Science.gov

Sample records for additional charge transfer

  1. Charge Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Dennerl, Konrad

    2010-12-01

    Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.

  2. Catalysis: Quantifying charge transfer

    NASA Astrophysics Data System (ADS)

    James, Trevor E.; Campbell, Charles T.

    2016-02-01

    Improving the design of catalytic materials for clean energy production requires a better understanding of their electronic properties, which remains experimentally challenging. Researchers now quantify the number of electrons transferred from metal nanoparticles to an oxide support as a function of particle size.

  3. Charge transfer in zirconium films

    NASA Astrophysics Data System (ADS)

    Mel'Nichuk, B. L.; Stasyuk, Z. V.

    1991-12-01

    In superhigh-vacuum conditions (residual gas pressure less than 10-8 Pa), electro-conductive dimensional phenomena, the Hall constant, and the absolute differential thermoemf of zirconium films are investigated. The experimental results are analyzed within the framework of current model concepts regarding volume, surface, and grain-boundary scattering of charge carriers (the Mayadas-Schatzkes and Tel'e-Tosser-Pichard models). The charge-transfer parameters in zirconium are determined.

  4. Charge transfer in multicomponent oxides

    NASA Astrophysics Data System (ADS)

    Kohan, A. F.; Ceder, G.

    1998-02-01

    The transfer of charge between different ions in an oxide plays an essential role in the stability of these compounds. Since small variations in charge can introduce large changes in the total energy, a correct description of this phenomenon is critical. In this work, we show that the ionic charge in oxides can strongly depend on its atomic environment. A model to assign point charges to atoms as a function of their atomic environment has recently been proposed for binary alloys [C. Wolverton, A. Zunger, S. Froyen, and S.-H. Wei, Phys. Rev. B 54, 7843 (1996)] and proven to be very successful in screened solids such as semiconductors and metals. Here, we extend this formalism to multicomponent oxides and we assess its applicability. The simple point-charge model predicts a linear relation between the charge on an atom and the number of unlike neighbors, and between the net value of the charge and the Coulomb field at a given site. The applicability of this approach is tested in a large-supercell self-consistent tight-binding calculation for a random Zr-Ca-O alloy. The observed fluctuations of the ionic charge about the average linear behavior (as a function of the number of unlike neighbors) was larger than 0.25 electrons even when many shells of atomic neighbors were considered in the fit. This variation is significant since it can introduce large errors in the electrostatic energy. On the other hand, for small absolute values of the charge, the ionic charge varied linearly with the Coulomb field, in agreement with previous findings. However, for large Coulomb fields, this function saturates at the formal chemical charge.

  5. Charge-transfer in some physical processes

    NASA Astrophysics Data System (ADS)

    Nešpůrek, S.; Nožár, J.; Rais, D.; Pochekaylov, S.; Šebera, J.; Kochalska, A.

    2010-11-01

    The background of the intra- and inter-molecular electron transfer and some properties of charge transfer states (excitons) are mentioned. On the example of gas sensors the importance of the charge transfer in the dark is discussed. The utilization of the photoinduced charge transfer in electronic processes is demonstrated on the examples of photoconductivity, polymer photodegradation and molecular orientation.

  6. Charge transfer transitions in cuprates

    NASA Astrophysics Data System (ADS)

    Larsson, Sven

    2010-05-01

    Absorption spectra of cuprates are discussed. Persistent photo-induced conductivity occurs in the visible spectrum (˜2 eV) and is commonly assigned to ligand-metal (LM) charge transfer (CT) transitions. However, LM CT is site local and cannot possibly generate persistent charges. The assignment in this Letter is 'metal to adjacent metal' (MM) CT transitions, while the absorption at hν > 3 eV is still assigned to mainly LM CT. Only MM CT, defining the Mott-Hubbard gap, is exclusively polarized in the CuO 2 plane, as found experimentally. Since MM CT is strongly affected by the local electric field, doping transfers spectral weight to the IR region.

  7. Contact charge-transfer lasers

    SciTech Connect

    Dharamsi, A.N.; Tulip, J.

    1981-07-01

    A mechanism for sustaining population inversions in contact charge-transfer complexes in which the ground electronic state is not bound is described. The mechanism relies on picosecond radiationless depletion of the lower laser state. This generates an inversion even when the ground-state potential curve, as plotted against the donor-acceptor distance, is not repulsive vertically below the excited state minimum. Contact charge-transfer lasers would offer high gain, high-energy density, and tunable sources of coherent radiation in the uv and visible. A method for pumping such a laser is examined and applied to the pyrrole-oxygen complex. A rate equation analysis is done and estimates for gain and energy density are presented.

  8. Spacecraft Charging in Geostationary Transfer Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.

    2014-01-01

    The 700 km x 5.8 Re orbit of the two Van Allen Probes spacecraft provide a unique opportunity to investigate spacecraft charging in geostationary transfer orbits. We use records from the Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging events based on the "ion line" charging signature in the ion records. We summarize the energetic particle environment and the conditions necessary for charging to occur in this environment. We discuss the altitude, duration, and magnitude of events observed in the Van Allen Probes from the beginning of the mission to present time. In addition, we explore what information the dual satellites provide on the spatial and temporal variations in the charging environments.

  9. Charge-Transfer Versus Charge-Transfer-Like Excitations Revisited

    SciTech Connect

    Moore, Barry; Sun, Haitao; Govind, Niranjan; Kowalski, Karol; Autschbach, Jochen

    2015-07-14

    Criteria to assess charge-transfer (CT) and `CT-like' character of electronic excitations are examined. Time-dependent density functional theory (TDDFT) with non-hybrid, hybrid, and tuned long-range corrected (LC) functionals is compared with with coupled-cluster (CC) benchmarks. The test set includes an organic CT complex, two `push-pull' donor-acceptor chromophores, a cyanine dye, and several polycyclic aromatic hydrocarbons. Proper CT is easily identified. Excitations with significant density changes upon excitation within regions of close spatial proximity can also be diagnosed. For such excitations, the use of LC functionals in TDDFT sometimes leads to dramatic improvements of the singlet energies, similar to proper CT, which has led to the concept of `CT-like' excitations. However, `CT-like' excitations are not like charge transfer, and the improvements are not obtained for the right reasons. The triplet excitation energies are underestimated for all systems, often severely. For the `CT-like' candidates, when going from a non-hybrid to an LC functional the error in the singlet-triplet (S/T) separation changes from negative to positive, providing error compensation. For the cyanine, the S/T separation is too large with all functionals, leading to the best error compensation for non-hybrid functionals.

  10. Charge transfer mechanism in nonstationary granular systems

    NASA Astrophysics Data System (ADS)

    Ioselevich, A. S.; Sivak, V. V.

    2015-12-01

    We consider a nonstationary array of conductors, connected by resistances that fluctuate with time. The charge transfer between a particular pair of conductors is supposed to be dominated by electrical breakdowns—the moments when the corresponding resistance is close to zero. An amount of charge, transferred during a particular breakdown, is controlled by the condition of minimum for the electrostatic energy of the system. We find the conductivity, relaxation rate, and fluctuations for such a system within the classical approximation, valid, if the typical transferred charge is large compared to e . We discuss possible realizations of the model for colloidal systems and arrays of polymer-linked grains.

  11. Opposites Attract: Organic Charge Transfer Salts

    ERIC Educational Resources Information Center

    van de Wouw, Heidi L.; Chamorro, Juan; Quintero, Michael; Klausen, Rebekka S.

    2015-01-01

    A laboratory experiment is described that introduces second-year undergraduate organic chemistry students to organic electronic materials. The discovery of metallic conductivity in the charge transfer salt tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) is a landmark result in the history of organic electronics. The charge transfer…

  12. Room Temperature Multiferroicity of Charge Transfer Crystals.

    PubMed

    Qin, Wei; Chen, Xiaomin; Li, Huashan; Gong, Maogang; Yuan, Guoliang; Grossman, Jeffrey C; Wuttig, Manfred; Ren, Shenqiang

    2015-09-22

    Room temperature multiferroics has been a frontier research field by manipulating spin-driven ferroelectricity or charge-order-driven magnetism. Charge-transfer crystals based on electron donor and acceptor assembly, exhibiting simultaneous spin ordering, are drawing significant interests for the development of all-organic magnetoelectric multiferroics. Here, we report that a remarkable anisotropic magnetization and room temperature multiferroicity can be achieved through assembly of thiophene donor and fullerene acceptor. The crystal motif directs the dimensional and compositional control of charge-transfer networks that could switch magnetization under external stimuli, thereby opening up an attractive class of all-organic nanoferronics.

  13. Simulations of charge transfer in Electron Multiplying Charge Coupled Devices

    NASA Astrophysics Data System (ADS)

    Bush, N.; Stefanov, K.; Hall, D.; Jordan, D.; Holland, A.

    2014-12-01

    Electron Multiplying Charge Coupled Devices (EMCCDs) are a variant of traditional CCD technology well suited to applications that demand high speed operation in low light conditions. On-chip signal amplification allows the sensor to effectively suppress the noise introduced by readout electronics, permitting sub-electron read noise at MHz pixel rates. The devices have been the subject of many detailed studies concerning their operation, however there has not been a study into the transfer and multiplication process within the EMCCD gain register. Such an investigation has the potential to explain certain observed performance characteristics, as well as inform further optimisations to their operation. In this study, the results from simulation of charge transfer within an EMCCD gain register element are discussed with a specific focus on the implications for serial charge transfer efficiency (CTE). The effects of operating voltage and readout speed are explored in context with typical operating conditions. It is shown that during transfer, a small portion of signal charge may become trapped at the semiconductor-insulator interface that could act to degrade the serial CTE in certain operating conditions.

  14. Ultrafast charge transfer and atomic orbital polarization

    SciTech Connect

    Deppe, M.; Foehlisch, A.; Hennies, F.; Nagasono, M.; Beye, M.; Sanchez-Portal, D.; Echenique, P. M.; Wurth, W.

    2007-11-07

    The role of orbital polarization for ultrafast charge transfer between an atomic adsorbate and a substrate is explored. Core hole clock spectroscopy with linearly polarized x-ray radiation allows to selectively excite adsorbate resonance states with defined spatial orientation relative to the substrate surface. For c(4x2)S/Ru(0001) the charge transfer times between the sulfur 2s{sup -1}3p*{sup +1} antibonding resonance and the ruthenium substrate have been studied, with the 2s electron excited into the 3p{sub perpendicular}* state along the surface normal and the 3p{sub parallel}* state in the surface plane. The charge transfer times are determined as 0.18{+-}0.07 and 0.84{+-}0.23 fs, respectively. This variation is the direct consequence of the different adsorbate-substrate orbital overlap.

  15. Transfer RNA identity rules and conformation of the tyrosine tRNA-like domain of BMV RNA imply additional charging by histidine and valine.

    PubMed

    Felden, B; Florentz, C; Westhof, E; Giegé, R

    1998-02-13

    This paper reports the first example of a triple aminoacylation specificity of a viral tRNA-like domain. These findings were based on structural studies on the brome mosaic virus (BMV) tRNA-like domain (Felden et al., 1994, J. Mol. Biol. 235, 508-531) together with knowledge on tRNA aminoacylation identity rules suggesting potential histidinylation and valylation capacities of the viral RNA in addition to its already known tyrosylation ability. Here, both predictions are demonstrated by in vitro aminoacylation assays. Kinetic parameters of histidinylation and valylation of BMV tRNA-like structure have been determined and compared to those of the corresponding tRNA transcripts and to the tyrosylation capacity of the molecule. The influence of experimental conditions on aminoacylation reactions was also studied. The novel aminoacylation capacities of BMV tRNA-like domain support its already reported three-dimensional fold and illustrate the predictive potential of modeling data. Biological necessity of specific or non specific aminoacylation will be discussed.

  16. Biological charge transfer via flickering resonance

    PubMed Central

    Zhang, Yuqi; Liu, Chaoren; Balaeff, Alexander; Skourtis, Spiros S.; Beratan, David N.

    2014-01-01

    Biological electron-transfer (ET) reactions are typically described in the framework of coherent two-state electron tunneling or multistep hopping. However, these ET reactions may involve multiple redox cofactors in van der Waals contact with each other and with vibronic broadenings on the same scale as the energy gaps among the species. In this regime, fluctuations of the molecular structures and of the medium can produce transient energy level matching among multiple electronic states. This transient degeneracy, or flickering electronic resonance among states, is found to support coherent (ballistic) charge transfer. Importantly, ET rates arising from a flickering resonance (FR) mechanism will decay exponentially with distance because the probability of energy matching multiple states is multiplicative. The distance dependence of FR transport thus mimics the exponential decay that is usually associated with electron tunneling, although FR transport involves real carrier population on the bridge and is not a tunneling phenomenon. Likely candidates for FR transport are macromolecules with ET groups in van der Waals contact: DNA, bacterial nanowires, multiheme proteins, strongly coupled porphyrin arrays, and proteins with closely packed redox-active residues. The theory developed here is used to analyze DNA charge-transfer kinetics, and we find that charge-transfer distances up to three to four bases may be accounted for with this mechanism. Thus, the observed rapid (exponential) distance dependence of DNA ET rates over distances of ≲15 Å does not necessarily prove a tunneling mechanism. PMID:24965367

  17. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  18. Charge-transfer-plate spatial light modulators.

    PubMed

    Warde, C; Schiller, C M; Bounds, J; Horsky, T N; Melnik, G; Dillon, R

    1992-07-10

    Charge-transfer-plate spatial light modulators (CTPSLM's) are a class of devices that employ chargetransfer plates as the interface between the charge-generation element and the light-modulation element. Both optically addressed and electrically addressed devices have been built. Chargegenerating elements for the optically addressed devices include photoconductors, photodiode and phototransistor arrays, optoelectronic integrated circuit chips, and photocathode-microchannel-plate assemblies. For electrically addressed devices, electron guns, very large-scale integrated circuits, thin-film transistors, and matrix electrodes are among the possible charge-generation elements. Lightmodulation elements used in CTPSLM's include liquid crystals, electro-optic organic and inorganic crystals, polymers, deformable membrane mirrors, oil films, multilayer dielectric films, and electroluminescent films. In principle, all combinations of charge-generation elements and light-modulating elements are possible. This paper explores the fundamental performance limitations of CTP technology, and describes the design, operation, and applications of five different CTPSLM's (three based on membrane-mirror technology and two on liquid-crystal technology). PMID:20725374

  19. Coronene-based charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Yoshida, Yukihiro; Isomura, Kazuhide; Kumagai, Yoshihide; Maesato, Mitsuhiko; Kishida, Hideo; Mizuno, Motohiro; Saito, Gunzi

    2016-08-01

    Recent developments in the arena of charge-transfer complexes composed of the D 6h-symmetric polycyclic aromatic hydrocarbon, coronene, are highlighted with emphasis on the structural and physical properties of these complexes. Because of the dual electron-donating and -accepting abilities of coronene, this group involves structurally-defined four cation salts and three anion salts. The Jahn-Teller distortions and in-plane motion of coronene molecules in the solids, both of which are closely associated with the high symmetry of coronene molecules, and syntheses of clathrate-type complexes are also presented.

  20. Pattern classification using charge transfer devices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of using charge transfer devices in the classification of multispectral imagery was investigated by evaluating particular devices to determine their suitability in matrix multiplication subsystem of a pattern classifier and by designing a protype of such a system. Particular attention was given to analog-analog correlator devices which consist of two tapped delay lines, chip multipliers, and a summed output. The design for the classifier and a printed circuit layout for the analog boards were completed and the boards were fabricated. A test j:g for the board was built and checkout was begun.

  1. Coronene-based charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Yoshida, Yukihiro; Isomura, Kazuhide; Kumagai, Yoshihide; Maesato, Mitsuhiko; Kishida, Hideo; Mizuno, Motohiro; Saito, Gunzi

    2016-08-01

    Recent developments in the arena of charge-transfer complexes composed of the D 6h-symmetric polycyclic aromatic hydrocarbon, coronene, are highlighted with emphasis on the structural and physical properties of these complexes. Because of the dual electron-donating and -accepting abilities of coronene, this group involves structurally-defined four cation salts and three anion salts. The Jahn–Teller distortions and in-plane motion of coronene molecules in the solids, both of which are closely associated with the high symmetry of coronene molecules, and syntheses of clathrate-type complexes are also presented.

  2. Charge transfer in energetic Li^2+ - H collisions

    NASA Astrophysics Data System (ADS)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  3. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  4. Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer

    NASA Astrophysics Data System (ADS)

    Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.

    2007-12-01

    This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH--containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH-, upon photo-excitation of FADH- with 350-450 nm light. We compute the lowest singlet excited states of FADH- in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH- that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron-acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH--thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH- causes a π→π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH--to-dimer electronic coupling, thus inducing rapid electron transfer.

  5. Photoinduced charge-transfer materials for nonlinear optical applications

    DOEpatents

    McBranch, Duncan W.

    2006-10-24

    A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.

  6. Ultrafast Charge Photogeneration in MEH-PPV Charge-Transfer Complexes

    NASA Astrophysics Data System (ADS)

    Bakulin, Artem A.; Paraschuk, Dmitry Yu.; Pshenichnikov, Maxim S.; van Loosdrecht, Paul H. M.

    Visible-pump-IR-probe spectroscopy is used to study the ultrafast charge dynamics in MEH-PPV based charge-transfer complexes and donor-acceptor blends. Transient anisotropy of the polymer polaron band provides invaluable insights into excitation localisation and charge-transfer pathways.

  7. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    PubMed

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-01

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  8. A new technique for the study of charge transfer in multiply charged ion-ion collisions

    SciTech Connect

    Shinpaugh, J.L.; Meyer, F.W.; Datz, S.

    1994-12-31

    While large cross sections (>10{sup {minus}16} cm{sup 2}) have been predicted for resonant charge transfer in ion-ion collisions, no experimental data exist for multiply charged systems. A novel technique is being developed at the ORNL ECR facility to allow study of symmetric charge exchange in multiply charged ion-ion collisions using a single ion source. Specific intra-beam charge transfer collisions occurring in a well-defined interaction region labeled by negative high voltage are identified and analyzed by electrostatic analysis in combination with ion time-of-flight coincidence detection of the collision products. Center-of-mass collision energies from 400 to 1000 eV are obtained by varying source and labeling-cell voltages. In addition, by the introduction of a target gas into the high-voltage cell, this labeling-voltage method allows measurement of electron-capture and -loss cross sections for ion-atom collisions. Consequently, higher collision energies can be investigated without the requirement of placing the ECR source on a high-voltage platform.

  9. Charge-transfer excitons in DNA.

    PubMed

    Conwell, E M; McLaughlin, P M; Bloch, S M

    2008-02-21

    There have been a number of theoretical treatments of excitons in DNA, most neglecting both the intrachain and interchain wavefunction overlaps of the electron and hole, treating them as Frenkel excitons. Recently, the importance of the intrachain and interchain coupling has been highlighted. Experiments have shown that in (dA)n oligomers and in duplex (dA)n.(dT)n, to be abbreviated (A/T), where A is adenine and T is thymine, the exciton wavefunction is delocalized over several bases. In duplexes it is possible to have charge-transfer (CT) excitons. Theoretical calculations have suggested that CT excitons in DNA may have lower energy than single chain excitons. In all the calculations of excitons in DNA, the polarization of the surrounding water has been neglected. Calculations have shown, however, that polarization of the water by an excess electron or a hole in DNA lowers its energy by approximately 1/2 eV, causing it to become a polaron. It is therefore to be expected that polarization charge induced in the surrounding water has a significant effect on the properties of the exciton. In what follows, we present calculations of some properties CT excitons would have in an A/T duplex taking into account the wavefunction overlaps, the effect of the surrounding water, which results in the electron and hole becoming polarons, and the ions in the water. As expected, the CT exciton has lowest energy when the electron and hole polarons are directly opposite each other. By appropriate choice of the dielectric constant, we can obtain a CT exciton delocalized over the number of sites found in photoinduced absorption experiments. The absorption threshold that we then calculate for CT exciton creation in A/T is in reasonable agreement with the lowest singlet absorption deduced from available data. PMID:18232682

  10. Characterisation of a CMOS charge transfer device for TDI imaging

    NASA Astrophysics Data System (ADS)

    Rushton, J.; Holland, A.; Stefanov, K.; Mayer, F.

    2015-03-01

    The performance of a prototype true charge transfer imaging sensor in CMOS is investigated. The finished device is destined for use in TDI applications, especially Earth-observation, and to this end radiation tolerance must be investigated. Before this, complete characterisation is required. This work starts by looking at charge transfer inefficiency and then investigates responsivity using mean-variance techniques.

  11. Dielectric Properties of Organic Charge-Transfer Salts

    NASA Astrophysics Data System (ADS)

    Fischer, J. K. H.; Lunkenheimer, P.; Krohns, S.; Manna, R. S.; Hartmann, B.; Schubert, H.; Lang, M.; Müller, J.; Schlueter, J. A.; Mézière, C.; Batail, P.; Loidl, A.

    The BEDT-TTF-based charge-transfer salts have attracted considerable attention due to their often intriguing dielectric properties. An example is κ-(BEDT-TTF)2Cu[N(CN)2]Cl. It was recently found to exhibit multiferroicity, for which a new electric-dipole driven mechanism was proposed. The polar moment in this system was suggested to arise from the dimerization of the BEDT-TTF molecules, combined with charge order. Another interesting recent example is α-(BEDT-TTF)2I3, which shows the signature of relaxor-ferroelectric behavior. Here, we will present an overview of the dielectric properties of the above systems and provide new results on κ-(BEDT-TTF)2Hg(SCN)2Cl, which also seems to show relaxor-ferroelectric behavior in its charge-ordered state. In addition, we present measurements of δ-(EDT-TTF-CONMe2)2Br. This compound lacks dimerization, but exhibits charge order already at room temperature.

  12. Tunable charge transfer properties in metal-phthalocyanine heterojunctions

    NASA Astrophysics Data System (ADS)

    Siles, P. F.; Hahn, T.; Salvan, G.; Knupfer, M.; Zhu, F.; Zahn, D. R. T.; Schmidt, O. G.

    2016-04-01

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of

  13. Tunable charge transfer properties in metal-phthalocyanine heterojunctions.

    PubMed

    Siles, P F; Hahn, T; Salvan, G; Knupfer, M; Zhu, F; Zahn, D R T; Schmidt, O G

    2016-04-28

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.

  14. Tunable charge transfer properties in metal-phthalocyanine heterojunctions.

    PubMed

    Siles, P F; Hahn, T; Salvan, G; Knupfer, M; Zhu, F; Zahn, D R T; Schmidt, O G

    2016-04-28

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin. PMID:27049842

  15. A surface acoustic wave /SAW/ charge transfer imager

    NASA Technical Reports Server (NTRS)

    Papanicolauo, N. A.; Lin, H. C.

    1981-01-01

    An 80 MHz, 2-microsecond surface acoustic wave charge transfer device (SAW-CTD) has been fabricated in which surface acoustic waves are used to create traveling longitudinal electric fields in the silicon substrate and to replace the multiphase clocks of charge coupled devices. The traveling electric fields create potential wells which will carry along charges that may be stored in the wells; the charges may be injected into the wells by light. An optical application is proposed where the SAW-CTD structure is used in place of a conventional interline transfer design.

  16. Charge Transfer and Catalysis at the Metal Support Interface

    SciTech Connect

    Baker, Lawrence Robert

    2012-07-31

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalytic reaction kinetics.

  17. The impact of charge transfer and structural disorder on the thermoelectric properties of cobalt intercalated TiS2 † †Electronic supplementary information (ESI) available: Powder X-ray diffraction data, thermal analysis data and additional magnetic and transport property data. See DOI: 10.1039/c5tc04217h Click here for additional data file.

    PubMed Central

    Guélou, Gabin; Vaqueiro, Paz; Prado-Gonjal, Jesús; Barbier, Tristan; Hébert, Sylvie; Guilmeau, Emmanuel; Kockelmann, Winfried

    2016-01-01

    A family of phases, CoxTiS2 (0 ≤ x ≤ 0.75) has been prepared and characterised by powder X-ray and neutron diffraction, electrical and thermal transport property measurements, thermal analysis and SQUID magnetometry. With increasing cobalt content, the structure evolves from a disordered arrangement of cobalt ions in octahedral sites located in the van der Waals' gap (x ≤ 0.2), through three different ordered vacancy phases, to a second disordered phase at x ≥ 0.67. Powder neutron diffraction reveals that both octahedral and tetrahedral inter-layer sites are occupied in Co0.67TiS2. Charge transfer from the cobalt guest to the TiS2 host affords a systematic tuning of the electrical and thermal transport properties. At low levels of cobalt intercalation (x < 0.1), the charge transfer increases the electrical conductivity sufficiently to offset the concomitant reduction in |S|. This, together with a reduction in the overall thermal conductivity leads to thermoelectric figures of merit that are 25% higher than that of TiS2, ZT reaching 0.30 at 573 K for CoxTiS2 with 0.04 ≤ x ≤ 0.08. Whilst the electrical conductivity is further increased at higher cobalt contents, the reduction in |S| is more marked due to the higher charge carrier concentration. Furthermore both the charge carrier and lattice contributions to the thermal conductivity are increased in the electrically conductive ordered-vacancy phases, with the result that the thermoelectric performance is significantly degraded. These results illustrate the competition between the effects of charge transfer from guest to host and the disorder generated when cobalt cations are incorporated in the inter-layer space. PMID:27774151

  18. Charge transfer reactions in nematic liquid crystals

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |; Galili, T.; Levanon, H.

    1998-07-01

    Ultrafast transient absorption studies of intramolecular photoinduced charge separation and thermal charge recombination were carried out on a molecule consisting of a 4-(N-pyrrolidino)naphthalene-1,8-imide donor (PNI) covalently attached to a pyromellitimide acceptor (PI) dissolved in the liquid crystal 4{prime}-(n-pentyl)-4-cyanobiphenyl (5CB). The temperature dependencies of the charge separation and recombination rates were obtained at temperatures above the nematic-isotropic phase transition of 5CB, where ordered microdomains exist and scattering of visible light by these domains is absent. The authors show that excited state charge separation is dominated by molecular reorientation of 5CB perpendicular to the director within the liquid crystal microdomains. They also show that charge recombination is adiabatic and is controlled by the comparatively slow collective reorientation of the liquid crystal microdomains relative to the orientation of PNI{sup +}-PI{sup {minus}}. They also report the results of time resolved electron paramagnetic resonance (TREPR) studies of photoinduced charge separation in a series of supramolecular compounds dissolved in oriented liquid crystal solvents. These studies permit the determination of the radical pair energy levels as the solvent reorganization energy increases from the low temperature crystalline phase, through the soft glass phase, to the nematic phase of the liquid crystal.

  19. Interfacial charge transfer absorption: Application to metal molecule assemblies

    NASA Astrophysics Data System (ADS)

    Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman

    2006-05-01

    Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.

  20. Charge transfer and emergent phenomena of oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui

    Charge transfer is a common phenomenon at oxide interfaces. We use first-principles calculations to show that via heterostructuring of transition metal oxides, the electronegativity difference between two dissimilar transition metal ions can lead to high level of charge transfer and induce substantial redistribution of electrons and ions. Notable examples include i) enhancing correlation effects and inducing a metal-insulator transition; ii) tailoring magnetic structures and inducing interfacial ferromagnetism; iii) engineering orbital splitting and inducing a non-cuprate single-orbital Fermi surface. Utilizing charge transfer to induce emergent electronic/magnetic/orbital properties at oxide interfaces is a robust approach. Combining charge transfer with quantum confinement and expitaxial strain provides an appealing prospect of engineering electronic structure of artificial oxide heterostructures. This research was supported by National Science Foundation under Grant No. DMR-1120296.

  1. Screen charge transfer by grounded tip on ferroelectric surfaces.

    SciTech Connect

    Kim, Y.; Kim, J.; Buhlmann, S.; Hong, S.; Kim, Y. K.; Kim, S.-H.; No, K.; Materials Science Division; Korea Advanced Inst. of Science and Technology; Samsung Advanced Inst. of Technology; Inostek Inc.

    2008-03-01

    We have investigated polarization reversal and charge transfer effects by a grounded tip on 50 nm thick ferroelectric thin films using piezoelectric force microscopy and Kelvin force microscopy. We observed the polarization reversal in the center of written domains, and also identified another mechanism, which is the transfer of screen charges toward the grounded tip. In order to overcome these phenomena, we successfully applied a modified read/write scheme featuring a bias voltage.

  2. Femtochemistry of Intramolecular Charge and Proton Transfer Reactions in Solution

    SciTech Connect

    Douhal, Abderrazzak; Sanz, Mikel; Carranza, Maria Angeles; Organero, Juan Angel; Tormo, Laura

    2005-03-17

    We report on the first observation of ultrafast intramolecular charge- and proton-transfer reactions in 4'-dimethylaminoflavonol (DAMF) in solution. Upon femtosecond excitation of a non-planar structure of DMAF in apolar medium, the intramolecular charge transfer (ICT) does not occur, and a slow (2 ps) proton motion takes place. However, in polar solvents, the ICT is very fast (100-200 fs) and the produced structure is stabilized that proton motion takes place in few or tens of ps.

  3. Polyelectrolyte decomplexation via addition of salt: charge correlation driven zipper.

    PubMed

    Antila, Hanne S; Sammalkorpi, Maria

    2014-03-20

    We report the first atomic scale studies of polyelectrolyte decomplexation. The complex between DNA and polylysine is shown to destabilize and spontaneously open in a gradual, reversible zipper-like mechanism driven by an increase in solution salt concentration. Divalent CaCl2 is significantly more effective than monovalent NaCl in destabilizing the complex due to charge correlations and water binding capability. The dissociation occurs accompanied by charge reversal in which charge correlations and ion binding chemistry play a key role. Our results are in agreement with experimental work on complex dissociation but in addition show the underlying microstructural correlations driving the behavior. Comparison of our full atomic level detail and dynamics results with theoretical works describing the PEs as charged, rigid rods reveals that although charge correlation involved theories provide qualitatively similar responses, considering also specific molecular chemistry and molecular level water contributions provides a more complete understanding of PE complex stability and dynamics. The findings may facilitate controlled release in gene delivery and more in general tuning of PE membrane permeability and mechanical characteristics through ionic strength.

  4. Charge transfer during individual collisions in ice growing by riming

    NASA Technical Reports Server (NTRS)

    Avila, Eldo E.; Caranti, Giorgio M.

    1991-01-01

    The charging of a target by riming in the wind was studied in the temperature range of (-10, -18 C). For each temperature, charge transfers of both signs are observed and, according to the environmental conditions, one of them prevails. The charge is more positive as the liquid water concentration is increased at any particular temperature. It is found that even at the low impact velocities used (5 m/s) there is abundant evidence of fragmentation following the collision.

  5. SEMICONDUCTOR DEVICES: Simulation for signal charge transfer of charge coupled devices

    NASA Astrophysics Data System (ADS)

    Zujun, Wang; Yinong, Liu; Wei, Chen; Benqi, Tang; Zhigang, Xiao; Shaoyan, Huang; Minbo, Liu; Yong, Zhang

    2009-12-01

    Physical device models and numerical processing methods are presented to simulate a linear buried channel charge coupled devices (CCDs). The dynamic transfer process of CCD is carried out by a three-phase clock pulse driver. By using the semiconductor device simulation software MEDICI, dynamic transfer pictures of signal charges cells, electron concentration and electrostatic potential are presented. The key parameters of CCD such as charge transfer efficiency (CTE) and dark electrons are numerically simulated. The simulation results agree with the theoretic and experimental results.

  6. Charge transfer reactions in multiply charged ion-atom collisions. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    Charge-transfer reactions in collisions between highly charged ions and neutral atoms of hydrogen and/or helium may be rapid at thermal energies. If these reactions are rapid, they will suppress highly charged ions in H I regions and guarantee that the observed absorption features from such ions cannot originate in the interstellar gas. A discussion of such charge-transfer reactions is presented and compared with the available experimental data. The possible implications of these reactions for observations of the interstellar medium, H II regions, and planetary nebulae are outlined.

  7. INTRAMOLECULAR CHARGE AND ENERGY TRANSFER IN MULTICHROMOPHORIC AROMATIC SYSTEMS

    SciTech Connect

    Edward C. Lim

    2008-09-09

    A concerted experimental and computational study of energy transfer in nucleic acid bases and charge transfer in dialkylaminobenzonitriles, and related electron donor-acceptor molecules, indicate that the ultrafast photoprocesses occur through three-state conical interactions involving an intermediate state of biradical character.

  8. Ultrafast Charge Transfer Visualized by Two-Dimensional Electronic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bixner, O.; Christensson, N.; Hauer, J.; Milota, F.; Mančal, T.; Lukeš, V.; Kauffmann, H. F.

    2013-03-01

    Two-dimensional electronic spectroscopy (2D-ES) is used to investigate ultrafast excited-state dynamics in a lutetium bisphthalocyanine dimer. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra. The combination of density matrix propagation and quantum chemical calculations results in a molecular view of the charge transfer dynamics and highlights the role of the counter-ion in providing an energetic perturbation which promotes charge transfer across the complex.

  9. Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zhu, Haiming; Yang, Ye; Wu, Kaifeng; Lian, Tianquan

    2016-05-01

    Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research.

  10. Coherent ultrafast charge transfer in an organic photovoltaic blend.

    PubMed

    Falke, Sarah Maria; Rozzi, Carlo Andrea; Brida, Daniele; Maiuri, Margherita; Amato, Michele; Sommer, Ephraim; De Sio, Antonietta; Rubio, Angel; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph

    2014-05-30

    Blends of conjugated polymers and fullerene derivatives are prototype systems for organic photovoltaic devices. The primary charge-generation mechanism involves a light-induced ultrafast electron transfer from the light-absorbing and electron-donating polymer to the fullerene electron acceptor. Here, we elucidate the initial quantum dynamics of this process. Experimentally, we observed coherent vibrational motion of the fullerene moiety after impulsive optical excitation of the polymer donor. Comparison with first-principle theoretical simulations evidences coherent electron transfer between donor and acceptor and oscillations of the transferred charge with a 25-femtosecond period matching that of the observed vibrational modes. Our results show that coherent vibronic coupling between electronic and nuclear degrees of freedom is of key importance in triggering charge delocalization and transfer in a noncovalently bound reference system. PMID:24876491

  11. Coherent ultrafast charge transfer in an organic photovoltaic blend.

    PubMed

    Falke, Sarah Maria; Rozzi, Carlo Andrea; Brida, Daniele; Maiuri, Margherita; Amato, Michele; Sommer, Ephraim; De Sio, Antonietta; Rubio, Angel; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph

    2014-05-30

    Blends of conjugated polymers and fullerene derivatives are prototype systems for organic photovoltaic devices. The primary charge-generation mechanism involves a light-induced ultrafast electron transfer from the light-absorbing and electron-donating polymer to the fullerene electron acceptor. Here, we elucidate the initial quantum dynamics of this process. Experimentally, we observed coherent vibrational motion of the fullerene moiety after impulsive optical excitation of the polymer donor. Comparison with first-principle theoretical simulations evidences coherent electron transfer between donor and acceptor and oscillations of the transferred charge with a 25-femtosecond period matching that of the observed vibrational modes. Our results show that coherent vibronic coupling between electronic and nuclear degrees of freedom is of key importance in triggering charge delocalization and transfer in a noncovalently bound reference system.

  12. The study of surface acoustic wave charge transfer device

    NASA Technical Reports Server (NTRS)

    Papanicolaou, N.; Lin, H. C.

    1978-01-01

    A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.

  13. Non-additivity of pair interactions in charged colloids.

    PubMed

    Finlayson, Samuel D; Bartlett, Paul

    2016-07-21

    It is general wisdom that the pair potential of charged colloids in a liquid may be closely approximated by a Yukawa interaction, as predicted by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We experimentally determine the effective forces in a binary mixture of like-charged particles, of species 1 and 2, with blinking optical tweezers. The measured forces are consistent with a Yukawa pair potential but the (12) cross-interaction is not equal to the geometric mean of the (11) and (22) like-interactions, as expected from DLVO. The deviation is a function of the electrostatic screening length and the size ratio, with the cross-interaction measured being consistently weaker than DLVO predictions. The corresponding non-additivity parameter is negative and grows in magnitude with increased size asymmetry. PMID:27448904

  14. Non-additivity of pair interactions in charged colloids

    NASA Astrophysics Data System (ADS)

    Finlayson, Samuel D.; Bartlett, Paul

    2016-07-01

    It is general wisdom that the pair potential of charged colloids in a liquid may be closely approximated by a Yukawa interaction, as predicted by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We experimentally determine the effective forces in a binary mixture of like-charged particles, of species 1 and 2, with blinking optical tweezers. The measured forces are consistent with a Yukawa pair potential but the (12) cross-interaction is not equal to the geometric mean of the (11) and (22) like-interactions, as expected from DLVO. The deviation is a function of the electrostatic screening length and the size ratio, with the cross-interaction measured being consistently weaker than DLVO predictions. The corresponding non-additivity parameter is negative and grows in magnitude with increased size asymmetry.

  15. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE. PMID:27538341

  16. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

  17. Charge-transfer water potential for solvated protein dynamics

    NASA Astrophysics Data System (ADS)

    Janardhanam, Vijay; Amo-Kwao, Godwin; Atlas, Susan R.

    2010-03-01

    Water plays a critical role in simulations of complex structure-function relationships such as the mechanochemistry of molecular motor proteins, wherein solvating water molecules interact with divalent cations such as Mg^+2, salt bridges, and polar or charged amino acids. Existing fixed-charge and fluctuating charge water models are inadequate in these environments, since they do not support reactive charge transfer with proper long-range dissociation behavior. The charge-transfer embedded atom method (CT-EAM) potential of Valone and Atlas was developed to address these challenges. It includes charge-polarized and ionic embedding terms that describe many-body atomistic interactions as a statistical ensemble of integer-charge excitations; background embedding densities are functions of local pseudoatom electron density distributions that integrate to non-integer charges and evolve dynamically under chemical potential equalization. Here we report first results from simulations of water using the CT-EAM potential of [1] and compare with characteristic properties of the liquid as determined via conventional force fields. [1] K. Muralidharan, S. M. Valone, and S.R. Atlas. arXiv:cond-mat/0705.0857v1, submitted.

  18. Ga Nanoparticle/Graphene Platforms: Plasmonic and Charge Transfer Interactions

    NASA Astrophysics Data System (ADS)

    Yi, Congwen; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Brown, April S.

    2013-03-01

    Metal nanoparticle (NP) - graphene multifunctional platforms are of great interest for numerous applications, such as sensing and catalysis, and for fundamental studies on charge transfer and light-matter interactions. To understand platform-photon interactions, it is important to articulate the coupling of photon-based excitations, such as the interaction between plasmons in each of the material components, as well as their charge-based interactions dependent upon the energy alignment at the metal/graphene interface. Herein, we use liquid metal Ga nanoparticles, which can be deposited at 300K on graphene, to explore the surface-enhanced Raman spectroscopy modulation induced by the NPs,. The localized charge transfer between Ga NPs and graphene are investigated, and enhancement of the graphene Raman modes is correlated with metal coverage the transfer of electrons from Ga to graphene creating local regions of enhanced electron concentration which modify the electron-phonon interaction in graphene.

  19. Charge transfer properties of pentacene adsorbed on silver: DFT study

    SciTech Connect

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-24

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  20. Dynamic salt effect on intramolecular charge-transfer reactions

    SciTech Connect

    Zhu Jianjun; Ma Rong; Lu Yan; Stell, George

    2005-12-08

    The dynamic salt effect in charge-transfer reactions is investigated theoretically in this paper. Free-energy surfaces are derived based on a nonequilibrium free-energy functional. Reaction coordinates are clearly defined. The solution of the reaction-diffusion equation leads to a rate constant depending on the time correlation function of the reaction coordinates. The time correlation function of the ion-atmosphere coordinate is derived from the solution of the Debye-Falkenhagen equation. It is shown that the dynamic salt effect plays an important role in controlling the rate of charge-transfer reactions in the narrow-window limit but is balanced by the energetics and the dynamics of the polar-solvent coordinate. The simplest version of the theory is compared with an experiment, and the agreement is fairly good. The theory can also be extended to charge-transfer in the class of electrolytes that has come to be called 'ionic fluids'.

  1. Intermolecular-charge-transfer-induced fluorescence quenching in protic solvent

    NASA Astrophysics Data System (ADS)

    Lin, Tao; Liu, Xiaojun; Lou, Zhidong; Hou, Yanbing; Teng, Feng

    2016-11-01

    The fluorescence quenching of fluorenone in protic solvent has been extensively investigated, and the intermolecular hydrogen bond was found to play a crucial role. Unfortunately, the mechanism at atomic level is still not clear. In the present work, we theoretically put forward the charge transfer along the hydrogen bond in the excited states. The vertical excitation energies of the fluorenone-methanol complex as well as the potential energy profiles and surfaces of the vertical excited states and charge transfer states were calculated by using the ab initio electronic-structure methods. The photochemical reactions occurring in the diverse charge transfer states were compared and their decisiveness to the fluorescence quenching was discussed in the paper.

  2. Multiple-charge transfer and trapping in DNA dimers

    NASA Astrophysics Data System (ADS)

    Tornow, Sabine; Bulla, Ralf; Anders, Frithjof B.; Zwicknagl, Gertrud

    2010-11-01

    We investigate the charge transfer characteristics of one and two excess charges in a DNA base-pair dimer using a model Hamiltonian approach. The electron part comprises diagonal and off-diagonal Coulomb matrix elements such a correlated hopping and the bond-bond interaction, which were recently calculated by Starikov [E. B. Starikov, Philos. Mag. Lett. 83, 699 (2003)10.1080/0950083031000151374] for different DNA dimers. The electronic degrees of freedom are coupled to an ohmic or a superohmic bath serving as dissipative environment. We employ the numerical renormalization group method in the nuclear tunneling regime and compare the results to Marcus theory for the thermal activation regime. For realistic parameters, the rate that at least one charge is transferred from the donor to the acceptor in the subspace of two excess electrons significantly exceeds the rate in the single charge sector. Moreover, the dynamics is strongly influenced by the Coulomb matrix elements. We find sequential and pair transfer as well as a regime where both charges remain self-trapped. The transfer rate reaches its maximum when the difference of the on-site and intersite Coulomb matrix element is equal to the reorganization energy which is the case in a guanine/cytosine (GC)-dimer. Charge transfer is completely suppressed for two excess electrons in adenine/thymine (AT)-dimer in an ohmic bath and replaced by damped coherent electron-pair oscillations in a superohmic bath. A finite bond-bond interaction W alters the transfer rate: it increases as function of W when the effective Coulomb repulsion exceeds the reorganization energy (inverted regime) and decreases for smaller Coulomb repulsion.

  3. [Dynamics of charge transfer along an oligonucleotide at finite temperature].

    PubMed

    Lakhno, V D; Fialko, N S

    2004-01-01

    The quantum-statistical approach was used to describe the charge transfer in nucleotide sequences. The results of numerical modeling for hole transfer in the GTTGGG sequence with background temperature noise are given. It was shown that, since guanine has an oxidation potential lower than thymine, the hole created at the G donor in this sequence passes through the thymine barrier into the guanine triplet (acceptor) at a time of approximately 10 ps at a temperature of 37 degrees C.

  4. Backbone Additivity in the Transfer Model of Protein Solvation

    SciTech Connect

    Hu, Char Y.; Kokubo, Hironori; Lynch, Gillian C.; Bolen, D Wayne; Pettitt, Bernard M.

    2010-05-01

    The transfer model implying additivity of the peptide backbone free energy of transfer is computationally tested. Molecular dynamics simulations are used to determine the extent of change in transfer free energy (ΔGtr) with increase in chain length of oligoglycine with capped end groups. Solvation free energies of oligoglycine models of varying lengths in pure water and in the osmolyte solutions, 2M urea and 2M trimethylamine N-oxide (TMAO), were calculated from simulations of all atom models, and ΔGtr values for peptide backbone transfer from water to the osmolyte solutions were determined. The results show that the transfer free energies change linearly with increasing chain length, demonstrating the principle of additivity, and provide values in reasonable agreement with experiment. The peptide backbone transfer free energy contributions arise from van der Waals interactions in the case of transfer to urea, but from electrostatics on transfer to TMAO solution. The simulations used here allow for the calculation of the solvation and transfer free energy of longer oligoglycine models to be evaluated than is currently possible through experiment. The peptide backbone unit computed transfer free energy of –54 cal/mol/Mcompares quite favorably with –43 cal/mol/M determined experimentally.

  5. CORRELATING ELECTRONIC AND VIBRATIONAL MOTIONS IN CHARGE TRANSFER SYSTEMS

    SciTech Connect

    Khalil, Munira

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  6. Charge-transfer complexation between naphthalene diimides and aromatic solvents.

    PubMed

    Kulkarni, Chidambar; Periyasamy, Ganga; Balasubramanian, S; George, Subi J

    2014-07-28

    Naphthalene diimides (NDIs) form emissive ground-state charge-transfer (CT) complexes with various electron rich aromatic solvents like benzene, o-xylene and mesitylene. TD-DFT calculation of the complexes suggests CT interaction and accounts for the observed ground-state changes.

