastern North America and northern and central Europe have been debated. One likely driver of the widespread increase of DOC concentrations since the early 1990s are decreasing depositions of acid rain resulting in an increased solubility of organic carbon compounds including humic acids. Here, we tested the hypothesis if the reduced availability of nitrate stimulated the microbial reduction of ferric iron soil minerals and the mobilisation of DOC. Forested catchments are relatively unaffected by agricultural and urban nitrate inputs. In these catchments, decreasing depositions often resulted in a reduced availability of nitrate, which are preferred electron acceptors in microbial decomposition processes. As ferric iron minerals act as efficient sorbents of organic compounds in soils its reduction may cause a release of humic substances and hence an export of DOC. To test this hypothesis, time series of DOC, dissolved iron and nitrate from a forested headwater catchment in Germany were examined using Generalised Additive Models. We found that rising DOC concentrations most likely resulted from a reductive dissolution of iron(III) minerals in soils and the associated mobilisation of adsorbed organic carbon. Phosphate, which can trigger undesired algal growth and is also known to be adsorbed by particulate iron(III), was released as well.

  9. Entanglement, quantum phase transition and fixed-point bifurcation in the N-atom Jaynes Cummings model with an additional symmetry breaking term

    NASA Astrophysics Data System (ADS)

    Chagas, E. A.; Furuya, K.

    2008-08-01

    In the present work we analyze the quantum phase transition (QPT) in the N-atom Jaynes-Cummings model (NJCM) with an additional symmetry breaking interaction term in the Hamiltonian. We show that depending on the type of symmetry breaking term added the transition order can change or not and also the fixed point associated to the classical analogue of the Hamiltonian can bifurcate or not. We present two examples of symmetry broken Hamiltonians and discuss based on them, the interconnection between the transition order, appearance of bifurcation and the behavior of the entanglement.

  10. A FP-LAPW Study of Atomic Carbon, Nitrogen, and Oxygen Chemisorption on the (100) Surface of δ-Pu

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Ray, Asok

    2006-10-01

    Fully relativistic full potential density functional calculations have been performed to investigate atomic carbon, nitrogen, and oxygen chemisorption on the (100) surface of δ-Pu using the all-electron augmented plane waves plus local basis code WIEN2k. The surface was modeled by a three-layer periodic slab with two atoms per surface unit cell. The center adsorption site is found to be the most preferred site with chemisorption energies of 7.964 eV, 7.665 eV, and 8.335 eV for the C, N, and O adatoms, respectively. The corresponding optimized distances of the adatoms from the surface are found to be 0.26 å, 0.35 å, and 0.48 å. The work functions and the net magnet moments respectively increased and decreased in all cases compared with the bare δ-Pu (100) surface. Analysis of partial charges inside the atomic spheres, charge density distributions, and the local density of states have been performed to investigate the nature of the interaction between the surface Pu atoms and the adatoms.

  11. Microstructure and mechanical behavior of iron-40 aluminum containing carbon and boron additions

    NASA Astrophysics Data System (ADS)

    Pang, Lixin

    2000-10-01

    In this thesis, the effect of second phase particles on the microstructure and mechanical behavior of cast and extruded Fe-40 at.%Al-0.6 at.%C and Fe-40 at.%Al-0.5 at.%B-0.7 at.%C alloys was studied. A variety of heat treatments was performed to study changes in microstructure and their effect on the mechanical properties (tensile tests and Charpy impact tests at different strain rates and temperatures). In the as-extruded condition, the microstructure of Fe-40Al-0.6C consists of a B2 matrix, Fe3AlCO0.5 precipitates, and graphite; the microstructure of the Fe-40A1-0.7C-0.5B is further complicated by the presence of Fe2B precipitates, a metastable nu phase and a planar defect. The stability of these phases and defects was studied in detail. The nu precipitate was found to be metastable, and its formation is cooling-rate dependent. The planar defects lie on the {001} planes of the matrix, with a displacement vector 1/2<001>, which is parallel to the plane of the defect. In addition, there is an aluminum layer missing on the fault plane; these planar defects are thought to form as a consequence of the dissociation of <001> dislocations. The addition of C and B was shown to be beneficial to the ductility and impact toughness of the Fe-40Al alloy. This improvement is attributed to hydrogen trapping by carbides and borides in the FeAl matrix, thereby delaying environmental embrittlement kinetics. The strain rate versus ductility curves for the two alloys show different characteristics in the slow strain rate regime--whereas the ductility of the FeAlBC alloy remains at a constant level of ˜3.5%, the curve for the FeAlC alloy shows first, a decrease with strain rate and then a gradual increase in elongation.

  12. The response of soil organic matter decomposition and carbon cycling to temperature increase and nitrogen addition

    NASA Astrophysics Data System (ADS)

    Choi, I.; Kang, M.; Choi, J.

    2012-12-01

    Global warming caused by greenhouse effects has raised the worldwide air temperature by 1.4~5.8°C from the pre-industrial level. It has been known that the enhanced air temperature leads to increase the rate of soil organic matter decomposition. The enhanced soil organic matter decomposition could increase the emission of GHG (Green House Gas-mostly CO2, CH4) from the terrestrial ecosystem. GHG emission from the decomposition of soil organic matter can be affected by N deposition. N deposition of Asia has significantly grown from 1000mg N m2yr-1 to 2000mg N m2yr-1during the period of 1990s. It is expected that large area of South and East Asia will receive as large as 5000mg N m2yr-1of nitrogen in the future. Therefore, it is interesting to investigate the effects of global change factors, such as elevated temperature and N deposition on GHG emission from the terrestrial ecosystem. Growth chamber experiments were conducted under the enhanced air temperature and N addition (controlled at 10°C(30°C), 20°C(40°C) from ambient air temperature 18°C/23°C(day/night)) and GHG(CH4,CO2)was measured using gas chromatograph. Since combined changes in temperature and N deposition are sensitive to litter quantity and quality, especially C:N ratio of organic material, we select three sites with different C:N ratio (rice paddy, forest, wetland) in the southern part of Han river in Korea. Our results show that, for the case of rice paddy and forest, CO2 flux at 30°C was higher than at 40°C. However, wetland soil produces higher CO2 flux at 40°C than at 30°C. While CH4 flux was not detected at 30°C for all of three soils, only wetland soil produced CH4 flux at 40°C. Every flux under the condition of N addition was higher than that of N limitation. The GHG fluxes clearly related to the temperature, N concentration difference and soil types. Long term laboratory experiments are needed in three different soil types to determine how different soil type affects GHG by

  13. Successful implementation of biochar carbon sequestration in European soils requires additional benefits and close collaboration with the bioenergy sector

    NASA Astrophysics Data System (ADS)

    Hauggaard-Nielsen, Henrik; Müller-Stöver, Dorette; Bruun, Esben W.; Petersen, Carsten T.

    2014-05-01

    Biochar soil application has been proposed as a measure to mitigate climate change and on the same time improve soil fertility by increased soil carbon sequestration. However, while on tropical soils the beneficial effects of biochar application on crop growth often become immediately apparent, it has been shown to be more difficult to demonstrate these effects on the more fertile soils in temperate regions. Therefore and because of the lack of carbon credits for farmers, it is necessary to link biochar application to additional benefits, both related to agricultural as well as to bioenergy production. Thermal gasification of biomass is an efficient (95% energy efficiency) and flexible way (able to cope with many different and otherwise difficult-to-handle biomass fuels) to generate bioenergy, while producing a valuable by-product - gasification biochar, containing recalcitrant carbon and essential crop nutrients. The use of the residual char product in agricultural soils will add value to the technology as well as result in additional soil benefits such as providing plant nutrients and improving soil water-holding capacity while reducing leaching risks. From a soil column (30 x 130 cm) experiment with gasification straw biochar amendment to coarse sandy subsoil increased root density of barley at critical depths in the soil profile reducing the mechanical resistance was shown, increasing yields, and the soil's capacity to store plant available water. Incorporation of residuals from a bioenergy technology like gasification show great potentials to reduce subsoil constraints increasing yield potentials on poor soils. Another advantage currently not appropriately utilized is recovery of phosphorus (P). In a recent pot experiments char products originating from low-temperature gasification of various biofuels were evaluated for their suitability as P fertilizers. Wheat straw gasification biochar generally had a low P content but a high P plant availability. To improve

  14. Three-dimensional bicomponent supramolecular nanoporous self-assembly on a hybrid all-carbon atomically flat and transparent platform.

    PubMed

    Li, Juan; Wieghold, Sarah; Öner, Murat Anil; Simon, Patrick; Hauf, Moritz V; Margapoti, Emanuela; Garrido, Jose A; Esch, Friedrich; Palma, Carlos-Andres; Barth, Johannes V

    2014-08-13

    Molecular self-assembly is a versatile nanofabrication technique with atomic precision en route to molecule-based electronic components and devices. Here, we demonstrate a three-dimensional, bicomponent supramolecular network architecture on an all-carbon sp(2)-sp(3) transparent platform. The substrate consists of hydrogenated diamond decorated with a monolayer graphene sheet. The pertaining bilayer assembly of a melamine-naphthalenetetracarboxylic diimide supramolecular network exhibiting a nanoporous honeycomb structure is explored via scanning tunneling microscopy initially at the solution-highly oriented pyrolytic graphite interface. On both graphene-terminated copper and an atomically flat graphene/diamond hybrid substrate, an assembly protocol is demonstrated yielding similar supramolecular networks with long-range order. Our results suggest that hybrid platforms, (supramolecular) chemistry and thermodynamic growth protocols can be merged for in situ molecular device fabrication. PMID:25115337

  15. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - A critical review.

