Science.gov

Sample records for additional combined earth

  1. Combined dispersant fluid loss control additives

    SciTech Connect

    Villa, J. L.; Zeiner, R. N.

    1985-12-31

    Water soluble polymer compositions containing polyacrylic acid and copolymer of itaconic acid and acrylamide are useful as combined dispersant and fluid loss control additives for aqueous drilling fluids, particularly fresh water, gypsum and seawater muds. An example is a polymer composition containing about 80% by weight polyacrylic acid and about 20% by weight copolymer of itaconic acid and acrylamide in its ammonium salt form.

  2. Object attributes combine additively in visual search

    PubMed Central

    Pramod, R. T.; Arun, S. P.

    2016-01-01

    We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes. PMID:26967014

  3. Combined additive manufacturing approaches in tissue engineering.

    PubMed

    Giannitelli, S M; Mozetic, P; Trombetta, M; Rainer, A

    2015-09-01

    Advances introduced by additive manufacturing (AM) have significantly improved the control over the microarchitecture of scaffolds for tissue engineering. This has led to the flourishing of research works addressing the optimization of AM scaffolds microarchitecture to optimally trade-off between conflicting requirements (e.g. mechanical stiffness and porosity level). A fascinating trend concerns the integration of AM with other scaffold fabrication methods (i.e. "combined" AM), leading to hybrid architectures with complementary structural features. Although this innovative approach is still at its beginning, significant results have been achieved in terms of improved biological response to the scaffold, especially targeting the regeneration of complex tissues. This review paper reports the state of the art in the field of combined AM, posing the accent on recent trends, challenges, and future perspectives.

  4. Electromagnetic Calculation of Combined Earthing System with Ring Earth Electrode and Vertical Rods for Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

    With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.

  5. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  6. The earth's gravitational field from the combination of satellite and terrestrial data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1973-01-01

    This paper reviews techniques and results in the combination of gravimetric and satellite data. The estimation of mean anomalies for use in combination studies is discussed with the location of current gravity material being described. Specific techniques for combination solutions are discussed for various models. These models include those where the gravitational field is represented by a set of potential coefficients, or by a set of discrete blocks distributed on the earth. The potential coefficient solutions compared are those of the SAO Standard Earth II and III, the Goddard Earth Model 4, and a solution by the author. These solutions are compared in terms of coefficients, undulation and anomaly differences, and implied anomaly degree variances. In addition, comparisons were made through terrestrial anomaly comparisons, astrogeodetic undulation comparisons, and orbit fitting tests.

  7. Combining the GRID with Cloud for Earth Science Computing

    NASA Astrophysics Data System (ADS)

    Mishin, Dmitry; Levchenko, Oleg; Groudnev, Andrei; Zhizhin, Mikhail

    2010-05-01

    Cloud computing is a new economic model of using large cluster computing resources which were earlier managed by GRID. Reusing existing GRID infrastructure gives an opportunity to combine the Cloud and GRID technologies on the same hardware and to provide GRID users with functionality for running high performance computing tasks inside virtual machines. In this case Cloud works "above" GRID, sharing computing power and utilizing unused processor time. We manage virtual machines with Eucalyptus elastic cloud and we use Torque system from gLite infrastructure for spreading Cloud jobs in GRID computing nodes to scale the parallel computing tasks on virtual machines created by elastic cloud. For this purpose we have added new types of tasks to the standard GRID task list: to run a virtual node and to run a job on a virtual node. This gives a possibility to seamlessly upscale the Cloud with the new tasks when needed and to shrink it when the tasks are completed. Using GRID components for managing the size of a virtual cloud simplifies building the billing system to charge the Cloud users for the processor time, disk space and outer traffic consumed. A list of Earth Science computing problems that can be solved by using the elastic Cloud include repetitive tasks of downloading, converting and storing in a database of large arrays of data (e.g. weather forecast); creating a pyramid of lower resolution images from a very large one for fast distributed browsing; processing and analyzing the large distributed amounts of data by running Earth Science numerical models.

  8. Combinations of Earth Orientation Measurements: SPACE2011, COMB2011, and POLE2011

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2013-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2011, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to July 13, 2012, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2011 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2011, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to July 13, 2012, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2011, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 21, 2012, at 30.4375-day intervals.

  9. Combinations of Earth Orientation Measurements: SPACE2005, COMB2005, and POLE2005

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    2006-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, by very long baseline interferometry, and by the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2005, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to January 7, 2006, at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2005 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2005, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to January 7, 2006, at daily intervals and which is also available in versions whose epochs are given at either midnight or noon; and (2) POLE2005, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to December 21, 2005, at 30.4375-day intervals.

  10. Combinations of Earth Orientation Measurements: SPACE2014, COMB2014, and POLE2014

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2015-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2013, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to June 30, 2014, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2013 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2013, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to June 30, 2014, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2013, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 22, 2014, at 30.4375-day intervals.

  11. Combinations of Earth Orientation Measurements: SPACE2012, COMB2012, and POLE2012

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2013-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2012, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to April 26, 2013, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2012 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2012, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to April 26, 2013, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2012, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to May 22, 2013, at 30.4375-day intervals.

  12. Combinations of Earth Orientation Measurements: SPACE2013, COMB2013, and POLE2013

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2015-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2013, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to June 30, 2014, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2013 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2013, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to June 30, 2014, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2013, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 22, 2014, at 30.4375-day intervals.

  13. 76 FR 43699 - List of Additional Lands Affected by White Earth Reservation Land Settlement Act of 1985

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... Bureau of Indian Affairs List of Additional Lands Affected by White Earth Reservation Land Settlement Act... additional allotments or interest therein on the White Earth Chippewa Reservation in Minnesota which have been determined to fall within the scope of sections 4(a), 4(b), or 5(c) of the White Earth...

  14. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    SciTech Connect

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digital Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you

  15. Effect of earth as an additional stimulus on the behaviour of confined piglets.

    PubMed

    Appleby, M C; Wood-Gush, D G

    1988-08-01

    Groups of 8 piglets were housed in flat-deck cages with slatted floors. Experimental cages were provided with a trough of sterilized earth, and the behaviour of focal individuals was recorded for comparison with controls. This replaced an earlier study, with which some of the results were combined. Records were analysed for frequencies and duration of certain activities, and first order sequence analysis was carried out. Experimental piglets rooted in earth for 4 to 8% of observations and also fed for longer. They spent less time sitting or lying. Aggression was reduced and there was a trend for experimental piglets to chew each other less. These differences suggested conditions were more favourable in experimental pens than control pens. However, there were few differences in first order behavioural transitions. Use of earth was not involved in sequences with activities such as feeding, drinking or lying as expected. It seems likely that in these circumstances earth did not act as a stimulus relevant to behavioural organization, but in some other way, with interest declining over time.

  16. Rare-earth-catalyzed C-H bond addition of pyridines to olefins.

    PubMed

    Guan, Bing-Tao; Hou, Zhaomin

    2011-11-16

    An efficient and general protocol for the ortho-alkylation of pyridines via C-H addition to olefins has been developed, using cationic half-sandwich rare-earth catalysts, which provides an atom-economical method for the synthesis of alkylated pyridine derivatives. A wide range of pyridine and olefin substrates including α-olefins, styrenes, and conjugated dienes are compatible with the catalysts.

  17. Analysis of Pole Coordinate Data Predictions in the Earth Orientation Parameters Combination of Prediction Pilot Project

    DTIC Science & Technology

    2011-01-01

    ARTIFICIAL SATELLITES , Vol. 46, No. 4 - 2011 DOI: 10.2478/v10018-012-0006-x ANALYSIS OF POLE COORDINATE DATA PREDICTIONS IN THE EARTH ORIENTATION...Warsaw initiated the Earth Orientation Parameters Combination of Prediction Pilot Project, which was accepted by the IERS Directing Board. The goal of...this project is to determine the feasibility of combining Earth Orientation Parameters (EOP) predictions on an operational basis. The ensemble

  18. Oxidation of silicon nitride sintered with rare-earth oxide additions

    NASA Technical Reports Server (NTRS)

    Mieskowski, D. M.; Sanders, W. A.

    1985-01-01

    The effects of rare-earth oxide additions on the oxidation of sintered Si3N4 were examined. Insignificant oxidation occurred at 700 and 1000 C, with no evidence of phase instability. At 1370 C, the oxidation rate was lowest for Y2O3 and increased for additions of La2O3, Sm2O3, and CeO2, in that order. Data obtained from X-ray diffraction, electron microprobe analysis, and scanning electron microscopy indicate that oxidation occurs via diffusion of cationic species from Si3N4 grain boundaries.

  19. Combinations of hydroxy amines and carboxylic dispersants as fuel additives

    SciTech Connect

    LeSuer, W.M.

    1983-10-11

    Combinations of certain hydroxy amines, particularly the ''Ethomeens,'' and hydrocarbon-soluble carboxylic dispersants are useful as engine and carburetor detergents for normally liquid fuels. The preferred compositions are those in which the carboxylic dispersants are the reaction products of substituted succinic acids with polar compounds, expecially with amines such as ethylene polyamines.

  20. Strength and microstructure of sintered Si3N4 with rare-earth-oxide additions

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Mieskowski, D. M.

    1985-01-01

    Room temperature, 700-, 1000-, 1200-, and 1370-C examinations of the effect of 1.7-2.6 mol pct rare earth oxide additions to sintered Si3N4 are conducted. While the room temperature-1000 C bend strengths were higher for this material with Y2O3 additions than with CeO2, La2O3, or Sm2O3, the reverse was true at 1200-1370 C. This phenomenon is explained on the basis of microstructural differences, since quantitative microscopy of SEM replicas showed the Si3N4-Y2O3 composition to contain both a higher percentage of elongated grains and a coarser microstructure than the other three alternatives. The elongated grains appear to increase this composition's low temperature strength irrespective of microstructural coarseness; this coarseness, however, decreases strength relative to the other compositions at higher temperatures.

  1. Frustrated Lewis Pair-Like Reactivity of Rare-Earth Metal Complexes: 1,4-Addition Reactions and Polymerizations of Conjugated Polar Alkenes.

    PubMed

    Xu, Pengfei; Yao, Yingming; Xu, Xin

    2017-01-26

    Three rare-earth aryloxide ion pairs {[L1REOAr](+) /[B(C6 F5 )4 ](-) ; L1=CH3 C(2,6-iPr2 C6 H3 N)CHC(CH3 )(NCH2 CH2 PPh2 ); RE=Sc, Y, Lu; Ar=2,6-tBu2 C6 H3 } were reported that feature rare-earth/phosphorus (RE/P) combinations exhibiting frustrated Lewis pair (FLP)-like 1,4-addition reactions towards conjugated carbonyl substrates (e.g., enone, ynone, and acrylic substrates). Furthermore, these RE/P complexes were found to be effective catalysts for the polymerization of conjugated polar alkene monomers. Mechanistic studies revealed that the rare-earth metal-catalyzed polymerizations were initiated by new FLP-type 1,4-additions rather than traditional and ubiquitous covalent RE-E (E=H, C, N, etc.) bond insertion or single-electron transfer.

  2. A Kalman-Filter-Based Approach to Combining Independent Earth-Orientation Series

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Eubanks, T. M.; Steppe, J. A.; Freedman, A. P.; Dickey, J. O.; Runge, T. F.

    1998-01-01

    An approach. based upon the use of a Kalman filter. that is currently employed at the Jet Propulsion Laboratory (JPL) for combining independent measurements of the Earth's orientation, is presented. Since changes in the Earth's orientation can be described is a randomly excited stochastic process, the uncertainty in our knowledge of the Earth's orientation grows rapidly in the absence of measurements. The Kalman-filter methodology allows for an objective accounting of this uncertainty growth, thereby facilitating the intercomparison of measurements taken at different epochs (not necessarily uniformly spaced in time) and with different precision. As an example of this approach to combining Earth-orientation series, a description is given of a combination, SPACE95, that has been generated recently at JPL.

  3. Solar electric propulsion combined with earth gravity assist - A new potential for planetary exploration

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.; Sauer, C. G.; Flandro, G. A.

    1976-01-01

    The need to shorten mission time (travel time to target planet) in missions to the outer planets prompts a search for alternatives to one-way minimum-energy transfers while continuing to minimize on-power thrusts. Gravity assists via swing-bys of inner planets are examined, with emphasis on a projected Venus-earth gravity assist (VEGA) and a combined solar electric propulsion and earth gravity assist (SEEGA). Gravity assists are also examined as essential for missions with sample returns back to earth. Possible use of such techniques in the Shuttle Interim Upper Stage (IUS) program is considered. Various SEEGA and VEGA trajectories are discussed and charted, and time lost in the launch orbit to earth re-encounter time is weighed against time gained by faster speed toward the mission destination.

  4. Tungsten Isotopes, Formation of the Moon, and Lopsided Addition to Earth and Moon

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2015-06-01

    Two studies use vast improvements in measuring tungsten (W) isotopic composition to show that the Moon has a higher 182W/184W ratio than does the modern terrestrial mantle. The studies, done by Mathieu Touboul and colleagues at the University of Maryland, USA and Thomas Kruijer and colleagues at Westfalische Wilhelms University, Munster, Germany, required developing improved isotope separation and measurement techniques in order to make the measurements accurate and precise enough to see the small difference between lunar and terrestrial samples. The Moon has 182W/184W about 25 parts per million higher than the Earth. This is consistent with an interesting story told in both papers: the Moon and Earth both had the same W isotopic composition after the giant impact that formed the Moon, but the Earth acquired a disproportionate amount of chondritic material afterwards, which decreased the terrestrial 182W/184W value. The idea is consistent with current models of the numbers of projectiles that could have intersected the Earth-Moon system as planetary accretion was winding down. The implication is that immediately after the Moon formed it had the same tungsten isotopic composition as the Earth, an important fact that models for the giant impact origin of the Moon must explain.

  5. The combined EarthScope data set at the IRIS DMC

    NASA Astrophysics Data System (ADS)

    Trabant, C.; Sharer, G.; Benson, R.; Ahern, T.

    2007-12-01

    The IRIS Data Management Center (DMC) is the perpetual archive and access point for an ever-increasing variety of geophysical data in terms of volume, geographic distribution and scientific value. A particular highlight is the combined data set produced by the EarthScope project. The DMC archives data from each of the primary components: USArray, the Plate Boundary Observatory (PBO) & the San Andreas Fault Observatory at Depth (SAFOD). Growing at over 4.6 gigabytes per day, the USArray data set currently totals approximately 5 terabytes. Composed of four separate sub-components: the Permanent, Transportable, Flexible and Magnetotelluric Arrays, the USArray data set provides a multi-scale view of the western United States at present and the conterminous United States when it is completed. The primary data from USArray are in the form of broadband and short-period seismic recordings and magnetotelluric measurements. Complementing the data from USArray are the short- period, borehole seismic data and borehole and laser strain data from PBO. The DMC also archives the high- resolution seismic data from instruments in the SAFOD main and pilot drill holes. The SAFOD seismic data is available in two forms: lower-rate monitoring channels sampled at 250 hertz and full resolution channels varying between 1 and 4 kilohertz. Beyond data collection and archive management the DMC performs value-added functions. All data arriving at the DMC as real-time data streams are processed by QUACK, an automated Quality Control (QC) system. All the measurements made by this system are stored in a database and made available to data contributors and users via a web interface including customized report generation. In addition to the automated QC measurements, quality control is performed on USArray data at the DMC by a team of analysts. The primary functions of the analysts are to routinely report data quality assessment to the respective network operators and log serious, unfixable data

  6. Seawater-derived rare earth element addition to abyssal peridotites during serpentinization

    NASA Astrophysics Data System (ADS)

    Frisby, Carl; Bizimis, Michael; Mallick, Soumen

    2016-04-01

    Serpentinized abyssal peridotites are evidence for active communication between the Earth's hydrosphere and the upper mantle, where exchange and retention of both major and trace elements occur. Bulk rock Nd isotopes in serpentinized abyssal peridotites imply interaction of seawater with the peridotite. In contrast, the Nd isotopes of clinopyroxenes from serpentinized abyssal peridotites retain their primary magmatic signature. It is currently unclear if, how and where seawater-derived Nd and other REE are being added or exchanged with the mantle peridotite minerals during serpentinization. To remedy this knowledge gap, we present in situ trace and major element concentrations, bulk rock and sequential leaching experiment trace element concentrations as well as Nd, Sr isotope data on refertilized and depleted serpentinized abyssal peridotites from the Southwest Indian Ridge. The secondary serpentine matrix and magnetite veins in these peridotites have elevated LREE concentrations, with variable negative Ce anomalies and large Rb, Sr, Pb and U enrichments that resemble seawater trace element patterns. The LREE concentrations in the serpentine phase are higher than those expected for the primary mantle mineralogy (olivine, orthopyroxene) based on data from relic clinopyroxenes and equilibrium partition coefficients. These data are consistent with seawater-derived REE addition to the peridotite during serpentinization. The bulk rocks have more radiogenic Sr and more unradiogenic Nd isotopes than their clinopyroxene (up to 8 εNd units lower than clinopyroxene). Sequential leaching experiments designed to mobilize secondary carbonates and Fe-oxides show even more unradiogenic Nd isotope ratios in the leachates than the bulk rock and clinopyroxene, approaching seawater compositions (up to 15 εNd units lower than clinopyroxene). Mass balance calculations using trace elements or Nd isotopes suggest that up to 30% of the bulk peridotite Nd budget is of seawater origin and

  7. Genetic algorithm-guided discovery of additive combinations that direct quantum dot assembly.

    PubMed

    Bawazer, Lukmaan A; Ihli, Johannes; Comyn, Timothy P; Critchley, Kevin; Empson, Christopher J; Meldrum, Fiona C

    2015-01-14

    The use of combinations of organic additives to control crystallization, as occurs in biomineralization, is rarely investigated due to the vast potential reaction space. It is demonstrated here that combinatorial approaches led by genetic algorithm heuristics can enable identification of active additive combinations, and four key organic molecules are rapidly identified, which generate highly fluorescent CdS quantum dot superstructures.

  8. Combining GPS and VLBI earth-rotation data for improved universal time

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.

    1991-01-01

    The Deep Space Network (DSN) routinely measures Earth orientation in support of spacecraft tracking and navigation using very long-baseline interferometry (VLBI) with the deep-space tracking antennas. The variability of the most unpredictable Earth-orientation component, Universal Time 1 (UT1), is a major factor in determining the frequency with which the DSN measurements must be made. The installation of advanced Global Positioning System (GPS) receivers at the DSN sites and elsewhere may soon permit routine measurements of UT1 variation with significantly less dependence on the deep-space tracking antennas than is currently required. GPS and VLBI data from the DSN may be combined to generate a precise UT1 series, while simultaneously reducing the time and effort the DSN must spend on platform-parameter calibrations. This combination is not straightforward, however, and a strategy for the optimal combination of these data is presented and evaluated. It appears that, with the aid of GPS, the frequency of required VLBI measurements of Earth orientation could drop from twice weekly to once per month. More stringent real-time Earth orientation requirements possible in the future would demand significant improvements in both VLBI and GPS capabilities, however.

  9. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  10. A Kalman filter for combining high frequency Earth rotation parameters from VLBI and GNSS

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Karbon, M.; Schuh, H.

    2013-08-01

    We present a Kalman filter for combination of sub-diurnal Earth Rotation Parameters (ERP) estimated from different techniques. We test this filter by combining ERP estimated from VLBI and GPS for the CONT08 campaign. We find that the Kalman filter works and give reasonable results. The combined solution is dominated by the GPS data since the ERP from this technique have much lower formal errors. However VLBI is important for providing the absolute value of dUT1 since GPS is only sensitive to the time derivative of dUT1, i.e. the length of day.

  11. Combined 2-micron Dial and Doppler Lidar: Application to the Atmosphere of Earth or Mars

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Ismail, Syed; Kavaya, Michael; Yu, Jirong; Wood, Sidney A.; Emmitt, G. David

    2006-01-01

    A concept is explored for combining the Doppler and DIAL techniques into a single, multifunctional instrument. Wind, CO2 concentration, and aerosol density can all be measured. Technology to build this instrument is described, including the demonstration of a prototype lidar. Applications are described for use in the Earth science. The atmosphere of Mars can also be studied, and results from a recently-developed simulation model of performance in the Martian atmosphere are presented.

  12. Improvements and Additions to NASA Near Real-Time Earth Imagery

    NASA Technical Reports Server (NTRS)

    Cechini, Matthew; Boller, Ryan; Baynes, Kathleen; Schmaltz, Jeffrey; DeLuca, Alexandar; King, Jerome; Thompson, Charles; Roberts, Joe; Rodriguez, Joshua; Gunnoe, Taylor; Wong, Minnie; Alarcon, Christian; DeCesare, Cristina; Pressley, Natalie

    2016-01-01

    For many years, the NASA Global Imagery Browse Services (GIBS) has worked closely with the Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) system to provide near real-time imagery visualizations of AIRS (Atmospheric Infrared Sounder), MLS (Microwave Limb Sounder), MODIS (Moderate Resolution Imaging Spectrometer), OMI (Ozone Monitoring Instrument), and recently VIIRS (Visible Infrared Imaging Radiometer Suite) science parameters. These visualizations are readily available through standard web services and the NASA Worldview client. Access to near real-time imagery provides a critical capability to GIBS and Worldview users. GIBS continues to focus on improving its commitment to providing near real-time imagery for end-user applications. The focus of this presentation will be the following completed or planned GIBS system and imagery enhancements relating to near real-time imagery visualization.

