Science.gov

Sample records for additional cell death

  1. Selenium induces a multi-targeted cell death process in addition to ROS formation.

    PubMed

    Wallenberg, Marita; Misra, Sougat; Wasik, Agata M; Marzano, Cristina; Björnstedt, Mikael; Gandin, Valentina; Fernandes, Aristi P

    2014-04-01

    Selenium compounds inhibit neoplastic growth. Redox active selenium compounds are evolving as promising chemotherapeutic agents through tumour selectivity and multi-target response, which are of great benefit in preventing development of drug resistance. Generation of reactive oxygen species is implicated in selenium-mediated cytotoxic effects on cancer cells. Recent findings indicate that activation of diverse intracellular signalling leading to cell death depends on the chemical form of selenium applied and/or cell line investigated. In the present study, we aimed at deciphering different modes of cell death in a single cell line (HeLa) upon treatment with three redox active selenium compounds (selenite, selenodiglutathione and seleno-DL-cystine). Both selenite and selenodiglutathione exhibited equipotent toxicity (IC50 5 μM) in these cells with striking differences in toxicity mechanisms. Morphological and molecular alterations provided evidence of necroptosis-like cell death in selenite treatment, whereas selenodiglutathione induced apoptosis-like cell death. We demonstrate that selenodiglutathione efficiently glutathionylated free protein thiols, which might explain the early differences in cytotoxic effects induced by selenite and selenodiglutathione. In contrast, seleno-DL-cystine treatment at an IC50 concentration of 100 μM induced morphologically two distinct different types of cell death, one with apoptosis-like phenotype, while the other was reminiscent of paraptosis-like cell death, characterized by induction of unfolded protein response, ER-stress and occurrence of large cytoplasmic vacuoles. Collectively, the current results underline the diverse cytotoxic effects and variable potential of redox active selenium compounds on the survival of HeLa cells and thereby substantiate the potential of chemical species-specific usage of selenium in the treatment of cancers. PMID:24400844

  2. Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells

    SciTech Connect

    Schildkopf, Petra; Frey, Benjamin; Mantel, Frederick; Ott, Oliver J.; Weiss, Eva-Maria; Sieber, Renate; Janko, Christina; Sauer, Rolf; Fietkau, Rainer; Gaipl, Udo S.

    2010-01-01

    Colorectal cancer is the second leading cause of death in developed countries. Tumor therapies should on the one hand aim to stop the proliferation of tumor cells and to kill them, and on the other hand stimulate a specific immune response against residual cancer cells. Dying cells are modulators of the immune system contributing to anti-inflammatory or pro-inflammatory responses, depending on the respective cell death form. The positive therapeutic effects of temperature-controlled hyperthermia (HT), when combined with ionizing irradiation (X-ray), were the origin to examine whether combinations of X-ray with HT can induce immune activating tumor cell death forms, also characterized by the release of the danger signal HMGB1. Human colorectal tumor cells with differing radiosensitivities were treated with combinations of HT (41.5 {sup o}C for 1 h) and X-ray (5 or 10 Gy). Necrotic cell death was prominent after X-ray and could be further increased by HT. Apoptosis remained quite low in HCT 15 and SW480 cells. X-ray and combinations with HT arrested the tumor cells in the radiosensitive G2 cell cycle phase. The amount of released HMGB1 protein was significantly enhanced after combinatorial treatments in comparison to single ones. We conclude that combining X-ray with HT may induce anti-tumor immunity as a result of the predominant induction of inflammatory necrotic tumor cells and the release of HMGB1.

  3. Programmed cell death

    SciTech Connect

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  4. Classification of cell death

    PubMed Central

    Kroemer, G; Galluzzi, L; Vandenabeele, P; Abrams, J; Alnemri, ES; Baehrecke, EH; Blagosklonny, MV; El-Deiry, WS; Golstein, P; Green, DR; Hengartner, M; Knight, RA; Kumar, S; Lipton, SA; Malorni, W; Nuñez, G; Peter, ME; Tschopp, J; Yuan, J; Piacentini, M; Zhivotovsky, B; Melino, G

    2009-01-01

    Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like ‘percentage apoptosis’ and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that ‘autophagic cell death’ is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including ‘entosis’, ‘mitotic catastrophe’, ‘necrosis’, ‘necroptosis’ and ‘pyroptosis’. PMID:18846107

  5. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012

    PubMed Central

    Galluzzi, L; Vitale, I; Abrams, J M; Alnemri, E S; Baehrecke, E H; Blagosklonny, M V; Dawson, T M; Dawson, V L; El-Deiry, W S; Fulda, S; Gottlieb, E; Green, D R; Hengartner, M O; Kepp, O; Knight, R A; Kumar, S; Lipton, S A; Lu, X; Madeo, F; Malorni, W; Mehlen, P; Nuñez, G; Peter, M E; Piacentini, M; Rubinsztein, D C; Shi, Y; Simon, H-U; Vandenabeele, P; White, E; Yuan, J; Zhivotovsky, B; Melino, G; Kroemer, G

    2012-01-01

    In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including ‘apoptosis', ‘necrosis' and ‘mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features. PMID:21760595

  6. Pathogen Tactics to Manipulate Plant Cell Death.

    PubMed

    Mukhtar, M Shahid; McCormack, Maggie E; Argueso, Cristiana T; Pajerowska-Mukhtar, Karolina M

    2016-07-11

    Cell death is a vital process for multicellular organisms. Programmed cell death (PCD) functions in a variety of processes including growth, development, and immune responses for homeostasis maintenance. In particular, plants and animals utilize PCD to control pathogen invasion and infected cell populations. Despite some similarity, there are a number of key differences between how these organisms initiate and regulate cell death. In contrast to animals, plants are sessile, lack a circulatory system, and have additional cellular structures, including cell walls and chloroplasts. Plant cells have the autonomous ability to induce localized cell death using conserved eukaryotic pathways as well as unique plant-specific pathways. Thus, in order to successfully infect host cells, pathogens must subvert immune responses and avoid detection to prevent PCD and allow infection. Here we discuss the roles of cell death in plant immune responses and the tactics pathogens utilize to avert cell death. PMID:27404256

  7. Cell death in mammalian development.

    PubMed

    Penaloza, C; Orlanski, S; Ye, Y; Entezari-Zaher, T; Javdan, M; Zakeri, Z

    2008-01-01

    During embryogenesis there is an exquisite orchestration of cellular division, movement, differentiation, and death. Cell death is one of the most important aspects of organization of the developing embryo, as alteration in timing, level, or pattern of cell death can lead to developmental anomalies. Cell death shapes the embryo and defines the eventual functions of the organs. Cells die using different paths; understanding which path a dying cell takes helps us define the signals that regulate the fate of the cell. Our understanding of cell death in development stems from a number of observations indicating genetic regulation of the death process. With today's increased knowledge of the pathways of cell death and the identification of the genes whose products regulate the pathways we know that, although elimination of some of these gene products has no developmental phenotype, alteration of several others has profound effects. In this review we discuss the types and distributions of cell death seen in developing mammalian embryos as well as the gene products that may regulate the process. PMID:18220829

  8. Cell death proteomics database: consolidating proteomics data on cell death.

    PubMed

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-01

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no. PMID:23537399

  9. Programmed cell death in the plant immune system

    PubMed Central

    Coll, N S; Epple, P; Dangl, J L

    2011-01-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms. PMID:21475301

  10. Autophagy, cell death, and cancer

    PubMed Central

    Lin, Lin; Baehrecke, Eric H

    2015-01-01

    Autophagy is an evolutionarily conserved intracellular catabolic process that is used by all cells to degrade dysfunctional or unnecessary cytoplasmic components through delivery to the lysosome. Increasing evidence reveals that autophagic dysfunction is associated with human diseases, such as cancer. Paradoxically, although autophagy is well recognized as a cell survival process that promotes tumor development, it can also participate in a caspase-independent form of programmed cell death. Induction of autophagic cell death by some anticancer agents highlights the potential of this process as a cancer treatment modality. Here, we review our current understanding of the molecular mechanism of autophagy and the potential roles of autophagy in cell death, cancer development, and cancer treatment. PMID:27308466

  11. Cell death in the developing vertebrate retina.

    PubMed

    Vecino, Elena; Hernández, María; García, Mónica

    2004-01-01

    Programmed cell death occurs naturally, as a physiological process, during the embryonic development of multicellular organisms. In the retina, which belongs to the central nervous system, at least two phases of cell death have been reported to occur during development. An early phase takes place concomitant with the processes of neurogenesis, cell migration and cell differentiation. A later phase affecting mainly neurons occurs when connections are established and synapses are formed, resulting in selective elimination of inappropriate connections. This pattern of cell death in the developing retina is common among different vertebrates. However, the timing and magnitude of retinal cell death varies among species. In addition, a precise regulation of apoptosis during retinal development has been described. Factors such as neurotrophins, among many others, and electrical activity influence the survival of retinal cells during the course of development. In this paper, we present a summary of these different aspects of programmed cell death during retinal development, and examine how these differ among different species. PMID:15558487

  12. Cell Death in Genome Evolution

    PubMed Central

    Teng, Xinchen; Hardwick, J. Marie

    2015-01-01

    Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that an early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis. PMID:25725369

  13. Pancreatic β Cell Mass Death.

    PubMed

    Marrif, Husnia I; Al-Sunousi, Salma I

    2016-01-01

    Type two diabetes (T2D) is a challenging metabolic disorder for which a cure has not yet been found. Its etiology is associated with several phenomena, including significant loss of insulin-producing, beta cellcell) mass via progressive programmed cell death and disrupted cellular autophagy. In diabetes, the etiology of β cell death and the role of mitochondria are complex and involve several layers of mechanisms. Understanding the dynamics of those mechanisms could permit researchers to develop an intervention for the progressive loss of β cells. Currently, diabetes research has shifted toward rejuvenation and plasticity technology and away from the simplified approach of hormonal compensation. Diabetes research is currently challenged by questions such as how to enhance cell survival, decrease apoptosis and replenish β cell mass in diabetic patients. In this review, we discuss evidence that β cell development and mass formation are guided by specific signaling systems, particularly hormones, transcription factors, and growth factors, all of which could be manipulated to enhance mass growth. There is also strong evidence that β cells are dynamically active cells, which, under specific conditions such as obesity, can increase in size and subsequently increase insulin secretion. In certain cases of aggressive or advanced forms of T2D, β cells become markedly impaired, and the only alternatives for maintaining glucose homeostasis are through partial or complete cell grafting (the Edmonton protocol). In these cases, the harvesting of an enriched population of viable β cells is required for transplantation. This task necessitates a deep understanding of the pharmacological agents that affect β cell survival, mass, and function. The aim of this review is to initiate discussion about the important signals in pancreatic β cell development and mass formation and to highlight the process by which cell death occurs in diabetes. This review also examines the

  14. Pancreatic β Cell Mass Death

    PubMed Central

    Marrif, Husnia I.; Al-Sunousi, Salma I.

    2016-01-01

    Type two diabetes (T2D) is a challenging metabolic disorder for which a cure has not yet been found. Its etiology is associated with several phenomena, including significant loss of insulin-producing, beta cellcell) mass via progressive programmed cell death and disrupted cellular autophagy. In diabetes, the etiology of β cell death and the role of mitochondria are complex and involve several layers of mechanisms. Understanding the dynamics of those mechanisms could permit researchers to develop an intervention for the progressive loss of β cells. Currently, diabetes research has shifted toward rejuvenation and plasticity technology and away from the simplified approach of hormonal compensation. Diabetes research is currently challenged by questions such as how to enhance cell survival, decrease apoptosis and replenish β cell mass in diabetic patients. In this review, we discuss evidence that β cell development and mass formation are guided by specific signaling systems, particularly hormones, transcription factors, and growth factors, all of which could be manipulated to enhance mass growth. There is also strong evidence that β cells are dynamically active cells, which, under specific conditions such as obesity, can increase in size and subsequently increase insulin secretion. In certain cases of aggressive or advanced forms of T2D, β cells become markedly impaired, and the only alternatives for maintaining glucose homeostasis are through partial or complete cell grafting (the Edmonton protocol). In these cases, the harvesting of an enriched population of viable β cells is required for transplantation. This task necessitates a deep understanding of the pharmacological agents that affect β cell survival, mass, and function. The aim of this review is to initiate discussion about the important signals in pancreatic β cell development and mass formation and to highlight the process by which cell death occurs in diabetes. This review also examines the

  15. Regulation of Cell Death by Transfer RNA

    PubMed Central

    2013-01-01

    Abstract Significance: Both transfer RNA (tRNA) and cytochrome c are essential molecules for the survival of cells. tRNA decodes mRNA codons into amino-acid-building blocks in protein in all organisms, whereas cytochrome c functions in the electron transport chain that powers ATP synthesis in mitochondrion-containing eukaryotes. Additionally, in vertebrates, cytochrome c that is released from mitochondria is a potent inducer of apoptosis, activating apoptotic proteins (caspases) in the cytoplasm to dismantle cells. A better understanding of both tRNA and cytochrome c is essential for an insight into the regulation of cell life and death. Recent Advances: A recent study showed that the mitochondrion-released cytochrome c can be removed from the cell-death pathway by tRNA molecules. The direct binding of cytochrome c by tRNA provides a mechanism for tRNA to regulate cell death, beyond its role in gene expression. Critical Issues: The nature of the tRNA–cytochrome c binding interaction remains unknown. The questions of how this interaction affects tRNA function, cellular metabolism, and apoptotic sensitivity are unanswered. Future Directions: Investigations into the critical issues raised above will improve the understanding of tRNA in the fundamental processes of cell death and metabolism. Such knowledge will inform therapies in cell death-related diseases. Antioxid. Redox Signal. 19, 583–594. PMID:23350625

  16. Inflammasomes as polyvalent cell death platforms.

    PubMed

    de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Lamkanfi, Mohamed

    2016-06-01

    Inflammasomes are multi-protein platforms that are organized in the cytosol to cope with pathogens and cellular stress. The pattern recognition receptors NLRP1, NLRP3, NLRC4, AIM2 and Pyrin all assemble canonical platforms for caspase-1 activation, while caspase-11-dependent inflammasomes respond to intracellular Gram-negative pathogens. Inflammasomes are chiefly known for their roles in maturation and secretion of the inflammatory cytokines interleukin-(IL)1β and IL18, but they can also induce regulated cell death. Activation of caspases 1 and 11 in myeloid cells can trigger pyroptosis, a lytic and inflammatory cell death mode. Pyroptosis has been implicated in secretion of IL1β, IL18 and intracellular alarmins. Akin to these factors, it may have beneficial roles in controlling pathogen replication, but become detrimental in the context of chronic autoinflammatory diseases. Inflammasomes are increasingly implicated in induction of additional regulated cell death modes such as pyronecrosis and apoptosis. In this review, we overview recent advances in inflammasome-associated cell death research, illustrating the polyvalent roles of these macromolecular platforms in regulated cell death signaling. PMID:27048821

  17. Metabolic control of cell death

    PubMed Central

    Green, Douglas R.; Galluzzi, Lorenzo; Kroemer, Guido

    2014-01-01

    Summary Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries including oxidative phosphorylation and transport of metabolites across membranes may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of “metabolic checkpoints” that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss. PMID:25237106

  18. Time-Lapse Imaging of Cell Death.

    PubMed

    Wallberg, Fredrik; Tenev, Tencho; Meier, Pascal

    2016-03-01

    The best approach to distinguish between necrosis and apoptosis is time-lapse video microscopy. This technique enables a biological process to be photographed at regular intervals over a period, which may last from a few hours to several days, and can be applied to cells in culture or in vivo. We have established two time-lapse microscopy methods based on different ways of calculating cell death: semiautomated and automated. In the semiautomated approach, cell death can be visualized by staining with combinations of Alexa Fluor 647-conjugated Annexin V and Sytox Green (SG), or Annexin V(FITC) and Propidium iodide (PI). The automated method is similar except that all cells are labeled with dyes. This allows faster quantification of data. To this end Cell Tracker Green is used to label all cells at time zero in combination with PI and Alexa Fluor 647-conjugated Annexin V. Necrotic cell death is accompanied by either simultaneous labeling with Annexin V and PI or SG (double-positive), or direct PI or SG staining. Additionally, necrotic cells display characteristic morphology, such as cytoplasmic swelling. In contrast to necrosis where membrane permeabilization is an early event, cells that die by apoptosis lose their membrane permeability relatively late. Therefore, the time between Annexin V staining and PI or SG uptake (double-positive) can be used to distinguish necrosis from apoptosis. This protocol describes the analysis of cell death by time-lapse imaging of HT1080 and L929 cells stained with these dyes, but it can be readily adapted to other cell types of interest. PMID:26933245

  19. Cell death in the nervous system

    PubMed Central

    Bredesen, Dale E.; Rao, Rammohan V.; Mehlen, Patrick

    2014-01-01

    Neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease trigger neuronal cell death through endogenous suicide pathways. Surprisingly, although the cell death itself may occur relatively late in the course of the degenerative process, the mediators of the underlying cell-death pathways have shown promise as potential therapeutic targets. PMID:17051206

  20. Caspase-1 induced pyroptotic cell death

    PubMed Central

    Miao, Edward A.; Rajan, Jayant V.; Aderem, Alan

    2013-01-01

    Summary Programmed cell death is a necessary part of development and tissue homeostasis enabling the removal of unwanted cells. In the setting of infectious disease, cells that have been commandeered by microbial pathogens become detrimental to the host. When macrophages and dendritic cells are compromised in this way, they can be lysed by pyroptosis, a cell death mechanism that is distinct from apoptosis and oncosis/necrosis. Pyroptosis is triggered by Caspase-1 after its activation by various inflammasomes, and results in lysis of the affected cell. Both pyroptosis and apoptosis are programmed cell death mechanisms, but are dependent on different caspases, unlike oncosis. Similar to oncosis, and unlike apoptosis, pyroptosis results in cellular lysis and release of the cytosolic contents to the extracellular space. This event is predicted to be inherently inflammatory, and additionally coincides with IL-1β and IL-18 secretion. We discuss the role of distinct inflammasomes, including NLRC4, NLRP3 and AIM2, as well as the role of the ASC focus in Caspase-1 signaling. We further review the importance of pyroptosis in vivo as a potent mechanism to clear intracellular pathogens. PMID:21884178

  1. Cell death pathways associated with PDT

    NASA Astrophysics Data System (ADS)

    Kessel, David; Reiners, John J., Jr.

    2006-02-01

    Photodynamic therapy leads to both direct and indirect tumor cell death. The latter also involves the consequences of vascular shut-down and immunologic effects. While these factors are a major factor in tumor eradication, there is usually an element of direct cell killing that can reduce the cell population by as much as 2-3 logs. Necrosis was initially believed to represent the predominant PDT death mechanism. An apoptotic response to PDT was first reported by Oleinick in 1991, using a sensitizer that targets the anti-apoptotic protein Bcl-2. Apoptosis leads to fragmentation of DNA and of cells into apoptotic bodies that are removed by phagocytosis. Inflammatory effects are minimized, and the auto- catalytic elements of the process can amplify the death signal. In this study, we examined consequences of Bcl-2 photodamage by a porphycene sensitizer that targets the ER and causes photodamage to the anti-apoptotic protein Bcl-2. Death patterns after Bcl-2 inactivation by a small-molecular antagonist were also assessed. In addition to apoptosis, we also characterized a hitherto undescribed PDT effect, the initiation of autophagy. Autophagy was initially identified as a cell survival pathway, allowing the recycling of components as nutrients become scarce. We propose that autophagy can also represent both a potential survival pathway after PDT damage to cellular organelles, as well as a cell-death pathway. Recent literature reports indicate that autophagy, as well as apoptosis, can be evoked after down-regulation of Bcl-2, a result consistent with results reported here.

  2. Cell death in the cardiovascular system

    PubMed Central

    Clarke, Murray; Bennett, Martin; Littlewood, Trevor

    2007-01-01

    Cell death is important for both development and tissue homeostasis in the adult. As such, it is tightly controlled and deregulation is associated with diverse pathologies; for example, regulated cell death is involved in vessel remodelling during development or following injury, but deregulated death is implicated in pathologies such as atherosclerosis, aneurysm formation, ischaemic and dilated cardiomyopathies and infarction. We describe the mechanisms of cell death and its role in the normal physiology and various pathologies of the cardiovascular system. PMID:16547202

  3. [Morphological and biochemical criteria for cell death].

    PubMed

    Chernikov, V P; Belousova, T A; Kakturskiĭ, L V

    2010-01-01

    The state-of-the-art of classifications of and criteria for cell death in the light of the 2009 recommendations of the Nomenclature Committee on Cell Death is presented as a lecture. Motivation is given for the necessity of using the unified criteria in the description of cell death and more than one study in its verification. The major structural and biochemical signs of four typical types of cell death--apoptosis, autophagia, keratinization, and necrosis are compared. Data are given on the major atypical forms of cell death--mitotic catastrophe, anoikis, exitotoxicity, Wallerian degeneration, paraptosis, pyroptosis, pyronecrosis, and entosis. PMID:20734836

  4. How cell death shapes cancer

    PubMed Central

    Labi, V; Erlacher, M

    2015-01-01

    Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis. PMID:25741600

  5. Apoptotic Cell Death in Neuroblastoma

    PubMed Central

    Li, Yuanyuan; Nakagawara, Akira

    2013-01-01

    Neuroblastoma (NB) is one of the most common malignant solid tumors in childhood, which derives from the sympathoadrenal lineage of the neural crest and exhibits extremely heterogeneous biological and clinical behaviors. The infant patients frequently undergo spontaneous regression even with metastatic disease, whereas the patients of more than one year of age who suffer from disseminated disease have a poor outcome despite intensive multimodal treatment. Spontaneous regression in favorable NBs has been proposed to be triggered by nerve growth factor (NGF) deficiency in the tumor with NGF dependency for survival, while aggressive NBs have defective apoptotic machinery which enables the tumor cells to evade apoptosis and confers the resistance to treatment. This paper reviews the molecules and pathways that have been recently identified to be involved in apoptotic cell death in NB and discusses their potential prospects for developing more effective therapeutic strategies against aggressive NB. PMID:24709709

  6. Detection of Cell Death in Drosophila Tissues

    PubMed Central

    Vasudevan, Deepika; Ryoo, Hyung Don

    2016-01-01

    Drosophila has served as a particularly attractive model to study cell death due to the vast array of tools for genetic manipulation under defined spatial and temporal conditions in vivo as well as in cultured cells. These genetic methods have been well supplemented by enzymatic assays and a panel of antibodies recognizing cell death markers. This chapter discusses reporters, mutants and assays used by various laboratories to study cell death in the context of development and in response to external insults. PMID:27108437

  7. ACCELERATED CELL DEATH2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis

    PubMed Central

    Pattanayak, Gopal K.; Venkataramani, Sujatha; Hortensteiner, Stefan; Kunz, Lukas; Christ, Bastien; Moulin, Michael; Smith, Alison G.; Okamoto, Yukihiro; Tamiaki, Hitoshi; Sugishima, Masakazu; Greenberg, Jean T.

    2012-01-01

    SUMMARY The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin-related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunctions. In plants with acd2 and ACD2+ sectors, ACD2 functions cell autonomously, implicating a pro-death ACD2 substrate as cell non-autonomous in promoting spreading PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely mobile within cells. Two different light-dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active; the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together the data suggest that ACD2 localizes dynamically during infection to protect cells from pro-death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria. PMID:21988537

  8. What cell death does in development.

    PubMed

    Zakeri, Zahra; Penaloza, Carlos G; Smith, Kyle; Ye, Yixia; Lockshin, Richard A

    2015-01-01

    Cell death is prominent in gametogenesis and shapes and sculpts embryos. In non-mammalian embryos one sees little or no cell death prior to the maternal-zygotic transition, but, in mammalian embryos, characteristic deaths of one or two cells occur at the end of compaction and are apparently necessary for the separation of the trophoblast from the inner cell mass. Considerable sculpting of the embryo occurs by cell deaths during organogenesis, and appropriate cell numbers, especially in the CNS and in the immune system, are generated by massive overproduction of cells and selection of a few, with death of the rest. The timing, identity, and genetic control of specific cells that die have been well documented in Caenorhabditis, but in other embryos the stochastic nature of the deaths limit our ability to do more than identify the regions in which cells will die. Complete disruption of the cell death machinery can be lethal, but many mutations of the regulatory machinery yield only modest or no phenotypes, indicating substantial redundancy and compensation of regulatory mechanisms. Most of the deaths are apoptotic and are identified by techniques used to recognize apoptosis, but techniques identifying lysosomes (whether in dying or involuting cells or in the phagocytes that invade the tissue) also reveal patterns of cell death. Aberrant cell deaths that produce known phenotypes are typically localized, indicating that the mechanism of activating a programmed death in a specific region, rather than the mechanism of death, is aberrant. These results lead us to conclude that we need to know much more about the conversations among cells that lead cells to commit suicide. PMID:26374521

  9. Programmed Cell Death During Caenorhabditis elegans Development.

    PubMed

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-08-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  10. Cell death regulates muscle fiber number.

    PubMed

    Sarkissian, Tatevik; Arya, Richa; Gyonjyan, Seda; Taylor, Barbara; White, Kristin

    2016-07-01

    Cell death can have both cell autonomous and non-autonomous roles in normal development. Previous studies have shown that the central cell death regulators grim and reaper are required for the developmentally important elimination of stem cells and neurons in the developing central nervous system (CNS). Here we show that cell death in the nervous system is also required for normal muscle development. In the absence of grim and reaper, there is an increase in the number of fibers in the ventral abdominal muscles in the Drosophila adult. This phenotype can be partially recapitulated by inhibition of cell death specifically in the CNS, indicating a non-autonomous role for neuronal death in limiting muscle fiber number. We also show that FGFs produced in the cell death defective nervous system are required for the increase in muscle fiber number. Cell death in the muscle lineage during pupal stages also plays a role in specifying fiber number. Our work suggests that FGFs from the CNS act as a survival signal for muscle founder cells. Thus, proper muscle fiber specification requires cell death in both the nervous system and in the developing muscle itself. PMID:27131625

  11. Nonthermal-plasma-mediated animal cell death

    NASA Astrophysics Data System (ADS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  12. [Programmed cell death comes in many flavors].

    PubMed

    Cabon, Lauriane; Martinez-Torres, Ana-Carolina; Susin, Santos A

    2013-12-01

    Apoptosis is nowadays what comes first to your scientist mind when someone mentions cellular suicide. However this is not the sole form of programmed cell death and many other alternative or atypical pathways have now been described. These pathways are indeed rather preferred to apoptosis in some instances based on tissue origin, cell type or development stage of the target cell. In this review, we describe many different programmed cell death subtypes according to their characteristics. Discrete, brutal, final or singular cell death pathways all participate in the elimination of unwanted, damaged or dangerous cells in organisms hence contributing to our knowledge of this particular feature of living beings: dying! Through description of anoikis, necroptosis, entosis, netosis, pyroptosis or ferroptosis, we have no choice but to realize that programmed cell death comes in many flavors. PMID:24356142

  13. Joint aging and chondrocyte cell death

    PubMed Central

    Grogan, Shawn P; D’Lima, Darryl D

    2010-01-01

    Articular cartilage extracellular matrix and cell function change with age and are considered to be the most important factors in the development and progression of osteoarthritis. The multifaceted nature of joint disease indicates that the contribution of cell death can be an important factor at early and late stages of osteoarthritis. Therefore, the pharmacologic inhibition of cell death is likely to be clinically valuable at any stage of the disease. In this article, we will discuss the close association between diverse changes in cartilage aging, how altered conditions influence chondrocyte death, and the implications of preventing cell loss to retard osteoarthritis progression and preserve tissue homeostasis. PMID:20671988

  14. Cell death independent of caspases: a review.

    PubMed

    Bröker, Linda E; Kruyt, Frank A E; Giaccone, Giuseppe

    2005-05-01

    Patterns of cell death have been divided into apoptosis, which is actively executed by specific proteases, the caspases, and accidental necrosis. However, there is now accumulating evidence indicating that cell death can occur in a programmed fashion but in complete absence and independent of caspase activation. Alternative models of programmed cell death (PCD) have therefore been proposed, including autophagy, paraptosis, mitotic catastrophe, and the descriptive model of apoptosis-like and necrosis-like PCD. Caspase-independent cell death pathways are important safeguard mechanisms to protect the organism against unwanted and potential harmful cells when caspase-mediated routes fail but can also be triggered in response to cytotoxic agents or other death stimuli. As in apoptosis, the mitochondrion can play a key role but also other organelles such as lysosomes and the endoplasmic reticulum have an important function in the release and activation of death factors such as cathepsins, calpains, and other proteases. Here we review the various models of PCD and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of caspase-independent cell death pathways for cancer. PMID:15867207

  15. Mitochondrial involvement in cell death of non-mammalian eukaryotes

    PubMed Central

    Abdelwahid, Eltyeb; Rolland, Stephane; Teng, Xinchen; Conradt, Barbara; Hardwick, J. Marie; White, Kristin

    2010-01-01

    Although mitochondria are essential organelles for long-term survival of eukaryotic cells, recent discoveries in biochemistry and genetics have advanced our understanding of the requirements for mitochondria in cell death. Much of what we understand about cell death is based on the identification of conserved cell death genes in Drosophila melanogaster and Caenorhabditis elegans. However, the role of mitochondria in cell death in these models has been much less clear. Considering the active role that mitochondria play in apoptosis in mammalian cells, the mitochondrial contribution to cell death in non-mammalian systems has been an area of active investigation. In this article, we review the current research on this topic in three non-mammalian models, C. elegans, Drosophila and Saccharomyces cerevisiae. In addition, we discuss how non-mammalian models have provided important insight into the mechanisms of human disease as they relate to the mitochondrial pathway of cell death. The unique perspective derived from each of these model systems provides a more complete understanding of mitochondria in programmed cell death. PMID:20950655

  16. Staying alive: cell death in antiviral immunity.

    PubMed

    Upton, Jason W; Chan, Francis Ka-Ming

    2014-04-24

    Programmed cell death is an integral part of host defense against invading intracellular pathogens. Apoptosis, programmed necrosis, and pyroptosis each serve to limit pathogen replication in infected cells, while simultaneously promoting the inflammatory and innate responses that shape effective long-term host immunity. The importance of carefully regulated cell death is evident in the spectrum of inflammatory and autoimmune disorders caused by defects in these pathways. Moreover, many viruses encode inhibitors of programmed cell death to subvert these host responses during infection, thereby facilitating their own replication and persistence. Thus, as both virus and cell vie for control of these pathways, the battle for survival has shaped a complex host-pathogen interaction. This review will discuss the multifaceted role that programmed cell death plays in maintaining the immune system and its critical function in host defense, with a special emphasis on viral infections. PMID:24766891

  17. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  18. Plant Proteases Involved in Regulated Cell Death.

    PubMed

    Zamyatnin, A A

    2015-12-01

    Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death. PMID:26878575

  19. Entosis and Related Forms of Cell Death within Cells.

    PubMed

    Wang, Y; Wang, X-D

    2015-01-01

    By eliminating the unneeded or mutant cells, programmed cell death actively participates in a wide range of biological processes from embryonic development to homeostasis maintenance in adult. Continuing efforts have identified multiple cell death pathways, with apoptosis, necrosis and autophage the mostly studied. Recently a unique cell death pathway called "cell-in-cell death" has been defined. Unlike traditional cell death pathways, cell-in-cell death, characterized by cell death within another cell, is triggered by the invasion of one cell into its neighbor and executed by either lysosome-dependent degradation or caspase-dependent apoptosis. With remarkable progresses on cell-in-cell over past few years, multiple mechanisms, including entosis, cannibalism and emperitosis, are found to be responsible for cell-in-cell death. Some key questions, such as specific biochemical markers to distinguish precisely the properties of different cell-in-cell structures and the physiological and pathological relevance, remain to be addressed. In light of this situation and a surge of interests, leading scientists in this field intend to share with readers current research progresses on cell-in-cell structures from different model systems through this special edition on cell-in-cell. The mechanistic advances will be highlighted while the future researches be speculated. PMID:26511710

  20. Mitochondrial Cell Death Pathways in Caenorhabiditis elegans.

    PubMed

    Seervi, Mahendra; Xue, Ding

    2015-01-01

    Programmed cell death is an evolutionarily conserved process essential for animal development and tissue homeostasis. Mitochondria have been demonstrated to play a central role in regulating both the activation and the execution of apoptosis. In particular, mitochondria release multiple proapoptotic factors from its intermembrane space, leading to both caspase-dependent and -independent cell death. Despite the pivotal roles of invertebrate animal models, Caenorhabiditis elegans and Drosophila melanogaster, in deciphering conserved pathways and mechanisms of programmed cell death, the importance of mitochondria to apoptosis of invertebrates remains elusive and largely unexplored. Recent studies have corroborated significant association between mitochondria and apoptosis in C. elegans, making it a thrust area of investigations. In this review, we detail the roles of mitochondrial proteins in mediating execution of cell death in C. elegans, including chromosome fragmentation, phosphatidylserine externalization, and elimination of mitochondria, and discuss the potential roles of mitochondria in the activation of C. elegans cell death. The combination of traditional powerful genetic tools and the emergence of the multiple new reverse genetic techniques, including the highly efficient CRISPR/Cas9 gene-editing method, should make C. elegans an ideal animal model for analyzing mitochondrial cell death pathways and associated regulatory mechanisms. PMID:26431563

  1. Timing determines dexamethasone and rituximab induced synergistic cell death.

    PubMed

    Adem, Jemal; Eray, Mine; Eeva, Jonna; Nuutinen, Ulla; Pelkonen, Jukka

    2016-07-01

    Dysregulation of cell death signaling pathways in many cell types such as B lymphocytes (B-cells) can lead to cancer, for example to B-cell lymphomas. Rituximab (RTX) and glucocorticoids such as dexamethasone (Dex) are widely used to treat hematological malignancies including B-cell lymphomas. Although the combination of Dex and RTX improves the treatment outcome of lymphoma patients, most lymphomas remain incurable diseases. Therefore, a detailed investigation of Dex- and RTX-induced signaling might provide new insights into the therapeutic benefits of these drugs. In this paper, we describe Dex- and RTX-induced signaling pathways and their downstream target proteins/cells. In addition, we also overview how the signaling initiated by Dex and RTX modulate the outcome of Dex- and RTX-mediated cell death in lymphoma cells. The combination of Dex and RTX results in massive cell death in lymphoma cells. However, pretreatment of lymphoma cells or mononuclear cytotoxic cells with Dex followed by RTX leads to a decrease in apoptosis or it impairs antibody-dependent cellular cytotoxicity (ADCC). RTX-mediated ADCC is impaired by Dex-induced depletion of cytotoxic cells, whereas RTX-mediated short-term ERK1/2 activation decreases Dex-induced apoptosis. Therefore, the timing of the combination of Dex and RTX is a determining factor for the synergistic effect of these cell death inducing agents. PMID:27290654

  2. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death

    PubMed Central

    Kwon, Min-Young; Park, Eunhee

    2015-01-01

    The oncogenic RAS-selective lethal small molecule Erastin triggers a unique iron-dependent form of nonapoptotic cell death termed ferroptosis. Ferroptosis is dependent upon the production of intracellular iron-dependent reactive oxygen species (ROS), but not other metals. However, key regulators remain unknown. The heme oxygenase (HO) is a major intracellular source of iron. In this study, the role of heme oxygenase in Erastin-triggered ferroptotic cancer cell death has been investigated. Zinc protoporphyrin IX (ZnPP), a HO-1 inhibitor, prevented Erastin-triggered ferroptotic cancer cell death. Furthermore, Erastin induced the protein and mRNA levels of HO-1 in HT-1080 fibrosarcoma cells. HO-1+/+ and HO-1−/− fibroblast, HO-1 overexpression, and chycloheximide-treated experiments revealed that the expression of HO-1 has a decisive effects in Erastin-triggered cell death. Hemin and CO-releasing molecules (CORM) promote Erastin-induced ferroptotic cell death, not by biliverdin and bilirubin. In addition, hemin and CORM accelerate the HO-1 expression in the presence of Erastin and increase membranous lipid peroxidation. Thus, HO-1 is an essential enzyme for iron-dependent lipid peroxidation during ferroptotic cell death. PMID:26405158

  3. Programmed cell death: many ways for cells to die decently.

    PubMed

    Jäättelä, Marja

    2002-01-01

    Apoptosis, a cell death programme mediated by the caspase family of cysteine proteases, is essential for appropriate removal of excess cells in many developmental and physiological settings. It would, however, be very dangerous for the organism to depend on a single protease family for clearance of unwanted and potentially dangerous cells. Indeed, the exclusive role of caspases in the execution of programmed cell death (PCD) has been challenged recently, and the understanding of the molecular control of alternative death pathways is emerging. Here, I review recently discovered triggers and molecular regulators of caspase-independent cell death programmes and discuss their potential as therapeutic targets for the treatment of cancer. PMID:12523503

  4. Apoptotic cell death induced by intracellular proteolysis.

    PubMed

    Williams, M S; Henkart, P A

    1994-11-01

    To mimic the injection of granzymes into target cells by cytotoxic lymphocytes or the activation of endogenous proteases in programmed cell death, the proteases chymotrypsin, proteinase K, or trypsin were loaded into the cytoplasm of several different cell types using the osmotic lysis of pinosomes technique. Internalization of these proteases caused cell lysis within several hours, accompanied by extensive nuclear damage in most but not all combinations of target cells and proteases. This nuclear damage, quantitated by DNA release from nuclei, was associated with apoptotic features including DNA fragmentation into nucleosomal ladders, chromatin condensation, nuclear fragmentation, and membrane blebbing. Agents reported to block programmed cell death, including aurintricarboxylic acid, inhibitors of energy metabolism, and protein or RNA synthesis, failed to block this protease-induced death, although some inhibited nuclear damage. In separate experiments, introduction of staphylococcal nuclease into cells led to near complete (at least 75% of total) nucleosomal DNA fragmentation within 6 to 8 h. Condensation of chromatin did not accompany this fragmentation to the same extent, and there was approximately a 10-h lag between half-maximal DNA fragmentation and 50% loss of membrane integrity. The results suggest that activation of intracellular proteases during cell death by any molecular pathway could give rise to apoptotic morphology and DNA fragmentation. PMID:7930626

  5. The intersection of cell death and inflammasome activation.

    PubMed

    Vince, James E; Silke, John

    2016-06-01

    Inflammasomes sense cellular danger to activate the cysteine-aspartic protease caspase-1, which processes precursor interleukin-1β (IL-1β) and IL-18 into their mature bioactive fragments. In addition, activated caspase-1 or the related inflammatory caspase, caspase-11, can cleave gasdermin D to induce a lytic cell death, termed pyroptosis. The intertwining of IL-1β activation and cell death is further highlighted by research showing that the extrinsic apoptotic caspase, caspase-8, may, like caspase-1, directly process IL-1β, activate the NLRP3 inflammasome itself, or bind to inflammasome complexes to induce apoptotic cell death. Similarly, RIPK3- and MLKL-dependent necroptotic signaling can activate the NLRP3 inflammasome to drive IL-1β inflammatory responses in vivo. Here, we review the mechanisms by which cell death signaling activates inflammasomes to initiate IL-1β-driven inflammation, and highlight the clinical relevance of these findings to heritable autoinflammatory diseases. We also discuss whether the act of cell death can be separated from IL-1β secretion and evaluate studies suggesting that several cell death regulatory proteins can directly interact with, and modulate the function of, inflammasome and IL-1β containing protein complexes. PMID:27066895

  6. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  7. Capsaicin induces immunogenic cell death in human osteosarcoma cells

    PubMed Central

    Jin, Tao; Wu, Hongyan; Wang, Yanlin; Peng, Hao

    2016-01-01

    Immunogenic cell death (ICD) is characterized by the early surface exposure of calreticulin (CRT). As a specific signaling molecule, CRT on the surface of apoptotic tumor cells mediates the recognition and phagocytosis of tumor cells by antigen presenting cells. To date, only a small quantity of anti-cancer chemicals have been found to induce ICD, therefore it is clinically important to identify novel chemicals that may induce ICD. The purpose of the present study is to explore the function of capsaicin in inducing ICD. In the current study, MTT assays were used to examine the growth inhibiting effects of MG-63 cells when they were treated with capsaicin or cisplatin. Mitochondrial membrane potential and western blot analysis were used to investigate capsaicin- and cisplatin-induced apoptosis. In addition, the effects of capsaicin and cisplatin were evaluated for their abilities in inducing calreticulin membrane translocation and mediating ICD in human osteosarcoma cells (MG-63). The results demonstrated that capsaicin and cisplatin can induce the apoptosis of MG-63 cells. However, only capsaicin induced a rapid translocation of CRT from the intracellular space to the cell surface. Treatment with capsaicin increased phagocytosis of MG-63 cells by dendritic cells (DCs), and these MG-63-loaded DCs could efficiently stimulate the secretion of IFN-γ by lymphocytes. These results identify capsaicin as an anti-cancer agent capable of inducing ICD in human osteosarcoma cells in vitro. PMID:27446273

  8. How Kidney Cell Death Induces Renal Necroinflammation.

    PubMed

    Mulay, Shrikant R; Kumar, Santhosh V; Lech, Maciej; Desai, Jyaysi; Anders, Hans-Joachim

    2016-05-01

    The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury. PMID:27339382

  9. Optogenetic apoptosis: light-triggered cell death.

    PubMed

    Hughes, Robert M; Freeman, David J; Lamb, Kelsey N; Pollet, Rebecca M; Smith, Weston J; Lawrence, David S

    2015-10-01

    An optogenetic Bax has been designed that facilitates light-induced apoptosis. We demonstrate that mitochondrial recruitment of a genetically encoded light-responsive Bax results in the release of mitochondrial proteins, downstream caspase-3 cleavage, changes in cellular morphology, and ultimately cell death. Mutagenesis of a key phosphorylatable residue or modification of the C-terminus mitigates background (dark) levels of apoptosis that result from Bax overexpression. The mechanism of optogenetic Bax-mediated apoptosis was explored using a series of small molecules known to interfere with various steps in programmed cell death. Optogenetic Bax appears to form a mitochondrial apoptosis-induced channel analogous to that of endogenous Bax. PMID:26418181

  10. ETosis: A Microbicidal Mechanism beyond Cell Death

    PubMed Central

    Guimarães-Costa, Anderson B.; Nascimento, Michelle T. C.; Wardini, Amanda B.; Pinto-da-Silva, Lucia H.; Saraiva, Elvira M.

    2012-01-01

    Netosis is a recently described type of neutrophil death occurring with the release to the extracellular milieu of a lattice composed of DNA associated with histones and granular and cytoplasmic proteins. These webs, initially named neutrophil extracellular traps (NETs), ensnare and kill microorganisms. Similarly, other cell types, such as eosinophils, mast cells, and macrophages, can also dye by this mechanism; thus, it was renamed as ETosis, meaning death with release of extracellular traps (ETs). Here, we review the mechanism of NETosis/etosis, emphasizing its role in diseases caused by protozoan parasites, fungi, and viruses. PMID:22536481

  11. Regulated cell death and adaptive stress responses.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis. PMID:27048813

  12. The deaths of a cell: how language and metaphor influence the science of cell death.

    PubMed

    Reynolds, Andrew S

    2014-12-01

    Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms. PMID:25085023

  13. Peroxiredoxins and the Regulation of Cell Death

    PubMed Central

    Hampton, Mark B.; O’Connor, Karina M.

    2016-01-01

    Cell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins. The exact mechanism of this signaling is unclear, but increased understanding offers the potential to promote or inhibit apoptosis through modulating the redox environment of cells. Peroxiredoxins are thiol peroxidases that remove hydroperoxides, and are also emerging as important players in cellular redox signaling. This review discusses the potential role of peroxiredoxins in the regulation of apoptosis, and also their ability to act as biomarkers of redox changes during the initiation and progression of cell death. PMID:26810076

  14. Proteases in renal cell death: calpains mediate cell death produced by diverse toxicants.

    PubMed

    Schnellmann, R G; Williams, S W

    1998-09-01

    The role of proteases in renal cell death has received limited investigation. Calpains are non-lysosomal cysteine proteases that are Ca+2 activated. Calpain inhibitors that block the active site of calpains (calpain inhibitor 1 and 2) or the Ca+2 binding domain of calpains (PD150606) decreased calpain activity in rabbit renal proximal tubule (RPT) suspensions. The inhibition of calpain activity decreased cell death produced by the diverse toxicants antimycin A (mitochondrial inhibitor), tetrafluroethyl-L-cysteine (nephrotoxic halocarbon), bromohydroquinone (nephro-toxic quinone), t-butylhydroperoxide (model oxidant) and ionomycin (Ca+2 ionophore). In summary, calpains appear to play a common and critical role in cell injury produced by diverse toxicants with different mechanisms of action. The general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido (4-guanidino)-butane (E-64) decreased antimycin A- and tetrafluoroethyl-L-cysteine-induced cell death but had no effect on bromohydroquinone- or t-butylhydroperoxide-induced cell death. Serine/cysteine protease inhibitors (antipain, leupeptin) were not cytoprotective to RPT exposed to any of the toxicants. The cytoprotection associated with E-64 correlated with inhibition of lysosomal cathepsins and E-64 was only cytoprotective after some cell death had occurred. Since some cell death occurred prior to the E-64 cytoprotective effect, lysosomal cathepsins may be released from dying cells and subsequently target the remaining viable cells. PMID:9768434

  15. Systems Approaches to Preventing Transplanted Cell Death in Cardiac Repair

    PubMed Central

    Robey, Thomas E.; Saiget, Mark K; Reinecke, Hans; Murry, Charles E.

    2008-01-01

    Stem cell transplantation may repair the injured heart, but tissue regeneration is limited by death of transplanted cells. Most cell death occurs in the first few days post-transplantation, likely from a combination of ischemia, anoikis and inflammation. Interventions known to enhance transplanted cell survival include heat shock, over-expressing anti-apoptotic proteins, free radical scavengers, anti-inflammatory therapy and co-delivery of extracellular matrix molecules. Combinatorial use of such interventions markedly enhances graft cell survival, but death still remains a significant problem. We review these challenges to cardiac cell transplantation and present an approach to systematically address them. Most anti-death studies use histology to assess engraftment, which is time- and labor-intensive. To increase throughput, we developed two biochemical approaches to follow graft viability in the mouse heart. The first relies on LacZ enyzmatic activity to track genetically modified cells, and the second quantifies human genomic DNA content using repetitive Alu sequences. Both show linear relationships between input cell number and biochemical signal, but require correction for the time lag between cell death and loss of signal. Once optimized, they permit detection of as few as 1 graft cell in 40,000 host cells. Pro-survival effects measured biochemically at three days predict long-term histological engraftment benefits. These methods permitted identification of carbamylated erythropoietin (CEPO) as a pro-survival factor for human embryonic stem cell-derived cardiomyocyte grafts. CEPO’s effects were additive to heat shock, implying independent survival pathways. This system should permit combinatorial approaches to enhance graft viability in a fraction of the time required for conventional histology. PMID:18466917

  16. Analysis of cell death inducing compounds.

    PubMed

    Spicker, Jeppe S; Pedersen, Henrik Toft; Nielsen, Henrik Bjørn; Brunak, Søren

    2007-11-01

    Biomarkers for early detection of toxicity hold the promise of improving the failure rates in drug development. In the present study, gene expression levels were measured using full-genome RAE230 version 2 Affymetrix GeneChips on rat liver tissue 48 h after administration of six different compounds, three toxins (ANIT, DMN and NMF) and three non-toxins (Caeruelein, Dinitrophenol and Rosiglitazone). We identified three gene transcripts with exceptional predictive performance towards liver toxicity and/or changes in histopathology. The three genes were: glucokinase regulatory protein (GCKR), ornithine aminotransferase (OAT) and Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase) (Cyp2C29). RT-PCR for these three genes was performed and four additional compounds were included for validation. The quantitative RT-PCR analysis confirmed the findings based on the microarray data and using the three genes a classification rate of 55 of 57 samples was achieved for the classification of not toxic versus toxic. The single most promising biomarker (OAT) alone resulted in a surprisingly 100% correctly classified samples. OAT has not previously been linked to toxicity and cell death in the literature and the novel finding represents a putative hepatotoxicity biomarker. PMID:17503021

  17. Sickle Cell Trait Not Linked to Early Death in Study

    MedlinePlus

    ... html Sickle Cell Trait Not Linked to Early Death in Study However, black soldiers with the gene ... cell gene variant, are at risk of premature death. People with the sickle cell gene variant do ...