    PubMed

    Skouteris, George; Saroj, Devendra; Melidis, Paraschos; Hai, Faisal I; Ouki, Sabèha

    2015-06-01

    This review concentrates on the effect of activated carbon (AC) addition to membrane bioreactors (MBRs) treating wastewaters. Use of AC-assisted MBRs combines adsorption, biodegradation and membrane filtration. This can lead to advanced removal of recalcitrant pollutants and mitigation of membrane fouling. The relative contribution of adsorption and biodegradation to overall removal achieved by an AC-assisted MBR process can vary, and "biological AC" may not fully develop due to competition of target pollutants with bulk organics in wastewater. Thus periodic replenishment of spent AC is necessary. Sludge retention time (SRT) governs the frequency of spent AC withdrawal and addition of fresh AC, and is an important parameter that significantly influences the performance of AC-assisted MBRs. Of utmost importance is AC dosage because AC overdose may aggravate membrane fouling, increase sludge viscosity, impair mass transfer and reduce sludge dewaterability. PMID:25801795

  16. Effects of Silica Nanoparticle Supported Ionic Liquid as Additive on Thermal Reversibility of Human Carbonic Anhydrase II

    PubMed Central

    Fallahbagheri, Azadeh; Saboury, Ali Akbar; Ma'mani, Leila; Taghizadeh, Mohammad; Khodarahmi, Reza; Ranjbar, Samira; Bohlooli, Mousa; Shafiee, Abbas; Foroumadi, Alireza; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2013-01-01

    Silica nanoparticle supported imidazolium ionic liquid [SNImIL] was synthesized and utilized as a biocompatible additive for studying the thermal reversibility of human carbonic anhydrase II (HCA II). For this purpose, we prepared additive by modification of nanoparticles through the grafting of ionic liquids on the surface of nanoparticles (SNImIL). The SNImIL were fully characterized by Fourier Transform Infrared spectroscopy, scanning electron microscopy and thermo gravimetric analysis. The characterization of HCA II was investigated by various techniques including UV–Vis and ANS fluorescence spectrophotometry, differential scanning calorimetry, and docking study. SNImIL induced disaggregation, enhanced protein stability and increased thermal reversibility of HCA II by up to 42% at pH 7.75. PMID:22829053

  17. First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2-10)

    NASA Astrophysics Data System (ADS)

    Afshar, M.; Hoseini, S. S.; Sargolzaei, M.

    2016-07-01

    In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (C n X; X = Al, Si; n = 2-10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO-LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that C n Si clusters have more stability compared to C n Al clusters. In addition, our magnetic calculations were shown that the C n Al isomers are magnetic objects whereas C n Si clusters are nonmagnetic objects.

  18. A SnO2-samarium doped ceria additional anode layer in a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Baolong; Zhao, Yicheng; Li, Yongdan

    2016-02-01

    The role of a SnO2-samarium doped ceria (SDC) additional anode layer in a direct carbon fuel cell (DCFC) with SDC-(Li0.67Na0.33)2CO3 composite electrolyte and lithiated NiO-SDC-(Li0.67Na0.33)2CO3 composite cathode is investigated and compared with a NiO-SDC extra anode layer. Catalytic grown carbon fiber mixed with (Li0.67Na0.33)2CO3 is used as a fuel. At 750 °C, the maximum power outputs of 192 and 143 mW cm-2 are obtained by the cells with SnO2-SDC and NiO-SDC layers, respectively. In the SnO2-SDC layer, the reduction of SnO2 and the oxidation of Sn happen simultaneously during the cell operation, and the Sn/SnO2 redox cycle provides an additional route for fuel conversion. The formation of an insulating dense interlayer between the anode and electrolyte layers, which usually happens in DCFCs with metal anodes, is avoided in the cell with the SnO2-SDC layer, and the stability of the cell is improved consequently.

  19. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  20. Atomic force microscopy and electrochemical investigation on the corrosion behavior of carbon steel passivated by molybdate and chromate.

    PubMed

    Chen, Zhenyu; Zhang, Xiulan; Huang, Ling; Guo, Xingpeng

    2013-02-01

    The effects of CrO(4)(2-) and MoO(4)(2-) ions on the corrosion behavior of carbon steel in 0.5 M NaCl solution have been studied using electrochemical measurements and atomic force microscopy. The results suggest that both ions have good inhibition effects on the general and pitting corrosion of carbon steel. At the same concentration, the inhibition efficiency of CrO(4)(2-) is higher than that of MoO(4)(2-). The passive film formed by CrO(4)(2-) is also much harder than that formed by MoO(4)(2-). The passive films formed by both ions are nonconductive. PMID:23180386

  1. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions

    PubMed Central

    Wang, Q.; Liu, C. T.; Yang, Y.; Liu, J. B.; Dong, Y. D.; Lu, J.

    2014-01-01

    It is known that the glass forming-ability (GFA) of bulk metallic glasses (BMGs) can be greatly enhanced via minor element additions. However, direct evidence has been lacking to reveal its structural origin despite different theories hitherto proposed. Through the high-resolution transmission-electron-microscopy (HRTEM) analysis, here we show that the content of local crystal-like orders increases significantly in a Cu-Zr-Al BMG after a 2-at% Y addition. Contrasting the previous studies, our current results indicate that the formation of crystal-like order at the atomic scale plays an important role in enhancing the GFA of the Cu-Zr-Al base BMG. PMID:24721927

  2. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making.

    PubMed

    Zhu, Xianqing; Li, Xian; Xiao, Li; Zhang, Xiaoyong; Tong, Shan; Wu, Chao; Ashida, Ryuichi; Liu, Wenqiang; Miura, Kouichi; Yao, Hong

    2016-05-01

    In this work, two extracts (Soluble and Deposit) were produced by degradative solvent extraction of biomass wastes from 250 to 350°C. The feasibilities of using Soluble and Deposit as additives for coke-making were investigated for the first time. The Soluble and Deposit, having significantly higher carbon content, lower oxygen content and extremely lower ash content than raw biomasses. All Solubles and most of Deposits can melt completely at the temperature ranged from 80 to 120°C and 140 to 180°C, respectively. The additions of Soluble or Deposit into the coke-making coal significantly improved their thermoplastic properties with as high as 9°C increase of the plastic range. Furthermore, the addition of Deposit or Soluble also markedly enhanced the coke quality through increasing coke strength after reaction (CSR) and reducing coke reactivity index (CRI). Therefore, the Soluble and Deposit were proved to be good additives for coke-making. PMID:26871958

  3. Improving the performance of an aerobic membrane bioreactor (MBR) treating pharmaceutical wastewater with powdered activated carbon (PAC) addition.

    PubMed

    Kaya, Yasemin; Bacaksiz, A Murat; Golebatmaz, Ugur; Vergili, Ilda; Gönder, Z Beril; Yilmaz, Gulsum

    2016-04-01

    In this study, the effects of organic loading rate (OLR) and the addition of powdered activated carbon (PAC) on the performance and membrane fouling of MBR were conducted to treat real pharmaceutical process wastewater. Over 145 days of operation, the MBR system was operated at OLRs ranging from 1 to 2 kg COD m(-3) day(-1) without sludge wasting. The addition of PAC provided an improvement in the flux, despite an increase in the OLR:PAC ratio. The results demonstrated that the hybrid PAC-MBR system maintained a reduced amount of membrane fouling and steadily increased the removal performance of etodolac. PAC addition reduced the deposition of extracellular polymeric substance and organic matter on the membrane surface and resulted an increase in COD removal even at higher OLRs with low PAC addition. Membrane fouling mechanisms were investigated using combined adsorption fouling models. Modified fouling index values and normalized mass transfer coefficient values indicated that predominant fouling mechanism was cake adsorption. PMID:26846538

  4. Operando atomic structure and active sites of TiO2(110)-supported gold nanoparticles during carbon monoxide oxidation.

    PubMed

    Saint-Lager, Marie-Claire; Laoufi, Issam; Bailly, Aude

    2013-01-01

    It is well known that gold nanoparticles supported on TiO2 act as a catalyst for CO oxidation, even below room temperature. Despite extensive studies, the origin of this catalytic activity remains under debate. Indeed, when the particle size decreases, many changes may occur; thus modifying the nanoparticles' electronic properties and consequently their catalytic performances. Thanks to a state-of-the-art home-developed setup, model catalysts can be prepared in ultra-high vacuum and their morphology then studied in operando conditions by Grazing Incidence Small Angle X-ray Scattering, as well as their atomic structure by Grazing Incidence X-ray Diffraction as a function of their catalytic activity. We previously reported on the existence of a catalytic activity maximum observed for three-dimensional gold nanoparticles with a diameter of 2-3 nm and a height of 6-7 atomic planes. In the present work we correlate this size dependence of the catalytic activity to the nanoparticles' atomic structure. We show that even when their size decreases below the optimum diameter, the gold nanoparticles keep the face-centered cubic structure characteristic of bulk gold. Nevertheless, for these smallest nanoparticles, the lattice parameter presents anisotropic strains with a larger contraction in the direction perpendicular to the surface. Moreover a careful analysis of the atomic-scale morphology around the catalytic activity maximum tends to evidence the role of sites with a specific geometry at the interface between the nanoparticles and the substrate. This argues for models where atoms at the interface periphery act as catalytically active sites for carbon monoxide oxidation. PMID:24015583

  5. Quenching and partitioning response of carbon-manganese-silicon sheet steels containing nickel, molybdenum, aluminum and copper additions

    NASA Astrophysics Data System (ADS)