  13. New Rare Earth Antiknock Additives that are Potential Substitutes for Tetraethyl Lead

    DTIC Science & Technology

    1974-12-01

    Io. Dola Enter when tested by the Supercharge Method (ASTM 0909-67). The significance of this result, compared to the inferior performance of Ce... METHODS OF ADDITIVE INTRODUCTION ...... ................... .... 45 X DISCUSSION .................... 46 1. PERFORMANCE...ISOOCTANE PRIMARY REFERENCE FUEL BY THE SUPERCHARGE METHOD , ASTM D 909-67 .. . 18 2 ANTIKNOCK EFFECTIVENESS AS A FUNCTION OF ADDITIVE CONCENTRATION FOR Ce

  14. Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data

    NASA Astrophysics Data System (ADS)

    Thaller, Daniela; Krügel, Manuela; Rothacher, Markus; Tesmer, Volker; Schmid, Ralf; Angermann, Detlef

    2007-06-01

    The CONT02 campaign is of great interest for studies combining very long baseline interferometry (VLBI) with other space-geodetic techniques, because of the continuously available VLBI observations over 2 weeks in October 2002 from a homogeneous network. Especially, the combination with the Global Positioning System (GPS) offers a broad spectrum of common parameters. We combined station coordinates, Earth orientation parameters (EOPs) and troposphere parameters consistently in one solution using technique- specific datum-free normal equation systems. In this paper, we focus on the analyses concerning the EOPs, whereas the comparison and combination of the troposphere parameters and station coordinates are covered in a companion paper in Journal of Geodesy. In order to demonstrate the potential of the VLBI and GPS space-geodetic techniques, we chose a sub-daily resolution for polar motion (PM) and universal time (UT). A consequence of this solution set-up is the presence of a one-to-one correlation between the nutation angles and a retrograde diurnal signal in PM. The Bernese GPS Software used for the combination provides a constraining approach to handle this singularity. Simulation studies involving both nutation offsets and rates helped to get a deeper understanding of this singularity. With a rigorous combination of UT1 UTC and length of day (LOD) from VLBI and GPS, we showed that such a combination works very well and does not suffer from the systematic effects present in the GPS-derived LOD values. By means of wavelet analyses and the formal errors of the estimates, we explain this important result. The same holds for the combination of nutation offsets and rates. The local geodetic ties between GPS and VLBI antennas play an essential role within the inter-technique combination. Several studies already revealed non-negligible discrepancies between the terrestrial measurements and the space-geodetic solutions. We demonstrate to what extent these discrepancies

  15. Fluorescence enhancement in rare earth doped sol-gel glass by N , N dimethylformamide as a drying control chemical additive

    NASA Astrophysics Data System (ADS)

    Beyler, A. P.; Boye, D. M.; Hoffman, K. R.; Silversmith, A. J.

    Studies of terbium fluorescence intensity as a function of annealing temperature reveal the cause of increased fluorescence yields observed in rare earth doped sol-gel silicates prepared using N , N-dimethylformamide (DMF) as a drying control chemical additive (DCCA). While gels prepared with DMF actually have lower fluorescence yields than gels prepared without DMF at lower annealing temperatures, DMF gels can be annealed at much higher temperatures while retaining high optical quality. At these higher temperatures, terbium fluorescence yields increase dramatically as the sol-gel network undergoes densification, closing the pores of the network and eliminating the fluorescence quenching silanols on pore surfaces. DMF is therefore found to enhance the fluorescence properties of rare earth sol-gel glasses by reducing micro-fracturing and facilitating network densification. Further investigations are underway to determine the effectiveness of other promising DCCAs, such as glycerol, and to explore the possibility of exploiting the solubility properties of DCCAs to improve rare earth dopant dispersion.

  16. Insecticidal effect of spinosad dust, in combination with diatomaceous earth, against two stored-grain beetle species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficacy of the biological insecticide spinosad applied alone and combination with diatomaceous earth (DE) was determined through laboratory bioassays with adults of the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and the confused flour beetle, Tribolium confusum Jacquelin du Val...

  17. Risk assessment for the combinational effects of food color additives: neural progenitor cells and hippocampal neurogenesis.

    PubMed

    Park, Mikyung; Park, Hee Ra; Kim, So Jung; Kim, Min-Sun; Kong, Kyoung Hye; Kim, Hyun Soo; Gong, Ein Ji; Kim, Mi Eun; Kim, Hyung Sik; Lee, Byung Mu; Lee, Jaewon

    2009-01-01

    In 2006, the Korea Food and Drug Administration reported that combinations of dietary colors such as allura red AC (R40), tartrazine (Y4), sunset yellow FCF (Y5), amaranth (R2), and brilliant blue FCF (B1) are widely used in food manufacturing. Although individual tar food colors are controlled based on acceptable daily intake (ADI), there is no apparent information available for how combinations of these additives affect food safety. In the current study, the potencies of single and combination use of R40, Y4, Y5, R2, and B1 were examined on neural progenitor cell (NPC) toxicity, a biomarker for developmental stage, and neurogenesis, indicative of adult central nervous system (CNS) functions. R40 and R2 reduced NPC proliferation and viability in mouse multipotent NPC, in the developing CNS model. Among several combinations tested in mouse model, combination of Y4 and B1 at 1000-fold higher than average daily intake in Korea significantly decreased numbers of newly generated cells in adult mouse hippocampus, indicating potent adverse actions on hippocampal neurogenesis. However, other combinations including R40 and R2 did not affect adult hippocampal neurogenesis in the dentate gyrus. Evidence indicates that single and combination use of most tar food colors may be safe with respect to risk using developmental NPC and adult hippocampal neurogenesis. However, the response to excessively high dose combination of Y4 and B1 is suggestive of synergistic effects to suppress proliferation of NPC in adult hippocampus. Data indicated that combinations of tar colors may adversely affect both developmental and adult hippocampal neurogenesis; thus, further extensive studies are required to assess the safety of these additive combinations.

  18. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  19. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  20. The IGS-combined station coordinates, earth rotation parameters and apparent geocenter

    NASA Astrophysics Data System (ADS)

    Ferland, R.; Piraszewski, M.

    2009-03-01

    The International GNSS Service (IGS) routinely generates a number of weekly, daily and sub-daily products. Station coordinates and velocities, earth rotation parameters (ERPs) and apparent geocenter are among these products generated weekly by the IGS Reference Frame Coordinator. They have been determined since 1999 by combining independent estimates from at least seven IGS Analysis Centers (ACs). Two Global Network Associate Analysis Centers (GNAACs) also provide independent combinations using the same AC weekly solutions and they are currently used to quality control the IGS combination. The combined solutions are aligned to an IGS realization (IGS05) of the ITRF2005 using a carefully selected set of the IGS Reference Frame (RF) stations (nominally 132). During the combination process, the contributing solutions are compared and outliers are removed to ensure a high level of consistency of the estimated parameters. The ACs and the weekly combined solution are consistent at the 1-2 and 3-4 mm levels for the horizontal and vertical components. Similarly, the excess Length of Day (LOD), the pole positions and pole rates are consistent at the 10μs, 0.03-0.05 mas and 0.10-0.20 mas/day levels, respectively. The consistency of the apparent geocenter estimate is about 5 mm in the X and Y components and 10 mm in the Z component. Comparison of the IGS-combined ERP estimates with the IERS Bulletin A suggests a small bias of the order of -0.04 mas and + 0.05 mas (both ±0.05 mas) in the x and y components.

  1. Effect of combined herbal feed additives on methane, total gas production and rumen fermentation

    PubMed Central

    Chaturvedi, Indu; Dutta, Tapas Kumar; Singh, Pawan Kumar; Sharma, Ashwani

    2015-01-01

    The present study was to evaluate effect of herbal feed additives on methane and total gas production during the rumen fermentation for environment and animal health concern. Different parts of the five medicinal plants were selected such as leaf and small stems of Ocimum sanctum (Tulsi), roots of Curcuma longa (Haldi), fruits of Emblica officinalis (Amla), leaves of Azadirachta indica (Neem) and leaves and small stem of Clerodendrum phlomidis (Arni) for our study. Addition of different herbal additive combinations did not influence IVDMD and total gas production however methane production (mg/g of substrate DM) was significantly (P<0.05) reduced in Amla: Neem and Neem: Arni combinations. Total nitrogen significantly (P<0.01) increased in the combinations of Tulsi: Haldi and Amla: Neem. TCA–ppt-N is significantly (P<0.01) increased in Tulsi: Haldi, Haldi: Amla, Amla: Neem and Neem: Arni however NH3-N (mg/dl) significantly decreased in all treatments. We conclude that the screening of plant combinations, Amla: Neem and Neem: Arni have potential to decrease methane production and our herbal feed supplements have no side-effects on the ruminant in small amount. PMID:26124571

  2. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms.

    PubMed

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F; Mitroy, J

    2012-03-14

    The long-range non-additive three-body dispersion interaction coefficients Z(111), Z(112), Z(113), and Z(122) are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z(111) arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z(112), Z(113), and Z(122) arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  3. Additive feeding inhibitory and aversive effects of naltrexone and exendin-4 combinations

    PubMed Central

    Liang, N-C; Bello, NT; Moran, TH

    2012-01-01

    Objective One developing strategy for obesity treatment has been to use combinations of differently acting pharmacotherapies to improve weight loss with fewer adverse effects. The purpose of this study was to determine whether the combination of naltrexone, an opioid antagonist acting on the reward system, and exendin-4, a glucagon-like peptide 1 (GLP-1) agonist, acting on satiety signaling, would produce larger reductions in food intake than either alone in rats. Because the anorectic potencies of both compounds have been associated with nausea and malaise, the influence of these drug combinations on the acquisition of a conditioned taste aversion (CTA) was also determined. Methods In Experiment 1, the acute anorectic effects of naltrexone (0.32–3.2 mg/kg; IP) and exendin-4 (1–10 µg/kg; IP) were assessed alone or in combination. Combinational doses were further investigated by the repeated daily administration of 1 mg/kg naltrexone + 3.2 µg/kg exendin-4 for 4 days. In Experiment 2, both compounds alone or in combination were used as unconditioned stimuli in a series of CTA tests. Results Naltrexone and exendin-4, alone or in combination, suppressed food intake in a dose dependent fashion, and the interaction on food intake between naltrexone and exendin-4 was additive. In the CTA paradigm, naltrexone (1 mg/Kg) alone did not support acquisition, whereas a CTA was evident with doses of Ex-4 (1 or 3.2 µg/Kg). Combinations of naltrexone and exendin-4 also resulted in a more rapid and robust acquisition of a CTA. Conclusion Given that the Nal and Ex-4 combination produces additive effects on not only food intake reduction but also food aversion learning, this specific drug combination does not have the benefit of minimizing the adverse effects associated with each individual drug. These data suggest that it is necessary to evaluate both the positive and adverse effects at early stages of combinational drug development. PMID:22310470

  4. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  5. Remediation of metal polluted soils by phytorremediation combined with biochar addition

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Paz-Ferreiro, Jorge; Gómez-Limón, Dulce; César Arranz, Julio; Saa, Antonio; Gascó, Gabriel

    2016-04-01

    The main objective of this work is to optimize and quantify the treatment of metal polluted soils through phytoremediation techniques combined with the addition of biochar. Biochar is a carbon rich material obtained by thermal treatment of biomass in inert atmosphere. In recent years, it has been attracted considerable interest due to their positive effect after soil addition. The use of biochar also seems appropriate for the treatment of metal-contaminated soils decreasing their mobility. Biochar properties highly depend on the raw material composition and manufacturing conditions. This paper is based on the use of manure wastes, rich in nutrients and therefore interesting raw materials for biochar production, especially when combined with phytoremediation techniques since the biochar act as conditioner and slow release fertilizer. We are very grateful to Ministerio de Economia y Competitividad (Spain) for financial support under Project CGL2014-58322-R.

  6. Determination of Earth rotation by the combination of data from different space geodetic systems

    NASA Technical Reports Server (NTRS)

    Archinal, Brent Allen

    1987-01-01

    Formerly, Earth Rotation Parameters (ERP), i.e., polar motion and UTI-UTC values, have been determined using data from only one observational system at a time, or by the combination of parameters previously obtained in such determinations. The question arises as to whether a simultaneous solution using data from several sources would provide an improved determination of such parameters. To pursue this reasoning, fifteen days of observations have been simulated using realistic networks of Lunar Laser Ranging (LLR), Satellite Laser Ranging (SLR) to Lageos, and Very Long Baseline Interferometry (VLBI) stations. A comparison has been done of the accuracy and precision of the ERP obtained from: (1) the individual system solutions, (2) the weighted means of those values, (3) all of the data by means of the combination of the normal equations obtained in 1, and (4) a grand solution with all the data. These simulations show that solutions done by the normal equation combination and grand solution methods provide the best or nearly the best ERP for all the periods considered, but that weighted mean solutions provide nearly the same accuracy and precision. VLBI solutions also provide similar accuracies.

  7. Methodology for the combination of sub-daily Earth rotation from GPS and VLBI observations

    NASA Astrophysics Data System (ADS)

    Artz, T.; Bernhard, L.; Nothnagel, A.; Steigenberger, P.; Tesmer, S.

    2012-03-01

    A combination procedure of Earth orientation parameters from Global Positioning System (GPS) and Very Long Baseline Interferometry (VLBI) observations was developed on the basis of homogeneous normal equation systems. The emphasis and purpose of the combination was the determination of sub-daily polar motion (PM) and universal time (UT1) for a long time-span of 13 years. Time series with an hourly resolution and a model for tidal variations of PM and UT1-TAI (dUT1) were estimated. In both cases, 14-day nutation corrections were estimated simultaneously with the ERPs. Due to the combination procedure, it was warranted that the strengths of both techniques were preserved. At the same time, only a minimum of de-correlating or stabilizing constraints were necessary. Hereby, a PM time series was determined, whose precision is mainly dominated by GPS observations. However, this setup benefits from the fact that VLBI delivered nutation and dUT1 estimates at the same time. An even bigger enhancement can be seen for the dUT1 estimation, where the high-frequency variations are provided by GPS, while the long term trend is defined by VLBI. The estimated combined tidal PM and dUT1 model was predominantly determined from the GPS observations. Overall, the combined tidal model for the first time completely comprises the geometrical benefits of VLBI and GPS observations. In terms of root mean squared (RMS) differences, the tidal amplitudes agree with other empirical single-technique tidal models below 4 μ as in PM and 0.25 μ s in dUT1. The noise floor of the tidal ERP model was investigated in three ways resulting in about 1 μ as for diurnal PM and 0.07 μ s for diurnal dUT1 while the semi-diurnal components have a slightly better accuracy.

  8. Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping

    NASA Astrophysics Data System (ADS)

    Rapinel, Sébastien; Hubert-Moy, Laurence; Clément, Bernard

    2015-05-01

    Although wetlands play a key role in controlling flooding and nonpoint source pollution, sequestering carbon and providing an abundance of ecological services, the inventory and characterization of wetland habitats are most often limited to small areas. This explains why the understanding of their ecological functioning is still insufficient for a reliable functional assessment on areas larger than a few hectares. While LiDAR data and multispectral Earth Observation (EO) images are often used separately to map wetland habitats, their combined use is currently being assessed for different habitat types. The aim of this study is to evaluate the combination of multispectral and multiseasonal imagery and LiDAR data to precisely map the distribution of wetland habitats. The image classification was performed combining an object-based approach and decision-tree modeling. Four multispectral images with high (SPOT-5) and very high spatial resolution (Quickbird, KOMPSAT-2, aerial photographs) were classified separately. Another classification was then applied integrating summer and winter multispectral image data and three layers derived from LiDAR data: vegetation height, microtopography and intensity return. The comparison of classification results shows that some habitats are better identified on the winter image and others on the summer image (overall accuracies = 58.5 and 57.6%). They also point out that classification accuracy is highly improved (overall accuracy = 86.5%) when combining LiDAR data and multispectral images. Moreover, this study highlights the advantage of integrating vegetation height, microtopography and intensity parameters in the classification process. This article demonstrates that information provided by the synergetic use of multispectral images and LiDAR data can help in wetland functional assessment

  9. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c.

    PubMed

    de Wit, Julien; Wakeford, Hannah R; Gillon, Michaël; Lewis, Nikole K; Valenti, Jeff A; Demory, Brice-Olivier; Burgasser, Adam J; Burdanov, Artem; Delrez, Laetitia; Jehin, Emmanuël; Lederer, Susan M; Queloz, Didier; Triaud, Amaury H M J; Van Grootel, Valérie

    2016-09-01

    Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1 (ref. 3). The nature of these planets has yet to be determined, as their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range, from depleted to extended hydrogen-dominated atmospheres. Here we report observations of the combined transmission spectrum of the two inner planets during their simultaneous transits on 4 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at ≥10σ levels; TRAPPIST-1 b and c are therefore unlikely to have an extended gas envelope as they occupy a region of parameter space in which high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum-from a cloud-free water-vapour atmosphere to a Venus-like one.

  10. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c

    NASA Astrophysics Data System (ADS)

    de Wit, Julien; Wakeford, Hannah R.; Gillon, Michaël; Lewis, Nikole K.; Valenti, Jeff A.; Demory, Brice-Olivier; Burgasser, Adam J.; Burdanov, Artem; Delrez, Laetitia; Jehin, Emmanuël; Lederer, Susan M.; Queloz, Didier; Triaud, Amaury H. M. J.; Van Grootel, Valérie

    2016-09-01

    Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1 (ref. 3). The nature of these planets has yet to be determined, as their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range, from depleted to extended hydrogen-dominated atmospheres. Here we report observations of the combined transmission spectrum of the two inner planets during their simultaneous transits on 4 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at ≥10σ levels; TRAPPIST-1 b and c are therefore unlikely to have an extended gas envelope as they occupy a region of parameter space in which high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum—from a cloud-free water-vapour atmosphere to a Venus-like one.

  11. Additively enhanced antiproliferative effect of interferon combined with proanthocyanidin on bladder cancer cells.

    PubMed

    Fishman, Andrew I; Johnson, Blake; Alexander, Bobby; Won, John; Choudhury, Muhammad; Konno, Sensuke

    2012-01-01

    Although interferon (IFN) has been often used as immunotherapy for bladder cancer, its efficacy is rather unsatisfactory, demanding further improvement. Combination therapy is one of viable options, and grape seed proanthocyanidin (GSP) could be such an agent to be used with IFN because it has been shown to have anticancer activity. We thus investigated whether combination of IFN and GSP might enhance the overall antiproliferative effect on bladder cancer cells in vitro. Human bladder cancer T24 cells were employed and treated with the varying concentrations of recombinant IFN-α(2b) (0-100,000 IU/ml), GSP (0-100 μg/ml), or their combinations. IFN-α(2b) alone led to a ~50% growth reduction at 20,000 (20K) IU/ml, which further declined to ~67% at ≥50K IU/ml. Similarly, GSP alone induced a ~35% and ~100% growth reduction at 25 and ≥50 μg/ml, respectively. When IFN-α(2b) and GSP were then combined, combination of 50K IU/ml IFN-α(2b) and 25 μg/ml GSP resulted in a drastic >95% growth reduction. Cell cycle analysis indicated that such an enhanced growth inhibition was accompanied by a G(1) cell cycle arrest. This was further confirmed by Western blot analysis revealing that expressions of G(1)-specific cell cycle regulators (CDK2, CDK4, cyclin E and p27/Kip1) were distinctly modulated with such IFN-α(2b)/GSP treatment. Therefore, these findings support the notion that combination of IFN-α(2b) and GSP is capable of additively enhancing antiproliferative effect on T24 cells with a G(1) cell cycle arrest, implying an adjuvant therapeutic modality for superficial bladder cancer.

  12. Strength in numbers: Combining neck vibration and prism adaptation produces additive therapeutic effects in unilateral neglect

    PubMed Central

    Saevarsson, Styrmir; Kristjánsson, Árni; Halsband, Ulrike

    2010-01-01

    Unilateral neglect is a multifaceted disorder. Many authors have, for this reason, speculated that the best treatment for neglect will involve combinations of different therapeutic techniques. Two well known interventions, neck vibration (NV) and prism adaptation (PA), have often been considered to be among the most effective treatments for neglect. Here, two experiments were performed to explore possible additive benefits when these interventions are used in combination to treat chronic neglect. Both experimental groups received NV for 20 minutes, while the second group received simultaneous PA. The effects of treatment were measured with a time-restricted and feedback-based visual search task, which has previously been found to abolish the beneficial effects of PA, and with standard neglect tests. Baseline and intervention measures were performed on separate days. Findings for both groups indicated improved visual search following intervention, but the patients that underwent the combined intervention (NVPA) showed clear improvements on visual search based paper and pencil neglect tests unlike the NV-only group. Overall, our results suggest that PA strengthens the effects of NV and that feedback-based tasks do not abolish beneficial effects of PA, when NV is applied simultaneously. The results support the view that the most effective treatment for neglect will involve the combination of different treatments. PMID:20503132

  13. Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process Effects of Rare Earth Oxide Sintering Additives

    SciTech Connect

    Lee, S. H.; Ko, J. W.; Park, Y. J.; Kim, H. D.; Lin, Hua-Tay; Becher, Paul F

    2012-01-01

    Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, Lu2O3-SiO2 (US), La2O3-MgO (AM) and Y2O3-Al2O3 (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the La2O3-MgO system. Since the Lu2O3-SiO2 system has the highest melting temperature, full densification could not be achieved after sintering at 1950oC. However, the system had a reasonably high bending strength of 527 MPa at 1200oC in air and a high fracture toughness of 9.2 MPa m1/2. The Y2O3-Al2O3 system had the highest room temperature bending strength of 1.2 GPa

  14. Z-Earth: 4D topography from space combining short-baseline stereo and lidar

    NASA Astrophysics Data System (ADS)

    Dewez, T. J.; Akkari, H.; Kaab, A. M.; Lamare, M. L.; Doyon, G.; Costeraste, J.