  18. Cell Death and Autophagy in TB

    PubMed Central

    Moraco, Andrew H.; Kornfeld, Hardy

    2014-01-01

    Mycobacterium tuberculosis has succeeded in infecting one third of the human race though inhibition or evasion of innate and adaptive immunity. The pathogen is a facultative intracellular parasite that uses the niche provided by mononuclear phagocytes for its advantage. Complex interactions determine whether the bacillus will or will not be delivered to acidified lysosomes, whether the host phagocyte will survive infection or die, and whether the timing and mode of cell death works to the advantage of the host or the pathogen. Here we discuss cell death and autophagy in TB. These fundamental processes of cell biology feature in all aspects of TB pathogenesis and may be exploited to the treatment or prevention of TB disease. PMID:25453227

  19. Blockade of maitotoxin-induced oncotic cell death reveals zeiosis

    PubMed Central

    Estacion, Mark; Schilling, William P

    2002-01-01

    Background Maitotoxin (MTX) initiates cell death by sequentially activating 1) Ca2+ influx via non-selective cation channels, 2) uptake of vital dyes via formation of large pores, and 3) release of lactate dehydrogenase, an indication of cell lysis. MTX also causes formation of membrane blebs, which dramatically dilate during the cytolysis phase. To determine the role of phospholipase C (PLC) in the cell death cascade, U73122, a specific inhibitor of PLC, and U73343, an inactive analog, were examined on MTX-induced responses in bovine aortic endothelial cells. Results Addition of either U73122 or U73343, prior to MTX, produced a concentration-dependent inhibition of the cell death cascade (IC50 ≈ 1.9 and 0.66 μM, respectively) suggesting that the effect of these agents was independent of PLC. Addition of U73343 shortly after MTX, prevented or attenuated the effects of the toxin, but addition at later times had little or no effect. Time-lapse videomicroscopy showed that U73343 dramatically altered the blebbing profile of MTX-treated cells. Specifically, U73343 blocked bleb dilation and converted the initial blebbing event into "zeiosis", a type of membrane blebbing commonly associated with apoptosis. Cells challenged with MTX and rescued by subsequent addition of U73343, showed enhanced caspase-3 activity 48 hr after the initial insult, consistent with activation of the apoptotic program. Conclusions Within minutes of MTX addition, endothelial cells die by oncosis. Rescue by addition of U73343 shortly after MTX showed that a small percentage of cells are destined to die by oncosis, but that a larger percentage survive; cells that survive the initial insult exhibit zeiosis and may ultimately die by apoptotic mechanisms. PMID:11825342

  20. [Cell death in malignant tumors. Relevance of cell death regulation for metastasis].

    PubMed

    Roth, W

    2015-11-01

    Defects in the regulation of cell death are important causes for both the development and therapy resistance of malignant tumors. Several distinct, molecularly defined types of cell death are known, such as apoptosis, anoikis, and necroptosis. Moreover, the specific triggering of cell death plays an important role in the prevention of metastasis. The results of recent studies have shown that various types of cell death are pivotal at different steps of the metastasis cascade, in order to prevent cellular detachment, migration, invasion, intravasation, extravasation and the establishment of micrometastasis and macrometastasis. At the subcellular level, numerous links exist between cell death regulation and metastasis, specifically regarding signaling pathways and individual proteins with dual or multiple functions. As an example, the decoy receptor 3 protein (DcR3) functions both as an anti-apoptotic protein and as a direct promotor of invasion and migration of tumor cells. In summary, the specific triggering of cell death plays a pivotal role for the prevention of metastasis. On the other hand, the stepwise process of metastasis represents a mechanism of selection resulting in established metastases with a multiresistant phenotype which corresponds to the clinical observation that many metastasized cancers are therapy resistant. In the future, innovative diagnostic tests to individually predict the resistance pattern and possibilities to overcome resistance are urgently needed. PMID:26400565

  1. Programmed cell death during quinoa perisperm development

    PubMed Central

    Maldonado, Sara

    2013-01-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm—a morphologically and functionally similar, although genetically different tissue—were highlighted and discussed. PMID:23833197

  2. Role of polyphenols in cell death control.

    PubMed

    Giovannini, Claudio; Masella, Roberta

    2012-05-01

    Dietary consumption of fruit, vegetables, fish, and olive oil has been demonstrated to exert beneficial effects on human health. This finding may be due to the high content of antioxidant compounds including polyphenols. Current evidence strongly supports a contribution of polyphenols to the prevention of several chronic degenerative diseases such as cancer, atherosclerosis and cardiovascular diseases, central nervous system disorders, as well as aging. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process. Because of their ability to modulate cell death, polyphenols have been proposed as chemopreventive and therapeutic agents. This paper reviews and discusses the last 3-year findings related to the principal molecular mechanisms involved in the control of the balance between apoptosis and cell proliferation exerted by polyphenols. PMID:22584012

  3. Regulation of Ferroptotic Cancer Cell Death by GPX4

    PubMed Central

    Welsch, Matthew E.; Shimada, Kenichi; Skouta, Rachid; Viswanathan, Vasanthi S.; Cheah, Jaime H.; Clemons, Paul A.; Shamji, Alykhan F.; Clish, Clary B.; Brown, Lewis M.; Girotti, Albert W.; Cornish, Virginia W.; Schreiber, Stuart L.; Stockwell, Brent R.

    2014-01-01

    SUMMARY Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosisinducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death. PMID:24439385

  4. Low zinc environment induces stress signaling, senescence and mixed cell death modalities in colon cancer cells.

    PubMed

    Rudolf, Emil; Rudolf, Kamil

    2015-12-01

    Currently it is not clear what type of the final cellular response (i.e. cell death modality or senescence) is induced upon chronic intracellular zinc depletion in colon cancer cells. To address this question, isogenic colon cancer lines SW480 and SW620 exposed to low zinc environment were studied over the period of 6 weeks. Low zinc environment reduced total as well as free intracellular zinc content in both cell lines. Decreased intracellular zinc content resulted in changes in cellular proliferation, cell cycle distribution and activation of stress signaling. In addition, colonocytes with low zinc content displayed increased levels of oxidative stress, changes in mitochondrial activity but in the absence of significant DNA damage. Towards the end of treatment (4th-6th week), exposed cells started to change morphologically, and typical markers of senescence as well as cell death appeared. Of two examined colon cancer cell lines, SW480 cells proved to activate predominantly senescent phenotype, with frequent form of demise being necrosis and mixed cell death modality but not apoptosis. Conversely, SW620 cells activated mostly cell death, with relatively equal distribution of apoptosis and mixed types, while senescent phenotypes and necrosis were present only in a small fraction of cell populations. Addition of zinc at the beginning of 4th week of treatment significantly suppressed cell death phenotypes in both cell lines but had no significant effect on senescence. In conclusion, presented results demonstrate variability of responses to chronic zinc depletion in colon cancer as modeled in vitro. PMID:26446979

  5. Regulated cell death in diagnostic histopathology.

    PubMed

    Skenderi, Faruk; Vranic, Semir; Damjanov, Ivan

    2015-01-01

    Regulated cell death (RCD) is a controlled cellular process, essential for normal development, tissue integrity and homeostasis, and its dysregulation has been implicated in the pathogenesis of various conditions including developmental and immunological disorders, neurodegenerative diseases, and cancer. In this review, we briefly discuss the historical perspective and conceptual development of RCD, we overview recent classifications and some of the key players in RCD; finally we focus on current applications of RCD in diagnostic histopathology. PMID:26009238

  6. Cell death and deubiquitinases: perspectives in cancer.

    PubMed

    Bhattacharya, Seemana; Ghosh, Mrinal Kanti

    2014-01-01

    The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes. PMID:25121098

  7. Cell Death and Deubiquitinases: Perspectives in Cancer

    PubMed Central

    Bhattacharya, Seemana

    2014-01-01

    The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes. PMID:25121098

  8. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  9. Inhibition of regulated cell death by cell-penetrating peptides.

    PubMed

    Krautwald, Stefan; Dewitz, Christin; Fändrich, Fred; Kunzendorf, Ulrich

    2016-06-01

    Development of the means to efficiently and continuously renew missing and non-functional proteins in diseased cells remains a major goal in modern molecular medicine. While gene therapy has the potential to achieve this, substantial obstacles must be overcome before clinical application can be considered. A promising alternative approach is the direct delivery of non-permeant active biomolecules, such as oligonucleotides, peptides and proteins, to the affected cells with the purpose of ameliorating an advanced disease process. In addition to receptor-mediated endocytosis, cell-penetrating peptides are widely used as vectors for rapid translocation of conjugated molecules across cell membranes into intracellular compartments and the delivery of these therapeutic molecules is generally referred to as novel prospective protein therapy. As a broad coverage of the enormous amount of published data in this field is unrewarding, this review will provide a brief, focused overview of the technology and a summary of recent studies of the most commonly used protein transduction domains and their potential as therapeutic agents for the treatment of cellular damage and the prevention of regulated cell death. PMID:27048815

  10. Synchronized renal tubular cell death involves ferroptosis

    PubMed Central

    Skouta, Rachid; Himmerkus, Nina; Mulay, Shrikant R.; Dewitz, Christin; De Zen, Federica; Prokai, Agnes; Zuchtriegel, Gabriele; Krombach, Fritz; Welz, Patrick-Simon; Weinlich, Ricardo; Vanden Berghe, Tom; Vandenabeele, Peter; Pasparakis, Manolis; Bleich, Markus; Weinberg, Joel M.; Reichel, Christoph A.; Bräsen, Jan Hinrich; Kunzendorf, Ulrich; Anders, Hans-Joachim; Stockwell, Brent R.; Green, Douglas R.; Krautwald, Stefan

    2014-01-01

    Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia–reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy. PMID:25385600

  11. Current and Emerging Biomarkers of Cell Death in Human Disease

    PubMed Central

    Li, Kongning; Wu, Deng; Chen, Xi; Zhang, Ting; Zhang, Lu; Yi, Ying; Miao, Zhengqiang; Jin, Nana; Bi, Xiaoman; Wang, Hongwei; Wang, Dong

    2014-01-01

    Cell death is a critical biological process, serving many important functions within multicellular organisms. Aberrations in cell death can contribute to the pathology of human diseases. Significant progress made in the research area enormously speeds up our understanding of the biochemical and molecular mechanisms of cell death. According to the distinct morphological and biochemical characteristics, cell death can be triggered by extrinsic or intrinsic apoptosis, regulated necrosis, autophagic cell death, and mitotic catastrophe. Nevertheless, the realization that all of these efforts seek to pursue an effective treatment and cure for the disease has spurred a significant interest in the development of promising biomarkers of cell death to early diagnose disease and accurately predict disease progression and outcome. In this review, we summarize recent knowledge about cell death, survey current and emerging biomarkers of cell death, and discuss the relationship with human diseases. PMID:24949464

  12. Cellular functions of programmed cell death 5.

    PubMed

    Li, Ge; Ma, Dalong; Chen, Yingyu

    2016-04-01

    Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions. PMID:26775586

  13. Cannabinoid-associated cell death mechanisms in tumor models (review).

    PubMed

    Calvaruso, Giuseppe; Pellerito, Ornella; Notaro, Antonietta; Giuliano, Michela

    2012-08-01

    In recent years, cannabinoids (the active components of Cannabis sativa) and their derivatives have received considerable interest due to findings that they can affect the viability and invasiveness of a variety of different cancer cells. Moreover, in addition to their inhibitory effects on tumor growth and migration, angiogenesis and metastasis, the ability of these compounds to induce different pathways of cell death has been highlighted. Here, we review the most recent results generating interest in the field of death mechanisms induced by cannabinoids in cancer cells. In particular, we analyze the pathways triggered by cannabinoids to induce apoptosis or autophagy and investigate the interplay between the two processes. Overall, the results reported here suggest that the exploration of molecular mechanisms induced by cannabinoids in cancer cells can contribute to the development of safe and effective treatments in cancer therapy. PMID:22614735

  14. Cell Death Control by Matrix Metalloproteinases.

    PubMed

    Zimmermann, Dirk; Gomez-Barrera, Juan A; Pasule, Christian; Brack-Frick, Ursula B; Sieferer, Elke; Nicholson, Tim M; Pfannstiel, Jens; Stintzi, Annick; Schaller, Andreas

    2016-06-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  15. Autophagic cell death: Loch Ness monster or endangered species?

    PubMed

    Shen, Han-Ming; Codogno, Patrice

    2011-05-01

    The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals. PMID:21150268

  16. Lipid raft involvement in yeast cell growth and death

    PubMed Central

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases. PMID:23087902

  17. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  18. Ghrelin Inhibits Oligodendrocyte Cell Death by Attenuating Microglial Activation

    PubMed Central

    Lee, Jee Youn

    2014-01-01

    Background Recently, we reported the antiapoptotic effect of ghrelin in spinal cord injury-induced apoptotic cell death of oligodendrocytes. However, how ghrelin inhibits oligodendrocytes apoptosis, is still unknown. Therefore, in the present study, we examined whether ghrelin inhibits microglia activation and thereby inhibits oligodendrocyte apoptosis. Methods Using total cell extracts prepared from BV-2 cells activated by lipopolysaccharide (LPS) with or without ghrelin, the levels of p-p38 phosphor-p38 mitogen-activated protein kinase (p-p38MAPK), phospho-c-Jun N-terminal kinase (pJNK), p-c-Jun, and pro-nerve growth factor (proNGF) were examined by Western blot analysis. Reactive oxygen species (ROS) production was investigated by using dichlorodihydrofluorescein diacetate. To examine the effect of ghrelin on oligodendrocyte cell death, oligodendrocytes were cocultured in transwell chambers of 24-well plates with LPS-stimulated BV-2 cells. After 48 hours incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining were assessed. Results Ghrelin treatment significantly decreased levels of p-p38MAPK, p-JNK, p-c-Jun, and proNGF in LPS-stimulated BV-2 cells. ROS production increased in LPS-stimulated BV-2 cells was also significantly inhibited by ghrelin treatment. In addition, ghrelin significantly inhibited oligodendrocyte cell death when cocultured with LPS-stimulated BV-2 cells. Conclusion Ghrelin inhibits oligodendrocyte cell death by decreasing proNGF and ROS production as well as p38MAPK and JNK activation in activated microglia as an anti-inflammatory hormone. PMID:25309797

  19. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  20. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    PubMed Central

    Balmer, Jasmin; Zulliger, Rahel; Roberti, Stefano; Enzmann, Volker

    2015-01-01

    Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3) both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg). Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE) cells, primary retinal cells, and the cone photoreceptor (PRC) cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1) was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3. PMID:26151844

  1. Oncogenes in Cell Survival and Cell Death

    PubMed Central

    Shortt, Jake; Johnstone, Ricky W.

    2012-01-01

    The transforming effects of proto-oncogenes such as MYC that mediate unrestrained cell proliferation are countered by “intrinsic tumor suppressor mechanisms” that most often trigger apoptosis. Therefore, cooperating genetic or epigenetic effects to suppress apoptosis (e.g., overexpression of BCL2) are required to enable the dual transforming processes of unbridled cell proliferation and robust suppression of apoptosis. Certain oncogenes such as BCR-ABL are capable of concomitantly mediating the inhibition of apoptosis and driving cell proliferation and therefore are less reliant on cooperating lesions for transformation. Accordingly, direct targeting of BCR-ABL through agents such as imatinib have profound antitumor effects. Other oncoproteins such as MYC rely on the anti-apoptotic effects of cooperating oncoproteins such as BCL2 to facilitate tumorigenesis. In these circumstances, where the primary oncogenic driver (e.g., MYC) cannot yet be therapeutically targeted, inhibition of the activity of the cooperating antiapoptotic protein (e.g., BCL2) can be exploited for therapeutic benefit. PMID:23209150

  2. Apoptosis, oncosis, and necrosis. An overview of cell death.

    PubMed Central

    Majno, G.; Joris, I.

    1995-01-01

    The historical development of the cell death concept is reviewed, with special attention to the origin of the terms necrosis, coagulation necrosis, autolysis, physiological cell death, programmed cell death, chromatolysis (the first name of apoptosis in 1914), karyorhexis, karyolysis, and cell suicide, of which there are three forms: by lysosomes, by free radicals, and by a genetic mechanism (apoptosis). Some of the typical features of apoptosis are discussed, such as budding (as opposed to blebbing and zeiosis) and the inflammatory response. For cell death not by apoptosis the most satisfactory term is accidental cell death. Necrosis is commonly used but it is not appropriate, because it does not indicate a form of cell death but refers to changes secondary to cell death by any mechanism, including apoptosis. Abundant data are available on one form of accidental cell death, namely ischemic cell death, which can be considered an entity of its own, caused by failure of the ionic pumps of the plasma membrane. Because ischemic cell death (in known models) is accompanied by swelling, the name oncosis is proposed for this condition. The term oncosis (derived from ónkos, meaning swelling) was proposed in 1910 by von Reckling-hausen precisely to mean cell death with swelling. Oncosis leads to necrosis with karyolysis and stands in contrast to apoptosis, which leads to necrosis with karyorhexis and cell shrinkage. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7856735

  3. The Arabidopsis peptide kiss of death is an inducer of programmed cell death

    PubMed Central

    Blanvillain, Robert; Young, Bennett; Cai, Yao-min; Hecht, Valérie; Varoquaux, Fabrice; Delorme, Valérie; Lancelin, Jean-Marc; Delseny, Michel; Gallois, Patrick

    2011-01-01

    Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis thaliana. Two mutant alleles of KOD exhibited a reduced PCD of the suspensor, a single file of cells that support embryo development, and a reduced PCD of root hairs after a 55°C heat shock. KOD expression was found to be inducible by biotic and abiotic stresses. Furthermore, KOD expression was sufficient to cause death in leaves or seedlings and to activate caspase-like activities. In addition, KOD-induced PCD required light in leaves and was repressed by the PCD-suppressor genes AtBax inhibitor 1 and p35. KOD expression resulted in depolarization of the mitochondrial membrane, placing KOD above mitochondria dysfunction, an early step in plant PCD. A KOD∷GFP fusion, however, localized in the cytosol of cells and not mitochondria. PMID:21326210

  4. Melting Behaviour of Cell Death Lipids

    NASA Astrophysics Data System (ADS)

    Leung, Sherry; Sot, Jesus; Goni, Felix; Thewalt, Jenifer

    2009-05-01

    Sphingomyelin is a major lipid constituent of mammalian cell plasma membranes. It is converted into ceramide during programmed cell death. It is hypothesized that this conversion induces a structural change in membranes that is responsible for downstream signaling. To characterize these structural changes, deuterium nuclear magnetic resonance spectroscopy is used to create a concentration-temperature phase diagram of palmitoyl sphingomyelin:ceramide multilamellar vesicles in excess water between 0-40 mol% ceramide and 25-80^oC. The two lipids are fully miscible at high temperatures and at 40 mol% ceramide. A variety of solid-liquid coexistence phase behavior is observed at lower concentrations. With increasing ceramide content, a gel phase is observed at progressively higher temperatures, implying that at physiological temperature, ceramide may increase the gel phase propensity of cell membranes.

  5. Programmed Cell Death in Unicellular Phytoplankton.

    PubMed

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles. PMID:27404255

  6. Macrophage cell death upon intracellular bacterial infection

    PubMed Central

    Lai, Xin-He; Xu, Yunsheng; Chen, Xiao-Ming; Ren, Yi

    2015-01-01

    Macrophage-pathogen interaction is a complex process and the outcome of this tag-of-war for both sides is to live or die. Without attempting to be comprehensive, this review will discuss the complexity and significance of the interaction outcomes between macrophages and some facultative intracellular bacterial pathogens as exemplified by Francisella, Salmonella, Shigella and Yersinia. Upon bacterial infection, macrophages can die by a variety of ways, such as apoptosis, autophagic cell death, necrosis, necroptosis, oncosis, pyronecrosis, pyroptosis etc, which is the focus of this review. PMID:26690967

  7. Glycosphingolipids and cell death: one aim, many ways.

    PubMed

    Garcia-Ruiz, Carmen; Morales, Albert; Fernández-Checa, José C

    2015-05-01

    Glycosphingolipids (GSLs) are a family of bioactive lipids that in addition to their role in the regulation of structural properties of membrane bilayers have emerged as crucial players in many biological processes and signal transduction pathways. Rather than being uniformly distributed within membrane bilayers, GSLs are localized in selective domains called lipid rafts where many signaling platforms operate. One of the most important functions of GSLs, particularly ceramide, is their ability to regulate cell death pathways and hence cell fate. This complex role is accomplished by the ability of GSLs to act in distinct subcellular strategic centers, such as mitochondria, endoplasmic reticulum (ER) or lysosomes to mediate apoptosis, ER stress, autophagy, lysosomal membrane permeabilization and necroptosis. Hence better understanding the role of GSLs in cell death may be of relevance for a number of pathological processes and diseases, including neurodegeneration, metabolic liver diseases and cancer. PMID:25637183

  8. Glycosphingolipids and cell death: One aim, many ways

    PubMed Central

    Garcia-Ruiz, Carmen; Morales, Albert; Fernández-Checa, José C.

    2015-01-01

    Glycosphingolipids (GSLs) are a family of bioactive lipids that in addition to their role in the regulation of structural properties of membrane bilayers have emerged as crucial players in many biological processes and signal transduction pathways. Rather than being uniformly distributed within membrane bilayers, GSLs are localized in selective domains called lipid rafts where many signaling platforms operate. One of the most important functions of GSLs, particularly ceramide, is their ability to regulate cell death pathways and hence cell fate. This complex role is accomplished by the ability of GSLs to act in distinct subcellular strategic centers, such as mitochondria, endoplasmic reticulum (ER) or lysosomes to mediate apoptosis, ER stress, autophagy, lysosomal membrane permeabilization and necroptosis. Hence better understanding the role of GSLs in cell death may be of relevance for a number of pathological processes and diseases, including neurodegeneration, metabolic liver diseases and cancer. PMID:25637183

  9. Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line

    PubMed Central

    Paris, Irmgard; Muñoz, Patricia; Huenchuguala, Sandro; Couve, Eduardo; Sanders, Laurie H.; Greenamyre, John Timothy; Caviedes, Pablo; Segura-Aguilar, Juan

    2011-01-01

    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson’s disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes. PMID:21427056

  10. Cell Death Conversion under Hypoxic Condition in Tumor Development and Therapy

    PubMed Central

    Qiu, Yu; Li, Peng; Ji, Chunyan

    2015-01-01

    Hypoxia, which is common during tumor progression, plays important roles in tumor biology. Failure in cell death in response to hypoxia contributes to progression and metastasis of tumors. On the one hand, the metabolic and oxidative stress following hypoxia could lead to cell death by triggering signal cascades, like LKB1/AMPK, PI3K/AKT/mTOR, and altering the levels of effective components, such as the Bcl-2 family, Atg and p62. On the other hand, hypoxia-induced autophagy can serve as a mechanism to turn over nutrients, so as to mitigate the adverse condition and then avoid cell death potentially. Due to the effective role of hypoxia, this review focuses on the crosstalk in cell death under hypoxia in tumor progression. Additionally, the illumination of cell death in hypoxia could shed light on the clinical applications of cell death targeted therapy. PMID:26512660

  11. Caspase Functions in Cell Death and Disease

    PubMed Central

    McIlwain, David R.; Berger, Thorsten; Mak, Tak W.

    2013-01-01

    Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled. PMID:23545416

  12. Rational Development of a Cytotoxic Peptide to Trigger Cell Death

    PubMed Central

    Boohaker, Rebecca J.; Zhang, Ge; Lee, Michael W.; Nemec, Kathleen N.; Santra, Santimukul; Perez, J. Manuel; Khaled, Annette R.

    2012-01-01

    Defects in the apoptotic machinery can contribute to tumor formation and resistance to treatment, creating a need to identify new agents that kill cancer cells by alternative mechanisms. To this end, we examined the cytotoxic properties of a novel peptide, CT20p, derived from the C-terminal, alpha-9 helix of Bax, an amphipathic domain with putative membrane binding properties. Like many anti-microbial peptides, CT20p contains clusters of hydrophobic and cationic residues that could enable the peptide to associate with lipid membranes. CT20p caused the release of calcein from mitochondrial-like lipid vesicles without disrupting vesicle integrity and, when expressed as a fusion protein in cells, localized to mitochondria. The amphipathic nature of CT20p allowed it to be encapsulated in polymeric nanoparticles (NPs) that have the capacity to harbor targeting molecules, dyes or drugs. The resulting CT20p-NPs proved an effective killer of colon and breast cancer cells in vitro and in vivo, using a murine breast cancer tumor model. By introducing CT20p to Bax deficient cells, we demonstrated that the peptide’s lethal activity was independent of endogenous Bax. CT20p also caused an increase in the mitochondrial membrane potential that was followed by plasma membrane rupture and cell death, without the characteristic membrane asymmetry associated with apoptosis. We determined that cell death triggered by the CT20p-NPs was minimally dependent on effector caspases and resistant Bcl-2 over-expression, suggesting that it was independent of the intrinsic apoptotic death pathway. Furthermore, use of CT20p with the apoptosis-inducing drug, cisplatin, resulted in additive toxicity. These results reveal the novel features of CT20p that allow nanoparticle-mediated delivery to tumors and the potential application in combination therapies to activate multiple death pathways in cancer cells. PMID:22591113

  13. Philemon and Baucis syndrome: three additional cases of double deaths of married couples.

    PubMed

    Delannoy, Y; Tournel, G; Dedouit, F; Cornez, R; Telmon, N; Hedouin, V; Rouge, D; Gosset, D

    2013-03-10

    The simultaneous death of two people is immediately considered as a suspect. However, this feeling is reinforced when the individuals are spouses. In these situations, criminal and forensic investigations are required to establish whether or not the deaths were homicidal in nature. Despite many descriptions of simultaneous deaths being present in the literature, the simultaneous death of two spouses from natural causes is poorly described with Ciesiolka et al., Department of Legal Medicine in Gießen (Germany), being the only ones to have reviewed two case reports involving these circumstances. The scarcity of this type of information in the literature renders the task of claiming natural simultaneous death as the final outcome of an investigation difficult. We would like to report three additional cases with the aim of better describing this type of event. In all three cases, the bodies were those of a married couple in their 80s. The bodies were discovered in the same room. In each case, the death of one of the spouses could be attributed to natural cause; however the death of the other spouse could not be determined with certainty, and shared several similarities in all cases: simultaneity in death; a pre existing cardiovascular disease/disorder; a certain degree of fragility and dependence on the other spouse whose death could lead to acute psychological stress. Intense psychological disorder could trigger acute coronary or rhythmic disorders. The mechanisms by which brain activity influences cardiac electrophysiology are now known to take place via the autonomic nervous system mediation. This brain activity could provide an explanation for the death of the individuals with pre-existing heart conditions, who underwent significant stress upon occurrence of the death of their partners. The death of these individuals, which took place at the same place and time as their deceased spouses, can be attributed to natural causes: the Philemon and Baucis syndrome. PMID

  14. Expanding roles of programmed cell death in mammalian neurodevelopment.

    PubMed

    De Zio, Daniela; Giunta, Luigi; Corvaro, Marco; Ferraro, Elisabetta; Cecconi, Francesco

    2005-04-01

    Programmed cell death is an orchestrated form of cell death in which cells are actively involved in their own demise. During neural development in mammals, many progenitor cells, immature cells or differentiated cells undergo the most clearly characterized type of cell death, apoptosis. Several pathways of apoptosis have been linked to neural development, but according to the numerous and striking phenotypes observed when apoptotic genes are inactivated, the mitochondrial death-route is the most important pathway in this context. Here, we discuss the relative importance of pro-growth/pro-death factors in the control of neural tissue development. We also discuss the impact of studying programmed cell death in development in order to better understand the basis of several human diseases and embryonic defects of the nervous system. PMID:15797838

  15. Sudden death of a patient with pulmonary Langerhans cell histiocytosis.

    PubMed

    Nakhla, Hassan; Jumbelic, Mary I

    2005-06-01

    We report a case of sudden death due to bilateral pneumothorax in a previously healthy 16-year-old adolescent white girl. She presented with sudden onset of shortness of breath followed by loss of consciousness. Postmortem chest radiograph showed bilateral pneumothoraces. Autopsy confirmed the bilateral pneumothorax and additionally showed emphysematous changes and bullae throughout the lung tissue. Microscopic sections of the lungs showed Langerhans cell histiocytosis. To the best of our knowledge, this is the first reported case of fatal presentation of pulmonary Langerhans cell histiocytosis. PMID:15913433

  16. Modes of Retinal Cell Death in Diabetic Retinopathy.

    PubMed

    Feenstra, Derrick J; Yego, E Chepchumba; Mohr, Susanne

    2013-10-01

    Cell death seems to be a prominent feature in the progression of diabetic retinopathy. Several retinal cell types have been identified to undergo cell death in a diabetic environment. Most emphasis has been directed towards identifying apoptosis in the diabetic retina. However, new research has established that there are multiple forms of cell death. This review discusses the different modes of cell death and attempts to classify cell death of retinal cells known to die in diabetic retinopathy. Special emphasis is given to apoptosis, necrosis, autophagic cell death, and pyroptosis. It seems that different retinal cell types are dying by diverse types of cell death. Whereas endothelial cells predominantly undergo apoptosis, pericytes might die by apoptosis as well as necrosis. On the other hand, Müller cells are suggested to die by a pyroptotic mechanism. Diabetes leads to significant Müller cell loss at 7 months duration of diabetes in retinas of diabetic mice compared to non-diabetic, which is prevented by the inhibition of the caspase-1/IL-1β (interleukin-1beta) pathway using the IL-1 receptor knockout mouse. Since pyroptosis is characterized by the activation of the caspase-1/IL-1β pathway subsequently leading to cell death, Müller cells seem to be a prime candidate for this form of inflammation-driven cell death. Considering that diabetic retinopathy is now discussed to potentially be a chronic inflammatory disease, pyroptotic cell death might play an important role in disease progression. Understanding mechanisms of cell death will lead to a more targeted approach in the development of new therapies to treat diabetic retinopathy. PMID:24672740

  17. Cell Death Mechanisms Induced by Cytotoxic Lymphocytes

    PubMed Central

    Chávez-Galán, L; Arenas-Del Angel, M C; Zenteno, E; Chávez, R; Lascurain, R

    2009-01-01

    One of the functions of the immune system is to recognize and destroy abnormal or infected cells to maintain homeostasis. This is accomplished by cytotoxic lymphocytes. Cytotoxicity is a highly organized multifactor process. Here, we reviewed the apoptosis pathways induced by the two main cytotoxic lymphocyte subsets, natural killer (NK) cells and CD8+ T cells. In base to recent experimental evidence, we reviewed NK receptors involved in recognition of target-cell, as well as lytic molecules such as perforin, granzymes-A and -B, and granulysin. In addition, we reviewed the Fas-FasL intercellular linkage mediated pathway, and briefly the cross-linking of tumor necrosis factor (TNF) and TNF receptor pathway. We discussed three models of possible molecular interaction between lytic molecules from effector cytotoxic cells and target-cell membrane to induction of apoptosis. PMID:19254476

  18. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death.

    PubMed

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-08-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30-50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases. PMID:26024394

  19. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death

    PubMed Central

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-01-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases. PMID:26024394

  20. Simultaneous Addition of Shikonin and Its Derivatives with Lipopolysaccharide Induces Rapid Macrophage Death.

    PubMed

    Koike, Atsushi; Shibano, Makio; Mori, Hideya; Kohama, Kiyoko; Fujimori, Ko; Amano, Fumio

    2016-01-01

    Macrophages play pivotal roles in inflammatory responses. Previous studies showed that various natural products exert antiinflammatory effects by regulating macrophage activation. Recent studies have shown that shikonin (SHK) and its derivatives (β-hydroxyisovalerylshikonin, acetylshikonin, and isobutylshikonin), which are 1,4-naphthoquinone pigments extracted from the roots of Lithospermum erythrorhizon, have various pharmacological, including antiinflammatory and antitumor, effects. Even though there have been many studies on the antiinflammatory activities of SHK derivatives, only a few have described their direct effects on macrophages. We investigated the effects of SHK derivatives on lipopolysaccharide (LPS)-treated macrophages. Low doses of SHK derivatives induced significant macrophage cytotoxicity (mouse macrophage-like J774.1/JA-4 cells and mouse peritoneal macrophages) in the presence of LPS. SHK activated caspases-3 and -7, which led to DNA fragmentation, but this cytotoxicity was prevented through a pan-caspase inhibitor in LPS-treated JA-4 cells. Maximal cytotoxic effects were achieved when SHK was added immediately before LPS addition. These results indicate that SHK derivatives induce caspase-dependent apoptotic cell death of LPS-treated macrophages and suggest that SHK acts during an early stage of LPS signaling. PMID:27251498

  1. Solamargine triggers hepatoma cell death through apoptosis

    PubMed Central

    XIE, XIAODONG; ZHU, HAITAO; YANG, HUIJIAN; HUANG, WENSI; WU, YINGYING; WANG, YING; LUO, YANLING; WANG, DONGQING; SHAO, GENBAO

    2015-01-01

    Solamargine (SM), a steroidal alkaloid glycoside extracted from the traditional Chinese herb Solanum incanum, has been evidenced to inhibit the growth and induce apoptosis in a number of human cancer cell lines. In the present study, the anticancer effect of SM and underlying molecular mechanism of SM-induced apoptosis were investigated on the human hepatocellular carcinoma cells, SMMC7721 and HepG2. The proliferation effects of SM on the SMMC7721 and HepG2 cell lines were evaluated using MTT and colony formation assays. In addition, the percentage of apoptosis was measured using an Annexin V/propidium iodide staining method and the cell cycle distribution mediated by SM was analyzed using flow cytometry. The expression levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, caspase-9, proliferating cell nuclear antigen (pcna) and Ki67 proteins were examined to further demonstrate the proliferate and apoptosis effects of SM on the hepatoma cells. The results indicated that SM effectively inhibited hepatoma cell proliferation and promoted apoptosis. SM resulted in cell cycle arrest at the G2/M phase in the two cell lines. In addition, SM downregulated the levels of proliferation-associated (Ki67 and pcna) and anti-apoptotic (Bcl-2) proteins, and promoted the activity of apoptosis-associated proteins (Bax, caspase-3 and caspase-9). Therefore, the activation of the Bcl-2/Bax and caspase signaling pathways may be involved in the SM-induced apoptosis of hepatoma cells. PMID:26170994

  2. Cell block eleven, looking from the "Death Row" exercise yard, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block eleven, looking from the "Death Row" exercise yard, facing north (note cell block fifteen to the right and cell block fourteen in the distance_ - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  3. Programmed cell death for defense against anomaly and tumor formation

    SciTech Connect

    Kondo, Sohei; Norimura, Toshiyuki; Nomura, Taisei

    1995-12-31

    Cell death after exposure to low-level radiation is often considered evidence that radiation is poisonous, however small the dose. Evidence has been accumulating to support the notion that cell death after low-level exposure to radiation results from activation of suicidal genes {open_quote}programmed cell death{close_quote} or {open_quote}apoptosis{close_quote} - for the health of the whole body. This paper gives experimental evidence that embryos of fruit flies and mouse fetuses have potent defense mechanisms against teratogenic or tumorigenic injury caused by radiation and carcinogens, which function through programmed cell death.

  4. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell DeathW⃞

    PubMed Central

    Yao, Nan; Greenberg, Jean T.

    2006-01-01

    The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae–induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. PMID:16387834

  5. Orexin A attenuates palmitic acid-induced hypothalamic cell death.

    PubMed

    Duffy, Cayla M; Nixon, Joshua P; Butterick, Tammy A

    2016-09-01

    Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health. PMID:27449757

  6. Predictive Efficacy Biomarkers of Programmed Cell Death 1/Programmed Cell Death 1 Ligand Blockade Therapy.

    PubMed

    Fang, Xiao-Na; Fu, Li-Wu

    2016-01-01

    Inhibitors of immune check-point molecule, programmed cell death 1 (PD-1) and its ligand, programmed cell death ligand 1 (PD-L1) have attracted much attention in cancer immunotherapy recently due to their durable antitumor effects in various malignances, especially the advanced ones. Unfortunately, only a fraction of patients with advanced tumors could benefit from anti-PD-1/PD-L1 therapy, while others still worsened. The key to this point is that there are no efficient biomarkers for screening anti-PD-1/PD-L1-sensitive patients. In this review, we aim at summarizing the latest advances of anti-PD-1/PDL1 immunotherapy and the potential predictive efficacy biomarkers to provide evidences for identifying anti-PD-1/PDL1- sensitive patients. The present article also includes the patent review coverage on this topic. PMID:26916881

  7. α-Synuclein and neuronal cell death

    PubMed Central

    Cookson, Mark R

    2009-01-01

    α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed. PMID:19193223

  8. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  9. Dynamic quantitative photothermal monitoring of cell death of individual human red blood cells upon glucose depletion

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srivathsan; Chen, George Chung Kit; Andika, Marta; Agarwal, Shuchi; Chen, Peng; Olivo, Malini

    2010-09-01

    Red blood cells (RBCs) have been found to undergo ``programmed cell death,'' or eryptosis, and understanding this process can provide more information about apoptosis of nucleated cells. Photothermal (PT) response, a label-free photothermal noninvasive technique, is proposed as a tool to monitor the cell death process of living human RBCs upon glucose depletion. Since the physiological status of the dying cells is highly sensitive to photothermal parameters (e.g., thermal diffusivity, absorption, etc.), we applied linear PT response to continuously monitor the death mechanism of RBC when depleted of glucose. The kinetics of the assay where the cell's PT response transforms from linear to nonlinear regime is reported. In addition, quantitative monitoring was performed by extracting the relevant photothermal parameters from the PT response. Twofold increases in thermal diffusivity and size reduction were found in the linear PT response during cell death. Our results reveal that photothermal parameters change earlier than phosphatidylserine externalization (used for fluorescent studies), allowing us to detect the initial stage of eryptosis in a quantitative manner. Hence, the proposed tool, in addition to detection of eryptosis earlier than fluorescence, could also reveal physiological status of the cells through quantitative photothermal parameter extraction.

  10. Cell death and cytokine production induced by autoimmunogenic hydrocarbon oils.

    PubMed

    Herman, Sonja; Kny, Angelika; Schorn, Christine; Pfatschbacher, Jürgen; Niederreiter, Birgit; Herrmann, Martin; Holmdahl, Rikard; Steiner, Günter; Hoffmann, Markus H

    2012-12-01

    Hydrocarbon oils such as pristane or hexadecane induce arthritis and lupus in rodents sharing clinical and pathological features with the human diseases rheumatoid arthritis and systemic lupus erythematosus, respectively. In pristane-induced lupus in the mouse induction of apoptosis and augmentation of type-I Interferon signalling by pristane have been suggested to contribute to pathology, whereas in pristane-induced arthritis (PIA) in the rat the pathological mechanisms are still elusive. Here we show that pristane induces cell death in rat and human cells. Increased numbers of apoptotic cells were found in draining lymph nodes of pristane-injected rats and increased percentages of apoptotic and necrotic cells were observed in peripheral blood. In addition, neutrophil extracellular trap formation was triggered by pristane and hexadecane in neutrophils. Because levels of interleukin (IL)-1β were elevated in sera of pristane-injected rats, with levels mirroring the course of PIA, we examined the effect of pristane at single cell level in vitro, using rat splenocytes and the human monocytic cell line THP-1. Pristane and other hydrocarbon oils induced IL-1β secretion in THP-1 cells as well as in rat splenocytes. The potassium channel inhibitor glibenclamide partly inhibited IL-1β induction, suggesting involvement of the inflammasome. Elevated levels of IL-1α were also found in supernatants of cells treated with pristane and hexadecane. In conclusion, autoimmunogenic hydrocarbon oils induce various forms of cell death in rat and human cells. The higher serum IL-1β levels in pristane-injected animals might be caused by both inflammasome-dependent and -independent mechanisms, such as passive release from dying-cells and probably extracellular maturation of pro-IL-1β. PMID:22917079

  11. The evolution of cell death programs as prerequisites of multicellularity.

    PubMed

    Huettenbrenner, Simone; Maier, Susanne; Leisser, Christina; Polgar, Doris; Strasser, Stephan; Grusch, Michael; Krupitza, Georg

    2003-06-01

    One of the hallmarks of multicellularity is that the individual cellular fate is sacrificed for the benefit of a higher order of life-the organism. The accidental death of cells in a multicellular organism results in swelling and membrane-rupture and inevitably spills cell contents into the surrounding tissue with deleterious effects for the organism. To avoid this form of necrotic death the cells of metazoans have developed complex self-destruction mechanisms, collectively called programmed cell death, which see to an orderly removal of superfluous cells. Since evolution never invents new genes but plays variations on old themes by DNA mutations, it is not surprising, that some of the genes involved in metazoan death pathways apparently have evolved from homologues in unicellular organisms, where they originally had different functions. Interestingly some unicellular protozoans have developed a primitive form of non-necrotic cell death themselves, which could mean that the idea of an altruistic death for the benefit of genetically identical cells predated the invention of multicellularity. The cell death pathways of protozoans, however, show no homology to those in metazoans, where several death pathways seem to have evolved in parallel. Mitochondria stands at the beginning of several death pathways and also determines, whether a cell has sufficient energy to complete a death program. However, the endosymbiotic bacterial ancestors of mitochondria are unlikely to have contributed to the recent mitochondrial death machinery and therefore, these components may derive from mutated eukaryotic precursors and might have invaded the respective mitochondrial compartments. Although there is no direct evidence, it seems that the prokaryotic-eukaryotic symbiosis created the space necessary for sophisticated death mechanisms on command, which in their distinct forms are major factors for the evolution of multicellular organisms. PMID:12787815

  12. The fibrosis-cell death axis in heart failure.

    PubMed

    Piek, A; de Boer, R A; Silljé, H H W

    2016-03-01

    Cardiac stress can induce morphological, structural and functional changes of the heart, referred to as cardiac remodeling. Myocardial infarction or sustained overload as a result of pathological causes such as hypertension or valve insufficiency may result in progressive remodeling and finally lead to heart failure (HF). Whereas pathological and physiological (exercise, pregnancy) overload both stimulate cardiomyocyte growth (hypertrophy), only pathological remodeling is characterized by increased deposition of extracellular matrix proteins, termed fibrosis, and loss of cardiomyocytes by necrosis, apoptosis and/or phagocytosis. HF is strongly associated with age, and cardiomyocyte loss and fibrosis are typical signs of the aging heart. Fibrosis results in stiffening of the heart, conductivity problems and reduced oxygen diffusion, and is associated with diminished ventricular function and arrhythmias. As a consequence, the workload of cardiomyocytes in the fibrotic heart is further augmented, whereas the physiological environment is becoming less favorable. This causes additional cardiomyocyte death and replacement of lost cardiomyocytes by fibrotic material, generating a vicious cycle of further decline of cardiac function. Breaking this fibrosis-cell death axis could halt further pathological and age-related cardiac regression and potentially reverse remodeling. In this review, we will describe the interaction between cardiac fibrosis, cardiomyocyte hypertrophy and cell death, and discuss potential strategies for tackling progressive cardiac remodeling and HF. PMID:26883434

  13. Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence

    PubMed Central

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers – a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death. PMID:25933033

  14. Cancer cell death by design: apoptosis, autophagy and glioma virotherapy.

    PubMed

    Tyler, Matthew A; Ulasov, Ilya V; Lesniak, Maciej S

    2009-08-01

    Autophagy has been defined as a mechanism by which oncolytic adenoviruses mediate cell killing in some cancers, including malignant glioma. Until recently, however, adenovirus replication was regarded as a process that induced classical apoptosis in the infected cell. We have assessed the method of conditionally replicating adenovirus (CRAd) death in a model of malignant glioma, considering both autophagy and apoptosis as possible mechanisms of virally-induced cell death. Our initial investigations indicated that autophagy was the predominant system in CRAd-induced cell death in glioma. This appeared to be the case in vitro; however, further investigation in vivo shows that CRAds are capable of inducing both apoptotic and autophagic cell death. In this punctum, we summarize our latest research to uncover the method of oncolytic adenovirus-induced cell death in malignant glioma. Elucidating the relationship between autophagy and apoptosis in glioma virotherapy has significant implications for the design of optimal viral vectors. PMID:19430207

  15. How does ethanol induce apoptotic cell death of SK-N-SH neuroblastoma cells.

    PubMed

    Moon, Yong; Kwon, Yongil; Yu, Shun

    2013-07-15

    A body of evidence suggests that ethanol can lead to damage of neuronal cells. However, the mechanism underlying the ethanol-induced damage of neuronal cells remains unclear. The role of mitogen-activated protein kinases in ethanol-induced damage was investigated in SK-N-SH neuroblastoma cells. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide cell viability assay, DNA fragmentation detection, and flow cytometric analysis showed that ethanol induced apoptotic cell death and cell cycle arrest, characterized by increased caspase-3 activity, DNA fragmentation, nuclear disruption, and G1 arrest of cell cycle of the SK-N-SH neuroblastoma cells. In addition, western blot analysis indicated that ethanol induced a lasting increase in c-Jun N-terminal protein kinase activity and a transient increase in p38 kinase activity of the neuroblastoma cells. c-Jun N-terminal protein kinase or p38 kinase inhibitors significantly reduced the ethanol-induced cell death. Ethanol also increased p53 phosphorylation, followed by an increase in p21 tumor suppressor protein and a decrease in phospho-Rb (retinoblastoma) protein, leading to alterations in the expressions and activity of cyclin dependent protein kinases. Our results suggest that ethanol mediates apoptosis of SK-N-SH neuroblastoma cells by activating p53-related cell cycle arrest possibly through activation of the c-Jun N-terminal protein kinase-related cell death pathway. PMID:25206494

  16. Redox regulation of Smac mimetic-induced cell death.

    PubMed

    Fulda, Simone

    2015-01-01

    Cell death and survival programs are controlled by the cellular redox state, which is typically dysregulated during oncogenesis. A recent study reports that the inhibition of antioxidant defenses resulting from glutathione depletion can prime acute lymphoblastic leukemia cells for death induced by Smac mimetics. PMID:27308489

  17. Triggering Death of Adherent Cells with Ultraviolet Radiation.

    PubMed

    Crowley, Lisa C; Waterhouse, Nigel J

    2016-01-01

    Ultraviolet (UV) radiation is a convenient stimulus for triggering cell death that is available in most laboratories. We use a Stratalinker UV cross-linker because it is a safe, cheap, reliable, consistent, and easily controlled source of UV irradiation. This protocol describes using a Stratalinker to trigger UV-induced death of HeLa cells. PMID:27371593

  18. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy

    PubMed Central

    Pol, Jonathan; Vacchelli, Erika; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    The term “immunogenic cell death” (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers. PMID:26137404

  19. Excitotoxicity and Wallerian degeneration as a processes related to cell death in nervous system.

    PubMed

    Działo, Joanna; Tokarz-Deptuła, Beata; Deptuła, Wiesław

    2013-06-01

    Cell death is one of the processes that are currently extensively studied. Beside the commonly used terminology regarding cell death, i.e. apoptosis, autophagy, necrosis, and cornification, in recent years there has been a growing number of additional definitions of this process, such as mitotic catastrophe, anoikis, entosis, paraptosis, pyroptosis, pyronecrosis, excitotoxicity, and Wallerian degeneration, which are described in 2009 by the Nomenclature Committee on Cell Death as atypical. The recent report of that Committee significantly alter the classification and nomenclature of the cell death processes, in which excitotoxicity and Wallerian degeneration have not been taken into account. Thus the present review describes excitotoxicity, and Wallerian degeneration, as two processes associated to cell death phenomena characteristic for nervous system. Excitotoxicity is a neuronal death caused by excessive, or prolonged activation of receptors for the excitatory amino acids. Depending on the intensity of the initiating stimulus, the excitotoxicity may overlap with other types of cell death such as apoptosis and necrosis. Wallerian degeneration is a process that results when a nerve fiber is cut or crushed, in which the part of the axon separated from the neuron's cell body degenerates distal to the injury. Wallerian degeneration is not a typical cell death mechanism, since neurons undergoing this process remain alive. PMID:24442984

  20. Drosophila IAP antagonists form multimeric complexes to promote cell death

    PubMed Central

    Sandu, Cristinel; Ryoo, Hyung Don

    2010-01-01

    Apoptosis is a specific form of cell death that is important for normal development and tissue homeostasis. Caspases are critical executioners of apoptosis, and living cells prevent their inappropriate activation through inhibitor of apoptosis proteins (IAPs). In Drosophila, caspase activation depends on the IAP antagonists, Reaper (Rpr), Head involution defective (Hid), and Grim. These proteins share a common motif to bind Drosophila IAP1 (DIAP1) and have partially redundant functions. We now show that IAP antagonists physically interact with each other. Rpr is able to self-associate and also binds to Hid and Grim. We have defined the domain involved in self-association and demonstrate that it is critical for cell-killing activity in vivo. In addition, we show that Rpr requires Hid for recruitment to the mitochondrial membrane and for efficient induction of cell death in vivo. Both targeting of Rpr to mitochondria and forced dimerization strongly promotes apoptosis. Our results reveal the functional importance of a previously unrecognized multimeric IAP antagonist complex for the induction of apoptosis. PMID:20837774

  1. Fanconi anemia pathway regulates convergent transcription-induced cell death at trinucleotide repeats in human cells

    PubMed Central

    Chatterjee, Nimrat; Lin, Yunfu; Wilson, John H.

    2016-01-01

    Almost 20 incurable neurodegenerative disorders are caused by trinucleotide repeat (TNR) expansion beyond a certain threshold, with disease time of onset and severity positively correlating with repeat length. Typically, long TNRs display a bias toward further expansion and repeats continue to expand not only during germline transmissions from parents to offspring, but also remain highly unstable in somatic tissues of patients. Hence, understanding TNR instability mechanisms sheds light on underlying disease pathology. Recently, we showed that activated ATR is the major signal for convergent-transcription-induced cell death at CAG repeats and is regulated by the mismatch repair (MMR) pathway. Additionally, components of other DNA repair pathways such as transcription-coupled nucleotide excision repair (TC-NER) and R-loop resolution by RNaseH reduce cell death. Because activated ATR signals the Fanconi anemia (FA) pathway of interstrand crosslink DNA repair, we asked whether the FA pathway also modulates convergent-transcription-induced cell death at expanded CAG repeats. We show here that siRNA knockdown of FA components—FANCI, FANCJ, FANCM, FANCA, and FANCD2—decreases cell death, suggesting that FA proteins, like MMR proteins, are activators of cell death during convergent transcription.

  2. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  3. Ferroptosis: an iron-dependent form of nonapoptotic cell death.