  7. Primary cells utilize halogen-organic charge transfer complex

    NASA Technical Reports Server (NTRS)

    Gutmann, F.; Hermann, A. M.; Rembaum, A.

    1966-01-01

    Electrochemical cells with solid state components employ charge transfer complexes or donor-acceptor complexes in which the donor component is an organic compound and the acceptor component is a halogen. A minor proportion of graphite added to these composition helps reduce the resistivity.

  8. Charge-transfer complexation between naphthalene diimides and aromatic solvents.

    PubMed

    Kulkarni, Chidambar; Periyasamy, Ganga; Balasubramanian, S; George, Subi J

    2014-07-28

    Naphthalene diimides (NDIs) form emissive ground-state charge-transfer (CT) complexes with various electron rich aromatic solvents like benzene, o-xylene and mesitylene. TD-DFT calculation of the complexes suggests CT interaction and accounts for the observed ground-state changes. PMID:24931833

  9. Enhancing SERS by Means of Supramolecular Charge Transfer

    NASA Technical Reports Server (NTRS)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  10. Charge transfer devices. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-04-01

    The technology, design, fabrication, and applications of charge transfer devices are presented in the cited research reports. Applications include imaging, signal processing, detectors, filters, amplifiers, and memory devices. This updated bibliography contains 107 abstracts, all of which are new entries to the previous edition.

  11. Infrared Spectroscopy of Charge Transfer Complexes of Purines and Pyrimidines

    SciTech Connect

    Rathod, Pravinsinh I.; Oza, A. T.

    2011-10-20

    The FTIR spectra of charge transfer complexes of purines and pyrimidines with organic acceptors such as TCNQ, TCNE, DDQ, chloranil and iodine are obtained and studied in the present work. Adenine, guanine, thymine, cytosine and uracil are the purines and pyrimidines which are found as constituent of DNA and RNA. Charge transfer induced hydrogen bonding is concluded on the basis of indirect transitions observed in the infrared range in these CTCs. Some CTCs show gaussian bands revealing delocalization of charge carriers. The CTCs show interband transition in three-dimensions rather than two-dimensions unlike CTCs of amino acids. There is no extended hydrogen bonded network spanning the whole crystal. This leads to indirect transition due to locally deformed lattice furnishing a phonon-assisted transition.

  12. Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins.

    PubMed

    Kannan, A M; Renugopalakrishnan, V; Filipek, S; Li, P; Audette, G F; Munukutla, L

    2009-03-01

    Bio-fuel cells are alternative energy devises based on bio-electrocatalysis of natural substrates by enzymes or microorganisms. Here we review bio-fuel cells and bio-batteries based on the recent literature. In general, the bio-fuel cells are classified based on the type of electron transfer; mediated electron transfer and direct electron transfer or electronic charge transfer (ECT). The ECT of the bio-fuel cells is critically reviewed and a variety of possible applications are considered. The technical challenges of the bio-fuel cells, like bioelectrocatalysis, immobilization of bioelectrocatalysts, protein denaturation etc. are highlighted and future research directions are discussed leveraging on the use of electron charge transfer proteins. In addition, the packaging aspects of the bio-fuel cells are also analyzed and the found that relatively little work has been done in the engineering development of bio-fuel cells.

  13. Charge transfer in collisions of doubly charged ions of iron and nickel with hydrogen atoms

    SciTech Connect

    Neufeld, D.A.; Dalgarno, A.

    1987-04-01

    The Landau-Zener approximation is used to compute the charge-transfer recombination rate coefficients of Fe/sup 2+/ and Ni/sup 2+/ in hydrogen at thermal energies. The energy separations of the adiabatic potential-energy curves of the quasimolecules FeH/sup 2+/ and NiH/sup 2+/ are obtained from one-electron calculations. The rate coefficients are of the order of 10/sup -9/ cm/sup 3/X sup -1: or greater. Charge transfer of Fe/sup 2+/ occurs preferentially into the ground state of Fe/sup +/ so that the reverse process of charge-transfer ionization of Fe/sup +/ in collision with H/sup +/ also occurs rapidly above the reaction threshold.

  14. A tetrastable naphthalenediimide: anion induced charge transfer, single and double electron transfer for combinational logic gates.

    PubMed

    Ajayakumar, M R; Hundal, Geeta; Mukhopadhyay, Pritam

    2013-09-11

    Herein we demonstrate the formation of the first tetrastable naphthalenediimide (NDI, 1a) molecule having multiple distinctly readable outputs. Differential response of 1a to fluoride anions induces intramolecular charge transfer (ICT), single/double electron transfer (SET/DET) leading to a set of combinational logic gates for the first time with a NDI moiety. PMID:23752683

  15. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  16. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  17. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  18. A Gating Charge Transfer Center in Voltage Sensors

    SciTech Connect

    Tao, X.; Lee, A; Limapichat, W; Dougherty, D; MacKinnon, R

    2010-01-01

    Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic 'cap' and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.

  19. Photoinduced charge and energy transfer in molecular wires.

    PubMed

    Gilbert, Mélina; Albinsson, Bo

    2015-02-21

    Exploring charge and energy transport in donor-bridge-acceptor systems is an important research field which is essential for the fundamental knowledge necessary to develop future applications. These studies help creating valuable knowledge to respond to today's challenges to develop functionalized molecular systems for artificial photosynthesis, photovoltaics or molecular scale electronics. This tutorial review focuses on photo-induced charge/energy transfer in covalently linked donor-bridge-acceptor (D-B-A) systems. Of utmost importance in such systems is to understand how to control signal transmission, i.e. how fast electrons or excitation energy could be transferred between the donor and acceptor and the role played by the bridge (the "molecular wire"). After a brief description of the electron and energy transfer theory, we aim to give a simple yet accurate picture of the complex role played by the bridge to sustain donor-acceptor electronic communication. Special emphasis is put on understanding bridge energetics and conformational dynamics effects on the distance dependence of the donor-acceptor electronic coupling and transfer rates. Several examples of donor-bridge-acceptor systems from the literature are described as a support to the discussion. Finally, porphyrin-based molecular wires are introduced, and the relationship between their electronic structure and photophysical properties is outlined. In strongly conjugated porphyrin systems, limitations of the existing electron transfer theory to interpret the distance dependence of the transfer rates are also discussed.

  20. Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.

    PubMed

    Yin, Jun; Cortecchia, Daniele; Krishna, Anurag; Chen, Shi; Mathews, Nripan; Grimsdale, Andrew C; Soci, Cesare

    2015-04-16

    Solar cells based on organic-inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.

  1. Charge-transfer crystallites as molecular electrical dopants

    NASA Astrophysics Data System (ADS)

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-10-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi-Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites--rather than individual acceptor molecules--should be regarded as the dopants in such systems.

  2. Charge-transfer crystallites as molecular electrical dopants

    PubMed Central

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403

  3. Study of Grating Structures Transferred to Glass Substrates via Corona Charging

    NASA Astrophysics Data System (ADS)

    Sakai, Daisuke; Miho, Daichi; Harada, Kenji; Barada, Daisuke; Fukuda, Takashi

    2010-01-01

    The fabrication of a grating structure on/in a glass substrate via corona charging was investigated. According to the experimental result, it was found that a surface relief grating (SRG; depth=1.5 nm) and a volume grating were transferred to the substrate when a polymer film with an SRG as a template was employed. The polymer template should be prebaked before corona charging to inhibit the generation of structural disorder, which degrades the optical quality of the transferred grating. The diffraction properties were discussed in order to characterize the transferred grating that consists of an SRG and a volume grating. Additionally, the erasability and rewritability of the grating structure stored on/in the glass substrate were investigated. Then, it was experimentally confirmed that a Fourier transform hologram stored on/in a glass substrate could be erased via homogeneous corona charging. Furthermore, it was found that a glass substrate becomes unrecordable after the erasure.

  4. What is the "best" atomic charge model to describe through-space charge-transfer excitations?

    PubMed

    Jacquemin, Denis; Le Bahers, Tangui; Adamo, Carlo; Ciofini, Ilaria

    2012-04-28

    We investigate the efficiency of several partial atomic charge models (Mulliken, Hirshfeld, Bader, Natural, Merz-Kollman and ChelpG) for investigating the through-space charge-transfer in push-pull organic compounds with Time-Dependent Density Functional Theory approaches. The results of these models are compared to benchmark values obtained by determining the difference of total densities between the ground and excited states. Both model push-pull oligomers and two classes of "real-life" organic dyes (indoline and diketopyrrolopyrrole) used as sensitisers in solar cell applications have been considered. Though the difference of dipole moments between the ground and excited states is reproduced by most approaches, no atomic charge model is fully satisfactory for reproducing the distance and amount of charge transferred that are provided by the density picture. Overall, the partitioning schemes fitting the electrostatic potential (e.g. Merz-Kollman) stand as the most consistent compromises in the framework of simulating through-space charge-transfer, whereas the other models tend to yield qualitatively inconsistent values.

  5. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  6. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  7. Charge-transfer complexes of phenylephrine with nitrobenzene derivatives

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.

    2004-04-01

    The molecular charge-transfer complexes of phenylephrine with picric acid and m-dinitrobenzene have been studied and investigated by IR, 1H NMR electronic spectra in organic solvents and buffer solutions, respectively. Simple and selective methods are proposed for the determination of phenylephrine hydrochloride in bulk form and in tablets. The two methods are based on the formation of charge-transfer complexes between drug base as a n-donor (D) and picric acid, m-dinitrobenzene as π-acceptor (A). The products exhibit absorption maxima at 497 and 560 nm in acetonitrile for picric acid and m-dinitrobenzene, respectively. The coloured product exhibits an absorption maximum at 650 nm in dioxane. The sensitive kinetic methods for the determination phynylephrine hydrochloride are described. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time at 20 min.

  8. Charge transfer and interface properties in inorganic superstructures and composites

    NASA Astrophysics Data System (ADS)

    Flyagina, I. S.; Petrov, A. A.; Pervov, V. S.

    2016-06-01

    The processes of charge transfer and electronic reconstruction at interfaces of inorganic superstructures and composites have not yet been adequately investigated. This review integrates and analyzes the results of theoretical and experimental studies of structural and electronic effects at interfaces of metal oxide or chalcogenide superstructures and composites. Charge transfer and, hence, change in interface properties compared to the properties of substructures are shown to be determined by the preparation method of composites and chemical nature of the superstructures, incommensurability of structural parameters and valence states of the constituent metals. The changes are maximal for nanoheterostructures, and the degree of change is related to electronic conductivity of substructures. The macroscopic properties of the composite materials depend on the amount of interfaces in their bulk. The bibliography includes 66 references.

  9. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  10. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.

    PubMed

    Wen, Fangfang; Zhang, Yue; Gottheim, Samuel; King, Nicholas S; Zhang, Yu; Nordlander, Peter; Halas, Naomi J

    2015-06-23

    A charge transfer plasmon (CTP) appears when an optical-frequency conductive pathway between two metallic nanoparticles is established, enabling the transfer of charge between nanoparticles when the plasmon is excited. Here we investigate the properties of the CTP in a nanowire-bridged dimer geometry. Varying the junction geometry controls its conductance, which modifies the resonance energies and scattering intensities of the CTP while also altering the other plasmon modes of the nanostructure. Reducing the junction conductance shifts this resonance to substantially lower energies in the near- and mid-infrared regions of the spectrum. The CTP offers both a high-information probe of optical frequency conductances in nanoscale junctions and a new, unique approach to controllably engineering tunable plasmon modes at infrared wavelengths.

  11. Integrated Charge Transfer in Organic Ferroelectrics for Flexible Multisensing Materials.

    PubMed

    Xu, Beibei; Ren, Shenqiang

    2016-09-01

    The ultimate or end point of functional materials development is the realization of strong coupling between all energy regimes (optical, electronic, magnetic, and elastic), enabling the same material to be utilized for multifunctionalities. However, the integration of multifunctionalities in soft materials with the existence of various coupling is still in its early stage. Here, the coupling between ferroelectricity and charge transfer by combining bis(ethylenedithio)tetrathiafulvalene-C60 charge-transfer crystals with ferroelectric polyvinylidene fluoride polymer matrix is reported, which enables external stimuli-controlled polarization, optoelectronic and magnetic field sensing properties. Such flexible composite films also display a superior strain-dependent capacitance and resistance change with a giant piezoresistance coefficient of 7.89 × 10(-6) Pa(-1) . This mutual coupled material with the realization of enhanced couplings across these energy domains opens up the potential for multisensing applications. PMID:27378088

  12. Charge transfer magnetoexciton formation at vertically coupled quantum dots.

    PubMed

    Gutiérrez, Willian; Marin, Jairo H; Mikhailov, Ilia D

    2012-01-01

    A theoretical investigation is presented on the properties of charge transfer excitons at vertically coupled semiconductor quantum dots in the presence of electric and magnetic fields directed along the growth axis. Such excitons should have two interesting characteristics: an extremely long lifetime and a permanent dipole moment. We show that wave functions and the low-lying energies of charge transfer exciton can be found exactly for a special morphology of quantum dots that provides a parabolic confinement inside the layers. To take into account a difference between confinement potentials of an actual structure and of our exactly solvable model, we use the Galerkin method. The density of energy states is calculated for different InAs/GaAs quantum dots' dimensions, the separation between layers, and the strength of the electric and magnetic fields. A possibility of a formation of a giant dipolar momentum under external electric field is predicted. PMID:23092373

  13. Charge-transfer-induced twisting of the nitro group.

    PubMed

    Mondal, Jahur A; Sarkar, Moloy; Samanta, Anunay; Ghosh, Hirendra N; Palit, Dipak K

    2007-07-19

    Excited-state relaxation dynamics of 2-amino-7-nitrofluorene (ANF) and 2-dimethylamino-7-nitrofluorene (DMANF) has been investigated in two aprotic solvents, namely acetonitrile and DMSO using femtosecond transient absorption spectroscopic technique. Following photoexcitation to the highly dipolar excited singlet (S1) state, ANF and DMANF undergo mainly two concomitant relaxation processes, namely dipolar solvation and conformational relaxation via twisting of the nitro group to an orthogonal configuration with respect to the aromatic plane. Viscosity dependence of the relaxation dynamics of the S1 states of both ANF and DMANF suggests no involvement of the twisting motion of the amino or dimethylamino group in the charge-transfer process. The twisting of the nitro group is found to be a friction affected diffusive motion, which does not associate with any further charge transfer. The results presented in this paper resolve experimentally the dynamics of the twisting motion of the nitro group for the first time. PMID:17591761

  14. Extended-Charge-Transfer Excitons in Crystalline Supramolecular Photocatalytic Scaffolds.

    PubMed

    Hestand, Nicholas J; Kazantsev, Roman V; Weingarten, Adam S; Palmer, Liam C; Stupp, Samuel I; Spano, Frank C

    2016-09-14

    Coupling among chromophores in molecular assemblies is responsible for phenomena such as resonant energy transfer and intermolecular charge transfer. These processes are central to the fields of organic photovoltaics and photocatalysis, where it is necessary to funnel energy or charge to specific regions within the system. As such, a fundamental understanding of these transport processes is essential for developing new materials for photovoltaic and photocatalytic applications. Recently, photocatalytic systems based on photosensitizing perylene monomimide (PMI) chromophore amphiphiles were found to show variation in hydrogen gas (H2) production as a function of nanostructure crystallinity. The 2D crystalline systems form in aqueous electrolyte solution, which provides a high dielectric environment where the Coulomb potential between charges is mitigated. This results in relatively weakly bound excitons that are ideal for reducing protons. In order to understand how variations in crystalline structure affect H2 generation, two representative PMI systems are investigated theoretically using a modified Holstein Hamiltonian. The Hamiltonian includes both molecular Frenkel excitations (FE) and charge-transfer excitations (CTE) coupled nonadiabatically to local intramolecular vibrations. Signatures of FE/CTE mixing and the extent of electron/hole separation are identified in the optical absorption spectrum and are found to correlate strongly to the observed H2 production rates. The absorption spectral signatures are found to sensitively depend on the relative phase between the electron and hole transfer integrals, as well as the diabatic energy difference between the Frenkel and CT exciton bands. Our analysis provides design rules for artificial photosynthetic systems based on organic chromophore arrays. PMID:27589150

  15. "Inverted" Solvent Effect on Charge Transfer in the Excited State.

    PubMed

    Nau; Pischel

    1999-10-01

    Faster in cyclohexane than in acetonitrile is the fluorescence quenching of the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by amines and sulfides. Although this photoreaction is induced by charge transfer (CT; see picture) and exciplexes are formed, the increase in the dipole moment of the exciplex is not large enough to offset the solvent stabilization of the excited reactants, and an "inverted" solvent effect results.

  16. Charge Transfer Excitons at van der Waals Interfaces.

    PubMed

    Zhu, Xiaoyang; Monahan, Nicholas R; Gong, Zizhou; Zhu, Haiming; Williams, Kristopher W; Nelson, Cory A

    2015-07-01

    The van der Waals interfaces of molecular donor/acceptor or graphene-like two-dimensional (2D) semiconductors are central to concepts and emerging technologies of light-electricity interconversion. Examples include, among others, solar cells, photodetectors, and light emitting diodes. A salient feature in both types of van der Waals interfaces is the poorly screened Coulomb potential that can give rise to bound electron-hole pairs across the interface, i.e., charge transfer (CT) or interlayer excitons. Here we address common features of CT excitons at both types of interfaces. We emphasize the competition between localization and delocalization in ensuring efficient charge separation. At the molecular donor/acceptor interface, electronic delocalization in real space can dictate charge carrier separation. In contrast, at the 2D semiconductor heterojunction, delocalization in momentum space due to strong exciton binding may assist in parallel momentum conservation in CT exciton formation. PMID:26001297

  17. Charge transfer in cold Yb++Rb collisions

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Buchachenko, Alexei A.; Yakovleva, Svetlana A.; Belyaev, Andrey K.

    2013-05-01

    Charge-transfer cold Yb++ Rb collision dynamics is investigated theoretically using high-level ab initio potential energy curves, dipole moment functions, and nonadiabatic coupling matrix elements. Within the scalar-relativistic approximation, the radiative transitions from the entrance A1Σ+ to the ground X1Σ+ state are found to be the only efficient charge-transfer pathway. The spin-orbit coupling does not open other efficient pathways, but alters the potential energy curves and the transition dipole moment for the A-X pair of states. The radiative, as well as the nonradiative, charge-transfer cross sections calculated within the 10-3-10 cm-1 collision energy range exhibit all features of the Langevin ion-atom collision regime, including a rich structure associated with centrifugal barrier tunneling (orbiting) resonances. Theoretical rate coefficients for two Yb isotopes agree well with those measured by immersing Yb+ ions in an ultracold Rb ensemble in a hybrid trap. Possible origins of discrepancy in the product distributions and relations to previously studied similar processes are discussed.

  18. Energy and charge transfer in ionized argon coated water clusters

    SciTech Connect

    Kočišek, J. E-mail: michal.farnik@jh-inst.cas.cz Lengyel, J.; Fárník, M. E-mail: michal.farnik@jh-inst.cas.cz; Slavíček, P. E-mail: michal.farnik@jh-inst.cas.cz

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H{sub 2}O){sub n} clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar{sup +} and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar{sup +}* and water opens leading to new products Ar{sub n}H{sup +} and (H{sub 2}O){sub n}H{sup +}. On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H{sub 2}O){sub n}H{sub 2}{sup 2+} and (H{sub 2}O){sub n}{sup 2+} ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  19. A bifurcated molecular pentad capable of sequential electronic energy transfer and intramolecular charge transfer.

    PubMed

    Harriman, Anthony; Stachelek, Patrycja; Sutter, Alexandra; Ziessel, Raymond

    2015-10-21

    An extended molecular array, comprising three distinct types of chromophores and two additional redox-active subunits, that harvests photons over most of the visible spectral range has been synthesized and characterised. The array exhibits a rich variety of electrochemical waves when examined by cyclic voltammetry but assignment can be made on the basis of control compounds and molecular orbital calculations. Stepwise electronic energy transfer occurs along the molecular axis, corresponding to a gradient of excitation energies, to populate the lowest-energy excited state of the ultimate acceptor. The latter species, which absorbs and emits in the far-red region, enters into light-induced charge transfer with a terminal amine group. The array is relatively stable under illumination with white light but degrades slowly via a series of well-defined steps, the first of which is autocatalytic. One of the main attributes of this system is the capability to harvest an unusually high fraction of sunlight while providing protection against exposure to UV light.

  20. Replacing and Additive Horizontal Gene Transfer in Streptococcus

    PubMed Central

    Choi, Sang Chul; Rasmussen, Matthew D.; Hubisz, Melissa J.; Gronau, Ilan; Stanhope, Michael J.; Siepel, Adam

    2012-01-01

    The prominent role of Horizontal Gene Transfer (HGT) in the evolution of bacteria is now well documented, but few studies have differentiated between evolutionary events that predominantly cause genes in one lineage to be replaced by homologs from another lineage (“replacing HGT”) and events that result in the addition of substantial new genomic material (“additive HGT”). Here in, we make use of the distinct phylogenetic signatures of replacing and additive HGTs in a genome-wide study of the important human pathogen Streptococcus pyogenes (SPY) and its close relatives S. dysgalactiae subspecies equisimilis (SDE) and S. dysgalactiae subspecies dysgalactiae (SDD). Using recently developed statistical models and computational methods, we find evidence for abundant gene flow of both kinds within each of the SPY and SDE clades and of reduced levels of exchange between SPY and SDD. In addition, our analysis strongly supports a pronounced asymmetry in SPY–SDE gene flow, favoring the SPY-to-SDE direction. This finding is of particular interest in light of the recent increase in virulence of pathogenic SDE. We find much stronger evidence for SPY–SDE gene flow among replacing than among additive transfers, suggesting a primary influence from homologous recombination between co-occurring SPY and SDE cells in human hosts. Putative virulence genes are correlated with transfer events, but this correlation is found to be driven by additive, not replacing, HGTs. The genes affected by additive HGTs are enriched for functions having to do with transposition, recombination, and DNA integration, consistent with previous findings, whereas replacing HGTs seen to influence a more diverse set of genes. Additive transfers are also found to be associated with evidence of positive selection. These findings shed new light on the manner in which HGT has shaped pathogenic bacterial genomes. PMID:22617954

  1. Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices.

    PubMed

    Bakulin, Artem A; Dimitrov, Stoichko D; Rao, Akshay; Chow, Philip C Y; Nielsen, Christian B; Schroeder, Bob C; McCulloch, Iain; Bakker, Huib J; Durrant, James R; Friend, Richard H

    2013-01-01

    The formation of bound electron-hole pairs, also called charge-transfer (CT) states, in organic-based photovoltaic devices is one of the dominant loss mechanisms hindering performance. Whereas CT state dynamics following electron transfer from donor to acceptor have been widely studied, there is not much known about the dynamics of bound CT states produced by hole transfer from the acceptor to the donor. In this letter, we compare the dynamics of CT states formed in the different charge-transfer pathways in a range of model systems. We show that the nature and dynamics of the generated CT states are similar in the case of electron and hole transfer. However the yield of bound and free charges is observed to be strongly dependent on the HOMOD-HOMOA and LUMOD-LUMOA energy differences of the material system. We propose a qualitative model in which the effects of static disorder and sampling of states during the relaxation determine the probability of accessing CT states favorable for charge separation.

  2. Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance

    NASA Astrophysics Data System (ADS)

    Wang, Luxia; Willig, Frank; May, Volkhard

    2007-04-01

    Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO2 has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO2 systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO2.

  3. Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance

    SciTech Connect

    Wang, Luxia; Willig, Frank; May, Volkhard

    2007-04-07

    Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO{sub 2} has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO{sub 2} systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO{sub 2}.

  4. Quantum information transfer between topological and conventional charge qubits

    NASA Astrophysics Data System (ADS)

    Jun, Li; Yan, Zou

    2016-02-01

    We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot (QD) is tunnel-coupled to a semiconductor Majorana-hosted nanowire (MNW) via using gated control as a switch, the information encoded in the superposition state of electron empty and occupied state can be transferred to each other through choosing the proper interaction time to make measurements. Then we consider another system including a double QDs and a pair of parallel MNWs, it is shown that the entanglement information transfer can be realized between the two kinds of systems. We also realize long distance quantum information transfer between two quantum dots separated by an MNW, by making use of the nonlocal fermionic level formed with the pared Majorana feimions (MFs) emerging at the two ends of the MNW. Furthermore, we analyze the teleportationlike electron transfer phenomenon predicted by Tewari et al. [Phys. Rev. Lett. 100, 027001 (2008)] in our considered system. Interestingly, we find that this phenomenon exactly corresponds to the case that the information encoded in one QD just returns back to its original place during the dynamical evolution of the combined system from the perspective of quantum state transfer. Project supported by the National Natural Science Foundation of China (Grant No. 11304031).

  5. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    SciTech Connect

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-28

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled

  6. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    NASA Astrophysics Data System (ADS)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-01

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N+-Phenyl, N-Phenyl+). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an

  7. Coupled electron-nuclear dynamics: charge migration and charge transfer initiated near a conical intersection.

    PubMed

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J; Robb, Michael A

    2013-07-28

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N(+)-Phenyl, N-Phenyl(+)). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an

  8. Coupled electron-nuclear dynamics: charge migration and charge transfer initiated near a conical intersection.

    PubMed

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J; Robb, Michael A

    2013-07-28

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N(+)-Phenyl, N-Phenyl(+)). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an

  9. Charge transfer efficiency in proton damaged CCD`s

    SciTech Connect

    Hardy, T. |; Murowinski, R.; Deen, M.J.

    1998-04-01

    The authors have performed detailed measurements of the charge transfer efficiency (CTE) in a thinned, backside-illuminated imaging charge-coupled device (CCD). The device had been damaged in three separate sections by proton radiation typical of that which a CCD would receive in space-borne experiments, nuclear imaging, or particle detection. They examined CTE as a function of signal level, temperature, and radiation dose. The dominant factor affecting the CTE in radiation-damaged CCD`s is seen to be trapping by bulk states. They present a simple physical model for trapping as a function of transfer rate, trap concentration, and temperature. They have made calculations using this model and arrived at predictions which closely match the measured results. The CTE was also observed to have a nonlinear dependence on signal level. Using two-dimensional device simulations to examine the distribution of the charge packets in the CCD channel over a range of signal levels, they were able to explain the observed variation.

  10. Metastable charge-transfer state of californium(iii) compounds.

    PubMed

    Liu, Guokui; Cary, Samantha K; Albrecht-Schmitt, Thomas E

    2015-06-28

    Among a series of anomalous physical and chemical properties of Cf(iii) compounds revealed by recent investigations, the present work addresses the characteristics of the optical spectra of An(HDPA)3·H2O (An = Am, Cm, and Cf), especially the broadband photoluminescence from Cf(HDPA)3·H2O induced by ligand-to-metal charge transfer (CT). As a result of strong ion-ligand interactions and the relative ease of reducing Cf(iii) to Cf(ii), a CT transition occurs at low energy (<3 eV) via the formation of a metastable Cf(ii) state. It is shown that the systematic trend in CT transitions of the lanthanide series is not paralleled by actinide elements lighter than Cf(iii), and californium represents a turning point in the periodicity of the actinide series. Analyses and modeling of the temperature-dependent luminescence dynamics indicate that the metastable Cf(ii) charge-transfer state undergoes radiative and non-radiative relaxations. Broadening of the CT transition arises from strong vibronic coupling and hole-charge interactions in the valence band. The non-radiative relaxation of the metastable CT state results from a competition between phonon-relaxation and thermal tunneling that populates the excited states of Cf(iii).

  11. Spin-dependent charge transfer state design rules in organic photovoltaics.

    PubMed

    Chang, Wendi; Congreve, Daniel N; Hontz, Eric; Bahlke, Matthias E; McMahon, David P; Reineke, Sebastian; Wu, Tony C; Bulović, Vladimir; Van Voorhis, Troy; Baldo, Marc A

    2015-01-01

    Charge transfer states play a crucial role in organic photovoltaics, mediating both photocurrent generation and recombination losses. In this work, we examine recombination losses as a function of the electron-hole spacing in fluorescent charge transfer states, including direct monitoring of both singlet and triplet charge transfer state dynamics. Here we demonstrate that large donor-acceptor separations minimize back transfer from the charge transfer state to a low-lying triplet exciton 'drain' or the ground state by utilizing external pressure to modulate molecular spacing. The triplet drain quenches triplet charge transfer states that would otherwise be spin protected against recombination, and switches the most efficient origin of the photocurrent from triplet to singlet charge transfer states. Future organic solar cell designs should focus on raising the energy of triplet excitons to better utilize triplet charge transfer mediated photocurrent generation or increasing the donor-acceptor spacing to minimize recombination losses. PMID:25762410

  12. Interpretation of charge transfer measurements of brush discharges

    NASA Astrophysics Data System (ADS)

    Chowdhury, Kanchan; von Pidoll, Ulrich; Moeckel, Dieter; Langer, Tim; Beyer, Michael

    2011-06-01

    In the present work, experimental results on the measurement of the total charge on a charged insulating sheet before and after a provoked brush discharge, their difference "C", the induced charge "A" when approaching an earthed microprocessor operated hand-Coulombmeter, and the transferred charge "B" at the instance of the discharge are presented. "B" is identical with the value measured by the hand-Coulombmeter within the expected measurement uncertainty. Due to observed corona losses and multiple brush discharges independent of each other, "B" correlates better with the incendivity than "C". The quotient B/C was closer to 1 than calculated in the literature but shows all predicted trends. The results obtained can be used for correct estimation of the incendivity of brush discharges between 10 nC and 90 nC. There is no need to change the existing threshold limits of 60 nC, 30 nC and 10 nC for the explosion groups IIA, IIB and IIC hitherto used in standards for zone 1.

  13. Charge transfer in proton-hydrogen collisions under Debye plasma

    SciTech Connect

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2015-02-15

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20–1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  14. First Principles Charge Transfer Excitations in Curved Aromatic Materials

    NASA Astrophysics Data System (ADS)

    Zoppi, Laura; Martin Samos, Layla; Baldridge, Kim K.

    Understanding excitation properties and charge transport phenomena of curved π-conjugated materials is critical for a rational utilization of buckybowls as electrically active materials in solid-state devices. In this respect, the class of materials based on the smallest bowl-shaped fullerene fragment, corannulene, C20H10, offers a unique possibility for building up scaffolds with a tunable spectrum of structural and electronic properties. Here, GW-BSE based approaches are applied to investigation and prediction of charge transfer excitations of C20H10 materials systems at functional interfaces, with a special emphasis on design aspects of materials relevant in the experimental domain. Theoretical predictions together with experimental findings illustrate the possibility of integrating corannulene electronic functions in molecular devices

  15. Superconductivity and charge transfer excitations in high T c superconductors

    NASA Astrophysics Data System (ADS)

    Balseiro, C. A.; Alascio, B.; Gagliano, E.; Rojo, A.

    We present some numerical results to show that in a simple model which includes Cu3d and O 2p orbitals together with inter and intra atomic correlations pairing between holes can occur due to charge transfer excitations. We present also a simple approximation to derive an effective Hamiltonian containing an interaction between particles which is attractive for some values of the different microscopic parameters. Nous présentons des résultats numériques qui montrent que dans un modèle simple, incluant les orbitales 3d du cuivre et 2p de l'oxygène, avec une interaction coulombienne interatomique et intra-atomique, les trous peuvent s'apparier à cause des excitations de transfert de charge. Nous présentons aussi une approximation simple pour obtenir un Hamiltonien effectif contenant une interaction entre particules qui peut être attractive pour certaines valeurs des paramètres microscopiques.

  16. Charge transfer in proton-hydrogen collisions under Debye plasma

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2015-02-01

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20-1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  17. Polarization and charge transfer in the hydration of chloride ions

    SciTech Connect

    Zhao Zhen; Rogers, David M.; Beck, Thomas L.

    2010-01-07

    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.

  18. Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

    SciTech Connect

    Bu, W.; Vaknin, D.; Travesset, A.

    2010-07-13

    Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L{sub 3} Cs{sup +} resonance, we provide spatial counterion distributions (Cs{sup +}) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H{sub 3}O{sup +} at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.

  19. Charge transfer in DIET from physisorbates on metal surfaces

    NASA Astrophysics Data System (ADS)

    Feulner, P.; Andree, A.; Steinacker, E.; Wiethoff, P.

    1995-06-01

    Using results of electron and photon stimulated desorption for physisorbed rare gases and molecular hydrogen on Ru(0 0 1), the importance of vertical and lateral charge transfer processes between the adsorbate and the substrate, and between adparticles, respectively, is illustrated. It is shown that commonly DIET of physisorbates cannot be described within the framework of only one mechanism, and that particularly for stimulated desorption of molecules the asymptotic nature of their electronic excitations as well as the energetic correlation with the occupied and unoccupied density of states of the substrate are important.

  20. Modulating unimolecular charge transfer by exciting bridge vibrations.

    PubMed

    Lin, Zhiwei; Lawrence, Candace M; Xiao, Dequan; Kireev, Victor V; Skourtis, Spiros S; Sessler, Jonathan L; Beratan, David N; Rubtsov, Igor V

    2009-12-23

    Ultrafast UV-vibrational spectroscopy was used to investigate how vibrational excitation of the bridge changes photoinduced electron transfer between donor (dimethylaniline) and acceptor (anthracene) moieties bridged by a guanosine-cytidine base pair (GC). The charge-separated (CS) state yield is found to be lowered by high-frequency bridge mode excitation. The effect is linked to a dynamic modulation of the donor-acceptor coupling interaction by weakening of H-bonding and/or by disruption of the bridging base-pair planarity.

  1. Photoinduced Charge and Energy Transfer Processes in Molecular Aggregates

    SciTech Connect

    John F. Endicott

    2009-10-20

    This project involved the experimental probing of the electronic excited states generated by photoinduced (center-to-center) electron and energy transfer processes in several classes of transition metal donor/acceptor (D/A) complexes. Some of the general properties inferred from these studies should be useful in the design of new systems for energy conversion applications. Pursuit of the project goals has involved the determination of electron transfer efficiencies and the detailed study of variations in the electronic spectra of D/A complexes. This has resulted in the study of some very fundamental issues of photoinduced charge transfer and the identification of some of the constraints on its efficiency. The experimental studies of the competition between the degradative non-radiative unimolecular relaxation of transition metal excited states and their transfer of charge from these excited states to external acceptors have involved a range of techniques such as transient decay kinetics, photoacoustic calorimetry and transient or stationary state spectroscopy. The substrates synthesized for these studies were selected to provide model systems, or series of model systems to probe the validity of models of electronic excited states and their reactivity. The work during the last few years has focused largely, but not exclusively, on the use of emission spectral band shapes to probe the properties of charge transfer (CT) excited states. Bandshape variations are one of the very few approaches for systematically probing electronic excited states and good band shape resolution is necessary in order to gain information about the structural variations that correlate with excited state reactivity. Differences in molecular structure correlate with differences in chemical reactivity, and the variations in emission bandshapes are well known to relate to variations in the molecular structural differences between the excited and ground electronic states. However, it is has been

  2. Charge transfer interactions in oligomer coated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Newmai, M. Boazbou; Kumar, Pandian Senthil

    2016-05-01

    Gold nanoclusters were synthesized by a bottom-up synergistic approach of in-situ oligomerization of the monomer, N-vinyl pyrrolidone (NVP) and simultaneous weak reduction of Au-NVP complexes in the absence of any other external energy sources, thereby making these tiny gold clusters as the most elemental building blocks to construct further novel nano/microstructures with application potentials. It is well-known that metal clusters with less than 2 nm size do not show the usual surface plasmon band, because of the presence of a band-gap at the fermi level. Nevertheless, our present oligomer coated gold clusters show a discrete intense band at around 630 nm, which could very well be attributed to the charge transfer between the oligomer chain and the surface Au atoms. Such kind of sacrificial plasmon induced charge transfer interaction, observed for the very first time to the best of our knowledge, were also strongly corroborated through the enhancement / shifting of specific vibrational / rotational peaks as observed from the FTIR and Raman measurements as a function of the metal oxidation states, thus representing a new prototype for an efficient solar energy conversion probe.

  3. Electrochemical charge transfer at a metallic electrode: A simulation study

    SciTech Connect

    Reed, Stewart K.; Madden, Paul A.; Papadopoulos, Aristides

    2008-03-28

    The calculation of the Marcus free energy curves for electron transfer events between a redox species and a metallic electrode in an atomistic simulation designed to model the electrochemical interface with an ionic liquid is described. The calculation is performed on a system comprising a molten salt mixture confined between model metallic electrodes [Reed et al., J. Chem. Phys. 126, 084704 (2007)] which are maintained at a constant electrical potential. The calculation therefore includes a self-consistent description of the screening of the electrode potential by the liquid and the polarization of the electrode by the ions (image charge effects). The purpose of the study was to examine how the Marcus curves depend on the applied potential and on the distance of the redox species from an electrode. The pronounced oscillations in the mean electrical potential seen in molten salt systems in the ''double-layer'' region are not reflected in the reaction free energy for the electron transfer event. The reorganization energy depends markedly on the distance of the redox ion from the electrode surface because of image charge effects.

  4. Charge transfer during alkali-surface adsorbate collisions

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    The study of charge transfer process between atomic particles and surface adsorbates is important, from both fundamental and practical points of view. Resonant charge transfer (RCT) process during the scattering of low-energy alkali ions from surfaces is proven to depend on the surface local electrostatic potential (LEP). This dissertation investigates the surface electronic environment around halogen and hydrogen adatoms on transition metal and silicon surfaces by using alkali ion scattering. Charge transfer in 7Li+ scattering from clean Si surfaces was shown to involve RCT between the Li 2s level and the Si dangling bonds. Hydrogen adsorption decreases the neutralization because it ties up the dangling bonds. The neutral fractions in 7Li + scattering from Cs/Si are also determined primarily by the dangling bond states, so that the surface LEP cannot be directly probed. Hydrogen adsorption on Cs/Si ties up the dangling bonds, thereby revealing the local potentials. The neutralization probabilities of Li+ backscattered from the hydrogen- and iodine-covered Ni(100) surface were measured. The neutral fraction does not change significantly on H-adsorbed surface. For iodine adsorption, however, unexpected high neutralization probabilities were found for Li scattered directly from iodine sites. Similar behavior were observed for Li+ scattering from I- and Br-covered Fe(100) and Fe(110). The neutralization of Li+ was measured as a function of the incident energy, adatom charge and coverage, and exit angle. It was found that the larger neutral fractions of Li scattered from the halogen sites are caused by a lower potential directly above the adatoms due to internal polarization. As the exit beam moves off-normal, the neutral fraction of Li scattered from iodine decreases. This is in contrast to Cs and Ag adsorbates where the neutral fractions increase for glancing exit trajectories. These angular-dependences are verified by a semi-quantitative theoretical analysis. To

  5. Charge Prediction Machine: A tool for inferring precursor charge states of Electron Transfer Dissociation tandem mass spectra

    PubMed Central

    Carvalho, Paulo C; Cociorva, Daniel; Wong, Catherine; Carvalho, Maria da Gloria da C; Barbosa, Valmir C; Yates, John R

    2010-01-01

    Electron Transfer Dissociation (ETD) can dissociate highly charged ions. Efficient analysis of ions dissociated with ETD requires accurate determination of charge states for calculation of molecular weight. We created an algorithm to assign the charge state of ions often used for ETD. The program, Charge Prediction Machine (CPM), uses Bayesian decision theory to account for different charge reduction processes encountered in ETD, and can also handle multiplex spectra. CPM correctly assigned charge states to 98% of the 13,097 MS2 spectra from a combined dataset of four experiments. In a comparison between CPM and a competing program, Charger (ThermoFisher), CPM produced half the mistakes. PMID:19203245

  6. Site-specific probing of charge transfer dynamics in organic photovoltaics

    SciTech Connect

    Arion, Tiberiu; Roth, Friedrich; Hussain, Zahid; Eberhardt, Wolfgang

    2015-03-23

    We report the site-specific probing of charge-transfer dynamics in a prototype system for organic photovoltaics (OPVs) by picosecond time-resolved X-ray photoelectron spectroscopy. A layered system consisting of approximately two monolayers of C{sub 60} deposited on top of a thin film of Copper-Phthalocyanine (CuPC) is excited by an optical pump pulse and the induced electronic dynamics are probed with 590 eV X-ray pulses. Charge transfer from the electron donor (CuPC) to the acceptor (C{sub 60}) and subsequent charge carrier dynamics are monitored by recording the time-dependent C 1s core level photoemission spectrum of the system. The arrival of electrons in the C{sub 60} layer is readily observed as a completely reversible, transient shift of the C{sub 60} associated C 1s core level, while the C 1s level of the CuPC remains unchanged. The capability to probe charge transfer and recombination dynamics in OPV assemblies directly in the time domain and from the perspective of well-defined domains is expected to open additional pathways to better understand and optimize the performance of this emerging technology.

  7. Charge transfer and negative curvature energy in magnesium boride nanotubes

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Ismail-Beigi, Sohrab

    2016-07-01

    Using first-principles calculations based on density functional theory, we study the energetics and charge transfer effects in MgBx nanotubes and two-dimensional (2D) sheets. The behavior of adsorbed Mg on 2D boron sheets is found to depend on the amount of electron transfer between the two subsystems. The amount is determined by both the density of adsorbed Mg as well as the atomic-scale structure of the boron subsystem. The degree of transfer can lead to repulsive or attractive Mg-Mg interactions. In both cases, model MgBx nanotubes built from 2D MgBx sheets can display negative curvature energy: a relatively unusual situation in nanosystems where the energy cost to curve the parent 2D sheet into a small-diameter nanotube is negative. Namely, the small-diameter nanotube is energetically preferred over the corresponding flat sheet. We also discuss how these findings may manifest themselves in experimentally synthesized MgBx nanotubes.

  8. EKylation: Addition of an Alternating-Charge Peptide Stabilizes Proteins.

    PubMed

    Liu, Erik J; Sinclair, Andrew; Keefe, Andrew J; Nannenga, Brent L; Coyle, Brandon L; Baneyx, François; Jiang, Shaoyi

    2015-10-12

    For nearly 40 years, therapeutic proteins have been stabilized by chemical conjugation of polyethylene glycol (PEG), but recently zwitterionic materials have proved to be a more effective substitute. In this work, we demonstrate that genetic fusion of alternating-charge extensions consisting of anionic glutamic acid (E) and cationic lysine (K) is an effective strategy for protein stabilization. This bioinspired "EKylation" method not only confers the stabilizing benefits of poly(zwitterions) but also allows for rapid biosynthesis of target constructs. Poly(EK) peptides of different predetermined lengths were appended to the C-terminus of a native β-lactamase and its destabilized TEM-19 mutant. The EK-modified enzymes retained biological activity and exhibited increased stability to environmental stressors such as high temperature and high-salt solutions. This one-step strategy provides a broadly applicable alternative to synthetic polymer conjugation that is biocompatible and degradable. PMID:26407134

  9. Charge-transfer-directed radical substitution enables para-selective C-H functionalization

    NASA Astrophysics Data System (ADS)

    Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias

    2016-08-01

    Efficient C-H functionalization requires selectivity for specific C-H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C-H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C-H functionalization reactions.

  10. Charge-transfer-directed radical substitution enables para-selective C–H functionalization

    NASA Astrophysics Data System (ADS)

    Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias

    2016-08-01

    Efficient C–H functionalization requires selectivity for specific C–H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C–H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C–H functionalization reactions.

  11. Intramolecular charge transfer effects on 4-hydroxy-3-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Balasubramanian, T.

    2008-03-01

    The absorption and fluorescence spectral characteristics of 4-hydroxy-3-methoxybenzaldehyde (HMB) have been studied in different solvents, pH and β-cyclodextrin (β-CD) and compared with 4-hydroxy-3,5-dimethoxybenzaldehyde (HDMB). The inclusion complex of HMB with β-CD is analysed by UV-vis, fluorimetry, FT-IR, 1H NMR, SEM and AM1 methods. In HMB, the normal emission (B band) is originates from a locally excited state and the longer emission (A band) is due to intramolecular charge transfer state (ICT). The OH group of HMB is present in the interior part of the β-CD cavity and aldehyde group present in the upper part of the β-CD cavity.

  12. Charge transfer processes: the role of optimized molecular orbitals.

    PubMed

    Meyer, Benjamin; Domingo, Alex; Krah, Tim; Robert, Vincent

    2014-08-01

    The influence of the molecular orbitals on charge transfer (CT) reactions is analyzed through wave function-based calculations. Characteristic CT processes in the organic radical 2,5-di-tert-butyl-6-oxophenalenoxyl linked with tetrathiafulvalene and the inorganic crystalline material LaMnO3 show that changes in the inner shells must be explicitly taken into account. Such electronic reorganization can lead to a reduction of the CT vertical transition energy up to 66%. A state-specific approach accessible through an adapted CASSCF (complete active space self-consistent field) methodology is capable of reaching good agreement with the experimental spectroscopy of CT processes. A partitioning of the relaxation energy in terms of valence- and inner-shells is offered and sheds light on their relative importance. This work paves the way to the intimate description of redox reactions using quantum chemistry methods.