    2013-12-01

    The advent of free-of-charge global topographic data sets SRTM and Aster GDEM have enabled testing a host of geoscience hypotheses. Availability of such data is now considered standard, and though resolved at 30-m to 90-m pixel size, they are today regarded as obsolete and inappropriate given the regularly updated sub-meter imagery coming through web services like Google Earth. Two features will thus help meet the current topographic data needs of the Geoscience communities: field-scale-compatible elevation datasets (i.e. meter-scale digital models and sub-meter elevation precision) and provision for regularly updated topography to tackle earth surface changes in 4D, while retaining the key for success: data availability at no charge. A new space borne instrumental concept called Z-Earth has undergone phase 0 study at CNES, the French space agency to fulfill these aims. The scientific communities backing this proposal are that of natural hazards, glaciology and biomass. The system under study combines a short-baseline native stereo imager and a lidar profiler. This combination provides spatially resolved elevation swaths together with absolute along-track elevation control point profiles. Acquisition is designed for revisit time better than a year. Intended products not only target single pass digital surface models, color orthoimages and small footprint full-wave-form lidar profiles to update existing topographic coverage, but also time series of them. 3D change detection targets centimetre-scale horizontal precision and metric vertical precision, in complement of -now traditional- spectral change detection. To assess the actual concept value, two real-size experiments were carried out. We used sub-meter-scale Pleiades panchromatic stereo-images to generate digital surface models and check them against dense airborne lidar coverages, one heliborne set purposely flown in Corsica (50-100pts/sq.m) and a second one retrieved from OpenTopography.org (~10pts/sq.m.). In

  15. Irradiation and additive combinations on the pathogen reduction and quality of poultry meat.

    PubMed

    Ahn, Dong U; Kim, Il Suk; Lee, Eun Joo

    2013-02-01

    Reduction of foodborne illnesses and deaths by improving the safety of poultry products is one of the priority areas in the United States, and developing and implementing effective food processing technologies can be very effective to accomplish that goal. Irradiation is an effective processing technology for eliminating pathogens in poultry meat. Addition of antimicrobial agents during processing can be another approach to control pathogens in poultry products. However, the adoption of irradiation technology by the meat industry is limited because of quality and health concerns about irradiated meat products. Irradiation produces a characteristic aroma as well as alters meat flavor and color that significantly affect consumer acceptance. The generation of a pink color in cooked poultry and off-odor in poultry by irradiation is a critical issue because consumers associate the presence of a pink color in cooked poultry breast meat as contaminated or undercooked, and off-odor in raw meat and off-flavor in cooked meat with undesirable chemical reactions. As a result, the meat industry has difficulties in using irradiation to achieve its food safety benefits. Antimicrobials such as sodium lactate, sodium diacetate, and potassium benzoate are extensively used to extend the shelf-life and ensure the safety of meat products. However, the use of these antimicrobial agents alone cannot guarantee the safety of poultry products. It is known that some of the herbs, spices, and antimicrobials commonly used in meat processing can have synergistic effects with irradiation in controlling pathogens in meat. Also, the addition of spices or herbs in irradiated meat improves the quality of irradiated poultry by reducing lipid oxidation and production of off-odor volatiles or masking off-flavor. Therefore, combinations of irradiation with these additives can accomplish better pathogen reduction in meat products than using them alone even at lower levels of antimicrobials/herbs and

  16. Comparison of particle swarm optimization and simulated annealing for locating additional boreholes considering combined variance minimization

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Safa, Mohammad; Mokhtari, Hadi

    2016-10-01

    One of the most important stages in complementary exploration is optimal designing the additional drilling pattern or defining the optimum number and location of additional boreholes. Quite a lot research has been carried out in this regard in which for most of the proposed algorithms, kriging variance minimization as a criterion for uncertainty assessment is defined as objective function and the problem could be solved through optimization methods. Although kriging variance implementation is known to have many advantages in objective function definition, it is not sensitive to local variability. As a result, the only factors evaluated for locating the additional boreholes are initial data configuration and variogram model parameters and the effects of local variability are omitted. In this paper, with the goal of considering the local variability in boundaries uncertainty assessment, the application of combined variance is investigated to define the objective function. Thus in order to verify the applicability of the proposed objective function, it is used to locate the additional boreholes in Esfordi phosphate mine through the implementation of metaheuristic optimization methods such as simulated annealing and particle swarm optimization. Comparison of results from the proposed objective function and conventional methods indicates that the new changes imposed on the objective function has caused the algorithm output to be sensitive to the variations of grade, domain's boundaries and the thickness of mineralization domain. The comparison between the results of different optimization algorithms proved that for the presented case the application of particle swarm optimization is more appropriate than simulated annealing.

  17. Aromatase inhibiting and combined estrogenic effects of parabens and estrogenic effects of other additives in cosmetics

    SciTech Connect

    Meeuwen, J.A. van Son, O. van; Piersma, A.H.; Jong, P.C. de; Berg, M. van den

    2008-08-01

    There is concern widely on the increase in human exposure to exogenous (anti)estrogenic compounds. Typical are certain ingredients in cosmetic consumer products such as musks, phthalates and parabens. Monitoring a variety of human samples revealed that these ingredients, including the ones that generally are considered to undergo rapid metabolism, are present at low levels. In this in vitro research individual compounds and combinations of parabens and endogenous estradiol (E{sub 2}) were investigated in the MCF-7 cell proliferation assay. The experimental design applied a concentration addition model (CA). Data were analyzed with the estrogen equivalency (EEQ) and method of isoboles approach. In addition, the catalytic inhibitory properties of parabens on an enzyme involved in a rate limiting step in steroid genesis (aromatase) were studied in human placental microsomes. Our results point to an additive estrogenic effect in a CA model for parabens. In addition, it was found that parabens inhibit aromatase. Noticeably, the effective levels in both our in vitro systems were far higher than the levels detected in human samples. However, estrogenic compounds may contribute in a cumulative way to the circulating estrogen burden. Our calculation for the extra estrogen burden due to exposure to parabens, phthalates and polycyclic musks indicates an insignificant estrogenic load relative to the endogenous or therapeutic estrogen burden.

  18. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    NASA Astrophysics Data System (ADS)

    Stijfhoorn, D. E.; Stray, H.; Hjelmseth, H.

    1993-03-01

    A high-performance liquid Chromatographie (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2O 3, Gd 2O 3 and Dy 2O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS are presented.

  19. Effect of rare earth metal Ce addition to Sn-Ag solder on interfacial reactions with Cu substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2014-05-01

    The effect of adding a small amount of rare earth cerium (Ce) element to low Ag containing Sn-1wt%Ag Pb-free solder on its interfacial reactions with Cu substrate was investigated. The growth of intermetallic compounds (IMCs) between three Sn-1Ag-xCe solders with different Ce contents and a Cu substrate was studied and the results were compared to those obtained for the Ce-free Sn-1Ag/Cu systems. In the solid-state reactions of the Sn-1Ag(-xCe)/Cu solder joints, the two IMC layers, Cu6Sn5 and Cu3Sn, grew as aging time increased. Compared to the Sn-1Ag/Cu joint, the growth of the Cu6Sn5 and Cu3Sn layers was depressed for the Ce-containing Sn-1Ag-xCe/Cu joint. The addition of Ce to the Sn-Ag solder reduced the growth of the interfacial Cu-Sn IMCs and prevented the IMCs from spalling from the interface. The evenly-distributed Ce elements in the solder region blocked the diffusion of Sn atoms to the interface and retarded the growth of the interfacial IMC layer.

  20. THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS

    SciTech Connect

    Berta, Zachory K.; Charbonneau, David; Bean, Jacob; Irwin, Jonathan; Burke, Christopher J.; Desert, Jean-Michel; Nutzman, Philip; Falco, Emilio E.

    2011-07-20

    The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. We analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 {+-} 0.03.

  1. Hydrothermal preparation of diatomaceous earth combined with calcium silicate hydrate gels.

    PubMed

    Maeda, Hirotaka; Ishida, Emile Hideki

    2011-01-30

    A novel composite for the removal of color in waste water was prepared by subjecting slurries consisting diatomaceous earth and slaked lime to a hydrothermal reaction at 180 °C. Subsequently, calcium silicate hydrate gels covered the surface of diatomaceous earth due to the reaction between the amorphous silica of diatomaceous earth and slaked lime. The formation of calcium silicate hydrate gels led to an increase in the specific surface area. The composites showed higher methylene blue adsorption capacity compared with diatomaceous earth. The improved adsorption capacity of the composites depended on the amount of the calcium silicate hydrate gels and their silicate anion chain-lengths.

  2. Multiscale 3D manufacturing: combining thermal extrusion printing with additive and subtractive direct laser writing

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Lukoševičius, Laurynas; MackevičiÅ«tÄ--, DovilÄ--; BalčiÅ«nas, Evaldas; RekštytÄ--, Sima; Paipulas, Domas

    2014-05-01

    A novel approach for efficient manufacturing of three-dimensional (3D) microstructured scaffolds designed for cell studies and tissue engineering applications is presented. A thermal extrusion (fused filament fabrication) 3D printer is employed as a simple and low-cost tabletop device enabling rapid materialization of CAD models out of biocompatible and biodegradable polylactic acid (PLA). Here it was used to produce cm- scale microporous (pore size varying from 100 to 400 µm) scaffolds. The fabricated objects were further laser processed in a direct laser writing (DLW) subtractive (ablation) and additive (lithography) manners. The first approach enables precise surface modification by creating micro-craters, holes and grooves thus increasing the surface roughness. An alternative way is to immerse the 3D PLA scaffold in a monomer solution and use the same DLW setup to refine its inner structure by fabricating dots, lines or a fine mesh on top as well as inside the pores of previously produced scaffolds. The DLW technique is empowered by ultrafast lasers - it allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. Structure geometry on macro- to micro- scales could be finely tuned by combining these two fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro- featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of ms, microfluidics, microoptics and many others.

  3. Inactivation of Bacillus subtilis spores using various combinations of ultraviolet treatment with addition of hydrogen peroxide.

    PubMed

    Zhang, Yiqing; Zhou, Lingling; Zhang, Yongji; Tan, Chaoqun

    2014-01-01

    This study aims at comparing the inactivation of Bacillus subtilis spores by various combinations of UV treatment and hydrogen peroxide (H2O2) addition. The combinations included sequential (UV-H2O2, H2O2-UV) and simultaneous (UV/H2O2) processes. Results showed that B. subtilis spores achieved a certain inactivation effect through UV treatment. However, hardly any inactivation effect by H2O2 alone was observed. H2O2 had a significant synergetic effect when combined with UV treatment, while high irradiance and H2O2 concentration both favored the reaction. When treated with 0.60 mm H2O2 and 113.0 μW/cm(2) UV irradiance for 6 min, the simultaneous UV/H2O2 treatment showed significantly improved disinfection effect (4.13 log) compared to that of UV-H2O2 (3.03 log) and H2O2-UV (2.88 log). The relationship between the inactivation effect and the exposure time followed a typical pseudo-first-order kinetics model. The pseudo-first-order rate constants were 0.478, 0.447 and 0.634 min(-1), for the UV-H2O2, H2O2-UV and UV/H2O2 processes, respectively, further confirming the optimal disinfection effect of the UV/H2O2 process. The disinfection could be ascribed to the OH radicals, as verified by the level of para-chlorobenzoic acid (pCBA).

  4. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Yuan, Lulu; Yao, Chenjie; Ding, Lin; Li, Chenchen; Fang, Jie; Sui, Keke; Liu, Yuanfang; Wu, Minghong

    2014-11-01

    At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the cytotoxicity significantly compared with that of the ZnO only NPs. When the cells were exposed to ZnO NPs at a concentration less than 15 mg L-1, or to Vc at a concentration less than 300 mg L-1, there was no significant cytotoxicity, both in the case of gastric epithelial cell line (GES-1) and neural stem cells (NSCs). However, when 15 mg L-1 of ZnO NPs and 300 mg L-1 of Vc were introduced to cells together, the cell viability decreased sharply indicating significant cytotoxicity. Moreover, the significant increase in toxicity was also shown in the in vivo experiments. The dose of the ZnO NPs and Vc used in the in vivo study was calculated according to the state of food and nutrition enhancer standard. After repeated oral exposure to ZnO NPs plus Vc, the injury of the liver and kidneys in mice has been indicated by the change of these indices. These findings demonstrate that the synergistic toxicity presented in a complex system is essential for the toxicological evaluation and safety assessment of nanofood.At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the

  5. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives.

    PubMed

    Wang, Yanli; Yuan, Lulu; Yao, Chenjie; Ding, Lin; Li, Chenchen; Fang, Jie; Sui, Keke; Liu, Yuanfang; Wu, Minghong

    2014-12-21

    At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the cytotoxicity significantly compared with that of the ZnO only NPs. When the cells were exposed to ZnO NPs at a concentration less than 15 mg L(-1), or to Vc at a concentration less than 300 mg L(-1), there was no significant cytotoxicity, both in the case of gastric epithelial cell line (GES-1) and neural stem cells (NSCs). However, when 15 mg L(-1) of ZnO NPs and 300 mg L(-1) of Vc were introduced to cells together, the cell viability decreased sharply indicating significant cytotoxicity. Moreover, the significant increase in toxicity was also shown in the in vivo experiments. The dose of the ZnO NPs and Vc used in the in vivo study was calculated according to the state of food and nutrition enhancer standard. After repeated oral exposure to ZnO NPs plus Vc, the injury of the liver and kidneys in mice has been indicated by the change of these indices. These findings demonstrate that the synergistic toxicity presented in a complex system is essential for the toxicological evaluation and safety assessment of nanofood.

  6. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature.

    PubMed

    Dieleman, Wouter I J; Vicca, Sara; Dijkstra, Feike A; Hagedorn, Frank; Hovenden, Mark J; Larsen, Klaus S; Morgan, Jack A; Volder, Astrid; Beier, Claus; Dukes, Jeffrey S; King, John; Leuzinger, Sebastian; Linder, Sune; Luo, Yiqi; Oren, Ram; De Angelis, Paolo; Tingey, David; Hoosbeek, Marcel R; Janssens, Ivan A

    2012-09-01

    In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]-only treatment than to those in the warming-only treatment. In contrast to warming-only experiments, both the combined and the [ CO2 ]-only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]-only treatment, possibly due to the warming-induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less-than-additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long-term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our

  7. A conservative method of testing whether combination analgesics produce additive or synergistic effects using evidence from acute pain and migraine.

    PubMed

    Moore, R A; Derry, C J; Derry, S; Straube, S; McQuay, H J

    2012-04-01

    Fixed-dose combination analgesics are used widely, and available both on prescription and over-the-counter. Combination drugs should provide more analgesia than with any single drug in the combination, but there is no evidence in humans about whether oral combinations have just additive effects, or are synergistic or even subadditive. We suggest that the measured result for the combination would be the summation of the absolute benefit increase (effect of active drug minus effect of placebo) of each component of a combination if effects were (merely) additive, and greater than the sum of the absolute benefits if they were synergistic. We tested measured effects of combination analgesics against the sum of the absolute benefits in acute pain and migraine using meta-analysis where individual components and combinations were tested against placebo in the same trials, and verified the result with meta-analyses where individual components and combinations were tested against placebo in different trials. Results showed that expected numbers needed to treat (NNT) for additive effects were generally within the 95% confidence interval of measured NNTs. This was true for combinations of paracetamol plus ibuprofen and paracetamol plus opioids in acute pain, and naproxen plus sumatriptan in migraine, but not where efficacy was very low or very high, nor combinations of paracetamol plus dextropropoxyphene. There was no evidence of synergy, defined as supra-additive effects.

  8. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.

    PubMed

    Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank

    2015-01-01

    Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates.

  9. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies.

    PubMed

    Hengsbach, Stefan; Lantada, Andrés Díaz

    2014-08-01

    The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

  10. Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight

    SciTech Connect

    Froning, H. D. Jr; Yang, Yang; Momota, H.; Burton, E.; Miley, G. H.; Luo, Nie

    2005-02-06

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.

  11. Combination inhaled steroid and long-acting beta2-agonist in addition to tiotropium versus tiotropium or combination alone for chronic obstructive pulmonary disease

    PubMed Central

    Karner, Charlotta; Cates, Christopher J

    2014-01-01

    Background The long-acting bronchodilator tiotropium and single inhaler combination therapy of inhaled corticosteroids and long-acting beta2-agonists are both commonly used for maintenance treatment of chronic obstructive pulmonary disease. Combining these treatments, which have different mechanisms of action, may be more effective than the individual components. However, the benefits and risks of using tiotropium and combination therapy together for the treatment of chronic obstructive pulmonary disease are unclear. Objectives To assess the relative effects of inhaled corticosteroid and long-acting beta2-agonist combination therapy in addition to tiotropium compared to tiotropium or combination therapy alone in patients with chronic obstructive pulmonary disease. Search methods We searched the Cochrane Airways Group Specialised Register of trials (July 2010) and reference lists of articles. Selection criteria We included parallel, randomised controlled trials of three months or longer, comparing inhaled corticosteroid and long-acting beta2-agonists combination therapy in addition to inhaled tiotropium against tiotropium alone or combination therapy alone. Data collection and analysis We independently assessed trials for inclusion and then extracted data on trial quality and outcome results. We contacted study authors for additional information. We collected information on adverse effects from the trials. Main results Three trials (1021 patients) were included comparing tiotropium in addition to inhaled corticosteroid and long-acting beta2-agonist combination therapy to tiotropium alone. The duration, type of combination treatment and definition of outcomes varied. The limited data led to wide confidence intervals and there was no significant statistical difference in mortality, participants with one or more hospitalisations, episodes of pneumonia or adverse events. The results on exacerbations were heterogeneous and were not combined. The mean health

  12. Let Our Powers Combine! Harnessing NASA's Earth Observatory Natural Event Tracker (EONET) in Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Ward, Kevin; Boller, Ryan; Gunnoe, Taylor; Baynes, Kathleen; King, Benjamin

    2016-01-01

    Constellations of NASA Earth Observing System (EOS) satellites orbit the earth to collect images and data about the planet in near real-time. Within hours of satellite overpass, you can discover where the latest wildfires, severe storms, volcanic eruptions, and dust and haze events are occurring using NASA's Worldview web application. By harnessing a repository of curated natural event metadata from NASA Earth Observatory's Natural Event Tracker (EONET), Worldview has moved natural event discovery to the forefront and allows users to select events-of-interest from a curated list, zooms to the area, and adds the most relevant imagery layers for that type of natural event. This poster will highlight NASA Worldviews new natural event feed functionality.

  13. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  14. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  15. Elevated CO2 promotes long-term nitrogen accumulation only in combination with nitrogen addition.

    PubMed

    Pastore, Melissa A; Megonigal, J Patrick; Langley, J Adam

    2016-01-01

    Biogeochemical models that incorporate nitrogen (N) limitation indicate that N availability will control the magnitude of ecosystem carbon uptake in response to rising CO2 . Some models, however, suggest that elevated CO2 may promote ecosystem N accumulation, a feedback that in the long term could circumvent N limitation of the CO2 response while mitigating N pollution. We tested this prediction using a nine-year CO2 xN experiment in a tidal marsh. Although the effects of CO2 are similar between uplands and wetlands in many respects, this experiment offers a greater likelihood of detecting CO2 effects on N retention on a decadal timescale because tidal marshes have a relatively open N cycle and can accrue soil organic matter rapidly. To determine how elevated CO2 affects N dynamics, we assessed the three primary fates of N in a tidal marsh: (1) retention in plants and soil, (2) denitrification to the atmosphere, and (3) tidal export. We assessed changes in N pools and tracked the fate of a (15) N tracer added to each plot in 2006 to quantify the fraction of added N retained in vegetation and soil, and to estimate lateral N movement. Elevated CO2 alone did not increase plant N mass, soil N mass, or (15) N label retention. Unexpectedly, CO2 and N interacted such that the combined N+CO2 treatment increased ecosystem N accumulation despite the stimulation in N losses indicated by reduced (15) N label retention. These findings suggest that in N-limited ecosystems, elevated CO2 is unlikely to increase long-term N accumulation and circumvent progressive N limitation without additional N inputs, which may relieve plant-microbe competition and allow for increased plant N uptake.

  16. Anion-exchangeable layered materials based on rare-earth phosphors: unique combination of rare-earth host and exchangeable anions.

    PubMed

    Geng, Fengxia; Ma, Renzhi; Sasaki, Takayoshi

    2010-09-21

    between high- and low-hydrated phases corresponds to the uptake of H(2)O molecules at the capping site, which provides further evidence of the importance of water coordination. Applications using this unique combination of rare-earth element chemistry and layered materials include ion-exchange, photoluminescence, catalysis, and biomedical devices. Further exploration of the compounds and new methods for functional modification would dramatically enrich the junction of these two fields, leading to a new generation of layered materials with desirable properties.

  17. A combined Earth scanner and momentum wheel for attitude determination and control of small spacecraft

    NASA Technical Reports Server (NTRS)

    Bialke, Bill

    1992-01-01

    In order to satisfy the stringent cost and power requirements of small satellites, an advanced SCANWHEEL was designed, built, and qualified by ITHACO, Inc. The T-SCANWHEEL is a modular momentum/reaction wheel with an integral conical Earth scanner. The momentum wheel provides momentum bias and control torques about the pitch axis of a spacecraft. An angled scan mirror coupled to the rotating shaft of the momentum wheel provides a conical scan of the field-of-view of an infrared sensor to provide pitch-and-roll attitude information. By using the same motor and bearings for the momentum wheel and Earth scanner, the overall power consumption is reduced and the system reliability is enhanced. The evolution of the T-SCANWHEEL is presented, including design ground rules, tradeoff analyses, and performance results.