    PubMed

    Dixon, Scott J; Lemberg, Kathryn M; Lamprecht, Michael R; Skouta, Rachid; Zaitsev, Eleina M; Gleason, Caroline E; Patel, Darpan N; Bauer, Andras J; Cantley, Alexandra M; Yang, Wan Seok; Morrison, Barclay; Stockwell, Brent R

    2012-05-25

    Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. PMID:22632970

  4. Further considerations on in vitro skeletal muscle cell death

    PubMed Central

    Battistelli, Michela; Salucci, Sara; Burattini, Sabrina; Falcieri, Elisabetta

    2013-01-01

    Summary The present review discusses the apoptotic behavior induced by chemical and physical triggers in C2C12 skeletal muscle cells, comparing myoblast to myotube sensitivity, and investigating it by means of morphological, biochemical and cytofluorimetric analyses. After all treatments, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, in cells exposed to staurosporine, etoposide and UVB radiation, apoptotic and normal nuclei within the same fibercould be revealed. The presence of nuclear-dependent “territorial” death domains in the syncytium could explain a delayed cell death of myotubes compared to mononucleated cells. Moreover, autophagic granules abundantly appeared in myotubes after each treatment. Autophagy could protect muscle cell integrity against chemical and physical stimuli, making C2C12 myotubes, more resistant to cell death induction. PMID:24596689

  5. Programmed Cell Death and Complexity in Microbial Systems.

    PubMed

    Durand, Pierre M; Sym, Stuart; Michod, Richard E

    2016-07-11

    Programmed cell death (PCD) is central to organism development and for a long time was considered a hallmark of multicellularity. Its discovery, therefore, in unicellular organisms presents compelling questions. Why did PCD evolve? What is its ecological effect on communities? To answer these questions, one is compelled to consider the impacts of PCD beyond the cell, for death obviously lowers the fitness of the cell. Here, we examine the ecological effects of PCD in different microbial scenarios and conclude that PCD can increase biological complexity. In mixed microbial communities, the mode of death affects the microenvironment, impacting the interactions between taxa. Where the population comprises groups of relatives, death has a more explicit effect. Death by lysis or other means can be harmful, while PCD can evolve by providing advantages to relatives. The synchronization of death between individuals suggests a group level property is being maintained and the mode of death also appears to have had an impact during the origin of multicellularity. PCD can result in the export of fitness from the cell to the group level via re-usable resources and PCD may also provide a mechanism for how groups beget new groups comprising kin. Furthermore, PCD is a means for solving a central problem of group living - the toxic effects of death - by making resources in dying cells beneficial to others. What emerges from the data reviewed here is that while PCD carries an obvious cost to the cell, it can be a driver of complexity in microbial communities. PMID:27404254

  6. Mcl-1 protects prostate cancer cells from cell death mediated by chemotherapy-induced DNA damage.

    PubMed

    Reiner, Teresita; de Las Pozas, Alicia; Parrondo, Ricardo; Palenzuela, Deanna; Cayuso, William; Rai, Priyamvada; Perez-Stable, Carlos

    2015-01-01

    The anti-apoptotic protein Mcl-1 is highly expressed in castration-resistant prostate cancer (CRPC), resulting in resistance to apoptosis and association with poor prognosis. Although predominantly localized in the cytoplasm, there is evidence that Mcl-1 exhibits nuclear localization where it is thought to protect against DNA damage-induced cell death. The role of Mcl-1 in mediating resistance to chemotherapy-induced DNA damage in prostate cancer (PCa) is not known. We show in human PCa cell lines and in TRAMP, a transgenic mouse model of PCa, that the combination of the antimitotic agent ENMD-1198 (analog of 2-methoxyestradiol) with betulinic acid (BA, increases proteotoxic stress) targets Mcl-1 by increasing its proteasomal degradation, resulting in increased γH2AX (DNA damage) and apoptotic/necrotic cell death. Knockdown of Mcl-1 in CRPC cells leads to elevated γH2AX, DNA strand breaks, and cell death after treatment with 1198 + BA- or doxorubicin. Additional knockdowns in PC3 cells suggests that cytoplasmic Mcl-1 protects against DNA damage by blocking the mitochondrial release of apoptosis-inducing factor and thereby preventing its nuclear translocation and subsequent interaction with the cyclophilin A endonuclease. Overall, our results suggest that chemotherapeutic agents that target Mcl-1 will promote cell death in response to DNA damage, particularly in CRPC. PMID:26425662

  7. Sorafenib-induced defective autophagy promotes cell death by necroptosis

    PubMed Central

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-01-01

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5−/− cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis. PMID:26416459

  8. Do all programmed cell deaths occur via apoptosis?

    PubMed Central

    Schwartz, L M; Smith, S W; Jones, M E; Osborne, B A

    1993-01-01

    During development, large numbers of cells die by a nonpathological process referred to as programmed cell death. In many tissues, dying cells display similar changes in morphology and chromosomal DNA organization, which has been termed apoptosis. Apoptosis is such a widely documented phenomenon that many authors have assumed all programmed cell deaths occur by this process. Two well-characterized model systems for programmed cell death are (i) the death of T cells during negative selection in the mouse thymus and (ii) the loss of intersegmental muscles of the moth Manduca sexta at the end of metamorphosis. In this report we compare the patterns of cell death displayed by T cells and the intersegmental muscles and find that they differ in terms of cell-surface morphology, nuclear ultrastructure, DNA fragmentation, and polyubiquitin gene expression. Unlike the T cells, which are known to die via apoptosis, we find that the intersegmental muscles display few of the features that characterize apoptosis. These data suggest that more than one cell death mechanism is used during development. Images PMID:8430112

  9. Host-Cell Survival and Death During Chlamydia Infection

    PubMed Central

    Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg

    2008-01-01

    Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378

  10. Fusaric acid induction of programmed cell death modulated through nitric oxide signalling in tobacco suspension cells.

    PubMed

    Jiao, Jiao; Zhou, Benguo; Zhu, Xiaoping; Gao, Zhengliang; Liang, Yuancun

    2013-10-01

    Fusaric acid (FA) is a nonhost-selective toxin mainly produced by Fusarium oxysporum, the causal agent of plant wilt diseases. We demonstrate that FA can induce programmed cell death (PCD) in tobacco suspension cells and the FA-induced PCD is modulated by nitric oxide (NO) signalling. Cells undergoing cell death induced by FA treatment exhibited typical characteristics of PCD including cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane plasmolysis, and formation of small cytoplasmic vacuoles. In addition, caspase-3-like activity was activated upon the FA treatment. The process of FA-induced PCD was accompanied by a rapid accumulation of NO in a FA dose-dependent manner. Pre-treatment of cells with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or NO synthase inhibitor N(G)-monomethyl-arginine monoacetate (L-NMMA) significantly reduced the rate of FA-induced cell death. Furthermore, the caspase-3-like activity and the expression of PAL and Hsr203J genes were alleviated by application of cPTIO or L-NMMA to FA-treated tobacco cells. This indicates that NO is an important factor involved in the FA-induced PCD. Our results also show that pre-treatment of tobacco cells with a caspase-3-specific inhibitor, Ac-DEVD-CHO, can reduce the rate of FA-induced cell death. These results demonstrate that the FA-induced cell death is a PCD and is modulated by NO signalling through caspase-3-like activation. PMID:23838885

  11. Evaluation of Circulating Tumor Cells and Serological Cell Death Biomarkers in Small Cell Lung Cancer Patients Undergoing Chemotherapy

    PubMed Central

    Hou, Jian-Mei; Greystoke, Alastair; Lancashire, Lee; Cummings, Jeff; Ward, Tim; Board, Ruth; Amir, Eitan; Hughes, Sarah; Krebs, Matthew; Hughes, Andrew; Ranson, Malcolm; Lorigan, Paul; Dive, Caroline; Blackhall, Fiona H.

    2009-01-01

    Serological cell death biomarkers and circulating tumor cells (CTCs) have potential uses as tools for pharmacodynamic blood-based assays and their subsequent application to early clinical trials. In this study, we evaluated both the expression and clinical significance of CTCs and serological cell death biomarkers in patients with small cell lung cancer. Blood samples from 88 patients were assayed using enzyme-linked immunosorbent assays for various cytokeratin 18 products (eg, M65, cell death, M30, and apoptosis) as well as nucleosomal DNA. CTCs (per 7.5 ml of blood) were quantified using Veridex CellSearch technology. Before therapeutic treatment, cell death biomarkers were elevated in patients compared with controls. CTCs were detected in 86% of patients; additionally, CD56 was detectable in CTCs, confirming their neoplastic origin. M30 levels correlated with the percentage of apoptotic CTCs. M30, M65, lactate dehydrogenase, and CTC number were prognostic for patient survival as determined by univariate analysis. Using multivariate analysis, both lactate dehydrogenase and M65 levels remained significant. CTC number fell following chemotherapy, whereas levels of serological cell death biomarkers peaked at 48 hours and fell by day 22, mirroring the tumor response. A 48-hour rise in nucleosomal DNA and M30 levels was associated with early response and severe toxicity, respectively. Our results provide a rationale to include the use of serological biomarkers and CTCs in early clinical trials of new agents for small cell lung cancer. PMID:19628770

  12. Mitochondrial and Nuclear Cross Talk in Cell Death: Parthanatos

    PubMed Central

    Andrabi, Shaida A.; Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) PARP-1 is an abundant nuclear protein first described to facilitate DNA base excision repair. Recent work has expanded the physiologic functions of PARP-1 and it is clear that the full range of biologic actions of this important protein are not yet fully understood. Regulation of the product of PARP-1, poly(ADP-ribose) (PAR), is a dynamic process with poly(ADP-ribose) glycohydrolase (PARG) playing a major role in the degradation of the polymer. Under pathophysiologic situations, over activation of poly(ADP-ribose) polymerase-1 (PARP-1) results in unregulated PAR synthesis and widespread neuronal cell death. Once thought to be necrotic cell death due to energy failure, we recently found that PARP-1 dependent cell death is dependent on the generation of PAR that triggers nuclear translocation of apoptosis-inducing factor (AIF) to result in caspase-independent cell death. This form of cell death is distinct from apoptosis, necrosis or autophagy and is termed Parthanatos. PARP-1 dependent cell death has been implicated in tissues throughout the body and in diseases afflicting hundreds of millions world wide including stroke, Parkinson's disease, heart attack, diabetes, and ischemia reperfusion injury in numerous tissues. The breadth of indications for PARP-1 injury make Parthanatos a clinically important form of cell death to understand and control. PMID:19076445

  13. Mitochondria and calcium: from cell signalling to cell death

    PubMed Central

    Duchen, Michael R

    2000-01-01

    While a pathway for Ca2+ accumulation into mitochondria has long been established, its functional significance is only now becoming clear in relation to cell physiology and pathophysiology. The observation that mitochondria take up Ca2+ during physiological Ca2+ signalling in a variety of cell types leads to four questions: (i) ‘What is the impact of mitochondrial Ca2+ uptake on mitochondrial function?’ (ii) ‘What is the impact of mitochondrial Ca2+ uptake on Ca2+ signalling?’ (iii) ‘What are the consequences of impaired mitochondrial Ca2+ uptake for cell function?’ and finally (iv) ‘What are the consequences of pathological [Ca2+]c signalling for mitochondrial function?’ These will be addressed in turn. Thus: (i) accumulation of Ca2+ into mitochondria regulates mitochondrial metabolism and causes a transient depolarisation of mitochondrial membrane potential. (ii) Mitochondria may act as a spatial Ca2+ buffer in many cells, regulating the local Ca2+ concentration in cellular microdomains. This process regulates processes dependent on local cytoplasmic Ca2+ concentration ([Ca2+]c), particularly the flux of Ca2+ through IP3-gated channels of the endoplasmic reticulum (ER) and the channels mediating capacitative Ca2+ influx through the plasma membrane. Consequently, mitochondrial Ca2+ uptake plays a substantial role in shaping [Ca2+]c signals in many cell types. (iii) Impaired mitochondrial Ca2+ uptake alters the spatiotemporal characteristics of cellular [Ca2+]c signalling and downregulates mitochondrial metabolism. (iv) Under pathological conditions of cellular [Ca2+]c overload, particularly in association with oxidative stress, mitochondrial Ca2+ uptake may trigger pathological states that lead to cell death. In the model of glutamate excitotoxicity, microdomains of [Ca2+]c are apparently central, as the pathway to cell death seems to require the local activation of neuronal nitric oxide synthase (nNOS), itself held by scaffolding proteins in close

  14. Aging and Cell Death in the Other Yeasts, Schizosaccharomyces pombe and Candida albicans

    PubMed Central

    Lin, Su-Ju; Austriaco, Nicanor

    2013-01-01

    How do cells age and die? For the past twenty years, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to uncover the genes that regulate lifespan and cell death. More recently, investigators have begun to interrogate the other yeasts, the fission yeast, Schizosaccharomyces pombe, and the human fungal pathogen, Candida albicans, to determine if similar longevity and cell death pathways exist in these organisms. After summarizing the longevity and cell death phenotypes in S. cerevisiae, this mini-review surveys the progress made in the study of both aging and programmed cell death (PCD) in the yeast models, with a focus on the biology of S. pombe and C. albicans. Particular emphasis is placed on the similarities and differences between the two types of aging, replicative aging and chronological aging, and between the three types of cell death, intrinsic apoptosis, autophagic cell death, and regulated necrosis, found in these yeasts. The development of the additional microbial models for aging and PCD in the other yeasts may help further elucidate the mechanisms of longevity and cell death regulation in eukaryotes. PMID:24205865

  15. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  16. Sickle cell trait and sudden death--bringing it home.

    PubMed Central

    Mitchell, Bruce L.

    2007-01-01

    Sickle cell trait continues to be the leading cause of sudden death for young African Americans in military basic training and civilian organized sports. The syndrome may have caused the death of up to 10 college football players since 1974 and, as recently as 2000, was suspected as the cause of death of three U.S. Army recruits. The penal military-style boot camps in the United States and the recent death of two teenagers with sickle cell trait merits renewed vigor in the education of athletic instructors, the military and the public about conditions associated with sudden death in individuals with sickle cell trait. Images Figure 1 Figure 2 PMID:17393956

  17. YM155 suppresses cell proliferation and induces cell death in human adult T-cell leukemia/lymphoma cells.

    PubMed

    Sasaki, Ryousei; Ito, Shigeki; Asahi, Maki; Ishida, Yoji

    2015-12-01

    Adult T-cell leukemia (ATL) is an aggressive malignancy of peripheral T cells infected with human T-cell leukemia virus type 1 (HTLV-1). The prognosis of patients with aggressive ATL remains poor because ATL cells acquire resistance to conventional cytotoxic agents. Therefore, development of novel agents is urgently needed. We examined the effects of YM155, sepantronium bromide, on cell proliferation and survival of ATL or HTLV-1-infected T-cell lines, S1T, MT-1, and MT-2. We found that YM155 suppressed cell proliferation in these cells and induced cell death in S1T and MT-1 cells. Both real-time quantitative polymerase chain reaction and immunoblot analyses showed suppression of survivin expression in S1T, MT-1, and MT-2 cells. In addition, we observed the cleavage of caspase-3 and poly(ADP-ribose) polymerase in YM155-treated S1T and MT-1 cells, indicating that YM155 induces caspase-dependent apoptosis in these cells. To clarify the mechanism of drug tolerance of MT-2 cells in terms of YM155-induced cell death, we examined intracellular signaling status in these cells. We found that STAT3, STAT5, and AKT were constitutively phosphorylated in MT-2 cells but not in S1T and MT-1 cells. Treatment with YM155 combined with the STAT3 inhibitor S3I-201 significantly suppressed cell proliferation compared to that with either YM155 or S3I-201 in MT-2 cells, indicating that STAT3 may play a role in tolerance of MT-2 cells to YM155 and that STAT3 may therefore be a therapeutic target for YM155-resistant ATL cells. These results suggest that YM155 presents potent antiproliferative and apoptotic effects via suppression of survivin in ATL cells in which STAT3 is not constitutively phosphorylated. YM155 merits further investigation as a potential chemotherapeutic agent for ATL. PMID:26547260

  18. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death

    NASA Astrophysics Data System (ADS)

    Gago-Arias, Araceli; Aguiar, Pablo; Espinoza, Ignacio; Sánchez-Nieto, Beatriz; Pardo-Montero, Juan

    2016-02-01

    The resistance of hypoxic cells to radiation, due to the oxygen dependence of radiosensitivity, is well known and must be taken into account to accurately calculate the radiation induced cell death. A proper modelling of the response of tumours to radiation requires deriving the distribution of oxygen at a microscopic scale. This usually involves solving the reaction-diffusion equation in tumour voxels using a vascularization distribution model. Moreover, re-oxygenation arises during the course of radiotherapy, one reason being the increase of available oxygen caused by cell killing, which can turn hypoxic tumours into oxic. In this work we study the effect of cell death kinetics in tumour oxygenation modelling, analysing how it affects the timing of re-oxygenation, surviving fraction and tumour control. Two models of cell death are compared, an instantaneous cell killing, mimicking early apoptosis, and a delayed cell death scenario in which cells can die shortly after being damaged, as well as long after irradiation. For each of these scenarios, the decrease in oxygen consumption due to cell death can be computed globally (macroscopic voxel average) or locally (microscopic). A re-oxygenation model already used in the literature, the so called full re-oxygenation, is also considered. The impact of cell death kinetics and re-oxygenation on tumour responses is illustrated for two radiotherapy fractionation schemes: a conventional schedule, and a hypofractionated treatment. The results show large differences in the doses needed to achieve 50% tumour control for the investigated cell death models. Moreover, the models affect the tumour responses differently depending on the treatment schedule. This corroborates the complex nature of re-oxygenation, showing the need to take into account the kinetics of cell death in radiation response models.

  19. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death

    PubMed Central

    Bacellar, Isabel O. L.; Tsubone, Tayana M.; Pavani, Christiane; Baptista, Mauricio S.

    2015-01-01

    Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research. PMID:26334268

  20. Semaphorin 3A is a retrograde cell death signal in developing sympathetic neurons.

    PubMed

    Wehner, Amanda B; Abdesselem, Houari; Dickendesher, Travis L; Imai, Fumiyasu; Yoshida, Yutaka; Giger, Roman J; Pierchala, Brian A

    2016-05-01

    During development of the peripheral nervous system, excess neurons are generated, most of which will be lost by programmed cell death due to a limited supply of neurotrophic factors from their targets. Other environmental factors, such as 'competition factors' produced by neurons themselves, and axon guidance molecules have also been implicated in developmental cell death. Semaphorin 3A (Sema3A), in addition to its function as a chemorepulsive guidance cue, can also induce death of sensory neurons in vitro The extent to which Sema3A regulates developmental cell death in vivo, however, is debated. We show that in compartmentalized cultures of rat sympathetic neurons, a Sema3A-initiated apoptosis signal is retrogradely transported from axon terminals to cell bodies to induce cell death. Sema3A-mediated apoptosis utilizes the extrinsic pathway and requires both neuropilin 1 and plexin A3. Sema3A is not retrogradely transported in older, survival factor-independent sympathetic neurons, and is much less effective at inducing apoptosis in these neurons. Importantly, deletion of either neuropilin 1 or plexin A3 significantly reduces developmental cell death in the superior cervical ganglia. Taken together, a Sema3A-initiated apoptotic signaling complex regulates the apoptosis of sympathetic neurons during the period of naturally occurring cell death. PMID:27143756

  1. Human clusterin gene expression is confined to surviving cells during in vitro programmed cell death.

    PubMed Central

    French, L E; Wohlwend, A; Sappino, A P; Tschopp, J; Schifferli, J A

    1994-01-01

    Clusterin is a serum glycoprotein endowed with cell aggregating, complement inhibitory, and lipid binding properties, and is also considered as a specific marker of dying cells, its expression being increased in various tissues undergoing programmed cell death (PCD). However, no study has so far directly shown that cells expressing clusterin in these tissues are actually apoptotic as defined by morphological and biochemical criteria. We have studied cellular clusterin gene expression in vitro using three different models of PCD: (a) ultraviolet B (UV-B) irradiation of human U937, HeLa, and A431 cell lines, (b) in vitro aging of human peripheral blood neutrophils (PMNs), and (c) dexamethasone-induced cell death of the human lymphoblastoid cell line CEM-C7. In all three models, the classical morphological and biochemical features of PCD observed did not correlate with an increase, but with either a marked decrease or an absence of clusterin gene expression as assessed by Northern blot analysis. In situ hybridization of U937 and A431 cells after UV-B irradiation revealed, in addition, that only morphologically normal cells that are surviving continue to express the clusterin gene. Our results demonstrate that in the human myeloid, lymphoid, and epithelial cell types studied, clusterin gene expression is not a prerequisite to their death by apoptosis. In addition, and most interestingly, in situ hybridization of U937 and A431 cells revealed that only surviving cells express the clusterin gene after the induction of PCD, thus providing novel evidence suggesting that clusterin may be associated with cell survival within tissues regressing as a consequence of PCD. Images PMID:8113419

  2. Polyoma small T antigen triggers cell death via mitotic catastrophe.

    PubMed

    Pores Fernando, A T; Andrabi, S; Cizmecioglu, O; Zhu, C; Livingston, D M; Higgins, J M G; Schaffhausen, B S; Roberts, T M

    2015-05-01

    Polyoma small T antigen (PyST), an early gene product of the polyoma virus, has been shown to cause cell death in a number of mammalian cells in a protein phosphatase 2A (PP2A)-dependent manner. In the current study, using a cell line featuring regulated expression of PyST, we found that PyST arrests cells in mitosis. Live-cell and immunofluorescence studies showed that the majority of the PyST expressing cells were arrested in prometaphase with almost no cells progressing beyond metaphase. These cells exhibited defects in chromosomal congression, sister chromatid cohesion and spindle positioning, thereby resulting in the activation of the spindle assembly checkpoint. Prolonged mitotic arrest then led to cell death via mitotic catastrophe. Cell cycle inhibitors that block cells in G1/S prevented PyST-induced death. PyST-induced cell death that occurs during M is not dependent on p53 status. These data suggested, and our results confirmed, that PP2A inhibition could be used to preferentially kill cancer cells with p53 mutations that proliferate normally in the presence of cell cycle inhibitors. PMID:24998850

  3. Coniferyl Aldehyde Attenuates Radiation Enteropathy by Inhibiting Cell Death and Promoting Endothelial Cell Function

    PubMed Central

    Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function. PMID:26029925

  4. Analysis of Cell Death Induction in Intestinal Organoids In Vitro.

    PubMed

    Grabinger, Thomas; Delgado, Eugenia; Brunner, Thomas

    2016-01-01

    The intestinal epithelium has an important function in the absorption of nutrients contained in the food. Furthermore, it also has an important barrier function, preventing luminal pathogens from entering the bloodstream. This single cell layer epithelium is quite sensitive to various cell death-promoting triggers, including drugs, irradiation, and TNF family members, leading to loss of barrier integrity, epithelial erosion, inflammation, malabsorption, and diarrhea. In order to assess the intestinal epithelium-damaging potential of treatments and substances specific test systems are required. As intestinal tumor cell lines are a poor substitute for primary intestinal epithelial cells, and in vivo experiments in mice are costly and often unethical, the use of intestinal organoids cultured from intestinal crypts provide an ideal tool to study cell death induction and mechanisms in primary intestinal epithelial cells. This protocol describes the isolation and culture of intestinal organoids from murine small intestinal crypts, and the quantitative assessment of cell death induction in these organoids. PMID:27108433

  5. Programmed cell death in plants: A chloroplastic connection

    PubMed Central

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that sees some sporadic reports every now and then. The plants have 2 energy generating sub-cellular organelles- mitochondria and chloroplasts unlike animals that just have mitochondria. The presence of chloroplast as an additional energy transducing and ROS generating compartment in a plant cell inclines to advocate the involvement of chloroplasts in PCD execution process. As chloroplasts are supposed to be progenies of unicellular photosynthetic organisms that evolved as a result of endosymbiosis, the possibility of retaining some of the components involved in bacterial PCD by chloroplasts cannot be ruled out. Despite several excellent reviews on PCD in plants, there is a void on an update of information at a place on the regulation of PCD by chloroplast. This review has been written to provide an update on the information supporting the involvement of chloroplast in PCD process and the possible future course of the field. PMID:25760871

  6. Live to die another way: modes of programmed cell death and the signals emanating from dying cells

    PubMed Central

    Fuchs, Yaron; Steller, Hermann

    2015-01-01

    Preface All life ends in death, but perhaps one of life’s grander ironies is that it also depends on death. Cell-intrinsic suicide pathways, termed programmed cell death (PCD), are crucial for animal development, tissue homeostasis and pathogenesis. Originally, PCD was virtually synonymous with apoptosis, but recently, alternative PCD mechanisms have been reported. Here, we provide an overview of several distinct PCD mechanisms, namely apoptosis, autophagy and necroptosis. In addition, we discuss the complex signals emanating from dying cells, which can either fuel regeneration or instruct additional killing. Further advances in understanding the physiological role of multiple cell death mechanisms and associated signals will be important to selectively manipulate PCD for therapeutic purposes. PMID:25991373

  7. Host cell death due to enteropathogenic Escherichia coli has features of apoptosis.

    PubMed

    Crane, J K; Majumdar, S; Pickhardt, D F

    1999-05-01

    Enteropathogenic Escherichia coli (EPEC) is a cause of prolonged watery diarrhea in children in developing countries. The ability of EPEC to kill host cells was investigated in vitro in assays using two human cultured cell lines, HeLa (cervical) and T84 (colonic). EPEC killed epithelial cells as assessed by permeability to the vital dyes trypan blue and propidium iodide. In addition, EPEC triggered changes in the host cell, suggesting apoptosis as the mode of death; such changes included early expression of phosphatidylserine on the host cell surface and internucleosomal cleavage of host cell DNA. Genistein, an inhibitor of tyrosine kinases, and wortmannin, an inhibitor of host phosphatidylinositol 3-kinase, markedly increased EPEC-induced cell death and enhanced the features of apoptosis. EPEC-induced cell death was contact dependent and required adherence of live bacteria to the host cell. A quantitative assay for EPEC-induced cell death was developed by using the propidium iodide uptake method adapted to a fluorescence plate reader. With EPEC, the rate and extent of host cell death were less that what has been reported for Salmonella, Shigella, and Yersinia, three other genera of enteric bacteria known to cause apoptosis. However, rapid apoptosis of the host cell may not favor the pathogenic strategy of EPEC, a mucosa-adhering, noninvasive pathogen. PMID:10225923

  8. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death

    PubMed Central

    2016-01-01

    Little is known about the regulation of nonapoptotic cell death. Using massive insertional mutagenesis of haploid KBM7 cells we identified nine genes involved in small-molecule-induced nonapoptotic cell death, including mediators of fatty acid metabolism (ACSL4) and lipid remodeling (LPCAT3) in ferroptosis. One novel compound, CIL56, triggered cell death dependent upon the rate-limiting de novo lipid synthetic enzyme ACC1. These results provide insight into the genetic regulation of cell death and highlight the central role of lipid metabolism in nonapoptotic cell death. PMID:25965523

  9. Targeting Cell Death Pathways for Therapeutic Intervention in Kidney Diseases.

    PubMed

    Garg, Jay P; Vucic, Domagoj

    2016-05-01

    Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases. PMID:27339381

  10. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    SciTech Connect

    Pan, Mu-Yun; Shen, Yuh-Chiang; Lu, Chien-Hsing; Yang, Shu-Yi; Ho, Tsing-Fen; Peng, Yu-Ta; Chang, Chia-Che

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified as an

  11. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death.

    PubMed

    Darshan, N; Manonmani, H K

    2016-12-01

    The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections. PMID:27460563

  12. Heat shock protein-mediated protection against Cisplatin-induced hair cell death.

    PubMed

    Baker, Tiffany G; Roy, Soumen; Brandon, Carlene S; Kramarenko, Inga K; Francis, Shimon P; Taleb, Mona; Marshall, Keely M; Schwendener, Reto; Lee, Fu-Shing; Cunningham, Lisa L

    2015-02-01

    Cisplatin is a highly successful and widely used chemotherapy for the treatment of various solid malignancies in both adult and pediatric patients. Side effects of cisplatin treatment include nephrotoxicity and ototoxicity. Cisplatin ototoxicity results from damage to and death of cells in the inner ear, including sensory hair cells. We showed previously that heat shock inhibits cisplatin-induced hair cell death in whole-organ cultures of utricles from adult mice. Since heat shock protein 70 (HSP70) is the most upregulated HSP in response to heat shock, we investigated the role of HSP70 as a potential protectant against cisplatin-induced hair cell death. Our data using utricles from HSP70 (-/-) mice indicate that HSP70 is necessary for the protective effect of heat shock against cisplatin-induced hair cell death. In addition, constitutive expression of inducible HSP70 offered modest protection against cisplatin-induced hair cell death. We also examined a second heat-inducible protein, heme oxygenase-1 (HO-1, also called HSP32). HO-1 is an enzyme responsible for the catabolism of free heme. We previously showed that induction of HO-1 using cobalt protoporphyrin IX (CoPPIX) inhibits aminoglycoside-induced hair cell death. Here, we show that HO-1 also offers significant protection against cisplatin-induced hair cell death. HO-1 induction occurred primarily in resident macrophages, with no detectable expression in hair cells or supporting cells. Depletion of macrophages from utricles abolished the protective effect of HO-1 induction. Together, our data indicate that HSP induction protects against cisplatin-induced hair cell death, and they suggest that resident macrophages mediate the protective effect of HO-1 induction. PMID:25261194

  13. Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death.

    PubMed

    Thomenius, M; Freel, C D; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, S

    2011-10-01

    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die. PMID:21475305

  14. Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death

    PubMed Central

    Thomenius, M; Freel, C D; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, S

    2011-01-01

    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die. PMID:21475305

  15. Evidence of apoptotic cell death after experimental traumatic brain injury in the rat.

    PubMed Central

    Rink, A.; Fung, K. M.; Trojanowski, J. Q.; Lee, V. M.; Neugebauer, E.; McIntosh, T. K.

    1995-01-01

    Apoptosis plays an important role in many developmental and pathological processes of the central nervous system. However, the role of apoptosis in traumatic brain injury has not been determined. Using the terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) method, we detected many cells with extensive DNA fragmentation in different regions of the brains of rats subjected to experimental traumatic brain injury. Two types of TUNEL-positive cells were demonstrated by light and electron microscopy, including type I cells that displayed morphological features of necrotic cell death and type II cells that displayed morphological features of classic apoptotic cell death. TUNEL-positive cells were detectable for up to 72 hours after the initial injury. Gel electrophoresis of DNA extracted from affected areas of the injured brain containing both type I and II cells revealed only internucleosomal fragmentation at 185-bp intervals, a feature originally described in apoptotic cell death. These data suggest that apoptosis, in addition to necrotic cell death, occurs after traumatic brain injury, and that internucleosomal fragmentation of DNA may be associated with certain types of necrotic cell death. Images Figure 1 Figure 2 Figure 4 PMID:7495282

  16. Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells.

    PubMed

    Steinwascher, Sofie; Nugues, Anne-Lucie; Schoeneberger, Hannah; Fulda, Simone

    2015-09-28

    Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in acute myeloid leukemia (AML) and contribute to resistance to programmed cell death. Here, we report that inhibition of IAP proteins by the small-molecule Smac mimetic BV6 acts together with histone deacetylase (HDAC) inhibitors (HDACIs) such as MS275 or SAHA to trigger cell death in AML cell lines in a synergistic manner, as underscored by calculation of combination index (CI). Also, BV6 and HDACIs cooperate to trigger DNA fragmentation, a marker of apoptotic cell death, and to suppress long-term clonogenic survival of AML cells. In contrast, equimolar concentrations of BV6 and MS275 or SAHA do not synergize to elicit cell death in normal peripheral blood lymphocytes (PBLs), emphasizing some tumor cell selectivity of this combination treatment. Addition of the tumor necrosis factor (TNF)α-blocking antibody Enbrel significantly reduces BV6/MS275-induced cell death in the majority of AML cell lines, indicating that autocrine/paracrine TNFα signaling contributes to cell death. Remarkably, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue MV4-11, Molm13 and OCI-AML3 cells and even enhances BV6/MS275-mediated cell death, whereas zVAD.fmk reduces BV6/MS275-induced cell death in NB4 cells. Annexin-V/propidium iodide (PI) double staining reveals that BV6/MS275 cotreatment predominately increases the percentage of double-positive cells. Of note, the Receptor-Interacting Protein (RIP)1 inhibitor necrostatin-1 (Nec-1) or the Mixed Lineage Kinase Domain-Like protein (MLKL) inhibitor necrosulfonamide (NSA) significantly reduce BV6/MS275-induced cell death in the presence of zVAD.fmk, suggesting that BV6/MS275 cotreatment triggers necroptosis when caspases are inhibited. Thus, BV6 acts in concert with HDACIs to induce cell death in AML cells and can bypass apoptosis resistance, at least in several AML cell lines, by engaging necroptosis as an

  17. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells.

    PubMed

    Poór, Péter; Kovács, Judit; Szopkó, Dóra; Tari, Irma

    2013-02-01

    Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10(-3) M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca(2+) chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension. PMID:22535239

  18. Enucleation: a possible mechanism of cancer cell death

    PubMed Central

    Paunescu, Virgil; Bojin, Florina M; Gavriliuc, Oana I; Taculescu, Elena A; Ianos, Robert; Ordodi, Valentin L; Iman, Vlad F; Tatu, Calin A

    2014-01-01

    There are few major morphologies of cell death that have been described so far: apoptosis (type I), cell death associated with autophagy (type II), necrosis (type III) and anchorage-dependent mechanisms—anoikis. Here, we show for the first time a possibly novel mechanism inducing tumour cell death under in vitro conditions—enucleation. We pursued the influence of colloidal suspensions of Fe3O4 nanoparticles on tumour cell lines (SK-BR-3 and MCF-7 breast cancer cell lines) grown according to standard cell culture protocols. Magnetite nanoparticles were prepared by combustion synthesis and double layer coated with oleic acid. Scanning and transmission electron microscopy revealed that tumour cells developed a network of intracytoplasmic stress fibres, which induce extrusion of nuclei, and enucleated cells die. Normal adult mesenchymal stem cells, used as control, did not exhibit the same behaviour. Intact nuclei were found in culture supernatant of tumour cells, and were visualized by immunofluorescence. Enucleation as a potential mechanism of tumour cell death might open new horizons in cancer biology research and development of therapeutic agents capable of exploiting this behaviour. PMID:24629135

  19. Ethylene induces cell death at particular phases of the cell cycle in the tobacco TBY-2 cell line.

    PubMed

    Herbert, R J; Vilhar, B; Evett, C; Orchard, C B; Rogers, H J; Davies, M S; Francis, D

    2001-08-01

    It was examined whether ethylene induces programmed cell death in a cell cycle-specific manner. Following synchronization of the tobacco TBY-2 cell line with aphidicolin and its subsequent removal, ethylene was injected into the head space of 300 cm(3) culture flasks at 0 h or 3.5 h later and cells were sampled for 26 h. There were significant increases in cell mortality at G(2)/M in both the 0 h and 3.5 h ethylene treatments, and for the latter treatment, another peak in S-phase. The effect at G(2)/M was greater in the 3.5 h treatment, but was ameliorated by the simultaneous addition of silver nitrate (1.2 microM). In addition, the 3.5 h ethylene treatment resulted in a 1 h delay in the characteristic rise in the mitotic index following aphidicolin-induced synchrony. The addition of silver nitrate alone (1.2 microM), also delayed the entry of cells into mitosis but had no effect on cell cycle length compared with the controls (14 h throughout all treatments) but it induced a peak of mortality 2.5 h after its addition. Nuclear shrinkage was also a characteristic feature of dying cells at G(2)/M. Using Apoptag, an in situ apoptosis detection kit, nuclear DNA fragmentation was observed in the TBY-2 cells which were often isolated on the end of a filament of normal cells. In the 3.5 h ethylene treatment, a marked increase was noted in the percentage of such cells at the G(2)/M transition compared with the controls. Hence, the data show cell death occurring at a major phase transition of the cell cycle and the observations of nuclear shrinkage, isolation of dying cells and nuclear DNA fragmentation suggest a programmed mechanism of cell death exacerbated by ethylene treatment. PMID:11479326

  20. Interaction of Mycobacterium tuberculosis with Host Cell Death Pathways

    PubMed Central

    Srinivasan, Lalitha; Ahlbrand, Sarah; Briken, Volker

    2014-01-01

    Mycobacterium tuberculosis (Mtb) has coevolved with humans for tens of thousands of years. It is thus highly adapted to its human host and has evolved multiple mechanisms to manipulate host immune responses to its advantage. One central host pathogen interaction modality is host cell death pathways. Host cell apoptosis is associated with a protective response to Mtb infection, whereas a necrotic response favors the pathogen. Consistently, Mtb inhibits host cell apoptosis signaling but promotes induction of programmed necrosis. The molecular mechanisms involved in Mtb-mediated host cell death manipulation, the consequences for host immunity, and the potential for therapeutic and preventive approaches will be discussed. PMID:24968864

  1. Paraptosis-like cell death induced by yessotoxin.

    PubMed

    Korsnes, Mónica Suárez; Espenes, Arild; Hetland, Dyveke Lem; Hermansen, Lene C

    2011-12-01

    This study shows that BC3H1 myoblast cell lines exposed to 100 nM yessotoxin (YTX) undergo a form of programmed cell death distinct from apoptosis and with features resembling paraptosis. Morphologically, cells treated with YTX reveal extensive cytoplasmic vacuolation, mitochondrial and endoplasmic reticulum swelling, uncondensed chromatin and cytoskeletal alterations. DNA electrophoresis evidences lack of DNA fragmentation and Western blotting analysis demonstrates activation of the mitogen-activated protein kinase JNK/SAPK1. Further characterisation of this form of programmed cell death may have interest within medicine and cancer therapy. PMID:21945047

  2. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    PubMed

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  3. Morphological and cytochemical determination of cell death by apoptosis

    PubMed Central

    Sobel, Burton E.; Budd, Ralph C.

    2007-01-01

    Several modes of cell death are now recognized, including necrosis, apoptosis, and autophagy. Oftentimes the distinctions between these various modes may not be apparent, although the precise mode may be physiologically important. Accordingly, it is often desirable to be able to classify the mode of cell death. Apoptosis was originally defined by structural alterations in cells observable by transmitted light and electron microscopy. Today, a wide variety of imaging and cytochemical techniques are available for the investigation of apoptosis. This review will highlight many of these methods, and provide a critique on the advantages and disadvantages associated with them for the specific identification of apoptotic cells in culture and tissues. PMID:18000678

  4. Targeting Cell Survival Proteins for Cancer Cell Death

    PubMed Central

    Pandey, Manoj K.; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N.; Amin, Shantu G.; Aggarwal, Bharat B.

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  5. Targeting Cell Survival Proteins for Cancer Cell Death.

    PubMed

    Pandey, Manoj K; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N; Amin, Shantu G; Aggarwal, Bharat B

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  6. Baicalein induces programmed cell death in Candida albicans.

    PubMed

    Dai, Bao-Di; Cao, Ying-Ying; Huang, Shan; Xu, Yong-Gang; Gao, Ping-Hui; Wang, Yan; Jiang, Yuan-Ying

    2009-08-01

    Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 microg/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly ( p<0.001) upon BE treatment compared with control. Taken together, our results indicate that BE treatment induces apoptosis in C.albicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential. PMID:19734718

  7. Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β. PMID:23166834

  8. Bax-induced cell death in Candida albicans.

    PubMed

    De Smet, Kris; Eberhardt, Ines; Reekmans, Rieka; Contreras, Roland

    2004-12-01

    Bax is a pro-apoptotic member of the Bcl-2 family of proteins involved in the regulation of genetically programmed cell death in mammalian cells. It has been shown that heterologous expression of Bax in several yeast species, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe and Pichia pastoris, also induces cell death. In this study we investigated the effects of Bax expression in the pathogenic yeast Candida albicans. Cell death inducing expression of Bax required a synthetic BAX gene that was codon-optimized for expression in Candida albicans. Expression of this BAX gene resulted in growth inhibition and cell death. By fusing Bax with the yeast enhanced green fluorescent protein of Aequoria victoria, the cell death-inducing effect of Bax was increased due to reduced proteolytic degradation of Bax. Using this fusion protein we showed that, upon expression in C. albicans, Bax co-localizes with the mitochondria. Furthermore, we showed for the first time that expression of Bax in yeast causes the mitochondria, which are normally distributed throughout the cell, to cluster in the perinuclear region. PMID:15565645

  9. External and internal triggers of cell death in yeast.

    PubMed

    Falcone, Claudio; Mazzoni, Cristina

    2016-06-01

    In recent years, yeast was confirmed as a useful eukaryotic model system to decipher the complex mechanisms and networks occurring in higher eukaryotes, particularly in mammalian cells, in physiological as well in pathological conditions. This article focuses attention on the contribution of yeast in the study of a very complex scenario, because of the number and interconnection of pathways, represented by cell death. Yeast, although it is a unicellular organism, possesses the basal machinery of different kinds of cell death occurring in higher eukaryotes, i.e., apoptosis, regulated necrosis and autophagy. Here we report the current knowledge concerning the yeast orthologs of main mammalian cell death regulators and executors, the role of organelles and compartments, and the cellular phenotypes observed in the different forms of cell death in response to external and internal triggers. Thanks to the ease of genetic manipulation of this microorganism, yeast strains expressing human genes that promote or counteract cell death, onset of tumors and neurodegenerative diseases have been constructed. The effects on yeast cells of some of these genes are also presented. PMID:27048816

  10. Many ways to die: passive and active cell death styles.

    PubMed

    Fietta, Pieranna

    2006-01-01

    In multicellular organisms, cells may undergo passive, pathological death in response to various environmental injuries, or actively decide to self-destroy in order to ensure proper physiological morphogenesis, preserve tissue homeostasis and eliminate abnormal cells. While the passive cell demise occurs in an accidental, violent and chaotic way, corresponding to "necrosis", the active auto-elimination, defined "programmed cell death" (PCD), is executed in planned modalities. Different PCD pathways have been described, such as apoptosis, autophagic death, para-apoptosis and programmed necrosis. However, death patterns may overlap or integrate, providing a variety of cellular responses to various circumstances or stimuli. The consequences for the whole organism of necrosis and PCD are quite different. In the case of classical necrosis, cytosolic constituents chaotically spill into extracellular space through damaged plasma membrane and provoke an inflammatory response, while in most PCDs the cellular components are safely isolated by membranes, and then consumed by adjacent parenchymal cells and/or resident phagocytes without inflammation. Thus, whereas the necrotic cell removal induces and amplifies pathological processes, the elimination of PCD debris may remain virtually unnoticed by the body. Otherwise, alterations of PCD controls may be involved in human diseases, such as developmental abnormalities, or neurodegenerative, autoimmune and neoplastic affections, whose treatment implies the complete understanding of cell suicide processes. In this review, the cellular death patterns are focused and their significance discussed. PMID:16791791

  11. Modulation of cell death in age-related diseases.

    PubMed

    Tezil, Tugsan; Basaga, Huveyda

    2014-01-01

    Aging is a stage of life of all living organisms. According to the free-radical theory, aging cells gradually become unable to maintain cellular homeostasis due to the adverse effects of reactive oxygen species (ROS). ROS can cause irreversible DNA mutations, protein and lipid damage which are increasingly accumulated in the course of time if cells could not overcome these effects by the antioxidant defence system. Accrued damaged molecules in cells may either induce cellular death or contribute to develop various pathologies. Hence, programmed cell death mechanisms, apoptosis and autophagy, play a vital role in the aging process. Although they are strictly controlled by various interconnected signalling pathways, alterations in their regulations may contribute to severe pathologies including cancer, Alzheimer's and Parkinson's diseases. In this review, we summarized our current understanding and hypotheses regarding oxidative stress and age-related dysregulation of cell death signalling pathways. PMID:24079770

  12. Autosis and autophagic cell death: the dark side of autophagy

    PubMed Central

    Liu, Y; Levine, B

    2015-01-01

    It is controversial whether cells truly die via autophagy or whether — in dying cells — autophagy is merely an innocent bystander or a well-intentioned ‘Good Samaritan' trying to prevent inevitable cellular demise. However, there is increasing evidence that the genetic machinery of autophagy may be essential for cell death in certain settings. We recently identified a novel form of autophagy gene-dependent cell death, termed autosis, which is mediated by the Na+,K+-ATPase pump and has unique morphological features. High levels of cellular autophagy, as occurs with treatment with autophagy-inducing peptides, starvation, or in vivo during certain types of ischemia, can trigger autosis. These findings provide insights into the mechanisms and strategies for prevention of cell death during extreme stress conditions. PMID:25257169

  13. Autosis and autophagic cell death: the dark side of autophagy.

    PubMed

    Liu, Y; Levine, B

    2015-03-01

    It is controversial whether cells truly die via autophagy or whether - in dying cells - autophagy is merely an innocent bystander or a well-intentioned 'Good Samaritan' trying to prevent inevitable cellular demise. However, there is increasing evidence that the genetic machinery of autophagy may be essential for cell death in certain settings. We recently identified a novel form of autophagy gene-dependent cell death, termed autosis, which is mediated by the Na(+),K(+)-ATPase pump and has unique morphological features. High levels of cellular autophagy, as occurs with treatment with autophagy-inducing peptides, starvation, or in vivo during certain types of ischemia, can trigger autosis. These findings provide insights into the mechanisms and strategies for prevention of cell death during extreme stress conditions. PMID:25257169

  14. A Role for Programmed Cell Death in the Microbial Loop

    PubMed Central

    Durand, Pierre M.; Whitehead, Kenia; Baliga, Nitin S.

    2013-01-01

    The microbial loop is the conventional model by which nutrients and minerals are recycled in aquatic eco-systems. Biochemical pathways in different organisms become metabolically inter-connected such that nutrients are utilized, processed, released and re-utilized by others. The result is that unrelated individuals end up impacting each others' fitness directly through their metabolic activities. This study focused on the impact of programmed cell death (PCD) on a population's growth as well as its role in the exchange of carbon between two naturally co-occurring halophilic organisms. Flow cytometric, biochemical, 14C radioisotope tracing assays, and global transcriptomic analyses show that organic algal photosynthate released by Dunalliela salina cells undergoing PCD complements the nutritional needs of other non-PCD D. salina cells. This occurs in vitro in a carbon limited environment and enhances the growth of the population. In addition, a co-occurring heterotroph Halobacterium salinarum re-mineralizes the carbon providing elemental nutrients for the mixoheterotrophic chlorophyte. The significance of this is uncertain and the archaeon can also subsist entirely on the lysate of apoptotic algae. PCD is now well established in unicellular organisms; however its ecological relevance has been difficult to decipher. In this study we found that PCD in D. salina causes the release of organic nutrients such as glycerol, which can be used by others in the population as well as a co-occurring halophilic archaeon. H. salinarum also re-mineralizes the dissolved material promoting algal growth. PCD in D. salina was the mechanism for the flow of dissolved photosynthate between unrelated organisms. Ironically, programmed death plays a central role in an organism's own population growth and in the exchange of nutrients in the microbial loop. PMID:23667496

  15. Therapeutic approaches to preventing cell death in Huntington disease

    PubMed Central

    Kaplan, Anna; Stockwell, Brent R.

    2012-01-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors—fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. PMID:22967354

  16. Therapeutic approaches to preventing cell death in Huntington disease.

    PubMed

    Kaplan, Anna; Stockwell, Brent R

    2012-12-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. PMID:22967354

  17. Microenvironmental Effects of Cell Death in Malignant Disease.

    PubMed

    Gregory, Christopher D; Ford, Catriona A; Voss, Jorine J L P

    2016-01-01

    Although apoptosis is well recognized as a cell death program with clear anticancer roles, accumulating evidence linking apoptosis with tissue repair and regeneration indicates that its relationship with malignant disease is more complex than previously thought. Here we review how the responses of neighboring cells in the microenvironment of apoptotic tumor cells may contribute to the cell birth/cell death disequilibrium that provides the basis for cancerous tissue emergence and growth. We describe the bioactive properties of apoptotic cells and consider, in particular, how apoptosis of tumor cells can engender a range of responses including pro-oncogenic signals having proliferative, angiogenic, reparatory, and immunosuppressive features. Drawing on the parallels between wound healing, tissue regeneration and cancer, we propose the concept of the "onco-regenerative niche," a cell death-driven generic network of tissue repair and regenerative mechanisms that are hijacked in cancer. Finally, we consider how the responses to cell death in tumors can be targeted to provide more effective and long-lasting therapies. PMID:27558817

  18. Lung epithelial cell death induced by oil-dispersant mixtures.

    PubMed

    Wang, He; Shi, Yongli; Major, Danielle; Yang, Zhanjun

    2012-08-01

    The dispersants used in oil spill disasters are claimed to be safe, but increased solubility of high-molecular-weight components in crude oil is of public health concern. The water-accommodated fractions (WAF) of crude oil mixed with dispersants may become airborne and cause lung epithelial damage when inhaled. This study was designed to examine the cell death and related death pathways of lung epithelial cells in response to WAF. Cultured A549 cells were treated for 2 or 24h with different concentrations of WAF. The WAF was prepared by mixing each of the dispersants (Corexit EC9527A, Corexit EC9500A and Corexit EC9580A) with crude oil for extraction with PBS. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay, lactate dehydrogenase assay, morphology and cleaved caspase 9 protein, and microtubule-associated protein 1 light chain 3 were all used to measure cell viability, necrosis, apoptosis and autophagy quantitation, respectively. Results showed that the WAF of oil-dispersant mixtures caused cell death in the lung epithelial cells, in a dose-dependent manner, with the major cellular pathways of necrosis and apoptosis involved. Autophagy also occurred in cells exposed to WAF mixtures at lower concentrations before any detectable cell death, indicating greater sensitivity to WAF exposure. The three types of cell behavior, namely necrosis, apoptosis and autophagy, may play different roles in oil spill-related respiratory disorders. PMID:22504303

  19. Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.

    PubMed

    Pearce, John A

    2015-12-01

    The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented

  20. Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry.