    Kahkonen, Joonas

    In order to produce passenger vehicles with improved fuel economy and increased passenger safety, car manufacturers are in need of steels with enhanced strength levels and good formability. Recently, promising combinations of strength and ductility have been reported for several, so-called third generation advanced high-strength steels (AHSS) and quenching and partitioning (Q&P) steels are increasingly being recognized as a promising third generation AHSS candidate. Early Q research used conventional TRIP steel chemistries and richer alloying strategies have been explored in more recent studies. However, systematic investigations of the effects of alloying elements on tensile properties and retained austenite fractions of Q&P steels are sparse. The objective of the present research was to investigate the alloying effects of carbon, manganese, molybdenum, aluminum, copper and nickel on tensile properties and microstructural evolution of Q&P heat treated sheet steels. Seven alloys were investigated with 0.3C-1.5Mn-1.5Si (wt pct) and 0.4C-1.5Mn-1.5Si alloys used to study carbon effects, a 0.3C-5Mn-1.6Si alloy to study manganese effects, 0.3C-3Mn-1.5Si-0.25Mo and 0.3C-3Mn-1.5Si-0.25Mo-0.85Al alloys to study molybdenum and aluminum effects and 0.2C-1.5Mn-1.3Si-1.5Cu and 0.2C-1.5Mn-1.3Si-1.5Cu-1.5Ni alloys to study copper and nickel effects. Increasing alloy carbon content was observed to mainly increase the ultimate tensile strength (UTS) up to 1865 MPa without significantly affecting total elongation (TE) levels. Increasing alloy carbon content also increased the resulting retained austenite (RA) fractions up to 22 vol pct. Measured maximum RA fractions were significantly lower than the predicted maximum RA levels in the 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys, likely resulting from transition carbide formation. Increasing alloy manganese content increased UTS, TE and RA levels, and decreased yield strength (YS) and austenite carbon content (Cgamma) levels

  6. The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training

    PubMed Central

    Smolka, Lukasz; Borkowski, Jacek; Zaton, Marek

    2014-01-01

    The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training. The primary outcome measures were respiratory exchange ratio (RER) and carbon dioxide production (VCO2). Two groups of young healthy males: Experimental (Exp, n = 15) and Control (Con, n = 15), participated in this study. The training consisted of 12 sessions, performed twice a week for 6 weeks. A single training session consisted of continuous, constant-rate exercise on a cycle ergometer at 60% of VO2max which was maintained for 30 minutes. Subjects in Exp group were breathing through additional respiratory dead space (1200ml), while subjects in Con group were breathing without additional dead space. Pre-test and two post-training incremental exercise tests were performed for the detection of gas exchange variables. In all training sessions, pCO2 was higher and blood pH was lower in the Exp group (p < 0.001) ensuring respiratory acidosis. A 12-session training program resulted in significant increase in performance time in both groups (from 17”29 ± 1”31 to 18”47 ± 1”37 in Exp; p=0.02 and from 17”20 ± 1”18 to 18”45 ± 1”44 in Con; p = 0.02), but has not revealed a significant difference in RER and VCO2 in both post-training tests, performed at rest and during submaximal workload. We interpret the lack of difference in post-training values of RER and VCO2 between groups as an absence of inhibition in glycolysis and glycogenolysis during exercise with additional dead space. Key Points The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training on respiratory exchange ratio and carbon dioxide production. In all training sessions, respiratory acidosis was gained by experimental group only. No significant difference in RER and VCO2 between experimental and control group due to the trainings. The lack of

  7. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially ‘clean’ strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2•- radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO-) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  8. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.

    PubMed

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2(•-) radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO(-)) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  9. Increasing addition of autochthonous to allochthonous carbon in nutrient-rich aquatic systems stimulates carbon consumption but does not alter bacterial community composition

    NASA Astrophysics Data System (ADS)

    Attermeyer, K.; Hornick, T.; Kayler, Z. E.; Bahr, A.; Zwirnmann, E.; Grossart, H.-P.; Premke, K.

    2013-08-01

    Dissolved organic carbon (DOC) concentrations - mainly of terrestrial origin - are increasing worldwide in inland waters. The biodegradability of the DOC varies depending on quantity and chemical quality. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. It is therefore crucial to understand the processes controlling the bacterial turnover of additional allochthonous and autochthonous DOC in aquatic systems. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (algae lysate). We then determined bacterial carbon consumption, activities, and community composition together with the carbon flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and fractions of low and high molecular weight substances (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. In parallel to these differences in chemical composition, we observed a higher availability of allochthonous C as evidenced by increased DOC consumption and bacterial growth efficiencies (BGE) when solely allochthonous C was provided. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption from 52 to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substances (HS) fraction and an increase in bacterial biomass. Stable C isotope analyses of phospholipid fatty acids (PLFA) and respired dissolved inorganic carbon (DIC) supported a preferential assimilation of autochthonous C and respiration of the

  10. Effects of substrate addition on soil respiratory carbon release under long-term warming and clipping in a tallgrass prairie.

    PubMed

    Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong

    2014-01-01

    Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change. PMID:25490701

  11. Effects of Substrate Addition on Soil Respiratory Carbon Release Under Long-Term Warming and Clipping in a Tallgrass Prairie

    PubMed Central

    Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong

    2014-01-01

    Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change. PMID:25490701

  12. Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe

    NASA Astrophysics Data System (ADS)

    Ma, L.; Guo, C.; Xin, X.; Yuan, S.; Wang, R.

    2013-11-01

    Soil carbon (C) and nitrogen (N) cycling are sensitive to changes in environmental factors and play critical roles in the responses of terrestrial ecosystems to natural and anthropogenic perturbations. This study was conducted to quantify the effects of belowground particulate litter (BPL) addition, increased precipitation and their interactions on soil C and N mineralization in two adjacent sites where belowground photosynthate allocation was manipulated through vegetation clipping in a temperate steppe of northeastern China from 2010 to 2011. The results show that BPL addition significantly increase soil C mineralization rate (CMR) and net N mineralization rate (NMR). Although increased precipitation-induced enhancement of soil CMR essentially ceased after the first year, stimulation of soil NMR and net nitrification rate continued into the second year. Clipping only marginally decreased soil CMR and NMR during the two years. There were significant synergistic interactions between BPL addition (and increased precipitation) and clipping on soil CMR and NMR, likely to reflect shifts in soil microbial community structure and a decrease in arbuscular mycorrhizal fungi biomass due to the reduction of belowground photosynthate allocation. These results highlight the importance of plants in mediating the responses of soil C and N mineralization to potentially increased BPL and precipitation by controlling belowground photosynthate allocation in the temperate steppe.

  13. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. PMID:24980029

  14. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    DOE PAGESBeta

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; Meng, Ying Shirley; Stevenson, Keith J.; Alvarado, Judith

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less

  15. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    SciTech Connect

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; Meng, Ying Shirley; Stevenson, Keith J.; Alvarado, Judith

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.

  16. Understanding drivers of the export of dissolved organic carbon from headwater catchments in Germany using Generalised Additive Models

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Tittel, Jörg; Musolff, Andreas

    2015-04-01

    In the literature, several causes of recently increasing concentrations of dissolved organic carbon (DOC) in headwaters across eastern North America and northern and central Europe have been debated. One likely driver of the widespread increase of DOC concentrations since the early to mid 1990s are decreasing depositions of acid rain resulting in an increased solubility of organic carbon compounds including humic acids. Here, we tested the hypothesis if the reduced availability of both nitrate and sulfate stimulated the reduction of ferric iron soil minerals and the mobilisation of DOC. Decreasing depositions often resulted in a reduced availability of both nitrate and sulphate, which are preferred electron acceptors in microbial decomposition processes. As iron minerals act as efficient sorbents of organic compounds in soils its reduction may have caused a release of humic substances and hence an increasing export of DOC from headwater catchments. To test this hypothesis, time series of DOC, dissolved iron, sulfate and nitrate from several German headwater catchments were examined using Generalised Additive Models. Using this modelling technique, discharge corrected time series of concentrations were represented as a sum of a seasonal and a non-linear trend component. Both, the computed trends and seasonalities supported the redox hypothesis.

  17. Carbon Dioxide Activation by Scandium Atoms and Scandium Monoxide Molecules: Formation and Spectroscopic Characterization of ScCO3 and OCScCO3 in Solid Neon.

    PubMed

    Zhang, Qingnan; Qu, Hui; Chen, Mohua; Zhou, Mingfei

    2016-01-28

    The reactions of carbon dioxide with scandium monoxide molecules and scandium atoms are investigated using matrix isolation infrared spectroscopy in solid neon. The species formed are identified by the effects of isotopic substitution on their infrared spectra as well as density functional calculations. The results show that the ground state ScO molecule reacts with carbon dioxide to form the carbonate complex ScCO3 spontaneously on annealing. The ground state Sc atom reacts with two carbon dioxide molecules to give the carbonate carbonyl complex OCScCO3 via the previously reported OScCO insertion intermediate on annealing. The observation of these spontaneous reactions is consistent with theoretical predictions that both the Sc + 2CO2 → OCScCO3 and ScO + CO2 → ScCO3 reactions are thermodynamically exothermic and are kinetically facile, requiring little or no activation energy. PMID:26738558

  18. Trigonal pyramidal carbon geometry as model for electrophilic addition-substitution and elimination reactions and its significance in enzymatic processes

    NASA Astrophysics Data System (ADS)

    Buck, Henk M.