  18. Synergistic photocatalytic hydrogen evolution over oxide nanosheets combined with photochemically inert additives.

    PubMed

    Nakato, Teruyuki; Fujita, Takako; Mouri, Emiko

    2015-02-28

    Photocatalytic hydrogen evolution over semiconducting niobate nanosheets is synergistically improved by coexisting photochemically inactive additives of clay particles and sodium chloride without precise nanoscopic structural regulation. In addition, the Pt cocatalyst loaded on the clay particles works better than that photodeposited on the photocatalytic nanosheets.

  19. Improvement in properties of coal water slurry by combined use of new additive and ultrasonic irradiation.

    PubMed

    Guo, Zhaobing; Feng, Ruo; Zheng, Youfei; Fu, Xiaoru

    2007-07-01

    Coal water slurry (CWS) was prepared with a newly developed additive from naphthalene oil. The effects of ultrasonic irradiation on coal particle size distribution (PSD), adsorption behavior of additive in coal particles and the characteristics of CWS were investigated. Results showed that ultrasonic irradiation led to a higher proportion of fine coal in CWS and increased the saturated adsorption amount of additive in coal particles. In addition, the rheological behavior and static stability of CWS irradiated by ultrasonic wave were remarkably improved. The changes on viscosity of CWS containing 1% and 2% additive are qualitatively different with the increasing sonication time studied. The reason for the different effect of sonication time on CWS viscosity is presented in this study.

  20. Economic impact of stimulated technological activity. Part 3: Case study, knowledge additions and earth links from space crew systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A case study of knowledge contributions from the crew life support aspect of the manned space program is reported. The new information needed to be learned, the solutions developed, and the relation of new knowledge gained to earthly problems were investigated. Illustrations are given in the following categories: supplying atmosphere for spacecraft; providing carbon dioxide removal and recycling; providing contaminant control and removal; maintaining the body's thermal balance; protecting against the space hazards of decompression, radiation, and meteorites; minimizing fire and blast hazards; providing adequate light and conditions for adequate visual performance; providing mobility and work physiology; and providing adequate habitability.

  1. Fostering First Graders' Fluency with Basic Subtraction and Larger Addition Combinations via Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Baroody, Arthur J.; Purpura, David J.; Eiland, Michael D.; Reid, Erin E.

    2014-01-01

    Achieving fluency with basic subtraction and add-with-8 or -9 combinations is difficult for primary grade children. A 9-month training experiment entailed evaluating the efficacy of software designed to promote such fluency via guided learning of reasoning strategies. Seventy-five eligible first graders were randomly assigned to one of three…

  2. Berberine in Combination with Insulin Has Additive Effects on Titanium Implants Osseointegration in Diabetes Mellitus Rats.

    PubMed

    Lu, Li; Zhijian, Huang; Lei, Li; Wenchuan, Chen; Zhimin, Zhu

    2015-01-01

    This study evaluated the effects of berberine in combination with insulin on early osseointegration of implants in diabetic rats. Fifty male Sprague-Dawley rats were randomly divided into 5 groups: healthy rats were used as control (HC), and streptozotocin-induced diabetic rats were treated with insulin, berberine, berberine + insulin (IB), or no treatment. Each rat received one machined-surface cp-Ti implant into the right tibia and was given insulin injection and/or gavage feeding with berberine daily for 8 weeks until being sacrificed. Serum levels of alkaline phosphatase (ALP) and bone gamma-carboxyglutamic acid-containing protein (BGP) were analyzed in each group. Peri-implant mineral apposition was marked by fluorochrome double-labeling and osseointegration was histomorphologically examined. The ALP and BGP levels decreased in diabetic rats but were successfully corrected by insulin and berberine combined treatment. Moreover, untreated diabetic rats had less labeled mineral apposition and impaired osseointegration. In contrast, Groups I, B, and IB were observed with increased peri-implant bone formation. The combination treatment of insulin and berberine was more effective than each administrated as a monotherapy. These results suggest that berberine combined with insulin could promote osseointegration in diabetic rats, thereby highlighting its potential application to patients, though further studies are needed.

  3. Berberine in Combination with Insulin Has Additive Effects on Titanium Implants Osseointegration in Diabetes Mellitus Rats

    PubMed Central

    Lu, Li; Zhijian, Huang; Lei, Li; Wenchuan, Chen; Zhimin, Zhu

    2015-01-01

    This study evaluated the effects of berberine in combination with insulin on early osseointegration of implants in diabetic rats. Fifty male Sprague-Dawley rats were randomly divided into 5 groups: healthy rats were used as control (HC), and streptozotocin-induced diabetic rats were treated with insulin, berberine, berberine + insulin (IB), or no treatment. Each rat received one machined-surface cp-Ti implant into the right tibia and was given insulin injection and/or gavage feeding with berberine daily for 8 weeks until being sacrificed. Serum levels of alkaline phosphatase (ALP) and bone gamma-carboxyglutamic acid-containing protein (BGP) were analyzed in each group. Peri-implant mineral apposition was marked by fluorochrome double-labeling and osseointegration was histomorphologically examined. The ALP and BGP levels decreased in diabetic rats but were successfully corrected by insulin and berberine combined treatment. Moreover, untreated diabetic rats had less labeled mineral apposition and impaired osseointegration. In contrast, Groups I, B, and IB were observed with increased peri-implant bone formation. The combination treatment of insulin and berberine was more effective than each administrated as a monotherapy. These results suggest that berberine combined with insulin could promote osseointegration in diabetic rats, thereby highlighting its potential application to patients, though further studies are needed. PMID:26783411

  4. Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries

    PubMed Central

    Chang, Aileen Y; Parrales, Maria E; Jimenez, Javier; Sobieszczyk, Magdalena E; Hammer, Scott M; Copenhaver, David J; Kulkarni, Rajan P

    2009-01-01

    Background Dengue fever is a mosquito-borne illness that places significant burden on tropical developing countries with unplanned urbanization. A surveillance system using Google Earth and GIS mapping technologies was developed in Nicaragua as a management tool. Methods and Results Satellite imagery of the town of Bluefields, Nicaragua captured from Google Earth was used to create a base-map in ArcGIS 9. Indices of larval infestation, locations of tire dumps, cemeteries, large areas of standing water, etc. that may act as larval development sites, and locations of the homes of dengue cases collected during routine epidemiologic surveying were overlaid onto this map. Visual imagery of the location of dengue cases, larval infestation, and locations of potential larval development sites were used by dengue control specialists to prioritize specific neighborhoods for targeted control interventions. Conclusion This dengue surveillance program allows public health workers in resource-limited settings to accurately identify areas with high indices of mosquito infestation and interpret the spatial relationship of these areas with potential larval development sites such as garbage piles and large pools of standing water. As a result, it is possible to prioritize control strategies and to target interventions to highest risk areas in order to eliminate the likely origin of the mosquito vector. This program is well-suited for resource-limited settings since it utilizes readily available technologies that do not rely on Internet access for daily use and can easily be implemented in many developing countries for very little cost. PMID:19627614

  5. Combined effect of alkali pretreatment and sodium chloride addition on the olive fermentation process.

    PubMed

    Chammem, N; Kachouri, M; Mejri, M; Peres, C; Boudabous, A; Hamdi, M

    2005-07-01

    Green olives of the Tunisian variety "Meski" were treated according to a Spanish-style green olive preservation process by using an alkaline treatment (1.5, 2 and 2.5% (w/v) NaOH) to eliminate bitterness, combined with different brine concentrations (6, 9 and 12% (w/v) NaCl). A spontaneous fermentation by the environmental microflora took place. Results showed that 2% NaOH solution and 9% sodium chloride brine was an optimal combination inducing the best growth of Lactobacillus species (10(8) CFU/ml) and acidity of 0.726 g lactic acid/100 ml brine. In all trials and independently of the treatment, Lb. plantarum was the most dominant strain of Lactobacillus. Moreover, pretreatment with lye and lactic fermentation of olives contributed to coliform elimination.

  6. [Obstetrical APS: Is there a place for additional treatment to aspirin-heparin combination?

    PubMed

    Mekinian, A; Kayem, G; Cohen, J; Carbillon, L; Abisror, N; Josselin-Mahr, L; Bornes, M; Fain, O

    2017-01-01

    Obstetrical APS is defined by thrombosis and/or obstetrical morbidity associated with persistent antiphospholipid antibodies. The aspirin and low molecular weighted heparin combination dramatically improved obstetrical outcome in APS patients. Several factors could be associated with obstetrical prognosis, as previous history of thrombosis, associated SLE, the presence of lupus anticoagulant and triple positivity of antiphospholipid antibodies. Obstetrical APS with isolated recurrent miscarriages is mostly associated with isolated anticardiolipids antibodies and have better obstetrical outcome. The pregnancy loss despite aspirin and heparin combination define the refractory obstetrical APS, and the prevalence could be estimated to 20-39%. Several other treatments have been used in small and open labeled studies, as steroids, intravenous immunoglobulins, plasma exchanges and hydroxychloroquine to improve the obstetrical outcome. Some other drugs as eculizumab and statins could also have physiopathological rational, but studies are necessary to define the place of these various drugs.

  7. Plants with genetically modified events combined by conventional breeding: an assessment of the need for additional regulatory data.

    PubMed

    Pilacinski, W; Crawford, A; Downey, R; Harvey, B; Huber, S; Hunst, P; Lahman, L K; MacIntosh, S; Pohl, M; Rickard, C; Tagliani, L; Weber, N

    2011-01-01

    Crop varieties with multiple GM events combined by conventional breeding have become important in global agriculture. The regulatory requirements in different countries for such products vary considerably, placing an additional burden on regulatory agencies in countries where the submission of additional data is required and delaying the introduction of innovative products to meet agricultural needs. The process of conventional plant breeding has predictably provided safe food and feed products both historically and in the modern era of plant breeding. Thus, previously approved GM events that have been combined by conventional plant breeding and contain GM traits that are not likely to interact in a manner affecting safety should be considered to be as safe as their conventional counterparts. Such combined GM event crop varieties should require little, if any, additional regulatory data to meet regulatory requirements.

  8. Investigation of Karst Cavities and Earth Subsidence with Combined Application of Boring and Geophysics in the Progress of High-Speed Railway Routes

    NASA Astrophysics Data System (ADS)

    Lehmann, Bodo; Pöttler, Rudolf; Radinger, Alexander; Kühne, Manfred

    In Germany there are a lot of new high-speed railways in planning or under construction. One of these is the new Nuremberg - Ingolstadt railway line and the updated line from Ingolstadt to Munich. These two lines will form part of a high-speed trans-European railway link from Scandinavia via Berlin to Munich and Verona. The 78 km railway line construction project has been divided into three contract sections: Contract Section North, mainly characterised by pure earth and bridge works; Contract Section Centre, with the emphasis mainly on tunnel construction; and Contract Section South, combining earthworks and tunnelling. Extensive geophysical investigations combined with borings are carried out in critical areas between Nuremberg and Ingolstadt. The target of this geological exploration phase is mainly the detection of karst pits and earth subsidences (dolines). In this area these geological objects are an important aspect for the stability and permanent serviceability of the high-speed railway routes. The exploration concept on the open stretch consists of combined geological enquiry, geotechnical work, geophysical investigations and borings, which are positioned at the found anomalies of geophysics. The survey leads to a common interpretation of all information and results. After several test campaigns the combination of at least two geophysical methods yields to the best results. Dependent on the thickness of the overburden layer seismics, micro-gravity and/or georadar are applied from the surface. Additionally tomographic methods are used between boreholes for special topics. Important for the success of the investigation in difficult geological areas are the excellent co-operation between all scientists, engineers and technicians (geologists, geotechnicians, geophysicists, driller, consultants, etc.).

  9. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    PubMed

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  10. Evaluating the additivity of perfluoroalkyl acids in binary combinations on peroxisome proliferator-activated receptor-α activation.

    PubMed

    Wolf, Cynthia J; Rider, Cynthia V; Lau, Christopher; Abbott, Barbara D

    2014-02-28

    Perfluoroalkyl acids (PFAAs) are found globally in the environment, detected in humans and wildlife, and are typically present as mixtures of PFAA congeners. Mechanistic studies have found that responses to PFAAs are mediated in part by PPARα. Our previous studies showed that individual PFAAs activate PPARα transfected into COS-1 cells. The goal of the current study was to determine if binary combinations of perfluorooctanoic acid (PFOA) and another PFAA act in an additive fashion to activate PPARα in the mouse one-hybrid in vitro model. COS-1 cells were transiently transfected with mouse PPARα luciferase reporter construct and exposed to either vehicle control (0.1% DMSO or water), PPARα agonist (WY14643, 10 μM), PFOA at 1-128μM, perfluorononanoic acid (PFNA) at 1-128 μM, perfluorohexanoic acid (PFHxA) at 8-1024 μM, perfluorooctane sulfonate (PFOS) at 4-384 μM or perfluorohexane sulfonate (PFHxS) at 8-2048 μM to generate sigmoidal concentration-response curves. In addition, cells were exposed to binary combinations of PFOA+either PFNA, PFHxA, PFOS or PFHxS in an 8×8 factorial design. The concentration-response data for individual chemicals were fit to sigmoidal curves and analyzed with nonlinear regression to generate EC₅₀s and Hillslopes, which were used in response-addition and concentration-addition models to calculate predicted responses for mixtures in the same plate. All PFOA+PFAA combinations produced concentration-response curves that were closely aligned with the predicted curves for both response addition and concentration addition at low concentrations. However, at higher concentrations of all chemicals, the observed response curves deviated from the predicted models of additivity. We conclude that binary combinations of PFAAs behave additively at the lower concentration ranges in activating PPARα in this in vitro system.

  11. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd.

    PubMed

    Lu, Huanping; Li, Zhian; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2015-01-01

    The main goal of phytoremediation is to improve ecosystem functioning. Soil biochemical properties are considered as effective indicators of soil quality and are sensitive to various environmental stresses, including heavy metal contamination. The biochemical response in a soil contaminated with cadmium was tested after several treatments aimed to reduce heavy metal availability including liming, biochar addition and phytoextraction using Amaranthus tricolor L. Two biochars were added to the soil: eucalyptus pyrolysed at 600 °C (EB) and poultry litter at 400 °C (PLB). Two liming treatments were chosen with the aim of bringing soil pH to the same values as in the treatments EB and PLB. The properties studied included soil microbial biomass C, soil respiration and the activities of invertase, β-glucosidase, β-glucosaminidase, urease and phosphomonoesterase. Both phytoremediation and biochar addition improved soil biochemical properties, although results were enzyme specific. For biochar addition these changes were partly, but not exclusively, mediated by alterations in soil pH. A careful choice of biochar must be undertaken to optimize the remediation process from the point of view of metal phytoextraction and soil biological activity.

  12. Rainfall estimation by rain gauge-radar combination: A concurrent multiplicative-additive approach

    NASA Astrophysics Data System (ADS)

    GarcíA-Pintado, Javier; Barberá, Gonzalo G.; Erena, Manuel; Castillo, Victor M.

    2009-01-01

    A procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) is proposed for operational rainfall estimation using rain gauges and radar data. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on Barnes' objective analysis scheme (OAS), whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, a spatially variable adjustment with multiplicative factors, and ordinary cokriging.

  13. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  14. Potential of Hazardous Waste Encapsulation in Concrete Compound Combination with Coal Ash and Quarry Fine Additives.

    PubMed

    Lieberman, Roy Nir; Anker, Yaakov; Font, Oriol; Querol, Xavier; Mastai, Yitzhak; Knop, Yaniv; Cohen, Haim

    2015-12-15

    Coal power plants are producing huge amounts of coal ash that may be applied to a variety of secondary uses. Class F fly ash may act as an excellent scrubber and fixation reagent for highly acidic wastes, which might also contain several toxic trace elements. This paper evaluates the potential of using Class F fly ashes (<20% CaO), in combination with excessive fines from the limestone quarry industry as a fixation reagent. The analysis included leaching experiments (EN12457-2) and several analytical techniques (ICP, SEM, XRD, etc.), which were used in order to investigate the fixation procedure. The fine sludge is used as a partial substitute in concrete that can be used in civil engineering projects, as it an environmentally safe product.

  15. Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling.

    PubMed

    Corsetti, A; Gobbetti, M; De Marco, B; Balestrieri, F; Paoletti, F; Russi, L; Rossi, J

    2000-07-01

    The effect of various sourdoughs and additives on bread firmness and staling was studied. Compared to the bread produced with Saccharomyces cerevisiae 141, the chemical acidification of dough fermented by S. cerevisiae 141 or the use of sourdoughs increased the volume of the breads. Only sourdough fermentation was effective in delaying starch retrogradation. The effect depended on the level of acidification and on the lactic acid bacteria strain. The effect of sourdough made of S. cerevisiae 141-Lactobacillus sanfranciscensis 57-Lactobacillus plantarum 13 was improved when fungal alpha-amylase or amylolytic strains such as L. amylovorus CNBL1008 or engineered L. sanfranciscensis CB1 Amy were added. When pentosans or pentosans, endoxylanase enzyme, and L. hilgardii S32 were added to the same sourdough, a greater delay of the bread firmness and staling was found. When pentosans were in part hydrolyzed by the endoxylanase enzyme, the bread also had the highest titratable acidity, due to the fermentation of pentoses by L. hilgardii S32. The addition of the bacterial protease to the sourdough increased the bread firmness and staling.

  16. THE COMBINED CARCINOGENIC RISK FOR EXPOSURE TO MIXTURES OF DRINKING WATER DISINFECTION BY-PRODUCTS MAY BE LESS THAN ADDITIVE

    EPA Science Inventory

    The Combined Carcinogenic Risk for Exposure to Mixtures of Drinking Water Disinfection By-Products May be Less Than Additive

    Risk assessment methods for chemical mixtures in drinking water are not well defined. Current default risk assessments for chemical mixtures assume...

  17. Enantioselective C-H bond addition of pyridines to alkenes catalyzed by chiral half-sandwich rare-earth complexes.

    PubMed

    Song, Guoyong; O, Wylie W N; Hou, Zhaomin

    2014-09-03

    Cationic half-sandwich scandium alkyl complexes bearing monocyclopentadienyl ligands embedded in chiral binaphthyl backbones act as excellent catalysts for the enantioselective C-H bond addition of pyridines to various 1-alkenes, leading to formation of a variety of enantioenriched alkylated pyridine derivatives in high yields and excellent enantioselectivity (up to 98:2 er).

  18. Is the Combination of Insecticide and Mating Disruption Synergistic or Additive in Lightbrown Apple Moth, Epiphyas postvittana?

    PubMed

    Suckling, David M; Baker, Greg; Salehi, Latif; Woods, Bill

    2016-01-01

    Pest suppression from combinations of tactics is fundamental to pest management and eradication. Interactions may occur among tactical combinations and affect suppression. The best case is synergistic, where suppression from a combination is greater than the sum of effects from single tactics (AB > A+B). We explored how mating disruption and insecticide interacted at field scale, additively or synergistically. Use of a pheromone delivery formulation (SPLAT™) as either a mating disruption treatment (i.e. a two-component pheromone alone) or as a lure and kill treatment (i.e. the two-component pheromone plus a permethrin insecticide) was compared for efficacy against the lightbrown apple moth Epiphyas postvittana. Next, four point-source densities of the SPLAT™ formulations were compared for communication disruption. Finally, the mating disruption and lure and kill treatments were applied with a broadcast insecticide. Population assessment used virgin female traps and synthetic pheromone in replicated 9-ha vineyard plots compared with untreated controls and insecticide-treated plots, to investigate interactions. Lure and kill and mating disruption provided equivalent suppression; no additional benefit accrued from including permethrin with the pheromone suggesting lack of contact. The highest point-source density tested (625/ha) was most effective. The insect growth regulator methoxyfenoxide applied by broadcast application lowered pest prevalence by 70% for the first ten weeks compared to pre-trial. Pheromone addition suppressed the pest further by an estimated 92.5%, for overall suppression of 97.7% from the treatment combination of insecticide plus mating disruption. This was close to that expected for an additive model of interactivity between insecticide and mating disruption (AB = A+B) estimated from plots with single tactics as 98% suppression in a combination. The results indicate the need to examine other tactical combinations to achieve the potential

  19. Is the Combination of Insecticide and Mating Disruption Synergistic or Additive in Lightbrown Apple Moth, Epiphyas postvittana?