    PubMed

    Sica, Valentina; Maiuri, M Chiara; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    Different modes of regulated cell death (RCD) can be initiated by distinct molecular machineries and their morphological manifestations can be difficult to discriminate. Moreover, cells responding to stress often activate an adaptive response centered around autophagy, and whether such a response is cytoprotective or cytotoxic cannot be predicted based on morphological parameters only. Molecular definitions are therefore important to understand various RCD subroutines from a mechanistic perspective. In vitro, various forms of RCD including apoptosis and autophagic cell death can be easily discriminated from each other with assays that involve chemical or pharmacological interventions targeting key components of either pathway. Here, we detail a straightforward method to discriminate apoptosis from autophagic cell death by flow cytometry, based on the broad-spectrum caspase inhibitor Z-VAD-fmk and the genetic inhibition of ATG5. PMID:27108427

  1. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    SciTech Connect

    Walia, Rupali; Dardari, Rkia Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  2. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    SciTech Connect

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  3. p53 directly regulates the glycosidase FUCA1 to promote chemotherapy-induced cell death

    PubMed Central

    Baudot, Alice D.; Crighton, Diane; O'Prey, Jim; Somers, Joanna; Sierra Gonzalez, Pablo; Ryan, Kevin M.

    2016-01-01

    ABSTRACT p53 is a central factor in tumor suppression as exemplified by its frequent loss in human cancer. p53 exerts its tumor suppressive effects in multiple ways, but the ability to invoke the eradication of damaged cells by programmed cell death is considered a key factor. The ways in which p53 promotes cell death can involve direct activation or engagement of the cell death machinery, or can be via indirect mechanisms, for example though regulation of ER stress and autophagy. We present here another level of control in p53-mediated tumor suppression by showing that p53 activates the glycosidase, FUCA1, a modulator of N-linked glycosylation. We show that p53 transcriptionally activates FUCA1 and that p53 modulates fucosidase activity via FUCA1 up-regulation. Importantly, we also report that chemotherapeutic drugs induce FUCA1 and fucosidase activity in a p53-dependent manner. In this context, while we found that over-expression of FUCA1 does not induce cell death, RNAi-mediated knockdown of endogenous FUCA1 significantly attenuates p53-dependent, chemotherapy-induced apoptotic death. In summary, these findings add an additional component to p53s tumor suppressive response and highlight another mechanism by which the tumor suppressor controls programmed cell death that could potentially be exploited for cancer therapy. PMID:27315169

  4. p53 directly regulates the glycosidase FUCA1 to promote chemotherapy-induced cell death.

    PubMed

    Baudot, Alice D; Crighton, Diane; O'Prey, Jim; Somers, Joanna; Sierra Gonzalez, Pablo; Ryan, Kevin M

    2016-09-01

    p53 is a central factor in tumor suppression as exemplified by its frequent loss in human cancer. p53 exerts its tumor suppressive effects in multiple ways, but the ability to invoke the eradication of damaged cells by programmed cell death is considered a key factor. The ways in which p53 promotes cell death can involve direct activation or engagement of the cell death machinery, or can be via indirect mechanisms, for example though regulation of ER stress and autophagy. We present here another level of control in p53-mediated tumor suppression by showing that p53 activates the glycosidase, FUCA1, a modulator of N-linked glycosylation. We show that p53 transcriptionally activates FUCA1 and that p53 modulates fucosidase activity via FUCA1 up-regulation. Importantly, we also report that chemotherapeutic drugs induce FUCA1 and fucosidase activity in a p53-dependent manner. In this context, while we found that over-expression of FUCA1 does not induce cell death, RNAi-mediated knockdown of endogenous FUCA1 significantly attenuates p53-dependent, chemotherapy-induced apoptotic death. In summary, these findings add an additional component to p53s tumor suppressive response and highlight another mechanism by which the tumor suppressor controls programmed cell death that could potentially be exploited for cancer therapy. PMID:27315169

  5. Pseudolaric acid B activates autophagy in MCF-7 human breast cancer cells to prevent cell death

    PubMed Central

    YU, JINGHUA; CHEN, CHUNHAI; XU, TIANYANG; YAN, MINGHUI; XUE, BIANBIAN; WANG, YING; LIU, CHUNYU; ZHONG, TING; WANG, ZENGYAN; MENG, XIANYING; HU, DONGHUA; YU, XIAOFANG

    2016-01-01

    Pseudolaric acid B (PAB) has been demonstrated to exert antitumor effects in MCF-7 human breast cancer cells. The present study aimed to investigate the mechanism of resistance to PAB-induced cell death. Following incubation with 4 µM of PAB for 3 days, the majority of MCF-7 cells became senescent, while some retained the same morphology as control cells, as assessed using a senescence detection kit. Additionally, 36 h of treatment with 4 µM of PAB increased the positive staining of autophagy markers, as shown by monodansylcadaverine and acridine orange staining. Western blot analysis indicated that this treatment also increased expression of the autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3. Furthermore, treatment with PAB and the autophagy inhibitor 3-methyl adenine significantly decreased the ratio of autophagy, as assessed by flow cytometric analysis of monodansylcadaverine staining density (P<0.001), and increased the ratio of cell death, as assessed by MTT analysis (P<0.001). This indicated that autophagy promotes cell survival as a resistance mechanism to PAB treatment. Additionally, the present study demonstrated that PAB treatment did not affect the mitochondrial membrane potential, which may be related to autophagy. Increased Bcl-2 expression may explain why PAB did not affect the mitochondrial membrane potential. A Bcl-2 binding test demonstrated that PAB treatment inhibits the binding of Bcl-2 and Beclin-1, which may free Beclin-1 to participate in autophagy. Therefore, the present study demonstrated that autophagy may be activated by PAB treatment in human breast cancer MCF-7 cells, contributing to resistance to cell death. PMID:26998069

  6. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  7. Morphological Analysis of Cell Death by Cytospinning Followed by Rapid Staining.

    PubMed

    Crowley, Lisa C; Marfell, Brooke J; Waterhouse, Nigel J

    2016-01-01

    Identifying and characterizing different forms of cell death can be facilitated by staining internal cellular structures with dyes such as hematoxylin and eosin (H&E). These dyes stain the nucleus and cytoplasm, respectively, and optimized reagents (e.g., Rapi-Diff, Rapid Stain, or Quick Dip) are commonly used in pathology laboratories. Fixing and staining adherent cells with these optimized reagents is a straightforward procedure, but apoptotic cells may detach from the culture plate and be washed away during the fixing and staining procedure. To prevent the loss of apoptotic cells, cells can be gently centrifuged onto glass slides by cytospinning before fixing and staining. In addition to apoptotic cells, this procedure can be used on cells in suspension, or adherent cells that have been trypsinized and removed from the culture dish. This protocol describes cytospinning followed by Rapi-Diff staining for morphological analysis of cell death. PMID:27587773

  8. Non-apoptotic cell death associated with perturbations of macropinocytosis

    PubMed Central

    Maltese, William A.; Overmeyer, Jean H.

    2015-01-01

    Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed “methuosis,” from the Greek methuo (to drink to intoxication). It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms. PMID:25762935

  9. Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells

    PubMed Central

    2012-01-01

    Background Among American men, prostate cancer is the most common, non-cutaneous malignancy that accounted for an estimated 241,000 new cases and 34,000 deaths in 2011. Previous studies have suggested that Wnt pathway inhibitory genes are silenced by CpG hypermethylation, and other studies have suggested that genistein can demethylate hypermethylated DNA. Genistein is a soy isoflavone with diverse effects on cellular proliferation, survival, and gene expression that suggest it could be a potential therapeutic agent for prostate cancer. We undertook the present study to investigate the effects of genistein on the epigenome of prostate cancer cells and to discover novel combination approaches of other compounds with genistein that might be of translational utility. Here, we have investigated the effects of genistein on several prostate cancer cell lines, including the ARCaP-E/ARCaP-M model of the epithelial to mesenchymal transition (EMT), to analyze effects on their epigenetic state. In addition, we investigated the effects of combined treatment of genistein with the histone deacetylase inhibitor vorinostat on survival in prostate cancer cells. Methods Using whole genome expression profiling and whole genome methylation profiling, we have determined the genome-wide differences in genetic and epigenetic responses to genistein in prostate cancer cells before and after undergoing the EMT. Also, cells were treated with genistein, vorinostat, and combination treatment, where cell death and cell proliferation was determined. Results Contrary to earlier reports, genistein did not have an effect on CpG methylation at 20 μM, but it did affect histone H3K9 acetylation and induced increased expression of histone acetyltransferase 1 (HAT1). In addition, genistein also had differential effects on survival and cooperated with the histone deacteylase inhibitor vorinostat to induce cell death and inhibit proliferation. Conclusion Our results suggest that there are a number of

  10. Ketamine-induced neuronal cell death in the perinatal rhesus monkey.

    PubMed

    Slikker, William; Zou, Xiaoju; Hotchkiss, Charlotte E; Divine, Rebecca L; Sadovova, Natalya; Twaddle, Nathan C; Doerge, Daniel R; Scallet, Andrew C; Patterson, Tucker A; Hanig, Joseph P; Paule, Merle G; Wang, Cheng

    2007-07-01

    Ketamine is widely used as a pediatric anesthetic. Studies in developing rodents have indicated that ketamine-induced anesthesia results in brain cell death. Additional studies are needed to determine if ketamine anesthesia results in brain cell death in the nonhuman primate and if so, to begin to define the stage of development and the duration of ketamine anesthesia necessary to produce brain cell death. Rhesus monkeys (N = 3 for each treatment and control group) at three stages of development (122 days of gestation and 5 and 35 postnatal days [PNDs]) were administered ketamine intravenously for 24 h to maintain a surgical anesthetic plane, followed by a 6-h withdrawal period. Similar studies were performed in PND 5 animals with 3 h of ketamine anesthesia. Animals were subsequently perfused and brain tissue processed for analyses. Ketamine (24-h infusion) produced a significant increase in the number of caspase 3-, Fluoro-Jade C- and silver stain-positive cells in the cortex of gestational and PND 5 animals but not in PND 35 animals. Electron microscopy indicated typical nuclear condensation and fragmentation in some neuronal cells, and cell body swelling was observed in others indicating that ketamine-induced neuronal cell death is most likely both apoptotic and necrotic in nature. Ketamine increased N-methyl-D-aspartate (NMDA) receptor NR1 subunit messenger RNA in the frontal cortex where enhanced cell death was apparent. Earlier developmental stages (122 days of gestation and 5 PNDs) appear more sensitive to ketamine-induced neuronal cell death than later in development (35 PNDs). However, a shorter duration of ketamine anesthesia (3 h) did not result in neuronal cell death in the 5-day-old monkey. PMID:17426105

  11. Attenuation of cadmium-induced necrotic cell death by necrostatin-1: Potential necrostatin-1 acting sites

    SciTech Connect

    Hsu, T.-S.; Yang, P.-M.; Tsai, J.-S.; Lin, L.-Y.

    2009-03-01

    Cadmium (Cd) induces necrotic death in Chinese hamster ovary (CHO) K1 cells and we have established the responsible signaling pathway. Reportedly, necrostatin-1 (Nec-1) rescues cells from necrotic death by mediating through the death domain receptor (DR) signaling pathway. We show here that Nec-1 also effectively attenuates necrotic death triggered by Cd. Two other treatments that cause necrotic cell death, one can (z-VAD-fmk/TNF-{alpha} on U937 cells) and the other cannot (etherynic acid (EA) on DLD-1 cells) be rescued by Nec-1, were also studied in parallel for comparison. Results show that Nec-1 is ineffectual in modulating intracellular calcium contents, calpain activity (a downstream protease), or reactive oxygen species production. It can counteract the reduction in mitochondrial membrane potential (MMP) caused by treating CHO K1 or U937 cells with necrosis-inducing agent. However, this effect was not found in EA-treated DLD-1 cells. Notably, Nec-1 elevates NF-{kappa}B activity in the presence or absence of necrosis-inducing agents. Our study shows that, in addition to DR-mediated necrosis, Nec-1 is effective in attenuating Cd-induced necrosis. It rescues cells with reduced MMP implying that mitochondrion is its major acting site.

  12. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells.

    PubMed

    Jackson, Nicole M; Ceresa, Brian P

    2016-08-15

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway. PMID:27381222

  13. Glycobiology of cell death: when glycans and lectins govern cell fate

    PubMed Central

    Lichtenstein, R G; Rabinovich, G A

    2013-01-01

    Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings. PMID:23703323

  14. Motoneuron Programmed Cell Death in Response to proBDNF

    PubMed Central

    Taylor, AR; Gifondorwa, DJ; Robinson, MB; Strupe, JL; Prevette, D; Johnson, JE; Hempstead, BL; Oppenheim, RW; Milligan, CE

    2011-01-01

    Motoneurons (MN) as well as most neuronal populations undergo a temporally and spatially specific period of programmed cell death (PCD). Several factors have been considered to regulate the survival of MNs during this period, including availability of muscle-derived trophic support and activity. The possibility that target-derived factors may also negatively regulate MN survival has been considered, but not pursued. Neurotrophin precursors, through their interaction with p75NTR and sortilin receptors have been shown to induce cell death during development and following injury in the CNS. In this study, we find that muscle cells produce and secrete proBDNF. ProBDNF through its interaction with p75NTR and sortilin, promotes a caspase-dependent death of MNs in culture. We also provide data to suggest that proBDNF regulates MN PCD during development in vivo. PMID:21834083

  15. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  16. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment. PMID:26498911

  17. Programmed Cell Death During Female Gametophyte Development

    SciTech Connect

    Drews, Gary, N.

    2004-09-15

    Endosperm is a storage tissue in the angiosperm seed that is important both biologically and agriculturally. Endosperm is biologically important because it provides nutrients to the embryo during seed development and agriculturally important because it is a significant source of food, feed, and industrial raw materials. Approximately two-thirds of human calories are derived from endosperm, either directly or indirectly through animal feed. Furthermore, endosperm is used as a raw material for numerous industrial products including ethanol. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. Understanding how the syncytial-cellular transition is regulated is agriculturally important because it influences seed size, seed sink strength, and grain weight. However, the molecular processes controlling this transition are not understood. This project led to the identification of the AGL62 gene that regulates the syncytial-cellular transition during endosperm development. AGL62 is expressed during the syncytial phase and suppresses endosperm cellularization during this period. AGL62 most likely does so by suppressing the expression of genes required for cellularization. At the end of the syncytial phase, the FIS PcG complex suppresses AGL62 expression, which allows expression of the cellularization genes and triggers the initiation of the cellularized phase. Endosperm arises following fertilization of the central cell within the female gametophyte. This project also led to the identification of the AGL80 gene that is required for development of the central cell into the endosperm. Within the ovule and seed, AGL80 is expressed exclusively in the central cell and uncellularized endosperm. AGL80 is required for expression of several central cell-expressed genes, including

  18. The Efficacy and Safety of Programmed Cell Death 1 and Programmed Cell Death 1 Ligand Inhibitors for Advanced Melanoma

    PubMed Central

    Guan, Xiuwen; Wang, Haijuan; Ma, Fei; Qian, Haili; Yi, Zongbi; Xu, Binghe

    2016-01-01

    Abstract The purpose of this study was to investigate the efficacy and safety of programmed cell death 1 (PD-1) and programmed cell death 1 ligand (PD-L1) inhibitors using a meta-analysis of present trials for advanced melanoma. A fully recursive literature search of the primary electronic databases for available trials was performed. The objective response rate (ORR) and the median progression-free survival (PFS) of clinical responses were considered the main endpoints to evaluate the efficacy, whereas Grade 3–4 adverse effects (AEs) were analyzed to evaluate safety. The ORR of PD-1 and PD-L1 inhibitors was 30% (95% CI: 25–35%). No significant difference in the ORR was observed after the comparisons of low-dose, median-dose, and high-dose cohorts. In addition, the rate of Grade 3–4 AEs was 9% (95% CI: 6–12%). According to the 3 randomized controlled trials that compared PD-1 inhibitors with chemotherapy, the difference between these 2 groups was found to be statistically significant with respect to the ORR, PFS and the incidence of Grade 3–4 AEs; that is, the relative risk (RR) of the ORR was 3.42 (95% CI: 2.49–4.69, P < 0.001), the hazard ratio (HR) of the PFS was 0.50 (95% CI: 0.44–0.58, P < 0.001), and the RR of Grade 3–4 AEs was 0.45 (95% CI: 0.31–0.65, P < 0.001). According to a meta-analysis of limited concurrent studies, PD-1 and PD-L1 inhibitors appear to be associated with improved response rates, superior response durability and tolerable toxicity in patients with advanced melanoma. PMID:26986169

  19. Role of mitochondria on muscle cell death and meat tenderization.

    PubMed

    Sierra, Verónica; Oliván, Mamen

    2013-05-01

    The possibility that mitochondria are involved in cellular dysfunction is particularly high in situations associated with increases in free radical activity, like hypoxia or ischemia; therefore its potential role in the muscle post-mortem metabolism is reviewed. In the dying muscle, different routes of cell death catabolism (apoptosis, autophagy) may occur having great influence on the process of conversion of muscle into meat. Mitochondria are the first and also one of the main organelles affected by post-mortem changes; therefore they are decisive in the subsequent cellular responses influencing the pathway to cell demise and thus, the final meat quality. Depending on the cell death programme followed by muscle cells after exsanguination, diverse proteases would be activated to a different extent, which is also reviewed in order to understand how they affect meat tenderization. This review also summarizes recent patents relating cell death processes and meat tenderness. Further research is encouraged as there is still a need of knowledge on cell death post-mortem processes to increase our understanding of the conversion of muscle into meat. PMID:23432120

  20. Acadesine Kills Chronic Myelogenous Leukemia (CML) Cells through PKC-Dependent Induction of Autophagic Cell Death

    PubMed Central

    Robert, Guillaume; Ben Sahra, Issam; Puissant, Alexandre; Colosetti, Pascal; Belhacene, Nathalie; Gounon, Pierre; Hofman, Paul; Bost, Fréderic; Cassuto, Jill-Patrice; Auberger, Patrick

    2009-01-01

    CML is an hematopoietic stem cell disease characterized by the t(9;22) (q34;q11) translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL) was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients. PMID:19924252

  1. Smac Mimetic Compounds Potentiate Interleukin-1β-mediated Cell Death*

    PubMed Central

    Cheung, Herman H.; Beug, Shawn T.; St. Jean, Martine; Brewster, Audrey; Kelly, N. Lynn; Wang, Shaomeng; Korneluk, Robert G.

    2010-01-01

    Smac mimetic compounds (SMCs) potentiate TNFα-mediated cancer cell death by targeting the inhibitor of apoptosis (IAP) proteins. In addition to TNFα, the tumor microenvironment is exposed to a number of pro-inflammatory cytokines, including IL-1β. Here, we investigated the potential impact of IL-1β on SMC-mediated death of cancer cells. Synergy was seen in a subset of a diverse panel of 21 cancer cell lines to the combination of SMC and IL-1β treatment, which required IL-1β-induced activation of the NF-κB pathway. Elevated NF-κB activity resulted in the production of TNFα, which led to apoptosis dependent on caspase-8 and RIP1. In addition, concurrent silencing of cIAP1, cIAP2, and X-linked IAP by siRNA was most effective for triggering IL-1β-mediated cell death. Importantly, SMC-resistant cells that produced TNFα in response to IL-1β treatment were converted to an SMC-sensitive phenotype by c-FLIP knockdown. Reciprocally, ectopic expression of c-FLIP blocked cell death caused by combined SMC and IL-1β treatment in sensitive cancer cells. Together, our study indicates that a positive feed-forward loop by pro-inflammatory cytokines can be exploited by SMCs to induce apoptosis in cancer cells. PMID:20956527

  2. Sensory hair cell death and regeneration in fishes

    PubMed Central

    Monroe, Jerry D.; Rajadinakaran, Gopinath; Smith, Michael E.

    2015-01-01

    Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies. PMID:25954154

  3. ARHI (DIRAS3)-mediated autophagy-associated cell death enhances chemosensitivity to cisplatin in ovarian cancer cell lines and xenografts

    PubMed Central

    Washington, M N; Suh, G; Orozco, A F; Sutton, M N; Yang, H; Wang, Y; Mao, W; Millward, S; Ornelas, A; Atkinson, N; Liao, W; Bast, R C; Lu, Z

    2015-01-01

    Autophagy can sustain or kill tumor cells depending upon the context. The mechanism of autophagy-associated cell death has not been well elucidated and autophagy has enhanced or inhibited sensitivity of cancer cells to cytotoxic chemotherapy in different models. ARHI (DIRAS3), an imprinted tumor suppressor gene, is downregulated in 60% of ovarian cancers. In cell culture, re-expression of ARHI induces autophagy and ovarian cancer cell death within 72 h. In xenografts, re-expression of ARHI arrests cell growth and induces autophagy, but does not kill engrafted cancer cells. When ARHI levels are reduced after 6 weeks, dormancy is broken and xenografts grow promptly. In this study, ARHI-induced ovarian cancer cell death in culture has been found to depend upon autophagy and has been linked to G1 cell-cycle arrest, enhanced reactive oxygen species (ROS) activity, RIP1/RIP3 activation and necrosis. Re-expression of ARHI enhanced the cytotoxic effect of cisplatin in cell culture, increasing caspase-3 activation and PARP cleavage by inhibiting ERK and HER2 activity and downregulating XIAP and Bcl-2. In xenografts, treatment with cisplatin significantly slowed the outgrowth of dormant autophagic cells after reduction of ARHI, but the addition of chloroquine did not further inhibit xenograft outgrowth. Taken together, we have found that autophagy-associated cancer cell death and autophagy-enhanced sensitivity to cisplatin depend upon different mechanisms and that dormant, autophagic cancer cells are still vulnerable to cisplatin-based chemotherapy. PMID:26247722

  4. Disrupting the Oncogenic Synergism between Nucleolin and Ras Results in Cell Growth Inhibition and Cell Death

    PubMed Central

    Schokoroy, Sari; Juster, Dolly; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2013-01-01

    Background The ErbB receptors, Ras proteins and nucleolin are major contributors to malignant transformation. The pleiotropic protein nucleolin can bind to both Ras protein and ErbB receptors. Previously, we have demonstrated a crosstalk between Ras, nucleolin and the ErbB1 receptor. Activated Ras facilitates nucleolin interaction with ErbB1 and stabilizes ErbB1 levels. The three oncogenes synergistically facilitate anchorage independent growth and tumor growth in nude mice. Methodology/Principal Findings In the present study we used several cancer cell lines. The effect of Ras and nucleolin inhibition was determined using cell growth, cell death and cell motility assays. Protein expression was determined by immunohistochemistry. We found that inhibition of Ras and nucleolin reduces tumor cell growth, enhances cell death and inhibits anchorage independent growth. Our results reveal that the combined treatment affects Ras and nucleolin levels and localization. Our study also indicates that Salirasib (FTS, Ras inhibitor) reduces cell motility, which is not affected by the nucleolin inhibitor. Conclusions/Significance These results suggest that targeting both nucleolin and Ras may represent an additional avenue for inhibiting cancers driven by these oncogenes. PMID:24086490

  5. CSR1 induces cell death through inactivation of CPSF3.

    PubMed

    Zhu, Z-H; Yu, Y P; Shi, Y-K; Nelson, J B; Luo, J-H

    2009-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRNA, binds with high affinity to the CSR1 C terminus. Further analyses determined that the binding motifs for CPSF3 are located between amino acids 440 and 543. The interaction between CSR1 and CPSF3 induced CPSF3 translocation from the nucleus to the cytoplasm, resulting in inhibition of polyadenylation both in vitro and in vivo. Downregulation of CPSF3 using small interfering RNA induced cell death in a manner similar to CSR1 expression. A CSR1 mutant unable to bind to CPSF3 did not alter CPSF3 subcellular distribution, did not inhibit its polyadenylation activity and did not induce cell death. In summary, CSR1 appears to induce cell death through a novel mechanism by hijacking a critical RNA processing enzyme. PMID:18806823

  6. Hydrogen Peroxide Produced by Oral Streptococci Induces Macrophage Cell Death

    PubMed Central

    Okahashi, Nobuo; Nakata, Masanobu; Sumitomo, Tomoko; Terao, Yutaka; Kawabata, Shigetada

    2013-01-01

    Hydrogen peroxide (H2O2) produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages. PMID:23658745

  7. UDP-GlcNAc2-epimerase regulates cell surface sialylation and ceramide-induced cell death in human malignant lymphoma.

    PubMed

    Suzuki, Osamu; Tasaki, Kazuhiro; Kusakabe, Takashi; Abe, Masafumi

    2008-09-01

    Stress signals induce ceramide (cer) through sphingomyelinase activation, and metabolites of cer such as sphingosine (Sph) and sphingosine-1-phoshate (S-1-P) play a significant role in many biological processes. This study aimed to elucidate the association between the alteration in cell surface sialylation and ceramide-induced cell death in the human Burkitt's lymphoma cell line, HBL-8. The highly sialylated 3G3 clone was less sensitive to C6-ceramide-induced cell death. On the other hand, the hyposialylated 3D2 clone was more sensitive to C6-ceramide-induced cell death. Neuraminidase treatment or knockdown by siRNA of uridine diphosphate-N-acetylglucosamine 2-epimerase (UDP-GlcNAc2-epimerase), which is a key enzyme of sialic acid biosynthesis, enhanced the amount of cell death induced by C6-ceramide in the highly sialylated 3G3 clone. Sialic acid metabolic complementation assays using several precursors of sialic acid showed that cell surface resialylation by N-acetyl-D-mannosamine (ManNAc) inhibited C6-ceramide-induced cell death. The amount of cell death by C6-ceramide was enhanced after pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 in both clones. In addition, clone 3G3 was less sensitive to Sph than the 3D2 clone. In conclusion, in human malignant lymphoma, ceramide and its metabolite-induced cell death is regulated by the amount of sialic acid on the cell surface which in turn is regulated by mRNA expression of UDP-GlcNAc2-epimerase. PMID:18698493

  8. Hepatic Leukemia Factor Promotes Resistance To Cell Death: Implications For Therapeutics and Chronotherapy

    SciTech Connect

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation.

  9. Autophagonizer, a novel synthetic small molecule, induces autophagic cell death

    SciTech Connect

    Choi, In-Kwon; Cho, Yoon Sun; Jung, Hye Jin; Kwon, Ho Jeong

    2010-03-19

    Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d] pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway. Conversion of cytosolic LC3-I to autophagosome-associated LC3-II was greatly enhanced by autophagonizer treatment. Transmission electron microscopy and acridine orange staining revealed increased autophagy in the cytoplasm of autophagonizer-treated cells. In conclusion, autophagonizer is a novel autophagy inducer with unique structure, which induces autophagic cell death in the human tumor cell lines.

  10. Cytotoxic effects of two organotin compounds and their mode of inflicting cell death on four mammalian cancer cells

    PubMed Central

    Costanzo, Margaret; Carrasco, Yazmin P.; Pannell, Keith H.; Aguilera, Renato J.

    2011-01-01

    In this report, we have tested the cytotoxicity of two organotin (OT) compounds by flow cytometry on a panel of immortalized cancer cell lines of human and murine origin. Although the OT compounds exhibited varying levels of cytotoxicity, diphenylmethyltin chloride was more toxic than 1,4-bis (diphenylchlorostannyl)p-xylene on all cell lines tested. The OT compounds were found to be highly cytotoxic to lymphoma cell lines with lower toxicity toward the HeLa cervical cancer cell line. In order to discern the mechanism by which cell death was induced, additional experiments were conducted to monitor characteristic changes consistent with apoptosis and/or necrosis. Cell lines treated with the experimental compounds indicated that there was no consistent mode of cell death induction. However, both compounds induced apoptosis in the pro-B lymphocyte cell line, NFS-70. The work presented here also demonstrates that the two OT compounds possess selective cytotoxicity against distinct transformed cell lines. PMID:21069563

  11. Cytokine signaling for proliferation, survival, and death in hematopoietic cells.

    PubMed

    Miyajima, A; Ito, Y; Kinoshita, T

    1999-04-01

    The survival, proliferation, and differentiation of hematopoietic cells are regulated by cytokines. In the absence of cytokines, hematopoietic cells not only stop proliferation, but undergo apoptosis. This strict dependency of hematopoietic cells on cytokines is an important mechanism that maintains the homeostasis of blood cells. Cytokines induce various intracellular signaling pathways by activating the receptor-associated Janus kinases (Jaks), and distinct signals are responsible for cell cycle progression and cell survival. Induction of signals for cell cycle progression without suppressing apoptosis results in apoptotic cell death, indicating the essential role of anti-apoptotic signaling for cell growth. In hematopoietic cells, Ras, a cellular protooncogen product, and phosphatidylinositol 3 kinase are involved in the suppression of apoptosis. Cytokine depletion not only turns off anti-apoptotic signaling, but also actively induces cell death by activating caspases, a distinct family of cysteine proteases. Alterations in the mechanisms of cytokine signaling for cell cycle progression and anti-apoptotic function are implicated in hematological disorders. PMID:10222650

  12. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants1[OPEN

    PubMed Central

    Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; S. Coll, Nuria; Maere, Steven

    2015-01-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. PMID:26438786

  13. A CRISPR-based screen identifies genes essential for West Nile virus-induced cell death

    PubMed Central

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N.; Wu, Haoquan

    2015-01-01

    Summary West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the endoplasmic reticulum-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. PMID:26190106

  14. Die another way – non-apoptotic mechanisms of cell death

    PubMed Central

    Tait, Stephen W. G.; Ichim, Gabriel; Green, Douglas R.

    2014-01-01

    ABSTRACT Regulated, programmed cell death is crucial for all multicellular organisms. Cell death is essential in many processes, including tissue sculpting during embryogenesis, development of the immune system and destruction of damaged cells. The best-studied form of programmed cell death is apoptosis, a process that requires activation of caspase proteases. Recently it has been appreciated that various non-apoptotic forms of cell death also exist, such as necroptosis and pyroptosis. These non-apoptotic cell death modalities can be either triggered independently of apoptosis or are engaged should apoptosis fail to execute. In this Commentary, we discuss several regulated non-apoptotic forms of cell death including necroptosis, autophagic cell death, pyroptosis and caspase-independent cell death. We outline what we know about their mechanism, potential roles in vivo and define outstanding questions. Finally, we review data arguing that the means by which a cell dies actually matters, focusing our discussion on inflammatory aspects of cell death. PMID:24833670

  15. Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China

    NASA Astrophysics Data System (ADS)

    Huang, Xiaozhou; Liu, Xin; Chen, Jixin; Xiao, Wupeng; Cao, Zhen; Huang, Bangqin

    2016-05-01

    The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an eff ective method to analyze dead/ living cells in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%±6%) were lower than those in winter (27%±16%). Six groups of phytoplankton (G1-G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in % DC had different responses to environmental constraints. The main factors aff ecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additionally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton % DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a ). Moreover, the lowest mean % DC in total phytoplankton was 16%±6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.

  16. Prolonged hippocampal cell death following closed-head traumatic brain injury in rats.

    PubMed

    Tsuda, Shigeharu; Hou, Jiamei; Nelson, Rachel L; Wilkie, Zachary J; Mustafa, Golam; Sinharoy, Ankita; Watts, Joseph V; Thompson, Floyd J; Bose, Prodip K

    2016-07-01

    Traumatic brain injury (TBI) leads to enduring cognitive disorders. Although recent evidence has shown that controlled cortical impact in a rodent may induce memory deficits with prolonged cell death in the dentate gyrus (DG) of the hippocampus, few studies have reported long-term chronic hippocampal cell death following 'closed-head' TBI (cTBI), the predominant form of human TBI. Therefore, the aim of this study was to quantify terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)(+) apoptotic hippocampal cells as well as hippocampal cells with hallmark morphological features of degenerating cells in a chronic setting of cTBI in rats. TUNEL assays and Cresyl violet staining were performed using 6-month post-TBI fixed hippocampal sections. Evidence of prolonged hippocampal cell death was shown by the presence of a significantly increased number of TUNEL(+) cells in the cornu ammonis 1-3 (CA1-CA3) and DG of the hippocampus compared with intact controls. In addition, Cresyl violet staining indicated a significantly elevated number of cells with the degenerative morphological features in all hippocampal subregions (CA1-CA3, hilus, and DG). These results suggest that prolonged cell death may occur in multiple regions of the hippocampus following cTBI. PMID:27213933

  17. Cell death monitoring using quantitative optical coherence tomography methods

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Kolios, Michael C.; Czarnota, Gregory J.

    2011-03-01

    Cell death is characterized by a series of predictable morphological changes, which modify the light scattering properties of cells. We present a multi-parametric approach to detecting changes in subcellular morphology related to cell death using optical coherence tomography (OCT). Optical coherence tomography data were acquired from acute myeloid leukemia (AML) cells undergoing apoptosis over a period of 48 hours. Integrated backscatter (IB) and spectral slope (SS) were computed from OCT backscatter spectra and statistical parameters were extracted from a generalized gamma (GG) distribution fit to OCT signal intensity histograms. The IB increased by 2-fold over 48 hours with significant increases observed as early as 4 hours. The SS increased in steepness by 2.5-fold with significant changes at 12 hours, while the GG parameters were sensitive to apoptotic changes at 24 to 48 hours. Histology slides indicated nuclear condensation and fragmentation at 24 hours, suggesting the late scattering changes could be related to nuclear structure. A second series of measurements from AML cells treated with cisplatin, colchicine or ionizing radiation suggested that the GG parameters could potentially differentiate between modes of cell death. Distinct cellular morphology was observed in histology slides obtained from cells treated under each condition.

  18. Bortezomib induces autophagic death in proliferating human endothelial cells

    SciTech Connect

    Belloni, Daniela; Veschini, Lorenzo; Foglieni, Chiara; Dell'Antonio, Giacomo; Caligaris-Cappio, Federico; Ferrarini, Marina; Ferrero, Elisabetta

    2010-04-01

    The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.

  19. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2010-01-01

    Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy. PMID:21258649

  20. Light uncages a copper complex to induce nonapoptotic cell death.

    PubMed

    Kumbhar, Anupa A; Franks, Andrew T; Butcher, Raymond J; Franz, Katherine J

    2013-03-25

    Cu3G is a Cu(II) complex of a photoactive tetradentate ligand that is cleaved upon UV irradiation to release Cu. Here we show that the cytotoxicity of Cu3G increases in response to brief UV stimulation to result in extensive cytoplasmic vacuolization that is indicative of nonapoptotic cell death. PMID:23417227

  1. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  2. Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death.

    PubMed

    Lee, Eric A; Angka, Leonard; Rota, Sarah-Grace; Hanlon, Thomas; Mitchell, Andrew; Hurren, Rose; Wang, Xiao Ming; Gronda, Marcela; Boyaci, Ezel; Bojko, Barbara; Minden, Mark; Sriskanthadevan, Shrivani; Datti, Alessandro; Wrana, Jeffery L; Edginton, Andrea; Pawliszyn, Janusz; Joseph, Jamie W; Quadrilatero, Joe; Schimmer, Aaron D; Spagnuolo, Paul A

    2015-06-15

    Treatment regimens for acute myeloid leukemia (AML) continue to offer weak clinical outcomes. Through a high-throughput cell-based screen, we identified avocatin B, a lipid derived from avocado fruit, as a novel compound with cytotoxic activity in AML. Avocatin B reduced human primary AML cell viability without effect on normal peripheral blood stem cells. Functional stem cell assays demonstrated selectivity toward AML progenitor and stem cells without effects on normal hematopoietic stem cells. Mechanistic investigations indicated that cytotoxicity relied on mitochondrial localization, as cells lacking functional mitochondria or CPT1, the enzyme that facilitates mitochondria lipid transport, were insensitive to avocatin B. Furthermore, avocatin B inhibited fatty acid oxidation and decreased NADPH levels, resulting in ROS-dependent leukemia cell death characterized by the release of mitochondrial proteins, apoptosis-inducing factor, and cytochrome c. This study reveals a novel strategy for selective leukemia cell eradication based on a specific difference in mitochondrial function. PMID:26077472

  3. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2014-12-01

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung

  4. Autophagy and Tubular Cell Death in the Kidney.

    PubMed

    Havasi, Andrea; Dong, Zheng

    2016-05-01

    Many common renal insults such as ischemia and toxic injury primarily target the tubular epithelial cells, especially the highly metabolically active proximal tubular segment. Tubular epithelial cells are particularly dependent on autophagy to maintain homeostasis and respond to stressors. The pattern of autophagy in the kidney has a unique spatial and chronologic signature. Recent evidence has shown that there is complex cross-talk between autophagy and various cell death pathways. This review specifically discusses the interplay between autophagy and cell death in the renal tubular epithelia. It is imperative to review this topic because recent discoveries have improved our mechanistic understanding of the autophagic process and have highlighted its broad clinical applications, making autophagy a major target for drug development. PMID:27339383

  5. Metal-accelerated oxidation in plant cell death

    SciTech Connect

    Czuba, M. )

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  6. The DNA damage-induced cell death response: a roadmap to kill cancer cells.

    PubMed

    Matt, Sonja; Hofmann, Thomas G

    2016-08-01

    Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response. PMID:26791483

  7. [Membrane permeability of brain cell processes after death].

    PubMed

    Agafonov, V A

    1975-07-01

    Experiments were conducted on rats. A study was made of persistence of semipermeability of the membranes of the cell processes of the brain (contraction) with the action of a hypertonic buffer at various periods after death. The membranes of the processes proved to retain the property of semi-permeability even 48 hours after death. Prefixation of the postmortem material in the glutaraldehyde did not influence the sensitivity of the membranes of the processes to the osmotic strength of the surrounding solution. PMID:1227661

  8. The caveolin-1 connection to cell death and survival.

    PubMed

    Quest, A F G; Lobos-González, L; Nuñez, S; Sanhueza, C; Fernández, J-G; Aguirre, A; Rodríguez, D; Leyton, L; Torres, V

    2013-02-01

    Caveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer. PMID:23228128

  9. Cytoplasmic PELP1 and ERRgamma Protect Human Mammary Epithelial Cells from Tam-Induced Cell Death

    PubMed Central

    Girard, Brian J.; Regan Anderson, Tarah M.; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L.; Ostrander, Julie H.

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness. PMID:25789479

  10. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death.

    PubMed

    Girard, Brian J; Regan Anderson, Tarah M; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L; Ostrander, Julie H

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness. PMID:25789479

  11. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain

    PubMed Central

    Thornton, Claire; Hagberg, Henrik

    2015-01-01

    Hypoxic–ischemic encephalopathy induces secondary brain injury characterized by delayed energy failure. Currently, therapeutic hypothermia is the sole treatment available after severe intrapartum asphyxia in babies and acts to attenuate secondary loss of high energy phosphates improving both short- and long-term outcome. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. Hypoxia–ischemia creates a toxic intracellular environment including accumulation of reactive oxygen/nitrosative species and intracellular calcium after the insult, inducing mitochondrial impairment. More specifically mitochondrial respiration is suppressed and calcium signaling is dysregulated. At a certain threshold, Bax-dependent mitochondrial permeabilization will occur leading to activation of caspase-dependent and apoptosis-inducing factor-dependent apoptotic cell death. In addition, hypoxia–ischemia induces inflammation, which leads to the release of TNF-α, TRAIL, TWEAK, FasL and Toll-like receptor agonists that will activate death receptors on neurons and oligodendroglia. Death receptors trigger apoptotic death via caspase-8 and necroptotic cell death through formation of the necrosome (composed of RIP1, RIP3 and MLKL), both of which converge at the mitochondria. PMID:25661091

  12. Sudden Death in Sickle Cell Anaemia: Report of Three Cases with Brief Review of Literature.

    PubMed

    Niraimathi, Manickam; Kar, Rakhee; Jacob, Sajini Elizabeth; Basu, Debdatta

    2016-06-01

    Vaso-occlusive crisis in sickle cell anaemia is one of the commonest presentations and a leading cause of death. Death can be sudden and unexpected. Herein we present three cases of sickle cell anaemia with sudden death within 3 days of hospitalisation. All the three cases presented with fever and jaundice. Two cases presented consecutively in the same year within a span of 5 months while the other case had presented 2 years prior to these two cases. Infection was the precipitating event in two cases and pregnancy with infection in one. One case in addition had 'right upper quadrant syndrome' and one case had 'acute chest syndrome' (ACS) due to bone marrow fat embolism. Postmortem liver biopsy of all the three cases showed dilated and congested sinusoids with sickled RBCs, kupfer cell prominence with erythrophagocytosis. Lung biopsy of case with ACS showed vessels occluded with bone marrow elements indicating bone marrow fat embolism. PMID:27408408

  13. Simultaneous induction of apoptotic, autophagic, and necrosis-like cell death by monoclonal antibodies recognizing chicken transferrin receptor

    SciTech Connect

    Ohno, Yoshiya; Yagi, Hideki; Nakamura, Masanori; Masuko, Kazue; Hashimoto, Yoshiyuki; Masuko, Takashi

    2008-03-21

    Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in the cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.

  14. Focally regulated endothelial proliferation and cell death in human synovium.

    PubMed Central

    Walsh, D. A.; Wade, M.; Mapp, P. I.; Blake, D. R.

    1998-01-01

    Angiogenesis and vascular insufficiency each may support the chronic synovial inflammation of rheumatoid arthritis. We have shown by quantitative immunohistochemistry and terminal uridyl deoxynucleotide nick end labeling that endothelial proliferation and cell death indices were each increased in synovia from patients with rheumatoid arthritis compared with osteoarthritic and noninflamed controls, whereas endothelial fractional areas did not differ significantly among disease groups. Markers of proliferation were associated with foci immunoreactive for vascular endothelial growth factor and integrin alpha(v)beta3, whereas cell death was observed in foci in which immunoreactivities for these factors were weak or absent. No association was found with thrombospondin immunoreactivity. The balance between angiogenesis and vascular regression in rheumatoid synovitis may be determined by the focal expression of angiogenic and endothelial survival factors. Increased endothelial cell turnover may contribute to microvascular dysfunction and thereby facilitate persistent synovitis. Images Figure 1 Figure 3 Figure 4 PMID:9502411

  15. Lead-induced cell death in testes of young rats.

    PubMed

    Adhikari, N; Sinha, N; Narayan, R; Saxena, D K

    2001-01-01

    Lead is a well-documented testicular toxicant. The present work was planned to study the occurrence of germ cell death after lead administration. Young growing rats were treated with 5, 10 and 20 mg kg(-1) body weight of lead for 2 weeks. Cell death was assessed by employing in situ TUNEL staining, DNA electrophoresis and morphological examination of the tubules. The results showed that Pb induced significant numbers of germ cells to undergo apoptosis in the seminiferous tubules of rats treated with 20 mg kg(-1) body weight. However, DNA fragmentation was not detected at any of the doses. The level of lead accumulation in the testis increased in a dose-dependent manner. PMID:11481659

  16. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

    PubMed Central

    Garg, Abhishek D.; Galluzzi, Lorenzo; Apetoh, Lionel; Baert, Thais; Birge, Raymond B.; Bravo-San Pedro, José Manuel; Breckpot, Karine; Brough, David; Chaurio, Ricardo; Cirone, Mara; Coosemans, An; Coulie, Pierre G.; De Ruysscher, Dirk; Dini, Luciana; de Witte, Peter; Dudek-Peric, Aleksandra M.; Faggioni, Alberto; Fucikova, Jitka; Gaipl, Udo S.; Golab, Jakub; Gougeon, Marie-Lise; Hamblin, Michael R.; Hemminki, Akseli; Herrmann, Martin; Hodge, James W.; Kepp, Oliver; Kroemer, Guido; Krysko, Dmitri V.; Land, Walter G.; Madeo, Frank; Manfredi, Angelo A.; Mattarollo, Stephen R.; Maueroder, Christian; Merendino, Nicolò; Multhoff, Gabriele; Pabst, Thomas; Ricci, Jean-Ehrland; Riganti, Chiara; Romano, Erminia; Rufo, Nicole; Smyth, Mark J.; Sonnemann, Jürgen; Spisek, Radek; Stagg, John; Vacchelli, Erika; Vandenabeele, Peter; Vandenberk, Lien; Van den Eynde, Benoit J.; Van Gool, Stefaan; Velotti, Francesca; Zitvogel, Laurence; Agostinis, Patrizia

    2015-01-01

    The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation. PMID:26635802

  17. Methylglyoxal induces mitochondrial dysfunction and cell death in liver.

    PubMed

    Seo, Kyuhwa; Ki, Sung Hwan; Shin, Sang Mi

    2014-09-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress. PMID:25343013

  18. Cell death is involved in sexual dimorphism during preimplantation development.

    PubMed

    Oliveira, C S; Saraiva, N Z; de Lima, M R; Oliveira, L Z; Serapião, R V; Garcia, J M; Borges, C A V; Camargo, L S A

    2016-02-01

    In bovine preimplantation development, female embryos progress at lower rates and originate smaller blastocysts than male counterparts. Although sex-specific gene expression patterns are reported, when and how sex dimorphism is established is not clear. Differences among female and male early development can be useful for human assisted reproductive medicine, when X-linked disorders risk is detected, and for genetic breeding programs, especially in dairy cattle, which requires female animals for milk production. The aim of this study was to characterize the development of female and male embryos, attempting to identify sex effects during preimplantation development and the role of cell death in this process. Using sex-sorted semen from three different bulls for fertilization, we compared kinetics of bovine sex-specific embryos in six time points, and cell death was assessed in viable embryos. For kinetics analysis, we detected an increased population of female embryos arrested at 48 and 120h.p.i., suggesting this time points as delicate stages of development for female embryos that should be considered for testing improvement strategies for assisted reproductive technologies. Assessing viable embryos quality, we found 144h.p.i. is the first time point when viable embryos are phenotypically distinct: cell number is decreased, and apoptosis and cell fragmentation are increased in female embryos at this stage. These new results lead us to propose that sex dimorphism in viable embryos is established during morula-blastocyst transition, and cell death is involved in this process. PMID:26752320

  19. Unraveling the mechanism of cell death induced by chemical fibrils

    PubMed Central

    Julien, Olivier; Kampmann, Martin; Bassik, Michael C.; Zorn, Julie A.; Venditto, Vincent J.; Shimbo, Kazutaka; Agard, Nicholas J.; Shimada, Kenichi; Rheingold, Arnold L.; Stockwell, Brent R.; Weissman, Jonathan S.

    2014-01-01

    We previously discovered a small-molecule inducer of cell death, named 1541, that non-covalently self-assembles into chemical fibrils (“chemi-fibrils”) and activates procaspase-3 in vitro. We report here that 1541-induced cell death is caused by the fibrillar, rather than the soluble form of the drug. An shRNA screen reveals that knockdown of genes involved in endocytosis, vesicle trafficking, and lysosomal acidification causes partial 1541 resistance. We confirm the role of these pathways using pharmacological inhibitors. Microscopy shows that the fluorescent chemi-fibrils accumulate in punctae inside cells that partially co-localize with lysosomes. Notably, the chemi-fibrils bind and induce liposome leakage in vitro, suggesting they may do the same in cells. The chemi-fibrils induce extensive proteolysis including caspase substrates, yet modulatory profiling reveals that chemi-fibrils form a distinct class from existing inducers of cell death. The chemi-fibrils share similarities to proteinaceous fibrils and may provide insight into their mechanism of cellular toxicity. PMID:25262416

  20. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    SciTech Connect

    Chen, Ruochan; Fu, Sha; Fan, Xue-Gong; Lotze, Michael T.; Zeh, Herbert J.; Tang, Daolin; Kang, Rui

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  1. DNA methylation and differential gene regulation in photoreceptor cell death

    PubMed Central

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  2. DNA methylation and differential gene regulation in photoreceptor cell death.

    PubMed

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  3. Microscopic analysis of cell death by metabolic stress-induced autophagy in prostate cancer

    NASA Astrophysics Data System (ADS)

    Changou, Chun; Cheng, R. Holland; Bold, Richard; Kung, Hsing-Jien; Chuang, Frank Y. S.

    2013-02-01

    Autophagy is an intracellular recycling mechanism that helps cells to survive against environmental stress and nutritional starvation. We have recently shown that prostate cancers undergo metabolic stress and caspase-independent cell death following exposure to arginine deiminase (ADI, an enzyme that degrades arginine in tissue). The aims of our current investigation into the application of ADI as a novel cancer therapy are to identify the components mediating tumor cell death, and to determine the role of autophagy (stimulated by ADI and/or rapamycin) on cell death. Using advanced fluorescence microscopy techniques including 3D deconvolution and superresolution structured-illumination microscopy (SIM), we show that prostate tumor cells that are killed after exposure to ADI for extended periods, exhibit a morphology that is distinct from caspase-dependent apoptosis; and that autophagosomes forming as a result of ADI stimulation contain DAPI-stained nuclear material. Fluorescence imaging (as well as cryo-electron microscopy) show a breakdown of both the inner and outer nuclear membranes at the interface between the cell nucleus and aggregated autophagolysosomes. Finally, the addition of N-acetyl cysteine (or NAC, a scavenger for reactive oxygen species) effectively abolishes the appearance of autophagolysosomes containing nuclear material. We hope to continue this research to understand the processes that govern the survival or death of these tumor cells, in order to develop methods to improve the efficacy of cancer pharmacotherapy.

  4. Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis.