  13. [Spectrophotometric determination of cinnarizine based on charge-transfer reaction].

    PubMed

    Xu, B; Zhao, F; Tong, S

    1999-12-01

    The charge-transfer (CT) complex formed between cinnarizine as the donor and 7, 7, 8, 8-Tetracyanoquinodimethane (TCNQ) as the acceptor in acetone-methanol has been studied by spectrophotometric method. Beer's law is obeyed in the range of 0-18 microg x mL(-1) of cinnarizine. The apparent molar absorptivity of CT complex at 743 nm is 1.58 x 10(4) L x mol(-1) x cm(-1). The composition of CT complex is found to be 1 : 1 by Bent-French and Job's methods. The relative standard deviation is less than 3% (n = 10). The method has been applied to the determination of cinnarizine in tablets with satisfactory results. PMID:15822327

  14. DFT charge transfer of hybrid molecular ferrocene/Si structures

    NASA Astrophysics Data System (ADS)

    Calborean, Adrian; Buimaga-Iarinca, Luiza; Graur, Florin

    2015-05-01

    The electrochemical behavior and electronic properties of redox-active ferrocenes grafted onto semiconductor Si(100) substrate were investigated theoretically by first-principles calculations. Organic molecules were attached via the formation of Si-C covalent bonds through two different linkers: vinyl (direct grafting), and N3(CH2)11 (indirect grafting). Redox energies and the electronic properties relating to different spacers in hybrid ferrocene Fc/Si and ferrocenium Fc+/Si structures were theoretically extracted and compared with experimental cyclic voltametry data. Electronic charge transfers are discussed through the alignment positions of the frontier orbitals of the molecule with respect to the Si substrate gap. Periodic boundary conditions were used to investigate the Si(100) as a slab surface and hybrid Fc/Si structures. The resulting projected density of states (PDOS) were compared with molecular results and discussed in the light of experimental data.

  15. HST WFC3/UVIS: charge transfer efficiency monitoring and mitigation

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia M.; Sosey, Megan L.; Anderson, Jay; Gosmeyer, Catherine; Bourque, Matthew; Bajaj, Varun; Khandrika, Harish G.; Martlin, Catherine; Kozhurina-Platais, Vera; Sabbi, Elena; WFC3 Team

    2016-01-01

    The harsh low-earth orbit environment is known to damage CCD devices and the HST WFC3/UVIS camera is no exception. One consequence of the radiation damage is charge-transfer efficiency (CTE) loss over time. We summarize the level of the CTE losses, the effect on science data, and the pre- and post-observation mitigation options available. Among them is the pixel-based CTE correction, which has been incorporated into the HST automatic data processing pipeline. The pipeline now provides both standard and CTE-corrected data products; observers with older data can re-retrieve their images via the the Mikulski Archive for Space Telescopes (MAST) to obtain the new products.

  16. Charge transfer emission of ytterbium-doped oxyborates.

    PubMed

    Sablayrolles, J; Jubera, V; Guillen, F; Garcia, A

    2008-03-01

    The ultraviolet spectroscopic properties of trivalent ytterbium have been studied at low temperature in one borate and two oxyborates in the ternary diagram Li(2)O-Y(2)O(3)-B(2)O(3). The UV luminescence was detected in the two ytterbium-doped oxyborates. The evolution of these emissions was studied as a function of the temperature. A determination of the configurational coordinate diagrams based on the Struck and Fonger model is proposed to calculate the position in energy of the charge transfer band afforded by the simulation of spectral distribution of these excitation and emission bands. The strong correlation between the luminescent properties and the environments of the rare earth is pointed out.

  17. Modeling charge transfer in the photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Pudlak, Michal; Pinčak, Richard

    2003-12-01

    In this work, we present a model to elucidate the unidirectionality of the primary charge-separation process in the bacterial reaction centers. We have used a model of three sites/molecules with electron transfer beginning at site 1 with an option to proceed to site 2 or site 3. We used a stochastic model with arbitrary correlation functions. We get the quantum yields of electron escape via the sites 2,3 in two limiting cases that correspond to a spectral density of underdamped and overdamped Brownian oscillator. In the fast modulation limit of an overdamped regime we get the effect, which was named “fear of death,” in which for strong enough sink parameters the electron has a tendency to avoid the place with greater sink. The presented model was used to provide a plausible explanation of the temperature dependence of the quantum yields of the Rhodobacter sphaeroides photosynthetic reaction center in the high-temperature regime.

  18. Dual Fluorescence in GFP Chromophore Analogues: Chemical Modulation of Charge Transfer and Proton Transfer Bands.

    PubMed

    Chatterjee, Tanmay; Mandal, Mrinal; Das, Ananya; Bhattacharyya, Kalishankar; Datta, Ayan; Mandal, Prasun K

    2016-04-14

    Dual fluorescence of GFP chromophore analogues has been observed for the first time. OHIM (o-hydroxy imidazolidinone) shows only a charge transfer (CT) band, CHBDI (p-cyclicamino o-hydroxy benzimidazolidinone) shows a comparable intensity CT and PT (proton transfer) band, and MHBDI (p-methoxy o-hydroxy benzimidazolidinone) shows a higher intensity PT band. It could be shown that the differential optical behavior is not due to conformational variation in the solid or solution phase. Rather, control of the excited state electronic energy level and excited state acidity constant by functional group modification could be shown to be responsible for the differential optical behavior. Chemical modification-induced electronic control over the relative intensity of the charge transfer and proton transfer bands could thus be evidenced. Support from single-crystal X-ray structure, NMR, femtosecond to nanosecond fluorescence decay analysis, and TDDFT-based calculation provided important information and thus helped us understand the photophysics better. PMID:26998908

  19. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    PubMed

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  20. Photoinduced Charge Transfer from Titania to Surface Doping Site

    PubMed Central

    Inerbaev, Talgat; Hoefelmeyer, James D.; Kilin, Dmitri S.

    2013-01-01

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  1. Metal-Organic Coordination Number Determined Charge Transfer Magnitude

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Hsiang; Chu, Yu-Hsun; Lu, Chun-I.; Yang, Tsung-Han; Yang, Kai-Jheng; Kaun, Chao-Cheng; Hoffmann, Germar; Lin, Minn-Tsong

    2014-03-01

    By the appropriate choice of head groups and molecular ligands, various metal-organic coordination geometries can be engineered. Such metal-organic structures provide different chemical environments for molecules and give us templates to study the charge redistribution within the metal-organic interface. We created various metal-organic bonding environment by growing self-assembly nanostructures of Fe-PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) chains and networks on a Au(111) surface. Bonding environment dependent frontier molecular orbital energies are acquired by low temperature scanning tunneling microscopy and scanning tunneling spectroscopy. By comparing the frontier energies with the molecular coordination environments, we conclude that the specific coordination affects the magnitude of charge transfer onto each PTCDA in the Fe-PTCDA hybridization system. H.-H. Yang, Y.-H. Chu, C.-I Lu, T.-H. Yang, K.-J. Yang, C.-C. Kaun, G. Hoffmann, and M.-T. Lin, ACS Nano 7, 2814 (2013).

  2. Molecular structure and charge transfer contributions to nonlinear optical property of 2-Methyl-4-nitroaniline: A DFT study

    NASA Astrophysics Data System (ADS)

    Jasmine, G. Femina; Amalanathan, M.; Roy, S. Dawn Dharma

    2016-05-01

    The Charge transfer contributions to the second-order nonlinear optical properties of 2-Methyl-4-nitroaniline have been performed by means of DFT computation. The vibrational contribution studies of 2-Methyl-4-nitroaniline have also been performed using FTIR, FT-Raman analysis. More support on the experimental findings were added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G(d,p)basis sets. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. The first order hyperpolarizability (α0) and related properties (β,α0 and Δα) of 2-Methyl-4-nitroaniline were calculated. In addition, molecular electrostatic potential (MEP), charge analysis also were investigated using theoretical calculations.

  3. Revealing photoinduced charge transfer mechanism across π-conjugated heterojunctions

    NASA Astrophysics Data System (ADS)

    Shin, Yongwoo; Lin, Xi

    2013-03-01

    The adapted Su-Schrieffer-Heeger (aSSH) model is extended to the π - conjugatedbulkheterojunctionsystem . The New aSSH Hamiltonian incorporated interchain π- π stacking and dynamic electron-phonon coupling effects. Excellent agreements are found between the computed photoadsorption and photoinduced adsorption spectra and their corresponding experimental measurements. It is found that excitons generated in the bulk poly-(p-phenylene vinylene) (PPV) phase must overcome an energy barrier of 0.23 eV to reach heterojunction interface. These interfacial excitons show clear charge separations, with their electron states leaning towards the interface. Therefore, electron transfers from the D1*state of PPV to the t1u* state of C60 follow non-adiabatic mechanisms, which are accelerated by the 0.97 eV energy drop, close vicinity of the D1*state to the C60 phase, and suppressed inversion symmetry that doubles the number of electron-accepting states. After non-adiabatic electron transfers, the hole D1 states are screened by the optical phonons in PPV, forming self-localized hole polarons and moving further away from heterojunction interface.

  4. Doping graphene films via chemically mediated charge transfer.

    PubMed

    Ishikawa, Ryousuke; Bando, Masashi; Morimoto, Yoshitaka; Sandhu, Adarsh

    2011-01-01

    Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs. PMID:21711624

  5. Charge transfer dissociation (CTD) mass spectrometry of peptide cations using kiloelectronvolt helium cations.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2014-11-01

    A kiloelectronvolt beam of helium ions is used to ionize and fragment precursor peptide ions starting in the 1+ charge state. The electron affinity of helium cations (24.6 eV) exceeds the ionization potential of protonated peptides and can therefore be used to abstract an electron from--or charge exchange with--the isolated precursor ions. Kiloelectronvolt energies are used, (1) to overcome the Coulombic repulsion barrier between the cationic reactants, (2) to overcome ion-defocussing effects in the ion trap, and (3) to provide additional activation energy. Charge transfer dissociation (CTD) of the [M+H](+) precursor of Substance P gives product ions such as [M+H](2+•) and a dominant series of a ions in both the 1+ and 2+ charge states. These observations, along with the less-abundant a + 1 ions, are consistent with ultraviolet photodissociation (UVPD) results of others and indicate that C-C(α) cleavages are possible through charge exchange with helium ions. Although the efficiencies and timescale of CTD are not yet suitable for on-line chromatography, this new approach to ion activation provides an additional potential tool for the interrogation of gas phase ions.

  6. Charge Transfer and Support Effects in Heterogeneous Catalysis

    SciTech Connect

    Hervier, Antoine

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  7. 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization

    NASA Astrophysics Data System (ADS)

    Semsarilar, Mona; Perrier, Sébastien

    2010-10-01

    Reversible addition-fragmentation chain-transfer (RAFT) polymerization has revolutionized the field of polymer synthesis as a versatile tool for the production of complex polymeric architectures. As for all chemical processes, research and development in RAFT have to focus on the design and application of chemical products and processes that have a minimum environmental impact, and follow the principles of 'green' chemistry. In this Review, we summarize some of the green features of the RAFT process, and review the recent advances in the production of degradable polymers obtained from RAFT polymerization. Its use to modify biodegradable and renewable inorganic and organic materials to yield more functional products with enhanced applications is also covered. RAFT is a promising candidate for answering both the increasing need of modern society to employ highly functional polymeric materials and the global requirements for developing sustainable chemicals and processes.

  8. Effect of geometrical orientation on the charge transfer energetics of supramolecular (tetraphenyl)-porphyrin/fullerens dyads

    NASA Astrophysics Data System (ADS)

    Olguin, Marco; Zope, Rajendra; Baruah, Tunna

    2013-03-01

    We present our study of several low lying charge-transfer (CT) excitation energies for a widely used donor-acceptor system composed of a porphyrin-fullerene pair. The dyad systems consist of C60 and C70 acceptor systems coupled to tetraphenyl-porphyrin (TPP) and tetraphenyl-(zinc)porphyrin (ZnTPP) donor systems in a co-facial orientation. We find that replacing C60 by C70 in a given dyad may increase the lowest charge transfer excitation energy by about 0.27 eV, whereas varying the donor in these complexes had marginal effect on the lowest charge transfer excitation energy. Additionally, we examined the effect of geometrical orientation on the CT energy by calculating several CT excited state energies for an end-on orientation of the porphyrin-fullerene dyads. The CT excitation energies are larger for the end-on orientation in comparison to the co-facial orientation by 0.6 eV - 0.75 eV. The difference is attributed to a reduced exciton binding energy in going from the co-facial to the end-on orientation. Supported by Office of Basic Energy Sciences of the US Department of Energy.

  9. Charge Transfer-Induced Molecular Hole Doping into Thin Film of Metal-Organic Frameworks.

    PubMed

    Lee, Deok Yeon; Kim, Eun-Kyung; Shrestha, Nabeen K; Boukhvalov, Danil W; Lee, Joong Kee; Han, Sung-Hwan

    2015-08-26

    Despite the highly porous nature with significantly large surface area, metal-organic frameworks (MOFs) can be hardly used in electronic and optoelectronic devices due to their extremely poor electrical conductivity. Therefore, the study of MOF thin films that require electron transport or conductivity in combination with the everlasting porosity is highly desirable. In the present work, thin films of Co3(NDC)3DMF4 MOFs with improved electronic conductivity are synthesized using layer-by-layer and doctor blade coating techniques followed by iodine doping. The as-prepared and doped films are characterized using FE-SEM, EDX, UV/visible spectroscopy, XPS, current-voltage measurement, photoluminescence spectroscopy, cyclic voltammetry, and incident photon to current efficiency measurements. In addition, the electronic and semiconductor properties of the MOF films are characterized using Hall Effect measurement, which reveals that, in contrast to the insulator behavior of the as-prepared MOFs, the iodine doped MOFs behave as a p-type semiconductor. This is caused by charge transfer-induced hole doping into the frameworks. The observed charge transfer-induced hole doping phenomenon is also confirmed by calculating the densities of states of the as-prepared and iodine doped MOFs based on density functional theory. Photoluminescence spectroscopy demonstrates an efficient interfacial charge transfer between TiO2 and iodine doped MOFs, which can be applied to harvest solar radiations.

  10. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    PubMed Central

    Ramana, CV; Becker, U; Shutthanandan, V; Julien, CM

    2008-01-01

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in

  11. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1996-01-01

    Charge transfer at electron-volt energies between multiply charged atomic ions and neutral atoms and molecules is of considerable importance in astrophysics, plasma physics, and in particular, fusion plasmas. In the year covered by this report, several major tasks were completed. These include: (1) the re-calibration of the ion gauge to measure the absolute particle densities of H2, He, N2, and CO for our current measurements; (2) the analysis of data for charge transfer reactions of N(exp 2 plus) ion and He, H2, N2, and CO; (3) measurement and data analysis of the charge transfer reaction of (Fe(exp 2 plus) ion and H2; (4) charge transfer measurement of Fe(exp 2 plus) ion and H2; and (5) redesign and modification of the ion detection and data acquisition system for the low energy beam facility (reflection time of flight mass spectrometer) dedicated to the study of state select charge transfer.

  12. Excited-State Proton Transfer and Intramolecular Charge Transfer in 1,3-Diketone Molecules.

    PubMed

    Savarese, Marika; Brémond, Éric; Adamo, Carlo; Rega, Nadia; Ciofini, Ilaria

    2016-05-18

    The photophysical signature of the tautomeric species of the asymmetric (N,N-dimethylanilino)-1,3-diketone molecule are investigated using approaches rooted in density functional theory (DFT) and time-dependent DFT (TD-DFT). In particular, since this molecule, in the excited state, can undergo proton transfer reactions coupled to intramolecular charge transfer events, the different radiative and nonradiative channels are investigated by making use of different density-based indexes. The use of these tools, together with the analysis of both singlet and triplet potential energy surfaces, provide new insights into excited-state reactivity allowing one to rationalize the experimental findings including different behavior of the molecule as a function of solvent polarity.

  13. Ultrafast charge carrier relaxation and charge transfer processes in CdS/CdTe thin films.

    PubMed

    Pandit, Bill; Dharmadasa, Ruvini; Dharmadasa, I M; Druffel, Thad; Liu, Jinjun

    2015-07-14

    Ultrafast transient absorption pump-probe spectroscopy (TAPPS) has been employed to investigate charge carrier relaxation in cadmium sulfide/cadmium telluride (CdS/CdTe) nanoparticle (NP)-based thin films and electron transfer (ET) processes between CdTe and CdS. Effects of post-growth annealing treatments to ET processes have been investigated by carrying out TAPPS experiments on three CdS/CdTe samples: as deposited, heat treated, and CdCl2 treated. Clear evidence of ET process in the treated thin films has been observed by comparing transient absorption (TA) spectra of CdS/CdTe thin films to those of CdS and CdTe. Quantitative comparison between ultrafast kinetics at different probe wavelengths unravels the ET processes and enables determination of its rate constants. Implication of the photoinduced dynamics to photovoltaic devices is discussed. PMID:26033446

  14. Solvation-driven charge transfer and localization in metal complexes.

    PubMed

    Rondi, Ariana; Rodriguez, Yuseff; Feurer, Thomas; Cannizzo, Andrea

    2015-05-19

    In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole-dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent-solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and stabilization of CT

  15. Ab initio Determination of Formation Energies and Charge Transfer Levels of Charged Ions in Water

    NASA Astrophysics Data System (ADS)

    Vatti, Anoop Kishore; Todorova, Mira; Neugebauer, Joerg

    The ability to describe the complex atomic and electronic structure of liquid water and hydrated ions on a microscopic level is a key requirement to understand and simulate electro-chemical and biological processes. Identifying theoretical concepts which enable us to achieve an accurate description in a computationally efficient way is thereby of central importance. Aiming to unravel the importance and influence of different contributions on the hydration energy of ions we perform extensive ab-initio molecular dynamics simulations for charged and neutral cations (Zn, Mg) and anions (Cl, Br, I) in water. The structural correlations and electronic properties of the studied ions are analysed and compared to experimental observations. Following an approach inspired by the defect chemistry in semiconductors and aligning the water band edges on an absolute scale allows us to benchmark the calculated formation energies, identify transition states and compare the results to experiment. Based on these results we discuss the performance of various DFT xc-functionals to predict charge transfer levels and photo-emission experiments.

  16. Intramolecular charge transfer effects on 3-aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Stalin, T.; Rajendiran, N.

    2006-03-01

    Effect of solvents, buffer solutions of different pH and β-cyclodextrin on the absorption and fluorescence spectra of 3-aminobenzoic acid (3ABA) have been investigated. The solid inclusion complex of 3ABA with β-CD is discussed by UV-Vis, fluorimetry, semiempirical quantum calculations (AM1), FT-IR, 1H NMR and Scanning Electron Microscope (SEM). The thermodynamic parameters (Δ H, Δ G and Δ S) of the inclusion process are also determined. The experimental results indicated that the inclusion processes is an exothermic and spontaneous. The large Stokes shift emission in solvents with 3ABA are correlated with different solvent polarity scales suggest that, 3ABA molecule is more polar in the S 1 state. Solvent, β-CD studies and excited state dipole moment values confirms that the presence of intramolecular charge transfer (ICT) in 3ABA. Acidity constants for different prototropic equilibria of 3ABA in the S 0 and S 1 states are calculated. β-Cyclodextrin studies shows that 3ABA forms a 1:1 inclusion complex with β-CD. β-CD studies suggest COOH group present in non-polar part and amino group present in hydrophilic part of the β-CD cavity. A mechanism is proposed to explain the inclusion process.

  17. Charge transfer vibronic transitions in uranyl tetrachloride compounds;

    SciTech Connect

    Liu, G. K.; Deifel, N. P.; Cahill, C. L.

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO{sub 2}){sup 2+} in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3{sigma} ground state into the f{sub {delta}{phi}}, orbitals of uranyl. The Huang-Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck-Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  18. Charge transfer vibronic transitions in uranyl tetrachloride compounds

    SciTech Connect

    Liu, Guokui; Deifel, Nicholas P.; Cahill, Christopher L.; Zhurov, Vladimir V.; Pinkerton, A. Alan

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO₂)2+ in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3σ ground state into the fδ,Φ orbitals of uranyl. The Huang–Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck–Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  19. a Second Order Born Calculation for Charge Transfer.

    NASA Astrophysics Data System (ADS)

    Simony, Paul Richard

    Charge transfer cross sections, from the ground state of the target to the ground state of the projectile, have been computed in a second order Born approximation for protons incident upon hydrogen at energies of 1, 10, and 50 MeV. The exact second order matrix element is evaluated numerically, and the results are compared to a standard peaking approximation (SP), as well as to a new peaking approximation (LP) developed herein. At 50 MeV two distinct second order effects are evident in the differential cross section. For very small (center of mass) scattering angles ((theta) (DBLTURN) .032(DEGREES)) the second order cross section is smaller than the first order cross section, while at larger angles ((theta) (DBLTURN) .054(DEGREES)) a second Born peak occurs. This peak can be kinematically associated with a classical two step process which gives rise to the well known dominating v('-11) asymptotic velocity dependence of the total cross section. The reduction of the differential cross section at smaller angles serves to decrease the total cross section, as is predicted by the asymptotic expression. At 10 MeV second order effects become less important, and at 1 MeV the kinematic peak has all but disappeared, while the second order cross section has here become larger than the first order cross section. At intermediate energies experimental results indicate that the first order cross section used here is itself too large.

  20. Quantum ferroelectricity in charge-transfer complex crystals.

    PubMed

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4-n bromine substituents (QBr4-nIn, n=0-4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF-QBr2I2 exhibits a ferroelectric neutral-ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral-ionic transition compounds, such as well-known ferroelectric complex of TTF-QCl4 and quantum antiferroelectric of dimethyl-TTF-QBr4. By contrast, TTF-QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  1. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.

    PubMed

    Berdugo, Cristina; Nalluri, Siva Krishna Mohan; Javid, Nadeem; Escuder, Beatriu; Miravet, Juan F; Ulijn, Rein V

    2015-11-25

    Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various π-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV-vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems. PMID:26540455

  2. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGES

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; West, Damien; Meunier, Vincent; Zhang, Shengbai; Liang, Linagbo

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  3. Wire transfer of charge packets using a CCD-BBD structure for charge-domain signal processing

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1991-01-01

    A structure for the virtual transfer of charge packets across metal wires is described theoretically and is experimentally verified. The structure is a hybrid of charge-coupled device (CCD) and bucket-brigade device (BBD) elements and permits the topological crossing of charge-domain signals in low power signal processing circuits. A test vehicle consisting of 8-, 32-, and 96-stage delay lines of various geometries implemented in a double-poly, double-metal foundry process is used to characterize the wire-transfer operation. Transfer efficiency ranging between 0.998 and 0.999 is obtained for surface n-channel devices with clock cycle times in the range from 40 ns to 0.3 ms. Transfer efficiency as high as 0.9999 is obtained for buried n-channel devices. Good agreement is found between experiment and simulation.

  4. Wire transfer of charge packets using a CCD-BBD structure for charge-domain signal processing

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.

    1991-02-01

    A structure for the virtual transfer of charge packets across metal wires is described theoretically and is experimentally verified. The structure is a hybrid of charge-coupled device (CCD) and bucket-brigade device (BBD) elements and permits the topological crossing of charge-domain signals in low power signal processing circuits. A test vehicle consisting of 8-, 32-, and 96-stage delay lines of various geometries implemented in a double-poly, double-metal foundry process is used to characterize the wire-transfer operation. Transfer efficiency ranging between 0.998 and 0.999 is obtained for surface n-channel devices with clock cycle times in the range from 40 ns to 0.3 ms. Transfer efficiency as high as 0.9999 is obtained for buried n-channel devices. Good agreement is found between experiment and simulation.

  5. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect

    Kakati, B. Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.; Saxena, Y. C.

    2014-10-28

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  6. Quantum Plasmonics: Optical Monitoring of DNA-Mediated Charge Transfer in Plasmon Rulers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2016-03-01

    Plasmon coupling between DNA-tethered gold nanoparticles is investigated by correlated single-particle spectroscopy and transmission electron microscopy for interparticle separations between 0.5 and 41 nm. Spectral characterization reveals a weakening of the plasmon coupling due to DNA-mediated charge transfer for separations up to 2.8 nm. Electromagnetic simulations indicate a coherent charge transfer across the DNA.

  7. Charge transfer in energetic Li2+-H and He+-He+ collisions

    NASA Astrophysics Data System (ADS)

    Mančev, I.

    2009-02-01

    The total cross sections for charge transfer in Li2+-H and He+-He+ collisions have been calculated, using the four body first Born approximation with correct boundary conditions (CB1-4B) and four body continuum distorted wave method (CDW-4B) in the energy range 10-5000 keV/amu. The role of dynamic electron correlations is examined as a function of the impact energy. The present results call for additional experimental data at higher impact energies than presently available.

  8. Luminescent charge-transfer complexes: tuning emission in binary fluorophore mixtures.

    PubMed

    Gujrati, Maneesh D; Kumar, N S Saleesh; Brown, Adrienne S; Captain, Burjor; Wilson, James N

    2011-06-01

    Charge-transfer (CT) complexes composed of a π-electron-poor naphthalene diimide (NDI) derivative combined with a series of π-electron-rich donors were investigated. Solutions of the CT complexes are nonemissive; however, solid-state complexes and aqueous suspensions display emission that is dependent on the energy of the HOMO of the electron donor. Crystallographic analysis of a pyrene-NDI complex reveals columnar packing and a high degree of frontier molecular orbital (FMO) overlap that likely contributes to the observed optical properties. The fluorescent CT particles are utilized as imaging agents; additional luminescent CT complexes may be realized by considering FMO energies and topologies. PMID:21548624

  9. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    PubMed Central

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  10. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    NASA Astrophysics Data System (ADS)

    Morherr, Antonia; Witt, Sebastian; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-Fx, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  11. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    SciTech Connect

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  12. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.

    PubMed

    Ahn, Tae Kyu; Avenson, Thomas J; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K; Bassi, Roberto; Fleming, Graham R

    2008-05-01

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  13. Direct Observation and Control of Ultrafast Photoinduced Twisted Intramolecular Charge Transfer (TICT) in Triphenyl-Methane Dyes

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2012-01-01

    Femtosecond time-resolved infrared spectroscopy was employed to study intramolecular charge transfer in triphenylmethane dyes, including malachite green (MG), malachite green carbinol base (MGCB), and leucomalachite green (LMG). A local excited state (LE) and a twisted intramolecular charge-transfer (TICT) state have been observed directly in MG. Furthermore, solvent-controlled TICT measurements in a series of linear alcohols indicate that the transition time (4–11 ps) from LE to TICT is strongly dependent on alcohol viscosity, which is due to rotational hindrance of dimethylaniline in high-viscosity solvents. For LMG, no TICT is observed due to steric hindrance caused by the sp3-hybridized central carbon atom. However, for MGCB, TICT is rescued by the addition of the electron-donating hydroxyl group to the bridge. These results for MG and its analogues provide new insight regarding the dynamics and mechanism of twisted intramolecular charge transfer (TICT) in triphenylmethane dyes. PMID:23009668

  14. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    SciTech Connect

    Pan, Shanlin

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  15. Charge transfer in the low-temperature radiolysis of styrene-butadiene block copolymers

    SciTech Connect

    Khatipov, S.A.; Edrisov, A.T.; Milinchuk, V.K.

    1995-05-01

    Radiation-induced conductivity of polystyrene, polybutadiene, and styrene-butadiene block copolymers, resulting from irradiation of the samples with fast electrons of 75 keV energy under vacuum at 100 K, was studied. A negative deviation of the radiation-induced conductivity constant A{sub m} from the corresponding additive values was detected upon varying the composition of block copolymers. It is concluded that the interfacial charge transfer from polystyrene to polybutadiene microdomains occurs in the block copolymers. This conclusion is confirmed by the results of investigations of drift mobility of the charge carriers and effects of donor-acceptor admixtures on the radiation-induced conductivity of the polymers studied.

  16. Proton-Coupled Electron Transfer: Moving Together and Charging Forward

    PubMed Central

    2016-01-01

    Proton-coupled electron transfer (PCET) is ubiquitous throughout chemistry and biology. This Perspective discusses recent advances and current challenges in the field of PCET, with an emphasis on the role of theory and computation. The fundamental theoretical concepts are summarized, and expressions for rate constants and kinetic isotope effects are provided. Computational methods for calculating reduction potentials and pKa’s for molecular electrocatalysts, as well as insights into linear correlations and non-innocent ligands, are also described. In addition, computational methods for simulating the nonadiabatic dynamics of photoexcited PCET are discussed. Representative applications to PCET in solution, proteins, electrochemistry, and photoinduced processes are presented, highlighting the interplay between theoretical and experimental studies. The current challenges and suggested future directions are outlined for each type of application, concluding with an overall view to the future. PMID:26110700

  17. Proton-Coupled Electron Transfer: Moving Together and Charging Forward.

    PubMed

    Hammes-Schiffer, Sharon

    2015-07-22

    Proton-coupled electron transfer (PCET) is ubiquitous throughout chemistry and biology. This Perspective discusses recent advances and current challenges in the field of PCET, with an emphasis on the role of theory and computation. The fundamental theoretical concepts are summarized, and expressions for rate constants and kinetic isotope effects are provided. Computational methods for calculating reduction potentials and pKa's for molecular electrocatalysts, as well as insights into linear correlations and non-innocent ligands, are also described. In addition, computational methods for simulating the nonadiabatic dynamics of photoexcited PCET are discussed. Representative applications to PCET in solution, proteins, electrochemistry, and photoinduced processes are presented, highlighting the interplay between theoretical and experimental studies. The current challenges and suggested future directions are outlined for each type of application, concluding with an overall view to the future. PMID:26110700

  18. Computational insights into the charge relaying properties of β-turn peptides in protein charge transfers.

    PubMed

    Zhang, Ru; Liu, Jinxiang; Yang, Hongfang; Wang, Shoushan; Zhang, Meng; Bu, Yuxiang

    2015-02-01

    Density functional theory calculations suggest that β-turn peptide segments can act as a novel dual-relay elements to facilitate long-range charge hopping transport in proteins, with the N terminus relaying electron hopping transfer and the C terminus relaying hole hopping migration. The electron- or hole-binding ability of such a β-turn is subject to the conformations of oligopeptides and lengths of its linking strands. On the one hand, strand extension at the C-terminal end of a β-turn considerably enhances the electron-binding of the β-turn N terminus, due to its unique electropositivity in the macro-dipole, but does not enhance hole-forming of the β-turn C terminus because of competition from other sites within the β-strand. On the other hand, strand extension at the N terminal end of the β-turn greatly enhances hole-binding of the β-turn C terminus, due to its distinct electronegativity in the macro-dipole, but does not considerably enhance electron-binding ability of the N terminus because of the shared responsibility of other sites in the β-strand. Thus, in the β-hairpin structures, electron- or hole-binding abilities of both termini of the β-turn motif degenerate compared with those of the two hook structures, due to the decreased macro-dipole polarity caused by the extending the two terminal strands. In general, the high polarity of a macro-dipole always plays a principal role in determining charge-relay properties through modifying the components and energies of the highest occupied and lowest unoccupied molecular orbitals of the β-turn motif, whereas local dipoles with low polarity only play a cooperative assisting role. Further exploration is needed to identify other factors that influence relay properties in these protein motifs.

  19. Probing the charge-transfer dynamics in DNA at the single-molecule level.

    PubMed

    Kawai, Kiyohiko; Matsutani, Eri; Maruyama, Atsushi; Majima, Tetsuro

    2011-10-01

    Photoinduced charge-transfer fluorescence quenching of a fluorescent dye produces the nonemissive charge-separated state, and subsequent charge recombination makes the reaction reversible. While the information available from the photoinduced charge-transfer process provides the basis for monitoring the microenvironment around the fluorescent dyes and such monitoring is particularly important in live-cell imaging and DNA diagnosis, the information obtainable from the charge recombination process is usually overlooked. When looking at fluorescence emitted from each single fluorescent dye, photoinduced charge-transfer, charge-migration, and charge recombination cause a "blinking" of the fluorescence, in which the charge-recombination rate or the lifetime of the charge-separated state (τ) is supposed to be reflected in the duration of the off time during the single-molecule-level fluorescence measurement. Herein, based on our recently developed method for the direct observation of charge migration in DNA, we utilized DNA as a platform for spectroscopic investigations of charge-recombination dynamics for several fluorescent dyes: TAMRA, ATTO 655, and Alexa 532, which are used in single-molecule fluorescence measurements. Charge recombination dynamics were observed by transient absorption measurements, demonstrating that these fluorescent dyes can be used to monitor the charge-separation and charge-recombination events. Fluorescence correlation spectroscopy (FCS) of ATTO 655 modified DNA allowed the successful measurement of the charge-recombination dynamics in DNA at the single-molecule level. Utilizing the injected charge just like a pulse of sound, such as a "ping" in active sonar systems, information about the DNA sequence surrounding the fluorescent dye was read out by measuring the time it takes for the charge to return.

  20. Conducting molecular nanostructures assembled from charge-transfer complexes grafted onto silicon surfaces

    NASA Astrophysics Data System (ADS)

    Stires, John C., IV; Kasibhatla, Bala S. T.; Siegel, Dustin S.; Kwong, Jinny C.; Caballero, Jonathan B.; Labonte, Andre P.; Reifenberger, Ronald G.; Datta, Supriyo; Kubiak, Clifford P.

    2003-12-01

    Heterodimeric electon-donor/electron-acceptor charge-transfer complexes chemisorbed onto Au(111) by attachment of the electron-donor to the surface have been characterized by scanning tunneling microscopy and Kelvin probe experiments. Conductance measurements exhibit nearly Ohmic I(V) responses at low bias. The electrical properties of the charge-transfer complex are vastly different than those of the electron-donor alone which exhibits insulating behavior at low bias. In an extension of this work, strategies are being developed for attachment of charge-transfer complexes to semiconducting or insulating surfaces. Fabrication of nanoscale molecular electronic devices is being investigated by attaching one component of a charge-transfer complex to a silicon surface by chemically directed self-assembly. The single component-functionalized surface is then used as a substrate on which the second component of the charge-transfer complex is deposited by the atomic force microscopy method, dip-pen nanolithography (DPN). Derivatives of hexamethylbenze (electron-donor) with terminal olefins attached to crystalline silicon surfaces via hydrosilylation form monolayer-functionalized silicon surfaces that are expected to have insulating properties. Well-defined features can be "drawn" onto the donor-functionalized surfaces by DPN using tetracyanoethylene (electron-acceptor) as the "ink." The resulting charge-transfer complex nanostructures have conducting properties suitable for device function and are flanked by an insulating monolayer, thus creating "wires" made from charge-transfer complexes.

  1. 46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... charge of the transfer or the cleaning under Subpart C of 33 CFR part 155; (3) When cargo regulated under... COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge...

  2. Reversible addition-fragmentation chain transfer polymerization in microemulsion.

    PubMed

    O'Donnell, Jennifer M

    2012-04-21

    This tutorial review first details the uncontrolled microemulsion polymerization mechanism, and the RAFT polymerization mechanism to provide the necessary background for examining the RAFT microemulsion polymerization mechanism. The effect of the chain transfer agent per micelle ratio and the chain transfer agent aqueous solubility on the RAFT microemulsion polymerization kinetics, polymer molecular weight and polydispersity, and polymer nanoparticle size are discussed with a focus on oil-in-water microemulsions. Modeling of RAFT microemulsion polymerization kinetics and the resulting final polymer molecular weight are presented to assist with the analysis of observed experimental trends. Lastly, the current significance of RAFT microemulsion polymerization and the future directions are discussed. PMID:22246214

  3. Addition of ‘Charge-Shifting’ Side Chains to Linear Poly(ethyleneimine) Enhances Cell Transfection Efficiency

    PubMed Central

    Liu, Xianghui; Yang, Jennifer W.

    2008-01-01

    We reported recently that the addition of ester-functionalized, ‘charge-shifting’ side chains to linear poly(ethyleneimine) (LPEI) can be used to design polyamines that promote both self-assembly and self-disassembly with DNA in aqueous environments. This investigation sought to characterize the influence of charge-shifting side chains on the ability of LPEI to mediate cell transfection and understand the extent to which increases (or decreases) in levels of transfection could be understood in terms of time-dependent changes in the net charges of these polymers. We report that the addition of ‘charge-shifting’ side chains to LPEI leads to significant increases in levels of LPEI-mediated transfection. In particular, polymer 1e, functionalized with 20 mol% ester-functionalized side chains, mediates levels of transgene expression in vitro up to eight-fold higher than LPEI. Experiments using an amide-functionalized analog of polymer 1e demonstrated that the esters in polymer 1e play an important role in promoting increased levels of transfection. These results, in combination with the results of additional gel electrophoresis experiments, provide support for the view that increases in transfection result from time-dependent changes in the net charge of polymer 1e and the disruption of ionic interactions in polyplexes. Additional support for this view is provided by the results of confocal microscopy experiments and measurements of fluorescence resonance energy transfer, which suggest that polymer 1e promotes the disruption of polyplexes in intracellular environments effectively. The approach reported here provides a means of addressing one important ‘late-stage’ obstacle to polyplex-mediated transfection (polyplex unpackaging). If integrated successfully with methods that have been developed to address other important barriers to transfection, this general approach could lead to the development of multifunctional polyplexes that mimic more effectively the

  4. An electron energy-loss study of picene and chrysene based charge transfer salts

    NASA Astrophysics Data System (ADS)

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-01

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F4TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  5. An electron energy-loss study of picene and chrysene based charge transfer salts.

    PubMed

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-14

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F4TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  6. An electron energy-loss study of picene and chrysene based charge transfer salts

    SciTech Connect

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-14

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F{sub 4}TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  7. Multi-state charge transfer dynamics and trapping of hyperthermal and low energy alkali ions

    NASA Astrophysics Data System (ADS)

    Dahl, Eric Brian

    Experimental and theoretical studies were performed of the scattering of hyperthermal and keV energy Lisp+ and Nasp+ ions from Cu(001) surfaces. Chapter one presents measurements of relative total Li(2p) and Na(3p) yields, for 400 eV Lisp+ and 1320 eV Nasp+ scattering from clean and alkali-covered Cu(001). These excited-state yields were measured because they provide a sensitive test of multi-state models of resonant charge transfer, that is, models that are capable of treating more than two atomic states. Chapter two presents a detailed conceptual analysis of two multi-state models: a rate-equation model and the Marston model. The rate-equation model fails to reproduce the measured Li(2p) and Na(3p) yields, whereas the Marston model reproduces the primary trends in the yields. The different behaviors of these models are explained by physical reasoning. The rate-equation model is a fundamentally flawed description of resonant charge transfer, because it includes neither hybridization nor non-adiabatic excitations. Both aspects of resonant charge transfer are required to explain the Li(2p) and Na(3p) yields. These aspects are included in the Marston model, which describes the atom-metal system quantum-mechanically. The quantum mechanics of the atom-metal system can be understood from a physical viewpoint by the use of a few basic principles-principles which are broadly applicable to resonant charge transfer. A key principle is the tendency of the atom-metal system to electronically equilibrate throughout the scattering trajectory of an atom. Additional principles follow from an examination of the many-electron basis states of the atom-metal system. Chapter three presents measurements of the probability that 5 to 600 eV Nasp+ ions incident on Cu(001) become trapped on top of the surface. At a near-normal incident geometry the on-top trapping probability decreased monotonically as the incident energy was decreased. At 45sp° incidence along the < 100> azimuth, a

  8. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  9. Integer versus Fractional Charge Transfer at Metal(/Insulator)/Organic Interfaces: Cu(/NaCl)/TCNE

    PubMed Central

    2015-01-01

    Semilocal and hybrid density functional theory was used to study the charge transfer and the energy-level alignment at a representative interface between an extended metal substrate and an organic adsorbate layer. Upon suppressing electronic coupling between the adsorbate and the substrate by inserting thin, insulating layers of NaCl, the hybrid functional localizes charge. The laterally inhomogeneous charge distribution resulting from this spontaneous breaking of translational symmetry is reflected in observables such as the molecular geometry, the valence and core density of states, and the evolution of the work function with molecular coverage, which we discuss for different growth modes. We found that the amount of charge transfer is determined, to a significant extent, by the ratio of the lateral spacing of the molecules and their distance to the metal. Therefore, charge transfer does not only depend on the electronic structure of the individual components but, just as importantly, on the interface geometry. PMID:25905769

  10. Charge transfer polarisation wave and carrier pairing in the high T(sub c) copper oxides

    NASA Technical Reports Server (NTRS)

    Chakraverty, B. K.

    1990-01-01

    The High T(sub c) oxides are highly polarizable materials and are charge transfer insulators. The charge transfer polarization wave formalism is developed in these oxides. The dispersion relationships due to long range dipole-dipole interaction of a charge transfer dipole lattice are obtained in 3-D and 2-D. These are high frequency bosons and their coupling with carriers is weak and antiadiabatic in nature. As a result, the mass renormalization of the carriers is negligible in complete contrast to conventional electron-phonon interaction, that give polarons and bipolarons. Both bound and superconducting pairing is discussed for a model Hamiltonian valid in the antiadiabatic regime, both in 3-D and 2-D. The stability of the charge transfer dipole lattice has interesting consequences that are discussed.

  11. Resonant charge transfer of hydrogen Rydberg atoms incident at a metallic sphere

    NASA Astrophysics Data System (ADS)

    Gibbard, J. A.; Softley, T. P.

    2016-06-01

    A wavepacket propagation study is reported for the charge transfer of low principal quantum number (n = 2) hydrogen Rydberg atoms incident at an isolated metallic sphere. Such a sphere acts as a model for a nanoparticle. The three-dimensional confinement of the sphere yields discrete surface-localized ‘well-image’ states, the energies of which vary with sphere radius. When the Rydberg atom energy is degenerate with one of the quantized nanoparticle states, charge transfer is enhanced, whereas for off-resonant cases little to no charge transfer is observed. Greater variation in charge-transfer probability is seen between the resonant and off-resonant examples in this system than for any other Rydberg-surface system theoretically investigated thus far. The results presented here indicate that it may be possible to use Rydberg-surface ionization as a probe of the surface electronic structure of a nanoparticle, and nanostructures in general.

  12. On the Photometric Consequences of Charge-Transfer Inefficiency in WFPC2

    NASA Astrophysics Data System (ADS)

    Stetson, Peter B.

    1998-12-01

    Charge-transfer effects in photometry with Wide Field Planetary Camera 2 (WFPC2) aboard the Hubble Space Telescope are investigated by a comparison of WFPC2 observations with ground-based photometry for the Galactic globular clusters omega Centauri and NGC 2419. Simple numerical formulae describing the fraction of lost signal as functions of position on the detector, stellar brightness, and the diffuse sky brightness recorded in an image are presented, and the resulting corrections are compared with those previously derived by Whitmore & Heyer. Significant lost-charge effects are seen that are proportional to both the Y-coordinate (i.e., the number of shifts along the parallel register during readout) and the X-coordinate (number of shifts along the serial register). A ``typical'' star image (one containing ~10^4 photoelectrons) near the center of a ``typical'' intermediate-length exposure (one with a diffuse sky brightness of ~10 e^- pixel^-1, obtained at a camera temperature of -88 deg C) loses approximately 2% of its electrons to charge traps during readout; a star in the corner of the image most remote from the readout electronics loses twice that. The percentage of charge lost decreases as the star brightness or the diffuse sky brightness increases. Charge losses during the brief period when WFPC2 was operated at a temperature of -76 deg C were approximately 85% greater, but apart from that, no significant change in the charge-transfer losses with time during the first 3.5 years of WFPC2's mission is evident, except possibly a weak effect for the very faintest star images. These results are quite similar to those of Whitmore & Heyer, which were based on a much smaller data set, but there are some differences in detail. Even with the present set of corrections, additional sources of calibration uncertainty that I am unable identify or characterize with the available data probably limit the external accuracy of photometry from WFPC2 to of order 1%-2%.

  13. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  14. Long-Lived Charge Transfer Excited States in HBC-Polypyridyl Complex Hybrids.

    PubMed

    Elliott, Anastasia B S; Horvath, Raphael; Sun, Xue-Zhong; Gardiner, Michael G; Müllen, Klaus; Lucas, Nigel T; George, Michael W; Gordon, Keith C

    2016-05-16

    The synthesis of two bipyridine-hexa-peri-hexabenzocoronene (bpy-HBC) ligands functionalized with either (t)Bu or C12H25 and their Re(I) tricarbonyl chloride complexes are reported and their electronic properties investigated using spectroscopic and computational methods. The metal complexes show unusual properties, and we observed the formation of a long-lived excited state using time-resolved infrared spectroscopy. Depending on the solvent, this appears to be of the form Rebpy(•-)HBC(•+) or a bpy-centered π,π* state. TD-DFT calculations support the donor-acceptor charge transfer character of these systems, in which HBC is the donor and bpy is the acceptor. The ground state optical properties are dominated by the HBC chromophore with additional distinct transitions of the complexes, one associated with MLCT 450 nm (ε > 17 000 L mol(-1) cm(-1)) and another with a HBC/metal to bpy charge transfer, termed the MLLCT band (373 nm, ε = 66 000 L mol(-1) cm(-1)). These assignments are also supported by resonance Raman spectroscopy. PMID:27119791

  15. Charge-transfer luminescence from ruthenium(II) complexes containing tridentate ligands

    NASA Astrophysics Data System (ADS)

    Stone, M. L.; Crosby, G. A.