    PubMed Central

    Baker, Greg; Salehi, Latif; Woods, Bill

    2016-01-01

    Pest suppression from combinations of tactics is fundamental to pest management and eradication. Interactions may occur among tactical combinations and affect suppression. The best case is synergistic, where suppression from a combination is greater than the sum of effects from single tactics (AB >> A+B). We explored how mating disruption and insecticide interacted at field scale, additively or synergistically. Use of a pheromone delivery formulation (SPLAT™) as either a mating disruption treatment (i.e. a two-component pheromone alone) or as a lure and kill treatment (i.e. the two-component pheromone plus a permethrin insecticide) was compared for efficacy against the lightbrown apple moth Epiphyas postvittana. Next, four point-source densities of the SPLAT™ formulations were compared for communication disruption. Finally, the mating disruption and lure and kill treatments were applied with a broadcast insecticide. Population assessment used virgin female traps and synthetic pheromone in replicated 9-ha vineyard plots compared with untreated controls and insecticide-treated plots, to investigate interactions. Lure and kill and mating disruption provided equivalent suppression; no additional benefit accrued from including permethrin with the pheromone suggesting lack of contact. The highest point-source density tested (625/ha) was most effective. The insect growth regulator methoxyfenoxide applied by broadcast application lowered pest prevalence by 70% for the first ten weeks compared to pre-trial. Pheromone addition suppressed the pest further by an estimated 92.5%, for overall suppression of 97.7% from the treatment combination of insecticide plus mating disruption. This was close to that expected for an additive model of interactivity between insecticide and mating disruption (AB = A+B) estimated from plots with single tactics as 98% suppression in a combination. The results indicate the need to examine other tactical combinations to achieve the potential

  20. Making the Earth: Combining dynamics and chemistry in the Solar System

    NASA Astrophysics Data System (ADS)

    Bond, Jade C.; Lauretta, Dante S.; O'Brien, David P.

    2010-02-01

    No terrestrial planet formation simulation completed to date has considered the detailed chemical composition of the planets produced. While many have considered possible water contents and late veneer compositions, none have examined the bulk elemental abundances of the planets produced as an important check of formation models. Here we report on the first study of this type. Bulk elemental abundances based on disk equilibrium studies have been determined for the simulated terrestrial planets of O'Brien et al. [O'Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58]. These abundances are in excellent agreement with observed planetary values, indicating that the models of O'Brien et al. [O'Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58] are successfully producing planets comparable to those of the Solar System in terms of both their dynamical and chemical properties. Significant amounts of water are accreted in the present simulations, implying that the terrestrial planets form "wet" and do not need significant water delivery from other sources. Under the assumption of equilibrium controlled chemistry, the biogenic species N and C still need to be delivered to the Earth as they are not accreted in significant proportions during the formation process. Negligible solar photospheric pollution is produced by the planetary formation process. Assuming similar levels of pollution in other planetary systems, this in turn implies that the high metallicity trend observed in extrasolar planetary systems is in fact primordial.

  1. Multispectral combination and display of ERTS-1 data. [California earth resources

    NASA Technical Reports Server (NTRS)

    Algazi, V. R.

    1973-01-01

    A significant problem in the use of ERTS-1 data is the extraction of information pertinent to each application and the presentation of that information in a form most suitable to users. When the information is to be displayed for visual study by an observer, the problem can be reduced to two steps: (1) Dimensionality reduction, an objective procedure which attempts to preserve most of the ERTS-1 information in a smaller number of components. (2) Display of the reduced number of components for optimum visibility by an observer. A specific dimensionality reduction technique has been applied to ERTS-1 data for several geographical areas in California and distinct types of earth resources. In the display of the reduced number of components, consideration has to be given to properties of the human visual system and the statistics of the data to be displayed. Previous work on digital image enhancement was applied to this problem to generate color composites which contain and display most of the information provided by the ERTS-1 sensors. Results of this approach were interesting, both in terms of the small mean-square caused by the dimensionality reduction, as well as for the examples of enhanced images that have been obtained.

  2. Austenite Grain Growth and Precipitate Evolution in a Carburizing Steel with Combined Niobium and Molybdenum Additions

    NASA Astrophysics Data System (ADS)

    Enloe, Charles M.; Findley, Kip O.; Speer, John G.

    2015-11-01

    Austenite grain growth and microalloy precipitate size and composition evolution during thermal processing were investigated in a carburizing steel containing various additions of niobium and molybdenum. Molybdenum delayed the onset of abnormal austenite grain growth and reduced the coarsening of niobium-rich precipitates during isothermal soaking at 1323 K, 1373 K, and 1423 K (1050 °C, 1100 °C, and 1150 °C). Possible mechanisms for the retardation of niobium-rich precipitate coarsening in austenite due to molybdenum are considered. The amount of Nb in solution and in precipitates at 1373 K (1100 °C) did not vary over the holding times evaluated. In contrast, the amount of molybdenum in (Nb,Mo)C precipitates decreased with time, due to rejection of Mo into austenite and/or dissolution of fine Mo-rich precipitates. In hot-rolled alloys, soaking in the austenite regime resulted in coarsening of the niobium-rich precipitates at a rate that exceeded that predicted by the Lifshitz-Slyozov-Wagner relation for volume-diffusion-controlled coarsening. This behavior is attributed to an initial bimodal precipitate size distribution in hot-rolled alloys that results in accelerated coarsening rates during soaking. Modification of the initial precipitate size distribution by thermal processing significantly lowered precipitate coarsening rates during soaking and delayed the associated onset of abnormal austenite grain growth.

  3. Additive antithrombotic effect of ASP6537, a selective cyclooxygenase (COX)-1 inhibitor, in combination with clopidogrel in guinea pigs.

    PubMed

    Sakata, Chinatsu; Suzuki, Ken-Ichi; Morita, Yoshiaki; Kawasaki, Tomihisa

    2017-03-05

    Clopidogrel (Plavix(®), Sanofi-Aventis), the adenosine diphosphate P2Y12 receptor antagonist, is reported to be effective in the prevention of cardiovascular events and is often used in combination with aspirin, particularly in high-risk patients. ASP6537 is a reversible cyclooxygenase (COX)-1 inhibitor that is under investigation as an anti-platelet agent. First, we investigated the reversibility of the antiplatelet effect of ASP6537 and its interaction with ibuprofen to compare the usability of ASP6537 with that of aspirin. We then evaluated the antithrombotic effect of ASP6537 in combination with clopidogrel using a FeCl3-induced thrombosis model in guinea pigs. ASP6537 exerted reversible antiplatelet activity, and no pharmacodynamic interaction with ibuprofen was noted. When administered as monotherapy, ASP6537 exerted a significant antithrombotic effect at ≥3mg/kg, while aspirin inhibited thrombosis at 100mg/kg. ASP6537 exerted significant additive effects in combination with clopidogrel, and the minimum antithrombotic dose was reduced by concomitant administration of clopidogrel. Our study showed that ASP6537 did not interact with ibuprofen and has clear additive effects in combination with clopidogrel. ASP6537 may therefore represent a promising antiplatelet agent for use in clinical settings in combination with clopidogrel.

  4. A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of Listeria monocytogenes.

    PubMed

    Smith, Muireann K; Draper, Lorraine A; Hazelhoff, Pieter-Jan; Cotter, Paul D; Ross, R P; Hill, Colin

    2016-01-01

    The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also through the formation of biofilms. Biofilms have been shown to be highly resistant to a number of antimicrobials and can be extremely difficult to remove once they are established. In parallel, the growing concern of consumers regarding the use of chemically derived antimicrobials within food has led to a drive toward more natural products. As a consequence, the use of naturally derived antimicrobials has become of particular interest. In this study we investigated the efficacy of nisin A and its bioengineered derivative M21A in combination with food grade additives to treat biofilms of a representative foodborne disease isolate of Listeria monocytogenes. Investigations revealed the enhanced antimicrobial effects, in liquid culture, of M21A in combination with citric acid or cinnamaldehyde over its wild type nisin A counterpart. Subsequently, an investigation was conducted into the effects of these combinations on an established biofilm of the same strain. Nisin M21A (0.1 μg/ml) alone or in combination with cinnamaldehyde (35 μg/ml) or citric acid (175 μg/ml) performed significantly better than combinations involving nisin A. All combinations of M21A with either citric acid or cinnamaldehyde eradicated the L. monocytogenes biofilm (in relation to a non-biofilm control). We conclude that M21A in combination with available food additives could further enhance the antimicrobial treatment of biofilms within the food industry, simply by substituting nisin A with M21A in current commercial products such as Nisaplin(®) (Danisco, DuPont).

  5. A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of Listeria monocytogenes

    PubMed Central

    Smith, Muireann K.; Draper, Lorraine A.; Hazelhoff, Pieter-Jan; Cotter, Paul D.; Ross, R. P.; Hill, Colin

    2016-01-01

    The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also through the formation of biofilms. Biofilms have been shown to be highly resistant to a number of antimicrobials and can be extremely difficult to remove once they are established. In parallel, the growing concern of consumers regarding the use of chemically derived antimicrobials within food has led to a drive toward more natural products. As a consequence, the use of naturally derived antimicrobials has become of particular interest. In this study we investigated the efficacy of nisin A and its bioengineered derivative M21A in combination with food grade additives to treat biofilms of a representative foodborne disease isolate of Listeria monocytogenes. Investigations revealed the enhanced antimicrobial effects, in liquid culture, of M21A in combination with citric acid or cinnamaldehyde over its wild type nisin A counterpart. Subsequently, an investigation was conducted into the effects of these combinations on an established biofilm of the same strain. Nisin M21A (0.1 μg/ml) alone or in combination with cinnamaldehyde (35 μg/ml) or citric acid (175 μg/ml) performed significantly better than combinations involving nisin A. All combinations of M21A with either citric acid or cinnamaldehyde eradicated the L. monocytogenes biofilm (in relation to a non-biofilm control). We conclude that M21A in combination with available food additives could further enhance the antimicrobial treatment of biofilms within the food industry, simply by substituting nisin A with M21A in current commercial products such as Nisaplin® (Danisco, DuPont). PMID:27965658

  6. Structure of iron phosphate glasses modified by alkali and alkaline earth additions: neutron and x-ray diffraction studies.

    PubMed

    Bingham, P A; Barney, E R

    2012-05-02

    The structure of iron phosphate glasses modified by additions of K(2)O and BaO, with nominal molar compositions [(1 - x)(0.6P(2)O(5)-0.4Fe(2)O(3))]xMe(y)O, where x = 0-0.4 in increments of 0.1; Me=K or Ba; and y = 1 or 2, has been investigated using neutron diffraction and x-ray diffraction techniques. Fitted coordination numbers for P-O and Fe-O showed a notable change in the P-O(NBO) and P-O(BO) contributions at greater than 20 mol% modifier addition, with barium producing a markedly larger increase in P-O(NBO) contribution than potassium. Fitting of T(N)(r) and T(X)(r) provided average n(BaO) = 9 and n(KO) = 6. Iron occurs in a range of coordination sites in these glasses: ([6])Fe(2+), ([4])Fe(3+), ([5])Fe(3+) and ([6])Fe(3+). The partitioning between these sites gives average n(FeO) = 5.2-5.8, with barium-doped glasses exhibiting higher average n(FeO) than potassium-doped glasses. The stronger depolymerizing effect of Ba(2+) than K(+) on the phosphate network, coupled with its greater ionic charge and higher Me-O, Fe-O and O···O coordination numbers, explain previously observed divergences in physical properties between the barium-doped and the potassium-doped glasses.

  7. Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three-dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories; these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the Very Long Base Interferometry (VLBI) observations.

  8. Constraining proposed combinations of ice history and Earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories, these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the VLBI observations.

  9. Product-catalyzed addition of alkyl nitriles to unactivated imines promoted by sodium aryloxide/ethyl(trimethylsilyl)acetate (ETSA) combination.

    PubMed

    Poisson, Thomas; Gembus, Vincent; Oudeyer, Sylvain; Marsais, Francis; Levacher, Vincent

    2009-05-01

    The first transition-metal-free addition of alkyl nitriles to unactivated imines was developed using a catalytic combination of 4-MeOC(6)H(4)ONa and TMSCH(2)CO(2)Et to promote the reaction. The corresponding beta-amino nitriles are obtained in good to almost quantitative isolated yields under mild conditions. A mechanism involving an autocatalytic pathway is proposed on the basis of experimental observations.

  10. Effect of Rare Earth Cerium Addition on Microstructures and Mechanical Properties of Low Carbon High Manganese Steels

    NASA Astrophysics Data System (ADS)

    Jiang, M. Z.; Yu, Y. C.; Li, H.; Ren, X.; Wang, S. B.

    2017-02-01

    Low carbon high manganese steels with different Ce contents were melted in medium frequency vacuum induction furnace. The microstructures and mechanical properties of steels were studied by OM, SEM, EDS and mechanical property testing. The results showed that the microstructures of experimental steels were refined remarkably, inclusions distributed more finely and uniformly, the tensile strength and impact toughness of tested steels both improved greatly after the addition of Ce. Thermodynamic calculation results demonstrated that Ce contained inclusions were Ce2O3 and Ce3S4, which agreed well with the results observed by SEM and EDS. By analysis of two-dimensional lattice disregistry, it was shown that the lattice misfit parameter between δ-Fe and Ce2O3, Ce3S4 are less than 6 %, which indicated that Ce2O3 and Ce3S4 could effectively act as the heterogeneous nuclei of initial δ-Fe. Therefore, the microstructures were refined significantly and the mechanical properties were improved correspondingly in Ce-added low carbon high manganese steels.

  11. Mechanical properties and phase composition of potential biodegradable Mg-Zn-Mn-base alloys with addition of rare earth elements

    SciTech Connect

    Stulikova, Ivana; Smola, Bohumil

    2010-10-15

    Mechanical properties and creep resistance of the MgY4Zn1Mn1 alloy in the as cast as well as in the T5 condition were compared to those of the MgCe4Zn1Mn1 alloy in the same conditions. Yield tensile stress and ultimate tensile strength of the MgY4Zn1Mn1 alloy are slightly better in the temperature range 20 deg. C-400 deg. C than these of the MgCe4Zn1Mn1 alloy. Better thermal stability of ultimate tensile strength was observed in the T5 treated MgCe4Zn1Mn1 alloy than in this material in the as cast condition. An outstanding creep resistance at 225 deg. C-350 deg. C found in the MgY4Zn1Mn1 alloy is due to the existence of the 18R long period stacking structure persisting in this alloy even a long heat treatment of 500 deg. C/32 h. No similar stacking effects happen when Ce substitutes Y in approximately the same concentration. The creep resistance deteriorates considerably in the MgCe4Zn1Mn1 alloy. Rectangular particles of the equilibrium Mg{sub 12}Ce phase dominate in the microstructure of as cast as well as of high temperature heat-treated MgCe4Zn1Mn1 alloy. A population of small oval particles containing Mg and Zn develops additionally during annealing of this alloy. These particles pin effectively dislocations and can be responsible for the better thermal stability of the T5 treated material.

  12. Core Analysis Combining MT (TIPPER) and Dielectric Sensors (Sans EC) in Earth and Space

    NASA Technical Reports Server (NTRS)

    Mound, Michael C.; Dudley, Kenneth L.

    2015-01-01

    On terrestrial planets and moons of our solar system cores reveal details about a geological structure's formation, content, and history. The strategy for the search for life is focused first on finding water which serves as a universal solvent, and identifying the rocks which such solvent act upon to release the constituent salts, minerals, ferrites, and organic compounds and chemicals necessary for life. Dielectric spectroscopy measures the dielectric properties of a medium as a function of frequency. Reflection measurements in the frequency range from 300 kHz to 300 MHz were carried out using RF and microwave network analyzers interrogating SansEC Sensors placed on clean geological core samples. These were conducted to prove the concept feasibility of a new geology instrument useful in the field and laboratory. The results show that unique complex frequency spectra can be acquired for a variety of rock core samples. Using a combination of dielectric spectroscopy and computer simulation techniques the magnitude and phase information of the frequency spectra can be converted to dielectric spectra. These low-frequency dielectric properties of natural rock are unique, easily determined, and useful in characterizing geology. TIPPER is an Electro-Magnetic Passive-Source Geophysical Method for Detecting and Mapping Geothermal Reservoirs and Mineral Resources. This geophysical method uses distant lightning and solar wind activity as its energy source. The most interesting deflections are caused by the funneling of electrons into more electrically conductive areas like mineralized faults, water or geothermal reservoirs. We propose TIPPER to be used with SansEC for determining terrain/ocean chemistry, ocean depth, geomorphology of fracture structures, and other subsurface topography characteristics below the ice crust of Jovian moons. NASA envisions lander concepts for exploration of these extraterrestrial icy surfaces and the oceans beneath. One such concept would use a

  13. Projected Global Hydrologic Cycles Using New Combine Earth System Moels from Multi-Model Multi-Scenario Simulation

    NASA Astrophysics Data System (ADS)

    Shadkam Torbati, S.; Kabat, P.; Ludwig, F.; Beyene, T.

    2011-12-01

    Simulating land surface hydrological states, fluxes and drought requires a comprehensive set of atmospheric forcing data at consistent temporal and spatial scales that can be used to evaluate changes in the global hydrological cycle. The European integrating project COMBINE brings together research groups to advance Earth system models (ESMs) for more accurate climate projections and for reduced uncertainty in the prediction of climate by including key physical and biogeochemical processes. We report the current state of the art of sensitivity of the global hydrological cycle for multi-scenario using available EU-WATCH historical data and future climate projections generated by Combine which will follow the specifications of the Coupled Model Intercomparison Project (CMIP5) protocol for IPCC AR5. The choice of the scenarios were made on the basis of the CMIP5 protocol, which recommends the Representative Concentration Scenario 4.5 (RCP4.5) and 8.5 (RCP8.5) for the core climate projections to 2100 and the RCP4.5 scenario for core decadal climate predictions to 2035. A detailed description of the bias-correction and spatial downscaling method used and evaluation of the data set will be assessed by deriving a land surface hydrological models globally and at specific river basins as a case study. The project will be able to contribute to the IPCC-AR5 data archives.

  14. Effect of powder characteristics on gas-pressure sintering of Si{sub 3}N{sub 4} with rare earth additives

    SciTech Connect

    Tiegs, T.N.; Nunn, S.D.; Walls, C.A.; Barker, D.; Davisson, C.; Jones, P.J.

    1993-09-01

    Several Si{sub 3}N{sub 4} powders, synthesized by various methods and having different surface areas, oxygen contents and impurity levels, were examined. During early stage densification, all powders showed similar shrinkage with the diimide ederived powder exhibiting delayed {alpha}/{beta} transformation compared to the other powders. The diimide and gas-phase derived powders achieved the highest final densities. Improved densification was observed by increasing the oxygen content and this also resulted in high toughness for some materials with rare earth apatite additives. However, the increased oxygen resulted in reduced high temperature strength. Fracture toughnesses (K{sub Ic}) up to 10 MPa{radical}m were obtained for some compositions.

  15. Additions to Magnetic Trackline Archive For Improvements to Earth Magnetic Anomaly Grid (EMAG2) and Improvements to Data Dissemination at NGDC

    NASA Astrophysics Data System (ADS)

    Meyer, B.; Jencks, J.; Barckhausen, U.; Ishihara, T.; Campagnoli, J.

    2014-12-01

    The National Geophysical Data Center (NGDC) is the primary archive of marine geophysical data worldwide. However, it has been challenging for scientist to discover and access data due to variable data formats, non-digital data holdings, and transitioning data discovery portals. In 2014, NGDC made a concerted effort to identify, ingest, and archive all publicly available magnetic trackline data for access via a new Trackline Geophysical Data web-based interface. Non-digital data were digitized and added to the Global Geophysical Database and are now available for download in a common MGD77 format. All ancillary and analog data are accessible via the same interface, without having to navigate through multiple directories or prompts. The result is over 16.5 million miles of magnetic trackline data are now available, both through NGDC's improved user interface and as a web service for incorporation into other portals. This allows the geoscience community unprecedented access to global geophysical magnetic trackline data from a secure long-term archive. The addition of 6.5 million miles of magnetic trackline data to the database, since the previous release of the Earth Magnetic Anomaly Grid (EMAG2), will give NGDC the ability to improve the model coverage, especially in areas of low coverage, such as around the Eltanin Fracture Zone in the South Pacific. This poster will focus on some key data additions and how they will help us validate the accuracy of the ocean age model/directional gridding algorithm and improve the Earth Magnetic Anomaly Grid going forward.

  16. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Li, Jiehua; Schaffer, Paul Louis; Schumacher, Peter; Arnberg, Lars

    2015-01-01

    The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

  17. Effects of combined thiamethoxam and diatomaceous earth on mortality and progeny production of four Pakistani populations of Rhyzopertha dominica (Coleoptera: Bostrychidae) on wheat, rice and maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassays were conducted to evaluate the effects of combining thiamethoxam at 0.25, 0.5 and 0.75 mg/kg with the diatomaceous earth (DE) formulation, SilicoSec, at the rate of 100 mg/kg against four diverse populations of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) th...

  18. Additional Value of CH₄ Measurement in a Combined (13)C/H₂ Lactose Malabsorption Breath Test: A Retrospective Analysis.

    PubMed

    Houben, Els; De Preter, Vicky; Billen, Jaak; Van Ranst, Marc; Verbeke, Kristin

    2015-09-07

    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H₂) excretion after an oral dose of lactose. We use a combined (13)C/H₂ lactose breath test that measures breath (13)CO₂ as a measure of lactose digestion in addition to H₂ and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 (13)C/H₂ lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH₄ in addition to H₂ and (13)CO₂. Based on the (13)C/H₂ breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH₄ further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H₂-excretion were found to excrete CH₄. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH₄-concentrations has an added value to the (13)C/H₂ breath test to identify methanogenic subjects with lactose malabsorption or SIBO.

  19. Catalytic addition of amine N-H bonds to carbodiimides by half-sandwich rare-earth metal complexes: efficient synthesis of substituted guanidines through amine protonolysis of rare-earth metal guanidinates.

    PubMed

    Zhang, Wen-Xiong; Nishiura, Masayoshi; Hou, Zhaomin

    2007-01-01

    Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the

  20. Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization.