    PubMed

    Haß, Christina; Belz, Katharina; Schoeneberger, Hannah; Fulda, Simone

    2016-04-01

    Disturbed redox homeostasis with both elevated reactive oxygen species (ROS) levels and antioxidant defense mechanisms has been reported in acute lymphoblastic leukemia (ALL). We therefore hypothesized that inhibition of pathways responsible for ROS detoxification renders ALL cells more susceptible for cell death. Here, we report that pharmacological inhibitors of key pathways for the elimination of ROS, i.e. Erastin, buthionine sulfoximine (BSO) and Auranofin, sensitize ALL cells for cell death upon treatment with the Smac mimetic LCL161 that antagonizes Inhibitor of Apoptosis (IAP) proteins. Erastin, BSO or Auranofin significantly increase LCL161-induced cell death and also act in concert with LCL161 to profoundly suppress long-term clonogenic survival in several ALL cell lines. Erastin or BSO cooperates with LCL161 to stimulate ROS production and lipid peroxidation prior to cell death. ROS production and lipid peroxidation are required for this cotreatment-induced cell death, since ROS scavengers or pharmacological inhibition of lipid peroxidation provides significant protection against cell death. These results emphasize that inhibition of antioxidant defense mechanisms can serve as a potent approach to prime ALL cells for LCL161-induced cell death. PMID:26774450

  5. Nucleocytoplasmic trafficking is essential for BAK1- and BKK1-mediated cell-death control.

    PubMed

    Du, Junbo; Gao, Yang; Zhan, Yanyan; Zhang, Shasha; Wu, Yujun; Xiao, Yao; Zou, Bo; He, Kai; Gou, Xiaoping; Li, Guojing; Lin, Honghui; Li, Jia

    2016-02-01

    BRI1-ASSOCIATED KINASE 1 (BAK1) was initially identified as a co-receptor of the brassinosteroid (BR) receptor BRI1. Genetic analyses also revealed that BAK1 and its closest homolog BAK1-LIKE 1 (BKK1) regulate a BR-independent cell-death control pathway. The double null mutant bak1 bkk1 displays a salicylic acid- and light-dependent cell-death phenotype even without pathogen invasion. Molecular mechanisms of the spontaneous cell death mediated by BAK1 and BKK1 remain unknown. Here we report our identification of a suppressor of bak1 bkk1 (sbb1-1). Genetic analyses indicated that cell-death symptoms in a weak double mutant, bak1-3 bkk1-1, were completely suppressed by the loss-of-function mutation in SBB1, which encodes a nucleoporin (NUP) 85-like protein. Genetic analyses also demonstrated that individually knocking out three other nucleoporin genes from the SBB1-located sub-complex was also able to rescue the cell-death phenotype of bak1-3 bkk1-1. In addition, a DEAD-box RNA helicase, DRH1, was identified in the same protein complex as SBB1 via a proteomic approach. The drh1 mutation also rescues the cell-death symptoms of bak1-3 bkk1-1. Further analyses indicated that export of poly(A)(+) RNA was greatly blocked in the nup and drh1 mutants, resulting in accumulation of significant levels of mRNAs in the nuclei. Over-expression of a bacterial NahG gene to inactivate salicylic acid also rescues the cell-death phenotype of bak1-3 bkk1-1. Mutants suppressing cell-death symptoms always showed greatly reduced salicylic acid contents. These results suggest that nucleocytoplasmic trafficking, especially of molecules directly or indirectly involved in endogenous salicylic acid accumulation, is critical in BAK1- and BKK1-mediated cell-death control. PMID:26775605

  6. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans.

    PubMed

    Wang, Xiaochen; Yang, Chonglin

    2016-06-01

    Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans. PMID:27048817

  7. Apoptosis Cell Death Effect of Scrophularia Variegata on Breast Cancer Cells via Mitochondrial Intrinsic Pathway

    PubMed Central

    Azadmehr, Abbas; Hajiaghaee, Reza; Baradaran, Behzad; Haghdoost-Yazdi, Hashem

    2015-01-01

    Purpose: Scrophularia variegata M. Beib. (Scrophulariaceae) is an Iranian medicinal plant which is used for various inflammatory disorders in traditional medicine. In this study we evaluated the anti-cancer and cytotoxic effects of the Scrophularia variegata (S. variegata) ethanolic extract on the human breast cancer cell line. Methods: The cytotoxicity effect of the extract on MCF-7 cells was evaluated by MTT assay. In addition, Caspase activity, DNA ladder and Cell death were evaluated by ELISA, gel electrophoresis and Annexin V-FITC/PI staining, respectively. Results: The S. variegata extract showed significant effect cytotoxicity on MCF-7 human breast cancer cell line. Treatment with the extract induced apoptosis on the breast cancer cells by cell cycle arrest in G2/M phase. The results indicated that cytotoxicity activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation as well as an increase of the amount of caspase 3 and caspase 9. In addition, the phytochemical assay showed that the extract had antioxidant capacity and also flavonoids, phenolic compounds and phenyl propanoids were presented in the extract. Conclusion: Our findings indicated that S. variegata extract induced apoptosis via mitochondrial intrinsic pathway on breast cancer by cell cycle arrest in G2/M phase and an increase of caspase 3 and caspase 9. However future studies are needed. PMID:26504768

  8. Ubiquitin at the crossroad of cell death and survival

    PubMed Central

    Chen, Yu-Shan; Qiu, Xiao-Bo

    2013-01-01

    Ubiquitination is crucial for cellular processes, such as protein degradation, apoptosis, autophagy, and cell cycle progression. Dysregulation of the ubiquitination network accounts for the development of numerous diseases, including cancer. Thus, targeting ubiquitination is a promising strategy in cancer therapy. Both apoptosis and autophagy are involved in tumorigenesis and response to cancer therapy. Although both are categorized as types of cell death, autophagy is generally considered to have protective functions, including protecting cells from apoptosis under certain cellular stress conditions. This review highlights recent advances in understanding the regulation of apoptosis and autophagy by ubiquitination. PMID:23816559

  9. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells.

    PubMed

    Sugimori, Naomi; Espinoza, J Luis; Trung, Ly Quoc; Takami, Akiyoshi; Kondo, Yukio; An, Dao Thi; Sasaki, Motoko; Wakayama, Tomohiko; Nakao, Shinji

    2015-01-01

    Benfotiamine is a synthetic thiamine analogue that stimulates transketolase, a cellular enzyme essential for glucose metabolism. Currently, benfotiamine is used to treat diabetic neuropathy. We recently reported that oral benfotiamine induced a temporary but remarkable recovery from acute myeloid leukemia in an elderly patient who was ineligible for standard chemotherapy due to dementia and renal failure. In the present study we present evidences that benfotiamine possess antitumor activity against leukemia cells. In a panel of nine myeloid leukemia cell lines benfotiamine impaired the viability of HL-60, NB4, K562 and KG1 cells and also inhibited the growing of primary leukemic blasts. The antitumor activity of benfotiamine is not mediated by apoptosis, necrosis or autophagy, but rather occurs though paraptosis cell death induction. Mechanistic studies revealed that benfotiamine inhibited the activity of constitutively active ERK1/2 and concomitantly increased the phosphorylation of JNK1/2 kinase in leukemic cells. In addition, benfotiamine induced the down regulation of the cell cycle regulator CDK3 which resulted in G1 cell cycle arrest in the sensitive leukemic cells. Moreover, combination index studies showed that benfotiamine enhanced the antiproliferative activities of cytarabine against leukemia cells. These findings suggest that benfotiamine has antitumor therapeutic potential. PMID:25849583

  10. Paraptosis Cell Death Induction by the Thiamine Analog Benfotiamine in Leukemia Cells

    PubMed Central

    Takami, Akiyoshi; Kondo, Yukio; An, Dao Thi; Sasaki, Motoko; Wakayama, Tomohiko; Nakao, Shinji

    2015-01-01

    Benfotiamine is a synthetic thiamine analogue that stimulates transketolase, a cellular enzyme essential for glucose metabolism. Currently, benfotiamine is used to treat diabetic neuropathy. We recently reported that oral benfotiamine induced a temporary but remarkable recovery from acute myeloid leukemia in an elderly patient who was ineligible for standard chemotherapy due to dementia and renal failure. In the present study we present evidences that benfotiamine possess antitumor activity against leukemia cells. In a panel of nine myeloid leukemia cell lines benfotiamine impaired the viability of HL-60, NB4, K562 and KG1 cells and also inhibited the growing of primary leukemic blasts. The antitumor activity of benfotiamine is not mediated by apoptosis, necrosis or autophagy, but rather occurs though paraptosis cell death induction. Mechanistic studies revealed that benfotiamine inhibited the activity of constitutively active ERK1/2 and concomitantly increased the phosphorylation of JNK1/2 kinase in leukemic cells. In addition, benfotiamine induced the down regulation of the cell cycle regulator CDK3 which resulted in G1 cell cycle arrest in the sensitive leukemic cells. Moreover, combination index studies showed that benfotiamine enhanced the antiproliferative activities of cytarabine against leukemia cells. These findings suggest that benfotiamine has antitumor therapeutic potential. PMID:25849583

  11. Glucose Levels in Culture Medium Determine Cell Death Mode in MPP+-treated Dopaminergic Neuronal Cells

    PubMed Central

    Yoon, So-Young

    2015-01-01

    We previously demonstrated that 1-methyl-4-phenylpyridinium (MPP+) causes caspase-independent, non-apoptotic death of dopaminergic (DA) neuronal cells. Here, we specifically examined whether change of glucose concentration in culture medium may play a role for determining cell death modes of DA neurons following MPP+ treatment. By incubating MN9D cells in medium containing varying concentrations of glucose (5~35 mM), we found that cells underwent a distinct cell death as determined by morphological and biochemical criteria. At 5~10 mM glucose concentration (low glucose levels), MPP+ induced typical of the apoptotic dell death accompanied with caspase activation and DNA fragmentation as well as cell shrinkage. In contrast, MN9D cells cultivated in medium containing more than 17.5 mM (high glucose levels) did not demonstrate any of these changes. Subsequently, we observed that MPP+ at low glucose levels but not high glucose levels led to ROS generation and subsequent JNK activation. Therefore, MPP+-induced cell death only at low glucose levels was significantly ameliorated following co-treatment with ROS scavenger, caspase inhibitor or JNK inhibitor. We basically confirmed the quite similar pattern of cell death in primary cultures of DA neurons. Taken together, our results suggest that a biochemically distinct cell death mode is recruited by MPP+ depending on extracellular glucose levels. PMID:26412968

  12. In vitro apoptotic cell death during erythroid differentiation.

    PubMed

    Zamai, L; Burattini, S; Luchetti, F; Canonico, B; Ferri, P; Melloni, E; Gonelli, A; Guidotti, L; Papa, S; Falcieri, E

    2004-03-01

    Erythropoiesis occurs in bone marrow and it has been shown that during in vivo erythroid differentiation some immature erythroblasts undergo apoptosis. In this regard, it is known that immature erythroblasts are FasL- and TRAIL-sensitive and can be killed by cells expressing these ligand molecules. In the present study, we have investigated the cell death phenomenon that occurs during a common unilineage model of erythroid development. Purified CD34+ human haemopoietic progenitors were cultured in vitro in the presence of SCF, IL-3 and erythropoietin. Their differentiation stages and apoptosis were followed by multiple technical approaches. Flow cytometric evaluation of surface and intracellular molecules revealed that glycophorin A appeared at day 3-4 of incubation and about 75% of viable cells co-expressed high density glycophorin A (Gly(bright)) and adult haemoglobin at day 14 of culture, indicating that this system reasonably recapitulates in vivo normal erythropoiesis. Interestingly, when mature (Gly(bright)) erythroid cells reached their higher percentages (day 14) almost half of cultured cells were apoptotic. Morphological studies indicated that the majority of dead cells contained cytoplasmic granular material typical of basophilic stage, and DNA analysis by flow cytometry and TUNEL reaction revealed nuclear fragmentation. These observations indicate that in vitro unilineage erythroid differentiation, as in vivo, is associated with apoptotic cell death of cells with characteristics of basophilic erythroblasts. We suggest that the interactions between different death receptors on immature basophilic erythroblasts with their ligands on more mature erythroblasts may contribute to induce apoptosis in vitro. PMID:15004520

  13. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    PubMed

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  14. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    PubMed Central

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-01-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  15. Chloroquine rescues A549 cells from paraquat-induced death.

    PubMed

    Xu, Lingjie; Wang, Zhong

    2016-04-01

    Paraquat (PQ) is a widely used herbicide associated with a high mortality rate, yet, there are no effective treatments for PQ poisoning. PQ may damage alveolar type II cells leading to moderate to severe acute respiratory distress syndrome (ARDS). The present study was undertaken to show that PQ causes alveolar type II (A549) cell death and to evaluate whether chloroquine (CQ) can protect A549 cells against PQ-induced cell death. The results showed that high concentrations of PQ resulted in toxicity, as indicated by a decrease in cell viability. More importantly, for the first time, CQ was found to improve cell viability of PQ treated A549 cells. Moreover, our data demonstrated that CQ increased lysosome-associated membrane protein-1, lysosome-associated membrane protein-2 and light chain-3 expressions, suggesting that the mechanism by which CQ rescues PQ-induced cytotoxicity may be through protection of the lysosomal membrane or up-regulation of autophagy. In conclusion, our study indicates that CQ may be used as a potential drug to rescue PQ-induced ARDS. PMID:26154125

  16. Aluminum toxicity and Ca depletion may enhance cell death of tobacco cells via similar syndrome.

    PubMed

    Basset, Refat Abdel; Matsumoto, Hideaki

    2008-05-01

    The main objective of this work is to find out whether aluminum (Al) toxicity and Ca depletion cause cell death of tobacco cells via similar sequence of events. Tobacco cell suspension culture exhibited maximum fresh weight in the presence of a wide range of Ca concentrations between 0.1-1.0 mM whereas higher concentrations (>1.0-5.0 mM) gradually lowered cell fresh weight. However, this decrease in fresh weight does not imply a negative impact on cell viability since cell growth recommenced in fresh MS medium with rates mostly higher than those of low Ca. In addition, high Ca seems to be crucial for survival of Al-treated cells. On the other side, tobacco cells exhibited extreme sensitivity to complete deprivation of Ca. Without Ca, cells could not survive for 18 h and substantially lost their growth capability. Evans blue uptake proved membrane damage of Ca-depleted same as Al-treated cells; relative to maintained membrane intactness of calcium-supplemented (control) ones. Percentage of membrane damage and the growth capability (survival) of tobacco cells exhibited a clear negative correlation.Alterations in growth (fresh weight per aliquot) could not be ascribed neither to cell number nor to decreased dry matter allocation (dry weight/fresh weight percentage) but was mainly due to decreased cellular water content. In this context, Ca-depleted cells lost about half their original water content while 100 microM Al-treated ones retained most of it (ca 87%). This represented the single difference between the two treatments (discussed in the text). Nevertheless, such high water content of the Al-treated cells seems physiologically useless since it did not result in improved viability. Similarities, however, included negligible levels of growth capability, maximum levels of membrane damage, and comparable amounts of NO(3) (-) efflux. As well, both types of treatments led to a sharp decline in osmotic potential that is, in turn, needed for water influx. The above

  17. Aluminum toxicity and Ca depletion may enhance cell death of tobacco cells via similar syndrome

    PubMed Central

    Matsumoto, Hideaki

    2008-01-01

    The main objective of this work is to find out whether aluminum (Al) toxicity and Ca depletion cause cell death of tobacco cells via similar sequence of events. Tobacco cell suspension culture exhibited maximum fresh weight in the presence of a wide range of Ca concentrations between 0.1–1.0 mM whereas higher concentrations (>1.0–5.0 mM) gradually lowered cell fresh weight. However, this decrease in fresh weight does not imply a negative impact on cell viability since cell growth recommenced in fresh MS medium with rates mostly higher than those of low Ca. In addition, high Ca seems to be crucial for survival of Al-treated cells. On the other side, tobacco cells exhibited extreme sensitivity to complete deprivation of Ca. Without Ca, cells could not survive for 18 h and substantially lost their growth capability. Evans blue uptake proved membrane damage of Ca-depleted same as Al-treated cells; relative to maintained membrane intactness of calcium-supplemented (control) ones. Percentage of membrane damage and the growth capability (survival) of tobacco cells exhibited a clear negative correlation. Alterations in growth (fresh weight per aliquot) could not be ascribed neither to cell number nor to decreased dry matter allocation (dry weight/fresh weight percentage) but was mainly due to decreased cellular water content. In this context, Ca-depleted cells lost about half their original water content while 100 µM Al-treated ones retained most of it (ca 87%). This represented the single difference between the two treatments (discussed in the text). Nevertheless, such high water content of the Al-treated cells seems physiologically useless since it did not result in improved viability. Similarities, however, included negligible levels of growth capability, maximum levels of membrane damage, and comparable amounts of NO3− efflux. As well, both types of treatments led to a sharp decline in osmotic potential that is, in turn, needed for water influx. The above

  18. Identification of a mitotic death signature in cancer cell lines.

    PubMed

    Sakurikar, Nandini; Eichhorn, Joshua M; Alford, Sarah E; Chambers, Timothy C

    2014-02-28

    This study examined the molecular mechanism of action of anti-mitotic drugs. The hypothesis was tested that death in mitosis occurs through sustained mitotic arrest with robust Cdk1 signaling causing complete phosphorylation of Mcl-1 and Bcl-xL, and conversely, that mitotic slippage is associated with incomplete phosphorylation of Mcl-1/Bcl-xL. The results, obtained from studying six different cancer cell lines, strongly support the hypothesis and identify for the first time a unique molecular signature for mitotic death. The findings represent an important advance in understanding anti-mitotic drug action and provide insight into cancer cell susceptibility to such drugs which has important clinical implications. PMID:24099917

  19. Molecular mechanisms of cell death in intervertebral disc degeneration (Review)

    PubMed Central

    ZHANG, FAN; ZHAO, XUELING; SHEN, HONGXING; ZHANG, CAIGUO

    2016-01-01

    Intervertebral discs (IVDs) are complex structures that consist of three parts, namely, nucleus pulposus, annulus fibrosus and cartilage endplates. With aging, IVDs gradually degenerate as a consequence of many factors, such as microenvironment changes and cell death. Human clinical trial and animal model studies have documented that cell death, particularly apoptosis and autophagy, significantly contribute to IVD degeneration. The mechanisms underlying this phenomenon include the activation of apoptotic pathways and the regulation of autophagy in response to nutrient deprivation and multiple stresses. In this review, we briefly summarize recent progress in understanding the function and regulation of apoptosis and autophagy signaling pathways. In particular, we focus on studies that reveal the functional mechanisms of these pathways in IVD degeneration. PMID:27121482

  20. Understanding Dopaminergic Cell Death Pathways in Parkinson Disease.

    PubMed

    Michel, Patrick P; Hirsch, Etienne C; Hunot, Stéphane

    2016-05-18

    Parkinson disease (PD) is a multifactorial neurodegenerative disorder, the etiology of which remains largely unknown. Progressive impairment of voluntary motor control, which represents the primary clinical feature of the disease, is caused by a loss of midbrain substantia nigra dopamine (DA) neurons. We present here a synthetic overview of cell-autonomous mechanisms that are likely to participate in DA cell death in both sporadic and inherited forms of the disease. In particular, we describe how damage to vulnerable DA neurons may arise from cellular disturbances produced by protein misfolding and aggregation, disruption of autophagic catabolism, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, or loss of calcium homeostasis. Where pertinent, we show how these mechanisms may mutually cooperate to promote neuronal death. PMID:27196972

  1. Molecular mechanisms of cell death in intervertebral disc degeneration (Review).

    PubMed

    Zhang, Fan; Zhao, Xueling; Shen, Hongxing; Zhang, Caiguo

    2016-06-01

    Intervertebral discs (IVDs) are complex structures that consist of three parts, namely, nucleus pulposus, annulus fibrosus and cartilage endplates. With aging, IVDs gradually degenerate as a consequence of many factors, such as microenvironment changes and cell death. Human clinical trial and animal model studies have documented that cell death, particularly apoptosis and autophagy, significantly contribute to IVD degeneration. The mechanisms underlying this phenomenon include the activation of apoptotic pathways and the regulation of autophagy in response to nutrient deprivation and multiple stresses. In this review, we briefly summarize recent progress in understanding the function and regulation of apoptosis and autophagy signaling pathways. In particular, we focus on studies that reveal the functional mechanisms of these pathways in IVD degeneration. PMID:27121482

  2. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy

    PubMed Central

    Adkins, Irena; Fucikova, Jitka; Garg, Abhishek D; Agostinis, Patrizia; Špíšek, Radek

    2015-01-01

    The concept of immunogenic cancer cell death (ICD), as originally observed during the treatment with several chemotherapeutics or ionizing irradiation, has revolutionized the view on the development of new anticancer therapies. ICD is defined by endoplasmic reticulum (ER) stress response, reactive oxygen species (ROS) generation, emission of danger-associated molecular patterns and induction of antitumor immunity. Here we describe known and emerging cancer cell death-inducing physical modalities, such as ionizing irradiation, ultraviolet C light, Photodynamic Therapy (PDT) with Hypericin, high hydrostatic pressure (HHP) and hyperthermia (HT), which have been shown to elicit effective antitumor immunity. We discuss the evidence of ICD induced by these modalities in cancer patients together with their applicability in immunotherapeutic protocols and anticancer vaccine development. PMID:25964865

  3. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress.

    PubMed

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2015-01-14

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design. PMID:25429417

  4. The copper chelator ATN-224 induces caspase-independent cell death in diffuse large B cell lymphoma

    PubMed Central

    LEE, KRISTY; HART, MATTHEW R.; BRIEHL, MARGARET M.; MAZAR, ANDREW P.; TOME, MARGARET E.

    2014-01-01

    Bcl-2 and other anti-apoptotic proteins are associated with defective caspase-dependent apoptotic pathways, resulting in chemoresistance. We have previously shown that ATN-224, a copper chelator drug, induces cell death in murine thymic lymphoma cells transfected with Bcl-2. In the current study, we tested whether ATN-224 was effective in diffuse large B cell lymphoma (DLBCL) cells, which have increased anti-apoptotic proteins through translocation or amplification. We found that nanomolar concentrations of ATN-224 induced cell death in DLBCL cells independent of Bcl-2, Bcl-xL or Mcl-1 status. ATN-224 treatment resulted in mitochondrial dysfunction, release of apoptosis-inducing factor (AIF) and induction of caspase-independent cell death. In addition, ATN-224 degraded Mcl-1 and enhanced the effect of the BH3 mimetic ABT-263. These findings indicate that ATN-224 has potential as a therapeutic for the treatment of DLBCL. Induction of caspase-independent cell death in apoptosis-resistant DLBCL would provide a therapeutic alternative for the treatment of refractory disease. PMID:24788952

  5. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    SciTech Connect

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose; Leon, Francisco; Estevez, Francisco

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  6. Calcium oxalate toxicity in renal epithelial cells: the mediation of crystal size on cell death mode

    PubMed Central

    Sun, X-Y; Gan, Q-Z; Ouyang, J-M

    2015-01-01

    The cytotoxicity of calcium oxalate (CaOx) in renal epithelial cells has been studied extensively, but the cell death mode induced by CaOx with different physical properties, such as crystal size and crystal phase, has not been studied in detail. In this study, we comparatively investigated the differences of cell death mode induced by nano-sized (50 nm) and micron-sized (10 μm) calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) to explore the cell death mechanism. The effect of the exposure of nano-/micron-sized COM and COD crystals toward the African green monkey renal epithelial (Vero) cells were investigated by detecting cell cytoskeleton changes, lysosomal integrity, mitochondrial membrane potential (Δψm), apoptosis and/or necrosis, osteopontin (OPN) expression, and malondialdehyde (MDA) release. Nano-/micron-sized COM and COD crystals could cause apoptosis and necrosis simultaneously. Nano-sized crystals primarily caused apoptotic cell death, leading to cell shrinkage, phosphatidylserine ectropion, and nuclear shrinkage, whereas micron-sized crystals primarily caused necrotic cell death, leading to cell swelling and cell membrane and lysosome rupture. Nano-sized COM and COD crystals induced much greater cell death (sum of apoptosis and necrosis) than micron-sized crystals, and COM crystals showed higher cytotoxicity than the same-sized COD crystals. Both apoptosis and necrosis could lead to mitochondria depolarization and elevate the expression of OPN and the generation of lipid peroxidation product MDA. The amount of expressed OPN and generated MDA was positively related to cell injury degree. The physicochemical properties of crystals could affect the cell death mode. The results of this study may provide a basis for future studies on cell death mechanisms. PMID:27551481

  7. Low-frequency quantitative ultrasound imaging of cell death in vivo

    SciTech Connect

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.; Papanicolau, Naum; Tadayyon, Hadi; Lee, Justin; Zubovits, Judit; Sadeghian, Alireza; Karshafian, Raffi; Al-Mahrouki, Azza; Giles, Anoja; Kolios, Michael C.

    2013-08-15

    , in addition to high-frequency ultrasound, can detect tissue changes associated with cell death in vivo in response to cancer treatments.

  8. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study

    PubMed Central

    2004-01-01

    Metformin, a drug widely used in the treatment of Type II diabetes, has recently received attention owing to new findings regarding its mitochondrial and cellular effects. In the present study, the effects of metformin on respiration, complex 1 activity, mitochondrial permeability transition, cytochrome c release and cell death were investigated in cultured cells from a human carcinoma-derived cell line (KB cells). Metformin significantly decreased respiration both in intact cells and after permeabilization. This was due to a mild and specific inhibition of the respiratory chain complex 1. In addition, metformin prevented to a significant extent mitochondrial permeability transition both in permeabilized cells, as induced by calcium, and in intact cells, as induced by the glutathione-oxidizing agent t-butyl hydroperoxide. This effect was equivalent to that of cyclosporin A, the reference inhibitor. Finally, metformin impaired the t-butyl hydroperoxide-induced cell death, as judged by Trypan Blue exclusion, propidium iodide staining and cytochrome c release. We propose that metformin prevents the permeability transition-related commitment to cell death in relation to its mild inhibitory effect on complex 1, which is responsible for a decreased probability of mitochondrial permeability transition. PMID:15175014

  9. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine.

    PubMed

    Nykky, Jonna; Tuusa, Jenni E; Kirjavainen, Sanna; Vuento, Matti; Gilbert, Leona

    2010-01-01

    Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI) labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments. PMID:20957163

  10. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine

    PubMed Central

    Nykky, Jonna; Tuusa, Jenni E; Kirjavainen, Sanna; Vuento, Matti; Gilbert, Leona

    2010-01-01

    Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI) labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments. PMID:20957163

  11. Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together?

    NASA Technical Reports Server (NTRS)

    Gilmore, E. C.; Nowakowski, R. S.; Caviness, V. S. Jr; Herrup, K.

    2000-01-01

    Substantial death of migrating and differentiating neurons occurs within the developing CNS of mice that are deficient in genes required for repair of double-stranded DNA breaks. These findings suggest that large-scale, yet previously unrecognized, double-stranded DNA breaks occur normally in early postmitotic and differentiating neurons. Moreover, they imply that cell death occurs if the breaks are not repaired. The cause and natural function of such breaks remains a mystery; however, their occurrence has significant implications. They might be detected by histological methods that are sensitive to DNA fragmentation and mistakenly interpreted to indicate cell death when no relationship exists. In a broader context, there is now renewed speculation that DNA recombination might be occurring during neuronal development, similar to DNA recombination in developing lymphocytes. If this is true, the target gene(s) of recombination and their significance remain to be determined.

  12. The variability of autophagy and cell death susceptibility

    PubMed Central

    Loos, Ben; Engelbrecht, Anna-Mart; Lockshin, Richard A.; Klionsky, Daniel J; Zakeri, Zahra

    2013-01-01

    Impaired autophagic machinery is implicated in a number of diseases such as heart disease, neurodegeneration and cancer. A common denominator in these pathologies is a dysregulation of autophagy that has been linked to a change in susceptibility to cell death. Although we have progressed in understanding the molecular machinery and regulation of the autophagic pathway, many unanswered questions remain. How does the metabolic contribution of autophagy connect with the cell’s history and how does its current autophagic flux affect metabolic status and susceptibility to undergo cell death? How does autophagic flux operate to switch metabolic direction and what are the underlying mechanisms in metabolite and energetic sensing, metabolite substrate provision and metabolic integration during the cellular stress response? In this article we focus on unresolved questions that address issues around the role of autophagy in sensing the energetic environment and its role in actively generating metabolite substrates. We attempt to provide answers by explaining how and when a change in autophagic pathway activity such as primary stress response is able to affect cell viability and when not. By addressing the dynamic metabolic relationship between autophagy, apoptosis and necrosis we provide a new perspective on the parameters that connect autophagic activity, severity of injury and cellular history in a logical manner. Last, by evaluating the cell’s condition and autophagic activity in a clear context of regulatory parameters in the intra- and extracellular environment, this review provides new concepts that set autophagy into an energetic feedback loop, that may assist in our understanding of autophagy in maintaining healthy cells or when it controls the threshold between cell death and cell survival. PMID:23846383

  13. Minocycline fails to protect cerebellar granular cell cultures against malonate-induced cell death.

    PubMed

    Fernandez-Gomez, F J; Gomez-Lazaro, M; Pastor, D; Calvo, S; Aguirre, N; Galindo, M F; Jordán, J

    2005-11-01

    Experimental and clinical studies support the view that the semisynthetic tetracycline minocycline exhibits neuroprotective roles in several models of neurodegenerative diseases, including ischemia, Huntington, Parkinson diseases, and amyotrophic lateral sclerosis. However, recent evidence indicates that minocycline does not always present beneficial actions. For instance, in an in vivo model of Huntington's disease, it fails to afford protection after malonate intrastriatal injection. Moreover, it reverses the neuroprotective effect of creatine in nigrostriatal dopaminergic neurons. This apparent contradiction prompted us to analyze the effect of this antibiotic on malonate-induced cell death. We show that, in rat cerebellar granular cells, the succinate dehydrogenase inhibitor malonate induces cell death in a concentration-dependent manner. By using DFCA, monochlorobimane and 10-N-nonyl-Acridin Orange to measure, respectively, H2O2-derived oxidant species and reduced forms of GSH and cardiolipin, we observed that malonate induced reactive oxygen species (ROS) production to an extent that surpasses the antioxidant defense capacity of the cells, resulting in GSH depletion and cardiolipin oxidation. The pre-treatment for 4 h with minocycline (10-100 microM) did not present cytoprotective actions. Moreover, minocycline failed to block ROS production and to abrogate malonate-induced oxidation of GSH and cardiolipin. Additional experiments revealed that minocycline was also unsuccessful to prevent the mitochondrial swelling induced by malonate. Furthermore, malonate did not induce the expression of the iNOS, caspase-3, -8, and -9 genes which have been shown to be up-regulated in several models where minocycline resulted cytoprotective. In addition, malonate-induced down-regulation of the antiapoptotic gene Bcl-2 was not prevented by minocycline, controversially the mechanism previously proposed to explain minocycline protective action. These results suggest that the

  14. Cell Cycle-Dependent Mechanisms Underlie Vincristine-Induced Death of Primary Acute Lymphoblastic Leukemia Cells.

    PubMed

    Kothari, Anisha; Hittelman, Walter N; Chambers, Timothy C

    2016-06-15

    Microtubule-targeting agents (MTA), such as the taxanes and vinca alkaloids, are used to treat a variety of cancers due to their ability to perturb microtubule dynamics. In cell culture, MTAs exert their anticancer effects primarily by causing mitotic arrest and cell death. However, accumulating indirect evidence suggests that MTAs may exert their cytotoxicity in human tumors by interfering with interphase microtubules. In this study, we sought to develop and characterize an experimental system in which to test the hypothesis that MTAs induce cell death during interphase. Primary adult acute lymphoblastic leukemia (ALL) cells treated with vincristine only weakly exhibited colocalization between mitotic and apoptotic markers and major characteristics of mitotic death, such as an increase in cells with 4N DNA content before the appearance of cells with <2N DNA content, suggesting a mixed response. Therefore, we separated ALL cells into distinct phases of the cell cycle by centrifugal elutriation, labeled cells with 5-ethynyl-2'-deoxyuridine (EdU), and then treated each population with vincristine. Cells isolated during G1 underwent cell death without evidence of EdU uptake, indicating that the cytotoxic effects of vincristine took place during G1 Conversely, cells isolated during S or G2-M phases underwent death following mitotic arrest. Thus, vincristine induces distinct death programs in primary ALL cells depending on cell-cycle phase, and cells in G1 are particularly susceptible to perturbation of interphase microtubules. Primary ALL cells may therefore provide a powerful model system in which to study the multimodal mechanisms underlying MTA-induced cell death. Cancer Res; 76(12); 3553-61. ©2016 AACR. PMID:27197148

  15. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    PubMed

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ. PMID:24296078

  16. Contribution of programmed cell death receptor (PD)-1 to Kupffer cell dysfunction in murine polymicrobial sepsis.

    PubMed

    Wang, Fei; Huang, Xin; Chung, Chun-Shiang; Chen, Yaping; Hutchins, Noelle A; Ayala, Alfred

    2016-08-01

    Recent studies suggest that coinhibitory receptors appear to be important in contributing sepsis-induced immunosuppression. Our laboratory reported that mice deficient in programmed cell death receptor (PD)-1 have increased bacterial clearance and improved survival in experimental sepsis induced by cecal ligation and puncture (CLP). In response to infection, the liver clears the blood of bacteria and produces cytokines. Kupffer cells, the resident macrophages in the liver, are strategically situated to perform the above functions. However, it is not known if PD-1 expression on Kupffer cells is altered by septic stimuli, let alone if PD-1 ligation contributes to the altered microbial handling seen. Here we report that PD-1 is significantly upregulated on Kupffer cells during sepsis. PD-1-deficient septic mouse Kupffer cells displayed markedly enhanced phagocytosis and restoration of the expression of major histocompatibility complex II and CD86, but reduced CD80 expression compared with septic wild-type (WT) mouse Kupffer cells. In response to ex vivo LPS stimulation, the cytokine productive capacity of Kupffer cells derived from PD-1-/- CLP mice exhibited a marked, albeit partial, restoration of the release of IL-6, IL-12, IL-1β, monocyte chemoattractant protein-1, and IL-10 compared with septic WT mouse Kupffer cells. In addition, PD-1 gene deficiency decreased LPS-induced apoptosis of septic Kupffer cells, as indicated by decreased levels of cleaved caspase-3 and reduced terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. Exploring the signal pathways involved, we found that, after ex vivo LPS stimulation, septic PD-1-/- mouse Kupffer cells exhibited an increased Akt phosphorylation and a reduced p38 phosphorylation compared with septic WT mouse Kupffer cells. Together, these results indicate that PD-1 appears to play an important role in regulating the development of Kupffer cell dysfunction seen in sepsis. PMID:27288425

  17. Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis.

    PubMed

    Chun, Hye Jeong; Lee, Yujeong; Kim, Ah Hyun; Lee, Jaewon

    2016-04-01

    Methylglyoxal (MG) is formed during normal metabolism by processes like glycolysis, lipid peroxidation, and threonine catabolism, and its accumulation is associated with various degenerative diseases, such as diabetes and arterial atherogenesis. Furthermore, MG has also been reported to have toxic effects on hippocampal neurons. However, these effects have not been studied in the context of neurogenesis. Here, we report that MG adversely affects hippocampal neurogenesis and induces neural progenitor cell (NPC) death. MG significantly reduced C17.2 NPC proliferation, and high concentration of MG (500 μM) induced cell death and elevated oxidative stress. Further, MG was found to activate the ERK signaling pathway, indicating elevated stress response. To determine the effects of MG in vivo, mice were administrated with vehicle or MG (0.5 or 1 % in drinking water) for 4 weeks. The numbers of BrdU-positive cells in hippocampi were significantly lower in MG-treated mice, indicating impaired neurogenesis, but MG did not induce neuronal damage or glial activations. Interestingly, MG reduced memory retention when administered to mice at 1 % but not at 0.5 %. In addition, the levels of hippocampal BDNF and synaptophysin were significantly lower in the hippocampi of mice treated with MG at 1 %. Collectively, our findings suggest MG could be harmful to NPCs and to hippocampal neurogenesis. PMID:26690780

  18. Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells

    SciTech Connect

    Hojka-Osinska, Anna; Ziolo, Ewa; Rapak, Andrzej

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer The combination of fenretinide and indomethacin induces a high level of cell death. Black-Right-Pointing-Pointer Apoptotic pathway is caspase-independent. Black-Right-Pointing-Pointer Jurkat cells undergo AIF-mediated cell death. -- Abstract: Currently used cytotoxic drugs in cancer therapy have a similar mechanism of action and low specificity. Applied simultaneously, they show an additive effect with strong side effects. Clinical trials with the use of different agents in cancer therapy show that the use of these compounds alone is not very effective in fighting cancer. An alternative solution could be to apply a combination of these agents, because their combination has a synergistic effect on some cancer cells. Therefore, in our investigations we examined the effects of a synthetic retinoid-fenretinide when combined with a non-steroidal anti-inflammatory drug-indomethacin on the process of apoptosis in the acute human T-cell leukemia cell line Jurkat. We demonstrate that treatment with the combination of the tested compounds induces the death of cells, that is peculiar and combines features of apoptosis as well as non-apoptotic cell death. In detail we observed, cell membrane permeabilization, phosphatydylserine exposure, no oligonucleosomal DNA fragmentation, no caspase-3 activation, but apoptosis inducing factor (AIF) nuclear translocation. Taken together these results indicate, that Jurkat cells after treatment with a combination of fenretinide and indomethacin undergo AIF-mediated programmed cell death.

  19. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH

    EPA Science Inventory

    Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...

  20. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair

    PubMed Central

    Fallahi, Emma; O’Driscoll, Niamh A.; Matallanas, David

    2016-01-01

    The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders. PMID:27322327

  1. BGP-15 inhibits caspase-independent programmed cell death in acetaminophen-induced liver injury

    SciTech Connect

    Nagy, Gabor; Szarka, Andras; Lotz, Gabor; Doczi, Judit; Wunderlich, Livius; Kiss, Andras; Jemnitz, Katalin; Veres, Zsuzsa; Banhegyi, Gabor; Schaff, Zsuzsa; Suemegi, Balazs; Mandl, Jozsef

    2010-02-15

    It has been recently shown that acute acetaminophen toxicity results in endoplasmic reticulum redox stress and an increase in cells with apoptotic phenotype in liver. Since activation of effector caspases was absent, the relevance of caspase-independent mechanisms in acetaminophen-induced programmed cell death was investigated. BGP-15, a drug with known protective actions in conditions involving redox imbalance, has been co-administered with a single sublethal dose of acetaminophen. Proapoptotic events and outcome of the injury were investigated. ER redox alterations and early ER-stress-related signaling events induced by acetaminophen, such as ER glutathione depletion, phosphorylation of eIF2alpha and JNK and induction of the transcription factor GADD153, were not counteracted by co-treatment with BGP-15. However, BGP-15 prevented AIF mitochondria-to-nucleus translocation and mitochondrial depolarization. BGP-15 co-treatment attenuated the rate of acetaminophen-induced cell death as assessed by apoptotic index and enzyme serum release. These results reaffirm that acute acetaminophen toxicity involves oxidative stress-induced caspase-independent cell death. In addition, pharmacological inhibition of AIF translocation may effectively protect against or at least delay acetaminophen-induced programmed cell death.

  2. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair.

    PubMed

    Fallahi, Emma; O'Driscoll, Niamh A; Matallanas, David

    2016-01-01

    The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders. PMID:27322327

  3. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-04-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes.

  4. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    PubMed Central

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-01-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes. PMID:24732136

  5. Ongoing cell death and immune influences on regeneration in the vestibular sensory organs

    NASA Technical Reports Server (NTRS)

    Warchol, M. E.; Matsui, J. I.; Simkus, E. L.; Ogilive, J. M.

    2001-01-01

    Hair cells in the vestibular organs of birds have a relatively short life span. Mature hair cells appear to die spontaneously and are then quickly replaced by new hair cells that arise from the division of epithelial supporting cells. A similar regenerative mechanism also results in hair cell replacement after ototoxic damage. The cellular basis of hair cell turnover in the avian ear is not understood. We are investigating the signaling pathways that lead to hair cell death and the relationship between ongoing cell death and cell production. In addition, work from our lab and others has demonstrated that the avian inner ear contains a resident population of macrophages and that enhanced numbers of macrophages are recruited to sites of hair cells lesions. Those observations suggest that macrophages and their secretory products (cytokines) may be involved in hair cell regeneration. Consistent with that suggestion, we have found that treatment with the anti-inflammatory drug dexamethasone reduces regenerative cell proliferation in the avian ear, and that certain macrophage-secreted cytokines can influence the proliferation of vestibular supporting cells and the survival of statoacoustic neurons. Those results suggest a role for the immune system in the process of sensory regeneration in the inner ear.

  6. Programmed Cell Death Initiation and Execution in Budding Yeast

    PubMed Central

    Strich, Randy

    2015-01-01

    Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals. PMID:26272996

  7. Role of mitochondrial function in cell death and body metabolism.

    PubMed

    Lee, Myung-Shik

    2016-01-01

    Mitochondria are the key players in apoptosis and necrosis. Mitochondrial DNA (mtDNA)-depleted r0 cells were resistant to diverse apoptosis inducers such as TNF-alpha, TNFSF10, staurosporine and p53. Apoptosis resistance was accompanied by the absence of mitochondrial potential loss or cytochrome c translocation. r0 cells were also resistant to necrosis induced by reactive oxygen species (ROS) donors due to upregulation of antioxidant enzymes such as manganese superoxide dismutase. Mitochondria also has a close relationship with autophagy that plays a critical role in the turnover of senescent organelles or dysfunctional proteins and may be included in 'cell death' category. It was demonstrated that autophagy deficiency in insulin target tissues such as skeletal muscle induces mitochondrial stress response, which leads to the induction of FGF21 as a 'mitokine' and affects the whole body metabolism. These results show that mitochondria are not simply the power plants of cells generating ATP, but are closely related to several types of cell death and autophagy. Mitochondria affect various pathophysiological events related to diverse disorders such as cancer, metabolic disorders and aging. PMID:27100503

  8. Vibrio cholerae GbpA elicits necrotic cell death in intestinal cells.

    PubMed

    Mandal, Sudipto; Chatterjee, Nabendu Sekhar

    2016-08-01

    Vibrio choleraeN-acetylglucosamine-binding protein GbpA is a secretory protein that facilitates the initial adherence of bacteria in the human intestine. Until now, considerable progress in the characterization of GbpA has been done, yet little is known about its role in host response. Our present studies demonstrated that GbpA at the amount secreted in the intestine resulted in decreased cell viability, altered cell morphology, disruption of cell membrane integrity and damage of cellular DNA indicating necrotic cell death. We observed that GbpA exposure leads to mitochondrial dysfunction, characterized by accumulation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential and depletion of ATP pool in host cells. Additionally, the intra-cellular ROS, accumulated in response to GbpA, were found to induce the migration of NF-κB from cytoplasm into nucleus in host cells. Taken together, these results prompted us to conclude that GbpA orchestrates a necrotic response in host cells which may have implications in immune response. PMID:27324251

  9. Metallodrug induced apoptotic cell death and survival attempts are characterizable by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2014-09-01

    Chrysotherapeutics are under investigation as new or additional treatments for different types of cancers. In this study, gold complexes were investigated for their anticancer potential using Raman spectroscopy. The aim of the study was to determine whether Raman spectroscopy could be used for the characterization of metallodrug-induced cell death. Symptoms of cell death such as decreased peak intensities of proteins bonds and phosphodiester bonds found in deoxyribose nucleic acids were evident in the principal component analysis of the spectra. Vibrational bands around 761 cm-1 and 1300 cm-1 (tryptophan, ethanolamine group, and phosphatidylethanolamine) and 1720 cm-1 (ester bonds associated with phospholipids) appeared in the Raman spectra of cervical adenocarcinoma (HeLa) cells after metallodrug treatment. The significantly (p < 0.05, one way analysis of variance) increased intensity of phosphatidylethanolamine after metallodrug treatment could be a molecular signature of induced apoptosis since both the co-regulated phosphatidylserine and phosphatidylethanolamine are externalized during cell death. Treated cells had significantly higher levels of glucose and glycogen vibrational peaks, indicative of a survival mechanism of cancer cells under chemical stress. Cancer cells excrete chemotherapeutics to improve their chances of survival and utilize glucose to achieve this. Raman spectroscopy was able to monitor a survival strategy of cancer cells in the form of glucose uptake to alleviate chemical stress. Raman spectroscopy was invaluable in obtaining molecular information generated by biomolecules affected by anticancer metallodrug treatments and presents an alternative to less reproducible, conventional biochemical assays for cytotoxicity analyses.

  10. Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe.

    PubMed

    Cornago, M; Garcia-Alberich, C; Blasco-Angulo, N; Vall-Llaura, N; Nager, M; Herreros, J; Comella, J X; Sanchis, D; Llovera, M

    2014-01-01

    Glioblastoma multiforme is resistant to conventional anti-tumoral treatments due to its infiltrative nature and capability of relapse; therefore, research efforts focus on characterizing gliomagenesis and identifying molecular targets useful on therapy. New therapeutic strategies are being tested in patients, such as Histone deacetylase inhibitors (HDACi) either alone or in combination with other therapies. Here two HDACi included in clinical trials have been tested, suberanilohydroxamic acid (SAHA) and valproic acid (VPA), to characterize their effects on glioma cell growth in vitro and to determine the molecular changes that promote cancer cell death. We found that both HDACi reduce glioma cell viability, proliferation and clonogenicity. They have multiple effects, such as inducing the production of reactive oxygen species (ROS) and activating the mitochondrial apoptotic pathway, nevertheless cell death is not prevented by the pan-caspase inhibitor Q-VD-OPh. Importantly, we found that HDACi alter cell cycle progression by decreasing the expression of G2 checkpoint kinases Wee1 and checkpoint kinase 1 (Chk1). In addition, HDACi reduce the expression of proteins involved in DNA repair (Rad51), mitotic spindle formation (TPX2) and chromosome segregation (Survivin) in glioma cells and in human glioblastoma multiforme primary cultures. Therefore, HDACi treatment causes glioma cell entry into mitosis before DNA damage could be repaired and to the formation of an aberrant mitotic spindle that results in glioma cell death through mitotic catastrophe-induced apoptosis. PMID:25275596

  11. The essential role of evasion from cell death in cancer.

    PubMed

    Kelly, Gemma L; Strasser, Andreas

    2011-01-01

    The link between evasion of apoptosis and the development of cellular hyperplasia and ultimately cancer is implicitly clear if one considers how many cells are produced each day and, hence, how many cells must die to make room for the new ones (reviewed in Raff, 1996). Furthermore, cells are frequently experiencing noxious stimuli that can cause lesions in their DNA and faults in DNA replication can occur during cellular proliferation. Such DNA damage needs to be repaired efficiently or cells with irreparable damage must be killed to prevent subsequent division of aberrant cells that may fuel tumorigenesis (reviewed in Weinberg, 2007). The detection of genetic lesions in human cancers that activate prosurvival genes or disable proapoptotic genes have provided the first evidence that defects in programmed cell death can cause cancer (Tagawa et al., 2005; Tsujimoto et al., 1984; Vaux, Cory, and Adams, 1988) and this concept was proven by studies with genetically modified mice (Egle et al., 2004b; Strasser et al., 1990a). It is therefore now widely accepted that evasion of apoptosis is a requirement for both neoplastic transformation and sustained growth of cancer cells (reviewed in Cory and Adams, 2002; Hanahan and Weinberg, 2000; Weinberg, 2007). Importantly, apoptosis is also a major contributor to anticancer therapy-induced killing of tumor cells (reviewed in Cory and Adams, 2002; Cragg et al., 2009). Consequently, a detailed understanding of apoptotic cell death will help to better comprehend the complexities of tumorigenesis and should assist with the development of improved targeted therapies for cancer based on the direct activation of the apoptotic machinery (reviewed in Lessene, Czabotar, and Colman, 2008). PMID:21704830

  12. Cell Death Control by Matrix Metalloproteinases1[OPEN

    PubMed Central

    Zimmermann, Dirk; Sieferer, Elke; Pfannstiel, Jens

    2016-01-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  13. The pantheon of the fallen: why are there so many forms of cell death?

    PubMed

    Green, Douglas R; Victor, Bernadette

    2012-11-01

    Cells die by various mechanisms, only some of which have been elucidated in detail. Numerous 'active' forms of cell death exist in which the cell participates in its own death, including apoptosis, programmed necrosis, mitotic catastrophe, and the recently described ferroptosis. Here, we attempt to explain why there are so many different forms of cell death, and propose a distinction between active death that constitutes 'suicide' versus 'sabotage'. PMID:22995729

  14. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia.