    Various examples are given in which compounds are characterized as products or intermediates in a (distorted) trigonal pyramidal (TP) geometry. These observations have taken place mainly in the field of carbocation chemistry. Special attention is given to carbenium ions formed by halogen addition to 1,1-diarylsubstituted ethylenes focused on the electronic effects of the C-halogen bond as axial bond in a TP geometry with regard to the ?-distribution in the rest of the molecular system. The experimental verification is accompanied by quantum chemical calculations. We also used the TP structure as a reactive model for specific enzymatic reactions. The relevance of this geometry is shown for the dehalogenation reaction of the nucleophilic displacement in dichloroethane catalyzed by haloalkane dehalogenase and for the decarboxylation of L-ornithine with ornithine decarboxylase under loss of carbon dioxide.

  19. A density functional study of atomic oxygen and carbon adsorptions on (100) surface of γ-Uranium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik P.; Ray, Asok K.

    2007-04-01

    Oxygen and carbon adsorptions on a γ-Uranium (U) (100) surface have been studied at both non-spin-polarized (NSP) and spin-polarized (SP) levels using the generalized gradient approximation of the density functional theory (GGA-DFT) with Perdew and Wang (PW) functionals. For oxygen adsorption, the bridge position of (100) surface is found to be the most favourable site with chemisorption energy (CE) of 7.887 eV for the NSP case, and 7.965 eV for the SP case. The distances of the oxygen adatom from the U surface are found to be 1.19Å and 1.22 Å for the NSP and SP cases, respectively. The magnetic moment for this most favourable site is found to be 0.167μB per atom. For carbon adsorption, the centre position of (100) surface is found to be most favourable site with CE of 7.816 eV for the NSP case, and 7.895 eV for the SP case. The distances of the carbon adatom from the U surface are found to be 0.62 and 0.52 Å for the NSP and SP cases, respectively. The magnetic moment for this most favourable site is found to be 0.084μB per atom. The hybridization between the O 2p orbitals and U 5f orbitals is found to be rather weak but the hybridization between the C 2p orbitals and U 5f orbitals is observed to be strong.

  20. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained. PMID:24672882

  1. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid.

    PubMed

    Wasem, Matthias; Köser, Joachim; Hess, Sylvia; Gnecco, Enrico; Meyer, Ernst

    2014-01-13

    Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles. PMID:24455460

  2. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

    PubMed Central

    Köser, Joachim; Hess, Sylvia; Gnecco, Enrico; Meyer, Ernst

    2014-01-01

    Summary Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles. PMID:24455460

  3. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H{sub 2} FORMATION

    SciTech Connect

    Thrower, J. D.; Jorgensen, B.; Friis, E. E.; Baouche, S.; Luntz, A. C.; Andersen, M.; Hammer, B.; Hornekaer, L.; Mennella, V.

    2012-06-10

    Mass spectrometry measurements show the formation of highly superhydrogenated derivatives of the polycyclic aromatic hydrocarbon molecule coronene through H atom addition reactions. The observed product mass distribution provides evidence also for abstraction reactions resulting in H{sub 2} formation, in agreement with recent IR measurements. Complementary density functional theory calculations confirm the stability of the observed superhydrogenated species toward spontaneous H and H{sub 2} loss indicating that abstraction reactions may be the dominant route to H{sub 2} formation involving neutral polycyclic aromatic hydrocarbons (PAHs). The results indicate that highly superhydrogenated PAHs could well be formed and could act as efficient catalysts for H{sub 2} formation in the interstellar medium in low UV flux regions.

  4. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    SciTech Connect

    Lea, A. S.; Higgins, S. R.; Knauss, K. G.; Rosso, K. M.

    2011-01-01

    A high-pressure atomic force microscope(AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluidrefractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (101¯4) surface are presented. Finally, this new AFM provides unprecedented in situ access to interfacial phenomena at solid–fluid interfaces under pressure.

  5. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    SciTech Connect

    Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.; Rosso, Kevin M.

    2011-04-26

    A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.

  6. Influence of Nb Additions on Microstructural Evolution of a V-Microalloyed High-Carbon Wire Steel During Patenting

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie L.; de Moor, Emmanuel

    2014-08-01

    This study investigated the feasibility of microalloying strategies for improving the strength of high-carbon wire products subjected to industrial patenting heat treatments for two eutectoid steels: a 0.8C-0.5Mn-0.2Cr-0.08 V alloy (wt.%) and the same composition with an additional 100 ppm Nb. A Gleeble 3500 thermomechanical simulator (Dynamic Systems Inc., Poestenkill, NY, USA) was used to perform heat treatments consisting of a 30 s austenitization at 1093 °C, 950 °C, or 880 °C followed by a 15 s isothermal transformation step at 650 °C, 625 °C, 600 °C, or 575 °C. Vickers hardness, field-emission scanning electron microscopy, and pearlite interlamellar spacing measurements were conducted to assess the effects of the heat treatments. Niobium microalloying additions were found to provide no hardness increase, but they extended the pearlitic regime to lower isothermal transformation temperatures.

  7. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    NASA Astrophysics Data System (ADS)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-02-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  8. Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR.

    PubMed

    Kumar, Mathava; Lee, Pei-Yun; Fukusihma, Toshikazu; Whang, Liang-Ming; Lin, Jih-Gaw

    2012-06-01

    The effect of supplementary carbon addition for the treatment of high-technology industrial wastewater in a membrane bioreactor (MBR) was investigated. The MBR was operated for 302 days under different C/N (BOD(L)/NH(4)(+)-N) ratios, i.e. 0.9-1 to 20 days, 1.6-21 to 42 days, 2.9-43 to 82 days, 3.6-83 to 141 days, 4.8-165 to 233 days and 9.3-240 to 302 days. Irrespective of the C/N ratios investigated, SS and BOD(5) removal efficiencies were above 95% and above 80% COD removal efficiency was observed. In addition, complete nitrification was observed throughout the investigation. However, denitrification and total nitrogen removal efficiencies reached their maximum values at the highest C/N ratio (9.3) investigated. Real-time PCR analysis revealed 10 times higher ammonia oxidizing bacteria to total bacteria ratio under the highest C/N ratio condition (9.3) compared to the low C/N ratio condition (1.6). PMID:22300636

  9. Kinetic and Mechanistic Studies of Carbon-to-Metal Hydrogen Atom Transfer Involving Os-Centered Radicals: Evidence for Tunneling

    SciTech Connect

    Lewandowska-Androlojc, Anna; Grills, David C.; Zhang, Jie; Bullock, R. Morris; Miyazawa, Akira; Kawanishi, Yuji; Fujita, Etsuko

    2014-03-05

    We have investigated the kinetics of novel carbon-to-metal hydrogen atom transfer reactions, in which homolytic cleavage of a C-H bond is accomplished by a single metal-centered radical. Studies by means of time-resolved IR spectroscopic measurements revealed efficient hydrogen atom transfer from xanthene, 9,10-dihydroanthracene and 1,4-cyclohexadiene to Cp(CO)2Os• and (n5-iPr4C5H)(CO)2Os• radicals, formed by photoinduced homolysis of the corresponding osmium dimers. The rate constants for hydrogen abstraction from these hydrocarbons were found to be in the range 1.54 × 105 M 1 s 1 -1.73 × 107 M 1 s-1 at 25 °C. For the first time, kinetic isotope effects for carbon-to-metal hydrogen atom transfer were determined. Large primary kinetic isotope effects of 13.4 ± 1.0 and 16.6 ± 1.4 were observed for the hydrogen abstraction from xanthene to form Cp(CO)2OsH and (n5-iPr4C5H)(CO)2OsH, respectively, at 25 °C. Temperature-dependent measurements of the kinetic isotope effects over a 60 -C temperature range were carried out to obtain the difference in activation energies and the pre-exponential factor ratio. For hydrogen atom transfer from xanthene to (n5-iPr4C5H)(CO)2Os•, the (ED - EH) = 3.25 ± 0.20 kcal/mol and AH/AD = 0.056 ± 0.018 values are greater than the semi-classical limits and thus suggest a quantum mechanical tunneling mechanism. The work at BNL was carried out under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences. RMB also thanks the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences for support. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  10. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule

    SciTech Connect

    Ornelas-Lizcano, J. C.; Guirado-López, R. A.

    2015-03-28

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small Al{sub x}O{sub y}{sup ±} clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al{sub 2}O{sub 3}, as well as smaller Al{sub 2}O{sub 2} and Al{sub 2}O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged Al{sub x}O{sub y}{sup ±} clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO{sub 2} in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO{sub 2} subunit. The vibrational spectra of Al{sub x}O{sub y} + CO{sub 2} provides well defined finger prints that may allow the identification of specific isomers. The Al{sub x}O{sub y}{sup +} clusters are more reactive than the anionic species and the final Al{sub 2}O{sup +} + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on Al{sub x}O{sub y}{sup +} clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.

  11. Atomic structure of Zr-Cu glassy alloys and detection of deviations from ideal solution behavior with Al addition by x-ray diffraction using synchrotron light in transmission

    NASA Astrophysics Data System (ADS)

    Georgarakis, K.; Yavari, A. R.; Louzguine-Luzgin, D. V.; Antonowicz, J.; Stoica, M.; Li, Y.; Satta, M.; LeMoulec, A.; Vaughan, G.; Inoue, A.

    2009-05-01

    The atomic structure of Zr-Cu binary amorphous alloys was studied using real space pair distribution functions derived from x-ray diffraction. The structure can be modeled by an ideal solution approximation because of relatively weak Cu-Zr atomic interactions. Addition of Al to Zr-Cu metallic glasses modifies the atomic structure in the short and medium range order because of the strongly attractive interaction between Al and Zr atoms. These interactions generate strong deviations from the ideal solution behavior.

  12. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition.