    PubMed

    Díaz Lantada, Andrés; Alarcón Iniesta, Hernán; García-Ruíz, Josefa Predestinación

    2016-02-01

    Articular repair is a relevant and challenging area for the emerging fields of tissue engineering and biofabrication. The need of significant gradients of properties, for the promotion of osteochondral repair, has led to the development of several families of composite biomaterials and scaffolds, using different effective approaches, although a perfect solution has not yet been found. In this study we present the design, modeling, rapid manufacturing and in vitro testing of a composite scaffold aimed at osteochondral repair. The presented composite scaffold stands out for having a functional gradient of density and stiffness in the bony phase, obtained in titanium by means of computer-aided design combined with additive manufacture using selective laser sintering. The chondral phase is obtained by sugar leaching, using a PDMS matrix and sugar as porogen, and is joined to the bony phase during the polymerization of PDMS, therefore avoiding the use of supporting adhesives or additional intermediate layers. The mechanical performance of the construct is biomimetic and the stiffness values of the bony and chondral phases can be tuned to the desired applications, by means of controlled modifications of different parameters. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is used for improving scaffold response. Cell culture results provide relevant information regarding the viability of the composite scaffolds used.

  1. Grain refinement in heavy rare earth element-free sintered Nd–Fe–B magnets by addition of a small amount of molybdenum

    SciTech Connect

    Kim, Jin Woo; Lee, Won Suk; Byun, Jong Min; Kim, Young Do; Kim, Se Hoon

    2015-05-07

    We employed a modified refractory-metal-addition method to achieve higher coercivity and remanence in heavy rare earth element (HREE)-free Nd–Fe–B sintered magnets. This process involved inducing the formation of a homogeneous secondary phase at the grain boundaries during sintering, making it possible to control the intergrain diffusion by adding small amounts of Mo, a refractory metal. To control the microstructure of the secondary phase effectively, a metal organic compound of the refractory metal was coated on the surfaces of the particles of an HREE-free Nd–Fe–B powder. The average grain size after this process was 5.60 μm, which was approximately 1.8 μm smaller than that of the HREE-free sintered Nd–Fe–B magnets (7.4 μm). The coercivity of the magnets prepared through this process could be increased from 11.88 kOe to 13.91 kOe without decreasing their remanence.

  2. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.

    PubMed

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-02-16

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone

  3. Combined Use of Etomidate and Dexmedetomidine Produces an Additive Effect in Inhibiting the Secretion of Human Adrenocortical Hormones.

    PubMed

    Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen

    2015-11-16

    BACKGROUND The direct effects of etomidate were investigated on the secretion of cortisol and its precursors by dispersed cells from the adrenal cortex of human of animals. Dexmedetomidine (DEX) is an anesthetic agent that may interfere with cortisol secretion via an unknown mechanism, such as involving inhibition of 11b-hydroxylase and the cholesterol side-chain cleavage enzyme system. The aim of this study was to determine whether dexmedetomidine (DEX) has a similar inhibitory effect on adrenocortical function, and whether combined use of etomidate (ETO) and DEX could produce a synergistic action in inhibiting the secretion of human adrenocortical hormones. MATERIAL AND METHODS Human adrenocortical cells were exposed to different concentrations of ETO and DEX. The dose-effect model between the ETO concentration and the mean secretion of cortisone (CORT) and aldosterone (ALDO) per hour was estimated. RESULTS Hill's equation well-described the dose-effect correlation between the ETO concentration and the amount of ALDO and CORT secretion. When the DEX concentration was introduced into the model by using E0 (basal secretion) as the covariate, the goodness of fit of the ETO-CORT dose-effect model was improved significantly and the objective function value was reduced by 4.55 points (P<0.05). The parameters of the final ETO-ALDO pharmacodynamics model were EC50=9.74, Emax=1.20, E0=1.33, and γ=18.5; the parameters of the final ETO-CORT pharmacodynamics model were EC50=9.49, Emax=8.16, E0=8.57, and γ=37.0. In the presence of DEX, E0 was 8.57-0.0247×(CDEX-4.6), and the other parameters remained unchanged. All parameters but γ were natural logarithm conversion values. CONCLUSIONS Combined use of DEX and ETO reduced ETO's inhibitory E0 (basal secretion) of CORT from human adrenocortical cells in a dose-dependent manner, suggesting that combined use of ETO and DEX produced an additive effect in inhibiting the secretion of human adrenocortical hormones.

  4. Control of Rhyzopertha dominica (F.) in stored rough rice through a combination of diatomaceous earth and varietal resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adults of Rhyzopertha dominica (F.), the lesser grain borer, were exposed on four varieties of rough rice each with low (Jupiter, Bengal, Wells, Progue) and high (Rico, M-205, Akita, and Cocodrie) Dobie indices of susceptibility, and treated with varying rates of the commercial diatomaceous earth (D...

  5. Combination treatments with diatomaceous earth and methoprene to control Rhyzopertha dominica, the lesser grain borer, in stored rough rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lesser grain borer, Rhyzopertha dominica, is a major insect pest of stored grains, including rough rice. Diatomaceous earth (DE) is a natural inert dust that can be used to control stored-grain beetles, however, R. dominica is more tolerant to DE compared to other beetle species. Mortality of ad...

  6. Combination treatments with diatomaceous earth and methoprene to control the lesser grain borer, Rhyzopertha dominica, in stored rough rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lesser grain borer, Rhyzopertha dominica, is a major insect pest of stored grains, including rough rice. Diatomaceous earth (DE) is a natural inert dust that can be used to control stored-grain beetles, however, R. dominica is more tolerant to DE compared to other beetle species. Mortality of ad...

  7. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  8. Earth materials and earth dynamics

    SciTech Connect

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  9. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  10. Polymer monolithic capillary microextraction combined on-line with inductively coupled plasma MS for the determination of trace rare earth elements in biological samples.

    PubMed

    Zhang, Lin; Chen, Beibei; He, Man; Hu, Bin

    2013-07-01

    A rapid and sensitive method based on polymer monolithic capillary microextraction combined on-line with microconcentric nebulization inductively coupled plasma MS has been developed for the determination of trace/ultratrace rare earth elements in biological samples. For this purpose, the iminodiacetic acid modified poly(glycidyl methacrylate-trimethylolpropane trimethacrylate) monolithic capillary was prepared and characterized by SEM and FTIR spectroscopy. Factors affecting the extraction efficiency, such as sample pH, sample flow rate, sample/eluent volume, and coexisting ions were investigated in detail. Under the optimal conditions, the LODs for rare earth elements were in the range of 0.08 (Er) to 0.97 ng/L (Nd) with a sampling frequency of 8.5 h(-1), and the RSDs were between 1.5% (Sm) and 7.4% (Nd) (c = 20 ng/L, n = 7). The proposed method was successfully applied to the analysis of trace/ultratrace rare earth elements in human urine and serum samples, and the recoveries for the spiked samples were in the range of 82-105%. The developed method was simple, rapid, sensitive, and favorable for the analysis of trace/ultratrace rare earth elements in biological samples with limited sample volume.

  11. Digital Earth

    NASA Astrophysics Data System (ADS)

    de La Beaujardiere, J.

    2001-05-01

    Digital Earth (DE) seeks to make geospatial information broadly and easily available. Vast amounts of natural and cultural information are gathered about the Earth, but it is often difficult to find needed data, to share knowledge across disciplines, and to combine information from several sources. DE defines a framework for interoperability by selecting relevant open standards from the information technology community. These standards specify the technical means by which publishers can provide or sell their data, and by which client applications can find and access data in an automated fashion. The standardized DE framework enables many types of clients--from web browsers to museum kiosks to research-grade virtual environments--to use a common geospatial information infrastructure. Digital Earth can benefit Earth system education in general, and DLESE in particular, in several ways. First, educators, students and creators of instructional material will benefit from standardized access to georeferenced data. Secondly, educational lesson plans that focus on a region or aspect of the Earth can themselves be considered geospatial information resources that could be cataloged and retrieved through DE. Finally, general public knowledge about our planet will by increased by Digital Earth.

  12. Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in seawater using Tm addition and Mg(OH)₂ co-precipitation.

    PubMed

    Freslon, Nicolas; Bayon, Germain; Birot, Dominique; Bollinger, Claire; Barrat, Jean Alix

    2011-07-15

    This paper reports on a novel procedure for determining trace element abundances (REE and Y, Cr, Mn, Co) in seawater by inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The procedure uses a combination of pre-concentration using co-precipitation onto magnesium hydroxides and addition of thulium spike. The validity of the method was assessed onto 25 ml volumes of certified reference materials (NASS- and CASS-4) and in house seawater standard. Procedural blanks were determined by applying the same procedure to aliquots of seawater previously depleted in trace elements by successive Mg(OH)(2) co-precipitations, yielding estimated contributions to the studied samples better than 1.1% for all elements, with the exception of Cr (<3.3%) and Co (up to 8%). The reproducibility of the method over the six month duration of the study was smaller than 11% RSD for all the studied elements. Results obtained for NASS-5 and CASS-4 agree well with published working values for trace elements.

  13. Intensification of degradation of methomyl (carbamate group pesticide) by using the combination of ultrasonic cavitation and process intensifying additives.

    PubMed

    Raut-Jadhav, Sunita; Pinjari, Dipak V; Saini, Daulat R; Sonawane, Shirish H; Pandit, Aniruddha B

    2016-07-01

    In the present work, the degradation of methomyl has been carried out by using the ultrasound cavitation (US) and its combination with H2O2, Fenton and photo-Fenton process. The study of effect of operating pH and ultrasound power density has indicated that maximum extent of degradation of 28.57% could be obtained at the optimal pH of 2.5 and power density of 0.155 W/mL. Application of US in combination with H2O2, Fenton and photo-Fenton process has further accelerated the rate of degradation of methomyl with complete degradation of methomyl in 27 min, 18 min and 9 min respectively. Mineralization study has proved that a combination of US and photo-Fenton process is the most effective process with maximum extent of mineralization of 78.8%. Comparison of energy efficiency and cost effectiveness of various processes has indicated that the electrical cost of 79892.34Rs./m(3) for ultrasonic degradation of methomyl has drastically reduced to 2277.00Rs./m(3), 1518.00Rs./m(3) and 807.58Rs./m(3) by using US in combination with H2O2, Fenton and photo-Fenton process respectively. The cost analysis has also indicated that the combination of US and photo-Fenton process is the most energy efficient and cost effective process.

  14. Addition of a combination of onion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops gastrointestinal helminthic infections.

    PubMed

    Mehlhorn, Heinz; Al-Quraishy, Saleh; Al-Rasheid, Khaled A S; Jatzlau, Antje; Abdel-Ghaffar, Fathy

    2011-04-01

    Sheep with gastrointestinal nematodes and cestodes were fed on three farms with a combination of specially prepared extracts of onion (Allium cepa) and coconut (Cocos nucifera) for 8 days containing each 60 g coconut and onion extract, combined with milk powder and/or polyethylene glycol (PEG) propylencarbonate (PC). In all cases, the worm stages disappeared from the feces and were also not found 9 and 20 days after the end of the feeding with this plant combination. Since all treated animals increased their body weight considerably (when compared to untreated animals), worm reduction was apparently as effective as it was shown in previous laboratory trials with rats and mice (Klimpel et al., Parasitol Res, in press, 2010; Abdel-Ghaffar et al., Parasitol Res, in press, 2010; in this volume).

  15. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  16. Highly enhanced in-field critical current density of MgB 2 superconductor by combined addition of burned rice husk and nano Ho 2O 3

    NASA Astrophysics Data System (ADS)

    Vinod, K.; Varghese, Neson; Sundaresan, A.; Syamaprasad, U.

    2010-04-01

    With the aim of improving flux pinning and in-field critical current density [ JC( H)], two physically and chemically different additives - burned rice husk (BRH) and nano Ho 2O 3 were introduced into in situ MgB 2 superconductor. The effects of the above two additives were studied individually and combinedly. Ho 2O 3 decomposed and reacted with B to form HoB 4, without any substitution. BRH caused considerable amount of C substitution at B site and formed Mg 2Si and Mg 2C 3 secondary phases. Addition of Ho 2O 3 improved the JC( H) only marginally, but BRH improved the JC( H) strongly. Combined addition of Ho 2O 3 with BRH was found to be much more effective than their solo addition for the enhancement of JC( H) of MgB 2.

  17. Combined effects of nitrogen addition and organic matter manipulation on soil respiration in a Chinese pine forest.

    PubMed

    Wang, Jinsong; Wu, L; Zhang, Chunyu; Zhao, Xiuhai; Bu, Wensheng; Gadow, Klaus V

    2016-11-01

    The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m(-2) year(-1)), low-N (N1: 5 g N m(-2) year(-1)), medium-N (N2: 10 g N m(-2) year(-1)), and high-N (N3: 15 g N m(-2) year(-1)), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3-5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the "priming" effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.

  18. Galvanic vestibular stimulation combines with Earth-horizontal rotation in roll to induce the illusion of translation.

    PubMed

    Schneider, Erich; Bartl, Klaus; Glasauer, Stefan

    2009-05-01

    Human head rotation in roll around an earth-horizontal axis constitutes a vestibular stimulus that, by its rotational component, acts on the semicircular canals (SCC) and that, by its tilt of the gravity vector, also acts on the otoliths. Galvanic vestibular stimulation (GVS) is thought to resemble mainly a rotation in roll. A superposition of sinusoidal GVS with a natural earth-horizontal roll movement was therefore applied in order to cancel the rotation effects and to isolate the otolith activation. By self-adjusting the amplitude and phase of GVS, subjects were able to minimize their sensation of rotation and to generate the perception of a linear translation. The final adjustments are in the range of a model that predicts SCC activation during natural rotations and GVS. This indicates that the tilt-translation ambiguity of the otoliths is resolved by SCC-otolith interaction. It is concluded that GVS might be able to cancel rotations in roll and that the residual tilt of the gravitoinertial force is possibly interpreted as a linear translation.

  19. Laboratory and field evaluation of a combined fluid-loss-control additive and gel breaker for fracturing fluids

    SciTech Connect

    Cantu, L.A.; Boyd, P.A. )

    1990-08-01

    More than 200% increase in fracture conductivity and permeability was obtained when a new degradable fluid-loss-control additive was used in place of silica flour (SF) in 40-lbm crosslinked hydroxypropyl-guar (HPG) fracturing-fluid systems. The new additive, and organic acid particulate (OAP), slowly degraded into water-soluble monomeric units at temperatures {ge}150{degrees}F after fracture stimulation experiments. The high-acid-content degradation product then acted as an excellent HPG gel breaker and effectively cleaned the proppant packs. As a fluid-loss-control additive, the measured wall-building coefficients were as good as, or better than, those of SF in crosslinked-gel, linear-gel, and N{sub 2}-foam systems. This paper summarizes a 2-year study of the evaluation and application of this new product in fracturing-fluid systems.

  20. Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information

    PubMed Central

    Honeine, Jean-Louis; Crisafulli, Oscar; Sozzi, Stefania

    2015-01-01

    We investigated the integration time of haptic and visual input and their interaction during stance stabilization. Eleven subjects performed four tandem-stance conditions (60 trials each). Vision, touch, and both vision and touch were added and withdrawn. Furthermore, vision was replaced with touch and vice versa. Body sway, tibialis anterior, and peroneus longus activity were measured. Following addition or withdrawal of vision or touch, an integration time period elapsed before the earliest changes in sway were observed. Thereafter, sway varied exponentially to a new steady-state while reweighting occurred. Latencies of sway changes on sensory addition ranged from 0.6 to 1.5 s across subjects, consistently longer for touch than vision, and were regularly preceded by changes in muscle activity. Addition of vision and touch simultaneously shortened the latencies with respect to vision or touch separately, suggesting cooperation between sensory modalities. Latencies following withdrawal of vision or touch or both simultaneously were shorter than following addition. When vision was replaced with touch or vice versa, adding one modality did not interfere with the effect of withdrawal of the other, suggesting that integration of withdrawal and addition were performed in parallel. The time course of the reweighting process to reach the new steady-state was also shorter on withdrawal than addition. The effects of different sensory inputs on posture stabilization illustrate the operation of a time-consuming, possibly supraspinal process that integrates and fuses modalities for accurate balance control. This study also shows the facilitatory interaction of visual and haptic inputs in integration and reweighting of stance-stabilizing inputs. PMID:26334013

  1. Combining silver catalysis and organocatalysis: a sequential Michael addition/hydroalkoxylation one-pot approach to annulated coumarins.

    PubMed

    Hack, Daniel; Chauhan, Pankaj; Deckers, Kristina; Hermann, Gary N; Mertens, Lucas; Raabe, Gerhard; Enders, Dieter

    2014-10-03

    A highly stereoselective one-pot procedure for the synthesis of five-membered annulated hydroxycoumarins has been developed. By merging primary amine catalysis with silver catalysis, a series of functionalized coumarin derivatives were obtained in good yields (up to 91%) and good to excellent enantioselectivities (up to 99% ee) via a Michael addition/hydroalkoxylation reaction. Depending on the substituents on the enynone, the synthesis of annulated six-membered rings is also feasible.

  2. Combining Silver Catalysis and Organocatalysis: A Sequential Michael Addition/Hydroalkoxylation One-Pot Approach to Annulated Coumarins

    PubMed Central

    2014-01-01

    A highly stereoselective one-pot procedure for the synthesis of five-membered annulated hydroxycoumarins has been developed. By merging primary amine catalysis with silver catalysis, a series of functionalized coumarin derivatives were obtained in good yields (up to 91%) and good to excellent enantioselectivities (up to 99% ee) via a Michael addition/hydroalkoxylation reaction. Depending on the substituents on the enynone, the synthesis of annulated six-membered rings is also feasible. PMID:25250728

  3. Overexpression of hepatocyte growth factor in SBMA model mice has an additive effect on combination therapy with castration.

    PubMed

    Ding, Ying; Adachi, Hiroaki; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Kondo, Naohide; Iida, Madoka; Tohnai, Genki; Nakatsuji, Hideaki; Funakoshi, Hiroshi; Nakamura, Toshikazu; Sobue, Gen

    2015-12-25

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with an expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA.

  4. Effects of a combination of feed additives on methane production, diet digestibility, and animal performance in lactating dairy cows.

    PubMed

    van Zijderveld, S M; Fonken, B; Dijkstra, J; Gerrits, W J J; Perdok, H B; Fokkink, W; Newbold, J R

    2011-03-01

    Two experiments were conducted to assess the effects of a mixture of dietary additives on enteric methane production, rumen fermentation, diet digestibility, energy balance, and animal performance in lactating dairy cows. Identical diets were fed in both experiments. The mixture of feed additives investigated contained lauric acid, myristic acid, linseed oil, and calcium fumarate. These additives were included at 0.4, 1.2, 1.5, and 0.7% of dietary dry matter, respectively (treatment ADD). Experimental fat sources were exchanged for a rumen inert source of fat in the control diet (treatment CON) to maintain isolipidic rations. Cows (experiment 1, n=20; experiment 2, n=12) were fed restricted amounts of feed to avoid confounding effects of dry matter intake on methane production. In experiment 1, methane production and energy balance were studied using open-circuit indirect calorimetry. In experiment 2, 10 rumen-fistulated animals were used to measure rumen fermentation characteristics. In both experiments animal performance was monitored. The inclusion of dietary additives decreased methane emissions (g/d) by 10%. Milk yield and milk fat content tended to be lower for ADD in experiment 1. In experiment 2, milk production was not affected by ADD, but milk fat content was lower. Fat- and protein-corrected milk was lower for ADD in both experiments. Milk urea nitrogen content was lowered by ADD in experiment 1 and tended to be lower in experiment 2. Apparent total tract digestibility of fat, but not that of starch or neutral detergent fiber, was higher for ADD. Energy retention did not differ between treatments. The decrease in methane production (g/d) was not evident when methane emission was expressed per kilogram of milk produced. Feeding ADD resulted in increases of C12:0 and C14:0 and the intermediates of linseed oil biohydrogenation in milk in both experiments. In experiment 2, ADD-fed cows tended to have a decreased number of protozoa in rumen fluid when

  5. The addition of clonidine to bupivacaine in combined femoral-sciatic nerve block for anterior cruciate ligament reconstruction.

    PubMed

    Couture, Darren J; Cuniff, Heather M; Maye, John P; Pellegrini, Joseph

    2004-08-01

    Clonidine has been shown to prolong sensory analgesia when given as an adjunct to peripheral nerve blocks but has not been evaluated when given in conjunction with a femoral-sciatic nerve block. The purpose of this investigation was to determine whether the addition of clonidine to a femoral-sciatic nerve block would prolong the duration of sensory analgesia in groups of patients undergoing anterior cruciate ligament (ACL) reconstruction. This prospective, randomized, double-blind investigation was performed on 64 subjects undergoing ACL reconstruction. Patients were assigned randomly to receive a femoral-sciatic nerve block using 30 mL of 0.5% bupivacaine with 1:200,000 epinephrine (control group) or 30 mL of 0.5% bupivacaine with 1:200,000 epinephrine and 1 microg/kg of clonidine (experimental group). Variables measured included demographics, timed pain intensity measurements, postoperative analgesic consumption, duration of analgesia, and patient satisfaction. No significant differences were noted between groups for pain intensity scores, duration of sensory analgesia, postoperative analgesic requirements, or overall patient satisfaction. Both groups reported minimal amounts of postoperative pain and high analgesic satisfaction scores. Based on our results, we do not recommend the addition of clonidine to a femoral-sciatic nerve block when given to facilitate postoperative analgesia in patients undergoing ACL reconstruction.

  6. Papillary reconstruction and guided tissue regeneration for combined periodontal-endodontic lesions caused by palatogingival groove and additional root: a case report.