    PubMed

    Chen, Yongqiang; Henson, Elizabeth S; Xiao, Wenyan; Huang, Daniel; McMillan-Ward, Eileen M; Israels, Sara J; Gibson, Spencer B

    2016-06-01

    Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia. PMID:27166522

  15. Necdin Protects Embryonic Motoneurons from Programmed Cell Death

    PubMed Central

    Aebischer, Julianne; Sturny, Rachel; Andrieu, David; Rieusset, Anne; Schaller, Fabienne; Geib, Sandrine; Raoul, Cédric; Muscatelli, Françoise

    2011-01-01

    NECDIN belongs to the type II Melanoma Associated Antigen Gene Expression gene family and is located in the Prader-Willi Syndrome (PWS) critical region. Necdin-deficient mice develop symptoms of PWS, including a sensory and motor deficit. However, the mechanisms underlying the motor deficit remain elusive. Here, we show that the genetic ablation of Necdin, whose expression is restricted to post-mitotic neurons in the spinal cord during development, leads to a loss of 31% of specified motoneurons. The increased neuronal loss occurs during the period of naturally-occurring cell death and is not confined to specific pools of motoneurons. To better understand the role of Necdin during the period of programmed cell death of motoneurons we used embryonic spinal cord explants and primary motoneuron cultures from Necdin-deficient mice. Interestingly, while Necdin-deficient motoneurons present the same survival response to neurotrophic factors, we demonstrate that deletion of Necdin leads to an increased susceptibility of motoneurons to neurotrophic factor deprivation. We show that by neutralizing TNFα this increased susceptibility of Necdin-deficient motoneurons to trophic factor deprivation can be reduced to the normal level. We propose that Necdin is implicated through the TNF-receptor 1 pathway in the developmental death of motoneurons. PMID:21912643

  16. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades

    PubMed Central

    Teper, Doron; Sunitha, Sukumaran; Martin, Gregory B; Sessa, Guido

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades. PMID:26237448

  17. Combinatorial Strategies for the Induction of Immunogenic Cell Death

    PubMed Central

    Bezu, Lucillia; Gomes-da-Silva, Ligia C.; Dewitte, Heleen; Breckpot, Karine; Fucikova, Jitka; Spisek, Radek; Galluzzi, Lorenzo; Kepp, Oliver; Kroemer, Guido

    2015-01-01

    The term “immunogenic cell death” (ICD) is commonly employed to indicate a peculiar instance of regulated cell death (RCD) that engages the adaptive arm of the immune system. The inoculation of cancer cells undergoing ICD into immunocompetent animals elicits a specific immune response associated with the establishment of immunological memory. Only a few agents are intrinsically endowed with the ability to trigger ICD. These include a few chemotherapeutics that are routinely employed in the clinic, like doxorubicin, mitoxantrone, oxaliplatin, and cyclophosphamide, as well as some agents that have not yet been approved for use in humans. Accumulating clinical data indicate that the activation of adaptive immune responses against dying cancer cells is associated with improved disease outcome in patients affected by various neoplasms. Thus, novel therapeutic regimens that trigger ICD are urgently awaited. Here, we discuss current combinatorial approaches to convert otherwise non-immunogenic instances of RCD into bona fide ICD. PMID:25964783

  18. Death and survival of heterozygous Lurcher Purkinje cells in vitro

    PubMed Central

    Zanjani, Hadi; McFarland, Rebecca; Cavelier, Pauline; Blokhin, Andrei; Gautheron, Vanessa; Levenes, Carole; Bambrick, Linda L.; Mariani, Jean; Vogel, Michael W.

    2009-01-01

    The differentiation and survival of heterozygous Lurcher (+/Lc) Purkinje cells in vitro was examined as a model system for studying how chronic ionic stress affects neuronal differentiation and survival. The Lurcher mutation in the δ2 glutamate receptor (GluRδ2) converts an orphan receptor into a membrane channel that constitutively passes an inward cation current. In the GluRδ2+/Lc mutant, Purkinje cell dendritic differentiation is disrupted and the cells degenerate following the first week of postnatal development. To determine if the GluRδ2+/Lc Purkinje cell phenotype is recapitulated in vitro, +/+ and +/Lc Purkinje cells from postnatal day 0 pups were grown in either isolated cell or cerebellar slice cultures. GluRδ2+/+ and GluRδ2+/Lc Purkinje cells appeared to develop normally through the first 7 days in vitro (DIV), but by 11 DIV GluRδ2+/Lc Purkinje cells exhibited a significantly higher cation leak current. By 14 DIV, GluRδ2+/Lc Purkinje cell dendrites were stunted and the number of surviving GluRδ2+/Lc Purkinje cells was reduced by 75% compared to controls. However, treatment of +/Lc cerebellar cultures with 1-naphthyl acetyl spermine (NASP) increased +/Lc Purkinje cell survival to wild type levels. These results support the conclusion that the Lurcher mutation in GluRδ2 induces cell autonomous defects in differentiation and survival. The establishment of a tissue culture system for studying cell injury and death mechanisms in a relatively simple system like GluRδ2+/Lc Purkinje cells will provide a valuable model for studying how the induction of a chronic inward cation current in a single cell type affects neuronal differentiation and survival. PMID:19294643

  19. Involvement of ER stress in retinal cell death

    PubMed Central

    Shimazawa, Masamitsu; Inokuchi, Yuta; Ito, Yasushi; Murata, Hiroshi; Aihara, Makoto; Miura, Masayuki; Araie, Makoto

    2007-01-01

    Purpose To clarify whether endoplasmic reticulum (ER) stress is involved in retinal cell death, using cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed with E1A virus), and transgenic mice ER stress-activated indicator (ERAI) mice carrying a human XBP1 and venus a variant of green fluorescent protein (GFP) fusion gene. Methods RGC-5 damage was induced by tunicamycin, and cell viability was measured by double nuclear staining (Hoechst 33342 and either YO-PRO-1 or propidium iodide). The expressions of glucose-regulated protein 78(GRP78)/BiP, the phosphorylated form of eukaryotic initiation factor 2α (p-eIF2α), and C/EBP-homologous (CHOP) protein after tunicamycin (in vitro or in vivo) or N-methyl-D-aspartate (NMDA; in vivo) treatment were measured using immunoblot or immunostaining. ERAI mice carrying the F-XBP1-DBD-venus expression gene were used to monitor ER-stress in vivo. Twenty-four hours after intravitreal injection of tunicamycin or NMDA, or after raising intraocular pressure (IOP), the retinal fluorescence intensity was visualized in anesthetized animals using an ophthalmoscope and in retinal flatmount or cross-section specimens using laser confocal microscopy. Results Treatment with tunicamycin induced apoptotic cell death in RGC-5 and also induced production of ER stress-related proteins (BiP, the phosphorylated form of eIF2α, and CHOP protein). In vivo, tunicamycin induced retinal ganglion cell (RGC) loss and thinning of the inner plexiform layer, 7 days after intravitreal injection. In flatmounted retinas of ERAI mice, the fluorescence intensity arising from the XBP-1-venus fusion protein, indicating ER-stress activation, was increased at 24 h after tunicamycin, NMDA, or IOP elevation. In transverse cross-sections from ERAI mice, the fluorescence intensity was first increased in cells of the ganglion cell and inner plexiform layers at 12 and 24 h, respectively, after NMDA injection, and it was localized to ganglion and

  20. Connexin 43 channels protect osteocytes against oxidative stress-induced cell death.

    PubMed

    Kar, Rekha; Riquelme, Manuel A; Werner, Sherry; Jiang, Jean X

    2013-07-01

    The increased osteocyte death by oxidative stress (OS) during aging is a major cause contributing to the impairment of bone quality and bone loss. However, the underlying molecular mechanism is largely unknown. Here, we show that H₂O₂ induced cell death of primary osteocytes and osteocytic MLO-Y4 cells, and also caused dose-dependent decreased expression of gap junction and hemichannel-forming connexin 43 (Cx43). The decrease of Cx43 expression was also demonstrated with the treatment of other oxidants, rotenone and menadione. Antioxidant reversed the effects of oxidants on Cx43 expression and osteocyte cell death. Cx43 protein was also much lower in the osteocytes from 20-month-old as opposed to the 5-week-old or 20-week old mice. Dye transfer assay showed that H₂O₂ reduced the gap junction intercellular communication (GJIC). In contrast to the effect on GJIC, there was a dose-dependent increase of hemichannel function by H₂O₂, which was correlated with the increased cell surface expression of Cx43. Cx43(E2) antibody, an antibody that specifically blocks Cx43 hemichannel activity but not gap junctions, completely blocked dye uptake induced by H₂O₂ and further exacerbated H₂O₂-induced osteocytic cell death. In addition, knockdown of Cx43 expression by small interfering RNA (siRNA) increased the susceptibility of the cells to OS-induced death. Together, our study provides a novel cell protective mechanism mediated by osteocytic Cx43 channels against OS. PMID:23456878

  1. RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death.

    PubMed

    Martín-Flores, Núria; Romaní-Aumedes, Joan; Rué, Laura; Canal, Mercè; Sanders, Phil; Straccia, Marco; Allen, Nicholas D; Alberch, Jordi; Canals, Josep M; Pérez-Navarro, Esther; Malagelada, Cristina

    2016-07-01

    RTP801 expression is induced by cellular stress and has a pro-apoptotic function in non-proliferating differentiated cells such as neurons. In several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease, elevated levels of RTP801 have been observed, which suggests a role for RTP801 in neuronal death. Neuronal death is also a pathological hallmark in Huntington's disease (HD), an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Currently, the exact mechanisms underlying mutant huntingtin (mhtt)-induced toxicity are still unclear. Here, we investigated whether RTP801 is involved in (mhtt)-induced cell death. Ectopic exon-1 mhtt elevated RTP801 mRNA and protein levels in nerve growth factor (NGF)-differentiated PC12 cells and in rat primary cortical neurons. In neuronal PC12 cells, mhtt also contributed to RTP801 protein elevation by reducing its proteasomal degradation rate, in addition to promoting RTP801 gene expression. Interestingly, silencing RTP801 expression with short hairpin RNAs (shRNAs) blocked mhtt-induced cell death in NGF-differentiated PC12 cells. However, RTP801 protein levels were not altered in the striatum of Hdh(Q7/Q111) and R6/1 mice, two HD models that display motor deficits but not neuronal death. Importantly, RTP801 protein levels were elevated in both neural telencephalic progenitors differentiated from HD patient-derived induced pluripotent stem cells and in the putamen and cerebellum of human HD postmortem brains. Taken together, our results suggest that RTP801 is a novel downstream effector of mhtt-induced toxicity and that it may be relevant to the human disease. PMID:25876513

  2. Targeting cell death signaling in colorectal cancer: Current strategies and future perspectives

    PubMed Central

    Koehler, Bruno Christian; Jäger, Dirk; Schulze-Bergkamen, Henning

    2014-01-01

    The evasion from controlled cell death induction has been considered as one of the hallmarks of cancer cells. Defects in cell death signaling are a fundamental phenomenon in colorectal cancer. Nearly any non-invasive cancer treatment finally aims to induce cell death. However, apoptosis resistance is the major cause for insufficient therapeutic success and disease relapse in gastrointestinal oncology. Various compounds have been developed and evaluated with the aim to meet with this obstacle by triggering cell death in cancer cells. The aim of this review is to illustrate current approaches and future directions in targeting cell death signaling in colorectal cancer. The complex signaling network of apoptosis will be demonstrated and the “druggability” of targets will be identified. In detail, proteins regulating mitochondrial cell death in colorectal cancer, such as Bcl-2 and survivin, will be discussed with respect to potential therapeutic exploitation. Death receptor signaling and targeting in colorectal cancer will be outlined. Encouraging clinical trials including cell death based targeted therapies for colorectal cancer are under way and will be demonstrated. Our conceptual understanding of cell death in cancer is rapidly emerging and new types of controlled cellular death have been identified. To meet this progress in cell death research, the implication of autophagy and necroptosis for colorectal carcinogenesis and therapeutic approaches will also be depicted. The main focus of this topic highlight will be on the revelation of the complex cell death concepts in colorectal cancer and the bridging from basic research to clinical use. PMID:24587670

  3. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    SciTech Connect

    Aki, Toshihiko; Nara, Akina; Funakoshi, Takeshi; Uemura, Koichi

    2010-06-04

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  4. Inhibitors of cathepsins B and L induce autophagy and cell death in neuroblastoma cells

    PubMed Central

    Cartledge, Donna M.; Colella, Rita; Glazewski, Lisa; Lu, Guizhen; Mason, Robert W.

    2012-01-01

    Summary This study was designed to test the hypothesis that specific inhibition of cathepsins B and L will cause death of neuroblastoma cells. Five compounds that differ in mode and rate of inhibition of these two enzymes were all shown to cause neuroblastoma cell death. Efficacy of the different compounds was related to their ability to inhibit the activity of the isolated enzymes. A dose- and time-response for induction of cell death was demonstrated for each compound. A proteomic study showed that inhibitor treatment caused an increase of markers of cell stress, including induction of levels of the autophagy marker, LC-3-II. Levels of this marker protein were highest at cytotoxic inhibitor concentrations, implicating autophagy in the cell death process. An in vivo mouse model showed that one of these inhibitors markedly impaired tumor growth. It is concluded that development of drugs to target these two proteases may provide a novel approach to treating neuroblastoma. PMID:22549440

  5. Statins and Voriconazole Induce Programmed Cell Death in Acanthamoeba castellanii

    PubMed Central

    López-Arencibia, Atteneri; Sifaoui, Ines; Reyes-Batlle, María; Valladares, Basilio; Martínez-Carretero, Enrique; Piñero, José E.; Maciver, Sutherland K.; Lorenzo-Morales, Jacob

    2015-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a life-threatening encephalitis. In order to treat those infections properly, it is necessary to target the treatment not only to the trophozoite but also to the cyst. Furthermore, it may be advantageous to avoid parasite killing by necrosis, which may induce local inflammation. We must also avoid toxicity of host tissue. Many drugs which target eukaryotes are known to induce programmed cell death (PCD), but this process is poorly characterized in Acanthamoeba. Here, we study the processes of programmed cell death in Acanthamoeba, induced by several drugs, such as statins and voriconazole. We tested atorvastatin, fluvastatin, simvastatin, and voriconazole at the 50% inhibitory concentrations (IC50s) and IC90s that we have previously established. In order to evaluate this phenomenon, we investigated the DNA fragmentation, one of the main characteristics of PCD, with quantitative and qualitative techniques. Also, the changes related to phosphatidylserine exposure on the external cell membrane and cell permeability were studied. Finally, because caspases are key to PCD pathways, caspase activity was evaluated in Acanthamoeba. All the drugs assayed in this study induced PCD in Acanthamoeba. To the best of our knowledge, this is the first study where PCD induced by drugs is described quantitatively and qualitatively in Acanthamoeba. PMID:25733513

  6. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death.

    PubMed

    Mohrenz, Isabelle Vanessa; Antonietti, Patrick; Pusch, Stefan; Capper, David; Balss, Jörg; Voigt, Sophia; Weissert, Susanne; Mukrowsky, Alicia; Frank, Jan; Senft, Christian; Seifert, Volker; von Deimling, Andreas; Kögel, Donat

    2013-11-01

    Isocitrate dehydrogenase 1 (IDH1) decarboxylates isocitrate to α-ketoglutarate (α-KG) leading to generation of NADPH, which is required to regenerate reduced glutathione (GSH), the major cellular ROS scavenger. Mutation of R132 of IDH1 abrogates generation of α-KG and leads to conversion of α-KG to 2-hydroxyglutarate. We hypothesized that glioma cells expressing mutant IDH1 have a diminished antioxidative capacity and therefore may encounter an ensuing loss of cytoprotection under conditions of oxidative stress. Our study was performed with LN229 cells stably overexpressing IDH1 R132H and wild type IDH1 or with a lentiviral IDH1 knockdown. Quantification of GSH under basal conditions and following treatment with the glutathione reductase inhibitor BCNU revealed significantly lower GSH levels in IDH1 R132H expressing cells and IDH1 KD cells compared to their respective controls. FACS analysis of cell death and ROS production also demonstrated an increased sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to BCNU, but not to temozolomide. The sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to ROS induction and cell death was further enhanced with the transaminase inhibitor aminooxyacetic acid and under glutamine free conditions, indicating that these cells were more addicted to glutaminolysis. Increased sensitivity to BCNU-induced ROS production and cell death was confirmed in HEK293 cells inducibly expressing the IDH1 mutants R132H, R132C and R132L. Based on these findings we propose that in addition to its established pro-tumorigenic effects, mutant IDH1 may also limit the resistance of gliomas to specific death stimuli, therefore opening new perspectives for therapy. PMID:23801081

  7. Analysis of relationship between programmed cell death and cell cycle in limb-bud.

    PubMed

    Toné, S; Tanaka, S

    1997-01-01

    Programmed cell death plays a crucial role in limb morphogenesis of amniote. In this paper, we showed that cell cycle and cell death in limb-buds were closely related events and there existed a critical S-phase, which corresponded to the most sensitive time for inhibition of cell death following administration of an excess dose of 5-bromodeoxyuridine (BrdU). The use of microfluorometry of BrdU incorporation coupled with measurement of DNA amount of individual cells enabled us to consider that cells committed to die were withdrawn from cell cycle at G2-phase. Finally, we will summarize the nuclear events involved in apoptosis in limb morphogenesis in relation to cell cycle. PMID:9267810

  8. Cell culture: Progenitor cells from human brain after death

    NASA Astrophysics Data System (ADS)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  9. Reduction of Cardiac Cell Death after Helium Postconditioning in Rats: Transcriptional Analysis of Cell Death and Survival Pathways

    PubMed Central

    Oei, Gezina TML; Heger, Michal; van Golen, Rowan F; Alles, Lindy K; Flick, Moritz; van der Wal, Allard C; van Gulik, Thomas M; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2014-01-01

    Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways. PMID:25171109

  10. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    PubMed Central

    2011-01-01

    Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity. PMID:22024399

  11. p-Cresol mediates autophagic cell death in renal proximal tubular cells.

    PubMed

    Lin, Hsin-Hung; Huang, Chiu-Ching; Lin, Tze-Yi; Lin, Ching-Yuang

    2015-04-01

    Higher serum level of p-cresol (PC) in chronic kidney disease (CKD) patients has been linked with CKD progression. The toxic effect of PC on diverse cells has been reported by prior studies, except for renal tubular cells. Both autophagy and apoptosis contribute to renal tubular cell death, yet evidence of its response to PC is limited and their crosstalk is still unclear. Autophagy is an important cellular process involved in toxin-induced cell death. Renal tubular cell death in tubular injury is thought to be one of the key events causing the progression of CKD. Thus, we treated rat (NRK-52E) and human (HRPTEC) renal proximal tubular cells (RPTC) with PC and found the cell proliferation was significantly decreased. Cell apoptosis was significantly increased and accompanied with the activation of autophagy as evidenced by increases in LC3-II, beclin 1 and Atg 4. We also found an increase of p62 by c-Jun activation. p62 accumulation could mediate the activation of caspase 8-dependent cell apoptosis. Conversely, knockdown of p62 by siRNA of p62 had the opposite effect by arresting LC3-II accumulation and promoting increasing cell viability. We conclude that PC triggered autophagic RPTC death via JNK-mediated p62 accumulation and then activated caspase 8-dependent cell death pathway. PC can be considered as one of the key events causing progression of CKD, which might affect drug disposition in CKD cases. PMID:25668154

  12. Low-Dose Bafilomycin Attenuates Neuronal Cell Death Associated with Autophagy-Lysosome Pathway Dysfunction

    PubMed Central

    Pivtoraiko, Violetta N.; Harrington, Adam J.; Mader, Burton J.; Luker, Austin M.; Caldwell, Guy A.; Caldwell, Kim A.; Roth, Kevin A.; Shacka, John J.

    2010-01-01

    We have shown previously that the plecomacrolide antibiotics bafilomycin A1 and B1 significantly attenuate cerebellar granule neuron death resulting from agents that disrupt lysosome function. To further characterize bafilomycin-mediated cytoprotection, we examined its ability to attenuate the death of naïve and differentiated neuronal SH-SY5Y human neuroblastoma cells from agents that induce lysosome dysfunction in vitro, and from in vivo dopaminergic neuron death in C. elegans. Low-dose bafilomycin significantly attenuated SH-SY5Y cell death resulting from treatment with chloroquine, hydroxychloroquine amodiaquine and staurosporine. Bafilomycin also attenuated the chloroquine-induced reduction in processing of cathepsin D, the principal lysosomal aspartic acid protease, to its mature “active” form. Chloroquine induced autophagic vacuole accumulation and inhibited autophagic flux, effects that were attenuated upon treatment with bafilomycin and were associated with a significant decrease in chloroquine-induced accumulation of detergent-insoluble α-synuclein oligomers. In addition, bafilomycin significantly and dose-dependently attenuated dopaminergic neuron death in C. elegans resulting from in vivo over-expression of human wild-type α-synuclein. Together, our findings suggest that low-dose bafilomycin is cytoprotective in part through its maintenance of the autophagy-lysosome pathway, and underscores its therapeutic potential for treating Parkinson Disease and other neurodegenerative diseases that exhibit disruption of protein degradation pathways and accumulation of toxic protein species. PMID:20534000

  13. Peruvoside, a Cardiac Glycoside, Induces Primitive Myeloid Leukemia Cell Death.

    PubMed

    Feng, Qian; Leong, Wa Seng; Liu, Liang; Chan, Wai-In

    2016-01-01

    Despite the available chemotherapy and treatment, leukemia remains a difficult disease to cure due to frequent relapses after treatment. Among the heterogeneous leukemic cells, a rare population referred as the leukemic stem cell (LSC), is thought to be responsible for relapses and drug resistance. Cardiac glycosides (CGs) have been used in treating heart failure despite its toxicity. Recently, increasing evidence has demonstrated its new usage as a potential anti-cancer drug. Ouabain, one of the CGs, specifically targeted CD34⁺CD38(-) leukemic stem-like cells, but not the more mature CD34⁺CD38⁺ leukemic cells, making this type of compounds a potential treatment for leukemia. In search of other potential anti-leukemia CGs, we found that Peruvoside, a less studied CG, is more effective than Ouabain and Digitoxin at inducing cell death in primitive myeloid leukemia cells without obvious cytotoxicity on normal blood cells. Similar to Ouabain and Digitoxin, Peruvoside also caused cell cycle arrest at G₂/M stage. It up-regulates CDKN1A expression and activated the cleavage of Caspase 3, 8 and PARP, resulting in apoptosis. Thus, Peruvoside showed potent anti-leukemia effect, which may serve as a new anti-leukemia agent in the future. PMID:27110755

  14. Inhibition of telomerase recruitment and cancer cell death.

    PubMed

    Nakashima, Mai; Nandakumar, Jayakrishnan; Sullivan, Kelly D; Espinosa, Joaquín M; Cech, Thomas R

    2013-11-15

    Continued proliferation of human cells requires maintenance of telomere length, usually accomplished by telomerase. Telomerase is recruited to chromosome ends by interaction with a patch of amino acids (the TEL patch, for TPP1 glutamate (E) and leucine (L)-rich patch) on the surface of telomere protein TPP1. In previous studies, interruption of this interaction by mutation prevented telomere extension in HeLa cells, but the cell culture continued to grow. We now show that the telomerase inhibitor BIBR1532 acts together with TEL patch mutations to inhibit the growth of HeLa cell lines and that apoptosis is a prominent mechanism of death of these cells. Survivor cells take over the population beginning around 40 days in culture. These cells no longer express the TEL patch mutant TPP1, apparently because of silencing of the expression cassette, a survival mechanism that would not be available to cancer cells. These results provide hope that inhibiting the binding of telomerase to the TEL patch of TPP1, perhaps together with a modest inhibition of the telomerase enzyme, could comprise an effective anticancer therapy for the ∼90% of human tumors that are telomerase-positive. PMID:24097987

  15. Inhibition of Telomerase Recruitment and Cancer Cell Death*

    PubMed Central

    Nakashima, Mai; Nandakumar, Jayakrishnan; Sullivan, Kelly D.; Espinosa, Joaquín M.; Cech, Thomas R.

    2013-01-01

    Continued proliferation of human cells requires maintenance of telomere length, usually accomplished by telomerase. Telomerase is recruited to chromosome ends by interaction with a patch of amino acids (the TEL patch, for TPP1 glutamate (E) and leucine (L)-rich patch) on the surface of telomere protein TPP1. In previous studies, interruption of this interaction by mutation prevented telomere extension in HeLa cells, but the cell culture continued to grow. We now show that the telomerase inhibitor BIBR1532 acts together with TEL patch mutations to inhibit the growth of HeLa cell lines and that apoptosis is a prominent mechanism of death of these cells. Survivor cells take over the population beginning around 40 days in culture. These cells no longer express the TEL patch mutant TPP1, apparently because of silencing of the expression cassette, a survival mechanism that would not be available to cancer cells. These results provide hope that inhibiting the binding of telomerase to the TEL patch of TPP1, perhaps together with a modest inhibition of the telomerase enzyme, could comprise an effective anticancer therapy for the ∼90% of human tumors that are telomerase-positive. PMID:24097987

  16. The environmental impact statement: an important addition to the certification of early deaths.

    PubMed

    Pacy, H

    1978-05-20

    An environmental impact statement (EIS) has been made in conjunction with a prospective study of 56 consecutive deaths of persons under 60 years of age in a local population. EIS is the cheapest and the quickest means by which to continually highlight the weaknesses of a national health system. PMID:683064

  17. Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1.

    PubMed

    Huber, S; Oelsner, M; Decker, T; zum Büschenfelde, C Meyer; Wagner, M; Lutzny, G; Kuhnt, T; Schmidt, B; Oostendorp, R A J; Peschel, C; Ringshausen, I

    2011-05-01

    Chronic lymphocytic leukemia (CLL) has a high prevalence in western countries and remains incurable to date. Here, we provide evidence that the multikinase inhibitor sorafenib induces apoptosis in primary CLL cells. This strong pro-apoptotic effect is not restricted to any subgroup of patients, based on Binet stage and the expression of ZAP70 or CD38. Mechanistically, sorafenib-induced cell death is preceded by a rapid downregulation of Mcl-1 through the inhibition of protein translation. Subsequently, the cell intrinsic apoptotic pathway is activated, indicated by destabilization of the mitochondrial membrane potential and activation of caspase-3 and -9. In contrast to sorafenib, the monoclonal vascular epidermal growth factor (VEGF)-antibody bevacizumab failed to induce apoptosis in CLL cells, suggesting that sorafenib induces cell death irrespectively of VEGF signalling. Notably, although sorafenib inhibits phosphorylation of the Scr-kinase Lck, knock-down of Lck did not induce apoptosis in CLL cells. Of note, the pro-apoptotic effect of sorafenib is not restricted to cell-cycle arrested cells, but is also maintained in proliferating CLL cells. In addition, we provide evidence that sorafenib can overcome drug resistance in CLL cells protected by microenvironmental signals from stromal cells. Conclusively, sorafenib is highly active in CLL and may compose a new therapeutic option for patients who relapse after immunochemotherapy. PMID:21293487

  18. Mitochondria mediates caspase-dependent and independent retinal cell death in Staphylococcus aureus endophthalmitis

    PubMed Central

    Singh, P K; Kumar, A

    2016-01-01

    Bacterial endophthalmitis, a vision-threatening complication of ocular surgery or trauma, is characterized by increased intraocular inflammation and retinal tissue damage. Although significant vision loss in endophthalmitis has been linked to retinal cell death, the underlying mechanisms of cell death remain elusive. In this study, using a mouse model of Staphylococcus aureus endophthalmitis and cultured human retinal Müller glia (MIO-M1 cell line), we demonstrate that S. aureus caused significant apoptotic cell death in the mouse retina and Müller glia, as evidenced by increased number of terminal dUTP nick end labeling and Annexin V and propidium iodide-positive cells. Immunohistochemistry and western blot studies revealed the reduction in mitochondrial membrane potential (JC-1 staining), release of cytochrome c into the cytosol, translocation of Bax to the mitochondria and the activation of caspase-9 and -3 in S. aureus-infected retina/retinal cells. In addition, the activation of PARP-1 and the release of apoptosis inducing factor from mitochondria was also observed in S. aureus-infected retinal cells. Inhibition studies using pan-caspase (Q-VD-OPH) and PARP-1 (DPQ) inhibitors showed significant reduction in S. aureus-induced retinal cell death both in vivo and in vitro. Together, our findings demonstrate that in bacterial endophthalmitis, retinal cells undergo apoptosis in the both caspase-dependent and independent manners, and mitochondria have a central role in this process. Hence, targeting the identified signaling pathways may provide the rationale to design therapeutic interventions to prevent bystander retinal tissue damage in bacterial endophthalmitis. PMID:27551524

  19. Mitochondria mediates caspase-dependent and independent retinal cell death in Staphylococcus aureus endophthalmitis.

    PubMed

    Singh, P K; Kumar, A

    2016-01-01

    Bacterial endophthalmitis, a vision-threatening complication of ocular surgery or trauma, is characterized by increased intraocular inflammation and retinal tissue damage. Although significant vision loss in endophthalmitis has been linked to retinal cell death, the underlying mechanisms of cell death remain elusive. In this study, using a mouse model of Staphylococcus aureus endophthalmitis and cultured human retinal Müller glia (MIO-M1 cell line), we demonstrate that S. aureus caused significant apoptotic cell death in the mouse retina and Müller glia, as evidenced by increased number of terminal dUTP nick end labeling and Annexin V and propidium iodide-positive cells. Immunohistochemistry and western blot studies revealed the reduction in mitochondrial membrane potential (JC-1 staining), release of cytochrome c into the cytosol, translocation of Bax to the mitochondria and the activation of caspase-9 and -3 in S. aureus-infected retina/retinal cells. In addition, the activation of PARP-1 and the release of apoptosis inducing factor from mitochondria was also observed in S. aureus-infected retinal cells. Inhibition studies using pan-caspase (Q-VD-OPH) and PARP-1 (DPQ) inhibitors showed significant reduction in S. aureus-induced retinal cell death both in vivo and in vitro. Together, our findings demonstrate that in bacterial endophthalmitis, retinal cells undergo apoptosis in the both caspase-dependent and independent manners, and mitochondria have a central role in this process. Hence, targeting the identified signaling pathways may provide the rationale to design therapeutic interventions to prevent bystander retinal tissue damage in bacterial endophthalmitis. PMID:27551524

  20. Cell Arrest and Cell Death in Mammalian Preimplantation Development: Lessons from the Bovine Model

    PubMed Central

    Leidenfrost, Sandra; Boelhauve, Marc; Reichenbach, Myriam; Güngör, Tuna; Reichenbach, Horst-Dieter; Sinowatz, Fred; Wolf, Eckhard; Habermann, Felix A.

    2011-01-01

    Background The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. Methods and Findings To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. Conclusions In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development. PMID

  1. The Importance of Being Dead: Cell Death Mechanisms Assessment in Anti-Sarcoma Therapy

    PubMed Central

    Rello-Varona, Santiago; Herrero-Martín, David; Lagares-Tena, Laura; López-Alemany, Roser; Mulet-Margalef, Núria; Huertas-Martínez, Juan; Garcia-Monclús, Silvia; García del Muro, Xavier; Muñoz-Pinedo, Cristina; Tirado, Oscar Martínez

    2015-01-01

    Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called “autophagic cell death” or “mitotic catastrophe”) have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities. PMID:25905041

  2. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis

    PubMed Central

    Hornik, Tamara C.; Vilalta, Anna; Brown, Guy C.

    2016-01-01

    ABSTRACT Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis. PMID:26567213

  3. Mitochondrial dynamics and cell death in heart failure.

    PubMed

    Marín-García, José; Akhmedov, Alexander T

    2016-03-01

    The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment. PMID:26872674

  4. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    PubMed Central

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  5. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont.

    PubMed

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  6. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia.

    PubMed

    Chen, Yu-Jen; Fang, Li-Wen; Su, Wen-Chi; Hsu, Wen-Yi; Yang, Kai-Chien; Huang, Huey-Lan

    2016-01-01

    Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. PMID:27499639

  7. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    PubMed Central

    Chen, Yu-Jen; Fang, Li-Wen; Su, Wen-Chi; Hsu, Wen-Yi; Yang, Kai-Chien; Huang, Huey-Lan

    2016-01-01

    Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. PMID:27499639

  8. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians

    PubMed Central

    Peiris, Tanuja Harshani; García‐Ojeda, Marcos E.

    2016-01-01

    Abstract Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians. PMID:27307993

  9. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians.

    PubMed

    Peiris, Tanuja Harshani; García-Ojeda, Marcos E; Oviedo, Néstor J

    2016-04-01

    Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians. PMID:27307993

  10. Mitochondrial Calcium and the Permeability Transition in Cell Death

    PubMed Central

    Lemasters, John J.; Theruvath, Tom P.; Zhong, Zhi; Nieminen, Anna-Liisa

    2009-01-01

    Dysregulation of Ca2+ has long been implicated to be important in cell injury. A Ca2+-linked process important in necrosis and apoptosis (or necrapoptosis) is the mitochondrial permeability transition (MPT). In the MPT, large conductance permeability transition (PT) pores open that make the mitochondrial inner membrane abruptly permeable to solutes up to 1500 Da. The importance of Ca2+ in MPT induction varies with circumstance. Ca2+ overload is sufficient to induce the MPT. By contrast after ischemia-reperfusion to cardiac myocytes, Ca2+ overload is the consequence of bioenergetic failure after the MPT rather than its cause. In other models, such as cytotoxicity from Reye-related agents and storage-reperfusion injury to liver grafts, Ca2+ appears to be permissive to MPT onset. Lastly in oxidative stress, increased mitochondrial Ca2+ and ROS generation act synergistically to product the MPT and cell death. Thus, the exact role of Ca2+ for inducing the MPT and cell death depends on the particular biologic setting. PMID:19576166

  11. Apoptotic cell death in rat epididymis following epichlorohydrin treatment.

    PubMed

    Lee, I-C; Kim, K-H; Kim, S-H; Baek, H-S; Moon, C; Kim, S-H; Yun, W-K; Nam, K-H; Kim, H-C; Kim, J-C

    2013-06-01

    Epichlorohydrin (ECH) is an antifertility agent that acts both as an epididymal toxicant and an agent capable of directly affecting sperm motility. This study identified the time course of apoptotic cell death in rat epididymides after ECH treatment. Rats were administrated with a single oral dose of ECH (50 mg/kg). ECH-induced apoptotic changes were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and its related mechanism was confirmed by Western blot analysis and colorimetric assay. The TUNEL assay showed that the number of apoptotic cells increased at 8 h, reached a maximum level at 12 h, and then decreased progressively. The Western blot analysis demonstrated no significant changes in proapoptotic Bcl-2-associated X (Bax) and anti-apoptotic Bcl-2 expression during the time course of the study. However, phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) and phospho-c-Jun amino-terminal kinase (p-JNK) expression increased at 8-24 h. Caspase-3 and caspase-8 activities also increased at 8-48 h and 12-48 h, respectively, in the same manner as p-p38 MAPK and p-JNK expression. These results indicate that ECH induced apoptotic changes in rat epididymides and that the apoptotic cell death may be related more to the MAPK pathway than to the mitochondrial pathway. PMID:23386780

  12. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells.

    PubMed

    Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon

    2010-11-01

    Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture. PMID:20809085

  13. Dissociation of NSC606985 induces atypical ER-stress and cell death in prostate cancer cells.

    PubMed

    Wang, Liping; Fu, Pengcheng; Zhao, Yuan; Wang, Guo; Yu, Richard; Wang, Xin; Tang, Zehai; Imperato-McGinley, Julianne; Zhu, Yuan-Shan

    2016-08-01

    Castration-resistant prostate cancer (CRPC) is a major cause of prostate cancer (Pca) death. Chemotherapy is able to improve the survival of CRPC patients. We previously found that NSC606985 (NSC), a highly water-soluble camptothecin analog, induced cell death in Pca cells via interaction with topoisomerase 1 and activation of the mitochondrial apoptotic pathway. To further elucidate the role of NSC, we studied the effect of NSC on ER-stress and its association with NSC-induced cell death in Pca cells. NSC produced a time- and dose-dependent induction of GRP78, CHOP and XBP1s mRNA, and CHOP protein expression in Pca cells including DU145, indicating an activation of ER-stress. However, unlike conventional ER-stress in which GRP78 protein is increased, NSC produced a time- and dose-dependent U-shape change in GRP78 protein in DU145 cells. The NSC-induced decrease in GRP78 protein was blocked by protease inhibitors, N-acetyl-L-leucyl-L-leucylnorleucinal (ALLN), a lysosomal protease inhibitor, and epoxomicin (EPO), a ubiquitin-protease inhibitor. ALLN, but not EPO, also partially inhibited NSC-induced cell death. However, both 4-PBA and TUDCA, two chemical chaperons that effectively reduced tunicamycin-induced ER-stress, failed to attenuate NSC-induced GRP78, CHOP and XBP1s mRNA expression and cell death. Moreover, knockdown of NSC induction of CHOP expression using a specific siRNA had no effect on NSC-induced cytochrome c release and NSC-induced cell death. These results suggest that NSC produced an atypical ER-stress that is dissociated from NSC-induced activation of the mitochondrial apoptotic pathway and NSC-induced cell death in DU145 prostate cancer cells. PMID:27277821

  14. Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines.

    PubMed

    Özdemir, Aysun; Şimay, Yaprak Dilber; İbişoğlu, Burçin; Yaren, Biljana; Bülbül, Döne; Ark, Mustafa

    2016-05-01

    Previously, we demonstrated that the Rho/ROCK pathway is involved in ouabain-induced apoptosis in HUVEC. In the current work, we investigated whether the Rho/ROCK pathway is functional during cardiac glycosides-induced cytotoxic effects in cancer cell lines, as well as in non-tumor cells. For that purpose, we evaluated the role of ROCK activation in bleb formation and cell migration over upstream and downstream effectors in addition to ROCK cleavage after cardiac glycosides treatment. All three cardiac glycosides (ouabain, digoxin and bufalin) induced cell death in HeLa and HepG2 cells and increased the formation of blebbing in HeLa cells. In contrast to our previous study, ROCK inhibitor Y27632 did not prevent bleb formation. Observation of ROCK II cleavage after ouabain, digoxin and oxaliplatin treatments in HeLa and/or HepG2 cells suggested that cleavage is independent of cell type and cell death induction. While inhibiting cleavage of ROCK II by the caspase inhibitors z-VAD-fmk, z-VDVAD-fmk and z-DEVD-fmk, evaluation of caspase 2 siRNA ineffectiveness on this truncation indicated that caspase-dependent ROCK II cleavage is differentially regulated in cancer cell lines. In HeLa cells, ouabain induced the activation of ROCK, although it did not induce phosphorylation of ERM, an upstream effector. While Y27632 inhibited the migration of HeLa cells, 10nM ouabain had no effect on cell migration. In conclusion, these findings indicate that the Rho/ROCK pathway is regulated differently in cancer cell lines compared to normal cells during cardiac glycosides-induced cell death. PMID:27017918

  15. Cell Death and Tissue Remodeling in Planarian Regeneration

    PubMed Central

    Pellettieri, Jason; Fitzgerald, Patrick; Watanabe, Shigeki; Mancuso, Joel; Green, Douglas R.; Alvarado, Alejandro Sánchez

    2010-01-01

    Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation – an intial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration. PMID:19766622

  16. The role of reactive oxygen species and autophagy in safingol-induced cell death

    PubMed Central

    Ling, L-U; Tan, K-B; Lin, H; Chiu, G N C

    2011-01-01

    Safingol is a sphingolipid with promising anticancer potential, which is currently in phase I clinical trial. Yet, the underlying mechanisms of its action remain largely unknown. We reported here that safingol-induced primarily accidental necrotic cell death in MDA-MB-231 and HT-29 cells, as shown by the increase in the percentage of cells stained positive for 7-aminoactinomycin , collapse of mitochondria membrane potential and depletion of intracellular ATP. Importantly, safingol treatment produced time- and concentration-dependent reactive oxygen species (ROS) generation. Autophagy was triggered following safingol treatment, as reflected by the formation of autophagosomes, acidic vacuoles, increased light chain 3-II and Atg biomarkers expression. Interestingly, scavenging ROS with N-acetyl--cysteine could prevent the autophagic features and reverse safingol-induced necrosis. Our data also suggested that autophagy was a cell repair mechanism, as suppression of autophagy by 3-methyladenine or bafilomycin A1 significantly augmented cell death on 2-5 μ safingol treatment. In addition, Bcl-xL and Bax might be involved in the regulation of safingol-induced autophagy. Finally, glucose uptake was shown to be inhibited by safingol treatment, which was associated with an increase in p-AMPK expression. Taken together, our data suggested that ROS was the mediator of safingol-induced cancer cell death, and autophagy is likely to be a mechanism triggered to repair damages from ROS generation on safingol treatment. PMID:21390063

  17. NQO1-induced activation of AMPK contributes to cancer cell death by oxygen-glucose deprivation

    PubMed Central

    Lee, Hyemi; Oh, Eun-Taex; Choi, Bo-Hwa; Park, Moon-Taek; Lee, Ja-Kyeong; Lee, Jae-Seon; Park, Heon Joo

    2015-01-01

    Oxygen and glucose deprivation (OGD) due to insufficient blood circulation can decrease cancer cell survival and proliferation in solid tumors. OGD increases the intracellular [AMP]/[ATP] ratio, thereby activating the AMPK. In this study, we have investigated the involvement of NQO1 in OGD-mediated AMPK activation and cancer cell death. We found that OGD activates AMPK in an NQO1-dependent manner, suppressing the mTOR/S6K/4E-BP1 pathway, which is known to control cell survival. Thus, the depletion of NQO1 prevents AMPK-induced cancer cell death in OGD. When we blocked OGD-induced Ca2+/CaMKII signaling, the NQO1-induced activation of AMPK was attenuated. In addition, when we blocked the RyR signaling, the accumulation of intracellular Ca2+ and subsequent activation of CaMKII/AMPK signaling was decreased in NQO1-expressing cells under OGD. Finally, siRNA-mediated knockdown of CD38 abrogated the OGD-induced activation of Ca2+/CaMKII/AMPK signaling. Taken together, we conclude that NQO1 plays a key role in the AMPK-induced cancer cell death in OGD through the CD38/cADPR/RyR/Ca2+/CaMKII signaling pathway. PMID:25586669

  18. An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression.

    PubMed

    Wang, Ying; Li, Xianting; Wang, Lu; Ding, Peiguo; Zhang, Yingmei; Han, Wenling; Ma, Dalong

    2004-03-15

    Accumulating reports demonstrate that apoptosis does not explain all the forms of programmed cell death (PCD), particularly in individual development and neurodegenerative disease. Recently, a novel type of PCD, designated 'paraptosis', was described. Here, we show that overexpression of TAJ/TROY, a member of the tumor necrosis factor receptor superfamily, induces non-apoptotic cell death with paraptosis-like morphology in 293T cells. Transmission electron microscopy studies reveal extensive cytoplasmic vacuolation and mitochondrial swelling in some dying cells and no condensation or fragmentation of the nuclei. Characteristically, cell death triggered by TAJ/TROY was accompanied by phosphatidylserine externalization, loss of the mitochondrial transmembrane potential and independent of caspase activation. In addition, TAJ/TROY suppressed clonogenic growth of HEK293 and HeLa cells. Interestingly, overexpression of Programmed cell death 5 (PDCD5), an apoptosis-promoting protein, enhanced TAJ/TROY-induced paraptotic cell death. Moreover, cellular endogenous PDCD5 protein was significantly upregulated in response to TAJ/TROY overexpression. These results provide novel evidence that TAJ/TROY activates a death pathway distinct from apoptosis and that PDCD5 is an important regulator in both apoptotic and non-apoptotic PCD. PMID:15020679

  19. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    NASA Astrophysics Data System (ADS)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  20. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity.

    PubMed

    Bury, M; Girault, A; Mégalizzi, V; Spiegl-Kreinecker, S; Mathieu, V; Berger, W; Evidente, A; Kornienko, A; Gailly, P; Vandier, C; Kiss, R

    2013-01-01

    Glioblastoma multiforme (GBM) is the most lethal and common malignant human brain tumor. The intrinsic resistance of highly invasive GBM cells to radiation- and chemotherapy-induced apoptosis accounts for the generally dismal treatment outcomes. This study investigated ophiobolin A (OP-A), a fungal metabolite from Bipolaris species, for its promising anticancer activity against human GBM cells exhibiting varying degrees of resistance to proapoptotic stimuli. We found that OP-A induced marked changes in the dynamic organization of the F-actin cytoskeleton, and inhibited the proliferation and migration of GBM cells, likely by inhibiting big conductance Ca(2+)-activated K(+) channel (BKCa) channel activity. Moreover, our results indicated that OP-A induced paraptosis-like cell death in GBM cells, which correlated with the vacuolization, possibly brought about by the swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). In addition, the OP-A-induced cell death did not involve the activation of caspases. We also showed that the expression of BKCa channels colocalized with these two organelles (mitochondria and ER) was affected in this programmed cell death pathway. Thus, this study reveals a novel mechanism of action associated with the anticancer effects of OP-A, which involves the induction of paraptosis through the disruption of internal potassium ion homeostasis. Our findings offer a promising therapeutic strategy to overcome the intrinsic resistance of GBM cells to proapoptotic stimuli. PMID:23538442

  1. Atg3 Overexpression Enhances Bortezomib-Induced Cell Death in SKM-1 Cell

    PubMed Central

    Wang, Qian; Zhang, Jing; Zhu, Chen; Zhang, Lu; Xu, Xiaoping

    2016-01-01

    Background Myelodysplastic syndrome (MDS) is a group of heterogeneous hematopoietic stem cell malignancies with a high risk of transformation into acute myeloid leukemia (AML). Clonal evolutions are significantly associated with transformation to AML. According to a gene expression microarray, atg3 is downregulated in MDS patients progressing to leukemia, but less is known about the function of Atg3 in the survival and death of MSD/AML cells. Moreover, the role of autophagy as a result of bortezomib treatment is controversial. The current study was designed to investigate the function of Atg3 in SKM-1 cells and to study the effect of Atg3 on cell viability and cell death following bortezomib treatment. Methods Four leukemia cell lines (SKM-1, THP-1, NB4 and K562) and two healthy patients’ bone marrow cells were analyzed for Atg3 expression via qRT-PCR and Western blotting analysis. The role of Atg3 in SKM-1 cell survival and cell death was analyzed by CCK-8 assay, trypan blue exclusion assay, DAPI staining and Annexin V/PI dual staining with or without bortezomib treatment. Western blotting analysis was used to detect proteins in autophagic and caspase signaling pathways. Electron microscopy was used to observe ultrastructural changes after Atg3 overexpression. Results Downregulation of Atg3 expression was detected in four leukemia cell lines compared with healthy bone marrow cells. Atg3 mRNA was significantly decreased in MDS patients’ bone marrow cells. Overexpression of Atg3 in SKM-1 cells resulted in AKT-mTOR-dependent autophagy, a significant reduction in cell proliferation and increased cell death, which could be overcome by the autophagy inhibitor 3-MA. SKM-1 cells overexpressing Atg3 were hypersensitive to bortezomib treatment at different concentrations via autophagic cell death and enhanced sensitivity to apoptosis in the SKM-1 cell line. Following treatment with 3-MA, the sensitivity of Atg3-overexpressing cells to bortezomib treatment was reduced

  2. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fengjuan; Bexiga, Mariana G.; Anguissola, Sergio; Boya, Patricia; Simpson, Jeremy C.; Salvati, Anna; Dawson, Kenneth A.

    2013-10-01

    Positively charged polymers and nanoparticles (NPs) can be toxic to cells in various systems. Using human astrocytoma cells, we have previously shown that 50 nm amine-modified polystyrene NPs damage mitochondria and induce cell death by apoptosis. Here we provide comprehensive details of the cellular events occurring after exposure to the NPs in a time-resolved manner. We demonstrate that the accumulation of NPs in lysosomes plays a central role in the observed cell death, leading to swelling of the lysosomes and release of cathepsins into the cytosol, which ultimately propagates the damage to the mitochondria with subsequent activation of apoptosis. This is accompanied and sustained by other events, such as increasing ROS levels and autophagy. Using various inhibitors, we also show the interplay between apoptosis and autophagy as a response to NP accumulation in lysosomes.Positively charged polymers and nanoparticles (NPs) can be toxic to cells in various systems. Using human astrocytoma cells, we have previously shown that 50 nm amine-modified polystyrene NPs damage mitochondria and induce cell death by apoptosis. Here we provide comprehensive details of the cellular events occurring after exposure to the NPs in a time-resolved manner. We demonstrate that the accumulation of NPs in lysosomes plays a central role in the observed cell death, leading to swelling of the lysosomes and release of cathepsins into the cytosol, which ultimately propagates the damage to the mitochondria with subsequent activation of apoptosis. This is accompanied and sustained by other events, such as increasing ROS levels and autophagy. Using various inhibitors, we also show the interplay between apoptosis and autophagy as a response to NP accumulation in lysosomes. Electronic supplementary information (ESI) available: additional analysis of flow cytometry results, western blots and experiments with cathepsin inhibitors. See DOI: 10.1039/c3nr03249c

  3. p53-induced Gene 3 Mediates Cell Death Induced by Glutathione Peroxidase 3*

    PubMed Central

    Wang, Hui; Luo, Katherine; Tan, Lang-Zhu; Ren, Bao-Guo; Gu, Li-Qun; Michalopoulos, George; Luo, Jian-Hua; Yu, Yan P.

    2012-01-01

    Expression of glutathione peroxidase 3 (GPx3) is down-regulated in a variety of human malignancies. Both methylation and deletion of GPx3 gene underlie the alterations of GPx3 expression in prostate cancer. A strong correlation between the down-regulation of GPx3 expression and progression of prostate cancer and the suppression of prostate cancer xenografts in SCID mice by forced expression of GPx3 suggests a tumor suppression role of GPx3 in prostate cancer. However, the mechanism of GPx3-mediated tumor suppression remains unclear. In this report, GPx3 was found to interact directly with p53-induced gene 3 (PIG3). Forced overexpression of GPx3 in prostate cancer cell lines DU145 and PC3 as well as immortalized prostate epithelial cells RWPE-1 increased apoptotic cell death. Expression of GPx3x73c, a peroxidase-negative OPAL codon mutant, in DU145 and PC3 cells also increased cell death. The induced expression of GPx3 in DU145 and PC3 cells resulted in an increase in reactive oxygen species and caspase-3 activity. These activities were abrogated by either knocking down PIG3 or mutating the PIG3 binding motif in GPx3 or binding interference from a peptide corresponding to PIG3 binding motif in GPx3. In addition, UV-treated RWPE-1 cells underwent apoptotic death, which was partially prevented by knocking down GPx3 or PIG3, suggesting that GPx3-PIG3 signaling is critical for UV-induced apoptosis. Taken together, these results reveal a novel signaling pathway of GPx3-PIG3 in the regulation of cell death in prostate cancer. PMID:22461624

  4. High Cell Surface Death Receptor Expression Determines Type I Versus Type II Signaling*

    PubMed Central

    Meng, Xue Wei; Peterson, Kevin L.; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D.; Gores, Gregory J.; Kaufmann, Scott H.