    Four complexes of the general formula Ru(NNN) 2+2 (N NN = tridentate N-heterocyclic ligand) were synthesized and studied spectroscopically. All exhibit visible absorption spectra that are charge-transfer-to-ligand in origin, are luminescent in glasses at 77 K, and display emission spectra that possess energies, structures, and decay tines that label them as charge transfer.

  16. Quantum Plasmonics: Optical Monitoring of DNA-Mediated Charge Transfer in Plasmon Rulers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2016-03-01

    Plasmon coupling between DNA-tethered gold nanoparticles is investigated by correlated single-particle spectroscopy and transmission electron microscopy for interparticle separations between 0.5 and 41 nm. Spectral characterization reveals a weakening of the plasmon coupling due to DNA-mediated charge transfer for separations up to 2.8 nm. Electromagnetic simulations indicate a coherent charge transfer across the DNA. PMID:26789736

  17. Pressure-Induced Charge Transfer Doping of Monolayer Graphene/MoS2 Heterostructure.

    PubMed

    Pandey, Tribhuwan; Nayak, Avinash P; Liu, Jin; Moran, Samuel T; Kim, Joon-Seok; Li, Lain-Jong; Lin, Jung-Fu; Akinwande, Deji; Singh, Abhishek K

    2016-08-01

    A unique way of achieving controllable, pressure-induced charge transfer doping in the graphene/MoS2 heterostructure is proposed. The charge transfer causes an upward shift in the Dirac point with respect to Fermi level at a rate of 15.7 meV GPa(-1) as a function of applied hydrostatic pressure, leading to heavy p-type doping in graphene. The doping was confirmed by I2D /IG measurements. PMID:27323330

  18. Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs.

    PubMed

    Šlouf, Václav; Fuciman, Marcel; Dulebo, Alexander; Kaftan, David; Koblížek, Michal; Frank, Harry A; Polívka, Tomáš

    2013-09-26

    Light-harvesting complexes ensure necessary flow of excitation energy into photosynthetic reaction centers. In the present work, transient absorption measurements were performed on LH1-RC complexes isolated from two aerobic anoxygenic phototrophs (AAPs), Roseobacter sp. COL2P containing the carotenoid spheroidenone, and Erythrobacter sp. NAP1 which contains the carotenoids zeaxanthin and bacteriorubixanthinal. We show that the spectroscopic data from the LH1-RC complex of Roseobacter sp. COL2P are very similar to those previously reported for Rhodobacter sphaeroides, including the transient absorption spectrum originating from the intramolecular charge-transfer (ICT) state of spheroidenone. Although the ICT state is also populated in LH1-RC complexes of Erythrobacter sp. NAP1, its appearance is probably related to the polarity of the bacteriorubixanthinal environment rather than to the specific configuration of the carotenoid, which we hypothesize is responsible for populating the ICT state of spheroidenone in LH1-RC of Roseobacter sp. COL2P. The population of the ICT state enables efficient S1/ICT-to-bacteriochlorophyll (BChl) energy transfer which would otherwise be largely inhibited for spheroidenone and bacteriorubixanthinal due to their low energy S1 states. In addition, the triplet states of these carotenoids appear well-tuned for efficient quenching of singlet oxygen or BChl-a triplets, which is of vital importance for oxygen-dependent organisms such as AAPs. PMID:23130956

  19. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.; Kumar, Revati

    2015-07-28

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.

  20. HST/WFC3: Evolution of the UVIS Channel's Charge Transfer Efficiency

    NASA Astrophysics Data System (ADS)

    Gosmeyer, Catherine; Baggett, Sylvia M.; Anderson, Jay; WFC3 Team

    2016-06-01

    The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) contains both an IR and a UVIS channel. After more than six years on orbit, the UVIS channel performance remains stable; however, on-orbit radiation damage has caused the charge transfer efficiency (CTE) of UVIS's two CCDs to degrade. This degradation is seen as vertical charge 'bleeding' from sources during readout and its effect evolves as the CCDs age. The WFC3 team has developed software to perform corrections that push the charge back to the sources, although it cannot recover faint sources that have been bled out entirely. Observers can mitigate this effect in various ways such as by placing sources near the amplifiers, observing bright targets, and by increasing the total background to at least 12 electrons, either by using a broader filter, lengthening exposure time, or post-flashing. We present results from six years of calibration data to re-evaluate the best level of total background for mitigating CTE loss and to re-verify that the pixel-based CTE correction software is performing optimally over various background levels. In addition, we alert observers that CTE-corrected products are now available for retrieval from MAST as part of the CALWF3 v3.3 pipeline upgrade.

  1. Time delay and integration detectors using charge transfer devices

    NASA Technical Reports Server (NTRS)

    Mccann, D. H.; White, M. H.; Turly, A. P.

    1981-01-01

    An imaging system comprises a multi-channel matrix array of CCD devices wherein a number of sensor cells (pixels) in each channel are subdivided and operated in discrete intercoupled groups of subarrays with a readout CCD shift register terminating each end of the channels. Clock voltages, applied to the subarrays, selectively cause charge signal flow in each subarray in either direction independent of the other subarrays. By selective application of four phase clock voltages, either one, two or all three of the sections subarray sections cause charge signal flow in one direction, while the remainder cause charge signal flow in the opposite direction. This creates a form of selective electronic exposure control which provides an effective variable time delay and integration of three, six or nine sensor cells or integration stages. The device is constructed on a semiconductor sustrate with a buried channel and is adapted for front surface imaging through transparent doped tin oxide gates.

  2. Effect of Intramolecular High-Frequency Vibrational Mode Excitation on Ultrafast Photoinduced Charge Transfer and Charge Recombination Kinetics.

    PubMed

    Nazarov, Alexey E; Barykov, Vadim Yu; Ivanov, Anatoly I

    2016-03-31

    A model of photoinduced ultrafast charge separation and ensuing charge recombination into the ground state has been developed. The model includes explicit description of the formation and evolution of nonequilibrium state of both the intramolecular vibrations and the surrounding medium. An effect of the high-frequency intramolecular vibrational mode excitation by a pumping pulse on ultrafast charge separation and charge recombination kinetics has been investigated. Simulations, in accord with experiment, have shown that the effect may be both positive (the vibrational mode excitation increases the charge-transfer rate constant) and negative (opposite trend). The effect on charge separation kinetics is predicted to be bigger than that on the charge recombination rate but nevertheless the last is large enough to be observable. The amplitude of both effects falls with decreasing vibrational relaxation time constant, but the effects are expected to be observable up to the time constants as short as 200 fs. Physical interpretation of the effects has been presented. Comparisons with the experimental data have shown that the simulations, in whole, provide results close to that obtained in the experiment. The reasons of the deviations have been discussed. PMID:26953595

  3. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory

    PubMed Central

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.

    2011-01-01

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159

  4. Probing charge transfer and hot carrier dynamics in organic solar cells with terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Cunningham, Paul D.; Lane, Paul A.; Melinger, Joseph S.; Esenturk, Okan; Heilweil, Edwin J.

    2016-04-01

    Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

  5. [Combined hopping-superexchange mechanism of charge transfer in DNA; a model with nearest interactions].

    PubMed

    Lakhno, V D; Sultanov, V B

    2007-01-01

    In the framework of the earlier developed combined hopping-superexchange mechanism of charge transfer in DNA, a model with all nearest interactions between nucleobases is proposed. It is shown that the transfer rates for various types of nucleotide sequences calculated within this model are in a good agreement with experimental data.

  6. 33 CFR 127.301 - Persons in charge of shoreside transfer operations: Qualifications and certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... LNG may not use the services of any person, as a person in charge of shoreside transfer operations, unless that person— (1) Has at least 48 hours of LNG transfer experience; (2) Knows the hazards of LNG... at the waterfront facility handling LNG....

  7. 33 CFR 127.301 - Persons in charge of shoreside transfer operations: Qualifications and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LNG may not use the services of any person, as a person in charge of shoreside transfer operations, unless that person— (1) Has at least 48 hours of LNG transfer experience; (2) Knows the hazards of LNG... at the waterfront facility handling LNG....

  8. 33 CFR 127.301 - Persons in charge of shoreside transfer operations: Qualifications and certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... LNG may not use the services of any person, as a person in charge of shoreside transfer operations, unless that person— (1) Has at least 48 hours of LNG transfer experience; (2) Knows the hazards of LNG... at the waterfront facility handling LNG....

  9. 33 CFR 127.301 - Persons in charge of shoreside transfer operations: Qualifications and certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... LNG may not use the services of any person, as a person in charge of shoreside transfer operations, unless that person— (1) Has at least 48 hours of LNG transfer experience; (2) Knows the hazards of LNG... at the waterfront facility handling LNG....

  10. Final-state angular momentum distributions in charge transfer collisions at high energies

    NASA Astrophysics Data System (ADS)

    Burgdörfer, Joachim

    1985-11-01

    We investigate the influence of different terms of the Born series on the final-state angular momentum ( l) distribution and the anisotropy of the captured electron. A variety of different l distributions depending on the projectile velocity v and the charge asymmetry {Z p}/{Z T} of the collision system can be found, revealing different underlying mechanisms for charge transfer. We compare the predictions of perturbation theories such as the first and second Born approximation, the continuum distorted wave (CDW) approximation and the post-collision interaction (PCI) model valid at high velocities with those of the "quasi-resonant over barrier" model of charge transfer valid at intermediate velocities.

  11. Charge transfer state versus hot exciton dissociation in polymer-fullerene blended solar cells.

    PubMed

    Lee, Jiye; Vandewal, Koen; Yost, Shane R; Bahlke, Matthias E; Goris, Ludwig; Baldo, Marc A; Manca, Jean V; Van Voorhis, Troy

    2010-09-01

    We examine the significance of hot exciton dissociation in two archetypical polymer-fullerene blend solar cells. Rather than evolving through a bound charge transfer state, hot processes are proposed to convert excitons directly into free charges. But we find that the internal quantum yields of carrier photogeneration are similar for both excitons and direct excitation of charge transfer states. The internal quantum yield, together with the temperature dependence of the current-voltage characteristics, is consistent with negligible impact from hot exciton dissociation.

  12. 7 CFR 1403.10 - Waiver of late payment interest, additional interest and administrative charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS AND POLICIES DEBT SETTLEMENT POLICIES AND PROCEDURES § 1403.10 Waiver of late payment interest, additional... waive the collection of late payment interest and administrative charges on a debt or any portion of...

  13. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    PubMed

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-01

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  14. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    PubMed

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.

  15. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    PubMed

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity. PMID:26250815

  16. Understanding the charge-transfer state and singlet exciton emission from solution-processed small-molecule organic solar cells.

    PubMed

    Ran, Niva A; Kuik, Martijn; Love, John A; Proctor, Christopher M; Nagao, Ikuhiro; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2014-11-19

    Electroluminescence (EL) from the charge-transfer state and singlet excitons is observed at low applied voltages from high-performing small-molecule bulk-heterojunction solar cells. Singlet emission from the blends emerges upon altering the processing conditions, such as thermal annealing and processing with a solvent additive, and correlates with improved photovoltaic performance. Low-temperature EL measurements are utilized to access the physics behind the singlet emission.

  17. Charge transfer based "turn-on" chemosensor for Zn2 + ion recognition using new triaryl pyrazoline derivative

    NASA Astrophysics Data System (ADS)

    Jeyanthi, Dharmaraj; Iniya, Murugan; Krishnaveni, Karuppiah; Chellappa, Duraisamy

    2016-04-01

    The fluoroionophore PY serves as a selective and fluorimetric chemosensor for Zn2 + based on charge transfer (CT). A mechanism for the binding mode was proposed based on fluorescence changes, NMR experiments and theoretical calculations. The 1:1 stoichiometry between Zn2 + and the sensor was deduced from Job's plot. The addition of EDTA quenches the fluorescence of PY.Zn2 + complex offers PY as a reversible chemosensor.

  18. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene.

    PubMed

    Alexander-Webber, J A; Huang, J; Maude, D K; Janssen, T J B M; Tzalenchuk, A; Antonov, V; Yager, T; Lara-Avila, S; Kubatkin, S; Yakimova, R; Nicholas, R J

    2016-01-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.

  19. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene.

    PubMed

    Alexander-Webber, J A; Huang, J; Maude, D K; Janssen, T J B M; Tzalenchuk, A; Antonov, V; Yager, T; Lara-Avila, S; Kubatkin, S; Yakimova, R; Nicholas, R J

    2016-01-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology. PMID:27456765

  20. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Alexander-Webber, J. A.; Huang, J.; Maude, D. K.; Janssen, T. J. B. M.; Tzalenchuk, A.; Antonov, V.; Yager, T.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Nicholas, R. J.

    2016-07-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.

  1. Controllable Quantum State Transfer Between a Josephson Charge Qubit and an Electronic Spin Ensemble

    NASA Astrophysics Data System (ADS)

    Yan, Run-Ying; Wang, Hong-Ling; Feng, Zhi-Bo

    2016-01-01

    We propose a theoretical scheme to implement controllable quantum state transfer between a superconducting charge qubit and an electronic spin ensemble of nitrogen-vacancy centers. By an electro-mechanical resonator acting as a quantum data bus, an effective interaction between the charge qubit and the spin ensemble can be achieved in the dispersive regime, by which state transfers are switchable due to the adjustable electrical coupling. With the accessible experimental parameters, we further numerically analyze the feasibility and robustness. The present scheme could provide a potential approach for transferring quantum states controllably with the hybrid system.

  2. Electronic absorption spectra of charge-transfer complexes based on ferrocene and polyhalohydrocarbons

    SciTech Connect

    Germanova, L.F.; Balabanova, L.V.; Kochetkova, N.S.; Nelyubin, B.V.; Shuekhgeimer, M.G.; Vasil'eva, T.T.

    1986-01-10

    Polyhalomethanes, being as a rule strong electron acceptors, can play the role of photosensitizers of various classes of compounds including organometallic donors such as ferrocene, benchrotrene, etc. The authors found that polyhalohydrocarbons containing CHHal/sub 2/ and CHal/sub 3/ groups from with ferrocene charge-transfer complexes (CTC). Polyhalomethanes and polyhalo-2-pentenes show the highest activity in the reaction of complex formation with ferrocene. The compounds with the CBr/sub 3/ group in CTC have the highest extinction. An elongation of the alkyl chain in the molecule of polyhalogen derivatives and the presence of an additional halogen atom in the gamma position with respect to the CHal/sub 3/ group do not exert any significant influence on their CTC spectra with ferrocene.

  3. An Investigation of CCD Charge Transfer and Detector Anomalies for a Low Light Level Application

    NASA Astrophysics Data System (ADS)

    Dixon, Samantha; Aldering, Greg Scott; Domagalski, Rachel; Boone, Kyle; Fagrelius, Parker; Hayden, Brian; Perlmutter, Saul; Saunders, Clare; Sofiatti, Caroline

    2016-01-01

    The SuperNova Integral Field Spectrograph (SNIFS) is used to obtain spectra of nearby Type Ia supernovae as part of the Nearby Supernova Factory. Charge transfer inefficiency (CTI) in the CCD detectors used on SNIFS has the potential to cause distortions to spectra and increase noise. We present a study of the CTI in the SNIFS CCDs using trails from cosmic rays in dark frames. This study shows that the effect of CTI on supernova spectra is minimal, and additionally reveals a detector anomaly, a 1 e- undershoot, that is correlated with lower temperatures of the SDSU ARC electronics. We will also present plans for the characterization of new, lower noise, faster readout CCDs from Lawrence Berkeley National Laboratory as part of an upgrade of SNIFS.

  4. Charge transfer in graphene oxide-dye system for photonic applications

    SciTech Connect

    Bongu, Sudhakara Reddy Bisht, Prem B.; Thu, Tran V.; Sandhu, Adarsh

    2014-02-20

    The fluorescence of a standard dye Rhodamine 6G (R6G) in solution decreases on addition of reduced graphene oxide (rGO). The absorption spectra and lifetime measurements confirm that no excited-state but a ground-state complex formation is responsible for this effect. For silver decorated rGO (Ag-rGO), the quenching efficiency and ground state complex formation process is small. Z-scan measurements have been done to study the optical nonlinearity at 532 nm under ps time scale. Remarkable reduction in the saturable absorption (SA) effect of R6G indicates no nonlinear contribution from the ground state complex. The results have been explained with varying charge transfer rates and non-fluorescence nature of the complex.

  5. Charge transfer in Fe-doped GaN: The role of the donor

    SciTech Connect

    Sunay, Ustun; Dashdorj, J.; Zvanut, M. E.; Harrison, J. G.; Leach, J. H.; Udwary, K.

    2014-02-21

    Several nitride-based device structures would benefit from the availability of high quality, large-area, freestanding semi-insulating GaN substrates. Due to the intrinsic n-type nature of GaN, however, the incorporation of compensating centers such as Fe is necessary to achieve the high resistivity required. We are using electron paramagnetic resonance (EPR) to explore charge transfer in 450 um thick GaN:Fe plates to understand the basic mechanisms related to compensation so that the material may be optimized for device applications. The results suggest that the simple model based on one shallow donor and a single Fe level is insufficient to describe compensation. Rather, the observation of the neutral donor and Fe3+ indicates that either the two species are spatially segregated or additional compensating and donor defects must be present.

  6. Real time cumulant approach for charge-transfer satellites in x-ray photoemission spectra

    SciTech Connect

    Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Chambers, Scott A.

    2015-03-01

    X-ray photoemission spectra generally exhibit satellite features in addition to quasi-particle peaks due to many-body excitations which have been of considerable theoretical and experimental interest. However, the satellites attributed to charge-transfer (CT) excitations in correlated materials have proved difficult to calculate from first principles. Here we report a real-time, real-space approach for such calculations based on a cumulant representation of the core-hole Green’s function and time-dependent density functional theory. This approach also yields an interpretation of CT satellites in terms of a complex oscillatory, transient response to a suddenly created core hole. Illustrative results for TiO2 and NiO are in good agreement with experiment.

  7. Charge transfer, chemical potentials, and the nature of functional groups: answers from quantum chemical topology.

    PubMed

    Pendás, A Martín; Francisco, E; Blanco, M A

    2007-01-01

    We analyze the response of a quantum group within a molecule to charge transfer by using the interacting quantum atoms approach (IQA), an energy partitioning scheme within the quantum theory of atoms in molecules (QTAM). It is shown that this response lies at the core of the concept of the functional group. The manipulation of fractional electron populations is carried out by using distribution functions for the electron number within the quantum basins. Several test systems are studied to show that similar chemical potential groups are characterized by similar energetic behavior upon interaction with other groups. The origin of the empirical additivity rules for group energies in simple hydrocarbons is also investigated. It turns out to rest on the independent saturation of both the self-energies and the interaction energies of the groups as the size of the chain increases. We also show that our results are compatible with the standard group energies of the QTAM.

  8. Photophysics of charge transfer in a polyfluorene/violanthrone blend

    NASA Astrophysics Data System (ADS)

    Cabanillas-Gonzalez, J.; Virgili, T.; Lanzani, G.; Yeates, S.; Ariu, M.; Nelson, J.; Bradley, D. D. C.

    2005-01-01

    We present a study of the photophysical and photovoltaic properties of blends of violanthrone in poly[9, 9-bis (2-ethylhexyl)-fluorene-2, 7-diyl ] (PF2/6) . Photoluminescence quenching and photocurrent measurements show moderate efficiencies for charge generation, characteristic of such polymer/dye blends. Pump-probe measurements on blend films suggest that while ˜47% of the total exciton population dissociates within 4ps of photoexcitation, only ˜32% subsequently results in the formation of dye anions. We attribute the discrepancy to the likely formation of complex species with long lifetimes, such as stabilized interface charge pairs or exciplexes. This conclusion is supported by the appearance of a long lifetime component of 2.4ns in the dynamics of the photoinduced absorption signal associated to polarons in photoinduced absorption bands centered at 560nm .

  9. The effects of charge transfer on the aqueous solvation of ions

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2012-07-28

    Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.

  10. Wire transfer of charge packets for on-chip CCD signal processing

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.

    A structure for the virtual transfer of charge packets across metal wires is described theoretically and is experimentally verified. The structure is a hybrid of charge-coupled device (CCD) and bucket-brigade device (BBD) elements and permits the topological crossing of charge-domain signals in low power signal processing circuits. A test vehicle consisting of 8-, 32- and 96-stage delay lines of various geometries implemented in a double-poly, double-metal foundry process was used to characterize the wire-transfer operation. Transfer efficiency ranging between 0.998 and 0.999 was obtained for surface n-channel devices with clock cycle times in the range from 40 nsec to 0.3 msec. Transfer efficiency as high as 0.9999 was obtained for buried n-channel devices. Good agreement is found between experiment and simulation.

  11. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    PubMed

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design.

  12. Resonant charge transfer between H+ and H from 1 to 5000 eV

    NASA Astrophysics Data System (ADS)

    Killian, Benjamin J.; Cabrera-Trujillo, Remigio; Deumens, Erik; Öhrn, Yngve

    2004-12-01

    We employ the electron-nuclear dynamics (END) formalism to investigate the resonant charge transfer and scattering processes in the collision of protons on atomic hydrogen as an introduction to investigations of resonant charge transfer in larger atomic and molecular systems. The END method consists of an ab initio, non-adiabatic treatment of the electronic and nuclear degrees of freedom. The results span an energy range from 1 eV to 5 keV. We present electron transfer probabilities, absolute charge transfer differential and integral cross sections, and state-to-state differential cross sections for principal energy levels n = 1 and 2. The present results compare favourably with experimental data and other theoretical results. For the total resonant charge transfer cross section, we confirm the relation σ1/2trans ~ ln E. The role of non-adiabatic couplings in transfer into the n = 2 level is confirmed, and the effect of basis set size on the dynamics of the transfer is probed.

  13. Ultrafast holography and transient absorption spectroscopy in charge-transfer polymers

    SciTech Connect

    McBranch, D.W.; Maniloff, E.S.; Vacar, D.; Heeger, A.J.

    1997-10-01

    Charge-transfer polymers are a new class of nonlinear optical materials which can be used for generating femtosecond holographic gratings. Using semiconducting polymers sensitized with varying concentrations of C{sub 60}, holographic gratings were recorded by individual ultrafast laser pulses; the diffraction efficiency and time decay of the gratings were measured using non-degenerate four-wave mixing. Using a figure of merit for dynamic data processing, the temporal diffraction efficiency, this new class of materials exhibits between two and 12 orders of magnitude higher response than previous reports. The charge transfer range at polymer/C{sub 60} interfaces was further studied using transient absorption spectroscopy. The fact that charge-transfer occurs in the picosecond-time scale in bilayer structures (thickness 200 {angstrom}) implies that diffusion of localized excitations to the interface is not the dominant mechanism; the charge transfer range is a significant fraction of the film thickness. From analysis of the excited state decay curves, we estimate the charge transfer range to be 80 {angstrom} and interpret that range as resulting from quantum delocalization of the photoexcitations.

  14. Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends

    PubMed Central

    2014-01-01

    Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. PMID:24490650

  15. Distance dependence in photoinduced intramolecular electron transfer. Additional remarks and calculations

    NASA Astrophysics Data System (ADS)

    Larsson, Sven; Volosov, Andrey

    1987-12-01

    Rate constants for photoinduced intramolecular electron transfer are calculated for four of the molecules studied by Hush et al. The electronic factor is obtained in quantum chemical calculations using the CNDO/S method. The results agree reasonably well with experiments for the forward reaction. Possible reasons for the disagreement for the charge recombination process are offered.

  16. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    SciTech Connect

    Bhargavi, R.; Nair, Geetha G. E-mail: skpras@gmail.com; Krishna Prasad, S. E-mail: skpras@gmail.com; Majumdar, R.; Bag, Braja G.

    2014-10-21

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  17. Exploring the charge/energy transfer process at the graphene/giant nanocrystal quantum dots interfaces

    NASA Astrophysics Data System (ADS)

    Gao, Yongqian; Dervishi, Enkeleda; Karan, Niladri; Ghosh, Yagnaseni; Hollingsworth, Jennifer; Doorn, Stevphen; Htoon, Han

    2014-03-01

    Due to its transparency in wide spectral range and high charge mobilities, graphene has been considered to utilize as transparent electrode for nanocrystal based photo-voltaic and light emitting diodes. A detail understanding on charge/energy transfer (CT/ET) processes between zero dimensional quantum dots and 2D graphene layer hold the key in optimizing the performance of these devices. To attain this understanding, we conduct a systematic study on CT and ET processes between a graphene layer and CdSe/CdS giant nanocrystal quantum dots (g-NQD) as the function of CdS shell thickness. In addition to analyzing PL quenching and change of PL decay dynamic, we also perform 2nd order photon correlation spectroscopy studies to investigate the effect of graphene layer on dynamic and emission efficiency of g-NQDs' multi-exciton states. In case of g-NQDs over coated with a thick 16 ML CdS shell, we observed a surprising increase of multi-exciton emission efficiency.

  18. Cellular and molecular analysis of mutagenesis induced by charged particles of defined linear energy transfer

    NASA Technical Reports Server (NTRS)

    Zhu, L. X.; Waldren, C. A.; Vannias, D.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Mutation induction by charged particles of defined linear energy transfer (LET) and gamma rays was scored using human-hamster hybrid AL cells. The LET values for charged particles accelerated at the Radiological Research Accelerator Facility ranged from 10 keV/microm protons to 150 keV/microm 4He ions. The induced mutant fractions at both the S1 and HGPRT loci were dependent on the dose and LET. In addition, for each dose examined, the mutant yield at the S1 locus was 30-60 fold higher than at the corresponding HGPRT locus. To determine whether the mutation spectrum was comparably dependent on dose and LET, independent S1- and HGPRT- mutants induced by 150 keV/microm 4He ions and gamma rays were isolated, and their DNA was analyzed by both Southern blotting and multiplex PCR methods. While the majority of radiation-induced mutants showed deletions of varying sizes, the relative percentage of large deletions was found to be related to both the dose and LET of the radiation examined. Using a mutation system that can detect multilocus changes, results of the present study show that radiation-induced chromosomal loss can be in the millions of base pairs.

  19. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  20. DNA in a Dissipative Environment: A Charge Transfer Approach

    NASA Astrophysics Data System (ADS)

    Behnia, Sohrab; Fathizadeh, Samira; Akhshani, Afshin

    2015-08-01

    Conductivity properties of DNA molecule is investigated in a simple, chemically specific approach, that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In the SSH model, the non-diagonal matrix element dependent on intersite displacements is considered and there is a coupling between the charge and lattice deformation along DNA helix. In order to study the evolution of the electrical current flowing through DNA in the presence of external electrical field, the electrical current is directly extracted from the dynamical equations. Ranges of electrical field and hopping constant value are estimated using MLE approach. The model is studied by means of I-V characteristic diagrams and the environmental effects is conducted through a phonon bath using different lengths of DNA. The NDR and quasi-Ohmic regions are observed.

  1. Charge transfer and electronic doping in nitrogen-doped graphene

    PubMed Central

    Joucken, Frédéric; Tison, Yann; Le Fèvre, Patrick; Tejeda, Antonio; Taleb-Ibrahimi, Amina; Conrad, Edward; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Ghijsen, Jacques; Sporken, Robert; Amara, Hakim; Ducastelle, François; Lagoute, Jérôme

    2015-01-01

    Understanding the modification of the graphene’s electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy (XPS). The comparison between tunneling and angle-resolved photoelectron spectra reveals the spatial inhomogeneity of the Dirac energy shift and that a phonon correction has to be applied to the tunneling measurements. XPS data demonstrate the dependence of the N 1s binding energy of graphitic nitrogen on the nitrogen concentration. The measure of the Dirac energy for different nitrogen concentrations reveals that the ratio usually computed between the excess charge brought by the dopants and the dopants’ concentration depends on the latter. This is supported by a tight-binding model considering different values for the potentials on the nitrogen site and on its first neighbors. PMID:26411651

  2. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    PubMed Central

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-01-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties. PMID:27143413

  3. Photophysical properties of charge transfer pairs encapsulated inside macrocycle cage: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Arkamita; Pati, Swapan K.

    2015-03-01

    Density functional theory calculations have been performed on three charge transfer donor-acceptor (D-A) molecular pairs, i.e. naphthalene-diamine (Naph) and tetrathiafulvalene (TTF) molecules as electron donors and benzene-diimide (Diimide) and tetracyanoquinodimethane (TCNQ) as electron acceptors. Structural, charge transfer and optical properties of the systems have been studied. The D-A pairs then has been considered inside a macrocycle (cucurbit[8]uril) cavity and Naph-Diimide and TTF-Diimide pairs have been shown to exhibit changes in their structures and orientations, TTF-TCNQ pair does not show any significant structural change. Our work suggests that these changes in structures or orientations are result of electronic repulsion between the keto group oxygen atoms and it can lead to tuning of charge transfer and optical properties of the systems.

  4. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization.

    PubMed

    Demchenko, Alexander P; Tang, Kuo-Chun; Chou, Pi-Tai

    2013-02-01

    Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.

  5. Horizontal versus vertical charge and energy transfer in hybrid assemblies of semiconductor nanoparticles

    PubMed Central

    Gotesman, Gilad; Guliamov, Rahamim

    2012-01-01

    Summary We studied the photoluminescence and time-resolved photoluminescence from self-assembled bilayers of donor and acceptor nanoparticles (NPs) adsorbed on a quartz substrate through organic linkers. Charge and energy transfer processes within the assemblies were investigated as a function of the length of the dithiolated linker (DT) between the donors and acceptors. We found an unusual linker-length-dependency in the emission of the donors. This dependency may be explained by charge and energy transfer processes in the vertical direction (from the donors to the acceptors) that depend strongly on charge transfer processes occurring in the horizontal plane (within the monolayer of the acceptor), namely, parallel to the substrate. PMID:23019559

  6. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  7. Charge transfer in strongly correlated systems: An exact diagonalization approach to model Hamiltonians

    SciTech Connect

    Schöppach, Andreas; Gnandt, David; Koslowski, Thorsten

    2014-04-07

    We study charge transfer in bridged di- and triruthenium complexes from a theoretical and computational point of view. Ab initio computations are interpreted from the perspective of a simple empirical Hamiltonian, a chemically specific Mott-Hubbard model of the complexes' π electron systems. This Hamiltonian is coupled to classical harmonic oscillators mimicking a polarizable dielectric environment. The model can be solved without further approximations in a valence bond picture using the method of exact diagonalization and permits the computation of charge transfer reaction rates in the framework of Marcus' theory. In comparison to the exact solution, the Hartree-Fock mean field theory overestimates both the activation barrier and the magnitude of charge-transfer excitations significantly. For triruthenium complexes, we are able to directly access the interruthenium antiferromagnetic coupling strengths.

  8. Fermi level pinning and the charge transfer contribution to the energy of adsorption at semiconducting surfaces

    SciTech Connect

    Krukowski, Stanisław; Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad

    2014-01-28

    It is shown that charge transfer, the process analogous to formation of semiconductor p-n junction, contributes significantly to adsorption energy at semiconductor surfaces. For the processes without the charge transfer, such as molecular adsorption of closed shell systems, the adsorption energy is determined by the bonding only. In the case involving charge transfer, such as open shell systems like metal atoms or the dissociating molecules, the energy attains different value for the Fermi level differently pinned. The Density Functional Theory (DFT) simulation of species adsorption at different surfaces, such as SiC(0001) or GaN(0001) confirms these predictions: the molecular adsorption is independent on the coverage, while the dissociative process adsorption energy varies by several electronvolts.

  9. Attosecond timing the ultrafast charge-transfer process in atomic collisions

    SciTech Connect

    Hu, S. X.

    2011-04-15

    By solving the three-dimensional, time-dependent Schroedinger equation, we have demonstrated that the ultrafast charge-transfer process in ion-atom collisions can be mapped out with attosecond extreme uv (xuv) pulses. During the dynamic-charge transfer from the target atom to the projectile ion, the electron coherently populates the two sites of both nuclei, which can be viewed as a 'short-lived' molecular state. A probing attosecond xuv pulse can instantly unleash the delocalized electron from such a ''transient molecule,'' so that the resulting photoelectron may exhibit a ''double-slit'' interference. On the contrary, either reduced or no photoelectron interference will occur if the attosecond xuv pulse strikes well before or after the collision. Therefore, by monitoring the photoelectron interference visibility, one can precisely time the ultrafast charge-transfer process in atomic collisions with time-delayed attosecond xuv pulses.

  10. Charge transfer and momentum exchange in exospheric D-H(+) and H-D(+) collisions

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Breig, E. L.

    1993-01-01

    Mechanisms that control the escape of deuterium from planetary exospheres include the acceleration of D(+) in the polar wind, and the production of suprathermal D atoms through nonthermal collisions. In this paper we examine the effects of neutral-ion interactions involving deuterium and hydrogen on the velocity distribution of neutral D. A two-center scattering approximation is used as the basis for calculations of the differential cross sections for charge transfer and elastic scatter in collision of H with D(+) and of D with H(+) for ionosphere-exosphere collision energies below 10 e V. These data are used to derive temperature dependent rate coefficients for the charge transfer branches of these interactions, and to determine the effects of ion-neutral temperature differences on the rate of generation of suprathermal D through charge transfer and elastic scatter.

  11. Charge transfer and mobility enhancement at CdO/SnTe heterointerfaces

    SciTech Connect

    Nishitani, Junichi; Yu, Kin Man; Walukiewicz, Wladek

    2014-09-29

    We report a study of the effects of charge transfer on electrical properties of CdO/SnTe heterostructures. A series of structures with variable SnTe thicknesses were deposited by RF magnetron sputtering. Because of an extreme type III band offset with the valence band edge of SnTe located at 1.5 eV above the conduction band edge of CdO, a large charge transfer is expected at the interface of the CdO/SnTe heterostructure. The electrical properties of the heterostructures are analyzed using a multilayer charge transport model. The analysis indicates a large 4-fold enhancement of the CdO electron mobility at the interface with SnTe. The mobility enhancement is attributed to reduction of the charge center scattering through neutralization of the donor-like defects responsible for the Fermi level pinning at the CdO/SnTe interface.

  12. Detection of single-nucleotide variations by monitoring the blinking of fluorescence induced by charge transfer in DNA.

    PubMed

    Kawai, Kiyohiko; Majima, Tetsuro; Maruyama, Atsushi

    2013-08-19

    Charge transfer dynamics in DNA: Photo-induced charge separation and charge-recombination dynamics in DNA was assessed by monitoring the blinking of fluorescence. Single nucleotide variations, mismatch and one base deletion, were differentiated based on the length of the off-time of the blinking, which corresponds to the lifetime of the charge-separated state. PMID:23846860

  13. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    SciTech Connect

    Nguyen, Anh Tuan; Nguyen, Van Thanh; Nguyen, Huy Sinh; Pham, Thi Tuan Anh; Do, Viet Thang; Dam, Hieu Chi

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  14. Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state

    PubMed Central

    Zigmantas, Donatas; Hiller, Roger G.; Sundström, Villy; Polívka, Tomáš

    2002-01-01

    Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin–chlorophyll-a–protein (PCP) complex containing the highly substituted carotenoid peridinin, which includes an intramolecular charge transfer (ICT) state in its excited state manifold. Extending the transient absorption spectra toward near-infrared region (600–1800 nm) allowed us to separate contributions from different low-lying excited states of peridinin. The results demonstrate a special light-harvesting strategy in the PCP complex that uses the ICT state of peridinin to enhance energy transfer efficiency. PMID:12486228

  15. Charge transfer properties through graphene for applications in gaseous detectors

    NASA Astrophysics Data System (ADS)

    Franchino, S.; Gonzalez-Diaz, D.; Hall-Wilton, R.; Jackman, R. B.; Muller, H.; Nguyen, T. T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-07-01

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2×2 cm2, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.

  16. Investigation of Charge Transfer in Low Energy D2+ + H Collisions using Merged Beams

    SciTech Connect

    Andrianarijaona, Vola M; Rada, J. J.; Rejoub, Riad A; Havener, Charles C

    2009-01-01

    Synopsis The hydrogen - hydrogen (deuterium) molecular ion is the most fundamental ion-molecule two-electron system. Charge transfer proceeds through dynamically coupled electronic, vibrational and rotational degrees of freedom. Using the ion-atom merged-beams apparatus at Oak Ridge National Laboratory absolute charge transfer cross sections for D2+ + H are measured from keV/u collision energies where the collision is considered "ro-vibrationally frozen" to meV/u energies where collision times are long enough to sample vibrational and rotational modes. The measurements benchmark high energy theory and vibrationally specific adiabatic theory.

  17. Ion-atom charge-transfer reactions and a hot intercloud medium. [in interstellar space

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    An investigation is conducted concerning the ionization equilibrium of carbon in a hot intercloud medium (ICM), taking into account various charge-transfer reactions. Attention is given to problems related to observations of carbon along the lines of sight to several unreddened stars. It is pointed out that the observed underabundance of C III and overabundance of C I can be consistent with the presence of a hot, partially ionized ICM, provided that two of the charge-transfer reactions considered are rapid at thermal energies.

  18. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan; Guo, Yanling; Chen, Ximeng

    2016-11-01

    Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5-22.5 keV C- and F- ions scattering on H2O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  19. Photoinduced charge transfer involving a MoMo quadruply bonded complex to a perylene diimide.

    PubMed

    Alberding, Brian G; Brown-Xu, Samantha E; Chisholm, Malcolm H; Epstein, Arthur J; Gustafson, Terry L; Lewis, Sharlene A; Min, Yong

    2013-04-21

    Evidence, based on femtosecond transient absorption and time resolved infrared spectroscopy, is presented for photoinduced charge transfer from the Mo2δ orbital of the quadruply bonded molecule trans-Mo2(T(i)PB)2(BTh)2, where T(i)PB = 2,4,6-triisopropyl benzoate and BTh = 2,2'-bithienylcarboxylate, to di-n-octyl perylene diimide and di-n-hexylheptyl perylene diimide in thin films and solutions of the mixtures. The films show a long-lived charge separated state while slow back electron transfer, τBET ~ 500 ps, occurs in solution.

  20. Enhanced charge transfer by phenyl groups at a rubrene/C60 interface

    NASA Astrophysics Data System (ADS)

    Mou, Weiwei; Ohmura, Satoshi; Hattori, Shinnosuke; Nomura, Ken-ichi; Shimojo, Fuyuki; Nakano, Aiichiro

    2012-05-01

    Exciton dynamics at an interface between an electron donor, rubrene, and a C60 acceptor is studied by nonadiabatic quantum molecular dynamics simulation. Simulation results reveal an essential role of the phenyl groups in rubrene in increasing the charge-transfer rate by an order-of-magnitude. The atomistic mechanism of the enhanced charge transfer is found to be the amplification of aromatic breathing modes by the phenyl groups, which causes large fluctuations of electronic excitation energies. These findings provide insight into molecular structure design for efficient solar cells, while explaining recent experimental observations.

  1. Photoinduced charge transfer within polyaniline-encapsulated quantum dots decorated on graphene.

    PubMed

    Nguyen, Kim Truc; Li, Dehui; Borah, Parijat; Ma, Xing; Liu, Zhaona; Zhu, Liangliang; Grüner, George; Xiong, Qihua; Zhao, Yanli

    2013-08-28

    A new method to enhance the stability of quantum dots (QDs) in aqueous solution by encapsulating them with conducting polymer polyaniline was reported. The polyaniline-encapsulated QDs were then decorated onto graphene through π-π interactions between graphene and conjugated polymer shell of QDs, forming stable polyaniline/QD/graphene hybrid. A testing electronic device was fabricated using the hybrid in order to investigate the photoinduced charge transfer between graphene and encapsulated QDs within the hybrid. The charge transfer mechanism was explored through cyclic voltammetry and spectroscopic studies. The hybrid shows a clear response to the laser irradiation, presenting a great advantage for further applications in optoelectronic devices.

  2. Enhanced charge transfer by phenyl groups at a rubrene/C60 interface.

    PubMed

    Mou, Weiwei; Ohmura, Satoshi; Hattori, Shinnosuke; Nomura, Ken-ichi; Shimojo, Fuyuki; Nakano, Aiichiro

    2012-05-14

    Exciton dynamics at an interface between an electron donor, rubrene, and a C(60) acceptor is studied by nonadiabatic quantum molecular dynamics simulation. Simulation results reveal an essential role of the phenyl groups in rubrene in increasing the charge-transfer rate by an order-of-magnitude. The atomistic mechanism of the enhanced charge transfer is found to be the amplification of aromatic breathing modes by the phenyl groups, which causes large fluctuations of electronic excitation energies. These findings provide insight into molecular structure design for efficient solar cells, while explaining recent experimental observations. PMID:22583307

  3. Enhanced charge transfer by phenyl groups at a rubrene/C{sub 60} interface

    SciTech Connect

    Mou Weiwei; Hattori, Shinnosuke; Nomura, Ken-ichi; Nakano, Aiichiro; Ohmura, Satoshi; Shimojo, Fuyuki

    2012-05-14

    Exciton dynamics at an interface between an electron donor, rubrene, and a C{sub 60} acceptor is studied by nonadiabatic quantum molecular dynamics simulation. Simulation results reveal an essential role of the phenyl groups in rubrene in increasing the charge-transfer rate by an order-of-magnitude. The atomistic mechanism of the enhanced charge transfer is found to be the amplification of aromatic breathing modes by the phenyl groups, which causes large fluctuations of electronic excitation energies. These findings provide insight into molecular structure design for efficient solar cells, while explaining recent experimental observations.

  4. Charge-displacement analysis via natural orbitals for chemical valence: charge transfer effects in coordination chemistry.

    PubMed

    Bistoni, Giovanni; Rampino, Sergio; Tarantelli, Francesco; Belpassi, Leonardo

    2015-02-28

    We recently devised a simple scheme for analyzing on quantitative grounds the Dewar-Chatt-Duncanson donation and back-donation in symmetric coordination complexes. Our approach is based on a symmetry decomposition of the so called Charge-Displacement (CD) function quantifying the charge flow, upon formation of a metal (M)-substrate (S) bond, along the M-S interaction axis and provides clear-cut measures of donation and back-donation charges in correlation with experimental observables [G. Bistoni et al., Angew. Chem., Int. Ed. 52, 11599 (2013)]. The symmetry constraints exclude of course from the analysis most systems of interest in coordination chemistry. In this paper, we show how to entirely overcome this limitation by taking advantage of the properties of the natural orbitals for chemical valence [M. Mitoraj and A. Michalak, J. Mol. Model. 13, 347 (2007)]. A general scheme for disentangling donation and back-donation in the CD function of both symmetric and non-symmetric systems is presented and illustrated through applications to M-ethyne (M = Au, Ni and W) coordination bonds, including an explicative study on substrate activation in a model reaction mechanism.

  5. A 190 by 244 charge-coupled area image sensor with interline transfer organization

    NASA Technical Reports Server (NTRS)

    Walsh, L. R.

    1975-01-01

    A 190 x 244 element charge coupled area image sensor has been designed, fabricated and tested. This sensor employs an interline transfer organization and buried n-channel technology. It features a novel on-chip charge integrator and a distributed floating gate amplifier for high and low light level applications. The X-Y element count has been chosen to establish the capability of producing an NTSC compatible video signal. The array size is also compatible with the Super 8 lens format. The first few sample devices have been successfully operated at full video bandwidth for both high and low light levels with the charge amplifier system.

  6. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.

    PubMed

    Guan, Zhiqiang; Li, Ho-Wa; Zhang, Jinfeng; Cheng, Yuanhang; Yang, Qingdan; Lo, Ming-Fai; Ng, Tsz-Wai; Tsang, Sai-Wing; Lee, Chun-Sing

    2016-08-24

    How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs.

  7. Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells.

    PubMed

    Bernardo, B; Cheyns, D; Verreet, B; Schaller, R D; Rand, B P; Giebink, N C

    2014-01-01

    Charge transfer (CT) states at a donor-acceptor heterojunction have a key role in the charge photogeneration process of organic solar cells, however, the mechanism by which these states dissociate efficiently into free carriers remains unclear. Here we explore the nature of these states in small molecule-fullerene bulk heterojunction photovoltaics with varying fullerene fraction and find that the CT energy scales with dielectric constant at high fullerene loading but that there is a threshold C60 crystallite size of ~4 nm below which the spatial extent of these states is reduced. Electroabsorption measurements indicate an increase in CT polarizability when C60 crystallite size exceeds this threshold, and that this change is correlated with increased charge separation yield supported by CT photoluminescence transients. These results support a model of charge separation via delocalized CT states independent of excess heterojunction offset driving energy and indicate that local fullerene crystallinity is critical to the charge separation process.