    PubMed

    Qian, Yu-Qi; He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer. PMID:27070782

  13. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition

    PubMed Central

    He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer. PMID:27070782

  14. Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source.

    PubMed

    Bhargava, Swapnil; Wenger, Kevin S; Rane, Kishore; Rising, Vanessa; Marten, Mark R

    2005-03-01

    For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors. PMID:15643626

  15. Atomic data and spectral analysis of carbon, nitrogen, oxygen and silicon ions observed with the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    1992-01-01

    According to the plan presented in the original proposal we have now completed most of the atomic calculations involving collision strengths and rate coefficients for electron impact excitation of C II, N III, and O IV ions. These have been reported in the first two publications appended with this report. We have now moved into the applications phase of the project with the new data being used to analyze the International Ultraviolet Explorer (IUE) observations of a variety of objects, as described in the third publication recently submitted (also appended). The analysis and interpretation of archival data will continue well into the next year with several collaborators that the PI and Co-PI are involved with. In addition, the atomic calculations on Si II have been started.

  16. Tributyl phosphate as a sensitivity-enhancing solvent for organotin in carbon furnace atomic absorption spectrometry.

    PubMed

    Li, H; Gong, B; Matsumoto, K

    1996-07-01

    Tributyl phosphate (TBP) has been found to be a sensitivity-enhancing solvent for organotin compounds in graphite furnace atomic absorption spectrometry; (C(4)H(9))(2)Sn(O(2)CCH(3))(2), (C(4)H(9))(2)Sn(O(2)CC(11)H(23))(2), (C(4)H(9))(3)SnCl, and (C(4)H(9))(4)Sn all give 1 order of magnitude higher sensitivities in TBP than in toluene or ethyl acetate. The sensitivities are enhanced further 1-2 orders of magnitude in TBP, when PdCl(2)(CH(3)CN)(2) is added as a matrix modifier in the organic solvent. Among the four organotin compounds, (C(4)H(9))(2)Sn(O(2)CCH(3))(2) and (C(4)H(9))(2)Sn(O(2)CC(11)H(23))(2) give better sensitivities than (C(4)H(9))(3)SnCl and (C(4)H(9))(4)Sn in the absence of palladium in any organic solvent, which suggests that the oxygen atom in the tin compound might form tin oxides that are resistant to volatilization loss during ashing. Scanning electron microscopic, electrothermal vaporization ICPMS, and powder X-ray diffraction studies show that the final products before atomization include phosphorus-containing compounds Sn(2)P(2)O(7), SnP(2)O(7), and Pd(9)P(2), besides tin-palladium alloys, PdSn, Pd(3)Sn, Pd(2)Sn, Pd(3)Sn(2), and PdSn(3). These phosphorus-containing compounds would more efficiently stabilize tin and suppress tin vaporization loss during ashing, to give higher sensitivity. PMID:21619315

  17. Adsorption of glycine on diamond (001): Role of bond angle of carbon atoms

    NASA Astrophysics Data System (ADS)

    Li, Lin; Xu, Jing; Xu, Li-Fang; Lian, Chao-Sheng; Li, Jun-Jie; Wang, Jian-Tao; Gu, Chang-Zhi

    2015-05-01

    The adsorption behaviors of glycine on diamond (001) are systematically investigated by first-principles calculations. We have considered all possible adsorption configurations without a surface dangling bond and give a quantitative analysis for the relationship between the deviation of carbon bond angle and adsorption energy. We found that a smaller distortion of carbon covalent bond angle results in a more stable adsorption structure, and the most stable adsorption has a benzene-ring-like structure with the highest adsorption energy of 5.11 eV per molecule and the minimum distortion of carbon covalent bond angle. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272278, 91323304, 10774177, and 11374341), the National Basic Research Program of China (Grand No. 2009CB930502), the Knowledge Innovation Project of Chinese Academy of Sciences (Grand No. KJCX2-EW-W02), the Fundamental Research Funds for the Central Universities of Ministry of Education of China, and the Research Funds of Renmin University of China.

  18. CH/pi interaction between benzene and hydrocarbons having six carbon atoms in their binary liquid mixtures.

    PubMed

    Kasahara, Yasutoshi; Suzuki, Yuji; Kabasawa, Aino; Minami, Hideyuki; Matsuzawa, Hideyo; Iwahashi, Makio

    2010-01-01

    Molecular interactions between benzene and hydrocarbons having six carbon atoms, such as hexane, cyclohexane and 1-hexene in their binary liquid mixtures were studied through the measurements of density, viscosity, self-diffusion coefficient, (13)C NMR spin-lattice relaxation time and (1)H NMR chemical shift. CH/pi attraction between hexane and benzene in their binary mixture was observed in a relatively benzene rich region, whereas a special attractive interaction was not observed between cyclohexane and benzene. On the other hand, 1-hexene and benzene in their binary mixtures were characteristic in their self-diffusion coefficient behaviors: 1-hexene more strongly attract benzene not only by the CH/pi attraction but also probably by the p/p interaction between the double bond in 1-hexene and the p-electron in benzene ring. PMID:20032596

  19. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC)-coated Si probe

    PubMed Central

    2011-01-01

    Atomic force microscope (AFM) equipped with diamond-like carbon (DLC)-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces. PMID:21888633

  20. FORMATION OF CARBON DIOXIDE, METHANOL, ETHANOL, AND FORMIC ACID ON AN ICY GRAIN ANALOG USING FAST OXYGEN ATOMS

    SciTech Connect

    Madzunkov, S. M.; MacAskill, J. A.; Chutjian, A.

    2010-03-20

    Carbon dioxide (CO{sub 2}), methanol (CH{sub 3}OH), ethanol (CH{sub 3}CH{sub 2}OH), and formic acid (HCOOH) have been formed in collisions of a superthermal, 9 eV beam of O({sup 3} P) atoms with CH{sub 4} molecules, with an over coat of CO molecules, adsorbed on a gold surface at 4.8 K. The products are detected using temperature programmed-desorption and quadrupole mass spectrometry. Identification of the species is carried out through use of the Metropolis random walk algorithm as constrained by the fractionation patterns of the detected species. Relative formation yields are reported and reaction sequences are given to account for possible formation routes.

  1. CHARMM General Force Field (CGenFF): A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields

    PubMed Central

    Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; MacKerell, A. D.

    2010-01-01

    The widely used CHARMM additive all-atom force field includes parameters for proteins, nucleic acids, lipids and carbohydrates. In the present paper an extension of the CHARMM force field to drug-like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug-like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present paper in the context of the model systems, pyrrolidine, and 3-phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all-CHARMM” simulations on drug-target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. PMID:19575467

  2. How surface reparation prevents catalytic oxidation of carbon monoxide on atomic gold at defective magnesium oxide surfaces.

    PubMed

    Töpfer, Kai; Tremblay, Jean Christophe

    2016-07-21

    In this contribution, we study using first principles the co-adsorption and catalytic behaviors of CO and O2 on a single gold atom deposited at defective magnesium oxide surfaces. Using cluster models and point charge embedding within a density functional theory framework, we simulate the CO oxidation reaction for Au1 on differently charged oxygen vacancies of MgO(001) to rationalize its experimentally observed lack of catalytic activity. Our results show that: (1) co-adsorption is weakly supported at F(0) and F(2+) defects but not at F(1+) sites, (2) electron redistribution from the F(0) vacancy via the Au1 cluster to the adsorbed molecular oxygen weakens the O2 bond, as required for a sustainable catalytic cycle, (3) a metastable carbonate intermediate can form on defects of the F(0) type, (4) only a small activation barrier exists for the highly favorable dissociation of CO2 from F(0), and (5) the moderate adsorption energy of the gold atom on the F(0) defect cannot prevent insertion of molecular oxygen inside the defect. Due to the lack of protection of the color centers, the surface becomes invariably repaired by the surrounding oxygen and the catalytic cycle is irreversibly broken in the first oxidation step. PMID:27345190

  3. Biosynthesis of the antibiotic maduramicin. Origin of the carbon and oxygen atoms as well as the 13C NMR assignments.

    PubMed

    Tsou, H; Rajan, S; Fiala, R; Mowery, P C; Bullock, M W; Borders, D B; James, J C; Martin, J H; Morton, G O

    1984-12-01

    The biosynthesis of maduramicin alpha and beta in a culture of Actinomadura yumaensis has been studied using 13C, 14C and 18O labeled precursors. The alpha component of this recently discovered polyether antibiotic, containing forty-seven carbon atoms in a seven-ring system, is derived from eight acetate, seven propionate and four methionine molecules. The beta component which is missing one methoxy group incorporates three methionine methyl groups. The carbohydrate moiety was enriched by methionine, but not significantly by acetate or propionate. Studies of the incorporation of 13C labeled precursors permit the 13C NMR assignment of maduramicin. The origin of oxygen atoms of maduramicin has been examined by feeding [1-13C, 18O2]acetate and [1-13C, 18O2]propionate separately in the fermentation culture and the resulting doubly labeled maduramicin samples were analyzed by the isotopic shifts in the 13C NMR spectra. These results are consistent with the initial formation of a triene, which is converted to maduramicin by cyclization of the triepoxide. PMID:6526733

  4. The relaxation of intrinsic compressive stress in complementary metal-oxide-semiconductor transistors by additional N ion implantation treatment with atomic force microscope-Raman stress extraction

    NASA Astrophysics Data System (ADS)

    Liao, M.-H.; Chen, C.-H.; Chang, L.-C.; Yang, C.; Kao, S.-C.