    PubMed

    Miao, Hui; Chen, Min; Otgonbayar, Tsetsen; Zhang, Sha Sha; Hou, Min Hong; Wu, Zhou; Wang, Yong Lan; Wu, Li Geng

    2015-12-01

    We described a combined periodontal-endodontic lesion, which was caused by a palatogingival groove and an additional root. An interdisciplinary approach involving endodontic therapy, mineral trioxide aggregate (MTA) filling, root resection, guided tissue regeneration, and papillary reconstruction was used for the case. The tooth presents morphologically and functionally normal except tooth discoloration caused by MTA.

  7. The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Tóth, Gábor; Szöőr, Árpád; Simon, László; Yarden, Yosef; Szöllősi, János; Vereb, György

    2016-10-01

    Although the recently concluded CLEOPATRA trial showed clinical benefits of combining trastuzumab and pertuzumab for treating HER2-positive metastatic breast cancer, trastuzumab monotherapy is still the mainstay in adjuvant settings. Since trastuzumab resistance occurs in over half of these cancers, we examined the mechanisms by which treatment of intrinsically trastuzumab-resistant and -sensitive tumors can benefit from the combination of these antibodies. F(ab')2 of both trastuzumab and pertuzumab were generated and validated in order to separately analyze antibody-dependent cell-mediated cytotoxicity (ADCC)-based and direct biological effects of the antibodies. Compared to monotherapy, combination of the two antibodies at clinically permitted doses enhanced the recruitment of natural killer cells responsible for ADCC, and significantly delayed the outgrowth of xenografts from intrinsically trastuzumab-resistant JIMT-1 cells. Antibody dose-response curves of in vitro ADCC showed that antibody-mediated killing can be saturated, and the two antibodies exert an additive effect at sub-saturation doses. Thus, the additive effect in vivo indicates that therapeutic tissue levels likely do not saturate ADCC. Additionally, isobole studies with the in vitro trastuzumab-sensitive BT-474 cells showed that the direct biological effect of combined treatment is additive, and surpasses the maximum effect of either monotherapy. Our results suggest the combined therapy is expected to give results that are superior to monotherapy, whatever the type of HER2-positive tumor may be. The combination of both antibodies at maximum clinically approved doses should thus be administered to patients to recruit maximum ADCC and cause maximum direct biological growth inhibition.

  8. The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibody-dependent cell-mediated cytotoxicity

    PubMed Central

    Tóth, Gábor; Szöőr, Árpád; Simon, László; Yarden, Yosef; Szöllősi, János; Vereb, György

    2016-01-01

    ABSTRACT Although the recently concluded CLEOPATRA trial showed clinical benefits of combining trastuzumab and pertuzumab for treating HER2-positive metastatic breast cancer, trastuzumab monotherapy is still the mainstay in adjuvant settings. Since trastuzumab resistance occurs in over half of these cancers, we examined the mechanisms by which treatment of intrinsically trastuzumab-resistant and -sensitive tumors can benefit from the combination of these antibodies. F(ab′)2 of both trastuzumab and pertuzumab were generated and validated in order to separately analyze antibody-dependent cell-mediated cytotoxicity (ADCC)-based and direct biological effects of the antibodies. Compared to monotherapy, combination of the two antibodies at clinically permitted doses enhanced the recruitment of natural killer cells responsible for ADCC, and significantly delayed the outgrowth of xenografts from intrinsically trastuzumab-resistant JIMT-1 cells. Antibody dose-response curves of in vitro ADCC showed that antibody-mediated killing can be saturated, and the two antibodies exert an additive effect at sub-saturation doses. Thus, the additive effect in vivo indicates that therapeutic tissue levels likely do not saturate ADCC. Additionally, isobole studies with the in vitro trastuzumab-sensitive BT-474 cells showed that the direct biological effect of combined treatment is additive, and surpasses the maximum effect of either monotherapy. Our results suggest the combined therapy is expected to give results that are superior to monotherapy, whatever the type of HER2-positive tumor may be. The combination of both antibodies at maximum clinically approved doses should thus be administered to patients to recruit maximum ADCC and cause maximum direct biological growth inhibition. PMID:27380003

  9. Combined Effects of High Pressure Processing and Addition of Soy Sauce and Olive Oil on Safety and Quality Characteristics of Chicken Breast Meat

    PubMed Central

    Kruk, Zbigniew A.; Kim, Hyun Joo; Kim, Yun Ji; Rutley, David L.; Jung, Samooel; Lee, Soo Kee; Jo, Cheorun

    2014-01-01

    This study was conducted to evaluate the combined effect of high pressure (HP) with the addition of soy sauce and/or olive oil on the quality and safety of chicken breast meats. Samples were cut into 100 g pieces and 10% (w/w) of soy sauce (SS), 10% (w/w) of olive oil (OO), and a mixture of both 5% of soy sauce and 5% olive oil (w/w) (SO) were pressurized into meat with high pressure at 300 or 600 MPa. Cooking loss was lower in OO samples than SS samples. With increased pressure to 600 MPa, the oleic acid content of OO samples increased. The total unsaturated fatty acids were the highest in SO and OO 600 MPa samples. Lipid oxidation was retarded by addition of olive oil combined with HP. The addition of olive oil and soy sauce followed by HP decreased the amount of volatile basic nitrogen during storage and reduced the population of pathogens. Sensory evaluation indicated that the addition of olive oil enhanced the overall acceptance and willingness to buy. In conclusion, the combination of HP with the addition of soy sauce and/or olive oil is an effective technology that can improve chemical, health, sensory qualities and safety of chicken breast. PMID:25049950

  10. Interplanetary Coronal Mass Ejections Resulting from Earth-Directed CMEs Using SOHO and ACE Combined Data During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-02-01

    In this work a total of 266 interplanetary coronal mass ejections observed by the Solar and Heliospheric Observatory/ Large Angle and Spectrometric Coronagraph (SOHO/LASCO) and then studied by in situ observations from Advanced Composition Explorer (ACE) spacecraft, are presented in a new catalog for the time interval 1996 - 2009 covering Solar Cycle 23. Specifically, we determine the characteristics of the CME which is responsible for the upcoming ICME and the associated solar flare, the initial/background solar wind plasma and magnetic field conditions before the arrival of the CME, the conditions in the sheath of the ICME, the main part of the ICME, the geomagnetic conditions of the ICME's impact at Earth and finally we remark on the visual examination for each event. Interesting results revealed from this study include the high correlation coefficient values of the magnetic field Bz component against the Ap index (r = 0.84), as well as against the Dst index (r = 0.80) and of the effective acceleration against the CME linear speed (r = 0.98). We also identify a north-south asymmetry for X-class solar flares and an east-west asymmetry for CMEs associated with strong solar flares (magnitude ≥ M1.0) which finally triggered intense geomagnetic storms (with Ap ≥179). The majority of the geomagnetic storms are determined to be due to the ICME main part and not to the extreme conditions which dominate inside the sheath. For the intense geomagnetic storms the maximum value of the Ap index is observed almost 4 hours before the minimum Dst index. The amount of information makes this new catalog the most comprehensive ICME catalog for Solar Cycle 23.

  11. Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice

    PubMed Central

    Hiromura, Munenori; Mori, Yusaku; Kohashi, Kyoko; Kushima, Hideki; Ohara, Makoto; Watanabe, Takuya; Andersson, Olov

    2017-01-01

    Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day) and DPP-4i (alogliptin, 8.0 mg/kg/day), either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe−/−) mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe−/− mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice.

  12. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system.

    PubMed

    Serna-Galvis, Efraím A; Silva-Agredo, Javier; Giraldo-Aguirre, Ana L; Torres-Palma, Ricardo A

    2015-08-15

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20-60 W), dissolved gas (air, Ar and He), pH (3-11) and initial concentration of fluoxetine (2.9-162.0 μmol L(-1)). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe(2+)) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment.

  13. Trazodone Addition to Paroxetine and Mirtazapine in a Patient with Treatment-Resistant Depression: The Pros and Cons of Combining Three Antidepressants

    PubMed Central

    Alves, José Carlos; Rego, Raquel Garcia

    2016-01-01

    Dual antidepressant combination for treatment-resistant depression is a strategy well supported by literature and accepted in clinical practice. Rather, the usefulness of the combination of more than two antidepressants is controversial. This may be related to the possibility of higher side-effect burden and to doubts about its pharmacological effectiveness and therapeutic advantage compared to other standard treatment options. We report a relapse of moderate-to-severe depressive symptoms with insomnia that successfully remitted after the addition of trazodone to a dual combination of paroxetine and mirtazapine (in standard effective doses) in a patient with treatment-resistant depression. We also review the literature and discuss the utility of triple antidepressant combination in treatment-resistant depression. This clinical case highlights the utility of combining trazodone as a third antidepressant for the relapse of depressive symptoms after the failure of a dual antidepressant combination. Trazodone may be advantageous in patients presenting recurrence of moderate-to-severe depressive symptoms that include sleep problems and/or insomnia and may be particularly useful when benzodiazepines are not recommended. Although its use may be controversial and associated with higher risk of side-effects, more investigation is needed to determine the efficacy and safety for triple antidepressant combinations as reliable strategies for treatment-resistant depression in clinical practice. PMID:27807450

  14. Trazodone Addition to Paroxetine and Mirtazapine in a Patient with Treatment-Resistant Depression: The Pros and Cons of Combining Three Antidepressants.

    PubMed

    Lopes, Rui; Alves, José Carlos; Rego, Raquel Garcia

    2016-01-01

    Dual antidepressant combination for treatment-resistant depression is a strategy well supported by literature and accepted in clinical practice. Rather, the usefulness of the combination of more than two antidepressants is controversial. This may be related to the possibility of higher side-effect burden and to doubts about its pharmacological effectiveness and therapeutic advantage compared to other standard treatment options. We report a relapse of moderate-to-severe depressive symptoms with insomnia that successfully remitted after the addition of trazodone to a dual combination of paroxetine and mirtazapine (in standard effective doses) in a patient with treatment-resistant depression. We also review the literature and discuss the utility of triple antidepressant combination in treatment-resistant depression. This clinical case highlights the utility of combining trazodone as a third antidepressant for the relapse of depressive symptoms after the failure of a dual antidepressant combination. Trazodone may be advantageous in patients presenting recurrence of moderate-to-severe depressive symptoms that include sleep problems and/or insomnia and may be particularly useful when benzodiazepines are not recommended. Although its use may be controversial and associated with higher risk of side-effects, more investigation is needed to determine the efficacy and safety for triple antidepressant combinations as reliable strategies for treatment-resistant depression in clinical practice.

  15. Turbulence computations with 3-D small-scale additive turbulent decomposition and data-fitting using chaotic map combinations

    SciTech Connect

    Mukerji, Sudip

    1997-01-01

    Although the equations governing turbulent fluid flow, the Navier-Stokes (N.S.) equations, have been known for well over a century and there is a clear technological necessity in obtaining solutions to these equations, turbulence remains one of the principal unsolved problems in physics today. It is still not possible to make accurate quantitative predictions about turbulent flows without relying heavily on empirical data. In principle, it is possible to obtain turbulent solutions from a direct numerical simulation (DNS) of the N.-S. equations. The author first provides a brief introduction to the dynamics of turbulent flows. The N.-S. equations which govern fluid flow, are described thereafter. Then he gives a brief overview of DNS calculations and where they stand at present. He next introduces the two most popular approaches for doing turbulent computations currently in use, namely, the Reynolds averaging of the N.-S. equations (RANS) and large-eddy simulation (LES). Approximations, often ad hoc ones, are present in these methods because use is made of heuristic models for turbulence quantities (the Reynolds stresses) which are otherwise unknown. They then introduce a new computational method called additive turbulent decomposition (ATD), the small-scale version of which is the topic of this research. The rest of the thesis is organized as follows. In Chapter 2 he describes the ATD procedure in greater detail; how dependent variables are split and the decomposition into large- and small-scale sets of equations. In Chapter 3 the spectral projection of the small-scale momentum equations are derived in detail. In Chapter 4 results of the computations with the small-scale ATD equations are presented. In Chapter 5 he describes the data-fitting procedure which can be used to directly specify the parameters of a chaotic-map turbulence model.

  16. Improving the analytical performance of hydride generation non-dispersive atomic fluorescence spectrometry. Combined effect of additives and optical filters

    NASA Astrophysics Data System (ADS)

    D'Ulivo, Alessandro; Bramanti, Emilia; Lampugnani, Leonardo; Zamboni, Roberto

    2001-10-01

    The effects of tetrahydroborate and acid concentration and the presence of L-cysteine and thiourea were investigated in the determination of As, Bi and Sn using continuous flow hydride generation atomic fluorescence spectrometry (HG AFS). The aim was to find conditions allowing the control of those effects exerting negative influence on the analytical performance of the HG AFS apparatus. The effects taken into account were: (i) the radiation scattering generated by carryover of solution from the gas-liquid separator to the atomizer; (ii) the introduction of molecular species generated by tetrahydroborate decomposition into the atomizer; and (iii) interference effects arising from other elements in the sample matrix and from different acids. The effects (i) and (ii) could be controlled using mild reaction conditions in the HG stage. The effect of HG conditions on carryover was studied by radiation scattering experiments without hydride atomization. Compromised HG conditions were found by studying the effects of tetrahydroborate (0.1-20 g l -1) and acid (0.01-7 mol l -1) concentration, and the addition of L-cysteine (10 g l -1) and thiourea (0.1 mol l -1) on the HG AFS signals. The effect of optical filters was investigated with the aim of improving the signal-to-noise ratio. Optical filters with peak wavelengths of 190 and 220 nm provided an improvement of detection limits by factors of approximately 4 and 2 for As and Te, respectively. Under optimized conditions the detection limits were 6, 5, 3, 2, 2 and 9 ng l -1 for As, Sb, Bi, Sn, Se and Te, respectively. Good tolerance to various acid compositions and sample matrices was obtained by using L-cysteine or thiourea as masking agents. Determination of arsenic in sediment and copper certified reference materials, and of bismuth in steel, sediment, soil and ore certified reference material is reported.

  17. Combination treatment with a selective androgen receptor modulator q(SARM) and a bisphosphonate has additive effects in osteopenic female rats.

    PubMed

    Vajda, Eric G; Hogue, Aimee; Griffiths, Kimberly N; Chang, William Y; Burnett, Kelven; Chen, Yanling; Marschke, Keith; Mais, Dale E; Pedram, Bijan; Shen, Yixing; van Oeveren, Arjan; Zhi, Lin; López, Francisco J; Meglasson, Martin D

    2009-02-01

    Recent clinical trials with bisphosphonates and PTH have not supported the hypothesis that combination treatments with antiresorptive and anabolic agents would lead to synergistic activity. We hypothesized that combination treatment with a selective androgen receptor modulator (SARM), LGD-3303, and a bisphosphonate would be beneficial. In vitro competitive binding and transcriptional activity assays were used to characterize LGD-3303. LGD-3303 is a potent nonsteroidal androgen that shows little or no cross-reactivity with related nuclear receptors. Tissue selective activity of LGD-3303 was assessed in orchidectomized male rats orally administered LGD-3303 for 14 days. LGD-3303 increased the levator ani muscle weight above eugonadal levels but had greatly reduced activity on the prostate, never increasing the ventral prostate weight to >50% of eugonadal levels even at high doses. Ovariectomized female rats were treated with LGD-3303, alendronate, or combination treatment to study the effects on bone. DXA scans, histomorphometry, and biomechanics were performed. LGD-3303 increased muscle weight in females rats. In addition, LGD-3303 increased BMD and BMC at both cortical and cancellous bone sites. At cortical sites, the effects were caused in part by anabolic activity on the periosteal surface. At every measured site, combination treatment was as effective as either single agent and in some cases showed significant added benefit. LGD-3303 is a novel SARM with anabolic effects on muscle and cortical bone not observed with bisphosphonates. Combination therapy with LGD-3303 and alendronate had additive effects and may potentially be a useful therapy for osteoporosis and frailty.

  18. Combining Kepler and HARPS Occurrence Rates to Infer the Super-Earth Period-Mass-Radius Distribution

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Laughlin, G.

    2011-09-01

    exist in the survey data indicates that multiple formation mechanisms are at work to produce the population of planets commonly referred to as "super-Earths".

  19. Effects of TiO2 and Co2O3 combination additions on the elemental distribution and electromagnetic properties of Mn-Zn power ferrites

    NASA Astrophysics Data System (ADS)

    Yang, W. D.; Wang, Y. G.

    2015-06-01

    The effects of TiO2 and Co2O3 combination additions on the elemental distribution and electromagnetic properties of Mn-Zn power ferrites are investigated. TiO2 addition can promote Co2O3 transfer from grain boundaries to the bulk of the grains. The temperature at which the highest initial permeability μi and the lowest power losses PL appear shifts to low temperature range with the increase of Co2O3 content. Compared with the reference sample without TiO2 and Co2O3 addition, the microstructure and electromagnetic properties of Mn-Zn power ferrites can be considerably improved with suitable amounts of TiO2 and Co2O3 combination additions. At the peak temperature, the sample with the 0.1 wt% TiO2 and 0.08 wt% Co2O3 additions has an increase of 15.8% in μi to 3951, and a decrease of 22.9% in PL to 286 kW/m3. The saturation magnetic induction Bs and electrical resistivity ρ at 25 °C reach the highest values of 532 mT and 8.12 Ω m, respectively.

  20. On the Combination of Terrestrial Data and GOCE Based Models in Earth's Gravity Field Studies: Compatibility and Optimization

    NASA Astrophysics Data System (ADS)

    Holota, Petr; Nesvadba, Otakar

    2015-03-01

    The aim of this paper is to discuss the impact of terres-trial and GOCE gravity field data on the combination of these two data sources in Earth’s gravity field studies. Potential theory is of key importance in this field, but the problem considered is overdetermined by nature. Therefore, methods for solving boundary-value prob-lems are used together with optimization concepts. The compatibility of the mentioned data is examined and the integral representation of the solution is investigated. The optimized solution is first expressed by a series of spherical harmonics. Subsequently, a numerical summa-tion technique is used to implement the respective inte-gral kernel (Green’s function). This shows the relation between the global and the local modelling of the grav-ity field. The structure of the solution makes it possible to focus more specifically on available terrestrial data and their contribution to the optimized solution. Nu-merical examples and real-case studies are added.

  1. The effects of buffered propionic acid-based additives alone or combined with microbial inoculation on the fermentation of high moisture corn and whole-crop barley.

    PubMed

    Kung, L; Myers, C L; Neylon, J M; Taylor, C C; Lazartic, J; Mills, J A; Whiter, A G

    2004-05-01

    Buffered propionic acid-based additives (BP) alone or in combination with a microbial inoculant containing lactic acid bacteria (MI) were mixed with ground, high moisture corn or whole-crop barley and ensiled in triplicate laboratory silos to investigate their effects on silage fermentation and aerobic stability. The inoculant and chemicals were applied separately for treatments that included both additives. The addition of MI alone had no effect on DM recovery, fermentation end products, or aerobic stability of high moisture corn. However, treatments with 0.1 and 0.2% BP (alone and the combination) had more than 10- and 100-fold fewer yeasts, respectively, and they also had greater concentrations of propionic acid than did untreated corn. Corn treated with only 0.1 (161 h) and 0.2% (218 h) BP tended to be more stable when exposed to air than untreated corn (122 h). Treatment with MI + 0.2% BP markedly improved the aerobic stability (>400 h) of high moisture corn. With whole-crop barley, the addition of MI alone, BP alone, and combinations of MI and BP prevented the production of butyric acid that was found in untreated silage (0.48%). All barley silages that had MI in their treatments underwent a more efficient fermentation than treatments without MI, as evident by a greater ratio of lactic:acetic acid and more DM recovery than in untreated silage. Increasing levels (0.1 to 0.2%) of BP added together with MI improved the aerobic stability of barley (190 and 429 h) over the addition of MI alone (50 h). These data show that buffered propionic acid-based products are compatible with microbial inoculants and, in some circumstances when used together, they can improve the fermentation and aerobic stability of silages.

  2. Isobolographic analysis demonstrates additive effect of cisplatin and HDIs combined treatment augmenting their anti-cancer activity in lung cancer cell lines

    PubMed Central

    Gumbarewicz, Ewelina; Luszczki, Jarogniew J; Wawruszak, Anna; Dmoszynska-Graniczka, Magdalena; Grabarska, Aneta J; Jarząb, Agata M; Polberg, Krzysztof; Stepulak, Andrzej

    2016-01-01

    Histone deacetylase inhibitors (HDIs) are a new class of drugs which affect the activity of HDACs resulting in changed of acetylation in many proteins. HDIs can induce differentiation, cell growth arrest, apoptosis, inhibit proliferation and angiogenesis in cancer, whereas normal cells are comparatively resistant to the action of HDIs. The aim of this study was to investigate the combined effect of a well-known cytostatic agent-cisplatin (CDDP) and a histone deacetylase inhibitors-either suberoylanilide hydroxamic acid (SAHA, vorinostat) or valproic acid (VPA), on the proliferation of lung cancer cells, as well as induction of apoptosis and inhibition of the cell cycle progression. The anti-proliferative activity of VPA or SAHA used alone, or in combination with CDDP were determined by means of MTT test. The type of pharmacologic interactions between HDAC inhibitors and CDDP was assessed using isobolographic analysis. We observed additive interactions for the CCDP with SAHA, as well as for the CDDP with VPA combinations with respect to their anti-proliferative effects on three different lung cancer cell lines (A549, NCI-H1563 and NCI-H2170). Such additive effects were observed regardless of the histologic type (adenocarcinoma or squamous cell carcinoma) and sensitivity for the drugs applied. Combination treatment also augmented the induction of apoptosis and cell cycle perturbation mediated by CDDP alone, thereby enhancing anti-cancer effect of tested drugs. In conclusion, the combined therapy of HDIs and CDDP may be a promising therapeutic tool in the treatment of lung cancer. PMID:28042503

  3. Characterization of an earth-filled dam through the combined use of electrical resistivity tomography, P- and SH-wave seismic tomography and surface wave data

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Cercato, M.; De Donno, G.