  8. Computing intramolecular charge and energy transfer rates using optimal modes

    SciTech Connect

    Yang, Xunmo; Bittner, Eric R.

    2015-06-28

    In our recent work [X. Yang and E. R. Bittner, J. Phys. Chem. A 118, 5196 (2014)], we showed how to construct a reduced set of nuclear motions that capture the coupling between electronic and nuclear degrees of freedom over the course of an electronic transition. We construct these modes, referred to as “Lanczos modes,” by applying a search algorithm to find linear combinations of vibrational normal modes that optimize the electronic/nuclear coupling operator. Here, we analyze the irreducible representations of the dominant contributions of these modes and find that for the cases considered here, these belong to totally symmetric irreducible representations of the donor and acceptor moieties. Upon investigating the molecular geometry changes following the transition, we propose that the electronic transition process can be broken into two steps, in the agreement of Born-Oppenheimer approximation: a fast excitation transfer occurs, facilitated by the “primary Lanczos mode,” followed by slow nuclear relaxation on the final electronic diabatic surface.

  9. Proton-Coupled Electron Transfer: Moving Together and Charging Forward

    SciTech Connect

    Hammes-Schiffer, Sharon

    2015-06-25

    Proton-coupled electron transfer (PCET) is ubiquitous throughout chemistry and biology. This Perspective discusses recent advances and current challenges in the field of PCET, with an emphasis on the role of theory and computation. The fundamental theoretical concepts are summarized, and expressions for rate constants and kinetic isotope effects are provided. Computational methods for calculating reduction potentials and pKa’s for molecular electrocatalysts, as well as methods for simulating the nonadiabatic dynamics of photoinduced processes, are also described. Representative applications to PCET in solution, proteins, electrochemistry, and photoinduced processes are presented, highlighting the interplay between theoretical and experimental studies. The current challenges and suggested future directions are outlined for each type of application, concluding with an overall view to the future. The work described herein was supported by National Science Foundation Grant CHE-13-61293 (theory development), National Institutes of Health Grant GM056207 (soybean lipoxygenase), Center for Chemical Innovation of the National Science Foundation Solar Fuels Grant CHE-1305124 (cobalt catalysts), Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (nickel catalysts), and Air Force Office of Scientific Research Award No. FA9550-14-1-0295 (photoinduced PCET).

  10. Note: Charge transfer in a hydrated peptide group is determined mainly by its intrinsic hydrogen-bond energetics

    SciTech Connect

    Mirkin, Noemi G.; Krimm, Samuel

    2014-01-28

    Charge transfer in a hydrogen-bonded N-methylacetamide(H{sub 2}O){sub 3} system is obtained from ωB97X-D/6-31++G** and CHelpG atomic charge calculations of individual peptide-water interactions as well as that of the entire complex. In the latter, the electron transfer to water is 0.19 e, influenced primarily by the hydrogen bonds to the C=O group. The values of such charge transfer are paralleled by the corresponding intrinsic hydrogen-bond energies. These results support the desirability of incorporating charge transfer in molecular mechanics energy functions.

  11. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics.

    PubMed

    Jailaubekov, Askat E; Willard, Adam P; Tritsch, John R; Chan, Wai-Lun; Sai, Na; Gearba, Raluca; Kaake, Loren G; Williams, Kenrick J; Leung, Kevin; Rossky, Peter J; Zhu, X-Y

    2013-01-01

    Photocurrent generation in organic photovoltaics (OPVs) relies on the dissociation of excitons into free electrons and holes at donor/acceptor heterointerfaces. The low dielectric constant of organic semiconductors leads to strong Coulomb interactions between electron-hole pairs that should in principle oppose the generation of free charges. The exact mechanism by which electrons and holes overcome this Coulomb trapping is still unsolved, but increasing evidence points to the critical role of hot charge-transfer (CT) excitons in assisting this process. Here we provide a real-time view of hot CT exciton formation and relaxation using femtosecond nonlinear optical spectroscopies and non-adiabatic mixed quantum mechanics/molecular mechanics simulations in the phthalocyanine-fullerene model OPV system. For initial excitation on phthalocyanine, hot CT excitons are formed in 10(-13) s, followed by relaxation to lower energies and shorter electron-hole distances on a 10(-12) s timescale. This hot CT exciton cooling process and collapse of charge separation sets the fundamental time limit for competitive charge separation channels that lead to efficient photocurrent generation.

  12. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  13. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    2001-08-01

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  14. Camptothecins guanine interactions: mechanism of charge transfer reaction upon photoactivation

    NASA Astrophysics Data System (ADS)

    Steenkeste, K.; Guiot, E.; Tfibel, F.; Pernot, P.; Mérola, F.; Georges, P.; Fontaine-Aupart, M. P.

    2002-01-01

    The potent activity exhibited by the antitumoral camptothecin (CPT) and its analog irinotecan (CPT-11) is known to be related to a close contact between the drug and the nucleic acid base guanine. This specificity of interaction between these two chromophores was examined by following changes in the photophysical properties of the drug using steady-state as well as time-resolved absorption and fluorescence methods. The observed effects on absorption, fluorescence emission and singlet excited state lifetimes give evidence for the occurrence of a stacking complex formation restricted to the quinoline part of CPT or CPT-11 and the guanine base but also with the adenine base. The triplet excited state properties of the drugs have been also characterized in absence and in presence of guanosine monophosphate and reveal the occurrence of an electron transfer from the guanine base to the drug. Support for this conclusion was obtained from the studies of a set of biological targets of various oxido-reduction potentials, adenosine monophosphate, cytidine, cytosine, tryptophan, tyrosine and phenylalanine. This finding gives an interpretation of the CPT-induced guanine photolesions previously reported in the literature. These data taken together are discussed in connection with the drug activity. The stacking complex CPT/guanine is necessary but not sufficient to explain the role of the chirality and of the lactone structure in the function of the drug. A stereospecific interaction with the enzyme topoisomerase I seems necessary to stabilize the stacking complex. The first experiments using time-resolved fluorescence by two-photon excitation confirms that CPT does not bind to the isolated enzyme.

  15. Imaging charge and energy transfer in molecules using free-electron lasers

    NASA Astrophysics Data System (ADS)

    Rudenko, Artem

    2014-05-01

    Charge and energy transfer reactions drive numerous important processes in physics, chemistry and biology, with applications ranging from X-ray astrophysics to artificial photosynthesis and molecular electronics. Experimentally, the central goal in studies of transfer phenomena is to trace the spatial localization of charge at a given time. Because of their element and site sensitivity, ultrafast X-rays provide a promising tool to address this goal. In this talk I will discuss several experiments where free-electron lasers were employed to study charge and energy transfer dynamics in fragmenting molecules. In a first example, we used intense, 70 femtosecond 1.5 keV pulses from the Linac Coherent Light Source (LCLS) to study distance dependence of electron transfer in laser-dissociated methyl iodide molecules. Inducing well-localized positive charge on the heavy iodine atom, we observe signature of electron transition from the separated methyl group up to the distances of 35 atomic units. In a complementary experiment, we studied charge exchange between two partners in a dissociating molecular iodine employing a pump-probe arrangement with two identical 90 eV pulses from the Free-Electron LASer in Hamburg (FLASH). In both cases, the effective spatial range of the electron transfer can be reasonably described by a classical over-the-barrier model developed for ion-atom collisions. Finally, I will discuss a time-resolved measurement on non-local relaxation mechanism based on a long-range energy transfer, the so-called interatomic Coulombic decay. This work was supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy and by the Kansas NSF ``First Award'' program.

  16. [Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces

    SciTech Connect

    Not Available

    1992-01-01

    Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.

  17. [Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces

    SciTech Connect

    Not Available

    1992-12-31

    Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.

  18. The Charge Transfer Efficiency and Calibration of WFPC2

    NASA Technical Reports Server (NTRS)

    Dolphin, Andrew E.

    2000-01-01

    A new determination of WFPC2 photometric corrections is presented, using HSTphot reduction of the WFPC2 Omega Centauri and NGC 2419 observations from January 1994 through March 2000 and a comparison with ground-based photometry. No evidence is seen for any position-independent photometric offsets (the "long-short anomaly"); all systematic errors appear to be corrected with the CTE and zero point solution. The CTE loss time dependence is determined to be very significant in the Y direction, causing time-independent CTE solutions to be valid only for a small range of times. On average, the present solution produces corrections similar to Whitmore, Heyer, & Casertano, although with an improved functional form that produces less scatter in the residuals and determined with roughly a year of additional data. In addition to the CTE loss characterization, zero point corrections are also determined as functions of chip, gain, filter, and temperature. Of interest, there are chip-to-chip differences of order 0.01 - 0.02 magnitudes relative to the Holtzman et al. calibrations, and the present study provides empirical zero point determinations for the non-standard filters such as the frequently-used F450W, F606W, and F702W.

  19. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    NASA Astrophysics Data System (ADS)

    Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2016-05-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

  20. Probing excited state charge transfer dynamics in a heteroleptic ruthenium complex.

    PubMed

    Ghosh, Rajib; Palit, Dipak K

    2014-01-01

    Dynamics of metal to ligand charge transfer in the excited states of ruthenium polypyridyl complexes, which have shown promise as materials for artificial solar energy harvesting, has been of immense interest recently. Mixed ligand complexes are especially important for broader absorption in the visible region. Dynamics of ultrafast vibrational energy relaxation and inter-ligand charge transfer processes in the excited states of a heteroleptic ruthenium complex, [Ru(bpy)2(pap)](ClO4)2 (where bpy is 2,2'-bipyridine and pap is 2-(phenylazo)pyridine) have been investigated using femtosecond to nanosecond time-resolved transient absorption spectroscopic techniques. A good agreement between the TA spectrum of the lowest excited (3)MLCT state of [Ru(bpy)2(pap)](ClO4)2 complex and the anion radical spectrum of the pap ligand, which has been generated using the pulse radiolysis technique, confirmed the charge localization at the pap ligand. While the lifetime of the inter-ligand charge transfer from the bpy to the pap ligand in the (3)MLCT state is about 2.5 ps, vibrational cooling of the pap-localized(3)MLCT state occurs over a much longer time scale with a lifetime of about 35 ps. Ultrafast charge localization dynamics observed here may have important consequences in artificial solar energy harvesting systems, which employ heteroleptic ruthenium complexes. PMID:24247908

  1. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    DOE PAGES

    Grisolia, M. N.; Varignon, J.; Barthelemy, A.; Bibes, M.; Sanchez-Santolino, G.; Varela, M.; Santamaria, J.; Arora, A.; Valencia, S.; Abrudan, R.; et al

    2016-01-25

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignmentmore » picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal–oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Furthermore, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.« less

  2. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    PubMed Central

    Grisolia, M.N.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J.E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2015-01-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. PMID:27158255

  3. Charge transfer in semi-insulating Fe-doped GaN

    NASA Astrophysics Data System (ADS)

    Dashdorj, J.; Zvanut, M. E.; Harrison, J. G.; Udwary, K.; Paskova, T.

    2012-07-01

    Charge transfer kinetics is studied in free-standing Fe-doped GaN using photo-induced electron paramagnetic resonance (EPR). Samples with Fe concentrations of 1017 cm-3 reveal an increase in Fe3+ during exposure with photon energy greater than 0.8 eV, while samples with higher Fe concentrations exhibit a decrease in the Fe3+ under the same conditions. Steady-state photo-EPR measurements of the most lightly doped sample imply the existence of an Fe2+/3+ defect level within 0.8 eV of the conduction band edge consistent with earlier work, but time-dependent measurements of more heavily doped crystals indicate a multi-step charge transfer process. Analysis of time-dependent photo-EPR data reveals that charge exchange may be separated into two processes, one that is temperature independent and one that depends monotonically on temperature. While a physical model for the charge transfer is not apparent, likely scenarios involve charge trapping at extended defects and phonon interactions.

  4. Charge transfer polarisation wave in high Tc oxides and superconductive pairing

    NASA Technical Reports Server (NTRS)

    Chakraverty, B. K.

    1991-01-01

    A general formalism of quantized charge transfer polarization waves was developed. The nature of possible superconductive pairing between oxygen holes is discussed. Unlike optical phonons, these polarization fields will give rise to dielectric bipolarons or bipolaron bubbles. In the weak coupling limit, a new class of superconductivity is to be expected.

  5. Determination of Interfacial Charge-Transfer Rate Constants in Perovskite Solar Cells.

    PubMed

    Pydzińska, Katarzyna; Karolczak, Jerzy; Kosta, Ivet; Tena-Zaera, Ramon; Todinova, Anna; Idígoras, Jesus; Anta, Juan A; Ziółek, Marcin

    2016-07-01

    A simple protocol to study the dynamics of charge transfer to selective contacts in perovskite solar cells, based on time-resolved laser spectroscopy studies, in which the effect of bimolecular electron-hole recombination has been eliminated, is proposed. Through the proposed procedure, the interfacial charge-transfer rate constants from methylammonium lead iodide perovskite to different contact materials can be determined. Hole transfer is faster for CuSCN (rate constant 0.20 ns(-1) ) than that for 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD; 0.06 ns(-1) ), and electron transfer is faster for mesoporous (0.11 ns(-1) ) than that for compact (0.02 ns(-1) ) TiO2 layers. Despite more rapid charge separation, the photovoltaic performance of CuSCN cells is worse than that of spiro-OMeTAD cells; this is explained by faster charge recombination in CuSCN cells, as revealed by impedance spectroscopy. The proposed direction of studies should be one of the key strategies to explore efficient hole-selective contacts as an alternative to spiro-OMeTAD. PMID:27253726

  6. The first porphyrin-subphthalocyaninatoboron(iii)-fused hybrid with unique conformation and intramolecular charge transfer behavior.

    PubMed

    Zhang, Yuehong; Oh, Juwon; Wang, Kang; Shin, Dongju; Zhan, Xiaopeng; Zheng, Yingting; Kim, Dongho; Jiang, Jianzhuang

    2016-08-18

    Porphyrin and subphthalocyaninatoboron(iii) chromophores have been fused through a quinoxaline moiety, resulting in the first porphyrin-subphthalocyaninatoboron(iii)-fused hybrid with intramolecular charge transfer from tetrapyrrole/tripyrrole chromophores to the quinoxaline moiety. The unique plane-bowl molecular structure of this hybrid was revealed based on single crystal X-ray diffraction analysis for the first time. PMID:27492136

  7. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    Electronic transitions between the Fe-Fe bonding and Fe-Fe antibonding orbitals results in the optically-induced intervalence charge transfer bands observed in the electronic spectra of mixed valence minerals. Such transitions are predicted to be polarized along the metal-metal bond direction, in agreement with experimental observations.

  8. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    NASA Technical Reports Server (NTRS)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  9. Ultrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches

    SciTech Connect

    Wasielewski, M.R.

    1992-01-01

    Photoinduced charge separation reactions form the basis for energy storage processes in both natural and artificial photosynthesis. Moreover, rapid reversible photoinduced electron transfer reactions are a class of photophysical phenomena that can be exploited to develop schemes for optical switching. Examples from each of these fields are discussed.

  10. Ultrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches

    SciTech Connect

    Wasielewski, M.R.

    1992-08-01

    Photoinduced charge separation reactions form the basis for energy storage processes in both natural and artificial photosynthesis. Moreover, rapid reversible photoinduced electron transfer reactions are a class of photophysical phenomena that can be exploited to develop schemes for optical switching. Examples from each of these fields are discussed.

  11. Three component assemblies by orthogonal H-bonding and donor-acceptor charge-transfer interaction.

    PubMed

    Kar, Haridas; Ghosh, Suhrit

    2014-02-01

    Three component supramolecular assemblies from a mixture of an aromatic donor (D), acceptor (A) and external structure directing agent (ESDA) are achieved by orthogonal noncovalent interactions involving two different types of H-bonding and alternate D-A stacking. An ESDA containing amide or urea produces a charge-transfer gel and sol, respectively, owing to their contrasting morphology. PMID:24309620

  12. Solvent-induced reversible solid-state colour change of an intramolecular charge-transfer complex.

    PubMed

    Li, Ping; Maier, Josef M; Hwang, Jungwun; Smith, Mark D; Krause, Jeanette A; Mullis, Brian T; Strickland, Sharon M S; Shimizu, Ken D

    2015-10-11

    A dynamic intramolecular charge-transfer (CT) complex was designed that displayed reversible colour changes in the solid-state when treated with different organic solvents. The origins of the dichromatism were shown to be due to solvent-inclusion, which induced changes in the relative orientations of the donor pyrene and acceptor naphthalenediimide units. PMID:26299357

  13. Intershell interaction in double walled carbon nanotubes: Charge transfer and orbital mixing

    NASA Astrophysics Data System (ADS)

    Zólyomi, V.; Koltai, J.; Rusznyák, Á.; Kürti, J.; Gali, Á.; Simon, F.; Kuzmany, H.; Szabados, Á.; Surján, P. R.

    2008-06-01

    Recent nuclear-magnetic-resonance measurements on isotope engineered double walled carbon nanotubes (DWCNTs) surprisingly suggest a uniformly metallic character of all nanotubes, which can only be explained by the interaction between the layers. Here we study the intershell interaction in DWCNTs by density-functional theory and the intermolecular Hückel model. Both methods find charge transfer between the inner and outer tubes. We find that the charge transfer between the walls is on the order of 0.001e-/atom and that the inner tube is always negatively charged. We also observe orbital mixing between the states of the layers. We find that these two effects combined can in some cases lead to a semiconductor-to-metal transition of the double walled tube, but not necessarily in all cases. We extend our study to multiwalled nanotubes as well, with up to six layers in total. We find similar behavior as in the case of DWCNTs: electrons tend to be transferred from the outermost layer toward the innermost one. We find a notable peculiarity in the charge transfer when the (5,0) tube is present as the innermost tube; we attribute this to the σ-π mixing in such small diameter tubes.

  14. Quantifying through-space charge transfer dynamics in π-coupled molecular systems

    NASA Astrophysics Data System (ADS)

    Batra, Arunabh; Kladnik, Gregor; Vázquez, Héctor; Meisner, Jeffrey S.; Floreano, Luca; Nuckolls, Colin; Cvetko, Dean; Morgante, Alberto; Venkataraman, Latha

    2012-09-01

    Understanding the role of intermolecular interaction on through-space charge transfer characteristics in π-stacked molecular systems is central to the rational design of electronic materials. However, a quantitative study of charge transfer in such systems is often difficult because of poor control over molecular morphology. Here we use the core-hole clock implementation of resonant photoemission spectroscopy to study the femtosecond charge-transfer dynamics in cyclophanes, which consist of two precisely stacked π-systems held together by aliphatic chains. We study two systems, [2,2]paracyclophane (22PCP) and [4,4]paracyclophane (44PCP), with inter-ring separations of 3.0 and 4.0 Å, respectively. We find that charge transfer across the π-coupled system of 44PCP is 20 times slower than in 22PCP. We attribute this difference to the decreased inter-ring electronic coupling in 44PCP. These measurements illustrate the use of core-hole clock spectroscopy as a general tool for quantifying through-space coupling in π-stacked systems.

  15. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt V.; Christiansen, Ove; Jensen, Hans Jørgen Aa.; Kongsted, Jacob

    2013-07-01

    We investigate the failure of time-dependent density functional theory (TDDFT) with the CAM-B3LYP exchange-correlation (xc) functional coupled to the polarisable embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge-transfer excitation in para-nitroaniline (pNA) in water by comparing with results obtained with the coupled cluster singles and doubles (CCSD) model also coupled to the polarisable embedding scheme (PE-CCSD). We determine the amount of charge separation in the ground and excited charge-transfer state with both methods by calculating the electric dipole moments in the gas phase and for 100 solvent configurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic shift are found to be inverse proportional to the change in dipole moment upon excitation, we conclude that the flaws in the description of the solvatochromic shift of this excitation are related to TDDFT itself and how it responds to the solvent effects modelled by the PE scheme. We recommend therefore to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge-transfer excitations in molecular systems similar to pNA against higher level ab initio wave function methods, like, e.g. CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure for charge-transfer character, we furthermore confirm that the difference between excitation energies calculated with TDDFT and with the Tamm-Dancoff approximation (TDA) to TDDFT is indeed correlated with the charge-transfer character of a given electronic transition both in vacuo and in solution. This is supported by a corresponding correlation between the change in dipole moment and the size of the Λ index diagnostic for the investigated CT excitation.

  16. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  17. Kinetic energy release in thermal ion--molecule reactions: The Nb sup 2+ --(benzene) single charge--transfer reaction

    SciTech Connect

    Gord, J.R.; Freiser, B.S. ); Buckner, S.W. )

    1991-03-15

    We have adapted the techniques originally developed to measure ion kinetic energies in ion cyclotron resonance (ICR) spectrometry to study the single charge--transfer reaction of Nb{sup 2+} with benzene under thermal conditions in a Fourier transform ion cyclotron resonance mass spectrometer (FTICRMS). The partitioning of reaction exothermicity among the internal and translational modes available is consistent with a long-distance electron-transfer mechanism, in which the reactants approach on an ion-induced dipole attractive potential and cross to a repulsive potential at a critical separation of {similar to}7.5 A when electron transfer occurs. The reaction exothermicity, 5.08 eV, is partitioned to translation of Nb{sup +} , 0.81{plus minus}0.25 eV, translation of C{sub 6} H{sub 6}{sup +}, 1.22{plus minus}0.25 eV, and internal excitation of C{sub 6} H{sub 6}{sup +} to produce the la{sub 2{ital u}} electronic state, which is {similar to}3 eV above the ground state of the ion. We have also studied the kinetics of the reaction of Nb{sup 2+} with benzene and determined the rate constant, {ital k} = 1.4{times}10{sup {minus}9} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, and the efficiency, 0.60, of the process. These also support the proposed charge--transfer mechanism. In addition to the charge--transfer pathway, which accounts for 95% of the reaction products, Nb{sup 2+} is observed to dehydrogenate benzene to form Nb{sup 2+} (benzyne). This process implies {ital D}(Nb{sup 2+} --benzyne){ge}79 kcal/mol.

  18. A tyrosine-tryptophan dyad and radical-based charge transfer in a ribonucleotide reductase-inspired maquette

    NASA Astrophysics Data System (ADS)

    Pagba, Cynthia V.; McCaslin, Tyler G.; Veglia, Gianluigi; Porcelli, Fernando; Yohannan, Jiby; Guo, Zhanjun; McDaniel, Miranda; Barry, Bridgette A.

    2015-12-01

    In class 1a ribonucleotide reductase (RNR), a substrate-based radical is generated in the α2 subunit by long-distance electron transfer involving an essential tyrosyl radical (Y122O.) in the β2 subunit. The conserved W48 β2 is ~10 Å from Y122OH; mutations at W48 inactivate RNR. Here, we design a beta hairpin peptide, which contains such an interacting tyrosine-tryptophan dyad. The NMR structure of the peptide establishes that there is no direct hydrogen bond between the phenol and the indole rings. However, electronic coupling between the tyrosine and tryptophan occurs in the peptide. In addition, downshifted ultraviolet resonance Raman (UVRR) frequencies are observed for the radical state, reproducing spectral downshifts observed for β2. The frequency downshifts of the ring and CO bands are consistent with charge transfer from YO. to W or another residue. Such a charge transfer mechanism implies a role for the β2 Y-W dyad in electron transfer.

  19. A tyrosine-tryptophan dyad and radical-based charge transfer in a ribonucleotide reductase-inspired maquette.

    PubMed

    Pagba, Cynthia V; McCaslin, Tyler G; Veglia, Gianluigi; Porcelli, Fernando; Yohannan, Jiby; Guo, Zhanjun; McDaniel, Miranda; Barry, Bridgette A

    2015-12-02

    In class 1a ribonucleotide reductase (RNR), a substrate-based radical is generated in the α2 subunit by long-distance electron transfer involving an essential tyrosyl radical (Y122O·) in the β2 subunit. The conserved W48 β2 is ∼10 Å from Y122OH; mutations at W48 inactivate RNR. Here, we design a beta hairpin peptide, which contains such an interacting tyrosine-tryptophan dyad. The NMR structure of the peptide establishes that there is no direct hydrogen bond between the phenol and the indole rings. However, electronic coupling between the tyrosine and tryptophan occurs in the peptide. In addition, downshifted ultraviolet resonance Raman (UVRR) frequencies are observed for the radical state, reproducing spectral downshifts observed for β2. The frequency downshifts of the ring and CO bands are consistent with charge transfer from YO· to W or another residue. Such a charge transfer mechanism implies a role for the β2 Y-W dyad in electron transfer.

  20. A tyrosine–tryptophan dyad and radical-based charge transfer in a ribonucleotide reductase-inspired maquette

    PubMed Central

    Pagba, Cynthia V.; McCaslin, Tyler G.; Veglia, Gianluigi; Porcelli, Fernando; Yohannan, Jiby; Guo, Zhanjun; McDaniel, Miranda; Barry, Bridgette A.

    2015-01-01

    In class 1a ribonucleotide reductase (RNR), a substrate-based radical is generated in the α2 subunit by long-distance electron transfer involving an essential tyrosyl radical (Y122O·) in the β2 subunit. The conserved W48 β2 is ∼10 Å from Y122OH; mutations at W48 inactivate RNR. Here, we design a beta hairpin peptide, which contains such an interacting tyrosine–tryptophan dyad. The NMR structure of the peptide establishes that there is no direct hydrogen bond between the phenol and the indole rings. However, electronic coupling between the tyrosine and tryptophan occurs in the peptide. In addition, downshifted ultraviolet resonance Raman (UVRR) frequencies are observed for the radical state, reproducing spectral downshifts observed for β2. The frequency downshifts of the ring and CO bands are consistent with charge transfer from YO· to W or another residue. Such a charge transfer mechanism implies a role for the β2 Y-W dyad in electron transfer. PMID:26627888

  1. Intermolecular Atom Transfer Radical Addition to Olefins Mediated by Oxidative Quenching of Photoredox Catalysts

    PubMed Central

    Nguyen, John D.; Tucker, Joseph W.; Konieczynska, Marlena D.; Stephenson, Corey R. J.

    2011-01-01

    Atom transfer radical addition of haloalkanes and α-halocarbonyls to olefins is efficiently performed with the photocatalyst Ir[(dF(CF3)ppy)2(dtbbpy)]PF6. This protocol is characterized by excellent yields, mild conditions, low catalyst loading, and broad scope. In addition, the atom transfer protocol can be used to quickly and efficiently introduce vinyl trifluoromethyl groups to olefins and access 1,1-cyclopropane diesters. PMID:21381734

  2. Charge-transfer dynamics in multilayered PbS and PbSe quantum dot architectures

    SciTech Connect

    Xu, F.; Ma, X.; Haughn, C. R.; Doty, M. F.; Cloutier, S. G.

    2014-02-03

    We demonstrate control of the charge transfer process in PbS and PbSe quantum dot assemblies. We first demonstrate efficient charge transfer from donor quantum dots to acceptor quantum dots in a multi-layer PbSe cascade structure. Then, we assemble type-I and type-II heterostructures using both PbS and PbSe quantum dots via careful control of the band alignment. In type-I structures, photo-generated carriers are transferred and localized in the smaller bandgap (acceptor) quantum dots, resulting in a significant luminescence enhancement. In contrast, a significant luminescence quenching and shorter emission lifetime confirms an efficient separation of photo-generated carriers in the type-II architecture.

  3. Broadband Tunable Microlasers Based on Controlled Intramolecular Charge-Transfer Process in Organic Supramolecular Microcrystals.

    PubMed

    Dong, Haiyun; Wei, Yanhui; Zhang, Wei; Wei, Cong; Zhang, Chunhuan; Yao, Jiannian; Zhao, Yong Sheng

    2016-02-01

    Wavelength tunable micro/nanolasers are indispensable components for various photonic devices. Here, we report broadband tunable microlasers built by incorporating a highly polarized organic intramolecular charge-transfer (ICT) compound with a supramolecular host. The spatial confinement of the ICT dye generates an optimized energy level system that favors controlled population distribution between the locally excited (LE) state and the twisted intramolecular charge-transfer (TICT) state, which is beneficial for significantly broadening the tailorable gain region. As a result, we realized a wide tuning of lasing wavelength in the organic supramolecular microcrystals based on temperature-controlled population transfer from the LE to TICT state. The results will provide a useful enlightenment for the rational design of miniaturized lasers with desired performances. PMID:26756966

  4. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    PubMed Central

    Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D.; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R.; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem

    2016-01-01

    Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675

  5. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses.

    PubMed

    Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem

    2016-07-01

    Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I(21+). The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675

  6. Intramolecular energy transfer and excitation coupling in metal-to-ligand charge transfer (MLCT) excited states

    NASA Astrophysics Data System (ADS)

    Riesen, Hans; Krausz, Elmars

    1995-02-01

    Several new spectroscopic studies relating to the coupling and dynamics in the spin-forbidden 3MLCT excited states of the chromophores [Ru(bpy)3]2+ and [Os(bpy)3]2+ (bpy equals 2,2'-bipyridine) in the racemic crystal lattices [Ru(bpy)3](PF6)2, [Ru(bpy)3](ClO4)2 and [Zn(bpy)3](ClO4)2 are presented. In the first of these lattices there are three closely related chromophoric sites at low temperatures, each with trigonal (C3) symmetry. In the two, isomorphic perchlorate salts there is a single chromophoric site, which has C2 symmetry. Using time resolved luminescence line narrowing, we have been able to directly measure the excitation transfer rate between two equivalent metal-ligand units in the [Ru(bpy)3]2+ chromophore doped in the [Zn(bpy)3](ClO4)2 lattice. The rate obtained (approximately equals 1 X 108 sec-1) is in excellent accord with estimates made from the observed linewidth in Stark swept transient hole-burning experiments made on the same system and confirm the single ligand, localized nature of the lowest emitting excited states and thus the very weak intramolecular coupling between metal ligand sub-units within this chromophore. The corresponding coupling in the [Os(bpy)3]2+ system is stronger and, in contrast to the ruthenium analogue, gives rise to additional features in the optical spectra in the origin region of the lowest 3MLCT excited states. The magnitude of the coupling can be probed and assessed by preparing modified chromophoric materials, in which one or two of the bpy ligands are perdeuterated (bpy-d8). This selective deuteration breaks the (near) degeneracy of excitations involving crystallographically equivalent ligands by approximately equals 30 - 40 cm-1 and this competes with or completely overrides the exciton coupling process. The exciton coupling is found to be approximately equals 2.4 cm-1 for [Os(bpy)3]2+ doped in [Ru(bpy)3](PF6)2 and can be understood within a mini-exciton description. Stronger couplings for the same chromophore in

  7. Extraordinary Mechanism of the Diels-Alder Reaction: Investigation of Stereochemistry, Charge Transfer, Charge Polarization, and Biradicaloid Formation.

    PubMed

    Sexton, Thomas; Kraka, Elfi; Cremer, Dieter

    2016-02-25

    The Diels-Alder reaction between 1,3-butadiene and ethene is investigated from far-out in the entrance channel to the very last step in the exit channel thus passing two bifurcation points and extending the range of the reaction valley studied with URVA (Unified Reaction Valley Approach) by 300% compared to previous studies. For the first time, the pre- and postchemical steps of the reaction are analyzed at the same level of theory as the actual chemical processes utilizing the path curvature and its decomposition into internal coordinate or curvilinear coordinate components. A first smaller charge transfer to the dienophile facilitates the rotation of gauche butadiene into its cis form. The actual chemical processes are initiated by a second larger charge transfer to the dienophile that facilitates pyramidalization of the reacting carbon centers, bond equalization, and biradicaloid formation of the reactants. The transition state is aromatically stabilized and moved by five path units into the entrance channel in line with the Hammond-Leffler postulate. The pseudorotation of the boat form into the halfchair of cyclohexene is analyzed. Predictions are made for the Diels-Alder reaction based on a 11-phase mechanism obtained by the URVA analysis. PMID:26785172

  8. Time-resolved spectroscopy of charge transfer phenomena in organic solar cells

    NASA Astrophysics Data System (ADS)

    Gerhard, Marina; Arndt, Andreas; Quintilla, Aina; Rahimi-Iman, Arash; Lemmer, Uli; Koch, Martin

    2015-03-01

    Geminate recombination of photo-generated excitons represents a considerable loss mechanism in polymer solar cells. We apply time-resolved photoluminescence (TRPL) to study the radiative recombination which accompanies the process of charge generation. A streak camera is used, which is sensitive for both the photoluminescence (PL) from the initially excited singlet excitons and the weaker emission from charge transfer (CT) states. The latter are formed at internal interfaces when the polymer is blended with a fullerene acceptor. We draw a comparison between our results for two polymers, P3HT and PTB7, respectively, which were studied in blends with the fullerene derivative PCBM. In addition, pristine films were investigated, allowing for the identification of interfacial features in the blends. For both polymers, the PL of the singlet states was rapidly quenched in blends with PCBM. In P3HT, time constants of about 40 ps were recorded for the singlet exciton decay and related to exciton diffusion, whereas the PL of PTB7 was almost completely quenched within the first 3 ps. The decay rates of the emissive CT excitons were 2-3 orders of magnitude smaller than those of the singlet state. Yet, due to their slower dynamics (~ 500 ps), they could be separated from the superimposed singlet emission. The CT decay times in blends with P3HT exhibited no significant temperature dependence, indicating that thermally driven dissociation of emissive excitons is unlikely. For blends with PTB7, however, a faster decay of the CT emission was obtained at room temperature.

  9. Model for the charge-transfer probability in helium nanodroplets following electron-impact ionization

    SciTech Connect

    Ellis, Andrew M.; Yang Shengfu

    2007-09-15

    A theoretical model has been developed to describe the probability of charge transfer from helium cations to dopant molecules inside helium nanodroplets following electron-impact ionization. The location of the initial charge site inside helium nanodroplets subject to electron impact has been investigated and is found to play an important role in understanding the ionization of dopants inside helium droplets. The model is consistent with a charge migration process in small helium droplets that is strongly directed by intermolecular forces originating from the dopant, whereas for large droplets (tens of thousands of helium atoms and larger) the charge migration increasingly takes on the character of a random walk. This suggests a clear droplet size limit for the use of electron-impact mass spectrometry for detecting molecules in helium droplets.

  10. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  11. Iodine-polyphenylacetylene charge-transfer complex: an ab initio quantum-chemical assessment

    NASA Astrophysics Data System (ADS)

    Andreocci, M. V.; Bossa, M.; Furlani, A.; Polzonetti, G.; Russo, M. V.

    1991-07-01

    The ab initio MO-LCAO-HF method has been used to calculate the electronic structure of the iodine-polyphenylacetylene charge-transfer complex (PPAI 2). Two models have been considered for the PPA molecule: a simple one containing two phenyl groups and a more realistic one containing six phenyl groups. The calculations give automatically the charge separation between I 5 and the polymer, and show that the total charge separation can be less than 1 e at short distances. The computed charges at the energy minimum have been succesfully introduced into the curve fitting of the I-3d 5/2 core level spectrum of PPAI 2 films, giving good agreement between experimental and theoretical results.

  12. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2000-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  13. Effect of α- and β-cyclodextrins on the intramolecular charge transfer and intramolecular proton transfer fluorescence of methyl o-hydroxy p-dimethylaminobenzoate

    NASA Astrophysics Data System (ADS)

    Józefowicz, Marek

    The influence of α- and β-cyclodextrins on the spectral characteristics of methyl o-hydroxy p-dimethylaminobenzoate has been studied using steady-state and time-resolved spectroscopic technique. The stoichiometries and equilibrium constants of the solute molecule-cyclodextrin inclusion complexes have been determined by the steady-state fluorescence measurements. Nonlinear least-squares regression analysis indicates that both 1:1 and 1:2 inclusion complexes were formed between studied compound and α- and β-cyclodextrins. The contribution of the fluorophore in free, 1:1, and 1:2 complexes was calculated for a particular concentration of α- and β-CD. Additionally, the location of the fluorophore inside the cavity was reported, with regard to the intra- and intermolecular proton transfer and intramolecular charge transfer processes.

  14. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    NASA Astrophysics Data System (ADS)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  15. Robust, basis-set independent method for the evaluation of charge-transfer energy in noncovalent complexes.

    PubMed

    Řezáč, Jan; de la Lande, Aurélien

    2015-02-10

    Separation of the energetic contribution of charge transfer to interaction energy in noncovalent complexes would provide important insight into the mechanisms of the interaction. However, the calculation of charge-transfer energy is not an easy task. It is not a physically well-defined term, and the results might depend on how it is described in practice. Commonly, the charge transfer is defined in terms of molecular orbitals; in this framework, however, the charge transfer vanishes as the basis set size increases toward the complete basis set limit. This can be avoided by defining the charge transfer in terms of the spatial extent of the electron densities of the interacting molecules, but the schemes used so far do not reflect the actual electronic structure of each particular system and thus are not reliable. We propose a spatial partitioning of the system, which is based on a charge transfer-free reference state, namely superimposition of electron densities of the noninteracting fragments. We show that this method, employing constrained DFT for the calculation of the charge-transfer energy, yields reliable results and is robust with respect to the strength of the charge transfer, the basis set size, and the DFT functional used. Because it is based on DFT, the method is applicable to rather large systems.

  16. The effect of surface charge and KNO 3 additive on the crystallization of potassium chloride

    NASA Astrophysics Data System (ADS)

    Abdullah Ceyhan, Ayhan; Nusret Bulutcu, A.

    2011-07-01

    In this study, crystal growth and dissolution rates of potassium chloride crystals in pure solution and in the presence of potassium nitrate were investigated in a stagnant type single crystal cell using an image analyzer system. Closely sized seed crystals were separated with respect to their surface potentials using an electrostatic separator and then growth and dissolution behavior of potassium chloride crystals having different surface charges were systematically measured in pure solution and at 10, 100 and 1000 ppm additive concentrations at around 20 °C. In high supersaturation levels, very thin but very long rod-like growth, growing perpendicular to the surface, were observed. This is considered to result from surface nucleation. A dead zone was detected and its width was a function of surface potential of seed crystals. It was determined that, potassium nitrate additive, which has a common ion with KCl leads to increase the surface potential but not to affect the growth behavior, significantly.

  17. Conducting Polymers: Insights Into Reduced Polyparaphenylene Vinylene Materials via Nucleophilic Addition, Proton Abstraction, and Electron Transfer Reactions.

    NASA Astrophysics Data System (ADS)

    Hilker, Brian Lee

    Grignard routes were investigated as methods to produce poly paraphenylene vinylene polymers. Because of coupling problems with these reactions, high molecular weight unsubstituted and dimethyl and dimethoxy substituted poly paraphenylene vinylene polymers were prepared via a literature-proven synthetic route: the sodium hydride dehydrochlorination addition polymerization route. Both the Grignard reactions and the sodium hydride method required dichloromethyl compounds monomers. The syntheses of these dichloromethyl monomers were studied extensively. The three high molecular weight poly paraphenylene vinylene polymer systems prepared in this work were charged with the traditional electron transfer reducing agent potassium/naphthalide. They were also charged via the novel nucleophilic addition of n-butyllithium across the alkenes and subjected to proton abstraction charging in the presence of a strong, complexed base mixture of n-butyllithium and potassium-t-butoxide. Conductivities were obtained via standard four point probe techniques. Characterization of these polymers and their quenched anion derivatives was via FTIR and acid titration. Results of these topics are presented and discussed.

  18. Charge transfer states in stable neutral and oxidized radical adducts from carbazole derivatives.

    PubMed

    Fajarí, Lluís; Papoular, Robert; Reig, Marta; Brillas, Enric; Jorda, José Luis; Vallcorba, Oriol; Rius, Jordi; Velasco, Dolores; Juliá, Luis

    2014-02-21

    In this paper we report the spectral properties of the stable radical adducts 1(•)-3(•), which are formed by an electron donor moiety, the carbazole ring, and an electron acceptor moiety, the polychlorotriphenylmethyl radical. The molecular structure of radical adduct 1(•) in the crystalline state shows a torsion angle of approximately 90° between the phenyl and the carbazole rings due to steric interactions. They exhibit a charge transfer band in the visible range of the electronic spectrum. All of them are chemically oxidized with copper(II) perchlorate to the respective cation species, which show a strong charge transfer band into the near-infrared region of the spectrum. Radical adducts 1(•)-3(•) and the corresponding stable oxidized species 1(+)-3(+) are real organic mixed-valence compounds due to the open-shell nature of their electronic structure. Charge transfer bands of the cation species are stronger and are bathochromically shifted with respect to those of the neutral species due to the greater acceptor ability of the positively charged central carbon atom of the triphenylmethyl moiety. The cationic species 1(+)-3(+) are diamagnetic, as shown by the absence of a signal in the EPR spectrum in acetonitrile solution at room temperature, but they show an intense and unique band in frozen solutions (183 K).

  19. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    SciTech Connect

    Yao, Yi; Berkowitz, Max L. E-mail: ykanai@unc.edu; Kanai, Yosuke E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  20. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer.

    PubMed

    Yao, Yi; Berkowitz, Max L; Kanai, Yosuke

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na(+) and K(+) ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  1. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Berkowitz, Max L.; Kanai, Yosuke

    2015-12-01

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na+ and K+ ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  2. Charge and energy transferred from a plasma jet to liquid and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Mussard, M. Dang Van Sung; Foucher, E.; Rousseau, A.

    2015-10-01

    A key parameter in using plasma jets for biomedical applications is the transferred energy to the living tissues. The objective of this paper is to understand which parameters control the energy transfer from the plasma jet to a liquid or a dielectric surface. The plasma jet is flown with helium and ignited by a 600 Hz ac high voltage (up to 15 kV). Capacitors are connected to two measurement electrodes placed in the plasma source region, and under the sample. Charge and energy transferred are estimated by plotting Lissajous cycles; the number of bullets and the charge probability density function are also calculated. It is shown that the applied voltage and the gap (distance between the end of the tube and the sample) have a dramatic influence on the energy deposition on the sample as well as on the charge probability density function. Surprisingly, both gap distance and voltage have very little influence on the number of bullets reaching the sample per cycle. It is also shown that the conductivity of the liquid sample has almost no influence on the energy deposition and charge probability density function.

  3. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid.

    PubMed

    Rury, Aaron S; Sorenson, Shayne; Dawlaty, Jahan M

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm(-1) oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  4. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid.

    PubMed

    Rury, Aaron S; Sorenson, Shayne; Dawlaty, Jahan M

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm(-1) oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology. PMID:26979698

  5. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  6. Twisted intramolecular charge transfer of methyl p-dimethylaminobenzoate in aqueous β-cyclodextrin solution

    NASA Astrophysics Data System (ADS)

    Jiang, Yun-Bao

    1995-02-01

    This paper reports the investigation of the twisted intramolecular charge transfer (TICT) of methyl p-dimethylaminobenzoate (MDMAB) in aqueous β-cyclodextrin (β-CD) solution by the TICT-typical dual fluorescence. In pure water, MDMAB emits only LE fluorescence, and the TICT fluorescence band is developed with the addition of β-CD. Both the LE and TICT fluorescence bands are continuously enhanced upon the increase of β-CD concentration. The intensity ratio of the TICT band to the LE band shows a hillshaped dependence on β-CD concentration, and a blue shift in both TICT and LE bands is observed with the increase of β-CD concentration, of which the blue shift in TICT band is more appreciable. Formation of a 1:1 MDMAB-β-CD inclusion complex, with an association constant of 580±80 l mol -1, is evaluated. The effect of β-CD on TICT of MDMAB is discussed, with consideration of the fact that aqueous β-CD solution is pseudoaquaorganic binary mixture and that TICT in aqueous solution acts differently than in organic solvents. A comparison is made between the TICT of MDMAB and of DMABN in aqueous β-CD solution.

  7. Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films.

    PubMed

    Singh, Ranbir; Shivanna, Ravichandran; Iosifidis, Agathaggelos; Butt, Hans-Jürgen; Floudas, George; Narayan, K S; Keivanidis, Panagiotis E

    2015-11-11

    Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the

  8. Influence of self-assembling redox mediators on charge transfer at hydrophobic electrodes.

    PubMed

    Smith, Timothy J; Wang, Chenxuan; Abbott, Nicholas L

    2015-10-01

    We report an investigation of the influence of reversible self-assembly of amphiphilic redox-mediators on interfacial charge transfer at chemically functionalized electrodes. Specifically, we employed (11-ferrocenylundecyl)-trimethylammonium bromide (FTMA) as a model self-assembling redox mediator and alkanethiol-modified gold films as hydrophobic electrodes. By performing cyclic voltammetry (CV, 10 mV/s) in aqueous solutions containing FTMA above its critical micellar concentration (CMC), we measured anodic (Ia) and cathodic (Ic) peak current densities of 18 ± 3 and 1.1 ± 0.1 μA/cm(2), respectively, revealing substantial current rectification (Ia/Ic= 17) at the hydrophobic electrodes. In contrast, hydroxymethyl ferrocene (a non-self-assembling redox mediator) at hydrophobic electrodes and FTMA at bare gold electrodes, yielded relatively low levels of rectification (Ia/Ic= 1.7 and 2.3, respectively). Scan-rate-dependent measurements revealed Ia of FTMA to arise largely from the diffusion of FTMA from bulk solution to the hydrophobic electrode whereas Ic was dominated by adsorbed FTMA, leading to the proposal that current rectification observed with FTMA is mediated by interfacial assemblies of reduced FTMA that block access of oxidized FTMA to the hydrophobic electrode. Support for this proposal was obtained by using atomic force microscopy and quartz crystal microbalance measurements to confirm the existence of interfacial assemblies of reduced FTMA (1.56 ± 0.2 molecules/nm(2)). Additional characterization of a mixed surfactant system containing FTMA and dodecyltrimethylammonium bromide (DTAB) revealed that interfacial assemblies of DTAB also block access of oxidized FTMA to hydrophobic electrodes; this system exhibited Ia/Ic > 80. These results and others reported in this paper suggest that current rectification occurs in this system because oxidized FTMA does not mix with interfacial assemblies of reduced FTMA or DTAB formed at hydrophobic electrodes. More

  9. Heat transfer characteristics for some coolant additives used for water cooled engines

    SciTech Connect

    Abou-Ziyan, H.Z.; Helali, A.H.B.