    2011-01-01

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression. PMID:21865165

  5. The mystery of underground death: cell death in roots during ontogeny and in response to environmental factors.

    PubMed

    Bagniewska-Zadworna, A; Arasimowicz-Jelonek, M

    2016-03-01

    Programmed cell death (PCD) is an essential part of the ontogeny of roots and their tolerance/resistance mechanisms, allowing adaptation and growth under adverse conditions. It occurs not only at the cellular and subcellular level, but also at the levels of tissues, organs and even whole plants. This process involves a wide spectrum of mechanisms, from signalling and the expression of specific genes to the degradation of cellular structures. The major goals of this review were to broaden current knowledge about PCD processes in roots, and to identify mechanisms associated with both developmental and stress-associated cell death in roots. Vacuolar cell death, when cell contents are removed by a combination of an autophagy-associated process and the release of hydrolases from a collapsed vacuole, is responsible for programming self-destruction. Regardless of the conditions and factors inducing PCD, its subcellular events usually include the accumulation of autophagosome-like structures, and the formation of massive lytic compartments. In some cases these are followed by the nuclear changes of chromatin condensation and DNA fragmentation. Tonoplast disruption and vacuole implosion occur very rapidly, are irreversible and constitute a definitive step toward cell death in roots. Active cell elimination plays an important role in various biological processes in the life history of plants, leading to controlled cellular death during adaptation to changing environmental conditions, and organ remodelling throughout development and senescence. PMID:26332667

  6. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    PubMed Central

    Mfouo-Tynga, Ivan; Abrahamse, Heidi

    2015-01-01

    The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645

  7. Necrosis, and then stress induced necrosis-like cell death, but not apoptosis, should be the preferred cell death mode for chemotherapy: clearance of a few misconceptions

    PubMed Central

    Zhang, Ju; Lou, Xiaomin; Jin, Longyu; Zhou, Rongjia; Liu, Siqi; Xu, Ningzhi; Liao, D. Joshua

    2014-01-01

    Cell death overarches carcinogenesis and is a center of cancer researches, especially therapy studies. There have been many nomenclatures on cell death, but only three cell death modes are genuine, i.e. apoptosis, necrosis and stress-induced cell death (SICD). Like apoptosis, SICD is programmed. Like necrosis, SICD is a pathological event and may trigger regeneration and scar formation. Therefore, SICD has subtypes of stress-induced apoptosis-like cell death (SIaLCD) and stress-induced necrosis-like cell death (SInLCD). Whereas apoptosis removes redundant but healthy cells, SICD removes useful but ill or damaged cells. Many studies on cell death involve cancer tissues that resemble parasites in the host patients, which is a complicated system as it involves immune clearance of the alien cancer cells by the host. Cancer resembles an evolutionarily lower-level organism having a weaker apoptosis potential and poorer DNA repair mechanisms. Hence, targeting apoptosis for cancer therapy, i.e. killing via SIaLCD, will be less efficacious and more toxic. On the other hand, necrosis of cancer cells releases cellular debris and components to stimulate immune function, thus counteracting therapy-caused immune suppression and making necrosis better than SIaLCD for chemo drug development. PMID:25594039

  8. Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus.

    PubMed

    Xia, Mao; Meng, Gang; Jiang, Aiqin; Chen, Aiping; Dahlhaus, Meike; Gonzalez, Patrick; Beltinger, Christian; Wei, Jiwu

    2014-06-15

    Although apoptotic phenomena have been observed in malignant cells infected by measles virus vaccine strain Edmonston B (MV-Edm), the precise oncolytic mechanisms are poorly defined. In this study we found that MV-Edm induced autophagy and sequestosome 1-mediated mitophagy leading to decreased cytochrome c release, which blocked the pro-apoptotic cascade in non-small cell lung cancer cells (NSCLCs). The decrease of apoptosis by mitophagy favored viral replication. Persistent viral replication sustained by autophagy ultimately resulted in necrotic cell death due to ATP depletion. Importantly, when autophagy was impaired in NSCLCs MV-Edm-induced cell death was significantly abrogated despite of increased apoptosis. Taken together, our results define a novel oncolytic mechanism by which mitophagy switches cell death from apoptosis to more efficient necrosis in NSCLCs following MV-Edm infection. This provides a foundation for future improvement of oncolytic virotherapy or antiviral therapy. PMID:25004098

  9. Regulation of cell survival and death during Flavivirus infections

    PubMed Central

    Ghosh Roy, Sounak; Sadigh, Beata; Datan, Emmanuel; Lockshin, Richard A; Zakeri, Zahra

    2014-01-01

    Flaviviruses, ss(+) RNA viruses, include many of mankind’s most important pathogens. Their pathogenicity derives from their ability to infect many types of cells including neurons, to replicate, and eventually to kill the cells. Flaviviruses can activate tumor necrosis factor α and both intrinsic (Bax-mediated) and extrinsic pathways to apoptosis. Thus they can use many approaches for activating these pathways. Infection can lead to necrosis if viral load is extremely high or to other types of cell death if routes to apoptosis are blocked. Dengue and Japanese Encephalitis Virus can also activate autophagy. In this case the autophagy temporarily spares the infected cell, allowing a longer period of reproduction for the virus, and the autophagy further protects the cell against other stresses such as those caused by reactive oxygen species. Several of the viral proteins have been shown to induce apoptosis or autophagy on their own, independent of the presence of other viral proteins. Given the versatility of these viruses to adapt to and manipulate the metabolism, and thus to control the survival of, the infected cells, we need to understand much better how the specific viral proteins affect the pathways to apoptosis and autophagy. Only in this manner will we be able to minimize the pathology that they cause. PMID:24921001

  10. Cell death mechanisms vary with photodynamic therapy dose and photosensitizer

    NASA Astrophysics Data System (ADS)

    He, Jin; Oleinick, Nancy L.

    1995-03-01

    Mouse lymphoma L5178Y-R cells respond to photodynamic therapy (PDT) by undergoing rapid apoptosis, which is induced by PDT-activated signal transduction initiating in the damaged cellular membranes. To relate the level of PDT damage and photosensitizer to the mechanism of cell death, apoptosis has been detected by agarose gel electrophoresis of fragmented DNA and quantified by flow cytometry of cells after staining with Hoechst33342 and propidium iodide, a technique which can distinguish between live, apoptotic, and necrotic cells. When the silicon phthalocyanine Pc 4 or Pc 12 served as photosensitizer, lethal doses (as defined by clonogenic assay) of PDT induced apoptosis in essentially all cells, whereas supralethal doses prevented the characteristic degradation of DNA into oligonucleosomal fragments. In contrast with aluminum phthalocyanine (AlPc) cells died by apoptosis after all doses studied. It appears that high PDT doses with Pc 4 or Pc 12 damage enzymes needed to carry out the program of apoptosis; the absence of this effect with AlPc suggests either a different intracellular location or different photocytotoxic mechanism for the two photosensitizers.

  11. Galectin-3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death

    PubMed Central

    Clark, Mary C.; Pang, Mabel; Hsu, Daniel K.; Liu, Fu-Tong; de Vos, Sven; Gascoyne, Randy D.; Said, Jonathan

    2012-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma and an aggressive malignancy. Galectin-3 (gal-3), the only antiapoptotic member of the galectin family, is overexpressed in DLBCL. While gal-3 can localize to intracellular sites, gal-3 is secreted by DLBCL cells and binds back to the cell surface in a carbohydrate-dependent manner. The major counterreceptor for gal-3 on DLBCL cells was identified as the transmembrane tyrosine phosphatase CD45. Removal of cell-surface gal-3 from CD45 with the polyvalent glycan inhibitor GCS-100 rendered DLBCL cells susceptible to chemotherapeutic agents. Binding of gal-3 to CD45 modulated tyrosine phosphatase activity; removal of endogenous cell-surface gal-3 from CD45 with GCS-100 increased phosphatase activity, while addition of exogenous gal-3 reduced phosphatase activity. Moreover, the increased susceptibility of DLBCL cells to chemotherapeutic agents after removal of gal-3 by GCS-100 required CD45 phosphatase activity. Gal-3 binding to a subset of highly glycosylated CD45 glycoforms was regulated by the C2GnT-1 glycosyltransferase, indicating that specific glycosylation of CD45 is important for regulation of gal-3–mediated signaling. These data identify a novel role for cell-surface gal-3 and CD45 in DLBCL survival and suggest novel therapeutic targets to sensitize DLBCL cells to death. PMID:23065155

  12. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    NASA Astrophysics Data System (ADS)

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-02-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.

  13. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    PubMed Central

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-01-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy, or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. While the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane. PMID:24531236

  14. Emerging roles for lipids in non-apoptotic cell death.

    PubMed

    Magtanong, L; Ko, P J; Dixon, S J

    2016-07-01

    Non-apoptotic regulated cell death (RCD) is essential to maintain organismal homeostasis and may be aberrantly activated during certain pathological states. Lipids are emerging as key components of several non-apoptotic RCD pathways. For example, a direct interaction between membrane phospholipids and the pore-forming protein mixed lineage kinase domain-like (MLKL) is needed for the execution of necroptosis, while the oxidative destruction of membrane polyunsaturated fatty acids (PUFAs), following the inactivation of glutathione peroxidase 4 (GPX4), is a requisite gateway to ferroptosis. Here, we review the roles of lipids in the initiation and execution of these and other forms of non-apoptotic cell death. We also consider new technologies that are allowing for the roles of lipids and lipid metabolism in RCD to be probed in increasingly sophisticated ways. In certain cases, this new knowledge may enable the development of therapies that target lipids and lipid metabolic processes to enhance or suppress specific non-apoptotic RCD pathways. PMID:26967968

  15. New Insights into Mitochondrial Structure during Cell Death

    PubMed Central

    Perkins, Guy; Bossy-Wetzel, Ella; Ellisman, Mark H.

    2009-01-01

    Mitochondria play a pivotal role in the cascade of events associated with cell death pathways that are involved with several forms of neurodegeneration. Recent findings show that in the Bax/Bak-dependent pathway of apoptosis, the release of cytochrome c from mitochondria is a consequence of two carefully coordinated events: opening of crista junctions triggered by OPA1 oligomer disassembly and formation of outer-membrane pores. Both steps are necessary for the complete release of proapoptotic proteins. The remodeling of mitochondrial structure accompanies this pathway, including mitochondrial fission, and cristae and crista junction alterations. Yet, there is controversy surrounding the timing of certain remodeling events and whether they are necessary early events required for the release of pro-apoptotic factors or are simply a downstream after-effect. Here, we analyze the current knowledge of mitochondrial remodeling during cell death and discuss what structural alterations occur to this organelle during neurodegeneration, focusing on the higher resolution structural correlates obtained by electron microscopy and electron tomography. PMID:19464290

  16. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  17. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  18. Akebia saponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells.

    PubMed

    Xu, Mei-Ying; Lee, Dong Hwa; Joo, Eun Ji; Son, Kun Ho; Kim, Yeong Shik

    2013-09-01

    In this study, we investigated the anticancer mechanism of akebia saponin PA (AS), a natural product isolated from Dipsacus asperoides in human gastric cancer cell lines. It was shown that AS-induced cell death is caused by autophagy and apoptosis in AGS cells. The apoptosis-inducing effect of AS was characterized by annexin V/propidium (PI) staining, increase of sub-G1 phase and caspase-3 activation, while the autophagy-inducing effect was indicated by the formation of cytoplasmic vacuoles and microtubule-associated protein 1 light chain-3 II (LC3-II) conversion. The autophagy inhibitor bafilomycin A1 (BaF1) decreased AS-induced cell death and caspase-3 activation, but caspase-3 inhibitor Ac-DEVD-CHO did not affect LC3-II accumulation or AS-induced cell viability, suggesting that AS induces autophagic cell death and autophagy contributes to caspase-3-dependent apoptosis. Furthermore, AS activated p38/c-Jun N-terminal kinase (JNK), which could be inhibited by BaF1, and caspase-3 activation was attenuated by both SB202190 and SP600125, indicating that AS-induced autophagy promotes mitogen-activated protein kinases (MAPKs)-mediated apoptosis. Taken together, these results demonstrate that AS induces autophagic and apoptotic cell death and autophagy plays the main role in akebia saponin PA-induced cell death. PMID:23850994

  19. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    SciTech Connect

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C. . E-mail: catherine.stenson@nuigalway.ie

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis.

  20. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis.

    PubMed

    Collins, Tony J; Ylanko, Jarkko; Geng, Fei; Andrews, David W

    2015-11-01

    A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose-response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  1. Regulation of cancer cell death by a novel compound, C604, in a c-Myc-overexpressing cellular environment.

    PubMed

    Jo, Mun Jeong; Paek, A Rome; Choi, Ji Seung; Ok, Chang Youp; Jeong, Kyung Chae; Lim, Jae Hyang; Kim, Seok Hyun; You, Hye Jin

    2015-12-15

    The proto-oncogene c-Myc has been implicated in a variety of cellular processes, such as proliferation, differentiation and apoptosis. Several c-Myc targets have been studied; however, selective regulation of c-Myc is not easy in cancer cells. Herein, we attempt to identify chemical compounds that induce cell death in c-Myc-overexpressing cells (STF-cMyc and STF-Control) by conducting MTS assays on approximately 4000 chemical compounds. One compound, C604, induced cell death in STF-cMyc cells but not STF-Control cells. Apoptotic proteins, including caspase-3 and poly(ADP-ribose) polymerase (PARP), were cleaved in C604-treated STF-cMyc cells. In addition, SW620, HCT116 and NCI-H23 cells, which exhibit higher basal levels of c-Myc, underwent apoptotic cell death in response to C604, suggesting a role for C604 as an inducer of apoptosis in cancer cells with c-Myc amplification. C604 induced cell cycle arrest at the G2/M phase in cells, which was not affected by apoptotic inhibitors. Interestingly, C604 induced accumulation of c-Myc and Cdc25A proteins. In summary, a chemical compound was identified that may induce cell death in cancer cells with c-Myc amplification specifically through an apoptotic pathway. PMID:26607468

  2. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster.

    PubMed

    Goyal, Gaurav; Fell, Brennan; Sarin, Apurva; Youle, Richard J; Sriram, V

    2007-05-01

    The role of mitochondria in Drosophila programmed cell death remains unclear, although certain gene products that regulate cell death seem to be evolutionarily conserved. We find that developmental programmed cell death stimuli in vivo and multiple apoptotic stimuli ex vivo induce dramatic mitochondrial fragmentation upstream of effector caspase activation, phosphatidylserine exposure, and nuclear condensation in Drosophila cells. Unlike genotoxic stress, a lipid cell death mediator induced an increase in mitochondrial contiguity prior to fragmentation of the mitochondria. Using genetic mutants and RNAi-mediated knockdown of drp-1, we find that Drp-1 not only regulates mitochondrial fission in normal cells, but mediates mitochondrial fragmentation during programmed cell death. Mitochondria in drp-1 mutants fail to fragment, resulting in hyperplasia of tissues in vivo and protection of cells from multiple apoptotic stimuli ex vivo. Thus, mitochondrial remodeling is capable of modifying the propensity of cells to undergo death in Drosophila. PMID:17488630

  3. Cell Death Pathways as Therapeutic Targets in Rhabdomyosarcoma

    PubMed Central

    Fulda, Simone

    2012-01-01

    Resistance of rhabdomyosarcoma to current therapies remains one of the key issues in pediatric oncology. Since the success of most cytotoxic therapies in the treatment of cancer, for example, chemotherapy, depends on intact signaling pathways that mediate programmed cell death (apoptosis), defects in apoptosis programs in cancer cells may result in resistance. Evasion of apoptosis in rhabdomyosarcoma may be caused by defects in the expression or function of critical mediators of apoptosis or in aberrant expression of antiapoptotic proteins. Therefore, the identification of the molecular mechanisms that confer primary or acquired resistance to apoptosis in rhabdomyosarcoma presents a critical step for the rational development of molecular targeted drugs. This approach will likely open novel perspectives for the treatment of rhabdomyosarcoma. PMID:22294874

  4. Programmed cell death and the gene behind spinal muscular atrophy.

    PubMed Central

    Robinson, A

    1995-01-01

    A gene involved in the development of spinal muscular atrophy (SMA) has been found on human chromosome 5 after a 4-year search. Named the neuronal apoptosis inhibitor protein (NAIP) gene, it is believed to inhibit the normal process of apoptosis--the disintegration of single cells that results from programmed cell death--in motor neurons. The researchers who found the NAIP gene also discovered that healthy people carry one complete copy of the gene along with many other partial copies. Many children with SMA have the partial copies but not the complete gene. This discovery facilitates the accurate genetic diagnosis of SMA. But gene therapy for SMA will not be possible until researchers find a suitable vector to stably introduce activated and intact copies of the gene into the motor neurons of children with SMA in time to stop motor neuron loss. Images p1460-a PMID:7585374

  5. Uropathogenic Escherichia coli Epigenetically Manipulate Host Cell Death Pathways.

    PubMed

    Zhang, Zhengguo; Wang, Ming; Eisel, Florian; Tchatalbachev, Svetlin; Chakraborty, Trinad; Meinhardt, Andreas; Bhushan, Sudhanshu

    2016-04-01

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in human. It is well established that UPEC can subvert innate immune responses, but the role of UPEC in interfering with host cell death pathways is not known. Here, we show that UPEC abrogates activation of the host cell prosurvival protein kinase B signaling pathway, which results in the activation of mammalian forkhead box O (FOXO) transcription factors. Although FOXOs were localized in the nucleus and showed increased DNA-binding activity, no change in the expression levels of FOXO target genes were observed. UPEC can suppress BIM expression induced by LY249002, which results in attenuation of caspase 3 activation and blockage of apoptosis. Mechanistically, BIM expression appears to be epigenetically silenced by a decrease in histone 4 acetylation at the BIM promoter site. Taken together, these results suggest that UPEC can epigenetically silence BIM expression, a molecular switch that prevents apoptosis. PMID:26621912

  6. Mitochondrial DNA damage induced autophagy, cell death, and disease

    PubMed Central

    Van Houten, Bennett; Hunter, Senyene E.; Meyer, Joel N.

    2016-01-01

    Mammalian mitochondria contain multiple small genomes. While these organelles have efficient base excision removal of oxidative DNA lesions and alkylation damage, many DNA repair systems that work on nuclear DNA damage are not active in mitochondria. What is the fate of DNA damage in the mitochondria that cannot be repaired or that overwhelms the repair system? Some forms of mitochondrial DNA damage can apparently trigger mitochondrial DNA destruction, either via direct degradation or through specific forms of autophagy, such as mitophagy. However, accumulation of certain types of mitochondrial damage, in the absence of DNA ligase III (Lig3) or exonuclease G (EXOG), enzymes required for repair, can directly trigger cell death. This review examines the cellular effects of persistent damage to mitochondrial genomes and discusses the very different cell fates that occur in response to different kinds of damage. PMID:26709760

  7. HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma.

    PubMed

    Granato, M; Lacconi, V; Peddis, M; Lotti, L V; Di Renzo, L; Renzo, L D; Gonnella, R; Santarelli, R; Trivedi, P; Frati, L; D'Orazi, G; Faggioni, A; Cirone, M

    2013-01-01

    Heat-shock protein (HSP) 70 is aberrantly expressed in different malignancies and has a cancer-specific cell-protective effect. As such, it has emerged as a promising target for anticancer therapy. In this study, the effect of the HSP70-specific inhibitor (PES), also Pifitrin-μ, on primary effusion lymphoma (PEL) cell viability was analyzed. PES treatment induced a dose- and time-dependent cytotoxic effect in BC3 and BCBL1 PEL cells by inducing lysosome membrane permeabilization, relocation of cathepsin D in the cytosol, Bid cleavage, mitochondrial depolarization with release and nuclear translocation of apoptosis-activating factor. The PES-induced cell death in PEL cells was characterized by the appearance of Annexin-V/propidium iodide double-positive cells from the early times of treatment, indicating the occurrence of an additional type of cell death other than apoptosis, which, accordingly, was not efficiently prevented by the pan-caspase inhibitor Z-VAD-fmk. Conversely, PES-induced cell death was robustly reduced by pepstatin A, which inhibits Bid and caspase 8 processing. In addition, PES was responsible for a block of the autophagic process in PEL cells. Finally, we found that PES-induced cell death has immunogenic potential being able to induce dendritic cell activation. PMID:23868063

  8. HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma

    PubMed Central

    Granato, M; Lacconi, V; Peddis, M; Lotti, L V; Renzo, L D; Gonnella, R; Santarelli, R; Trivedi, P; Frati, L; D'Orazi, G; Faggioni, A; Cirone, M

    2013-01-01

    Heat-shock protein (HSP) 70 is aberrantly expressed in different malignancies and has a cancer-specific cell-protective effect. As such, it has emerged as a promising target for anticancer therapy. In this study, the effect of the HSP70-specific inhibitor (PES), also Pifitrin-μ, on primary effusion lymphoma (PEL) cell viability was analyzed. PES treatment induced a dose- and time-dependent cytotoxic effect in BC3 and BCBL1 PEL cells by inducing lysosome membrane permeabilization, relocation of cathepsin D in the cytosol, Bid cleavage, mitochondrial depolarization with release and nuclear translocation of apoptosis-activating factor. The PES-induced cell death in PEL cells was characterized by the appearance of Annexin-V/propidium iodide double-positive cells from the early times of treatment, indicating the occurrence of an additional type of cell death other than apoptosis, which, accordingly, was not efficiently prevented by the pan-caspase inhibitor Z-VAD-fmk. Conversely, PES-induced cell death was robustly reduced by pepstatin A, which inhibits Bid and caspase 8 processing. In addition, PES was responsible for a block of the autophagic process in PEL cells. Finally, we found that PES-induced cell death has immunogenic potential being able to induce dendritic cell activation. PMID:23868063

  9. Cell Death Atlas of the Postnatal Mouse Ventral Forebrain and Hypothalamus: Effects of Age and Sex

    PubMed Central

    Ahern, Todd H.; Krug, Stefanie; Carr, Audrey V.; Murray, Elaine K.; Fitzpatrick, Emmett; Bengston, Lynn; McCutcheon, Jill; De Vries, Geert J.; Forger, Nancy G.

    2016-01-01

    Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain. PMID:23296992

  10. Autophagy Alleviates Melamine-Induced Cell Death in PC12 Cells Via Decreasing ROS Level.

    PubMed

    Wang, Hui; Gao, Na; Li, Zhigui; Yang, Zhuo; Zhang, Tao

    2016-04-01

    Since melamine was illegally added to raw milk for increasing the apparent protein content, such a scandal has not been quite blown out. Previous studies showed that melamine induced apoptosis and oxidative damage in both in vivo and in vitro experiments. It is well known that autophagy is closely related to oxidative stress. In the present study, we examined whether autophagy played an important role in protecting PC12 cells, which were damaged by melamine. Immunofluorescence assay showed that melamine enhanced the number of punctuate dot, indicating the increase of autophagosomes. Western blot assay presented that melamine significantly elevated the expression level of autophagy markers including LC3-II/LC3-I ratio, beclin-1, and Atg 7. Rapamycin further enhanced the effect, whereas 3-methyadenine (3-MA) inhibited it. MTT assay exhibited that rapamycin significantly enhanced the cell viability (P < 0.01), while 3-MA considerably reduced it in melamine-treated PC12 cells (P < 0.01). Furthermore, flow cytometry assay showed that rapamycin considerably reduced the reactive oxygen species (ROS) level of the cells (P < 0.01), but 3-MA increased the generation of ROS (P < 0.01). Additionally, the superoxide dismutase (SOD) activity was notably increased by rapamycin in melamine-treated PC12 cells (P < 0.01), while the activity of which was prominently decreased by 3-MA (P < 0.01). Malondialdehyde (MDA) assay showed that rapamycin remarkably decreased the MDA level of the cells (P < 0.05), while 3-MA increased it (P < 0.01). Consequently, this study demonstrated that autophagy protected PC12 cells from melamine-induced cell death via inhibiting the excessive generation of ROS. Regulating autophagy may become a new targeted therapy to relieve the damage induced by melamine. PMID:25724280

  11. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death

    PubMed Central

    Lanceta, Lilibeth; Mattingly, Jacob M.

    2015-01-01

    Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by “loose” (probably intralysosomal) iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment). Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity–CO and bilirubin–have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity. PMID:26270345

  12. Cell death pathway induced by resveratrol-bovine serum albumin nanoparticles in a human ovarian cell line

    PubMed Central

    GUO, LIYUAN; PENG, YAN; LI, YULIAN; YAO, JINGPING; ZHANG, GUANGMEI; CHEN, JIE; WANG, JING; SUI, LIHUA

    2015-01-01

    Resveratrol-bovine serum albumin nanoparticles (RES-BSANP) exhibit chemotherapeutic properties, which trigger apoptosis. The aim of the present study was to investigate the caspase-independent cell death pathway induced by RES-BSANP in human ovarian cancer SKOV3 cells and to analyze its mechanism. Morphological changes were observed by apoptotic body/cell nucleus DNA staining using inverted and fluorescence microscopy. The cell death pathway was determined by phosphatidylserine translocation. Western blot analysis was conducted to detect the activation of apoptosis-inducing factor (AIF), cytochrome c (Cyto c) and B-cell lymphoma 2-associated X protein (Bax). Apoptotic body and nuclear condensation and fragmentation were observed simultaneously following treatment with RES-BSANP. RES-BSANP induced apoptosis in a dose-dependent manner in the human ovarian cancer SKOV3 cells. The translocation of AIF from the mitochondria to the cytoplasm occurred earlier than that of Cyto c. In addition, Bax binding to the mitochondria was required for the release of AIF and Cyto c from the mitochondria. The AIF apoptosis pathway may present an alternative caspase-dependent apoptosis pathway in human ovarian cell death induced by RES-BSANP. Elucidation of this pathway may be critical for the treatment of cancer using high doses of RES-BSANP. PMID:25663913

  13. Drug insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms.

    PubMed

    Reed, John C

    2006-07-01

    Cell death is a normal facet of human physiology, ensuring tissue homeostasis by offsetting cell production with cell demise. Neoplasms arise in part because of defects in physiological cell death mechanisms, contributing to pathological cell expansion. Defects in normal cell death pathways also contribute to cancer progression by permitting progressively aberrant cell behaviors, while also desensitizing tumor cells to immune-mediated attack, radiation, and chemotherapy. Through basic research, much has been learned about the molecular mechanisms responsible for cell turnover and how tumors escape cell death. By exploiting this knowledge base, several innovative strategies for eradicating malignancies have materialized that are based on restoration of natural pathways for cell autodestruction. Some of these strategies have advanced into human clinical trials. Several of the current strategies based on targeting core components of the cell death machinery for cancer therapy are reviewed here, and a summary of progress toward clinical applications is provided. PMID:16826219

  14. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death

    PubMed Central

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  15. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death.

    PubMed

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  16. Ionic Regulation of Cell Volume Changes and Cell Death after Ischemic Stroke

    PubMed Central

    Song, Mingke; Yu, Shan Ping

    2014-01-01

    Stroke is a leading cause of human death and disability in the US and around the world. Shortly after the cerebral ischemia, cell swelling is the earliest morphological change in injured neuronal, glial and endothelial cells. Cytotoxic swelling directly results from increased Na+ (with H2O) and Ca2+ influx into cells via ionic mechanisms evoked by membrane depolarization and a number of harmful factors such as glutamate accumulation and the production of oxygen reactive species (ROS). During the sub-acute and chronic phases after ischemia, injured cells may show a phenotype of cell shrinkage due to complex processes involving membrane receptors/channels and programmed cell death signals. This review will introduce some progress in the understanding of the regulation of pathological cell volume changes and the involved receptors and channels, including NMDA and AMPA receptors, acid-sensing ion channels (ASIC), hemichannels, transient receptor potential (TRP) channels and KCNQ channels. Moreover, accumulating evidence supports a key role of energy deficiency and dysfunction of Na+/K+-ATPase in ischemia-induced cell volume changes and cell death. Specifically, the Na+ pump failure is a prerequisite for disruption of ionic homeostasis including a pro-apoptotic disruption of the K+ homeostasis. Finally, we will introduce the concept of hybrid cell death as a result of the Na+ pump failure in cultured cells and the ischemic brain. The goal of this review is to outline recent understanding of the ionic mechanism of ischemic cytoxicity and suggest innovative ideas for future translational research. PMID:24323733

  17. Anti-apoptotic effect of clusterin on cisplatin-induced cell death of retinoblastoma cells.

    PubMed

    Song, Hyun Beom; Jun, Hyoung-Oh; Kim, Jin Hyoung; Yu, Young Suk; Kim, Kyu-Won; Min, Bon Hong; Kim, Jeong Hun

    2013-12-01

    Clusterin is a cytoprotective chaperone protein that is known to protect various retinal cells. It was also reported to be overexpressed in several types of malignant tumors, whose chemoresistance correlates with the expression of clusterin. Herein, we investigated the effect of clusterin on cisplatin-induced cell death of retinoblastoma cells. Firstly, evaluation of clusterin expression demonstrated that it was highly expressed in human retinoblastoma tissues and cell lines (SNUOT-Rb1 and Y79) particularly in the area between viable cells around vessels and necrotic zones in the relatively avascular area in human retinoblastoma tissues. Furthermore, the effects of cisplatin on retinoblastoma cells were evaluated. Cisplatin (1 µg/ml) significantly affected cell viability of SNUOT-Rb1 cells by inducing caspase-3-dependent apoptosis. Notably, the cell death due to cisplatin was prevented by 5 µg/ml of clusterin administered 4 h prior to cisplatin treatment by inhibiting cisplatin-induced apoptosis. Furthermore, overexpression of clusterin exerted its anti-apoptotic effect on cisplatin-induced apoptosis, and effectively prevented cisplatin-induced cell death. These data suggest that clusterin, found to be expressed in human retinoblastoma, may exert anti-apoptotic effects on cisplatin-induced apoptosis and prevent cell death. Therefore, clusterin can contribute to cisplatin resistance of retinoblastoma. PMID:24085287

  18. Humanin Derivatives Inhibit Necrotic Cell Death in Neurons.

    PubMed

    Cohen, Aviv; Lerner-Yardeni, Jenny; Meridor, David; Kasher, Roni; Nathan, Ilana; Parola, Abraham H

    2015-01-01

    Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer's disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide's antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide's direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17. PMID:26062019

  19. Humanin Derivatives Inhibit Necrotic Cell Death in Neurons

    PubMed Central

    Cohen, Aviv; Lerner-Yardeni, Jenny; Meridor, David; Kasher, Roni; Nathan, Ilana; Parola, Abraham H

    2015-01-01

    Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer’s disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide’s antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide’s direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17. PMID:26062019

  20. In vivo targeting of cell death using a synthetic fluorescent molecular probe

    PubMed Central

    Smith, Bryan A.; Xiao, Shuzhang; Wolter, William; Wheeler, James; Suckow, Mark A.

    2011-01-01

    A synthetic, near-infrared, fluorescent probe, named PSS-794 was assessed for its ability to detect cell death in two animal models. The molecular probe contains a zinc(II)-dipicolylamine (Zn2+-DPA) affinity ligand that selectively targets exposed phosphatidylserine on the surface of dead and dying cells. The first animal model used rats that were treated with dexamethasone to induce thymic atrophy. Ex vivo fluorescence imaging and histological analysis of excised organs showed thymus uptake of PSS-794 was four times higher than a control fluorophore that lacked the Zn2+-DPA affinity ligand. In addition, the presence of PSS-794 produced a delayed and higher build up of dead and dying cells in the rat thymus. The second animal model employed focal beam radiation to induce cell death in tumor-bearing rats. Whole-body and ex vivo imaging showed that the amount of PSS-794 in a radiation-treated tumor was almost twice that in a non-treated tumor. The results indicate that PSS-794 may be useful for pre-clinical optical detection of tumor cell death due to therapy. PMID:21499791

  1. SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma.

    PubMed

    Wojton, Jeffrey; Meisen, Walter Hans; Jacob, Naduparambil K; Thorne, Amy Haseley; Hardcastle, Jayson; Denton, Nicholas; Chu, Zhengtao; Dmitrieva, Nina; Marsh, Rachel; Van Meir, Erwin G; Kwon, Chang-Hyuk; Chakravarti, Arnab; Qi, Xiaoyang; Kaur, Balveen

    2014-10-30

    SapC-DOPS is a novel nanotherapeutic that has been shown to target and induce cell death in a variety of cancers, including glioblastoma (GBM). GBM is a primary brain tumor known to frequently demonstrate resistance to apoptosis-inducing therapeutics. Here we explore the mode of action for SapC-DOPS in GBM, a treatment being developed by Bexion Pharmaceuticals for clinical testing in patients. SapC-DOPS treatment was observed to induce lysosomal dysfunction of GBM cells characterized by decreased glycosylation of LAMP1 and altered proteolytic processing of cathepsin D independent of apoptosis and autophagic cell death. We observed that SapC-DOPS induced lysosomal membrane permeability (LMP) as shown by LysoTracker Red and Acridine Orange staining along with an increase of sphingosine, a known inducer of LMP. Additionally, SapC-DOPS displayed strong synergistic interactions with the apoptosis-inducing agent TMZ. Collectively our data suggest that SapC-DOPS induces lysosomal cell death in GBM cells, providing a new approach for treating tumors resistant to traditional apoptosis-inducing agents. PMID:25210852

  2. Iron-induced Necrotic Brain Cell Death in Rats with Different Aerobic Capacity

    PubMed Central

    Zheng, Mingzhe; Du, Hanjian; Ni, Wei; Koch, Lauren G.; Britton, Steven L.; Keep, Richard F.; Xi, Guohua; Hua, Ya

    2015-01-01

    Brain iron overload has a key role in brain injury after intracerebral hemorrhage (ICH). Our recent study demonstrated that ICH-induced brain injury was greater in low capacity runner (LCR) than in high capacity runner (HCR) rats. The present study examines whether iron-induced brain injury differs between LCRs and HCRs. Adult male LCR and HCR rats had an intracaudate injection of iron or saline. Rats were euthanized at 2 and at 24 hours after T2 magnetic resonance imaging and the brains were used for immunostaining and Western blotting. LCRs had more hemispheric swelling, T2 lesion volumes, blood-brain barrier disruption and neuronal death at 24 hours after iron injection (p < 0.05). Many propidium iodide (PI) positive cells, indicative of necrotic cell death, were observed in the ipsilateral basal ganglia of both HCRs and LCRs at 2 hours after iron injection. PI fluorescence intensity was higher in LCRs than in HCRs. In addition, membrane attack complex (MAC) expression was increased at 2 hours after iron injection and was higher in LCRs than in HCRs. The PI positive cells colocalized with MAC positive cells in the ipsilateral basal ganglia. Iron induces more severe necrotic brain cell death, brain swelling, and blood-brain barrier disruption in LCR rats, which may be related with complement activation and MAC formation. PMID:25649272

  3. Alpha-tubulin enhanced renal tubular cell proliferation and tissue repair but reduced cell death and cell-crystal adhesion.

    PubMed

    Manissorn, Juthatip; Khamchun, Supaporn; Vinaiphat, Arada; Thongboonkerd, Visith

    2016-01-01

    Adhesion of calcium oxalate (CaOx) crystals on renal tubular epithelial cells is a critical event for kidney stone disease that triggers many cascades of cellular response. Our previous expression proteomics study identified several altered proteins in MDCK renal tubular cells induced by CaOx crystals. However, functional significance of those changes had not been investigated. The present study thus aimed to define functional roles of such proteome data. Global protein network analysis using STRING software revealed α-tubulin, which was decreased, as one of central nodes of protein-protein interactions. Overexpression of α-tubulin (pcDNA6.2-TUBA1A) was then performed and its efficacy was confirmed. pcDNA6.2-TUBA1A could maintain levels of α-tubulin and its direct interacting partner, vimentin, after crystal exposure. Also, pcDNA6.2-TUBA1A successfully reduced cell death to almost the basal level and increased cell proliferation after crystal exposure. Additionally, tissue repair capacity was improved in pcDNA6.2-TUBA1A cells. Moreover, cell-crystal adhesion was reduced by pcDNA6.2-TUBA1A. Finally, levels of potential crystal receptors (HSP90, HSP70, and α-enolase) on apical membrane were dramatically reduced to basal levels by pcDNA6.2-TUBA1A. These findings implicate that α-tubulin has protective roles in kidney stone disease by preventing cell death and cell-crystal adhesion, but on the other hand, enhancing cell proliferation and tissue repair function. PMID:27363348

  4. Alpha-tubulin enhanced renal tubular cell proliferation and tissue repair but reduced cell death and cell-crystal adhesion

    PubMed Central

    Manissorn, Juthatip; Khamchun, Supaporn; Vinaiphat, Arada; Thongboonkerd, Visith

    2016-01-01

    Adhesion of calcium oxalate (CaOx) crystals on renal tubular epithelial cells is a critical event for kidney stone disease that triggers many cascades of cellular response. Our previous expression proteomics study identified several altered proteins in MDCK renal tubular cells induced by CaOx crystals. However, functional significance of those changes had not been investigated. The present study thus aimed to define functional roles of such proteome data. Global protein network analysis using STRING software revealed α-tubulin, which was decreased, as one of central nodes of protein-protein interactions. Overexpression of α-tubulin (pcDNA6.2-TUBA1A) was then performed and its efficacy was confirmed. pcDNA6.2-TUBA1A could maintain levels of α-tubulin and its direct interacting partner, vimentin, after crystal exposure. Also, pcDNA6.2-TUBA1A successfully reduced cell death to almost the basal level and increased cell proliferation after crystal exposure. Additionally, tissue repair capacity was improved in pcDNA6.2-TUBA1A cells. Moreover, cell-crystal adhesion was reduced by pcDNA6.2-TUBA1A. Finally, levels of potential crystal receptors (HSP90, HSP70, and α-enolase) on apical membrane were dramatically reduced to basal levels by pcDNA6.2-TUBA1A. These findings implicate that α-tubulin has protective roles in kidney stone disease by preventing cell death and cell-crystal adhesion, but on the other hand, enhancing cell proliferation and tissue repair function. PMID:27363348

  5. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals

    PubMed Central

    2010-01-01

    Background Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals. Methods The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls). Results Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E. Conclusions The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals

  6. Neuronal cell death in nervous system development, disease, and injury (Review).

    PubMed

    Martin, L J

    2001-05-01

    Neuronal death is normal during nervous system development but is abnormal in brain and spinal cord disease and injury. Apoptosis and necrosis are types of cell death. They are generally considered to be distinct forms of cell death. The re-emergence of apoptosis may contribute to the neuronal degeneration in chronic neurodegenerative disease, such as amyotrophic lateral sclerosis and Alzheimer's disease, and in neurological injury such as cerebral ischemia and trauma. There is also mounting evidence supporting an apoptosis-necrosis cell death continuum. In this continuum, neuronal death can result from varying contributions of coexisting apoptotic and necrotic mechanisms; thus, some of the distinctions between apoptosis and necrosis are becoming blurred. Cell culture and animal model systems are revealing the mechanisms of cell death. Necrosis can result from acute oxidative stress. Apoptosis can be induced by cell surface receptor engagement, growth factor withdrawal, and DNA damage. Several families of proteins and specific biochemical signal-transduction pathways regulate cell death. Cell death signaling can involve plasma membrane death receptors, mitochondrial death proteins, proteases, kinases, and transcription factors. Players in the cell death and cell survival orchestra include Fas receptor, Bcl-2 and Bax (and their homologues), cytochrome c, caspases, p53, and extracellular signal-regulated protein kinases. Some forms of cell death require gene activation, RNA synthesis, and protein synthesis, whereas others forms are transcriptionally-translationally-independent and are driven by posttranslational mechanisms such as protein phosphorylation and protein translocation. A better understanding of the molecular mechanisms of neuronal cell death in nervous system development, injury and disease can lead to new therapeutic approaches for the prevention of neurodegeneration and neurological disabilities and will expand the field of cell death biology. PMID

  7. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death.

    PubMed

    Wei, Kuo-Liang; Chen, Fei-Yun; Lin, Chih-Yi; Gao, Guan-Lun; Kao, Wen-Ya; Yeh, Chi-Hui; Chen, Chang-Rong; Huang, Hao-Chun; Tsai, Wei-Ren; Jong, Koa-Jen; Li, Wan-Jung; Su, Jyan-Gwo Joseph

    2016-09-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG0/G1 population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. PMID:27286660

  8. The oncolytic peptide LTX-315 triggers immunogenic cell death.

    PubMed

    Zhou, H; Forveille, S; Sauvat, A; Yamazaki, T; Senovilla, L; Ma, Y; Liu, P; Yang, H; Bezu, L; Müller, K; Zitvogel, L; Rekdal, Ø; Kepp, O; Kroemer, G

    2016-01-01

    LTX-315 is a cationic amphilytic peptide that preferentially permeabilizes mitochondrial membranes, thereby causing partially BAX/BAK1-regulated, caspase-independent necrosis. Based on the observation that intratumorally injected LTX-315 stimulates a strong T lymphocyte-mediated anticancer immune response, we investigated whether LTX-315 may elicit the hallmarks of immunogenic cell death (ICD), namely (i) exposure of calreticulin on the plasma membrane surface, (ii) release of ATP into the extracellular space, (iii) exodus of HMGB1 from the nucleus, and (iv) induction of a type-1 interferon response. Using a panel of biosensor cell lines and robotized fluorescence microscopy coupled to automatic image analysis, we observed that LTX-315 induces all known ICD characteristics. This conclusion was validated by several independent methods including immunofluorescence stainings (for calreticulin), bioluminescence assays (for ATP), immunoassays (for HMGB1), and RT-PCRs (for type-1 interferon induction). When injected into established cancers, LTX-315 caused a transiently hemorrhagic focal necrosis that was accompanied by massive release of HMGB1 (from close-to-all cancer cells), as well as caspase-3 activation in a fraction of the cells. LTX-315 was at least as efficient as the positive control, the anthracycline mitoxantrone (MTX), in inducing local inflammation with infiltration by myeloid cells and T lymphocytes. Collectively, these results support the idea that LTX-315 can induce ICD, hence explaining its capacity to mediate immune-dependent therapeutic effects. PMID:26962684

  9. Pyrvinium targets autophagy addiction to promote cancer cell death

    PubMed Central

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards III, Carl K; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-𝒟-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy. PMID:23640456

  10. The oncolytic peptide LTX-315 triggers immunogenic cell death

    PubMed Central

    Zhou, H; Forveille, S; Sauvat, A; Yamazaki, T; Senovilla, L; Ma, Y; Liu, P; Yang, H; Bezu, L; Müller, K; Zitvogel, L; Rekdal, Ø; Kepp, O; Kroemer, G

    2016-01-01

    LTX-315 is a cationic amphilytic peptide that preferentially permeabilizes mitochondrial membranes, thereby causing partially BAX/BAK1-regulated, caspase-independent necrosis. Based on the observation that intratumorally injected LTX-315 stimulates a strong T lymphocyte-mediated anticancer immune response, we investigated whether LTX-315 may elicit the hallmarks of immunogenic cell death (ICD), namely (i) exposure of calreticulin on the plasma membrane surface, (ii) release of ATP into the extracellular space, (iii) exodus of HMGB1 from the nucleus, and (iv) induction of a type-1 interferon response. Using a panel of biosensor cell lines and robotized fluorescence microscopy coupled to automatic image analysis, we observed that LTX-315 induces all known ICD characteristics. This conclusion was validated by several independent methods including immunofluorescence stainings (for calreticulin), bioluminescence assays (for ATP), immunoassays (for HMGB1), and RT-PCRs (for type-1 interferon induction). When injected into established cancers, LTX-315 caused a transiently hemorrhagic focal necrosis that was accompanied by massive release of HMGB1 (from close-to-all cancer cells), as well as caspase-3 activation in a fraction of the cells. LTX-315 was at least as efficient as the positive control, the anthracycline mitoxantrone (MTX), in inducing local inflammation with infiltration by myeloid cells and T lymphocytes. Collectively, these results support the idea that LTX-315 can induce ICD, hence explaining its capacity to mediate immune-dependent therapeutic effects. PMID:26962684

  11. Glutathione-S-Transferases As Determinants of Cell Survival and Death

    PubMed Central

    Townsend, Danyelle M.

    2012-01-01

    Abstract Significance: The family of glutathione S-transferases (GSTs) is part of a cellular Phase II detoxification program composed of multiple isozymes with functional human polymorphisms that have the capacity to influence individual response to drugs and environmental stresses. Catalytic activity is expressed through GST dimer-mediated thioether conjugate formation with resultant detoxification of a variety of small molecule electrophiles. Recent Advances: More recent work indicates that in addition to the classic catalytic functions, specific GST isozymes have other characteristics that impact cell survival pathways in ways unrelated to detoxification. These characteristics include the following: regulation of mitogen-activated protein kinases; facilitation of the addition of glutathione to cysteine residues in certain proteins (S-glutathionylation); as a novel cellular partner of the human papilloma virus-16 E7 oncoprotein playing a pivotal role in preventing cell death in infected human cells; mitogenic influence in myeloproliferative pathways; participant in the process of cocaine addiction. Critical Issues: Some of these functions have provided a platform for targeting GST with novel small molecule therapeutics, particularly in cancer where evidence of clinical applications is emerging. Future Directions: Our evolving understanding of the GST superfamily and their divergent expression patterns in individuals make them attractive candidates for translational studies in a variety of human pathologies. In addition, their role in regulating cell fate in signaling and cell death pathways has opened up a significant functional complexity that extends well beyond standard detoxification reactions. Antioxid. Redox Signal. 17, 1728–1737. PMID:22540427

  12. MLH1 mediates PARP-dependent cell death in response to the methylating agent N-methyl-N-nitrosourea

    PubMed Central

    McDaid, J R; Loughery, J; Dunne, P; Boyer, J C; Downes, C S; Farber, R A; Walsh, C P

    2009-01-01

    Background: Methylating agents such as N-methyl-N-nitrosourea (MNU) can cause cell cycle arrest and death either via caspase-dependent apoptosis or via a poly(ADP-ribose) polymerase (PARP)-dependent form of apoptosis. We wished to investigate the possible role of MLH1 in signalling cell death through PARP. Methods: Fibroblasts are particularly dependent on a PARP-mediated cell death response to methylating agents. We used hTERT-immortalised normal human fibroblasts (WT) to generate isogenic MLH1-depleted cells, confirmed by quantitative PCR and western blotting. Drug resistance was measured by clonogenic and cell viability assays and effects on the cell cycle by cell sorting. Damage signalling was additionally investigated using immunostaining. Results: MLH1-depleted cells were more resistant to MNU, as expected. Despite having an intact G2/M checkpoint, the WT cells did not initially undergo cell cycle arrest but instead triggered cell death directly by PARP overactivation and nuclear translocation of apoptosis-inducing factor (AIF). The MLH1-depleted cells showed defects in this pathway, with decreased staining for phosphorylated H2AX, altered PARP activity and reduced AIF translocation. Inhibitors of PARP, but not of caspases, blocked AIF translocation and greatly decreased short-term cell death in both WT and MLH1-depleted cells. This MLH1-dependent response to MNU was not blocked by inhibitors of ATM/ATR or p53. Conclusion: These novel data indicate an important role for MLH1 in signalling PARP-dependent cell death in response to the methylating agent MNU. PMID:19623177

  13. Discovery of Small-Molecule Enhancers of Reactive Oxygen Species That are Nontoxic or Cause Genotype-Selective Cell Death

    PubMed Central

    2013-01-01

    Elevation of reactive oxygen species (ROS) levels has been observed in many cancer cells relative to nontransformed cells, and recent reports have suggested that small-molecule enhancers of ROS may selectively kill cancer cells in various in vitro and in vivo models. We used a high-throughput screening approach to identify several hundred small-molecule enhancers of ROS in a human osteosarcoma cell line. A minority of these compounds diminished the viability of cancer cell lines, indicating that ROS elevation by small molecules is insufficient to induce death of cancer cell lines. Three chemical probes (BRD5459, BRD56491, BRD9092) are highlighted that most strongly elevate markers of oxidative stress without causing cell death and may be of use in a variety of cellular settings. For example, combining nontoxic ROS-enhancing probes with nontoxic doses of l-buthionine sulfoximine, an inhibitor of glutathione synthesis previously studied in cancer patients, led to potent cell death in more than 20 cases, suggesting that even nontoxic ROS-enhancing treatments may warrant exploration in combination strategies. Additionally, a few ROS-enhancing compounds that contain sites of electrophilicity, including piperlongumine, show selective toxicity for transformed cells over nontransformed cells in an engineered cell-line model of tumorigenesis. These studies suggest that cancer cell lines are more resilient to chemically induced increases in ROS levels than previously thought and highlight electrophilicity as a property that may be more closely associated with cancer-selective cell death than ROS elevation. PMID:23477340

  14. A novel DNA damage response mediated by DNA mismatch repair in Caenorhabditis elegans: induction of programmed autophagic cell death in non-dividing cells

    PubMed Central

    Moriwaki, Takahito; Kato, Yuichi; Nakamura, Chihiro; Ishikawa, Satoru; Zhang-Akiyama, Qiu-Mei

    2015-01-01

    DNA mismatch repair (MMR) contributes to genome integrity by correcting errors of DNA polymerase and inducing cell death in response to DNA damage. Dysfunction of MMR results in increased mutation frequency and cancer risk. Clinical researches revealed that MMR abnormalities induce cancers of non-dividing tissues, such as kidney and liver. However, how MMR suppresses cancer in non-dividing tissues is not understood. To address that mechanism, we analyzed the roles of MMR in non-dividing cells using Caenorhabditis elegans (C. elegans), in which all somatic cells are non-dividing in the adult stage. In this study, we used stable MMR-mutant lines with a balancer chromosome. First, we confirmed that deficiency of MMR leads to resistance to various mutagens in C. elegans dividing cells. Next, we performed drug resistance assays, and found that MMR-deficient adult worms were resistant to SN1-type alkylating and oxidizing agents. In addition, dead cell staining and reporter assays of an autophagy-related gene demonstrated that the cell death was autophagic cell death. Interestingly, this autophagic cell death was not suppressed by caffeine, implying that MMR induces death of non-dividing cells in an atl-1-independent manner. Hence, we propose the hypothesis that MMR prevents cancers in non-dividing tissues by directly inducing cell death. PMID:26413217

  15. Proteasomal Inhibition by Ixazomib Induces CHK1 and MYC-Dependent Cell Death in T-cell and Hodgkin Lymphoma.

    PubMed

    Ravi, Dashnamoorthy; Beheshti, Afshin; Abermil, Nasséra; Passero, Frank; Sharma, Jaya; Coyle, Michael; Kritharis, Athena; Kandela, Irawati; Hlatky, Lynn; Sitkovsky, Michail V; Mazar, Andrew; Gartenhaus, Ronald B; Evens, Andrew M

    2016-06-01

    Proteasome-regulated NF-κB has been shown to be important for cell survival in T-cell lymphoma and Hodgkin lymphoma models. Several new small-molecule proteasome inhibitors are under various stages of active preclinical and clinical development. We completed a comprehensive preclinical examination of the efficacy and associated biologic effects of a second-generation proteasome inhibitor, ixazomib, in T-cell lymphoma and Hodgkin lymphoma cells and in vivo SCID mouse models. We demonstrated that ixazomib induced potent cell death in all cell lines at clinically achievable concentrations. In addition, it significantly inhibited tumor growth and improved survival in T-cell lymphoma and Hodgkin lymphoma human lymphoma xenograft models. Through global transcriptome analyses, proteasomal inhibition showed conserved overlap in downregulation of cell cycle, chromatin modification, and DNA repair processes in ixazomib-sensitive lymphoma cells. The predicted activity for tumor suppressors and oncogenes, the impact on "hallmarks of cancer," and the analysis of key significant genes from global transcriptome analysis for ixazomib strongly favored tumor inhibition via downregulation of MYC and CHK1, its target genes. Furthermore, in ixazomib-treated lymphoma cells, we identified that CHK1 was involved in the regulation of MYC expression through chromatin modification involving histone H3 acetylation via chromatin immunoprecipitation. Finally, using pharmacologic and RNA silencing of CHK1 or the associated MYC-related mechanism, we demonstrated synergistic cell death in combination with antiproteasome therapy. Altogether, ixazomib significantly downregulates MYC and induces potent cell death in T-cell lymphoma and Hodgkin lymphoma, and we identified that combinatorial therapy with anti-CHK1 treatment represents a rational and novel therapeutic approach. Cancer Res; 76(11); 3319-31. ©2016 AACR. PMID:26988986

  16. Sphingosine-1-phosphate in cell growth and cell death.

    PubMed

    Spiegel, S; Cuvillier, O; Edsall, L C; Kohama, T; Menzeleev, R; Olah, Z; Olivera, A; Pirianov, G; Thomas, D M; Tu, Z; Van Brocklyn, J R; Wang, F

    1998-06-19

    Recent evidence suggests that branching pathways of sphingolipid metabolism may mediate either apoptotic or mitogenic responses depending on the cell type and the nature of the stimulus. While ceramide has been shown to be an important regulatory component of apoptosis induced by tumor necrosis factor alpha and Fas ligand, sphingosine-1-phosphate (SPP), a further metabolite of ceramide, has been implicated as a second messenger in cellular proliferation and survival induced by platelet-derived growth factor, nerve growth factor, and serum. SPP protects cells from apoptosis resulting from elevations of ceramide. Inflammatory cytokines stimulate sphingomyelinase, but not ceramidase, leading to accumulation of ceramide, whereas growth signals also leading to accumulation of ceramide, whereas growth signals also stimulate ceramidase and sphingosine kinase leading to increased SPP levels. We propose that the dynamic balance between levels of sphingolipid metabolites, ceramide, and SPP, and consequent regulation of different family members of mitogen-activated protein kinases (JNK versus ERK), is an important factor that determines whether a cell survives or dies. PMID:9668339

  17. Nitric oxide released from JS-K induces cell death by mitotic catastrophe as part of necrosis in glioblastoma multiforme.