    2012-05-01

    Based on the stress extraction and measurement by atomic force microscope-Raman technique with the nanometer level space resolution, the high compressive stress about 550 MPa on the Si active region (OD) is observed for the current complementary metal-oxide-semiconductor (CMOS) transistor. During the thermal budget for the standard manufacture process of the current CMOS transistor, the difference of thermal expansion coefficients between Si and Shallow Trench Isolation (STI) oxide results in this high compressive stress in Si OD and further degrades the electron carrier mobility seriously. In order to relax this intrinsic processed compressive stress in Si OD and try to recover this performance loss, the novel process is proposed in this work in addition to the usage of one-side pad SiN layer. With this novel process of additional N-ion implantation (IMP) treatment in STI oxide, it can be found that the less compressive stress about 438 MPa in Si OD can be achieved by the smaller difference of thermal expansion coefficients between Si and N-doped SiO2 STI oxide. The formation of Si-N bonding in N-doped SiO2 STI region can be monitored by Fourier transform infrared spectroscopy spectra and thermal expansion coefficients for Si, SiO2, and SiN are 2.6 ppm/K, 0.4 ppm/K, and 2.87 ppm/K, respectively. The effective relaxation of intrinsic processed compressive stress in Si OD about 112 MPa (from 550 MPa to 438 MPa) by this proposed additional N IMP treatment contributes ˜14% electron carrier mobility enhancement/recovery. The experimental electrical data agree well with the theoretical piezoelectricity calculation for the strained-Si theory.

  5. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    SciTech Connect

    Nandan, Ravi Nanda, Karuna Kar

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  6. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Nandan, Ravi; Nanda, Karuna Kar

    2015-06-01

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min-1. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  7. Mode-locked ytterbium fiber lasers using a large modulation depth carbon nanotube saturable absorber without an additional spectral filter

    NASA Astrophysics Data System (ADS)

    Pan, Y. Z.; Miao, J. G.; Liu, W. J.; Huang, X. J.; Wang, Y. B.

    2014-09-01

    We demonstrate an all-normal-dispersion ytterbium (Yb)-doped fiber laser mode-locked by a higher modulation depth carbon nanotube saturable absorber (CNT-SA) based on an evanescent field interaction scheme. The laser cavity consists of pure normal dispersion fibers without dispersion compensation and an additional spectral filter. It is exhibited that the higher modulation depth CNT-SA could contribute to stabilize the mode-locking operation within a limited range of pump power and generate the highly chirped pulses with a high-energy level in the cavity with large normal dispersion and strong nonlinearity. Stable mode-locked pulses with a maximal energy of 29 nJ with a 5.59 MHz repetition rate at the operating wavelength around 1085 nm have been obtained. The maximal time-bandwidth product is 262.4. The temporal and spectral characteristics of pulses versus pump power are demonstrated. The experimental results suggest that the CNT-SA provides a sufficient nonlinear loss to compensate high nonlinearity and catch up the gain at a different pump power and thus leads to the stable mode locking.

  8. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    PubMed

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures. PMID:27269125

  9. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal–carbon bonding† †Electronic supplementary information (ESI) available: Additional information on metal–carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k Click here for additional data file.

    PubMed Central

    Deng, Qingming; Heine, Thomas

    2016-01-01

    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-T d and Ti@C30-C 2v(3). PMID:26815243

  10. The Fe-V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom.

    PubMed

    Rees, Julian A; Bjornsson, Ragnar; Schlesier, Julia; Sippel, Daniel; Einsle, Oliver; DeBeer, Serena

    2015-11-01

    The first direct evidence is provided for the presence of an interstitial carbide in the Fe-V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe-Mo cofactor, we employed Fe Kβ valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme. PMID:26376620

  11. The Fe–V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom

    PubMed Central

    Rees, Julian A; Bjornsson, Ragnar; Schlesier, Julia; Sippel, Daniel; Einsle, Oliver; DeBeer, Serena

    2015-01-01

    The first direct evidence is provided for the presence of an interstitial carbide in the Fe–V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe–Mo cofactor, we employed Fe Kβ valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme. PMID:26376620

  12. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. PMID:26024614

  13. Effect of solution additives on the performance of PMAN carbon anodes in 1M LiPF{sub 6}/EC-DMC solutions

    SciTech Connect

    Guidotti, R.A.; Johnson, B.J.

    1996-12-31

    A study was undertaken to examine the use of a number of solution additives in 1M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) solutions to improve the performance of carbon anodes derived from polymethylacrylonitrile (PMAN)-divinylbenzene (DVB) copolymers. The study goals were to improve the cycle life and reduce the formation of the passivation layer during the first reduction, thereby minimizing the irreversible-capacity losses. Additives studied were 12-crown-4 (12-Cr-4) ether, decalin, and dilithium phthalocyanine (Li{sub 2}Pc). The carbon performance was characterized by galvanostatic cycling, cyclic voltammetry, and complex-impedance spectroscopy. Limited success was obtained with 12-Cr-4 ether at 0.25 M and decalin at 1 v/o. Poor results were noted with Li{sub 2}Pc at 0.025 M and 0.5 M.

  14. The Palladium Catalyzed Asymmetric Addition of Oxindoles and Allenes: an Atom-Economical Versatile Method for the Construction of Chiral Indole Alkaloids

    PubMed Central

    Trost, Barry M.; Xie, Jia; Sieber, Joshua D.

    2011-01-01

    The Pd-catalyzed asymmetric allylic alkylation (AAA) is one of the most useful and versatile methods for asymmetric synthesis known in organometallic chemistry. Development of this reaction over the past 30 years has typically relied on the use of an allylic electrophile bearing an appropriate leaving group to access the reactive Pd(π-allyl) intermediate that goes on to the desired coupling product after attack by the nucleophile present in the reaction. Our group has been interested in developing alternative approaches to access the reactive Pd(π-allyl) intermediate that does not require the use of an activated electrophile, which ultimately generates a stoichiometric byproduct in the reaction that is derived from the leftover leaving group. Along these lines, we have demonstrated that allenes can be used to generate the reactive Pd(π-allyl) intermediate in the presence of an acid cocatalyst, and this system is compatible with nucleophiles to allow for formation of formal AAA products by Pd-catalyzed additions to allenes. This article describes our work regarding the use of oxindoles as carbon-based nucleophiles in a Pd-catalyzed asymmetric addition of oxindoles to allenes (Pd-catalyzed hydrocarbonation of allenes). By using the chiral standard Trost ligand (L1) and 3-aryloxindoles as nucleophiles, this hydrocarbonation reaction provides products with two vicinal stereocenters, with one being quaternary, in excellent chemo-, regio-, diastereo-, and enantioselectivities in high chemical yields. PMID:22070545

  15. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    PubMed

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content. PMID:26408119

  16. Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon

    SciTech Connect

    Dabrowski, J. Lippert, G.; Schroeder, T.; Lupina, G.

    2014-11-10

    Hexagonal boron nitride (h-BN) is an attractive substrate for graphene, as the interaction between these materials is weak enough for high carrier mobility to be retained in graphene but strong enough to allow for some epitaxial relationship. We deposited graphene on exfoliated h-BN by molecular beam epitaxy (MBE), we analyzed the atomistic details of the process by ab initio density functional theory (DFT), and we linked the DFT and MBE results by random walk theory. Graphene appears to nucleate around defects in virgin h-BN. The DFT analysis reveals that sticking of carbon to perfect h-BN is strongly reduced by desorption, so that pre-existing seeds are needed for the nucleation. The dominant nucleation seeds are C{sub N}C{sub B} and O{sub N}C{sub N} pairs and B{sub 2}O{sub 3} inclusions in the virgin substrate.

  17. Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes

    PubMed Central

    Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F.; Ajayan, Pulickel M.; Harutyunyan, Avetik R.

    2013-01-01

    Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications. PMID:23712556

  18. TRACING H{sub 2} COLUMN DENSITY WITH ATOMIC CARBON (C I) AND CO ISOTOPOLOGS

    SciTech Connect

    Lo, N.; Bronfman, L.; Cunningham, M. R.; Jones, P. A.; Lowe, V.; Cortes, P. C.; Simon, R.; Fissel, L.; Novak, G.

    2014-12-20

    We present the first results of neutral carbon ([C I] {sup 3} P {sub 1}-{sup 3} P {sub 0} at 492 GHz) and carbon monoxide ({sup 13}CO, J = 1-0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and the G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the four regions mapped in this work, we find that [C I] has very similar spectral emission profiles to {sup 13}CO, with comparable line widths. We find that [C I] has an opacity of 0.1-1.3 across the mapped region while the [C I]/{sup 13}CO peak brightness temperature ratio is between 0.2 and 0.8. The [C I] column density is an order of magnitude lower than that of {sup 13}CO. The H{sub 2} column density derived from [C I] is comparable to values obtained from {sup 12}CO. Our maps show that C I is preferentially detected in gas with low temperatures (below 20 K), which possibly explains the comparable H{sub 2} column density calculated from both tracers (both C I and {sup 12}CO underestimate column density), as a significant amount of the C I in the warmer gas is likely in the higher energy state transition ([C I] {sup 3} P {sub 2}-{sup 3} P {sub 1} at 810 GHz), and thus it is likely that observations of both the above [C I] transitions are needed in order to recover the total H{sub 2} column density.

  19. OH-Radical Specific Addition to Glutathione S-Atom at the Air-Water Interface: Relevance to the Redox Balance of the Lung Epithelial Lining Fluid.