    1996-12-31

    Engine coolants contain certain additives to prevent engine overheating or coolant freezing in cold environments. Coolants, also, contain corrosion and rust inhibitors, among other additives. As most engines are using engine cooling solutions, it is of interest to evaluate the effect of engine coolants on the boiling heat transfer coefficient. This has its direct impact on radiator size and environment. This paper describes the apparatus and the measurement techniques. Also, it presents the obtained boiling heat transfer results at different parameters. Three types of engine coolants and their mixtures in distilled water are evaluated, under sub-cooled and saturated boiling conditions. A profound effect of the presence of additives in the coolant, on heat transfer, was clear since changes of heat transfer for different coolants were likely to occur. The results showed that up to 180% improvement of boiling heat transfer coefficient is experienced with some types of coolants. However, at certain concentrations other coolants provide deterioration or not enhancement in the boiling heat transfer characteristics. This investigation proved that there are limitations, which are to be taken into consideration, for the composition of engine coolants in different environments. In warm climates, ethylene glycol should be kept at the minimum concentration required for dissolving other components, whereas borax is beneficial to the enhancement of the heat transfer characteristics.

  10. Metal-organic charge transfer can produce biradical states and is mediated by conical intersections

    PubMed Central

    Tishchenko, Oksana; Li, Ruifang; Truhlar, Donald G.

    2010-01-01

    The present paper illustrates key features of charge transfer between calcium atoms and prototype conjugated hydrocarbons (ethylene, benzene, and coronene) as elucidated by electronic structure calculations. One- and two-electron charge transfer is controlled by two sequential conical intersections. The two lowest electronic states that undergo a conical intersection have closed-shell and open-shell dominant configurations correlating with the 4s2 and 4s13d1 states of Ca, respectively. Unlike the neutral-ionic state crossing in, for example, hydrogen halides or alkali halides, the path from separated reactants to the conical intersection region is uphill and the charge-transferred state is a biradical. The lowest-energy adiabatic singlet state shows at least two minima along a single approach path of Ca to the π system: (i) a van der Waals complex with a doubly occupied highest molecular orbital, denoted , and a small negative charge on Ca and (ii) an open-shell singlet (biradical) at intermediate approach (Ca⋯C distance ≈2.5–2.7 Å) with molecular orbital structure ϕ1ϕ2, where ϕ2 is an orbital showing significant charge transfer form Ca to the π-system, leading to a one-electron multicentered bond. A third minimum (iii) at shorter distances along the same path corresponding to a closed-shell state with molecular orbital structure has also been found; however, it does not necessarily represent the ground state at a given Ca⋯C distance in all three systems. The topography of the lowest adiabatic singlet potential energy surface is due to the one- and two-electron bonding patterns in Ca-π complexes. PMID:21037111

  11. Evidence for a near-resonant charge transfer mechanism for double-stranded peptide nucleic acid.

    PubMed

    Venkatramani, Ravindra; Davis, Kathryn L; Wierzbinski, Emil; Bezer, Silvia; Balaeff, Alexander; Keinan, Shahar; Paul, Amit; Kocsis, Laura; Beratan, David N; Achim, Catalina; Waldeck, David H

    2011-01-12

    We present evidence for a near-resonant mechanism of charge transfer in short peptide nucleic acid (PNA) duplexes obtained through electrochemical, STM break junction (STM-BJ), and computational studies. A seven base pair (7-bp) PNA duplex with the sequence (TA)(3)-(XY)-(TA)(3) was studied, in which XY is a complementary nucleobase pair. The experiments showed that the heterogeneous charge transfer rate constant (k(0)) and the single-molecule conductance (σ) correlate with the oxidation potential of the purine base in the XY base pair. The electrochemical measurements showed that the enhancement of k(0) is independent, within experimental error, of which of the two PNA strands contains the purine base of the XY base pair. 7-bp PNA duplexes with one or two GC base pairs had similar measured k(0) and conductance values. While a simple superexchange model, previously used to rationalize charge transfer in single stranded PNA (Paul et al. J. Am. Chem. Soc. 2009, 131, 6498-6507), describes some of the experimental observations, the model does not explain the absence of an enhancement in the experimental k(0) and σ upon increasing the G content in the duplexes from one to two. Moreover, the superexchange model is not consistent with other studies (Paul et al. J. Phys. Chem. B 2010, 114, 14140), that showed a hopping charge transport mechanism is likely important for PNA duplexes longer than seven base pairs. A quantitative computational analysis shows that a near-resonant charge transfer regime, wherein a mix of superexchange and hopping mechanisms are expected to coexist, can rationalize all of the experimental results. PMID:21141966

  12. Control of intrachain charge transfer in model systems for block copolymer photovoltaic materials.

    PubMed

    Johnson, Kerr; Huang, Ya-Shih; Huettner, Sven; Sommer, Michael; Brinkmann, Martin; Mulherin, Rhiannon; Niedzialek, Dorota; Beljonne, David; Clark, Jenny; Huck, Wilhelm T S; Friend, Richard H

    2013-04-01

    We report the electronic properties of the conjugated coupling between a donor polymer and an acceptor segment serving as a model for the coupling in conjugated donor-acceptor block copolymers. These structures allow the study of possible intrachain photoinduced charge separation, in contrast to the interchain separation achieved in conventional donor-acceptor blends. Depending on the nature of the conjugated linkage, we observe varying degrees of modification of the excited states, including the formation of intrachain charge transfer excitons. The polymers comprise a block (typically 18 repeat units) of P3HT, poly(3-hexyl thiophene), coupled to a single unit of F8-TBT (where F8 is dioctylfluorene, and TBT is thiophene-benzothiadiazole-thiophene). When the P3HT chain is linked to the TBT unit, we observe formation of a localized charge transfer state, with red-shifted absorption and emission. Independent of the excitation energy, this state is formed very rapidly (<40 fs) and efficiently. Because there is only a single TBT unit present, there is little scope for long-range charge separation and it is relatively short-lived, <1 ns. In contrast, when the P3HT chain and TBT unit are separated by the wider bandgap F8 unit, there is little indication for modification of either ground or excited electronic states, and longer-lived charge separated states are observed.

  13. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.

    PubMed

    Kamat, Prashant V

    2012-11-20

    The demand for clean energy will require the design of nanostructure-based light-harvesting assemblies for the conversion of solar energy into chemical energy (solar fuels) and electrical energy (solar cells). Semiconductor nanocrystals serve as the building blocks for designing next generation solar cells, and metal chalcogenides (e.g., CdS, CdSe, PbS, and PbSe) are particularly useful for harnessing size-dependent optical and electronic properties in these nanostructures. This Account focuses on photoinduced electron transfer processes in quantum dot sensitized solar cells (QDSCs) and discusses strategies to overcome the limitations of various interfacial electron transfer processes. The heterojunction of two semiconductor nanocrystals with matched band energies (e.g., TiO(2) and CdSe) facilitates charge separation. The rate at which these separated charge carriers are driven toward opposing electrodes is a major factor that dictates the overall photocurrent generation efficiency. The hole transfer at the semiconductor remains a major bottleneck in QDSCs. For example, the rate constant for hole transfer is 2-3 orders of magnitude lower than the electron injection from excited CdSe into oxide (e.g., TiO(2)) semiconductor. Disparity between the electron and hole scavenging rate leads to further accumulation of holes within the CdSe QD and increases the rate of electron-hole recombination. To overcome the losses due to charge recombination processes at the interface, researchers need to accelerate electron and hole transport. The power conversion efficiency for liquid junction and solid state quantum dot solar cells, which is in the range of 5-6%, represents a significant advance toward effective utilization of nanomaterials for solar cells. The design of new semiconductor architectures could address many of the issues related to modulation of various charge transfer steps. With the resolution of those problems, the efficiencies of QDSCs could approach those of dye

  14. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    NASA Astrophysics Data System (ADS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-04-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  15. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    SciTech Connect

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  16. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report

    SciTech Connect

    Dutta, Prabir K.

    2001-09-30

    Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.

  17. Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules.

    PubMed

    Zhong, Jian-Qiang; Wang, Zhunzhun; Zhang, Jia Lin; Wright, Christopher A; Yuan, Kaidi; Gu, Chengding; Tadich, Anton; Qi, Dongchen; Li, He Xing; Lai, Min; Wu, Kai; Xu, Guo Qin; Hu, Wenping; Li, Zhenyu; Chen, Wei

    2015-12-01

    The reversible selective hydrogenation and dehydrogenation of individual manganese phthalocyanine (MnPc) molecules has been investigated using photoelectron spectroscopy (PES), low-temperature scanning tunneling microscopy (LT-STM), synchrotron-based near edge X-ray absorption fine structure (NEXAFS) measurements, and supported by density functional theory (DFT) calculations. It is shown conclusively that interfacial and intramolecular charge transfer arises during the hydrogenation process. The electronic energetics upon hydrogenation is identified, enabling a greater understanding of interfacial and intramolecular charge transportation in the field of single-molecule electronics.

  18. Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules.

    PubMed

    Zhong, Jian-Qiang; Wang, Zhunzhun; Zhang, Jia Lin; Wright, Christopher A; Yuan, Kaidi; Gu, Chengding; Tadich, Anton; Qi, Dongchen; Li, He Xing; Lai, Min; Wu, Kai; Xu, Guo Qin; Hu, Wenping; Li, Zhenyu; Chen, Wei

    2015-12-01

    The reversible selective hydrogenation and dehydrogenation of individual manganese phthalocyanine (MnPc) molecules has been investigated using photoelectron spectroscopy (PES), low-temperature scanning tunneling microscopy (LT-STM), synchrotron-based near edge X-ray absorption fine structure (NEXAFS) measurements, and supported by density functional theory (DFT) calculations. It is shown conclusively that interfacial and intramolecular charge transfer arises during the hydrogenation process. The electronic energetics upon hydrogenation is identified, enabling a greater understanding of interfacial and intramolecular charge transportation in the field of single-molecule electronics. PMID:26528623

  19. Control over the charge transfer in dye-nanoparticle decorated graphene

    NASA Astrophysics Data System (ADS)

    Bongu, Sudhakara Reddy; Veluthandath, Aneesh V.; Nanda, B. R. K.; Ramaprabhu, Sundara; Bisht, Prem B.

    2016-01-01

    Charge transfer interaction between silver decorated graphene and three differently charged dyes, cationic (rhodamine 6G), neutral (rhodamine B) and anionic (fluorescein 27) has been studied. The ground state association constants have been evaluated and changes in the fluorescence intensity and lifetimes have been obtained in two solvents. Strength of complex-formation has been found to be higher with the cationic molecule in water. In a higher viscosity solvent, the ground state complex formation is restricted. Local field of localized surface plasmons of nanoparticles adsorbed on the graphene sheets leads to enhanced absorption and fluorescence of fluorescein 27.

  20. Photoinduced intramolecular charge transfer process of betaine pyridinium: A theoretical spectroscopic study

    NASA Astrophysics Data System (ADS)

    Perrier, Aurélie; Aloïse, Stéphane; Pawlowska, Zuzanna; Sliwa, Michel; Maurel, François; Abe, Jiro

    2011-10-01

    Using Time-Dependent Density Functional Theory and taking into account bulk solvent effects, we investigate the absorption and emission spectra of a betaine pyridinium molecule, the 2-(1-pyridinio) benzimidazolate (SBPa). This molecule exhibits strong photoinduced intramolecular charge transfer (ICT). We have identified two different electronic states involved, respectively, in the strong bathochromic ICT absorption band (S 2) and in the moderate emission band (S 1). The ICT process is analyzed in terms of charge distribution and dipole moment evolutions upon photoexcitation. These results are compared with steady-state spectroscopic measurements.

  1. Polaron hopping in some biomolecular solids and their charge transfer complexes.

    PubMed

    Solanki, G K; Amin, Anand; Padhiyar, Ashvin; Ray, A K; Oza, A T

    2008-12-01

    The solid state spectroscopy of charge transfer complexes of biomolecules such as fatty acids, tripalmitin, lysozyme. folic acid, beta-carotene, cytochrome c, valinomycin and gramicidin has been carried out. The absorption coefficient is related with electronic conductivity. A half-power beta density is found common among these macromolecular solids, indicating photon-induced polaron hopping or hopping of a charge carrier between two branches of a polariton. Band gap vs full width at half-maximum of the mid-IR peak also reveals a linear relation.

  2. Local description of the through phenyl transfer of a negative charge within resonance theory: topological effects in xylylene radical anions

    NASA Astrophysics Data System (ADS)

    Karafiloglou, Padeleimon; Launay, Jean-Pierre

    1999-11-01

    The topological effects specifying a di-substituted phenyl ring bearing a negative charge are investigated by considering the radical anions of para- and meta-xylylene isomers as model systems. The super exchange (SE) and double exchange (DE) component mechanisms describing the through phenyl transfer of a negative charge are considered and examined within `resonance' or `mesomeric' theory. The radical anion electronic events characterizing the DE and SE resonance structures are investigated by means of poly-electron population analysis. Correlated ab initio MO wavefunctions are used as the starting material in our calculations, and the various second quantized density operators are built on the basis of natural AOs. Conditional electronic events specifying SE or DE mechanisms are defined, and the corresponding probabilities are compared for meta and para topologies. The main trends are rationalized by comparing the effects provoked in phenyl ring when the negative charge is transferred from one substituent or the other. In para topology the effects are additive for the most important resonance structures, while in meta (characterized from `quantum interferences') the same effects are antagonist in all structures and for both SE and DE mechanisms.

  3. Intra- and Interdimer Transfer Integrals Effectively Modified by Pulsed and Continuous-Wave Lasers for Controlling Charge Transfers in Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Nishioka, Keita; Yonemitsu, Kenji

    2014-02-01

    We theoretically study the field-intensity dependence of charge transfers driven by continuous-wave and pulsed lasers in a two-dimensional crystal consisting of molecular dimers by numerically solving the time-dependent Schrödinger equation for an extended Hubbard model. Generally, electronic transfer integrals are regarded as renormalized when an oscillating external field is applied, as far as the electronic dynamics averaged over the oscillation period is concerned. The cases where effective transfer integrals vanish are known as dynamic localization. Interdimer charge transfers driven by continuous-wave lasers are thus governed by effective interdimer transfer integrals. After the field is switched off, the dynamic localization is no longer relevant. Then, we show that interdimer charge transfers driven by pulsed lasers of energy resonant with an intradimer transition are governed by an effective intradimer transfer integral. The total-energy increment depends on how the intradimer transfer integral is renormalized. The same holds for interdimer charge transfers. This interdimer dynamics governed by effective intradimer parameters is evident even for one- and two-cycle pulses, suggesting possible control of photoinduced charge-order melting.

  4. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    PubMed

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  5. Charge transfer kinetics at the solid-solid interface in porous electrodes

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Bazant, Martin Z.

    2014-04-01

    Interfacial charge transfer is widely assumed to obey the Butler-Volmer kinetics. For certain liquid-solid interfaces, the Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple method to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidsey’s method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modelling batteries and other electrochemical systems.

  6. Addition of Electrostatic Forces to EDEM with Applications to Triboelectrically Charged Particles

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos; Curry, David

    2008-01-01

    Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carryout experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM Tm, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. In this paper we will present overview of the theoretical calculations and experimental data and their comparison to the results of the DEM simulations. We will also discuss current plans to revise the DEM software with advanced electrodynamic and mechanical algorithms.

  7. Effect of Surface Defect States on Valence Band and Charge Separation and Transfer Efficiency

    NASA Astrophysics Data System (ADS)

    Xu, Juan; Teng, Yiran; Teng, Fei

    2016-09-01

    Both energy band and charge separation and transfer are the crucial affecting factor for a photochemical reaction. Herein, the BiOCl nanosheets without and with surface bismuth vacancy (BOC, V-BOC) are prepared by a simple hydrothermal method. It is found that the new surface defect states caused by bismuth vacancy have greatly up-shifted the valence band and efficiently enhanced the separation and transfer rates of photogenerated electron and hole. It is amazing that the photocatalytic activity of V-BOC is 13.6 times higher than that of BOC for the degradation methyl orange (MO). We can develop an efficient photocatalyst by the introduction of defects.

  8. Excitation of the ligand-to-metal charge transfer band induces electron tunnelling in azurin

    SciTech Connect

    Baldacchini, Chiara; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2014-03-03

    Optical excitation of azurin blue copper protein immobilized on indium-tin oxide, in resonance with its ligand-to-metal charge transfer absorption band, resulted in a light-induced current tunnelling within the protein milieu. The related electron transport rate is estimated to be about 10{sup 5} s{sup −1}. A model based on resonant tunnelling through an azurin excited molecular state is proposed. The capability of controlling electron transfer processes through light pulses opens interesting perspectives for implementation of azurin in bio-nano-opto-electronic devices.

  9. Electrostatic Potential-Based Method of Balancing Charge Transfer Across ONIOM QM:QM Boundaries.

    PubMed

    Jovan Jose, K V; Raghavachari, Krishnan

    2014-10-14

    The inability to describe charge redistribution effects between different regions in a large molecule can be a source of error in an ONIOM hybrid calculation. We propose a new and an inexpensive method for describing such charge-transfer effects and for improving reaction energies obtained with the ONIOM method. Our method is based on matching the electrostatic potential (ESP) between the model system and the real system. The ESP difference arising due to charge redistribution is overcome by placing an optimum one electron potential at a defined buffer region. In our current implementation, the link atom nuclear charge is optimized iteratively to produce a model low ESP distribution equal to that in the real low calculation. These optimum charges are relatively small in magnitude and corroborate physical intuition. This new ESP-ONIOM-CT method is independent of any arbitrary definition of charges, is defined on the basis of a physical observable, and is less basis set dependent than previous approaches. The method is easily extended for studying reactions involving multiple link atoms. We present a thorough benchmark of this method on test sets consisting of one- and two-link atom reactions. Using reaction energies of four different test sets each with four different combinations of high:low levels of theory, the accuracy of ESP-ONIOM-CT improved by 40-60% over the ONIOM method.

  10. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  11. Measurement of the charge transfer efficiency of electrons clocked on superfluid helium

    SciTech Connect

    Sabouret, G.; Lyon, S.A.

    2006-06-19

    Electrons floating on the surface of liquid helium are possible qubits for quantum information processing. Varying electric potentials do not modify spin states, which allows their transport on helium using a charge-coupled device (CCD)-like array of underlying gates. This scheme depends on an efficient intergate electron transfer and on the absence of electron traps. We will present a measurement of the charge transfer efficiency (CTE) of electrons clocked back and forth above a short CCD-like structure. The CTE obtained at low clocking frequencies is 0.999 with an electron density of about 4 electrons/{mu}m{sup 2}. We find no evidence for deep electron trapping.

  12. Low Energy Charge Transfer between C5+ and Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; Havener, Charles C

    2011-01-01

    Charge transfer (CT) with carbon ions has been identified for a long time as important in both magnetic fusion plasma devices and more recently in solar wind interactions with comets, planets, or neutrals in the heliosphere. A merged-beams technique is used to measure the absolute total charge transfer cross section for C5+ and atomic H over four orders of magnitude in collision energy, from 12,000 eV/u to 0.64 eV/u. The present measurements are compared with previous measurements using an atomic hydrogen target and benchmark available classical trajectory Monte-Carlo and molecular-orbital close-coupling calculations. An increasing cross section below 10 eV/u is attributed to trajectory effects due to the ion-induced dipole attraction between reactants.

  13. Low-energy charge transfer between C5+ and atomic hydrogen

    SciTech Connect

    Draganic, Ilija N; Havener, Charles C; Seely, D. G.

    2011-01-01

    Charge transfer with carbon ions has been identified as important in both magnetic fusion plasma devices and, more recently, in solar wind interactions with comets, planets, or neutrals in the heliosphere. A merged-beams technique is used to measure the absolute total charge-transfer cross section for C{sup 5+} and atomic H over four orders of magnitude in collision energy, from 12,000 to 0.64 eV/u. The present measurements are compared with previous measurements using an atomic hydrogen target and benchmark available classical trajectory Monte Carlo and molecular-orbital close-coupling calculations. An observed increasing cross section below 10 eV/u is attributed to trajectory effects due to the ion-induced dipole attraction between reactants.

  14. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    SciTech Connect

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  15. Low-energy charge transfer between C{sup 5+} and atomic hydrogen

    SciTech Connect

    Draganic, I. N.; Havener, C. C.; Seely, D. G.

    2011-05-15

    Charge transfer with carbon ions has been identified as important in both magnetic fusion plasma devices and, more recently, in solar wind interactions with comets, planets, or neutrals in the heliosphere. A merged-beams technique is used to measure the absolute total charge-transfer cross section for C{sup 5+} and atomic H over four orders of magnitude in collision energy, from 12 000 to 0.64 eV/u. The present measurements are compared with previous measurements using an atomic hydrogen target and benchmark available classical trajectory Monte Carlo and molecular-orbital close-coupling calculations. An observed increasing cross section below 10 eV/u is attributed to trajectory effects due to the ion-induced dipole attraction between reactants.

  16. Charge-transfer dynamics in azobenzene alkanethiolate self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Gahl, Cornelius; Schmidt, Roland; Brete, Daniel; Paarmann, Stephanie; Weinelt, Martin

    2016-01-01

    We have studied the charge-transfer dynamics in azobenzene-functionalized alkanethiolate self-assembled monolayers. We compare the core-hole-clock technique, i.e., resonant vs. non-resonant contributions in the azobenzene autoionization of the Cls-π* core exciton, with the lifetime of a molecular resonance determined by two-photon photoemission spectroscopy using femtosecond laser pulses. Both techniques yield comparable charge-transfer times of 80 ± 20 fs for a linker consisting of three CH2 groups and one oxygen unit. Thus the quenching of the excitation is about one order of magnitude faster than the time required for the trans to cis isomerization of the azobenzene photoswitch in solution.

  17. Spectrophotometric and some thermodynamic parameters of the charge transfer complexation between chloranilic acid and chlorpheniramine.

    PubMed

    Ofoefule, S I; Ajali, U

    2001-01-01

    The principle of charge transfer complexation involving a pi-acceptor (chloranilic acid) and an n-donor (chlorpheniramine) was utilized in the assay of the later in its pure form and in its tablet dosage forms. Some thermodynamic parameters of the complex such as association constant (Kc), molar absorptivity (epsilon c), free energy change (delta G degree), enthalpy (delta H degree) and entropy (delta S degree) changes were determined to establish the stability of the complex and the optimum conditions for the complex formation. The values obtained for these thermodynamic parameters indicated that the complex formed between this two chemical entities is highly stable. Assay of chlorpheniramine in its pure form and in its tablet dosage forms gave high percentage recoveries. The principle of charge transfer complexation could therefore be employed in the colorimetric assay of chlorpheniramine in its tablet dosage forms.

  18. Combining intra- and intermolecular charge-transfer: a new strategy towards molecular ferromagnets and multiferroics.

    PubMed

    Di Maiolo, Francesco; Sissa, Cristina; Painelli, Anna

    2016-01-21

    Organic ferroelectric materials are currently a hot research topic, with mixed stack charge transfer crystals playing a prominent role with their large, electronic-in-origin polarization and the possibility to tune the transition temperature down to the quantum limit and/or to drive the ferroelectric transition via an optical stimulus. By contrast, and in spite of an impressive research effort, organic ferromagnets are rare and characterized by very low transition temperatures. Coexisting magnetic and electric orders in multiferroics offer the possibility to control magnetic (electric) properties by an applied electric (magnetic) field with impressive technological potential. Only few examples of multiferroics are known today, based on inorganics materials. Here we demonstrate that, by decorating mixed stack charge transfer crystals with organic radicals, a new family of robust molecular ferromagnets can be designed, stable up to ambient temperature, and with a clear tendency towards multiferroic behaviour.

  19. Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    SciTech Connect

    Miller, John M.; Onar, Omer C.; Chinthavali, Madhu

    2014-12-22

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.

  20. Charge transfer in cold collisions of rubidium atoms with calcium and ytterbium ions

    NASA Astrophysics Data System (ADS)

    Yakovleva, S. A.; Belyaev, A. K.; Buchachenko, A. A.

    2014-12-01

    Low-energy collisions of the Ca and Yb cations with Rb atoms are investigated theoretically using accurate ab initio potential energy curves and coupling matrix elements to elucidate the dominant charge transfer mechanisms. The cross sections calculated at collision energies above 10-5 cm-1 exhibit the features typical to Langevin ion-atom collision regime, including a rich structure associated with the centrifugal barrier tunnelling (orbiting) resonances. It is shown that the dominant process in Yb+ + Rb collisions is the radiative charge transfer, while in the case of Ca+ + Rb collisions nonadiabatic transitions due to spin-orbit coupling dominate. Theoretical results are in a good agreement with available experimental data.

  1. Combining intra- and intermolecular charge-transfer: a new strategy towards molecular ferromagnets and multiferroics

    PubMed Central

    Di Maiolo, Francesco; Sissa, Cristina; Painelli, Anna

    2016-01-01

    Organic ferroelectric materials are currently a hot research topic, with mixed stack charge transfer crystals playing a prominent role with their large, electronic-in-origin polarization and the possibility to tune the transition temperature down to the quantum limit and/or to drive the ferroelectric transition via an optical stimulus. By contrast, and in spite of an impressive research effort, organic ferromagnets are rare and characterized by very low transition temperatures. Coexisting magnetic and electric orders in multiferroics offer the possibility to control magnetic (electric) properties by an applied electric (magnetic) field with impressive technological potential. Only few examples of multiferroics are known today, based on inorganics materials. Here we demonstrate that, by decorating mixed stack charge transfer crystals with organic radicals, a new family of robust molecular ferromagnets can be designed, stable up to ambient temperature, and with a clear tendency towards multiferroic behaviour. PMID:26790963

  2. Oxidation and Metal-Insertion in Molybdenite Surfaces: Evaluation of Charge-Transfer Mechanisms and Dynamics

    SciTech Connect

    Ramana, Chintalapalle V.; Becker, U.; Shutthanandan, V.; Julien, C. M.

    2008-06-05

    Molybdenum sulfide (MoS2), an important representative member of the layered transition-metal dichalcogenides, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and industrial science and technology. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. On the other hand understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is quite important to utilize these minerals in technological applications. Furthermore, such a detailed investigation of thermal oxidation behavior and intercalation process will provide a basis to further explore and model the mechanism of adsorption of metal ions on to geomedia. Therefore, the present work was performed to understand the oxidation and intercalation processes of molybdenite surfaces. The results obtained, using a wide variety of analytical techniques, are presented and discussed in this paper.

  3. Cross sections for charge transfer between mercury ions and other metals

    NASA Technical Reports Server (NTRS)

    Vroom, D. A.; Rutherford, J. A.

    1977-01-01

    Cross sections for charge transfer between several ions and metals of interest to the NASA electro propulsion program have been measured. Specifically, the ions considered were Hg(+), Xe(+) and Cs(+) and the metals Mo, Fe, Al, Ti, Ta, and C. Measurements were made in the energy regime from 1 to 5,000 eV. In general, the cross sections for charge transfer were found to be less than 10 to the minus 15 power sq cm for most processes over the total energy range. Exceptions are Hg(+) in collision with Ti and Ta. The results obtained for each reaction are given in both graphical and numerical form in the text. For quick reference, the data at several ion velocities are condensed into one table given in the summary.

  4. Isotope effect in charge-transfer collisions of H with He{sup +}

    SciTech Connect

    Loreau, J.; Dalgarno, A.; Ryabchenko, S.

    2011-11-15

    We present a theoretical study of the isotope effect arising from the replacement of H by T in the charge-transfer collision H(n=2) + He{sup +}(1s) at low energy. Using a quasimolecular approach and a time-dependent wave-packet method, we compute the cross sections for the reaction including the effects of the nonadiabatic radial and rotational couplings. For H(2s) + He{sup +}(1s) collisions, we find a strong isotope effect at energies below 1 eV/amu for both singlet and triplet states. We find a much smaller isotopic dependence of the cross section for H(2p) + He{sup +}(1s) collisions in triplet states, and no isotope effect in singlet states. We explain the isotope effect on the basis of the potential energy curves and the nonadiabatic couplings, and we evaluate the importance of the isotope effect on the charge-transfer rate coefficients.

  5. Competition between covalent bonding and charge transfer at complex-oxide interfaces.

    PubMed

    Salafranca, Juan; Rincón, Julián; Tornos, Javier; León, Carlos; Santamaria, Jacobo; Dagotto, Elbio; Pennycook, Stephen J; Varela, Maria

    2014-05-16

    Here we study the electronic properties of cuprate-manganite interfaces. By means of atomic resolution electron microscopy and spectroscopy, we produce a subnanometer scale map of the transition metal oxidation state profile across the interface between the high Tc superconductor YBa2Cu3O7-δ and the colossal magnetoresistance compound (La,Ca)MnO3. A net transfer of electrons from manganite to cuprate with a peculiar nonmonotonic charge profile is observed. Model calculations rationalize the profile in terms of the competition between standard charge transfer tendencies (due to band mismatch), strong chemical bonding effects across the interface, and Cu substitution into the Mn lattice, with different characteristic length scales.

  6. Interfaces between strongly correlated oxides: controlling charge transfer and induced magnetism by hybridization

    NASA Astrophysics Data System (ADS)

    Bibes, Manuel

    At interfaces between conventional materials, band bending and alignment are controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from correlations between transition metal and oxygen ions. Strong correlations thus offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. In this talk we will show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we have probed charge reconstruction at interfaces with gadolinium titanate GdTiO3 using soft X-ray absorption spectroscopy and hard X-ray photoemission spectroscopy. We show that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate (observed by XMCD), exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. Work supported by ERC CoG MINT #615759.

  7. Ligand-induced dependence of charge transfer in nanotube-quantum dot heterostructures.

    PubMed

    Wang, Lei; Han, Jinkyu; Sundahl, Bryan; Thornton, Scott; Zhu, Yuqi; Zhou, Ruiping; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Taylor, Gordon T; Fischer, Daniel A; Appenzeller, Joerg; Harrison, Robert J; Wong, Stanislaus S

    2016-08-25

    As a model system to probe ligand-dependent charge transfer in complex composite heterostructures, we fabricated double-walled carbon nanotube (DWNT)-CdSe quantum dot (QD) composites. Whereas the average diameter of the QDs probed was kept fixed at ∼4.1 nm and the nanotubes analyzed were similarly oxidatively processed, by contrast, the ligands used to mediate the covalent attachment between the QDs and DWNTs were systematically varied to include p-phenylenediamine (PPD), 2-aminoethanethiol (AET), and 4-aminothiophenol (ATP). Herein, we have put forth a unique compilation of complementary data from experiment and theory, including results from transmission electron microscopy (TEM), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, Raman spectroscopy, electrical transport measurements, and theoretical modeling studies, in order to fundamentally assess the nature of the charge transfer between CdSe QDs and DWNTs, as a function of the structure of various, intervening bridging ligand molecules. Specifically, we correlated evidence of charge transfer as manifested by changes and shifts associated with NEXAFS intensities, Raman peak positions, and threshold voltages both before and after CdSe QD deposition onto the underlying DWNT surface. Importantly, for the first time ever in these types of nanoscale composite systems, we have sought to use theoretical modeling to justify and account for our experimental results. Our overall data suggest that (i) QD coverage density on the DWNTs varies, based upon the different ligand pendant groups used and that (ii) the presence of a π-conjugated carbon framework within the ligands themselves coupled with the electron affinity of their pendant groups collectively play important roles in the resulting charge transfer from QDs to the underlying CNTs. PMID:27368081

  8. Imidazole as a parent π-conjugated backbone in charge-transfer chromophores

    PubMed Central

    Kulhánek, Jiří

    2012-01-01

    Summary Research activities in the field of imidazole-derived push–pull systems featuring intramolecular charge transfer (ICT) are reviewed. Design, synthetic pathways, linear and nonlinear optical properties, electrochemistry, structure–property relationships, and the prospective application of such D-π-A organic materials are described. This review focuses on Y-shaped imidazoles, bi- and diimidazoles, benzimidazoles, bis(benzimidazoles), imidazole-4,5-dicarbonitriles, and imidazole-derived chromophores chemically bound to a polymer chain. PMID:22423270

  9. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Barnard, Amanda S.

    2016-07-01

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove

  10. On the crystal phases of /DEPE/ /TCNQ/4. [organic charge transfer salt

    NASA Technical Reports Server (NTRS)

    Coleman, L. B.; Hermann, A. M.; Williams, R.; Somoano, R. B.

    1977-01-01

    X-ray powder diffraction studies of two semiconducting crystal phases in the organic charge transfer salt (DEPE)(TCNQ) sub 4 has revealed almost identical electrical properties to those of metallic crystals. It is hypothesized that the similarity arises from the nature of the measurements themselves, i.e., electrode geometry. The possibility that a separate metallic phase for (DEPE)(TCNQ) sub 4 exists, is not, however, ruled out.

  11. Charge-Transfer Excitations Steer the Davydov Splitting and Mediate Singlet Exciton Fission in Pentacene

    NASA Astrophysics Data System (ADS)

    Beljonne, D.; Yamagata, H.; Brédas, J. L.; Spano, F. C.; Olivier, Y.

    2013-05-01

    Quantum-chemical calculations are combined to a model Frenkel-Holstein Hamiltonian to assess the nature of the lowest electronic excitations in the pentacene crystal. We show that an admixture of charge-transfer excitations into the lowest singlet excited states form the origin of the Davydov splitting and mediate instantaneous singlet exciton fission by direct optical excitation of coherently coupled single and double exciton states, in agreement with recent experiments.

  12. Charge-transfer gap closure in transition-metal halides under pressure

    SciTech Connect

    Chen, A.L.; Yu, P.Y.

    1995-01-01

    Insulator-to-metal transition induced by pressure has been studied in three transition metal iodides: NiI{sub 2}, CoI{sub 2} and FeI{sub 2} using optical absorption and resistivity measurements at room temperature. Comparisons between the results obtained by these two techniques suggested that the closure of the charge-transfer gap is the principal mechanism responsible for the insulator-to-metal transition in these materials.

  13. Strongly Dichroic Organic Films via Controlled Assembly of Modular Aromatic Charge-Transfer Liquid Crystals.

    PubMed

    Bé, Ariana Gray; Tran, Cheryl; Sechrist, Riley; Reczek, Joseph J

    2015-10-01

    The formation of highly anisotropic organic thin films based on the designed self-assembly of mixed-stack liquid crystals is reported. A series of alkoxyanthracene donors is combined in a modular fashion with a naphthalenediimide acceptor to generate new charge-transfer columnar liquid crystals. Materials characterization and molecular modeling provides insight into structure-function relationships in these organic materials that lead to the striking bulk dichroic properties of certain molecular assemblies.

  14. Controlling the charge transfer in phenylene-bridged borylene-amine pi-conjugated systems.

    PubMed

    Proń, Agnieszka; Zhou, Gang; Norouzi-Arasi, Hassan; Baumgarten, Martin; Müllen, Klaus

    2009-08-20

    Novel boron-nitrogen-containing pi-conjugated compounds 3,3'- and 4,4'-((2,4,6-triisopropylphenyl)borylene)bis(N,N-diarylbenzenamine) (1-2), m- and p-phenylene bridged to the boron center, respectively, have been synthesized and characterized. Optical studies by means of UV-vis absorption and emission measurements as well as DFT calculations reveal a different charge transfer behavior between the para series and the meta series at ground and excited states.

  15. Ligand-induced dependence of charge transfer in nanotube–quantum dot heterostructures

    DOE PAGES

    Wang, Lei; Han, Jinkyu; Sundahl, Bryan; Thornton, Scott; Zhu, Yuqi; Zhou, Ruiping; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Taylor, Gordon T.; et al

    2016-07-01

    As a model system to probe ligand-dependent charge transfer in complex composite heterostructures, we fabricated double-walled carbon nanotube (DWNT) – CdSe quantum dot (QD) composites. Whereas the average diameter of the QDs probed was kept fixed at ~4.1 nm and the nanotubes analyzed were similarly oxidatively processed, by contrast, the ligands used to mediate the covalent attachment between the QDs and DWNTs were systematically varied to include p-phenylenediamine (PPD), 2-aminoethanethiol (AET), and 4-aminothiophenol (ATP). Herein, we have put forth a unique compilation of complementary data from experiment and theory, including results from transmission electron microscopy (TEM), near-edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, Raman spectroscopy, electrical transport measurements, and theoretical modeling studies, in order to fundamentally assess the nature of the charge transfer between CdSe QDs and DWNTs, as a function of the structure of various, intervening bridging ligand molecules. Specifically, we correlated evidence of charge transfer as manifested by changes and shifts associated with NEXAFS intensities, Raman peak positions, and threshold voltages both before and after CdSe QD deposition onto the underlying DWNT surface. Importantly, for the first time ever in these types of nanoscale composite systems, we have sought to use theoretical modeling to justify and account for our experimental results. Finally, our overall data suggest that (i) QD coverage density on the DWNTs varies, based upon the different ligand pendant groups used and that (ii) the presence of a π-conjugated carbon framework within the ligands themselves and the electron affinity of the pendant groups collectively play important roles in the resulting charge transfer from QDs to the underlying CNTs.« less

  16. Heterogeneous Charge-Transfer Nanorods by Strained Melt-Molding Lithography.

    PubMed

    Kim, Jueun; Chung, Jeyon; Hyon, Jinho; Seo, Chunhee; Nam, Jihye; Kang, Youngjong

    2016-03-01

    Hetero-nanorods consisting of two charge-transfer (CT) complexes were fabricated by the strained melt-molding lithography. Utilizing the lowered melting temperature by the formation of eutectic mixture, various well-defined CT complex nanorods can be easily fabricated by soft-lithography-assisted melt crystallization below 100 degrees C. Hetero-nanorods were fabricated by selective doping of the secondary CT complex at defects induced by applying the uniaxial strain. PMID:27455696

  17. Charge transfer mobility of naphthodithiophenediimide derivative: Normal-mode and bond length relaxation analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Liu, Yujuan; Zheng, Yujun

    2016-02-01

    In this letter, the charge transfer mobility of naphthalenediimide (NDTI) derivative is investigated. By employing the normal-mode analysis and bond length relaxation analysis, the influences of chemical elements on reorganization energies and intermolecular electronic couplings are investigated in NDTI derivative. The results show that the introduction of atom O would decrease reorganization energy in hole-hopping process and increase electronic coupling. This analysis encourages the molecular and material design in organic semiconductors.

  18. Strongly Dichroic Organic Films via Controlled Assembly of Modular Aromatic Charge-Transfer Liquid Crystals.

    PubMed

    Bé, Ariana Gray; Tran, Cheryl; Sechrist, Riley; Reczek, Joseph J

    2015-10-01

    The formation of highly anisotropic organic thin films based on the designed self-assembly of mixed-stack liquid crystals is reported. A series of alkoxyanthracene donors is combined in a modular fashion with a naphthalenediimide acceptor to generate new charge-transfer columnar liquid crystals. Materials characterization and molecular modeling provides insight into structure-function relationships in these organic materials that lead to the striking bulk dichroic properties of certain molecular assemblies. PMID:26375256

  19. Ultrafast interfacial charge transfer dynamics in dye-sensitized and quantum dot solar cell

    NASA Astrophysics Data System (ADS)

    Ghosh, Hirendra N.

    2013-02-01

    Dye sensitized solar cell (DSSC) appeared to be one of the good discovery for the solution of energy problem. We have been involved in studying ultrafast interfacial electron transfer dynamics in DSSC using femtosecond laser spectroscopy. However it has been realized that it is very difficult to design and develop higher efficient one, due to thermodynamic limitation. Again in DSSC most of the absorbed photon energy is lost as heat within the cell, which apart from decreasing the efficiency also destabilizes the device. It has been realized that quantum dot solar cell (QDSC) are the best bet where the sensitizer dye molecules can be replaced by suitable quantum dot (QD) materials in solar cell. The quantum-confinement effect in semiconductors modifies their electronic structure, which is a very important aspect of these materials. For photovoltaic applications, a long-lived charge separation remains one of the most essential criteria. One of the problems in using QDs for photovoltaic applications is their fast charge recombination caused by nonradiative Auger processes, which occur predominantly at lower particle sizes due to an increase in the Coulomb interaction between electrons and holes. Various approaches, such as the use of metal-semiconductor composites, semiconductor-polymer composite, and semiconductor core-shell heterostructures, have been attempted to minimize the fast recombination between electrons and holes. To make higher efficient solar devices it has been realised that it is very important to understand charge carrier and electron transfer dynamics in QD and QD sensitized semiconductor nanostructured materials. In the present talk, we are going to discuss on recent works on ultrafast electron transfer dynamics in dye-sensitized TiO2 nanoparticles/film [1-12] and charge (electron/hole) transfer dynamics in quantum dot core-shell nano-structured materials [13-17].

  20. Computational models of an inductive power transfer system for electric vehicle battery charge

    NASA Astrophysics Data System (ADS)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  1. Development of highly accurate approximate scheme for computing the charge transfer integral.

    PubMed

    Pershin, Anton; Szalay, Péter G

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature. PMID:26298117

  2. Charge transfer in photorechargeable composite films of TiO2 and polyaniline

    NASA Astrophysics Data System (ADS)

    Nomiyama, Teruaki; Sasabe, Kenichi; Sakamoto, Kenta; Horie, Yuji

    2015-07-01

    A photorechargeable battery (PRB) is a photovoltaic device having an energy storage function in a single cell. The photoactive electrode of PRB is a bilayer film consisting of bare porous TiO2 and a TiO2-polyaniline (PANi) mixture that work as a photovoltaic current generator and an electrochemical energy storage by ion dedoping, respectively. To study the charge transfer between TiO2 and PANi, the photorechargeable quantum efficiency QE ([electron count on discharge]/[incident photon count on photocharge]) was measured by varying the thickness LS of the TiO2-PANi mixture. The quantum efficiency QEuv for UV photons had a maximum of ˜7% at LS ˜ 7 µm. The time constant τTP for the charge transfer was about 10-1 s, which was longer ten times or more than the lifetime of excited electrons within TiO2. These facts reveal that the main rate-limiting factor in the photocharging process is the charge transfer between TiO2 and PANi.

  3. Rate limiting activity of charge transfer during lithiation from ionic liquids

    NASA Astrophysics Data System (ADS)

    Rodrigues, Marco-Tulio F.; Lin, Xinrong; Gullapalli, Hemtej; Grinstaff, Mark W.; Ajayan, Pulickel M.

    2016-10-01

    Given the increased use of room temperature ionic liquid electrolytes in Li-ion batteries, due to their non-flammability and negligible volatility, this study evaluates the lithiation kinetics to understand and improve the rate performance of Li-ion batteries. Lithium titanate spinel is used as a model electrode and the electrolyte is composed of LiTFSI and TFSI-coordinated alkoxy-modified phosphonium ionic liquid. Based on the analysis of activation energies for each process, we report that the charge-transfer reaction at the electrode/electrolyte interface is the rate-limiting step for cell operation. This finding is further supported by the observation that a 50-fold decrease in charge-transfer resistance at higher temperatures leads to a significant performance improvement over that of a traditional organic electrolyte at room temperature. Charge-transfer resistance and electrolyte wetting on the electrode surface are critical processes for optimal battery performance, and such processes need to be included when designing new ionic liquids in order to exceed the power density obtained with the use of current carbonate-based electrolytes.