    PubMed

    Günzle, Jessica; Osterberg, Nadja; Saavedra, Joseph E; Weyerbrock, Astrid

    2016-01-01

    The nitric oxide (NO) donor JS-K is specifically activated by glutathione S-transferases (GSTs) in GST-overexpressing cells. We have shown the induction of cell death in glioblastoma multiforme (GBM) cells at high JS-K doses but the mechanism remains unclear. The aim of this study was to determine whether NO-induced cell death is triggered by induction of apoptotic or necrotic pathways. For the first time, we demonstrate that NO induces cell death via mitotic catastrophe (MC) with non-apoptotic mechanisms in GBM cells. Moreover, the level of morphological changes indicating MC correlates with increased necrosis. Therefore, we conclude that MC is the main mechanism by which GBM cells undergo cell death after treatment with JS-K associated with necrosis rather than apoptosis. In addition, we show that PARP1 is not an exclusive marker for late apoptosis but is also involved in MC. Activating an alternative way of cell death can be useful for the multimodal cancer therapy of GBM known for its strong anti-apoptotic mechanisms and drug resistance. PMID:27584787

  18. Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary.

    PubMed

    Timmons, Allison K; Mondragon, Albert A; Schenkel, Claire E; Yalonetskaya, Alla; Taylor, Jeffrey D; Moynihan, Katherine E; Etchegaray, Jon Iker; Meehan, Tracy L; McCall, Kimberly

    2016-03-01

    Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line-derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms. PMID:26884181

  19. Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary

    PubMed Central

    Timmons, Allison K.; Mondragon, Albert A.; Schenkel, Claire E.; Yalonetskaya, Alla; Taylor, Jeffrey D.; Moynihan, Katherine E.; Etchegaray, Jon Iker; Meehan, Tracy L.; McCall, Kimberly

    2016-01-01

    Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line–derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms. PMID:26884181

  20. Sex stratified neuronal cultures to study ischemic cell death pathways.

    PubMed

    Fairbanks, Stacy L; Vest, Rebekah; Verma, Saurabh; Traystman, Richard J; Herson, Paco S

    2013-01-01

    Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome. PMID:24378980

  1. A Novel Cell Death Gene Acts to Repair Patterning Defects in Drosophila melanogaster

    PubMed Central

    Tanaka, Kentaro M.; Takahashi, Aya; Fuse, Naoyuki; Takano-Shimizu-Kouno, Toshiyuki

    2014-01-01

    Cell death is a mechanism utilized by organisms to eliminate excess cells during development. Here, we describe a novel regulator of caspase-independent cell death, Mabiki (Mabi), that is involved in the repair of the head patterning defects caused by extra copies of bicoid in Drosophila melanogaster. Mabiki functions together with caspase-dependent cell death mechanisms to provide robustness during development. PMID:24671768

  2. A novel cell death gene acts to repair patterning defects in Drosophila melanogaster.

    PubMed

    Tanaka, Kentaro M; Takahashi, Aya; Fuse, Naoyuki; Takano-Shimizu-Kouno, Toshiyuki

    2014-06-01

    Cell death is a mechanism utilized by organisms to eliminate excess cells during development. Here, we describe a novel regulator of caspase-independent cell death, Mabiki (Mabi), that is involved in the repair of the head patterning defects caused by extra copies of bicoid in Drosophila melanogaster. Mabiki functions together with caspase-dependent cell death mechanisms to provide robustness during development. PMID:24671768

  3. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    PubMed

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  4. STAT3 Decoy Oligodeoxynucleotides-Loaded Solid Lipid Nanoparticles Induce Cell Death and Inhibit Invasion in Ovarian Cancer Cells

    PubMed Central

    Ma, Yanhui; Zhang, Xiaolei; Xu, Xiaoxuan; Shen, Liang; Yao, Yao; Yang, Ziyan; Liu, Peishu

    2015-01-01

    Recent advances in the synthesis of multi-functional nanoparticles have opened up tremendous opportunities for the targeted delivery of genes of interest. Cationic solid lipid nanoparticles (SLN) can efficiently bind nucleic acid molecules and transfect genes in vitro. Few reports have combined SLN with therapy using decoy oligodeoxynucleotides (ODN). In the present study, we prepared SLN to encapsulate STAT3 decoy ODN; then, the properties and in vitro behavior of SLN-STAT3 decoy ODN complexes were investigated. SLN-STAT3 decoy ODN complexes were efficiently taken up by human ovarian cancer cells and significantly suppressed cell growth. Blockage of the STAT3 pathway by SLN-STAT3 decoy ODN complexes resulted in an evident induction of cell death, including apoptotic and autophagic death. The mechanism involved the increased expression of cleaved caspase 3, Bax, Beclin-1 and LC3-II and reduced expression of Bcl-2, pro-caspase 3, Survivin, p-Akt and p-mTOR. In addition, SLN-STAT3 decoy ODN complexes inhibited cell invasion by up-regulating E-cadherin expression and down-regulating Snail and MMP-9 expression. These findings confirmed that SLN as STAT3 decoy ODN carriers can induce cell death and inhibit invasion of ovarian cancer cells. We propose that SLN represent a potential approach for targeted gene delivery in cancer therapy. PMID:25923701

  5. Cell death, clearance and immunity in the skeletal muscle.

    PubMed

    Sciorati, C; Rigamonti, E; Manfredi, A A; Rovere-Querini, P

    2016-06-01

    accumulation and promoting autoimmunity itself. There is strong promise for novel treatments based on new knowledge of cell death, clearance and immunity in the muscle. PMID:26868912

  6. Consensus guidelines for the detection of immunogenic cell death

    PubMed Central

    Kepp, Oliver; Senovilla, Laura; Vitale, Ilio; Vacchelli, Erika; Adjemian, Sandy; Agostinis, Patrizia; Apetoh, Lionel; Aranda, Fernando; Barnaba, Vincenzo; Bloy, Norma; Bracci, Laura; Breckpot, Karine; Brough, David; Buqué, Aitziber; Castro, Maria G.; Cirone, Mara; Colombo, Maria I.; Cremer, Isabelle; Demaria, Sandra; Dini, Luciana; Eliopoulos, Aristides G.; Faggioni, Alberto; Formenti, Silvia C.; Fučíková, Jitka; Gabriele, Lucia; Gaipl, Udo S.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giese, Nathalia A.; Guo, Zong Sheng; Hemminki, Akseli; Herrmann, Martin; Hodge, James W.; Holdenrieder, Stefan; Honeychurch, Jamie; Hu, Hong-Min; Huang, Xing; Illidge, Tim M.; Kono, Koji; Korbelik, Mladen; Krysko, Dmitri V.; Loi, Sherene; Lowenstein, Pedro R.; Lugli, Enrico; Ma, Yuting; Madeo, Frank; Manfredi, Angelo A.; Martins, Isabelle; Mavilio, Domenico; Menger, Laurie; Merendino, Nicolò; Michaud, Michael; Mignot, Gregoire; Mossman, Karen L.; Multhoff, Gabriele; Oehler, Rudolf; Palombo, Fabio; Panaretakis, Theocharis; Pol, Jonathan; Proietti, Enrico; Ricci, Jean-Ehrland; Riganti, Chiara; Rovere-Querini, Patrizia; Rubartelli, Anna; Sistigu, Antonella; Smyth, Mark J.; Sonnemann, Juergen; Spisek, Radek; Stagg, John; Sukkurwala, Abdul Qader; Tartour, Eric; Thorburn, Andrew; Thorne, Stephen H.; Vandenabeele, Peter; Velotti, Francesca; Workenhe, Samuel T.; Yang, Haining; Zong, Wei-Xing; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine. PMID:25941621

  7. Apoptosis and Beyond: Cytometry in Studies of Programmed Cell Death

    PubMed Central

    Wlodkowic, Donald; Telford, William; Skommer, Joanna; Darzynkiewicz, Zbigniew

    2012-01-01

    A cell undergoing apoptosis demonstrates multitude of characteristic morphological and biochemical features, which vary depending on the inducer of apoptosis, cell type and the “time window” at which the process of apoptosis is observed. Because the gross majority of apoptotic hallmarks can be revealed by flow and image cytometry, the cytometric methods become a technology of choice in diverse studies of cellular demise. Variety of cytometric methods designed to identify apoptotic cells, detect particular events of apoptosis and probe mechanisms associated with this mode of cell death have been developed during the past two decades. In the present review, we outline commonly used methods that are based on the assessment of mitochondrial transmembrane potential, activation of caspases, DNA fragmentation, and plasma membrane alterations. We also present novel developments in the field such as the use of cyanine SYTO and TO-PRO family of probes. Strategies of selecting the optimal multiparameter approaches, as well as potential difficulties in the experimental procedures, are thoroughly summarized. PMID:21722800

  8. Nonapoptotic cell death in acute kidney injury and transplantation.

    PubMed

    Linkermann, Andreas

    2016-01-01

    Acute tubular necrosis causes a loss of renal function, which clinically presents as acute kidney failure (AKI). The biochemical signaling pathways that trigger necrosis have been investigated in detail over the past 5 years. It is now clear that necrosis (regulated necrosis, RN) represents a genetically driven process that contributes to the pathophysiology of AKI. RN pathways such as necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-induced regulated necrosis (MPT-RN) may be mechanistically distinct, and the relative contributions to overall organ damage during AKI in living organisms largely remain elusive. In a synchronized manner, some necrotic programs induce the breakdown of tubular segments and multicellular functional units, whereas others are limited to killing single cells in the tubular compartment. Importantly, the means by which a renal cell dies may have implications for the subsequent inflammatory response. In this review, the recent advances in the field of renal cell death in AKI and key enzymes that might serve as novel therapeutic targets will be discussed. As a consequence of the interference with RN, the immunogenicity of dying cells in AKI in renal transplants will be diminished, rendering inhibitors of RN indirect immunosuppressive agents. PMID:26759047

  9. The risk of stillbirth and infant death by each additional week of expectant management stratified by maternal age

    PubMed Central

    Page, Jessica M.; Snowden, Jonathan M.; Cheng, Yvonne W.; Doss, Amy; Rosenstein, Melissa G.; Caughey, Aaron B.

    2016-01-01

    OBJECTIVE The objective of the study was to examine fetal/infant mortality by gestational age at term stratified by maternal age. STUDY DESIGN A retrospective cohort study was conducted using 2005 US national birth certificate data. For each week of term gestation, the risk of mortality associated with delivery was compared with composite mortality risk of expectant management. The expectant management measure included stillbirth and infant death. This expectant management risk was calculated to estimate the composite mortality risk with remaining pregnant an additional week by combining the risk of stillbirth during the additional week of pregnancy and infant death risk following delivery at the next week. Maternal age was stratified by 35 years or more compared with women younger than 35 years as well as subgroup analyses of younger than 20, 20–34, 35–39, or 40 years old or older. RESULTS The fetal/infant mortality risk of expectant management is greater than the risk of infant death at 39 weeks’ gestation in women 35 years old or older (15.2 vs 10.9 of 10,000, P < .05). In women younger than 35 years old, the risk of expectant management also exceeded that of infant death at 39 weeks (21.3 vs 18.8 of 10,000, P < .05). For women younger than 35 years old, the overall expectant management risk is influenced by higher infant death risk and does not rise significantly until 41 weeks compared with women 35 years old or older in which it increased at 40 weeks. CONCLUSION Risk varies by maternal age, and delivery at 39 weeks minimizes fetal/infant mortality for both groups, although the magnitude of the risk reduction is greater in older women. PMID:23707677

  10. Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury

    PubMed Central

    Himpe, Eddy; Cunha, Daniel A.; Song, Imane; Bugliani, Marco; Marchetti, Piero; Cnop, Miriam; Bouwens, Luc

    2016-01-01

    Objective Previous studies demonstrated that a phenylpropenoic acid glucoside (PPAG) from rooibos (Aspalathus linearis) extract had anti-hyperglycemic activity and significant protective effects on the pancreatic beta cell mass in a chronic diet-induced diabetes model. The present study evaluated the cytoprotective effect of the phytochemical on beta cells exposed to acute cell stress. Methods Synthetically prepared PPAG was administered orally in mice treated with a single dose of streptozotocin to acutely induce beta cell death and hyperglycemia. Its effect was assessed on beta cell mass, proliferation and apoptotic cell death. Its cytoprotective effect was also studied in vitro on INS-1E beta cells and on human pancreatic islet cells. Results Treatment with the phytochemical PPAG protected beta cells during the first days after the insult against apoptotic cell death, as evidenced by TUNEL staining, and prevented loss of expression of anti-apoptotic protein BCL2 in vivo. In vitro, PPAG protected INS-1E beta cells from streptozotocin-induced apoptosis and necrosis in a BCL2-dependent and independent way, respectively, depending on glucose concentration. PPAG also protected human pancreatic islet cells against the cytotoxic action of the fatty acid palmitate. Conclusions These findings show the potential use of PPAG as phytomedicine which protects the beta cell mass exposed to acute diabetogenic stress. PMID:27299564

  11. Cytotoxicity of obacunone and obacunone glucoside in human prostate cancer cells involves Akt-mediated programmed cell death.

    PubMed

    Murthy, Kotamballi N Chidambara; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimanagouda S

    2015-03-01

    Obacunone and obacunone glucoside (OG) are naturally occurring triterpenoids commonly found in citrus and other plants of the Rutaceae family. The current study reports the mechanism of cytotoxicity of citrus-derived obacunone and OG on human androgen-dependent prostate cancer LNCaP cells. Both limonoids exhibited time- and dose-dependent inhibition of cell proliferation, with more than 60% inhibition of cell viability at 100 μM, after 24 and 48 h. Analysis of fragmentation of DNA, activity of caspase-3, and cytosolic cytochrome-c in the cells treated with limonoids provided evidence for activation of programmed cell death by limonoids. Treatment of LNCaP cells with obacunone and OG resulted in dose-dependent changes in expression of proteins responsible for the induction of programmed cell death through the intrinsic pathway and down-regulation of Akt, a key molecule in cell signaling pathways. In addition, obacunone and OG also negatively regulated an inflammation-associated transcription factor, androgen receptor, and prostate-specific antigen, and activated proteins related to the cell cycle, confirming the ability of limonoids to induce cytotoxicity through multiple pathways. The results of this study provided, for the first time, an evidence of the cytotoxicity of obacunone and OG in androgen-dependent human prostate cancer cells. PMID:25592883

  12. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    NASA Technical Reports Server (NTRS)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  13. Induction of Cell Death Through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    2012-07-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  14. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells.

    PubMed

    Yin, Shutao; Guo, Xiao; Li, Jinghua; Fan, Linghong; Hu, Hongbo

    2016-04-01

    Mycotoxins are secondary fungal metabolites that are capable of inducing a variety of toxic effects in animals and humans resulting from the consumption of the contaminated food. Understanding the mechanisms of the toxicities behind these mycotoxins is required to develop mechanism-based approach to counteract their toxic potential. Fumonisin B1 (FB1) is the most prevalent member of fumonisins that are a group of mycotoxins produced primarily by Fusarium verticillioides and Fusarium proliferatum. Kidney is one of the primary target organs for FB1 action. Using monkey kidney MARC-145 cells as an intro model, we found that FB1 induced caspase-independent programmed cell death accompanied with autophagy induction. Inhibition of autophagy by either chemical inhibitors or RNAi approach led to a significant reduction in cell death by FB1 exposure, indicating possible involvement of autophagy-mediated cell death in nephrotoxicity of FB1. Further mechanistic investigation revealed that activation of ERN1-MAPK8/9/10 axis played a critical role in autophagy induction and autophagy-mediated cell death by FB1 exposure. In addition, we demonstrated that disruption of sphingolipid metabolism was an apical event in FB1-induced ERN1-MAPK8/9/10-mediated autophagic cell death in MARC-145 cells. Lastly, we identified curcumin, a naturally occurring plant phenolic compound, as a possible anti-FB1 agent that can be used to protect kidney cells from FB1-induced cell death through inhibition of MAPK8/9/10 activation. PMID:25925693

  15. RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells.

    PubMed

    Höckendorf, Ulrike; Yabal, Monica; Herold, Tobias; Munkhbaatar, Enkhtsetseg; Rott, Stephanie; Jilg, Stefanie; Kauschinger, Johanna; Magnani, Giovanni; Reisinger, Florian; Heuser, Michael; Kreipe, Hans; Sotlar, Karl; Engleitner, Thomas; Rad, Roland; Weichert, Wilko; Peschel, Christian; Ruland, Jürgen; Heikenwalder, Mathias; Spiekermann, Karsten; Slotta-Huspenina, Julia; Groß, Olaf; Jost, Philipp J

    2016-07-11

    Since acute myeloid leukemia (AML) is characterized by the blockade of hematopoietic differentiation and cell death, we interrogated RIPK3 signaling in AML development. Genetic loss of Ripk3 converted murine FLT3-ITD-driven myeloproliferation into an overt AML by enhancing the accumulation of leukemia-initiating cells (LIC). Failed inflammasome activation and cell death mediated by tumor necrosis factor receptor caused this accumulation of LIC exemplified by accelerated leukemia onset in Il1r1(-/-), Pycard(-/-), and Tnfr1/2(-/-) mice. RIPK3 signaling was partly mediated by mixed lineage kinase domain-like. This link between suppression of RIPK3, failed interleukin-1β release, and blocked cell death was supported by significantly reduced RIPK3 in primary AML patient cohorts. Our data identify RIPK3 and the inflammasome as key tumor suppressors in AML. PMID:27411587

  16. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    PubMed Central

    Apraiz, Aintzane; Boyano, Maria Dolores; Asumendi, Aintzane

    2011-01-01

    Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies. PMID:24212653

  17. Calcium signaling as a mediator of cell energy demand and a trigger to cell death.

    PubMed

    Bhosale, Gauri; Sharpe, Jenny A; Sundier, Stephanie Y; Duchen, Michael R

    2015-09-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury. PMID:26375864

  18. Calcium signaling as a mediator of cell energy demand and a trigger to cell death

    PubMed Central

    Bhosale, Gauri; Sharpe, Jenny A.; Sundier, Stephanie Y.

    2015-01-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury. PMID:26375864

  19. Mechanisms of beta-cell death in type 2 diabetes.

    PubMed

    Donath, Marc Y; Ehses, Jan A; Maedler, Kathrin; Schumann, Desiree M; Ellingsgaard, Helga; Eppler, Elisabeth; Reinecke, Manfred

    2005-12-01

    A decrease in the number of functional insulin-producing beta-cells contributes to the pathophysiology of type 2 diabetes. Opinions diverge regarding the relative contribution of a decrease in beta-cell mass versus an intrinsic defect in the secretory machinery. Here we review the evidence that glucose, dyslipidemia, cytokines, leptin, autoimmunity, and some sulfonylureas may contribute to the maladaptation of beta-cells. With respect to these causal factors, we focus on Fas, the ATP-sensitive K+ channel, insulin receptor substrate 2, oxidative stress, nuclear factor-kappaB, endoplasmic reticulum stress, and mitochondrial dysfunction as their respective mechanisms of action. Interestingly, most of these factors are involved in inflammatory processes in addition to playing a role in both the regulation of beta-cell secretory function and cell turnover. Thus, the mechanisms regulating beta-cell proliferation, apoptosis, and function are inseparable processes. PMID:16306327

  20. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    SciTech Connect

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun; Kim, Eun Sung; Hwang, Jung Jin; Jin, Dong-Hoon; Kim, Jin Cheon; Cho, Dong-Hyung

    2011-05-13

    Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  1. Mouse models of retinal ganglion cell death and glaucoma

    PubMed Central

    McKinnon, Stuart J.; Schlamp, Cassandra L.; Nickells, Robert W.

    2011-01-01

    Once considered too difficult to use for glaucoma studies, mice are now becoming a powerful tool in the research of the molecular and pathological events associated with this disease. Often adapting technologies first developed in rats, ganglion cell death in mice can be induced using acute models and chronic models of experimental glaucoma. Similarly, elevated IOP has been reported in transgenic animals carrying defects in targeted genes. Also, one group of mice, from the DBA/2 line of inbred animals, develops a spontaneous optic neuropathy with many features of human glaucoma that is associated with IOP elevation caused by an anterior chamber pigmentary disease. The advent of mice for glaucoma research is already having a significant impact on our understanding of this disease, principally because of the access to genetic manipulation technology and genetics already well established for these animals. PMID:19105954

  2. Apoptosis like cell death in Raillietina echinobothrida induced by resveratrol.

    PubMed

    Giri, Bikash Ranjan; Roy, Bishnupada

    2015-08-01

    Northeast India is geographically nestled as one of the biodiversity hotspots, rich in traditionally used medicinal plants. Resveratrol, a naturally occurring phytoalexin found in berries, peanuts, grapes, red wine and also in numerous anthelmintic plants, has attracted wide interest because of its diverse pharmacological characteristics. Recently, anthelmintic potential of the compound is established. The present study was carried out to understand the possible mechanism of action of resveratrol on poultry tapeworm Raillietina echinobothrida. Resveratrol showed excellent cestocidal activity in a dose dependent manner as revealed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The progressive ultrastructural alterations followed by complete disruption of nuclear membrane, chromosomal condensation and in situ DNA fragmentation confirm the occurrence of apoptosis like cell death. Increased pro-apoptotic caspase activity and significant decreases in mitochondrial membrane potential in R. echinobothrida exposed to resveratrol confirm the involvement of mitochondria in the process of apoptosis. PMID:26267101

  3. Mitochondrial Thioredoxin in Regulation of Oxidant-Induced Cell Death

    PubMed Central

    Chen, Yan; Cai, Jiyang; Jones, Dean P

    2006-01-01

    Mitochondrial thioredoxin (mtTrx) can be oxidized in response to inducers of oxidative stress; yet the functional consequences of the oxidation have not been determined. This study evaluated the redox status of mtTrx and its association to oxidant-induced apoptosis. Results showed that mtTrx was oxidized after exposure to peroxides and diamide. Overexpression of mtTrx protected against diamide-induced oxidation and cytotoxicity. Oxidation of mtTrx was also achieved by knocking down its reductase; and lead to increased susceptibility to cell death. The data indicate that the redox status of mtTrx is a regulatory mechanism underlying the vulnerability of mitochondria to oxidative injury. PMID:17113580

  4. Para-toluenesulfonamide induces tongue squamous cell carcinoma cell death through disturbing lysosomal stability.

    PubMed

    Liu, Zhe; Liang, Chenyuan; Zhang, Zhuoyuan; Pan, Jian; Xia, Hui; Zhong, Nanshan; Li, Longjiang

    2015-11-01

    Para-toluenesulfonamide (PTS) has been implicated with anticancer effects against a variety of tumors. In the present study, we investigated the inhibitory effects of PTS on tongue squamous cell carcinoma (Tca-8113) and explored the lysosomal and mitochondrial changes after PTS treatment in vitro. High-performance liquid chromatography showed that PTS selectively accumulated in Tca-8113 cells with a relatively low concentration in normal fibroblasts. Next, the effects of PTS on cell viability, invasion, and cell death were determined. PTS significantly inhibited Tca-8113 cells' viability and invasive ability with increased cancer cell death. Flow cytometric analysis and the lactate dehydrogenase release assay showed that PTS induced cancer cell death by activating apoptosis and necrosis simultaneously. Morphological changes, such as cellular shrinkage, nuclear condensation as well as formation of apoptotic body and secondary lysosomes, were observed, indicating that PTS might induce cell death through disturbing lysosomal stability. Lysosomal integrity assay and western blot showed that PTS increased lysosomal membrane permeabilization associated with activation of lysosomal cathepsin B. Finally, PTS was shown to inhibit ATP biosynthesis and induce the release of mitochondrial cytochrome c. Therefore, our findings provide a novel insight into the use of PTS in cancer therapy. PMID:26302210

  5. OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO. J.B. Smith, K.K. Sulik, E.S. Hunter III. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
    The induction of craniofacial defects by ethanol exposure is mediated in part by...

  6. Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death.

    PubMed

    Hosoi, Toru; Nakatsu, Kanako; Shimamoto, Akira; Tahara, Hidetoshi; Ozawa, Koichiro

    2016-08-26

    Endoplasmic reticulum (ER) stress is implicated in several diseases, such as cancer and neurodegenerative diseases. In the present study, we investigated the possible involvement of telomerase in ER stress-induced cell death. ER stress-induced cell death was ameliorated in telomerase reverse transcriptase (TERT) over-expressing MCF7 cells (MCF7-TERT cell). Telomerase specific inhibitor, BIBR1532, reversed the inhibitory effect of TERT on ER stress-induced cell death in MCF7-TERT cells. These findings suggest that BIBR1532 may specifically inhibit telomerase activity, thereby inducing cell death in ER stress-exposed cells. TERT was expressed in the SH-SY5Y neuroblastoma cell line. To analyze the possible involvement of telomerase in ER stress-induced neuronal cell death, we treated SH-SY5Y neuroblastoma cells with BIBR1532 and analyzed ER stress-induced cell death. We found that BIBR1532 significantly enhanced the ER stress-induced neuronal cell death. These findings suggest that inhibition of telomerase activity may enhance vulnerability to neuronal cell death caused by ER stress. PMID:27443785

  7. Autophagy prevents autophagic cell death in Tetrahymena in response to oxidative stress

    PubMed Central

    ZHANG, Si-Wei; FENG, Jiang-Nan; CAO, Yi; MENG, Li-Ping; WANG, Shu-Lin

    2015-01-01

    Autophagy is a major cellular pathway used to degrade long-lived proteins or organelles that may be damaged due to increased reactive oxygen species (ROS) generated by cellular stress. Autophagy typically enhances cell survival, but it may also act to promote cell death under certain conditions. The mechanism underlying this paradox, however, remains unclear. We showed that Tetrahymena cells exerted increased membrane-bound vacuoles characteristic of autophagy followed by autophagic cell death (referred to as cell death with autophagy) after exposure to hydrogen peroxide. Inhibition of autophagy by chloroquine or 3-methyladenine significantly augmented autophagic cell death induced by hydrogen peroxide. Blockage of the mitochondrial electron transport chain or starvation triggered activation of autophagy followed by cell death by inducing the production of ROS due to the loss of mitochondrial membrane potential. This indicated a regulatory role of mitochondrial ROS in programming autophagy and autophagic cell death in Tetrahymena. Importantly, suppression of autophagy enhanced autophagic cell death in Tetrahymena in response to elevated ROS production from starvation, and this was reversed by antioxidants. Therefore, our results suggest that autophagy was activated upon oxidative stress to prevent the initiation of autophagic cell death in Tetrahymena until the accumulation of ROS passed the point of no return, leading to delayed cell death in Tetrahymena. PMID:26018860

  8. Hydrogen Peroxide Contributes to the Epithelial Cell Death Induced by the Oral Mitis Group of Streptococci

    PubMed Central

    Okahashi, Nobuo; Sumitomo, Tomoko; Nakata, Masanobu; Sakurai, Atsuo; Kuwata, Hirotaka; Kawabata, Shigetada

    2014-01-01

    Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical barrier against pathogenic microbes, we investigated their susceptibility to infection by H2O2-producing streptococci in this study. Infection by S. oralis and S. sanguinis was found to stimulate cell death of Detroit 562, Calu-3 and HeLa epithelial cell lines at a multiplicity of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited S. oralis cytotoxicity, and H2O2 alone was capable of eliciting epithelial cell death. Moreover, S. oralis mutants lacking the spxB gene encoding pyruvate oxidase, which are deficient in H2O2 production, exhibited reduced cytotoxicity toward Detroit 562 epithelial cells. In addition, enzyme-linked immunosorbent assays revealed that both S. oralis and H2O2 induced interleukin-6 production in Detroit 562 epithelial cells. These results suggest that streptococcal H2O2 is cytotoxic to epithelial cells, and promotes bacterial evasion of the host defense systems in the oral cavity and upper respiratory tracts. PMID:24498253

  9. Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves.

    PubMed

    Pedroso, M C; Durzan, D J

    2000-11-01

    Different gravity environments have been shown to significantly affect leaf-plantlet formation and asexual reproduction in Kalanchoë daigremontiana Ham. and Perr. In the present work, we investigated the effect of gravity at tissue and cell levels. Leaves and leaf-plantlets were cultured for different periods of time (min to 15 d) in different levels of gravity stimulation: simulated hypogravity (1 rpm clinostats; 2 x 10(-4) g), 1 g (control) and hypergravity (centrifugation; 20 and 150 g). Both simulated hypogravity and hypergravity affected cell death (apoptosis) in this species, and variations in the number of cells showing DNA fragmentation directly correlated with nitric oxide (NO) formation. Apoptosis in leaves was more common as gravity increased. Apoptotic cells were localized in the epidermis, mainly guard cells, in leaf parenchyma, and in tracheary elements undergoing terminal differentiation. Exposures to acute hypergravity (up to 60 min) showed that chloroplast DNA fragmentation occurred prior to nuclear DNA fragmentation, marginalization of chromatin, nuclear condensation, and nuclear blebbing. Addition of sodium nitroprusside (NO donor) mimicked centrifugation. NO and DNA fragmentation decreased with N(G)-monomethyl-L-arginine (NO-synthase inhibitor). The variations in NO levels, nucleoid DNA fragmentation, and cell death show how chloroplasts, cells and leaves may respond (and adapt) to gravity changes. PMID:11762440

  10. Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding.

    PubMed

    Lin, Chih-Ching; Jih, Pei-Ju; Lin, Hsin-Hung; Lin, Jeng-Shane; Chang, Ling-Lan; Shen, Yu-Hsing; Jeng, Shih-Tong

    2011-10-01

    Wounding caused by rain, wind, and pathogen may lead plants to onset defense response. Previous studies indicated that mechanical wounding stimulates plants to generate nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). In this study, the functions of NO and H(2)O(2) after wounding in sweet potato (Ipomoea batatas cv. Tainung 57) was further analyzed. Mechanical wounding damaged cells and resulted in necrosis, but the presence of NO donors or NO scavenger might reduce or enhance the cell death caused by wounding, respectively. The amount of H(2)O(2) induced by wounding was also decreased or increased when plants were incubated with NO donors or NO scavenger, individually. These results indicate that NO may regulate H(2)O(2) generation to affect cell death. NO-induced proteins isolated from two-dimensional electrophoresis were identified to be Copper/Zinc superoxide dismutases (CuZnSODs). The activities of CuZnSODs and ascorbate peroxidase (APX) could be enhanced by NO. In addition, the expression of CuZnSOD and APX was induced by wounding via NO, and their expression was further stimulated by NO through the generation of cGMP. The influx of calcium ions and the activity of NADPH oxidase were also involved in the NO signal transduction pathway inducing APX expression. Collectively, the generation of H(2)O(2) in wounded plants might trigger cell death. Meanwhile, the production of NO induced by wounding stimulated signal transducers including cGMP, calcium ions, and H(2)O(2) to activate CuZnSOD and APX, which further decreased H(2)O(2) level and reduced the cell death caused by wounding. PMID:21833542

  11. Temporal rhythm of petal programmed cell death in Ipomoea purpurea.

    PubMed

    Gui, M-Y; Ni, X-L; Wang, H-B; Liu, W-Z

    2016-09-01

    Flowers are the main sexual reproductive organs in plants. The shapes, colours and scents of corolla of plant flowers are involved in attracting insect pollinators and increasing reproductive success. The process of corolla senescence was investigated in Ipomoea purpurea (Convolvulaceae) in this study. In the research methods of plant anatomy, cytology, cell chemistry and molecular biology were used. The results showed that at the flowering stage cells already began to show distortion, chromatin condensation, mitochondrial membrane degradation and tonoplast dissolution and rupture. At this stage genomic DNA underwent massive but gradual random degradation. However, judging from the shape and structure, aging characteristics did not appear until the early flower senescence stage. The senescence process was slow, and it was completed at the late stage of flower senescence with a withering corolla. We may safely arrive at the conclusion that corolla senescence of I. purpurea was mediated by programmed cell death (PCD) that occurred at the flowering stage. The corolla senescence exhibited an obvious temporal rhythm, which demonstrated a high degree of coordination with pollination and fertilization. PMID:27259176

  12. The p53 family and programmed cell death

    PubMed Central

    Pietsch, E. Christine; Sykes, Stephen M.; McMahon, Steven B.; Murphy, Maureen E.

    2008-01-01

    The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade we have discovered that p53 is not alone in its mission to destroy damaged or aberrantly proliferating cells: it has two homologues, p63 and p73, that in various cellular contexts and stresses contribute to this process. In this review, the mechanisms whereby p53, and in some cases p63 and p73, induce apoptosis are discussed. Whereas other reviews have focused more extensively on the contribution of individual p53-regulated genes to apoptosis induction by this protein, in this review we focus more on those factors that mediate the decision between growth arrest and apoptosis by p53, p63 and p73, and on the post-translational modifications and protein-protein interactions that influence this decision. PMID:18955976

  13. Autophagy mediates phase transitions from cell death to life.

    PubMed

    Han, Kyungreem; Kim, Jinwoong; Choi, MooYoung

    2015-09-01

    Autophagy is a lysosomal degradation pathway, which is critical for maintaining normal cellular functions. Despite considerable advances in defining the specific molecular mechanism governing the autophagy pathway during the last decades, we are still far from understanding the underlying principle of the autophagy machinery and its complex role in human disease. As an alternative attempt to reinvigorate the search for the principle of the autophagy pathway, we in this study make use of the computer-aided analysis, complementing current molecular-level studies of autophagy. Specifically, we propose a hypothesis that autophagy mediates cellular phase transitions and demonstrate that the autophagic phase transitions are essential to the maintenance of normal cellular functions and critical in the fate of a cell, i.e., cell death or survival. This study should provide valuable insight into how interactions of sub-cellular components such as genes and protein modules/complexes regulate autophagy and then impact on the dynamic behaviors of living cells as a whole, bridging the microscopic molecular-level studies and the macroscopic cellular-level and physiological approaches. PMID:27441218

  14. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  15. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    PubMed Central

    2014-01-01

    Background Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Methods Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Results Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2

  16. Eiger-induced cell death relies on Rac1-dependent endocytosis.

    PubMed

    Ruan, W; Srinivasan, A; Lin, S; Kara, K-I; Barker, P A

    2016-01-01

    Signaling via tumor necrosis factor receptor (TNFR) superfamily members regulates cellular life and death decisions. A subset of mammalian TNFR proteins, most notably the p75 neurotrophin receptor (p75NTR), induces cell death through a pathway that requires activation of c-Jun N-terminal kinases (JNKs). However the receptor-proximal signaling events that mediate this remain unclear. Drosophila express a single tumor necrosis factor (TNF) ligand termed Eiger (Egr) that activates JNK-dependent cell death. We have exploited this model to identify phylogenetically conserved signaling events that allow Egr to induce JNK activation and cell death in vivo. Here we report that Rac1, a small GTPase, is specifically required in Egr-mediated cell death. rac1 loss of function blocks Egr-induced cell death, whereas Rac1 overexpression enhances Egr-induced killing. We identify Vav as a GEF for Rac1 in this pathway and demonstrate that dLRRK functions as a negative regulator of Rac1 that normally acts to constrain Egr-induced death. Thus dLRRK loss of function increases Egr-induced cell death in the fly. We further show that Rac1-dependent entry of Egr into early endosomes is a crucial prerequisite for JNK activation and for cell death and show that this entry requires the activity of Rab21 and Rab7. These findings reveal novel regulatory mechanisms that allow Rac1 to contribute to Egr-induced JNK activation and cell death. PMID:27054336

  17. Eiger-induced cell death relies on Rac1-dependent endocytosis

    PubMed Central

    Ruan, W; Srinivasan, A; Lin, S; Kara, k-I; Barker, P A

    2016-01-01

    Signaling via tumor necrosis factor receptor (TNFR) superfamily members regulates cellular life and death decisions. A subset of mammalian TNFR proteins, most notably the p75 neurotrophin receptor (p75NTR), induces cell death through a pathway that requires activation of c-Jun N-terminal kinases (JNKs). However the receptor-proximal signaling events that mediate this remain unclear. Drosophila express a single tumor necrosis factor (TNF) ligand termed Eiger (Egr) that activates JNK-dependent cell death. We have exploited this model to identify phylogenetically conserved signaling events that allow Egr to induce JNK activation and cell death in vivo. Here we report that Rac1, a small GTPase, is specifically required in Egr-mediated cell death. rac1 loss of function blocks Egr-induced cell death, whereas Rac1 overexpression enhances Egr-induced killing. We identify Vav as a GEF for Rac1 in this pathway and demonstrate that dLRRK functions as a negative regulator of Rac1 that normally acts to constrain Egr-induced death. Thus dLRRK loss of function increases Egr-induced cell death in the fly. We further show that Rac1-dependent entry of Egr into early endosomes is a crucial prerequisite for JNK activation and for cell death and show that this entry requires the activity of Rab21 and Rab7. These findings reveal novel regulatory mechanisms that allow Rac1 to contribute to Egr-induced JNK activation and cell death. PMID:27054336

  18. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis.

    PubMed

    Shimada, Kenichi; Skouta, Rachid; Kaplan, Anna; Yang, Wan Seok; Hayano, Miki; Dixon, Scott J; Brown, Lewis M; Valenzuela, Carlos A; Wolpaw, Adam J; Stockwell, Brent R

    2016-07-01

    Apoptosis is one type of programmed cell death. Increasingly, non-apoptotic cell death is recognized as being genetically controlled, or 'regulated'. However, the full extent and diversity of alternative cell death mechanisms remain uncharted. Here we surveyed the landscape of pharmacologically accessible cell death mechanisms. In an examination of 56 caspase-independent lethal compounds, modulatory profiling showed that 10 compounds induced three different types of regulated non-apoptotic cell death. Optimization of one of those ten resulted in the discovery of FIN56, a specific inducer of ferroptosis. Ferroptosis has been found to occur when the lipid-repair enzyme GPX4 is inhibited. FIN56 promoted degradation of GPX4. FIN56 also bound to and activated squalene synthase, an enzyme involved in isoprenoid biosynthesis, independent of GPX4 degradation. These discoveries show that dysregulation of lipid metabolism is associated with ferroptosis. This systematic approach is a means to discover and characterize novel cell death phenotypes. PMID:27159577

  19. Artocarpus communis Induces Autophagic Instead of Apoptotic Cell Death in Human Hepatocellular Carcinoma Cells.

    PubMed

    Tzeng, Cheng-Wei; Tzeng, Wen-Sheng; Lin, Liang-Tzung; Lee, Chiang-Wen; Yen, Ming-Hong; Yen, Feng-Lin; Lin, Chun-Ching

    2015-01-01

    For centuries, natural plant extracts have played an important role in traditional medicine for curing and preventing diseases. Studies have revealed that Artocarpus communis possess various bioactivities, such as anti-inflammation, anti-oxidant, and anticancer activities. A. communis offers economic value as a source of edible fruit, yields timber, and is widely used in folk medicines. However, little is known about its molecular mechanisms of anticancer activity. Here, we demonstrate the antiproliferative activity of A. communis methanol extract (AM) and its dichloromethane fraction (AD) in two human hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. Colony assay showed the long-term inhibitory effect of both extracts on cell growth. DNA laddering and immunoblotting analyses revealed that both extracts did not induce apoptosis in the hepatoma cell lines. AM and AD-treated cells demonstrated different cell cycle distribution compared to UV-treated cells, which presented apoptotic cell death with high sub-G1 ratio. Instead, acridine orange staining revealed that AM and AD triggered autophagosome accumulation. Immunoblotting showed a significant expression of autophagy-related proteins, which indicated the autophagic cell death (ACD) of hepatoma cell lines. This study therefore demonstrates that A. communis AM and its dichloromethane fraction can induce ACD in HCC cells and elucidates the potential of A. communis extracts for development as anti tumor therapeutic agents that utilize autophagy as mechanism in mediating cancer cell death. PMID:25967668

  20. Novel monofunctional platinum (II) complex Mono-Pt induces apoptosis-independent autophagic cell death in human ovarian carcinoma cells, distinct from cisplatin

    PubMed Central

    Guo, Wen-Jie; Zhang, Yang-Miao; Zhang, Li; Huang, Bin; Tao, Fei-Fei; Chen, Wei; Guo, Zi-Jian; Xu, Qiang; Sun, Yang

    2013-01-01

    Failure to engage apoptosis appears to be a leading mechanism of resistance to traditional platinum drugs in patients with ovarian cancer. Therefore, an alternative strategy to induce cell death is needed for the chemotherapy of this apoptosis-resistant cancer. Here we report that autophagic cell death, distinct from cisplatin-induced apoptosis, is triggered by a novel monofunctional platinum (II) complex named Mono-Pt in human ovarian carcinoma cells. Mono-Pt-induced cell death has the following features: cytoplasmic vacuolation, caspase-independent, no nuclear fragmentation or chromatin condensation, and no apoptotic bodies. These characteristics integrally indicated that Mono-Pt, rather than cisplatin, initiated a nonapoptotic cell death in Caov-3 ovarian carcinoma cells. Furthermore, incubation of the cells with Mono-Pt but not with cisplatin produced an increasing punctate distribution of microtubule-associated protein 1 light chain 3 (LC3), and an increasing ratio of LC3-II to LC3-I. Mono-Pt also caused the formation of autophagic vacuoles as revealed by monodansylcadaverine staining and transmission electron microscopy. In addition, Mono-Pt-induced cell death was significantly inhibited by the knockdown of either BECN1 or ATG7 gene expression, or by autophagy inhibitors 3-methyladenine, chloroquine and bafilomycin A1. Moreover, the effect of Mono-Pt involved the AKT1-MTOR-RPS6KB1 pathway and MAPK1 (ERK2)/MAPK3 (ERK1) signaling, since the MTOR inhibitor rapamycin increased, while the MAPK1/3 inhibitor U0126 decreased Mono-Pt-induced autophagic cell death. Taken together, our results suggest that Mono-Pt exerts anticancer effect via autophagic cell death in apoptosis-resistant ovarian cancer. These findings lead to increased options for anticancer platinum drugs to induce cell death in cancer. PMID:23580233

  1. A High Concentration of Genistein Induces Cell Death in Human Uterine Leiomyoma Cells by Autophagy

    PubMed Central

    Castro, Lysandra; Gao, Xioahua; Moore, Alicia B; Yu, Linda; Di, Xudong; Kissling, Grace E; Dixon, Darlene

    2016-01-01

    Genistein, an estrogenic, soy-derived isoflavone, may play a protective role against hormone-related cancers. We have reported that a high concentration of genistein inhibits cell proliferation and induces apoptosis in human uterine smooth muscle cells, but not in leiomyoma (fibroid) cells. To better understand the differential cell death responses of normal and tumor cells to a high concentration of genistein, we treated uterine smooth muscle cells and uterine leiomyoma cells with 50 μg/ml of genistein for 72 h and 168 h, and assessed for mediators of apoptosis, cytotoxicity and autophagy. We found that leiomyoma cells had increased protection from apoptosis by expressing an increased ratio of Bcl-2: bak at 72 h and 168 h; however, in smooth muscle cells, the Bcl-2: bak ratio was decreased at 72 h, but significantly rebounded by 168 h. The apoptosis extrinsic factors, Fas ligand and Fas receptor, were highly expressed in uterine smooth muscle cells following genistein treatment at both time points as evidenced by confocal microscopy. This was not seen in the uterine leiomyoma cells; however, cytotoxicity as indicated by elevated lactate dehydrogenase levels was significantly enhanced at 168 h. Increased immunoexpression of an autophagy/autophagosome marker was also observed in the leiomyoma cells, although minimally present in smooth muscle cells at 72 h. Ultrastructurally, there was evidence of autophagic vacuoles in the leiomyoma cells; whereas, the normal smooth muscle cells showed nuclear fragmentation indicative of apoptosis. In summary, our data show differential cell death pathways induced by genistein in tumor and normal uterine smooth muscle cells, and suggest novel cell death pathways that can be targeted for preventive and intervention strategies for inhibiting fibroid tumor cell growth in vivo. PMID:27512718

  2. Compromising the Unfolded Protein Response Induces Autophagy-Mediated Cell Death in Multiple Myeloma Cells

    PubMed Central

    Michallet, Anne-Sophie; Mondiere, Paul; Taillardet, Morgan; Leverrier, Yann; Genestier, Laurent; Defrance, Thierry

    2011-01-01

    Objective To determine whether the Unfolded Protein Response (UPR) sensors (PERK, ATF6 and IRE-1) can be targeted to promote death of Multiple Myeloma (MM) cells. Methods We have knocked-down separately each UPR stress sensor in human MM cell lines using RNA interference and followed MM cell death by monitoring the membrane, mitochondrial and nuclear alterations. Involvement of caspases in MM cell death consecutive to UPR sensor knock-down was analyzed by western blotting, measurement of their enzymatic activity using fluorigenic substrates and susceptibility to a pan-caspase inhibitor. Activation of the autophagic process was measured directly by detection of autophagosomes (electronic microscopy), monodansylcadaverine staining, production of the cleaved form of the microtubule-associated protein 1A/1B light chain 3 (LC3) and indirectly by analyzing the impact of pharmacological inhibitors of autophagy such as 3MA and bafilomycin A1. Results We show that extinction of a single UPR stress sensor (PERK) induces a non-apoptotic form of cell death in MM cells that requires autophagy for its execution. We also show that this cytotoxic autophagic process represses the apoptosis program by reducing the cytosolic release of the apoptogenic factors Smac/DIABLO and cytochrome c. Interpretation Altogether our findings suggest that autophagy can contrib