    PubMed

    Enami, Shinichi; Hoffmann, Michael R; Colussi, Agustín J

    2015-10-01

    Antioxidants in epithelial lining fluids (ELF) prevent inhaled air pollutants from reaching lung tissue. This process, however, may upset ELF's redox balance, which is deemed to be expressed by the ratio of the major antioxidant glutathione (GSH) to its putative oxidation product GSSG. Previously, we found that at physiological pH O3(g) rapidly oxidizes GS(2-)(aq) (but not GSH(-)) to GSO3(-) rather than GSSG. Here, we report that in moderately acidic pH ≤ 5 media ·OH(g) oxidizes GSH(-)(aq) to sulfenic GSOH(-), sulfinic GSO2(-), and sulfonic GSO3(-) acids via ·OH specific additions to reduced S-atoms. The remarkable specificity of ·OH on water versus its lack of selectivity in bulk water implicates an unprecedented steering process during [OH···GSH] interfacial encounters. Thus, both O3 and ·OH oxidize GSH to GSOH(-) under most conditions, and since GSOH(-) is reduced back to GSH in vivo by NADPH, redox balance may be in fact signaled by GSH/GSOH ratios. PMID:26722895

  20. Impact of 2′-hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all-atom additive force field for RNA

    PubMed Central

    Denning, Elizabeth J.; Priyakumar, U. Deva; Nilsson, Lennart; MacKerell, Alexander D.

    2011-01-01

    Here, we present an update of the CHARMM27 all-atom additive force field for nucleic acids that improves the treatment of RNA molecules. The original CHARMM27 force field parameters exhibit enhanced Watson-Crick (WC) base pair opening which is not consistent with experiment while analysis of MD simulations show the 2′-hydroxyl moiety to almost exclusively sample the O3′ orientation. Quantum mechanical studies of RNA related model compounds indicate the energy minimum associated with the O3′ orientation to be too favorable, consistent with the MD results. Optimization of the dihedral parameters dictating the energy of the 2′-hydroxyl proton targeting the QM data yielded several parameter sets, which sample both the base and O3′ orientations of the 2′-hydroxyl to varying degrees. Selection of the final dihedral parameters was based on reproduction of hydration behavior as related to a survey of crystallographic data and better agreement with experimental NMR J-coupling values. Application of the model, designated CHARMM36, to a collection of canonical and non-canonical RNA molecules reveals overall improved agreement with a range of experimental observables as compared to CHARMM27. The results also indicate the sensitivity of the conformational heterogeneity of RNA to the orientation of the 2′-hydroxyl moiety and support a model whereby the 2′-hydroxyl can enhance the probability of conformational transitions in RNA. PMID:21469161

  1. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Xiang, Jiayuan; Ding, Ping; Zhang, Hao; Wu, Xianzhang; Chen, Jian; Yang, Yusheng

    2013-11-01

    Experiments are made with negative electrode of 2 V cell and 12 V lead-acid battery doped with typical activated carbon additives. It turns out that the negative electrode containing tens-of-micron-sized carbon particles in NAM exhibits markedly increased HRPSoC cycle life than the one containing carbon particles with much smaller size of several microns or the one containing no activated carbon. The improved performance is mainly attributed to the optimized NAM microstructure and the enhanced electrode reaction kinetics by introducing appropriate activated carbon. The beneficial effects can be briefly summarized from three aspects. First, activated carbon acts as new porous-skeleton builder to increase the porosity and active surface of NAM, and thus facilitates the electrolyte diffusion from surface to inner and provides more sites for crystallization/dissolution of lead sulfate; second, activated carbon plays the role of electrolyte supplier to provide sufficient H2SO4 in the inner of plate when the diffusion of H2SO4 from plate surface cannot keep pace of the electrode reaction; Third, activated carbon acts as capacitive buffer to absorb excess charge current which would otherwise lead to insufficient NAM conversion and hydrogen evolution.

  2. Water- and Plant-Mediated Responses of Ecosystem Carbon Fluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China

    PubMed Central

    Jiang, Li; Guo, Rui; Zhu, Tingcheng; Niu, Xuedun; Guo, Jixun; Sun, Wei

    2012-01-01

    Background Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. Methodology/Principal Findings In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. Conclusion/Significance Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland. PMID:23028848

  3. Diminished CAGE Effect in {p}-H2: IR Identification of Intermediates in Addition Reactions of CL Atom with Unsaturated Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Pern; Bahou, Mohammed; Golec, Barbara

    2011-06-01

    We report infrared absorption spectra of several free radicals produced upon reaction of Cl atoms with unsaturated hydrocarbons isolated in solid {p}-H2. Cl atoms were produced by in situ photodissociation of Cl2 isolated in solid {p}-H2 at 365 nm. In experiments with the Cl2/C6H6/{p}-H2 matrices, intense absorption features at 617.0, 719.8, 956.0, and 1430.5 Cm-1 and weaker ones at 577.1, 833.6, 876.8, 833.6, 983.0, 993.5, 1008.0, 1026.4, 1112.5, 1118.5, 1179.0, 1406.5, 1509.4, 2967.2, 3054.3, 3063.4, 3070.9, and 3083.9 Cm-1 appeared upon irradiation of the matrix at 365 nm and increased in intensity upon subsequent annealing of the matrix at 4.8 K for a few minutes. By comparison of vibrational wavenumbers and deuterium isotopic shifts predicted with the B3PW91 and MPW1PW91/aug-cc-pVTZ methods, these features are readily assigned to the σ-complex of ClC6H6 (chlorocyclohexadienyl radical), rather than the previously proposed π-complex. In experiments with the Cl2/C2H2/{p}-H2 matrices, the 1-chloroethyl radicals (CHClCH3) and chloroethene (C2H3Cl) are identified as the main products of the Cl + C2H2 reaction in solid {p}-H2. The assignments of IR absorption lines at 738.2, 1027.6, 1283.4, 1377.1, 1426.6, 1442.6, and 2861.2 Cm-1 to 1-chloroethyl radicals are based on comparison of the observed vibrational wavenumbers and 13C- and D-isotopic shifts with those predicted with the B3LYP and MP2/aug-cc-pVDZ methods. These results indicate that the primary products of the addition reaction Cl + C2H2, the 2-chlorovinyl radicals, are unstable; they react readily with {p}-H2 to form CHClCH3 and C2H3Cl. If time permits, other examples such as Cl + 1, 3-butadien and H + C6H6 or C6H5Cl will be discussed. These results serve as excellent examples to demonstrate that the diminished cage effect of solid {p}-H2 makes production of free radicals via bimolecular reactions feasible.

  4. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    NASA Astrophysics Data System (ADS)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  5. Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Travis, Jonathan

    The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films

  6. A study of methyl phenyl carbonate and diphenyl carbonate as electrolyte additives for high voltage LiNi0.8Mn0.1Co0.1O2/graphite pouch cells

    NASA Astrophysics Data System (ADS)

    Qiu, Wenda; Xia, Jian; Chen, Liuping; Dahn, J. R.

    2016-06-01

    The effectiveness of methyl phenyl carbonate and diphenyl carbonate as electrolyte additives either singly or in combination with methylene methyl disulfonate and tris(-trimethyl-silyl)-phosphite has been systematically investigated in LiNi0.8Mn0.1Co0.1O2/graphite pouch cells. Experiments conducted included ultrahigh precision coulometry, electrochemical impedance spectroscopy, automated storage, gas evolution measurements as well as long-term cycling. The results showed that adding methyl phenyl or diphenyl carbonate increases the coulombic efficiency, reduces charge end-point capacity slippage rate, decreases the self-discharge rate during storage and improves the capacity retention during long-term cycling compared to cells with control electrolyte [1 M LiPF6 ethylene carbonate:ethyl methyl carbonate 3:7] or control electrolyte with 2% vinylene carbonate. 1% diphenyl carbonate appears to be the best among the systems studied. Based on these experiments, diphenyl carbonate seems to be a very beneficial additive for improving the performance of high voltage LiNi0.8Mn0.1Co0.1O2/graphite pouch cells.

  7. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?

    PubMed

    Schenk, Stephan; Kesselmeier, Jürgen; Anders, Ernst

    2004-06-21

    We have extended our investigations of the carbonic anhydrase (CA) cycle with the model system [(H(3)N)(3)ZnOH](+) and CO(2) by studying further heterocumulenes and catalysts. We investigated the hydration of COS, an atmospheric trace gas. This reaction plays an important role in the global COS cycle since biological consumption, that is, uptake by higher plants, algae, lichens, and soil, represents the dominant terrestrial sink for this gas. In this context, CA has been identified by a member of our group as the key enzyme for the consumption of COS by conversion into CO(2) and H(2)S. We investigated the hydration mechanism of COS by using density functional theory to elucidate the details of the catalytic cycle. Calculations were first performed for the uncatalyzed gas phase reaction. The rate-determining step for direct reaction of COS with H(2)O has an energy barrier of deltaG=53.2 kcal mol(-1). We then employed the CA model system [(H(3)N)(3)ZnOH](+) (1) and studied the effect on the catalytic hydration mechanism of replacing an oxygen atom with sulfur. When COS enters the carbonic anhydrase cycle, the sulfur atom is incorporated into the catalyst to yield [(H(3)N)(3)ZnSH](+) (27) and CO(2). The activation energy of the nucleophilic attack on COS, which is the rate-determining step, is somewhat higher (20.1 kcal mol(-1) in the gas phase) than that previously reported for CO(2). The sulfur-containing model 27 is also capable of catalyzing the reaction of CO(2) to produce thiocarbonic acid. A larger barrier has to be overcome for the reaction of 27 with CO(2) compared to that for the reaction of 1 with CO(2). At a well-defined stage of this cycle, a different reaction path can emerge: a water molecule helps to regenerate the original catalyst 1 from 27, a process accompanied by the formation of thiocarbonic acid. We finally demonstrate that nature selected a surprisingly elegant and efficient group of reactants, the [L(3)ZnOH](+)/CO(2)/H(2)O system, that helps

  8. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey. PMID:26651587

  9. Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis.