  4. Lock-arm supramolecular ordering: a molecular construction set for cocrystallizing organic charge transfer complexes.

    PubMed

    Blackburn, Anthea K; Sue, Andrew C-H; Shveyd, Alexander K; Cao, Dennis; Tayi, Alok; Narayanan, Ashwin; Rolczynski, Brian S; Szarko, Jodi M; Bozdemir, Ozgur A; Wakabayashi, Rie; Lehrman, Jessica A; Kahr, Bart; Chen, Lin X; Nassar, Majed S; Stupp, Samuel I; Stoddart, J Fraser

    2014-12-10

    Organic charge transfer cocrystals are inexpensive, modular, and solution-processable materials that are able, in some instances, to exhibit properties such as optical nonlinearity, (semi)conductivity, ferroelectricity, and magnetism. Although the properties of these cocrystals have been investigated for decades, the principal challenge that researchers face currently is to devise an efficient approach which allows for the growth of high-quality crystalline materials, in anticipation of a host of different technological applications. The research reported here introduces an innovative design, termed LASO-lock-arm supramolecular ordering-in the form of a modular approach for the development of responsive organic cocrystals. The strategy relies on the use of aromatic electronic donor and acceptor building blocks, carrying complementary rigid and flexible arms, capable of forming hydrogen bonds to amplify the cocrystallization processes. The cooperativity of charge transfer and hydrogen-bonding interactions between the building blocks leads to binary cocrystals that have alternating donors and acceptors extending in one and two dimensions sustained by an intricate network of hydrogen bonds. A variety of air-stable, mechanically robust, centimeter-long, organic charge transfer cocrystals have been grown by liquid-liquid diffusion under ambient conditions inside 72 h. These cocrystals are of considerable interest because of their remarkable size and stability and the promise they hold when it comes to fabricating the next generation of innovative electronic and photonic devices.

  5. Charge-transfer complexes of 4-nitrocatechol with some amino alcohols

    NASA Astrophysics Data System (ADS)

    Baniyaghoob, Sahar; Najafpour, Mohammad Mahdi; Boghaei, Davar M.

    2010-03-01

    Charge-transfer (CT) complexes formed from the reactions of 4-nitropyrocatechol (4-nCat) as an electron acceptor with four amino alcohols: 2-aminoethanol, 1-amino-2-propanol, 4-aminobutanol and N-(2-hydroxyethyl)-1,3-diaminopropane (NHEDAP) as electron donors, have been studied spectrophotometrically in H 2O and H 2O/EtOH at 20, 25, 30, 35 and 40 °C. The calculated values of the oscillator strength and transition moment confirm the formation of CT-complexes. The thermodynamic and spectroscopic parameters were also evaluated for the formation of CT-complexes. The equilibrium constants ranged from 9.00 to 2.20 l mol -1 (M -1). These interactions are exothermic and have relatively large standard enthalpy and entropy changes (Δ H values ranged from -15.58 to -3.10 kJ mol -1; Δ S ranged from 26.81 to -3.25 J K -1 mol -1). The solid CT-complexes have been synthesized and characterized by IR, NMR, mass spectrometry and thermal analysis. The photometric titration curves and other spectrometric data for the reactions indicated that the data obtained refer to the formation of 1:1 charge-transfer complex of [(4-nCat) (NHEDAP)] and 1:2 charge-transfer complexes of other amino alcohols [(4-nCat) (amino alcohol) 2]. The effect of alkali and alkaline earth metals on increasing the equilibrium constant of the CT-complexation was also investigated.

  6. Development of highly accurate approximate scheme for computing the charge transfer integral

    SciTech Connect

    Pershin, Anton; Szalay, Péter G.

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  7. Structure and Electronic Spectra of Purine-Methyl Viologen Charge Transfer Complexes

    PubMed Central

    Jalilov, Almaz S.; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A.; Schatz, George C.; Lewis, Frederick D.

    2014-01-01

    The structure and properties of the electron donor-acceptor complexes formed between methyl viologen (MV) and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and 1H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well described by time-dependent (TD) DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2′-deoxyguanosine 3′-monophosphate GMP (DAD′DAD′ type) and 7-deazaguanosine zG (DAD′ADAD′ type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors. PMID:24294996

  8. Structure and electronic spectra of purine-methyl viologen charge transfer complexes.

    PubMed

    Jalilov, Almaz S; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A; Schatz, George C; Lewis, Frederick D

    2014-01-01

    The structure and properties of the electron donor-acceptor complexes formed between methyl viologen and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and (1)H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well-described by time-dependent DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2'-deoxyguanosine 3'-monophosphate (DAD'DAD' type) and 7-deazaguanosine (DAD'ADAD' type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors.

  9. A study of different modes of charge transfer to ground in upward lightning

    NASA Astrophysics Data System (ADS)

    Zhou, Helin; Rakov, Vladimir A.; Diendorfer, Gerhard; Thottappillil, Rajeev; Pichler, Hannes; Mair, Martin

    2015-04-01

    We examined simultaneous measurements of currents and close electric field changes, as well as high-speed video images, associated with pulses superimposed on the initial continuous current (ICC pulses) and M-components following return strokes in upward flashes initiated from the Gaisberg Tower in Austria. For tower-initiated lightning, upward leaders often create multiple branches below the cloud base that can facilitate initiation of transients at relatively low heights along the grounded channel carrying ICC of some tens to hundreds of amperes. In this situation, a conducting channel is present, which is necessary for the M-component mode of charge transfer to ground, but the excitation wave (leader), after entering the channel, cannot form a long-front downward M-wave, because of the relatively short distance between the entry (junction) point and the strike-object top. Clearly, two parallel channels, one previously existing and the other newly formed (or rejuvenated) are involved in the charge transfer, and there is a common channel section between the junction point and the strike object. We use the term "mixed mode of charge transfer to ground", to indicate that in the case of low junction point the "classical" M-component mode is not possible, even though a conducting channel to ground (an attribute of the M-component mode) is present. The mixed mode scenario is also applicable to impulsive processes during continuing currents following return strokes in upward lightning.

  10. Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions

    SciTech Connect

    Oberhofer, Harald; Blumberger, Jochen

    2009-08-14

    We present a plane-wave basis set implementation of charge constrained density functional molecular dynamics (CDFT-MD) for simulation of electron transfer reactions in condensed phase systems. Following the earlier work of Wu and Van Voorhis [Phys. Rev. A 72, 024502 (2005)], the density functional is minimized under the constraint that the charge difference between donor and acceptor is equal to a given value. The classical ion dynamics is propagated on the Born-Oppenheimer surface of the charge constrained state. We investigate the dependence of the constrained energy and of the energy gap on the definition of the charge and present expressions for the constraint forces. The method is applied to the Ru{sup 2+}-Ru{sup 3+} electron self-exchange reaction in aqueous solution. Sampling the vertical energy gap along CDFT-MD trajectories and correcting for finite size effects, a reorganization free energy of 1.6 eV is obtained. This is 0.1-0.2 eV lower than a previous estimate based on a continuum model for solvation. The smaller value for the reorganization free energy can be explained by the fact that the Ru-O distances of the divalent and trivalent Ru hexahydrates are predicted to be more similar in the electron transfer complex than for the separated aqua ions.

  11. Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Oberhofer, Harald; Blumberger, Jochen

    2009-08-01

    We present a plane-wave basis set implementation of charge constrained density functional molecular dynamics (CDFT-MD) for simulation of electron transfer reactions in condensed phase systems. Following the earlier work of Wu and Van Voorhis [Phys. Rev. A 72, 024502 (2005)], the density functional is minimized under the constraint that the charge difference between donor and acceptor is equal to a given value. The classical ion dynamics is propagated on the Born-Oppenheimer surface of the charge constrained state. We investigate the dependence of the constrained energy and of the energy gap on the definition of the charge and present expressions for the constraint forces. The method is applied to the Ru2+-Ru3+ electron self-exchange reaction in aqueous solution. Sampling the vertical energy gap along CDFT-MD trajectories and correcting for finite size effects, a reorganization free energy of 1.6 eV is obtained. This is 0.1-0.2 eV lower than a previous estimate based on a continuum model for solvation. The smaller value for the reorganization free energy can be explained by the fact that the Ru-O distances of the divalent and trivalent Ru hexahydrates are predicted to be more similar in the electron transfer complex than for the separated aqua ions.

  12. Computational Studies on Structural, Excitation, and Charge-Transfer Properties of Ureidopeptidomimetics.

    PubMed

    Joy, Sherin; Sureshbabu, Vommina V; Periyasamy, Ganga

    2016-07-14

    Peptides with ureido group enclosing backbones are considered peptidomimetics and are known for their higher stabilities, biocompatibilities, antibiotic, inhibitor, and charge-transduction activities. These peptidomimetics have some unique applications, which are quite different from those of natural peptides. Hence, it is imperative to appreciate their properties at a microscopic level. In this regard, this work outlines, in detail, the charge transfer (CT) properties, hole-migration dynamics, and electronic structures of various experimentally comprehended ureidopeptidomimetic models using density functional theory (DFT). Time-dependent DFT and complete active space self-consistent field computations on basic models provide the necessary evidence for the viability of CT from the end enfolding the ureido group to the other end with a carboxylate entity. This donor-to-acceptor CT has been reflected in excitation studies, in which the higher intensity band corresponds to CT from the π orbital of the ureido group to the π* orbital of the carboxylate entity. Further, hole-migration studies have shown that charge can evolve from the ureido end, whereas the hole generated at the carboxylate end does not migrate. However, hole migration has been reported to occur from both ends (amino and carboxylate ends) in glycine oligopeptides, and our studies show that the ability to transfer and migrate charge can be tuned by modifying the donor and acceptor functional groups in both the neutral and cationic charge states. We have analyzed the possibility of hole migration following ionization using DFT-based wave-packet propagation and found its occurrence on a ∼2-5 fs time scale, which reflects the charge-transduction ability of peptidomimetics. PMID:27314639

  13. First report of charge-transfer induced heat-set hydrogel. Structural insights and remarkable properties

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subham; Maiti, Bappa; Bhattacharya, Santanu

    2016-05-01

    The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag+-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed.The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the

  14. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Rak, Zs.; Rost, C. M.; Lim, M.; Sarker, P.; Toher, C.; Curtarolo, S.; Maria, J.-P.; Brenner, D. W.

    2016-09-01

    Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg0.1Co0.1Ni0.1Cu0.1Zn0.1)O0.5, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co+3 in J14 + Li are very different from Co+2, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.

  15. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions

    NASA Astrophysics Data System (ADS)

    Saunders, C. P. R.; Peck, S. L.

    1998-06-01

    The process of thunderstorm electrification by charge transfers between ice crystals and riming graupel pellets (the noninductive process) has been the subject of extensive study in the laboratory in Manchester. Quantitative dependencies of the sign and magnitude of charge transfer have previously been determined as functions of ice crystal size, graupel/crystal relative velocity, temperature, and the effective liquid water content (EW) in the cloud experienced by the riming graupel pellets. We now present results of laboratory studies of thunderstorm charging in terms of the rime accretion rate (RAR = EW × V), which combines into one variable the velocity and EW dependence of the sign of graupel charging on temperature. The magnitude of the charge transfer can be determined from its dependence on the crystal size and graupel velocity, while the sign of the rimer charging can now be determined from a new figure showing the dependence of the charge sign on RAR and temperature. This figure may be used to compare charge transfer results from other laboratories obtained over a range of graupel/crystal velocities. These new experiments extend the temperature range of the previous studies and indicate that negative charging of graupel can occur at temperatures as high as -2°C in conditions of low RAR, while at temperatures below -30°C, more positive graupel charging is noted than in the earlier work.

  16. Non-Ergodic Electron Transfer in Mixed-Valence Charge-Transfer Complexes.

    PubMed

    Matyushov, Dmitry V

    2012-06-21

    Theories of activated transitions traditionally separate the dynamics and statistics of the thermal bath in the reaction rate into the preexponential frequency factor for the dynamics and a Boltzmann factor for the statistics. When the reaction rate is comparable to relaxation frequencies of the medium, the statistics loses ergodicity and the activation barrier becomes dependent on the medium dynamics. This scenario is realized for mixed-valence self-exchange electron transfer at temperatures near the point of solvent crystallization. These complexes, studied by Kubiak and coworkers, display anti-Arrhenius temperature dependence on lowering temperature when approaching crystallization; that is, the reaction rate increases nonlinearly in Arrhenius coordinates. Accordingly, the solvent relaxation slows down following a power temperature law. With this functional form for the relaxation time, nonergodic reaction kinetics accounts well for the observations.

  17. Modulating charge-transfer interactions in topologically different porphyrin-C60 dyads.

    PubMed

    Guldi, Dirk M; Hirsch, Andreas; Scheloske, Michael; Dietel, Elke; Troisi, Alessandro; Zerbetto, Francesco; Prato, Maurizio

    2003-10-17

    Control over the interchromophore separation, their angular relationship, and the spatial overlap of their electronic clouds in several ZnP-C(60) dyads (ZnP=zinc porphyrin) is used to modulate the rates of intramolecular electron transfer. For the first time, a detailed analysis of the charge transfer absorption and emission spectra, time-dependent spectroscopic measurements, and molecular dynamics simulations prove quantitatively that the same two moieties can produce widely different electron-transfer regimes. This investigation also shows that the combination of ZnP and C(60) consistently produces charge recombination in the inverted Marcus region, with reorganization energies that are remarkably low, regardless of the solvent polarity. The time constants of electron transfer range from the mus to the ps regime, the electronic couplings from a few tens to several hundreds of cm(-1), and the reorganization energies remain below 0.54 eV and can be as low as 0.16 eV.

  18. Dissecting the kinetics of the NADP(+)-FADH2 charge transfer complex and flavin semiquinones in neuronal nitric oxide synthase.

    PubMed

    Li, Huiying; Jamal, Joumana; Chreifi, Georges; Venkatesh, Vikram; Abou-Ziab, Hoda; Poulos, Thomas L

    2013-07-01

    Electron flow within the neuronal nitric oxide synthase reductase domain (nNOSrd) includes hydride transfer from NADPH to FAD followed by two one-electron transfer reactions from FAD to FMN. We have used stopped flow spectrometry to closely monitor these electron transfer steps for both the wild type and the ΔG810 mutant of nNOSrd using a protocol involving both global analyses of the photodiode array spectral scans and curve fittings of single wavelength kinetic traces. The charge transfer complex and interflavin electron transfer events recorded at 750nm and 600nm, respectively, show the kinetics in different time frames. All electron transfer events are slow enough at 4°C to enable measurements of rate constants even for the fast charge transfer event. To our knowledge this is the first time the rate constants for the charge transfer between NADP(+) and FADH2 have been determined for NOS. These procedures allow us to conclude that (1) binding of the second NADPH is necessary to drive the full reduction of FMN and; (2) charge transfer and the subsequent interflavin electron transfer have distinct spectral features that can be monitored separately with stopped flow spectroscopy. These studies also enable us to conclude that interflavin electron transfer reported at 600nm is not limiting in NOS catalysis.

  19. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    PubMed

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-01

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  20. Transient negative photoconductance in a charge transfer double quantum well under optical intersubband excitation

    NASA Astrophysics Data System (ADS)

    Rüfenacht, M.; Tsujino, S.; Sakaki, H.

    1998-06-01

    Recently, it was shown that an electron-hole radiative recombination is induced by a mid-infrared light exciting an intersubband transition in a charge transfer double quantum well (CTDQW). This recombination was attributed to an upstream transfer of electrons from an electron-rich well to a hole-rich well. In this study, we investigated the electrical response of a CTDQW under intersubband optical excitation, and found that a positive photocurrent, opposite in sign and proportional to the applied electric field, accompanies the intersubband-transition-induced luminescence (ITIL) signal. A negative photocurrent component was also observed and attributed to heating processes. This work brings a further evidence of the ITIL process and shows that an important proportion of the carriers are consumed by the transfer of electrons.

  1. Studies of Photosynthetic Energy and Charge Transfer by Two-dimensional Fourier transform electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogilvie, Jennifer

    2010-03-01

    Two-dimensional (2D) Fourier transform electronic spectroscopy has recently emerged as a powerful tool for the study of energy transfer in complex condensed-phase systems. Its experimental implementation is challenging but can be greatly simplified by implementing a pump-probe geometry, where the two phase-stable collinear pump pulses are created with an acousto-optic pulse-shaper. This approach also allows the use of a continuum probe pulse, expanding the available frequency range of the detection axis and allowing studies of energy transfer and electronic coupling over a broad range of frequencies. We discuss several benefits of 2D electronic spectroscopy and present 2D data on the D1-D2 reaction center complex of Photosystem II from spinach. We discuss the ability of 2D spectroscopy to distinguish between current models of energy and charge transfer in this system.

  2. Laboratory experiments on the effect of trace chemicals on charge transfer during ice-hail collision

    NASA Astrophysics Data System (ADS)

    Prakash, P. Jish; Kumar, P. Pradeep

    Laboratory experiments were carried out inside the cylindrical steel chamber kept inside the walk-in cold room, which can reach a temperature of - 30 °C, to investigate the effect of ionic compounds on charge transfer during the collision between ice crystals and graupel in the presence of supercooled water droplets. Experiments were carried out at a constant impact velocity of 2.2 m/s using pure water (Milli-Q, 18.2 MΩ-cm) and trace amount of ionic compounds at low rime accretion rate (RAR) and crystal sizes below 50 µm diameter in the temperature regions of - 6 to - 10 °C, - 16 to - 19 °C and - 21 to - 25 °C. It was observed that ice crystals interacting with graupel made of pure water obeys the charge sign regimes [Saunders, C.P.R., Keith, W.D., and Mitzeva, R.P., 1991. The effect of liquid water on thunderstorm charging. J. Geophys. Res. 96, D6, 11007-11017.] as a function of temperature and RAR for all temperatures ranging from - 6 to - 25 °C. The validity of the positive and negative charging zones of Saunders et al. [Saunders, C.P.R., Keith, W.D., and Mitzeva, R.P., 1991. The effect of liquid water on thunderstorm charging. J. Geophys. Res. 96, D6, 11007-11017.] for low effective liquid water content (EW) was verified.

  3. X-ray absorption structural study of a reversible, photoexcited charge-transfer state

    SciTech Connect

    Chen, L.X.; Bowman, M.K.; Norris, J.R. Univ. of Chicago, IL ); Montano, P.A. )

    1993-05-19

    Electron-transfer reactions can be accompanied by significant nuclear movements. Nuclear motion appears to be especially vital to the reversible, photoinduced charge-transfer chemistry of cyclopentadienylnickel nitrosyl (C[sub 5]H[sub 5]NiNO). Although extended X-ray absorption fine structure (EXAFS) spectroscopy has recorded photoinduced changes in the ligation of myoglobins, similar X-ray studies of electron-transfer chemistry have not been reported. Here we examine reversible, photoinduced structural changes in C[sub 5]H[sub 5]NiNO by EXAFS and propose a mechanism for the electron-transfer chemistry. This work demonstrates that EXAFS can measure distance changes accompanying photoinduced electron transfer to provide new details of the geometry of photoexcited state and suggests that electron transfer occurs in the transient, optically excited states of C[sub 5]H[sub 5]NiNO and C[sub 5]H[sub 5]NiNO[sup CT] as dictated by NO movement that produces either C[sub 5]H[sub 5]NiNO[sup CT] or C[sub 5]H[sub 5]NiNO[sup GS]. 14 refs., 2 figs.

  4. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.

    PubMed

    Delor, Milan; Sazanovich, Igor V; Towrie, Michael; Weinstein, Julia A

    2015-04-21

    The Born-Oppenheimer approximation refers to the assumption that the nuclear and electronic wave functions describing a molecular system evolve and can be determined independently. It is now well-known that this approximation often breaks down and that nuclear-electronic (vibronic) coupling contributes greatly to the ultrafast photophysics and photochemistry observed in many systems ranging from simple molecules to biological organisms. In order to probe vibronic coupling in a time-dependent manner, one must use spectroscopic tools capable of correlating the motions of electrons and nuclei on an ultrafast time scale. Recent developments in nonlinear multidimensional electronic and vibrational spectroscopies allow monitoring both electronic and structural factors with unprecedented time and spatial resolution. In this Account, we present recent studies from our group that make use of different variants of frequency-domain transient two-dimensional infrared (T-2DIR) spectroscopy, a pulse sequence combining electronic and vibrational excitations in the form of a UV-visible pump, a narrowband (12 cm(-1)) IR pump, and a broadband (400 cm(-1)) IR probe. In the first example, T-2DIR is used to directly compare vibrational dynamics in the ground and relaxed electronic excited states of Re(Cl)(CO)3(4,4'-diethylester-2,2'-bipyridine) and Ru(4,4'-diethylester-2,2'-bipyridine)2(NCS)2, prototypical charge transfer complexes used in photocatalytic CO2 reduction and electron injection in dye-sensitized solar cells. The experiments show that intramolecular vibrational redistribution (IVR) and vibrational energy transfer (VET) are up to an order of magnitude faster in the triplet charge transfer excited state than in the ground state. These results show the influence of electronic arrangement on vibrational coupling patterns, with direct implications for vibronic coupling mechanisms in charge transfer excited states. In the second example, we show unambiguously that electronic and

  5. Charge transfer effects on the chemical reactivity of PdxCu1-x nanoalloys

    NASA Astrophysics Data System (ADS)

    Castegnaro, M. V.; Gorgeski, A.; Balke, B.; Alves, M. C. M.; Morais, J.

    2015-12-01

    This work reports on the synthesis and characterization of PdxCu1-x (x = 0.7, 0.5 and 0.3) nanoalloys obtained via an eco-friendly chemical reduction method based on ascorbic acid and trisodium citrate. The average size of the quasi-spherical nanoparticles (NPs) obtained by this method was about 4 nm, as observed by TEM. The colloids containing different NPs were then supported on carbon in order to produce powder samples (PdxCu1-x/C) whose electronic and structural properties were probed by different techniques. XRD analysis indicated the formation of crystalline PdCu alloys with a nanoscaled crystallite size. Core-level XPS results provided a fingerprint of a charge transfer process between Pd and Cu and its dependency on the nanoalloy composition. Additionally, it was verified that alloying was able to change the NP's reactivity towards oxidation and reduction. Indeed, the higher the amount of Pd in the nanoalloy, less oxidized are both the Pd and the Cu atoms in the as-prepared samples. Also, in situ XANES experiments during thermal treatment under a reducing atmosphere showed that the temperature required for a complete reduction of the nanoalloys depends on their composition. These results envisage the control at the atomic level of novel catalytic properties of such nanoalloys.This work reports on the synthesis and characterization of PdxCu1-x (x = 0.7, 0.5 and 0.3) nanoalloys obtained via an eco-friendly chemical reduction method based on ascorbic acid and trisodium citrate. The average size of the quasi-spherical nanoparticles (NPs) obtained by this method was about 4 nm, as observed by TEM. The colloids containing different NPs were then supported on carbon in order to produce powder samples (PdxCu1-x/C) whose electronic and structural properties were probed by different techniques. XRD analysis indicated the formation of crystalline PdCu alloys with a nanoscaled crystallite size. Core-level XPS results provided a fingerprint of a charge transfer process

  6. Additional considerations about the role of ion size in charge reversal.

    PubMed

    Martín-Molina, A; Hidalgo-Álvarez, R; Quesada-Pérez, M

    2009-10-21

    The effect of the ion size on the charge reversal process is studied via canonical Monte Carlo simulation. To this end, a primitive model of electrolyte is used to analyze the electric double layer formed by an asymmetric electrolyte in the presence of a charged planar wall. Different values of ion diameters and surface charge densities are used so as to determine the conditions at which the charge reversal first occurs. For each case, the apparent surface charge density is calculated as a function of the distance from the charged wall for the different electrolyte concentrations in order to establish the minimal salt concentration required for the charge reversal. We will refer to this electrolyte concentration as the reversal concentration and will show how it depends on the surface charge density and on the ion size. From the apparent surface charge density profiles, the distance from the wall at which the charge reversal arises as well as its intensity can be also inferred. PMID:21715840

  7. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  8. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

    PubMed

    Santos, Elton J G; Wang, W L

    2016-09-21

    Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance. PMID:27314747

  9. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

    PubMed

    Santos, Elton J G; Wang, W L

    2016-09-21

    Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

  10. Electronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex

    SciTech Connect

    Haverkate, Lucas A.; Mulder, Fokko M.; Zbiri, Mohamed Johnson, Mark R.; Carter, Elizabeth; Kotlewski, Arek; Picken, S.

    2014-01-07

    Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10{sup −2} electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B 116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems.

  11. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on Xα-Scattered wave calculations on a (FeTiO10)14− cluster, is given for Fe2+ → Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ → Ti4+ metal-metal charge transfer transition is 18040 cm−1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ → Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ → Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  12. First report of charge-transfer induced heat-set hydrogel. Structural insights and remarkable properties.

    PubMed

    Bhattacharjee, Subham; Maiti, Bappa; Bhattacharya, Santanu

    2016-06-01

    The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag(+)-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed. PMID:27187776

  13. High-resolution electronic spectroscopy of the doorway states to intramolecular charge transfer.

    PubMed

    Fleisher, Adam J; Bird, Ryan G; Zaleski, Daniel P; Pate, Brooks H; Pratt, David W

    2013-04-25

    Reported here are several of the ground, first, and second excited state structures and dipole moments of three benchmark intramolecular charge transfer (ICT) systems; 4-(1H-pyrrol-1-yl)benzonitrile (PBN), 4,4'-dimethylaminobenzonitrile (DMABN), and 4-(1-pyrrolidinyl)benzonitrile (PYRBN), isolated in the gas phase and probed by rotationally resolved spectroscopy in a molecular beam. The related molecules 1-phenylpyrrole (PP) and 4-aminobenzonitrile (ABN) also are discussed. We find that the S1 electronic state is of B symmetry in all five molecules. In PBN, a second excited state (S2) of A symmetry is found only ~400 cm(-1) above the presumed origin of the S1 state. The change in dipole moment upon excitation to the A state is measured to be Δμ ≈ 3.0 D, significantly smaller than the value predicted by theory and also smaller than that observed for the "anomalous" ICT band of PBN in solution. The B state dipole moments of DMABN and PYRBN are large, ~10.6 D, slightly larger than those attributed to "normal" LE fluorescence in solution. In addition, we find the unsaturated donor molecules (PP, PBN) to be twisted in their ground states and to become more planar upon excitation, even in the A state, whereas the saturated donor molecules (ABN, DMABN, PYRBN), initially planar, either remain planar or become more twisted in their excited states. It thus appears that the model that is appropriate for describing ICT in these systems depends on the geometry of the ground state.

  14. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    NASA Astrophysics Data System (ADS)

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-01

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO4) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-ΔGr) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO4 concentrations, and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-ΔGr), the former in ethanol and ACN increases only linearly with the increase in driving force (-ΔGr). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.

  15. Analytical study for the charge-transfer complexes of rosuvastatin calcium with π-acceptors.

    PubMed

    Alzoman, Nourah Z; Sultan, Maha A; Maher, Hadir M; Alshehri, Mona M; Wani, Tanveer A; Darwish, Ibrahim A

    2013-07-03

    Studies were carried out to investigate the charge-transfer (CT) reaction of ROS-Ca, as a n-electron donor with various p-acceptors: tetracyanoethylene, p-chloranilic acid, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 2,3,5,6-tetrabromo-1,4-benzoquinone, 1,3,5-trinitrobenzene, 2,3,5,6-tetrachloro-1,4-benzoquinone, 7,7,8,8-tetracyano-quinodimethane, and 2,4,7-trinitro-9-fluorenone. Different colored CT complexes were obtained. The reaction mechanism and site of interaction were determined by ultraviolet-visible spectrophotometric techniques and computational molecular modeling. The formation of the colored complexes was utilized in the development of simple, rapid and accurate spectrophotometric methods for the determination of ROS-Ca. Under the optimum reaction conditions, linear relationships with good correlation coefficients (0.9984-0.9995) were found between the absorbances and the concentrations of ROS-Ca in the range of 2-200 mg mL⁻¹. The limits of detection ranged from 0.41 to 12.24 mg mL⁻¹. No interference could be observed from the additives commonly present in the tablets or from the drugs that are co-formulated with ROS-Ca in its combined formulations. The methods were successfully applied to the analysis of tablets with good accuracy and precision; the recovery percentages ranged from 99.54-100.46 ± 1.58-1.82%. The results were compared favorably with the reported method. The proposed methods are practical and valuable for routine application in quality control laboratories for determination of ROS-Ca in its bulk form and tablets.

  16. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  17. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS,...

  18. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS,...

  19. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS,...

  20. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  1. Copper-homoscorpionate complexes as active catalysts for atom transfer radical addition to olefins.

    PubMed

    Muñoz-Molina, José María; Caballero, Ana; Díaz-Requejo, M Mar; Trofimenko, Swiatoslaw; Belderraín, Tomas R; Pérez, Pedro J

    2007-09-17

    Cu(I) complexes containing trispyrazolylborate ligands efficiently catalyze the atom transfer radical addition (ATRA) of polyhalogenated alkanes to various olefins under mild conditions. The catalytic activity is enhanced when bulky and electron donating Tpx ligands are employed. Kinetic data have allowed the proposal of a mechanistic interpretation that includes a Cu(II) pentacoordinated species that regulates the catalytic cycle.

  2. Chill water additive controls transfer of Salmonella and Campylobacter by improved chlorine efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In earlier work, we showed that a proprietary additive (T-128) maintains chlorine activity in the presence of organic material such as broiler parts. T-128 improves the efficacy of chlorine to control transfer of Campylobacter and Salmonella from inoculated wings to un-inoculated wings during immer...

  3. Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation

    NASA Astrophysics Data System (ADS)

    Lu, Gaopeng; Cummer, Steven A.; Tian, Ye; Zhang, Hongbo; Lyu, Fanchao; Wang, Tao; Stanley, Mark A.; Yang, Jing; Lyons, Walter A.

    2016-04-01

    On the morning of 5 June 2013, two cameras of the SpriteCam network concurrently captured a red sprite with diffuse halo over a mesoscale convective system (MCS) passing the panhandle area of Oklahoma. This sprite was produced by a negative cloud-to-ground (CG) stroke with peak current of -103 kA in a manner different from previous observations in several aspects. First of all, the causative stroke of sprite is located by the National Lightning Detection Network (NLDN) in the trailing stratiform of MCS, instead of the deep convection typically for negative sprites. Second, the sprite-producing stroke was likely the first stroke of a multistroke negative CG flash (with ≥6 CG strokes) whose evolution was mainly confined in the lower part of thunderstorm; although the parent flash of sprite might contain relatively long in-cloud evolution prior to the first stroke, there is no evidence that the negative leader had propagated into the upper positive region of thundercloud as typically observed for the sprite-producing/class negative CG strokes. Third, as shown by the simulation with a two-dimensional full-wave electrodynamic model, although the impulse charge moment change (-190 C km) produced by the main stroke was not sufficient to induce conventional breakdown in the mesosphere, a second impulse charge transfer occurred with ~2 ms delay to cause a substantial charge transfer (-290 C km) so that the overall charge moment change (-480 C km) exceeded the threshold for sprite production; this is a scenario different from the typical case discussed by Li et al. (2012). As for the source of the second current pulse that played a critical role to produce the sprite, it could be an M component whose charge source was at least 9 km horizontally displaced from the main stroke or a negative CG stroke (with weak peak current for the return stroke) that was not detected by the NLDN.

  4. Dissociative charge-transfer reactions of Ar + with simple aliphatic hydrocarbons at thermal energy

    NASA Astrophysics Data System (ADS)

    Tsuji, Masaharu; Kouno, Hiroyuki; Matsumura, Ken-ichi; Funatsu, Tsuyoshi; Nishimura, Yukio; Obase, Hiroshi; Kugishima, Hirofumi; Yoshida, Kouichi

    1993-02-01

    A flowing-afterglow apparatus coupled with a low pressure chamber has been used to measure product ion distributions and rate constants in the charge-transfer reactions of Ar+ with CH4, C2Hn(n=2,4,6), and C3Hn(n=6,8) at thermal energy. Only parent cation is formed for C2H2 due to energy restriction. Major product channels are dissociative charge transfer followed by cleavage of C-H bond(s) for CH4, C2H4, C2H6, and C3H6, while by cleavage of a C-C bond for C3H8. A comparison of the product ion distributions with the photoelectron-photoion coincidence data for CH4, C2H4, and C2H6 leads us to conclude that the mean energies of precursor (pre)dissociative states are 15.3-15.5 eV, which are 0.3-0.5 eV below the resonance states. Thus the fractions of available energy deposited into internal modes of precursor parent ions at the instant of charge transfer are estimated to be 85%-95%, indicating that most of the CT reactions occurs without significant momentum transfer. The total rate constants for CH4, C2Hn(n=4,6), and C3Hn(n=6,8) are (0.78-1.1)×10-9 cm3 s-1, corresponding to 60%-92% of the calculated values from the Langevin theory. The rate constant for C2H2, 4.2×10-10 cm3 s-1, amounts to 38% of the kcalcd value. The small kobsd/kcalcd ratio is attributed to the lack of ionic states with favorable Franck-Condon factors for ionization.

  5. Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO3 as the Origin of Volume Collapse

    DOE PAGES

    Yu, Runze; Hojo, Hajime; Watanuki, Tetsu; Mizumaki, Masaichiro; Mizokawa, Takashi; Okada, Kengo; Kim, Hyunjeong; Machida, Akihiko; Sakaki, Kouji; Nakamura, Yumiko; et al

    2015-09-15

    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. In this paper, we report that the charge glass state is realized in a perovskite compound PbCrO3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO3 has a valence state of Pb2+0.5Pb4+0.5Cr3+O3 with Pb2+–Pb4+ correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pb–Cr charge transfer causesmore » an insulator to metal transition and ~10% volume collapse.« less

  6. Mass transfer within electrostatic precipitators: in-flight adsorption of mercury by charged suspended particulates

    SciTech Connect

    Herek L. Clack

    2006-06-01

    Electrostatic precipitation is the dominant method of particulate control used for coal combustion, and varying degrees of mercury capture and transformation have been reported across ESPs. Nevertheless, the fate of gas-phase mercury within an ESP remains poorly understood. The present analysis focuses on the gas-particle mass transfer that occurs within a charged aerosol in an ESP. As a necessary step in gas-phase mercury adsorption or transformation, gas-particle mass transfer - particularly in configurations other than fixed beds - has received far less attention than studies of adsorption kinetics. Our previous analysis showed that only a small fraction of gas-phase mercury entering an ESP is likely to be adsorbed by collected particulate matter on the plate electrodes. The present simplified analysis provides insight into gas-particle mass transfer within an ESP under two limiting conditions: laminar and turbulent fluid flows. The analysis reveals that during the process of particulate collection, gas-particle mass transfer can be quite high, easily exceeding the mass transfer to ESP plate electrodes in most cases. Decreasing particle size, increasing particle mass loading, and increasing temperature all result in increased gas-particle mass transfer. The analysis predicts significantly greater gas-particle mass transfer in the laminar limit than in the turbulent limit; however, the differences become negligible under conditions where other factors, such as total mass of suspended particulates, are the controlling mass transfer parameters. Results are compared to selected pilot- and full-scale sorbent injection data. 41 refs., 5 figs.

  7. Double, Rydberg and Charge Transfer Excitations from Pairing Matrix Fluctuation and Particle-Particle Random Phase Approximation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; van Aggelen, Helen; Yang, Weitao

    2014-03-01

    Double, Rydberg and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N +/- 2) -electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  8. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation

    SciTech Connect

    Yang, Yang; Aggelen, Helen van; Yang, Weitao

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  9. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; van Aggelen, Helen; Yang, Weitao

    2013-12-01

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  10. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.

    PubMed

    Yang, Yang; van Aggelen, Helen; Yang, Weitao

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  11. Photochemical electron transfer mediated addition of naphthylamine derivatives to electron-deficient alkenes.

    PubMed

    Jahjah, Rabih; Gassama, Abdoulaye; Dumur, Frédéric; Marinković, Siniša; Richert, Sabine; Landgraf, Stephan; Lebrun, Aurélien; Cadiou, Cyril; Sellès, Patrice; Hoffmann, Norbert

    2011-09-01

    Using photochemical electron transfer, N,N-dimethylnaphthylamine derivatives are added to α,β-unsaturated carboxylates. The addition takes place exclusively in the α-position of electron-deficient alkenes and mainly in the 4-position of N,N-dimethylnaphthalen-1-amine. A minor regioisomer results from the addition in the 5-position of this naphthylamine. A physicochemical study reveals that the fluorescence quenching of N,N-dimethylnaphthalen-1-amine is diffusion-controlled and that the back electron transfer is highly efficient. Therefore no transformation is observed at lower concentrations. To overcome this limitation and to induce an efficient transformation, minor amounts of water or another proton donor as well as an excess of the naphthylamine derivative are necessary. A mechanism involving a contact radical ion pair is discussed. Isotopic labeling experiments reveal that no hydrogen is directly transferred between the substrates. The hydrogen transfer to the furanone moiety observed in the overall reaction therefore results from an exchange with the reaction medium. An electrophilic oxoallyl radical generated from the furanone reacts with the naphthylamine used in excess. Concerning some mechanistic details, the reaction is compared with radical and electrophilic aromatic substitutions. The transformation was carried out with a variety of electron-deficient alkenes. Sterically hindered furanone derivatives are less reactive under standard conditions. In a first experiment, such a compound was transformed using heterogeneous electron transfer photocatalysis with TiO(2).

  12. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    NASA Astrophysics Data System (ADS)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their

  13. Outcome following addition of peroneus brevis tendon transfer to treatment of acquired posterior tibial tendon insufficiency.

    PubMed

    Song, S J; Deland, J T

    2001-04-01

    The flexor digitorum longus, the tendon most often used for transfer in posterior tibial tendon insufficiency, is one-half to one-third the size of the posterior tibial tendon. Occasionally it may be particularly small or may have been previously used for transfer. In these cases, the senior author has felt that the addition of a transfer of the Peroneus Brevis (PBr) tendon may be helpful in maintaining sufficient tendon and muscle mass to rebalance the foot. Thirteen patients who underwent this procedure were retrospectively identified and matched by age and length of follow-up to patients who underwent a more standard tendon transfer operation minus the addition of the PBr transfer. Pain and functional status were then assessed by the American Orthopaedic Foot and Ankle Society's ankle/hindfoot rating scale. Each patient was tested by an independent physical therapist to evaluate inversion and eversion strength. The mean duration of follow-up was 20.6 months (12 to 34 months). The average AOFAS score of the PBr group was 75.8 compared to 71.5 for the standard control group. There was no significant difference between the groups when inversion or eversion strengths were compared. Inversion strength and eversion strength was rated good or excellent (4 or 5) in 12 out of 13 of the PBr transfer group patients. No major complications were encountered in either group. Although it does not increase inversion strength, a PBr transfer can be used to augment a small FDL without causing significant eversion weakness. This can be useful when the FDL is particularly small or in revision surgery. PMID:11354442

  14. Structure and dynamics of a dizinc metalloprotein: effect of charge transfer and polarization.

    PubMed

    Li, Yong L; Mei, Ye; Zhang, Da W; Xie, Dai Q; Zhang, John Z H

    2011-08-25

    Structures and dynamics of a recently designed dizinc metalloprotein (DFsc) (J. Mol. Biol. 2003, 334, 1101) are studied by molecular dynamics simulation using a dynamically adapted polarized force field derived from fragment quantum calculation for protein in solvent. To properly describe the effect of charge transfer and polarization in the present approach, quantum chemistry calculation of the zinc-binding group is periodically performed (on-the-fly) to update the atomic charges of the zinc-binding group during the MD simulation. Comparison of the present result with those obtained from simulations under standard AMBER force field reveals that charge transfer and polarization are critical to maintaining the correct asymmetric metal coordination in the DFsc. Detailed analysis of the result also shows that dynamic fluctuation of the zinc-binding group facilitates solvent interaction with the zinc ions. In particular, the dynamic fluctuation of the zinc-zinc distance is shown to be an important feature of the catalytic function of the di-ion zinc-binding group. Our study demonstrates that the dynamically adapted polarization approach is computationally practical and can be used to study other metalloprotein systems.

  15. Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles.

    PubMed

    Wu, Lin; Duan, Huigao; Bai, Ping; Bosman, Michel; Yang, Joel K W; Li, Erping

    2013-01-22

    Reducing the gap between two metal nanoparticles down to atomic dimensions uncovers novel plasmon resonant modes. Of particular interest is a mode known as the charge transfer plasmon (CTP). This mode has been experimentally observed in touching nanoparticles, where charges can shuttle between the nanoparticles via a conductive path. However, the CTP mode for nearly touching nanoparticles has only been predicted theoretically to occur via direct tunneling when the gap is reduced to ~0.4 nm. Because of challenges in fabricating and characterizing gaps at these dimensions, experiments have been unable to provide evidence for this plasmon mode that is supported by tunneling. In this work, we consider an alternative tunneling process, that is, the well-known Fowler-Nordheim (FN) tunneling that occurs at high electric fields, and apply it for the first time in the theoretical investigation of plasmon resonances between nearly touching nanoparticles. This new approach relaxes the requirements on gap dimensions, and intuitively suggests that with a sufficiently high-intensity irradiation, the CTP can be excited via FN tunneling for a range of subnanometer gaps. The unique feature of FN tunneling induced CTP is the ability to turn on and off the charge transfer by varying the intensity of an external light source, and this could inspire the development of novel quantum devices. PMID:23215253

  16. Asymmetric topological interfaces and charge transfer in epitaxial Bi2 Se3 /II-VI superlattices

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyi; Zhao, Lukasf; Korzhovska, Inna; Garcia, Thor; Tamargo, Maria; Krusin-Elbaum, Lia; Park, Kyungwha

    Access to charge transport through Dirac surface states in topological insulators (TIs) can be challenging due to their intermixing with the bulk or with non-topological subsurface two-dimensional electron gas (2DEG) quantum well states. Formed by bending of bulk electronic bands near the surface, 2DEG states arise via charge transfer to the topological surfaces, so the choice of layers abutting these surfaces is critical. Here we report molecular beam epitaxial growth of Bi2Se3/ZnxCd1-xSe superlattices that support only one topological surface channel per TI layer. The topological nature of conducting channels is evidenced by π-Berry phase and by the two-dimensional weak antilocalization. Both density functional theory calculations and transport measurements suggest that a single topological Dirac cone per TI layer arises from the asymmetry between the Se-terminated and Zn-terminated interfaces of ZnxCd1-xSe with Bi2Se3. Our findings suggest that topological transport could be controlled by adjusting charge transfer from non-topological spacers in hybrid structures. Supported by NSF-DMR-1420634, NSF-DMR-1312483, DOD-W911NF-13-1-0159, NSF DMR-1206354 and computer resources from SDSC under DMR060009N and VT ARC.

  17. Physical adsorption and charge transfer of molecular Br2 on graphene.

    PubMed

    Chen, Zheyuan; Darancet, Pierre; Wang, Lei; Crowther, Andrew C; Gao, Yuanda; Dean, Cory R; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Marianetti, Chris A; Brus, Louis E

    2014-03-25

    We present a detailed study of gaseous Br2 adsorption and charge transfer on graphene, combining in situ Raman spectroscopy and density functional theory (DFT). When graphene is encapsulated by hexagonal boron nitride (h-BN) layers on both sides, in a h-BN/graphene/h-BN sandwich structure, it is protected from doping by strongly oxidizing Br2. Graphene supported on only one side by h-BN shows strong hole doping by adsorbed Br2. Using Raman spectroscopy, we determine the graphene charge density as a function of pressure. DFT calculations reveal the variation in charge transfer per adsorbed molecule as a function of coverage. The molecular adsorption isotherm (coverage versus pressure) is obtained by combining Raman spectra with DFT calculations. The Fowler-Guggenheim isotherm fits better than the Langmuir isotherm. The fitting yields the adsorption equilibrium constant (∼0.31 Torr(-1)) and repulsive lateral interaction (∼20 meV) between adsorbed Br2 molecules. The Br2 molecule binding energy is ∼0.35 eV. We estimate that at monolayer coverage each Br2 molecule accepts 0.09 e- from single-layer graphene. If graphene is supported on SiO2 instead of h-BN, a threshold pressure is observed for diffusion of Br2 along the (somewhat rough) SiO2/graphene interface. At high pressure, graphene supported on SiO2 is doped by adsorbed Br2 on both sides. PMID:24528378

  18. Ultrafast dynamics of solvation and charge transfer in a DNA-based biomaterial.

    PubMed

    Choudhury, Susobhan; Batabyal, Subrata; Mondol, Tanumoy; Sao, Dilip; Lemmens, Peter; Pal, Samir Kumar

    2014-05-01

    Charge migration along DNA molecules is a key factor for DNA-based devices in optoelectronics and biotechnology. The association of a significant amount of water molecules in DNA-based materials for the intactness of the DNA structure and their dynamic role in the charge-transfer (CT) dynamics is less documented in contemporary literature. In the present study, we have used a genomic DNA-cetyltrimethyl ammonium chloride (CTMA) complex, a technological important biomaterial, and Hoechest 33258 (H258), a well-known DNA minor groove binder, as fluorogenic probe for the dynamic solvation studies. The CT dynamics of CdSe/ZnS quantum dots (QDs; 5.2 nm) embedded in the as-prepared and swollen biomaterial have also been studied and correlated with that of the timescale of solvation. We have extended our studies on the temperature-dependent CT dynamics of QDs in a nanoenvironment of an anionic, sodium bis(2-ethylhexyl)sulfosuccinate reverse micelle (AOT RMs), whereby the number of water molecules and their dynamics can be tuned in a controlled manner. A direct correlation of the dynamics of solvation and that of the CT in the nanoenvironments clearly suggests that the hydration barrier within the Arrhenius framework essentially dictates the charge-transfer dynamics.

  19. Photoinduced charge transfer from vacuum-deposited molecules to single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Osada, Kazuki; Tanaka, Masatoshi; Ohno, Shinya; Suzuki, Takanori

    2016-06-01

    Variations of photoluminescence (PL) and Raman spectra of single-layer MoS2, MoSe2, WS2, and WSe2 due to the vacuum deposition of C60 or copper phthalocyanine (CuPc) molecules have been investigated. PL spectra are decomposed into two competitive components, an exciton and a charged exciton (trion), depending on carrier density. The variation of PL spectra is interpreted in terms of charge transfer across the interfaces between transition metal dichalcogenides (TMDs) and dopant molecules. We find that deposited C60 molecules inject photoexcited electrons into MoS2, MoSe2, and WS2 or holes into WSe2. CuPc molecules also inject electrons into MoS2, MoSe2, and WS2, while holes are depleted from WSe2 to CuPc. We then propose a band alignment between TMDs and dopant molecules. Peak shifts of Raman spectra and doped carrier density estimated using a three-level model also support the band alignment. We thus demonstrate photoinduced charge transfer from dopant molecules to single-layer TMDs.

  20. Trifluoromethylmetallate anions as components of molecular charge transfer salts and superconductors.

    SciTech Connect

    Schlueter, J. A.

    1998-10-14

    Whereas polymeric and common inorganic anions frequently deprive the synthetic chemist of a chance to modify a charge transfer salt's structure through anion alterations, discrete organometallic anions provide a vast opportunity to probe the structure/property correlations of a material through rational synthetic methods. We have recently undertaken a research effort aimed at the crystallization of conducting charge transfer salts which possess modifiable, organometallic anions as the charge compensating entities. This research has been richly rewarded with the discovery of a new family of bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF or ET) based molecular superconductors. Herein is presented a summary of over twenty {kappa}(ET){sub 2}M(CF{sub 3}){sub 4}(1,1,2-trihaloethane) (M = Cu, Ag, Au) superconducting salts. Three new related salts are also reported: (ET){sub 2} [trans-Ag(CF{sub 3}),(CN){sub 2}], {kappa}{sub L}(BEDT-TSF){sub 2}Ag(CF{sub 3}){sub 4}(TCE), and {kappa}{sub L}(ET){sub 2}Ag(CF{sub 3}){sub 3}Cl(TCE).

  1. Visible Light Absorption of Binuclear TiOCoII Charge-Transfer UnitAssembled in Mesoporous Silica

    SciTech Connect

    Han, Hongxian; Frei, Heinz

    2007-01-30

    Grafting of CoII(NCCH3)2Cl2 onto mesoporous Ti-MCM-41 silicain acetonitrile solution affords binuclear Ti-O-CoII sites on the poresurface under complete replacement of the precursor ligands byinteractions with anchored Ti centers and the silica surface. The CoIIligand field spectrum signals that the Co centers are anchored on thepore surface in tetrahedral coordination. FT-infrared action spectroscopyusing ammonia gas adsorption reveals Co-O-Si bond modes at 831 and 762cm-1. No Co oxide clusters are observed in the as-synthesized material.The bimetallic moieties feature an absorption extending from the UV intothe visible to about 600 nm which is attributed to the TiIV-O-CoII?3TiIII-O-CoIII metal-to-metal charge-transfer (MMCT) transition. Thechromophore is absent in MCM-41 containing Ti and Co centers isolatedfrom each other; this material was synthesized by grafting CoII onto aTi-MCM-41 sample with the Ti centers protected by a cyclopentadienylligand. The result indicates that the appearance of the charge-transferabsorption requires that the metal centers are linked by an oxo bridge,which is additionally supported by XANES spectroscopy. The MMCTchromophore of Ti-O-CoII units has sufficient oxidation power to serve asvisible light electron pump for driving multi-electron transfer catalystsof demanding uphill reactions such as water oxidation.

  2. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion.

    PubMed

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-01

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  3. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-01

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  4. Spectroscopic investigation and computational analysis of charge transfer hydrogen bonded reaction between 3-aminoquinoline with chloranilic acid in 1:1 stoichiometric ratio

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Alenezi, Maha S.; Habeeb, Moustafa M.

    2015-10-01

    Charge transfer hydrogen bonded reaction between the electron donor (proton acceptor) 3-aminoquinoline with the electron acceptor (proton donor) chloranilic acid (H2CA) has been investigated experimentally and theoretically. The experimental work included the application of UV-vis spectroscopy to identify the charge transfer band of the formed complex, its molecular composition as well as estimating its formation constants in different solvent included acetonitrile (AN), methanol (MeOH), ethanol (EtOH) and chloroform (CHL). It has been recorded the presence of new absorption bands in the range 500-550 nm attributing to the formed complex. The molecular composition of the HBCT complex was found to be 1:1 (donor:acceptor) in all studied solvents based on continuous variation and photometric titration methods. In addition, the calculated formation constants from Benesi-Hildebrand equation recorded high values, especially in chloroform referring to the formation of stable HBCT complex. Infrared spectroscopy has been applied for the solid complex where formation of charge and proton transfer was proven in it. Moreover, 1H and 13C NMR spectroscopies were used to characterize the formed complex where charge and proton transfers were reconfirmed. Computational analysis included the use of GAMESS computations as a package of ChemBio3D Ultr12 program were applied for energy minimization and estimation of the stabilization energy for the produced complex. Also, geometrical parameters (bond lengths and bond angles) of the formed HBCT complex were computed and analyzed. Furthermore, Mullikan atomic charges, molecular potential energy surface, HOMO and LUMO molecular orbitals as well as assignment of the electronic spectra of the formed complex were presented. A full agreement between experimental and computational analysis has been found especially in the existence of the charge and proton transfers and the assignment of HOMO and LUMO molecular orbitals in the formed complex as

  5. Creation of ternary multicomponent crystals by exploitation of charge-transfer interactions.

    PubMed

    Seaton, Colin C; Blagden, Nicholas; Munshi, Tasnim; Scowen, Ian J

    2013-08-01

    Four new ternary crystalline molecular complexes have been synthesised from a common 3,5-dinitrobenzoic acid (3,5-dnda) and 4,4'-bipyridine (bipy) pairing with a series of amino-substituted aromatic compounds (4-aminobenzoic acid (4-aba), 4-(N,N-dimethylamino)benzoic acid (4-dmaba), 4-aminosalicylic acid (4-asa) and sulfanilamide (saa)). The ternary crystals were created through the application of complementary charge transfer and hydrogen-bonding interactions. For these systems a dimer was created through a charge-transfer interaction between two of the components, while hydrogen bonding between the third molecule and this dimer completed the construction of the ternary co-crystal. All resulting structures display the same acid⋅⋅⋅pyridine interaction between 3,5-dnba and bipy. However, changing the third component causes the proton of this bond to shift from neutral OH⋅⋅⋅N to a salt form, O(-) ⋅⋅⋅HN(+) , as the nature of the group hydrogen bonding to the carboxylic acid was changed. This highlights the role of the crystal environment on the level of proton transfer and the utility of ternary systems for the study of this process. PMID:23794534

  6. Quantum dynamics of ultrafast charge transfer at an oligothiophene-fullerene heterojunction

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Martinazzo, Rocco; Ruckenbauer, Matthias; Burghardt, Irene

    2012-12-01

    Following up on our recent study of ultrafast charge separation at oligothiophene-fullerene interfaces [H. Tamura, I. Burghardt, and M. Tsukada, J. Phys. Chem. C 115, 10205 (2011), 10.1021/jp203174e], we present here a detailed quantum dynamical perspective on the charge transfer process. To this end, electron-phonon coupling is included non-perturbatively, by an explicit quantum dynamical treatment using the multi-configuration time-dependent Hartree (MCTDH) method. Based upon a distribution of electron-phonon couplings determined from electronic structure studies, a spectral density is constructed and employed to parametrize a linear vibronic coupling Hamiltonian. The diabatic coupling is found to depend noticeably on the inter-fragment distance, whose effect on the dynamics is here investigated. MCTDH calculations of the nonadiabatic transfer dynamics are carried out for the two most relevant electronic states and 60 phonon modes. The electron transfer process is found to be ultrafast and mediated by electronic coherence, resulting in characteristic oscillatory features during a period of about 100 fs.

  7. Excited state structural evolution during charge-transfer reactions in betaine-30.

    PubMed

    Ruchira Silva, W; Frontiera, Renee R

    2016-07-27

    Ultrafast photo-induced charge-transfer reactions are fundamental to a number of photovoltaic and photocatalytic devices, yet the multidimensional nature of the reaction coordinate makes these processes difficult to model theoretically. Here we use femtosecond stimulated Raman spectroscopy to probe experimentally the structural changes occurring following photoexcitation in betaine-30, a canonical intramolecular charge-transfer complex. We observe changes in vibrational mode frequencies and amplitudes on the femtosecond timescale, which for some modes results in frequency shifts of over 20 cm(-1) during the first 200 fs following photoexcitation. These rapid mode-specific frequency changes track the planarization of the molecule on the 400 ± 100 fs timescale. Oscillatory amplitude modulations of the observed high frequency Raman modes indicate coupling between specific high frequency and low frequency vibrational motions, which we quantify for 6 low frequency modes and 4 high frequency modes. Analysis of the mode-specific kinetics is suggestive of the existence of a newly discovered electronic state involved in a relaxation pathway, which may be a low-lying triplet state. These results directly track the multiple nuclear coordinates involved in betaine-30's reactive pathway, and should be of use in rationally designing molecular systems with rapid electron transfer processes. PMID:26725657

  8. Beyond vibrationally mediated electron transfer: interfacial charge injection on a sub-10-fs time scale

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Moser, Jacques E.; Gratzel, Michael; Wachtveitl, Josef L.

    2003-12-01

    The electron transfer (ET) from organic dye molecules to semiconductor-colloidal systems is characterized by a special energetic situation with a charge transfer reaction from a system of discrete donor levels to a continuum of acceptor states. If these systems show a strong electronic coupling they are amongst the fastest known ET systems with transfer times of less than 10 fs. In the first part a detailed discussion of the direct observation of an ET reaction with a time constant of about 6 fs will be given, with an accompanying argumentation concerning possible artifacts or other interfering signal contributions. In a second part we will try to give a simple picture for the scenario of such superfast ET reactions and one main focus will be the discussion of electronic dephasing and its consequences for the ET reaction. The actual ET process can be understood as a kind of dispersion process of the initially located electron into the colloid representing a real motion of charge density from the alizarin to the colloid.

  9. Surface modification and charge transfer studies at silicon and gallium arsenide interfaces

    NASA Astrophysics Data System (ADS)

    Bansal, Ashish

    surfaces are more resistant to oxidation in air and in contact with wet chemical environments than the H-terminated surface. Current-voltage and capacitance-voltage measurements of the alkyl terminated surfaces in CHsb3OH-Mesb2Fcsp{+/0} indicate that the electrical properties of these surfaces are very similar to those of a H-terminated surface. The alkyl overlayers provide a small resistance to charge transfer across the Si/liquid interface but do not shift the band edges or induce additional surface recombination. I-V characteristics of n-Si/alkyl/Au MIS devices indicate that these junctions behave largely like n-Si/Au Schottky junctions. The efficacy of alkyl overlayers in preventing photooxidation and photocorrosion of n-silicon surfaces was measured in contact with Fe(CN)sb6sp{3-/4-}(aq) and with CHsb3OH-Mesb2Fcsp{+/0} containing known amounts of water. The alkyl terminated surfaces consistently show better I-V characteristics and lower oxidation than the H-terminated surface, indicating that stability to oxidation had been achieved without any significant compromise in the electrical quality of the silicon surface.

  10. Charge-transfer complexation and photoreduction of viologen derivatives bearing the para-substituted benzophenone group in dimethyl sulfoxide

    SciTech Connect

    Tanaka, Chiho; Nambu, Yoko; Endo, Takeshi

    1992-08-20

    New viologen derivatives having the various para-substituted benzophenone groups connected with a -(CH{sub 2}){sub 3}-linkage were effectively photoreduced by dimethyl sulfoxide by the intramolecular charge transfer complex formation between the viologen and benzophenone groups through effective stacking. The photoreduction was enhanced by the introduction of electron-donating para-substituents on the benzophenone units which were favorable for the intramolecular charge transfer complexation. 6 refs., 5 figs.

  11. Enormous Isotope Effects on Charge Transfer in Slow Collisions of He2+ with H, D, and T

    NASA Astrophysics Data System (ADS)

    Stolterfoht, N.; Cabrera-Trujillo, R.; Öhrn, Y.; Deumens, E.; Hoekstra, R.; Sabin, J. R.

    2007-12-01

    Probabilities and cross sections for charge transfer by He2+ impact on atomic hydrogen (H), deuterium (D), and tritium (T) at low collision energies are calculated using the END approach. Differences by orders of magnitude are observed between the cross sections for H, D, and T. A method is introduced to separate the contributions of charge transfer mechanisms due to radial and rotational coupling. The large differences observed for H, D, and T are attributed to isotope effects in the rotational coupling mechanism.

  12. Coherence, Energy and Charge Transfers in De-Excitation Pathways of Electronic Excited State of Biomolecules in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Bohr, Henrik G.; Malik, F. Bary

    2013-11-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.

  13. Elasticity, internal excitation, and charge transfer during grazing scattering of keV fullerenes from a LiF(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Wethekam, S.; Winter, H.

    2011-06-01

    C60+ molecular ions with energies of 5-45 keV are scattered under grazing angles of incidence of 1-3° from a LiF(1 0 0) surface. From the analysis of polar angular distributions, fragment size distributions, and ion fractions for scattered projectiles, information on elastic, internal excitation, and charge transfer processes are derived. The results are compared to classical molecular dynamics simulations, which reproduce the angular distributions on a quantitative level, but the internal excitation only in part. In addition to the transfer of the normal energy loss to internal degrees of freedom of the molecule, an excitation is identified and interpreted as resonant coherent excitation in the oscillating electric field in front of the surface experienced by the moving projectile. The ion fractions are in accord with a complete suppression of charge transfer between fullerene ion and surface.

  14. Theoretical evidence of charge transfer interaction between SO₂ and deep eutectic solvents formed by choline chloride and glycerol.

    PubMed

    Li, Hongping; Chang, Yonghui; Zhu, Wenshuai; Wang, Changwei; Wang, Chao; Yin, Sheng; Zhang, Ming; Li, Huaming

    2015-11-21

    The nature of the interaction between deep eutectic solvents (DESs), formed by ChCl and glycerol, and SO2 has been systematically investigated using the M06-2X density functional combined with cluster models. Block-localized wave function energy decomposition (BLW-ED) analysis shows that the interaction between SO2 and DESs is dominated by a charge transfer interaction. After this interaction, the SO2 molecule becomes negatively charged, whereas the ChCl-glycerol molecule is positively charged, which is the result of Lewis acid-base interaction. The current result affords a theoretical proof that it is highly useful and efficient to manipulate the Lewis acidity of absorbents for SO2 capture. Moreover, hydrogen bonding as well as electrostatic interactions may also contribute to the stability of the complex. Structure analysis shows that solvent molecules will adjust their geometries to interact with SO2. In addition, the structure of SO2 is barely changed after interaction. The interaction energy between different cluster models and SO2 ranges from -6.8 to -14.4 kcal mol(-1). It is found that the interaction energy is very sensitive to the solvent structure. The moderate interaction between ChCl-glycerol and SO2 is consistent with the concept that highly efficient solvents for SO2 absorption should not only be solvable but also regenerable.

  15. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  16. The role of charge transfer in the structure and dynamics of the hydrated proton

    PubMed Central

    Swanson, Jessica M.J.; Simons, Jack

    2009-01-01

    Although it has long been recognized that multiple water molecules strongly associate with an extra proton in bulk water, some models and conceptual frameworks continue to utilize the classical hydronium ion (H3O+) as a fundamental building block. In this work, the nature of the hydronium ion in aqueous systems is examined using an ab initio energy decomposition analysis (EDA) that evaluates both the magnitude of and energetic stabilization due to charge transfer among H3O+ and the surrounding water molecules. The EDA is performed on structures extracted from dynamical bulk-phase simulations, and used to determine how frequently the pure hydronium ion, where the excess charge is primarily localized on H3O+, occurs under dynamic conditions. The answer is essentially never. The energetic stabilization of H3O+ due to charge delocalization to neighboring water molecules is found to be much larger (16 to 49 kcal/mol) than for other ions (even Li+) and to constitute a substantial portion (20% to 52%) of the complex's binding energy. The charge defect is also shown to have intrinsic dynamical asymmetry and to display dynamical signatures that can be related to features appearing in IR spectra. PMID:19309128

  17. Unraveling the Mechanism of Photoinduced Charge Transfer in Carotenoid-Porphyrin-C60 Molecular Triad.

    PubMed

    Manna, Arun K; Balamurugan, D; Cheung, Margaret S; Dunietz, Barry D

    2015-04-01

    Photoinduced charge transfer (CT) plays a central role in biologically significant systems and in applications that harvest solar energy. We investigate the relationship of CT kinetics and conformation in a molecular triad. The triad, consisting of carotenoid, porphyrin, and fullerene is structurally flexible and able to acquire significantly varied conformations under ambient conditions. With an integrated approach of quantum calculations and molecular dynamics simulations, we compute the rate of CT at two distinctive conformations. The linearly extended conformation, in which the donor (carotenoid) and the acceptor (fullerene) are separated by nearly 50 Å, enables charge separation through a sequential CT process. A representative bent conformation that is entropically dominant, however, attenuates the CT, although the donor and the acceptor are spatially closer. Our computed rate of CT at the linear conformation is in good agreement with measured values. Our work provides unique fundamental understanding of the photoinduced CT process in the molecular triad.

  18. Thermal and Quantum Peierls Transitions in Organic Charge-Transfer Salts

    NASA Astrophysics Data System (ADS)

    Bewick, Sharon; Soos, Zoltan

    2006-03-01

    The choice of donors (D) and acceptors (A) governs the charge-transfer ρ in organic CT salts with mixed one-dimensional DADA stacks. Strong D and A yield ρ ˜ 0.9 stacks of radical ions with thermally accessible spin and charge degrees of freedom whose Peierls transition can be described by a Hubbard model with site energies. The same microscopic model describes CT salts with smaller and variable ρ ˜ 0.5 in which neutral-ionic and/or Peierls transitions occur in the ground electronic state. Quantum transitions are driven by volume changes, with negligible thermal population of excite states. CT salts with thermal or quantum Peierls transitions are identified. Conflicting magnetic, vibrational and structural data in several CT salts are resolved in terms of mobile spin solitons, a dimerized ground state and a Peierls transition beyond the crystal's thermal stability.

  19. A quantitative view of charge transfer in the hydrogen bond: the water dimer case.

    PubMed

    Ronca, Enrico; Belpassi, Leonardo; Tarantelli, Francesco

    2014-09-15

    The hydrogen bond represents a fundamental intermolecular interaction that binds molecules in vapor and liquid water. A crucial and debated aspect of its electronic structure and chemistry is the charge transfer (CT) accompanying it. Much effort has been devoted, in particular, to the study of the smallest prototype system, the water dimer, but even here results and interpretations differ widely. In this paper, we reassess CT in the water dimer by using charge-displacement analysis. Besides a reliable estimate of the amount of CT (14.6 me) that characterizes the system, our study provides an unambiguous context, and very useful bounds, within which CT effects may be evaluated, crucially including the associated energy stabilization.

  20. Charge Transfer at Hybrid Interfaces: Plasmonics of Aromatic Thiol-Capped Gold Nanoparticles.

    PubMed

    Goldmann, Claire; Lazzari, Rémi; Paquez, Xavier; Boissière, Cédric; Ribot, François; Sanchez, Clément; Chanéac, Corinne; Portehault, David

    2015-07-28

    Although gold nanoparticles stabilized by organic thiols are the building blocks in a wide range of applications, the role of the ligands on the plasmon resonance of the metal core has been mostly ignored until now. Herein, a methodology based on the combination of spectroscopic ellipsometry and UV-vis spectroscopy is applied to extract dielectric functions of the different components. It is shown that aromatic thiols allow a significant charge transfer at the hybrid interface with the s and d bands of the gold core that yields "giant" red shifts of the plasmon band, up to 40 nm for spherical particles in the size range of 3-5 nm. These results suggest that hybrid nanoplasmonic devices may be designed through the suitable choice of metal core and organic components for optimized charge exchange.

  1. Photoconductive response in organic charge transfer interfaces with high quantum efficiency.

    PubMed

    Alves, Helena; Pinto, Rui M; Maçôas, Ermelinda S

    2013-01-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications, such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior improved performance when compared with materials in a more disordered form. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. Here we report the first example of photoconductive behaviour of single-crystal charge-transfer interfaces. The system composed of rubrene and 7,7,8,8-tetracyanoquinodimethane presents a responsivity reaching 1 AW(-1), corresponding to an external quantum efficiency of nearly 100%. This result opens the possibility of using organic single-crystal interfaces in photonic applications. PMID:23673627

  2. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    PubMed

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. PMID:25704499

  3. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    PubMed

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency.

  4. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer

    PubMed Central

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G.; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  5. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-09-15

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.

  6. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  7. Charge Transfer Fluorescence and 34 nm Exciton Diffusion Length in Polymers with Electron Acceptor End Traps.

    PubMed

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R; Miller, John R

    2015-06-18

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17-127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence, and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps, the trap depths are 0.06 (p-xylene), 0.13 (THF), and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization, and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ∼50% of the excitons, and that the exciton diffusion length is LD = 34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. The efficiency of exciton capture depends on chain length but not on trap depth, solvent polarity, or which trap group is present.

  8. Study of charge transfer complexes of [70]fullerene with phenol and substituted phenols.

    PubMed

    Bhattacharya, Sumanta; Banerjee, Shrabanti; Banerjee, Manas

    2005-07-01

    To improve the understanding of the charge transfer (CT) interaction of [70]fullerene with electron donors, interaction of [70]fullerene with a series of phenols, e.g., phenol, resorcinol and p-quinol were studied in 1,4-dioxan medium using absorption spectroscopy. An absorption band due to CT transition was observed in the visible region. The experimental CT transition energies (h nuCT) are well correlated (through Mulliken's equation) with the vertical ionisation potentials (I(D)v) of the series of phenols studied. From an analysis of this correlation degrees of charge transfer for the [70]fullerene-phenol complexes were estimated. The degrees of charge transfer in the ground state of the complexes have been found to be very low (<2%). The h nuCT values change systematically as the number and position of the -OH groups change on the aromatic ring of the phenol moiety. From the trends in the h nuCT values, the Hückel parameters (h(O) and k(C-O)) for the -OH group were obtained in a straightforward way and the values so obtained, viz., 1.91 and 1.0, respectively, are close to the ones (1.8 and 0.8) recommended by Streitwieser on the basis of other evidence. Oscillator strengths, transition dipole strengths and resonance energies of the [70]fullerene-phenol complexes were determined. Formation constants of the CT complexes were determined at four different temperatures from which enthalpies and entropies of formation of the complexes were estimated.

  9. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  10. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    SciTech Connect

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.

  11. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGES

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  12. Charge-transfer complexes of 4-nitrocatechol with some amino alcohols.

    PubMed

    Baniyaghoob, Sahar; Najafpour, Mohammad Mahdi; Boghaei, Davar M

    2010-03-01

    Charge-transfer (CT) complexes formed from the reactions of 4-nitropyrocatechol (4-nCat) as an electron acceptor with four amino alcohols: 2-aminoethanol, 1-amino-2-propanol, 4-aminobutanol and N-(2-hydroxyethyl)-1,3-diaminopropane (NHEDAP) as electron donors, have been studied spectrophotometrically in H(2)O and H(2)O/EtOH at 20, 25, 30, 35 and 40 degrees C. The calculated values of the oscillator strength and transition moment confirm the formation of CT-complexes. The thermodynamic and spectroscopic parameters were also evaluated for the formation of CT-complexes. The equilibrium constants ranged from 9.00 to 2.20 l mol(-1) (M(-1)). These interactions are exothermic and have relatively large standard enthalpy and entropy changes (DeltaH values ranged from -15.58 to -3.10 kJ mol(-1); DeltaS ranged from 26.81 to -3.25 J K(-1)mol(-1)). The solid CT-complexes have been synthesized and characterized by IR, NMR, mass spectrometry and thermal analysis. The photometric titration curves and other spectrometric data for the reactions indicated that the data obtained refer to the formation of 1:1 charge-transfer complex of [(4-nCat) (NHEDAP)] and 1:2 charge-transfer complexes of other amino alcohols [(4-nCat) (amino alcohol)(2)]. The effect of alkali and alkaline earth metals on increasing the equilibrium constant of the CT-complexation was also investigated.

  13. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    SciTech Connect

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared

  14. Excited state intramolecular proton transfer and charge transfer dynamics of a 2-(2'-hydroxyphenyl)benzoxazole derivative in solution.

    PubMed

    Kim, Chul Hoon; Park, Jaehun; Seo, Jangwon; Park, Soo Young; Joo, Taiha

    2010-05-13

    Excited state intramolecular proton transfer (ESIPT) and subsequent intramolecular charge transfer (ICT) dynamics of a 2-(2'-hydroxyphenyl)benzoxazole derivative conjugated with an electron withdrawing group (HBOCE) in solutions and a polymer film has been investigated by femtosecond time-resolved fluorescence (TRF) and TRF spectra measurements without the conventional spectral reconstruction method. TRF with high enough resolution (<100 fs) reveals that the ESIPT dynamics of HBOCE in liquids proceeds by at least two time constants of approximately 250 fs and approximately 1.2 ps. The relative amplitude of the slower picosecond component is smaller in the polymer film than that in solution. Conformational heterogeneity in the ground state originating from the dispersion of the dihedral angle between the phenolic and benzoxazole groups is invoked to account for the dispersive ESIPT dynamics in liquids. From the TRF spectra of both the enol and keto isomers, we have identified the ICT reaction of the keto isomer occurring subsequent to the ESIPT. The ICT proceeds also by two time constants of near instantaneous and 2.7 ps. Since the ICT dynamics of HBOCE is rather close to the polar solvation dynamics, we argue that the ICT is barrierless and determined mostly by the solvent fluctuation.

  15. Scale-model charge-transfer technique for measuring enhancement factors

    NASA Technical Reports Server (NTRS)

    Kositsky, J.; Nanevicz, J. E.

    1991-01-01

    Determination of aircraft electric field enhancement factors is crucial when using airborne field mill (ABFM) systems to accurately measure electric fields aloft. SRI used the scale model charge transfer technique to determine enhancement factors of several canonical shapes and a scale model Learjet 36A. The measured values for the canonical shapes agreed with known analytic solutions within about 6 percent. The laboratory determined enhancement factors for the aircraft were compared with those derived from in-flight data gathered by a Learjet 36A outfitted with eight field mills. The values agreed to within experimental error (approx. 15 percent).

  16. On the charge transfer between single-walled carbon nanotubes and graphene

    SciTech Connect

    Rao, Rahul Pierce, Neal; Dasgupta, Archi

    2014-08-18

    It is important to understand the electronic interaction between single-walled carbon nanotubes (SWNTs) and graphene in order to use them efficiently in multifunctional hybrid devices. Here, we deposited SWNT bundles on graphene-covered copper and SiO{sub 2} substrates by chemical vapor deposition and investigated the charge transfer between them by Raman spectroscopy. Our results revealed that, on both copper and SiO{sub 2} substrates, graphene donates electrons to the SWNTs, resulting in p-type doped graphene and n-type doped SWNTs.

  17. Correlation between charge transfer exciton recombination and photocurrent in polymer/fullerene solar cells

    SciTech Connect

    Hallermann, Markus; Da Como, Enrico; Feldmann, Jochen; Izquierdo, Marta; Filippone, Salvatore; Martin, Nazario; Juechter, Sabrina; Hauff, Elizabeth von

    2010-07-12

    We correlate carrier recombination via charge transfer excitons (CTEs) with the short circuit current, J{sub sc}, in polymer/fullerene solar cells. Near infrared photoluminescence spectroscopy of CTE in three blends differing for the fullerene acceptor, gives unique insights into solar cell characteristics. The energetic position of the CTE is directly correlated with the open-circuit voltage, V{sub oc}, and more important J{sub sc} decreases with increasing CTE emission intensity. CTE emission intensity is discussed from the perspective of blend morphology. The work points out the fundamental role of CTE recombination and how optical spectroscopy can be used to derive information on solar cell performances.

  18. Multitrajectory semiclassical treatment of vibronic excitation and charge transfer in the fixed rotor approximation

    NASA Astrophysics Data System (ADS)

    Florescu, A.; Sizun, M.; Sidis, V.

    1994-01-01

    The multitrajectory semiclassical method first introduced and tested in the IOS approximation [Florescu et al., Phys. Rev. A 47 (1993) 2943] is transposed in the fixed-rotor framework. The method is applied to the study of the impact parameter and scattering angle dependences of vibrationally inelastic and vibronic charge transfer processes in the H ++O 2 collision at Ecm=23 eV. Trajectory effects on the orientation dependence of transition probabilities and differential cross sections are evidenced. The present calculations confirm the earlier VSC results of Sizun et al. [J. Chem. Phys. 96 (1992) 307].

  19. Charge-transfer complexation as a general phenomenon in the copigmentation of anthocyanins.

    PubMed

    Ferreira da Silva, Palmira; Lima, João C; Freitas, Adilson A; Shimizu, Karina; Maçanita, Antonio L; Quina, Frank H

    2005-08-18

    Color intensification of anthocyanin solutions in the presence of natural polyphenols (copigmentation) is re-interpreted in terms of charge transfer from the copigment to the anthocyanin. Flavylium cations are shown to be excellent electron acceptors (E(red) approximately -0.3 V vs SCE). It is also demonstrated, for a large series of anthocyanin-copigment pairs, that the standard Gibbs free energy of complex formation decreases linearly with EA(Anthoc) - IP(Cop), the difference between the electron affinity of the anthocyanin, EA(Anthoc), and the ionization potential of the copigment, IP(Cop). Based on this correlation, copigmentation strengths of potential candidates for copigments can be predicted.

  20. Photoinduced charge transfer between fullerenes and TiO{sub 2} semiconductor colloids

    SciTech Connect

    Kamat, P.V.; Bedja, I.; Hotchandani, S.

    1994-10-01

    A photocatalytic method has been presented to carry out one-electron reduction of C{sub 60} and C{sub 70} in 50/50 (v/v) benzene/ethanol. The fullerene reduction was carried out in colloidal TiO{sub 2} suspension using UV excitation. The charge transfer between the excited TiO{sub 2} semiconductor colloid and fullerene molecule occurs with a quantum efficiency of 13% for C{sub 70} and 24% for C{sub 60}. Laser flash photolysis measurements have been carried out to elucidate the mechanism of photocatalytic reduction.

  1. Observation of Frenkel and charge transfer excitons in pentacene single crystals using spectroscopic generalized ellipsometry

    NASA Astrophysics Data System (ADS)

    Qi, Dongchen; Su, Haibin; Bastjan, M.; Jurchescu, O. D.; Palstra, T. M.; Wee, Andrew T. S.; Rübhausen, M.; Rusydi, A.

    2013-09-01

    We report on the emerging and admixture of Frenkel and charge transfer (CT) excitons near the absorption onset in pentacene single crystals. Using high energy-resolution spectroscopic generalized ellipsometry with in-plane polarization dependence, the excitonic nature of three lowest lying excitations is discussed. Their distinct polarization dependence strongly indicates the presence of both Frenkel and CT types of excitons near the excitation onset. In particular, the peculiar polarization behavior of the second excitation can only be rationalized by taking into account the inherent CT transition dipole moment. This observation has important implications for the pentacene-based optoelectronic devices.

  2. Spectroscopy of charge transfer complexes of four amino acids as organic two-dimensional conductors

    NASA Astrophysics Data System (ADS)

    Padhiyar, Ashvin; Patel, A. J.; Oza, A. T.

    2007-12-01

    It is found in this study that four amino acids, namely asparagine, arginine, histidine and glutamine form two-dimensional conducting systems which are charge transfer complexes (CTCs) with organic acceptors like TCNQ, TCNE, chloranil, DDQ, TNF and iodine. It is verified using optical absorption edges that these are 2d conductors like transition metal dichalcogenides obeying absorption functions different from 1d and 3d conductors. This 2d nature is related to the network of intermolecular H-bonding in these complexes, which leads to a global H-bonded network resulting in the absence of local deformation due to the relaxation of strain.

  3. Study of charge transfer complexes of menadione (vitamin K 3) with a series of anilines

    NASA Astrophysics Data System (ADS)

    Pal, Purnendu; Saha, Avijit; Mukherjee, Asok K.; Mukherjee, Dulal C.

    2004-01-01

    Menadione (vitamin K 3) has been shown to form charge transfer complexes with N, N-dimethyl aniline, N, N-dimethyl p-toluidine and N, N-dimethyl m-toluidine in CCl 4 medium. The CT transition energies are well correlated with the ionisation potentials of the anilines. The formation constants of the complexes have been determined at a number of temperatures from which the enthalpies and entropies of formation have been obtained. The formation constants exhibit a very good linear free energy relationship (Hammett) at all the temperatures studied.

  4. Indolizino[5,6-b]quinoxaline Derivatives: Intramolecular Charge Transfer Characters and NIR Fluorescence.

    PubMed

    Kojima, Mitsuru; Hayashi, Hironobu; Aotake, Tatsuya; Ikeda, Shinya; Suzuki, Mitsuharu; Aratani, Naoki; Kuzuhara, Daiki; Yamada, Hiroko

    2015-11-01

    Indolizino[5,6-b]quinoxaline derivatives (1 a and 1 b) with a push-pull structure were prepared to show intramolecular charge-transfer properties. Compounds 1 a and 1 b are strongly fluorescent in aprotic solvents while symmetrical derivatives (2 a and 2 b) were non-fluorescent. The π-expanded α-α linked dimer (10) of indolizino[5,6-b]quinoxaline 1 b was serendipitously obtained to show NIR absorption over 800 nm and the fluorescence edge reached to 1400 nm.

  5. Charge transfer in time-dependent density-functional theory via spin-symmetry breaking

    SciTech Connect

    Fuks, Johanna I.; Maitra, Neepa T.

    2011-04-15

    Long-range charge-transfer excitations pose a major challenge for time-dependent density-functional approximations. We show that spin-symmetry breaking offers a simple solution for molecules composed of open-shell fragments, yielding accurate excitations at large separations when the acceptor effectively contains one active electron. Unrestricted exact-exchange and self-interaction-corrected functionals are performed on one-dimensional models and on the real LiH molecule within the pseudopotential approximation to demonstrate our results.

  6. Charge-transfer photodissociation of adsorbed molecules via electron image states

    SciTech Connect

    Jensen, E. T.

    2008-01-28

    The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.

  7. Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications.

    PubMed

    Guldi, Dirk M

    2007-03-28

    This article surveys and highlights the integration of nanometer scale carbon structures--in combination with chromophores that exhibit (i) significant absorption cross section throughout the visible part of the solar spectrum and (ii) good electron donating power--into novel electron donor-acceptor conjugates (i.e., covalent) and hybrids (i.e., non-covalent). The focus of this article is predominantly on performance features--charge-transfer and photovoltaic--of the most promising solar energy conversion systems. Besides documenting fundamental advantages as they emerge around nanometer scale carbon structures, critical evaluations of the most recent developments in the fields are provided.

  8. Modelling flavoenzymatic charge transfer events: development of catalytic indole deuteration strategies.

    PubMed

    Murray, Alexander T; Challinor, Jonathan D; Gulácsy, Christina E; Lujan, Cristina; Hatcher, Lauren E; Pudney, Christopher R; Raithby, Paul R; John, Matthew P; Carbery, David R

    2016-04-12

    The formation and chemistry of flavin-indole charge transfer (CT) complexes has been studied using a model cationic flavin. The ability to form a CT complex is sensitive to indole structure as gauged by spectroscopic, kinetics and crystallographic studies. Single crystals of sufficient quality of a flavin-indole CT complex, suitable for X-ray diffraction, have been grown, allowing solid-state structural analysis. When CT complex formation is conducted in d4-methanol, an efficient and synthetically useful C-3 indole deuteration is observed. PMID:27005963

  9. The Yb-doped aluminosilicate fibers photodarkening mechanism based on the charge-transfer state excitation

    NASA Astrophysics Data System (ADS)

    Rybaltovsky, A. A.; Bobkov, K. K.; Velmiskin, V. V.; Umnikov, A. A.; Shestakova, I. A.; Guryanov, A. N.; Likhachev, M. E.; Bubnov, M. M.; Dianov, E. M.

    2014-03-01

    We have studied the photodarkening effect in fiber preforms with an ytterbium-doped aluminosilicate glass core. The room-temperature stable Yb2+ ions formation in the glass matrix under both UV- and NIR-pumping irradiation was revealed by the method of absorption spectra analysis and the fluorescence spectroscopy technique. Comparative studies of preforms and crystals samples luminescence spectra, obtained under UV-excitation, were performed. A general mechanism of Yb2+ ions and aluminium oxygen-hole centers (Al-OHC) formation as a result of photoinduced process of Yb3+ ions excitation to "charge-transfer state" (CTS) was found for both Yb:YAG crystal and aluminosilicate glass.

  10. Metallization and charge-transfer gap closure of transition-metal iodides under pressure

    SciTech Connect

    Chen, A. Li-Chung

    1993-05-01

    It is shown with resistivity and near-IR absorption measurements that NiI{sub 2}, CoI{sub 2}, and FeI{sub 2} metallize under pressure by closure of the charge-transfer energy gap at pressures of 17, 10, and 23 GPa, respectively, which is close to the antiferromagnetic-diamagnetic transition in NiI{sub 2} and CoI{sub 2}. Thus, the magnetic transitions probably are caused by the metallization; in NiI{sub 2} and CoI{sub 2}, the insulator-metal transitions are first order. Moessbauer and XRD data were also collected. Figs, 46 refs.

  11. Potential Energy Surfaces and Charge Transfer of PAH-Sodium-PAH Complexes.

    PubMed

    Hjertenaes, Eirik; Andersson, Stefan; Koch, Henrik

    2016-09-19

    To further understanding of the role of sodium in carbon cathode degradation in Hall-Héroult cells, potential-energy surfaces and charge-transfer curves are presented for finite-size complexes of sodium intercalated between various polycyclic aromatic hydrocarbons. Calculations for lithium and potassium are included to highlight the disparate intercalation behaviour of the alkali metals in graphite intercalation compounds. Static energy barriers from DFT are used to compute macroscopic diffusion coefficients according to transition-state theory. Comparing the calculated diffusion coefficient to experimental values from the literature sheds light on the role of lattice diffusion of sodium-graphite intercalation compounds in sodium intrusion in graphitic carbon cathodes.

  12. Two-dimensional femtosecond optical spectroscopy of trapping dynamics in a charge-transfer process

    NASA Astrophysics Data System (ADS)

    Keß, Martin; Engel, Volker

    2016-04-01

    We study charge-transfer dynamics monitored by two-dimensional (2D) optical spectroscopy. The often used model consisting of two coupled diabatic electronic states in a single reaction coordinate is used to demonstrate the relation between the vibronic dynamics and the 2D-spectra. Within the employed wave-function approach, dissipation is included via a quantum-jump algorithm with explicit treatment of dephasing. States with long lifetimes which decay slowly due to the interaction with the environment are identified. Using filtered Fourier transforms, energy and time resolved information about the dissipative system dynamics can be obtained.

  13. Charge transfer and penning ionization of dopants in or on helium nanodroplets exposed to EUV radiation.

    PubMed

    Buchta, Dominic; Krishnan, Siva R; Brauer, Nils B; Drabbels, Marcel; O'Keeffe, Patrick; Devetta, Michele; Di Fraia, Michele; Callegari, Carlo; Richter, Robert; Coreno, Marcello; Prince, Kevin C; Stienkemeier, Frank; Moshammer, Robert; Mudrich, Marcel

    2013-05-30

    Helium nanodroplets are widely used as a cold, weakly interacting matrix for spectroscopy of embedded species. In this work, we excite or ionize doped He droplets using synchrotron radiation and study the effect onto the dopant atoms depending on their location inside the droplets (rare gases) or outside at the droplet surface (alkali metals). Using photoelectron-photoion coincidence imaging spectroscopy at variable photon energies (20-25 eV), we compare the rates of charge-transfer to Penning ionization of the dopants in the two cases. The surprising finding is that alkali metals, in contrast to the rare gases, are efficiently Penning ionized upon excitation of the (n = 2)-bands of the host droplets. This indicates rapid migration of the excitation to the droplet surface, followed by relaxation, and eventually energy transfer to the alkali dopants.

  14. Effect of Surface Defect States on Valence Band and Charge Separation and Transfer Efficiency.

    PubMed

    Xu, Juan; Teng, Yiran; Teng, Fei

    2016-01-01

    Both energy band and charge separation and transfer are the crucial affecting factor for a photochemical reaction. Herein, the BiOCl nanosheets without and with surface bismuth vacancy (BOC, V-BOC) are prepared by a simple hydrothermal method. It is found that the new surface defect states caused by bismuth vacancy have greatly up-shifted the valence band and efficiently enhanced the separation and transfer rates of photogenerated electron and hole. It is amazing that the photocatalytic activity of V-BOC is 13.6 times higher than that of BOC for the degradation methyl orange (MO). We can develop an efficient photocatalyst by the introduction of defects. PMID:27586149

  15. Effect of Surface Defect States on Valence Band and Charge Separation and Transfer Efficiency

    PubMed Central

    Xu, Juan; Teng, Yiran; Teng, Fei

    2016-01-01

    Both energy band and charge separation and transfer are the crucial affecting factor for a photochemical reaction. Herein, the BiOCl nanosheets without and with surface bismuth vacancy (BOC, V-BOC) are prepared by a simple hydrothermal method. It is found that the new surface defect states caused by bismuth vacancy have greatly up-shifted the valence band and efficiently enhanced the separation and transfer rates of photogenerated electron and hole. It is amazing that the photocatalytic activity of V-BOC is 13.6 times higher than that of BOC for the degradation methyl orange (MO). We can develop an efficient photocatalyst by the introduction of defects. PMID:27586149

  16. Charge transfer processes and ultraviolet induced absorption in Yb:YAG single crystal laser materials

    NASA Astrophysics Data System (ADS)

    Rydberg, S.; Engholm, M.

    2013-06-01

    Charge transfer (CT) transitions and UV induced color centers in Yb:YAG single crystals have been investigated. A simultaneous pair formation of a stable Yb2+ ion and a hole related (O-) color center (hole polaron) are observed through a CT-process. Slightly different types of hole related color centers are formed in Yb:YAG crystals containing small levels of iron impurities. Furthermore, excitation spectroscopy on the UV irradiated Yb:YAG samples could confirm an energy transfer process between Yb3+ and Yb2+ ions. The findings are important for an increased knowledge of the physical loss mechanisms observed in Yb-doped laser materials, such as the nonlinear decay process in Yb:YAG crystals as well as the photodarkening phenomenon in Yb-doped fiber lasers.

  17. A review on augmentation of heat transfer in boiling using surfactants/additives

    NASA Astrophysics Data System (ADS)

    Acharya, Anil; Pise, Ashok

    2016-09-01

    Studies of heat transfer enhancement in boiling under various conditions and configurations have given different results. Understanding the boiling behaviour from these studies, literature is reviewed in terms of surface texture, heater geometry and orientation, experimental and numerical studies in presence of surfactant/additives. After understanding different behaviour in boiling, the effect of environment friendly surfactant is studied through literature review. Benchmarking of experimental procedure is done by experimenting and comparing some surfactants studied in literature.

  18. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  19. Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent.

    PubMed

    Devir-Wolfman, Ayeleth H; Khachatryan, Bagrat; Gautam, Bhoj R; Tzabary, Lior; Keren, Amit; Tessler, Nir; Vardeny, Z Valy; Ehrenfreund, Eitan

    2014-07-29

    The main route of charge photogeneration in efficient organic photovoltaic cells based on bulk hetero-junction donor-acceptor blends involves short-lived charge-transfer excitons at the donor-acceptor interfaces. The cell efficiency is critically affected by the charge-transfer exciton recombination and dissociation processes. By measuring the magneto-photocurrent under ambient conditions at room temperature, we show here that magnetic field-induced spin-mixing among the charge-transfer exciton spin sublevels occurs in fields up to at least 8.5 Tesla. The resulting magneto-photocurrent increases at high fields showing non-saturating behaviour up to the highest applied field. We attribute the observed high-field spin-mixing mechanism to the difference in the donor-acceptor g-factors. The non-saturating magneto-photocurrent response at high field indicates that there exist charge-transfer excitons with lifetime in the sub-nanosecond time domain. The non-Lorentzian high-field magneto-photocurrent response indicates a dispersive decay mechanism that originates due to a broad distribution of charge-transfer exciton lifetimes.

  20. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CFR 155.710; (3) On each foreign tankship, the person in charge of either a transfer of liquid cargo... required by 33 CFR 155.710; (4) When cargo regulated under this part is being transferred, the person in... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of...