    PubMed

    Barbosa, Adriano F; Barbosa, Valéria M P; Bettini, Jefferson; Luccas, Pedro O; Figueiredo, Eduardo C

    2015-01-01

    In this paper, we propose a new sorbent that is able to extract metal ions directly from untreated biological fluids, simultaneously excluding all proteins from these samples. The sorbent was obtained through the modification of carbon nanotubes (CNTs) with an external bovine serum albumin (BSA) layer, resulting in restricted access carbon nanotubes (RACNTs). The BSA layer was fixed through the interconnection between the amine groups of the BSA using glutaraldehyde as cross-linker. When a protein sample is percolated through a cartridge containing RACNTs and the sample pH is higher than the isoelectric point of the proteins, both proteins from the sample and the BSA layer are negatively ionized. Thus, an electrostatic repulsion prevents the interaction between the proteins from the sample on the RACNTs surface. At the same time, metal ions are adsorbed in the CNTs (core) after their passage through the chains of proteins. The Cd(2+) ion was selected for a proof-of-principle case to test the suitability of the RACNTs due to its toxicological relevance. RACNTs were able to extract Cd(2+) and exclude almost 100% of the proteins from the human serum samples in an online solid-phase extraction system coupled with thermospray flame furnace atomic absorption spectrometry. The limits of detection and quantification were 0.24 and 0.80 μg L(-1), respectively. The sampling frequency was 8.6h(-1), and the intra- and inter-day precisions at the 0.80, 15.0, and 30.0 μg L(-1) Cd(2+) levels were all lower than 10.1% (RSD). The recoveries obtained for human blood serum samples fortified with Cd(2+) ranged from 85.0% to 112.0%. The method was successfully applied to analyze Cd(2+) directly from six human blood serum samples without any pretreatment, and the observed concentrations ranged from

  10. Improvement of the cycle life of composite xerogel V2O5/C in aqueous LiNO3 solution by addition of vinylene carbonate

    NASA Astrophysics Data System (ADS)

    Stojković, I.; Cvijetićanin, N.; Mentus, S.

    2011-12-01

    The xerogel V2O5/C composite was synthesized by a sol-gel method, using the suspension of carbon black in the solution of crystalline V2O5 in hydrogen peroxide as the precursor solution. The Li+ intercalation/deintercalation reactions of the xerogel V2O5/C composite, used as an anode material of a two-electrode cell with an aqueous LiNO3 solution as the electrolyte, was studied before and after the addition of vinylene carbonate (VC). Upon addition of vinylene carbonate in an amount of only l wt %, the coulombic capacity during galvanostatic cycling, instead of commonly observed permanent fade, displayed an initial increase and then a stable plateau.

  11. Asymmetric Assembly of All-Carbon Tertiary/Quaternary Nonadjacent Stereocenters through Organocatalytic Conjugate Addition of α-Cyanoacetates to a Methacrylate Equivalent.

    PubMed

    Iriarte, Igor; Vera, Silvia; Badiola, Eider; Mielgo, Antonia; Oiarbide, Mikel; García, Jesús M; Odriozola, José M; Palomo, Claudio

    2016-09-12

    An efficient, highly diastereo- and enantioselective assembly of acyclic carbonyl fragments possessing nonadjacent all-carbon tertiary/quaternary stereoarrays is reported based on a Brønsted base catalyzed Michael addition/α-protonation sequence involving α-cyanoacetates and 2,4-dimethyl-4-hydroxypenten-3-one as novel methacrylate equivalent. PMID:27487331

  12. Fibrous Containment for Improved Laboratory Handling and Uniform Nanocoating of Milligram Quantities of Carbon Nanotubes by Atomic Layer Deposition

    PubMed Central

    Devine, Christina K.; Oldham, Christopher J.; Jur, Jesse S.; Gong, Bo; Parsons, Gregory N.

    2011-01-01

    The presence of nanostructured materials in the work place is bringing attention to the importance of safe practices for nanomaterial handling. We explored novel fiber containment methods to improve the handling of carbon nanotube (CNT) powders in the laboratory, while simultaneously allowing highly uniform and controlled atomic layer deposition (ALD) coatings on the nanotubes, down to less than 4 nm on some CNT materials. Moreover, the procedure yields uniform coatings on milligram quantities of nanotubes using a conventional viscous flow reactor system, circumventing the need for specialized fluidized bed or rotary ALD reactors for lab-scale studies. We explored both fiber bundles and fiber baskets as possible containment methods and conclude that the baskets are more suitable for coating studies. An extended precursor and reactant dose and soak periods allowed the gases to diffuse through the fiber containment, and the ALD coating thickness scaled linearly with the number of ALD cycles. The extended dose period produced thicker coatings compared with typical doses onto CNT controls not encased in the fibers, suggesting some effects due to the extended reactant dose. Film growth was compared on a range of single wall NTs, double wall NTs, and acid functionalized multiwall NTs and we found that ultrathin coatings were most readily controlled on the multi-walled NTs. PMID:22070742

  13. Increasing sp3 hybridized carbon atoms in germanium carbide films by increasing the argon ion energy and germanium content

    NASA Astrophysics Data System (ADS)

    Hu, C. Q.; Zheng, B.; Zhu, J. Q.; Han, J. C.; Zheng, W. T.; Guo, L. F.

    2010-04-01

    We have prepared germanium carbide (Ge1-xCx) films on Si(0 0 1) by radio frequency (RF) reactive sputtering a pure Ge(1 1 1) target in a CH4/Ar mixture discharge, and found that the sp3 hybridized carbon atoms in the Ge1-xCx film can be significantly increased in two ways. One is by increasing the Ge content via increasing the RF power during the film deposition, which can lead to a transition from sp2 C-C to sp3 C-Ge bonding in the film. Another is by increasing the Ar ion energy in a discharge Ar/CH4 gas by applying the negative bias voltage, which plays an important role in inducing the compressive stress in film. We find that when the compressive stress increases above a critical value of 2.2 GPa, an abrupt transition from sp2 C-C to sp3 C-C bonding occurs in the Ge1-xCx film, which is a consequence of energy minimization.

  14. Fabrication and characterization of tunnel barriers in a multi-walled carbon nanotube formed by argon atom beam irradiation

    NASA Astrophysics Data System (ADS)

    Tomizawa, H.; Yamaguchi, T.; Akita, S.; Ishibashi, K.

    2015-07-01

    We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots with serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.

  15. Fabrication and characterization of tunnel barriers in a multi-walled carbon nanotube formed by argon atom beam irradiation

    SciTech Connect

    Tomizawa, H.; Yamaguchi, T.; Akita, S.; Ishibashi, K.

    2015-07-28

    We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots with serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.

  16. Direct formation of anatase TiO2 nanoparticles on carbon nanotubes by atomic layer deposition and their photocatalytic properties.

    PubMed

    Huang, Sheng-Hsin; Liao, Shih-Yun; Wang, Chih-Chieh; Kei, Chi-Chung; Gan, Jon-Yiew; Perng, Tsong-Pyng

    2016-10-01

    TiO2 with different morphology was deposited on acid-treated multi-walled carbon nanotubes (CNTs) by atomic layer deposition at 100 °C-300 °C to form a TiO2@CNT structure. The TiO2 fabricated at 100 °C was an amorphous film, but became crystalline anatase nanoparticles when fabricated at 200 °C and 300 °C. The saturation growth rates of TiO2 nanoparticles at 300 °C were about 1.5 and 0.4 Å/cycle for substrate-enhanced growth and linear growth processes, respectively. It was found that the rate constants for methylene blue degradation by the TiO2@CNT structure formed at 300 °C were more suitable to fit with second-order reaction. The size of 9 nm exhibited the best degradation efficiency, because of the high specific area and appropriate diffusion length for the electrons and holes. PMID:27576914

  17. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances.

    PubMed

    Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, F D; Ishihara, Ryoichi; Sarro, Pasqualina M

    2015-02-13

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al2O3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm(2) to 2500 μm(2)) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism. PMID:25604841

  18. Fiber containment for improved laboratory handling and uniform nanocoating of milligram quantities of carbon nanotubes by atomic layer deposition.

    PubMed

    Devine, Christina K; Oldham, Christopher J; Jur, Jesse S; Gong, Bo; Parsons, Gregory N

    2011-12-01

    The presence of nanostructured materials in the workplace is bringing attention to the importance of safe practices for nanomaterial handling. We explored novel fiber containment methods to improve the handling of carbon nanotube (CNT) powders in the laboratory while simultaneously allowing highly uniform and controlled atomic layer deposition (ALD) coatings on the nanotubes, down to less than 4 nm on some CNT materials. Moreover, the procedure yields uniform coatings on milligram quantities of nanotubes using a conventional viscous flow reactor system, circumventing the need for specialized fluidized bed or rotary ALD reactors for laboratory-scale studies. We explored both fiber bundles and fiber baskets as possible containment methods and conclude that the baskets are more suitable for coating studies. An extended precursor and reactant dose and soak periods allowed the gases to diffuse through the fiber containment, and the ALD coating thickness scaled linearly with the number of ALD cycles. The extended dose period produced thicker coatings compared to typical doses on CNT controls not encased in the fibers, suggesting some effects due to the extended reactant dose. Film growth was compared on a range of single-walled NTs, double-walled NTs, and acid-functionalized multiwalled NTs, and we found that ultrathin coatings were most readily controlled on the multiwalled NTs. PMID:22070742

  19. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    PubMed

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability. PMID:25113051

  20. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.