    2014-07-01

    The determination of the current state of buildings and infrastructures through non-invasive geophysical methods is a topic not yet covered by technical standards, since the application of high resolution geophysical investigations to structural targets is a relatively new technology. Earth-filled dam investigation is a typical engineering application of this type. We propose the integration of Electrical Resistivity Tomography and P- and SH-wave seismic measurements for imaging the geometry of the dam's body and the underlying soil foundations and to characterize the low strain elastic properties. Because S-wave velocity is closely tied to engineering properties such as shear strength, low-velocity zones in the S-wave velocity models are of particular interest. When acquiring seismic data on earth filled dams, it is not uncommon to encounter highly attenuative surface layers. If only lightweight seismic sources are available, the seismic data generally exhibit a narrow frequency bandwidth: the lack of high frequency components generally prevents from having good quality shallow reflections. If there is no possibility to increase the power as well as the frequency content of the seismic source, the integration of other seismic methods than reflection may be the only available way to achieve a reliable near surface seismic characterization. For these reasons, we combined P- and SH-wave tomography with Multichannel Analysis of Surface Waves to image the internal and the underlying soil foundations of an earth filled dam located in Central Italy. In the presence of moderate velocity contrasts, tomographic methods have proven successful in imaging near surface variations along both the horizontal and vertical directions. On the other hand, body wave propagation is severely affected by attenuation under the previously described conditions, so that the quality of picked traveltimes dramatically decreases with offset and, consequently, the tomographic investigation

  4. Combination therapy of angiotensin II receptor blocker and calcium channel blocker exerts pleiotropic therapeutic effects in addition to blood pressure lowering: amlodipine and candesartan trial in Yokohama (ACTY).

    PubMed

    Maeda, Akinobu; Tamura, Kouichi; Kanaoka, Tomohiko; Ohsawa, Masato; Haku, Sona; Azushima, Kengo; Dejima, Toru; Wakui, Hiromichi; Yanagi, Mai; Okano, Yasuko; Fujikawa, Tetsuya; Toya, Yoshiyuki; Mizushima, Shunsaku; Tochikubo, Osamu; Umemura, Satoshi

    2012-01-01

    Recent guidelines recommend combination antihypertensive therapy to achieve the target blood pressure (BP) and to suppress target organ damage. This study aimed to examine the beneficial effects of combination therapy with candesartan and amlodipine on BP control and markers of target organ function in Japanese essential hypertensive patients (N = 20) who did not achieve the target BP level during the monotherapy period with either candesartan or amlodipine. After the monotherapy period, for patients already being treated with amlodipine, a once-daily 8 mg dose of candesartan was added on during the combination therapy period (angiotensin II receptor blocker [ARB] add-on group, N = 10), and a once-daily 5 mg dose of amlodipine was added on for those already being treated with candesartan (calcium channel blocker [CCB] add-on group, N = 10). Combination therapy with candesartan and amlodipine for 12 weeks significantly decreased clinic and home systolic blood pressure (SBP) and diastolic blood pressure (DBP). In addition, the combination therapy was able to significantly reduce urine albumin excretion without decrease in estimated glomerular filtration ratio and resulted in significant improvements in brachial-ankle pulse wave velocity, central SBP, and insulin sensitivity. Furthermore, the CCB add-on group showed a significantly greater decrease in clinic and home DBP than the ARB add-on group. The calcium channel blocker add-on group also exhibited better improvements in vascular functional parameters than the ARB add-on group. These results suggest that combination therapy with candesartan and amlodipine is an efficient therapeutic strategy for hypertension with pleiotropic benefits.

  5. Significant thrombocytopenia associated with the addition of rituximab to a combination of fludarabine and cyclophosphamide in the treatment of relapsed follicular lymphoma.

    PubMed

    Leo, Eugen; Scheuer, Lars; Schmidt-Wolf, Ingo G H; Kerowgan, Mohammed; Schmitt, Christina; Leo, Albrecht; Baumbach, Tanja; Kraemer, Alwin; Mey, Ulrich; Benner, Axel; Parwaresch, Reza; Ho, Anthony D

    2004-10-01

    Fludarabine in combination with cyclophosphamide is an effective treatment for newly diagnosed as well as relapsed follicular lymphoma. The anti-CD20 antibody rituximab has been employed successfully for the same indications. No such data were available on a combined use of these agents. Therefore, we conducted a phase II study to evaluate the safety and efficacy of a combination of rituximab (375 mg/m2), fludarabine (4 x 25 mg/m2) and cyclophosphamide (1 x 750 mg/m2), for the treatment of relapsed follicular lymphoma. An unexpected, severe hematologic toxicity with significant, prolonged thrombocytopenias WHO grade III/IV in 6 (35%) of 17 patients treated in total occurred, leading to early termination of the trial. Cytologic and serologic analyses point toward a direct toxic effect. Older patients (mean age 64.7 vs. 56.5 yr) were significantly (P = 0.02) more likely to suffer from this toxicity, whereas no other clinical or hematologic parameter differed statistically between the patients suffering from thrombocytopenia and those who did not. The addition of rituximab to fludarabine/cyclophosphamide employed at doses given above in relapsed follicular lymphoma may have led to this increase in thrombocytopenias. Therefore, caution should be exercised when combining these drugs for the treatment of patients with relapsed follicular lymphoma, especially when treating older patients.

  6. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing.

    PubMed

    Kohler, J; Caravaca, F; Azcón, R; Díaz, G; Roldán, A

    2015-05-01

    A field experiment was carried out to assess the effectiveness of combining mycorrhizal inoculation with a native AM fungus (Glomus sp.) and the addition of an urban organic waste compost (OWC) applied at two rates (0.5 and 2.0% (w:w)), with regard to promoting the establishment of Anthyllis cytisoides L. seedlings in a heavy metal polluted mine tailing, as well as stimulating soil microbial functions. The results showed that the combined use of the highest dose of OWC and AM inoculation significantly increased shoot biomass - by 64% - compared to the control value. However, the separate use of each treatment had no effect on the shoot biomass of this shrub species. At the 2% rate, OWC enhanced root colonisation by the introduced fungus as well as soil nutrient content and soil dehydrogenase and ß-glucosidase activities. The combined treatment increased the uptake of Zn and Mn in shoots, although only Zn reached excessive or potentially toxic levels. This study demonstrates that the combination of organic amendment and an AM fungus is a suitable tool for the phytomanagement of degraded mine tailings, although its effectiveness is dependent on the dose of the amendment.

  7. Early Earth

    NASA Astrophysics Data System (ADS)

    Brown, M.

    2015-05-01

    Earth has continents, subduction and mobile lid plate tectonics, but details of the early evolution are poorly understood. Here I summarize the Hadean-Archean record, review evidence for a hotter Earth and consider geodynamic models for early Earth.

  8. Combined treatment with GH and IGF-I: additive effect on cortical bone mass but not on linear bone growth in female rats.

    PubMed

    Sundström, Katja; Cedervall, Therese; Ohlsson, Claes; Camacho-Hübner, Cecilia; Sävendahl, Lars

    2014-12-01

    The growth-promoting effect of combined therapy with GH and IGF-I in normal rats is not known. We therefore investigated the efficacy of treatment with recombinant human (rh)GH and/or rhIGF-I on longitudinal bone growth and bone mass in intact, prepubertal, female Sprague-Dawley rats. rhGH was injected twice daily sc (5 mg/kg·d) and rhIGF-I continuously infused sc (2.2 or 4.4 mg/kg·d) for 28 days. Longitudinal bone growth was monitored by weekly x-rays of tibiae and nose-anus length measurements, and tibial growth plate histomorphology was analyzed. Bone mass was evaluated by peripheral quantitative computed tomography. In addition, serum levels of IGF-I, rat GH, acid labile subunit, IGF binding protein-3, 150-kDa ternary complex formation, and markers of bone formation and degradation were measured. Monotherapy with rhGH was more effective than rhIGF-I (4.4 mg/kg·d) to increase tibia and nose-anus length, whereas combined therapy did not further increase tibia, or nose-anus, lengths or growth plate height. In contrast, combined rhGH and rhIGF-I (4.4 mg/kg·d) therapy had an additive stimulatory effect on cortical bone mass vs rhGH alone. Combined treatment with rhGH and rhIGF-I resulted in markedly higher serum IGF-I concentrations vs rhGH alone but did not compromise the endogenous secretion of GH. We conclude that rhIGF-I treatment augments cortical bone mass but does not further improve bone growth in rhGH-treated young, intact, female rats.

  9. CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua; Sorescu, Dan C.

    2010-08-01

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO2 absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)2 (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO2 capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)2 systems were found to be better candidates for CO2 sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H2O, MgCO3 can be regenerated into Mg(OH)2 at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO2 pressure but also on the H2O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO2 sorbents.

  10. A combination of a dairy product fermented by lactobacilli and galactooligosaccharides shows additive effects on mineral balances in growing rats with hypochlorhydria induced by a proton pump inhibitor.

    PubMed

    Takasugi, Satoshi; Ashida, Kinya; Maruyama, Suyaka; Matsukiyo, Yukari; Kaneko, Tetsuo; Yamaji, Taketo

    2013-06-01

    This study aimed to investigate the effects of a combination of a dairy product fermented by lactobacilli (DFL) and galactooligosaccharides (GOS) on mineral balances in growing rats with hypochlorhydria induced by a proton pump inhibitor (PPI). Three-week-old male rats were assigned to receive one of six diets: a control diet, control diets containing 1.6 or 5.0 % GOS, a DFL diet and DFL diets containing 1.6 or 5.0 % GOS for 9 days. From day 5 of the feeding period, half of the rats fed with control diets were subcutaneously administered with saline, whereas the remaining rats were administered with PPI for 5 days. Calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe) and zinc (Zn) balances were determined from days 6 to 9. PPI administration significantly decreased the apparent absorption of Ca and Fe and increased urinary P excretion, resulting in decreased Ca, Fe and P retention. GOS dose-dependently increased the apparent absorption of Ca, Mg and Fe and urinary Mg excretion and decreased urinary P excretion. DFL significantly increased the apparent absorption of Ca and Mg and urinary Mg excretion. The combination of DFL and GOS additively affected these parameters, resulting in increased Ca, P and Fe retention, and it further increased the apparent absorption and retention of Zn at 5.0 % GOS. In conclusion, the combination of DFL and GOS improves Ca, P and Fe retention in an additive manner and increases the Zn retention in growing rats with hypochlorhydria induced by PPI.

  11. Additive effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study

    PubMed Central

    2010-01-01

    Background Hypertriglyceridemia (HTG) is a well-established independent risk factor for cardiovascular disease and the influence of several genetic variants in genes related with triglyceride (TG) metabolism has been described, including LPL, APOA5 and APOE. The combined analysis of these polymorphisms could produce clinically meaningful complementary information. Methods A subgroup of the ICARIA study comprising 1825 Spanish subjects (80% men, mean age 36 years) was genotyped for the LPL-HindIII (rs320), S447X (rs328), D9N (rs1801177) and N291S (rs268) polymorphisms, the APOA5-S19W (rs3135506) and -1131T/C (rs662799) variants, and the APOE polymorphism (rs429358; rs7412) using PCR and restriction analysis and TaqMan assays. We used regression analyses to examine their combined effects on TG levels (with the log-transformed variable) and the association of variant combinations with TG levels and hypertriglyceridemia (TG ≥ 1.69 mmol/L), including the covariates: gender, age, waist circumference, blood glucose, blood pressure, smoking and alcohol consumption. Results We found a significant lowering effect of the LPL-HindIII and S447X polymorphisms (p < 0.0001). In addition, the D9N, N291S, S19W and -1131T/C variants and the APOE-ε4 allele were significantly associated with an independent additive TG-raising effect (p < 0.05, p < 0.01, p < 0.001, p < 0.0001 and p < 0.001, respectively). Grouping individuals according to the presence of TG-lowering or TG-raising polymorphisms showed significant differences in TG levels (p < 0.0001), with the lowest levels exhibited by carriers of two lowering variants (10.2% reduction in TG geometric mean with respect to individuals who were homozygous for the frequent alleles of all the variants), and the highest levels in carriers of raising combinations (25.1% mean TG increase). Thus, carrying two lowering variants was protective against HTG (OR = 0.62; 95% CI, 0.39-0.98; p = 0.042) and having one single raising polymorphism (OR

  12. Combined effects of prefermentative skin maceration and oxygen addition of must on color-related phenolics, volatile composition, and sensory characteristics of Airén white wine.

    PubMed

    Cejudo-Bastante, María Jesús; Castro-Vázquez, Lucía; Hermosín-Gutiérrez, Isidro; Pérez-Coello, María Soledad

    2011-11-23

    The effects of the joint prefermentative maceration and hyperoxygenation of Airén white must and wine on the phenolic content, chromatic characteristics, volatile composition, and sensory characteristics, not previously described in combination, have been evaluated. A total of 20 phenolic and 149 volatile compounds have been identified and quantified for that purpose. As a consequence of the oxygen addition, the concentrations of hydroxycinnamic acid derivatives and flavan-3-ols decreased (above all t-GRP and (+)-catechin), leading to color stabilization, but also the concentrations of several volatile compounds with a great importance for quality aroma decreased. Prefermentative skin maceration, previously applied to the hyperoxygenation of Airén musts, provided the aforementioned color stabilization in the respective wine but also increased the content of short-chain fatty acid esters and terpenes and decreased the concentration of C(6) alcohols. That combination of prefermentative treatments (skin maceration followed by must hyperoxygenation) produced an improvement of the global impression of the final wine based on significantly better scores of tropical fruit, body, and herbaceous notes.

  13. Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi.

    PubMed

    Cozzolino, V; De Martino, A; Nebbioso, A; Di Meo, V; Salluzzo, A; Piccolo, A

    2016-06-01

    In a greenhouse pot experiment, lettuce plants (Lactuca sativa L.) were grown in a Hg-contaminated sandy soil with and without inoculation with arbuscular mycorrhizal fungi (AMF) (a commercial inoculum containing infective propagules of Rhizophagus irregularis and Funneliformis mosseae) amended with different rates of a humic acid (0, 1, and 2 g kg(-1) of soil), with the objective of verifying the synergistic effects of the two soil treatments on the Hg tolerance of lettuce plants. Our results indicated that the plant biomass was significantly increased by the combined effect of AMF and humic acid treatments. Addition of humic matter to soil boosted the AMF effect on improving the nutritional plant status, enhancing the pigment content in plant leaves, and inhibiting both Hg uptake and Hg translocation from the roots to the shoots. This was attributed not only to the Hg immobilization by stable complexes with HA and with extraradical mycorrhizal mycelium in soil and root surfaces but also to an improved mineral nutrition promoted by AMF. This work indicates that the combined use of AMF and humic acids may become a useful practice in Hg-contaminated soils to reduce Hg toxicity to crops.

  14. Comparison of the Effect of Individual and Combined Zr and Mn Additions on the Fracture Behavior of Al-Cu-Li Alloy AA2198 Rolled Sheet

    NASA Astrophysics Data System (ADS)

    Tsivoulas, Dimitrios; Prangnell, Philip B.

    2013-11-01

    The effect of individual and combined addition of dispersoid-forming alloying elements Zr and Mn on the fracture behavior of the Al-Cu-Li alloy 2198 has been investigated by the Kahn tear test. Overall, the standard baseline 2198 alloy containing only Zr exhibited the best performance, while the alloy with the combined presence of Zr and Mn was slightly inferior. The lowest properties were seen for a Zr-free 2198-0.4Mn alloy variant. In the T351 temper fracture initiated at coarse constituent particles that formed large cavities and microvoid sheets linked the initial sites of void growth. In the Mn-containing alloys microvoids clearly nucleated at the coarser Al20Cu2Mn3 dispersoids within the microstructure, while this was not identifiable for the finer coherent Al3Zr dispersoids. However, this difference in the mechanism of cavity linkage had little effect on the overall toughness of the materials, which was more closely related to the effect of Mn and Zr on the level of recrystallization. Extended artificial aging promoted grain boundary decohesion due to the precipitation of high densities of T1 particles on GBs and favored a cleavage fracture mode. Particle decohesive fracture was also promoted by T1 precipitation on the Mn dispersoids.

  15. The Earth Tides.

    ERIC Educational Resources Information Center

    Levine, Judah

    1982-01-01

    In addition to oceans, the earth is subjected to tidal stresses and undergoes tidal deformations. Discusses origin of tides, tidal stresses, and methods of determining tidal deformations (including gravity, tilt, and strain meters). (JN)

  16. Earth Resources

    ERIC Educational Resources Information Center

    Brewer, Tom

    1970-01-01

    Reviews some of the more concerted, large-scale efforts in the earth resources areas" in order to help the computer community obtain insights into the activities it can jointly particpate in withthe earth resources community." (Author)

  17. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  18. Combined intensive blood pressure and glycemic control does not produce an additive benefit on microvascular outcomes in type 2 diabetic patients.

    PubMed

    Ismail-Beigi, Faramarz; Craven, Timothy E; O'Connor, Patrick J; Karl, Diane; Calles-Escandon, Jorge; Hramiak, Irene; Genuth, Saul; Cushman, William C; Gerstein, Hertzel C; Probstfield, Jeffrey L; Katz, Lois; Schubart, Ulrich

    2012-03-01

    A reduction of either blood pressure or glycemia decreases some microvascular complications of type 2 diabetes, and we studied here their combined effects. In total, 4733 older adults with established type 2 diabetes and hypertension were randomly assigned to intensive (systolic blood pressure less than 120 mm Hg) or standard (systolic blood pressure less than 140 mm Hg) blood pressure control, and separately to intensive (HbA1c less than 0.060) or standard (HbA1c 0.070-0.079) glycemic control. Prespecified microvascular outcomes were a composite of renal failure and retinopathy and nine single outcomes. Proportional hazard regression models were used without correction for type I error due to multiple tests. During a mean follow-up of 4.7 years, the primary outcome occurred in 11.4% of intensive and 10.9% of standard blood pressure patients (hazard ratio 1.08), and in 11.1% of intensive and 11.2% of standard glycemia control patients. Intensive blood pressure control only reduced the incidence of microalbuminuria (hazard ratio 0.84), and intensive glycemic control reduced the incidence of macroalbuminuria and a few other microvascular outcomes. There was no interaction between blood pressure and glycemic control, and neither treatment prevented renal failure. Thus, in older patients with established type 2 diabetes and hypertension, intensive blood pressure control improved only 1 of 10 prespecified microvascular outcomes. None of the outcomes were significantly reduced by simultaneous intensive treatment of glycemia and blood pressure, signifying the lack of an additional beneficial effect from combined treatment.

  19. Combined dermal exposure to permethrin and cis-urocanic acid suppresses the contact hypersensitivity response in C57BL/6N mice in an additive manner.

    PubMed

    Prater, M R; Blaylock, B L; Holladay, S D

    2005-01-14

    Cutaneous exposure to the pyrethroid insecticide permethrin significantly suppresses contact hypersensitivity (CH) response to oxazolone in C57BL/6N mice. Additionally, cis-urocanic acid (cUCA), an endogenous cutaneous chromophore isomerized to its active form following exposure to ultraviolet radiation, modulates cell-mediated cutaneous immune responses. This study describes cutaneous immune alterations following combined topical permethrin and intradermal cUCA exposure. Female C57BL/6N mice were administered 5, 50 or 100 microg cUCA daily for 5 consecutive days. CH was then evaluated by the mouse ear swelling test (MEST) response to oxazolone. Decreased responses of 52.3%, 76.3% and 76.3%, respectively, as compared to controls were observed. Then, mice were co-exposed to 5 microg cUCA daily for 5 days and 1.5, 5, 15, or 25 microL permethrin, on either day 1, 3 or 5 of the cUCA treatment to evaluate combined immunomodulatory effects of the two chemicals, or cUCA daily for 5 days followed by permethrin on day 3, 5, or 7 after the last cUCA injection to demonstrate prolonged immunosuppressive effects. Two days after final treatment, mice were sensitized with oxazolone and MEST was performed. Mice receiving five cUCA injections and permethrin topically on cUCA injection day 1 showed up to 93.3% suppression of MEST compared to vehicle control. CH was suppressed by 87.5%, 86.6% and 74.2% in mice treated with 25 muL permethrin on days 3, 5 and 7 after cUCA, respectively, compared to vehicle control. Taken together, these data indicate co-exposure to cUCA and permethrin profoundly suppresses cell-mediated cutaneous immunity.

  20. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([CO2]) and temperature has illustrated the importance of multi-factorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased u...

  1. Asymmetric Earth

    NASA Astrophysics Data System (ADS)

    Doglioni, Carlo; Carminati, Eugenio; Crespi, Mattia; Cuffaro, Marco; Ismail-Zadeh, Alik; Levshin, Anatoli; Panza, Giuliano F.; Riguzzi, Federica

    2010-05-01

    The net rotation, or so-called W-ward drift of the lithosphere, implies a decoupling of the plates relative to the underlying asthenosphere, and a relative "E-ward" mantle flow. This polarized flow can account for a number of asymmetries. When comparing the W-directed versus the E- to NE-directed subduction zones, as a general observation, they have the subduction hinge diverging versus converging relative to the upper plate; low versus high topography and structural elevation respectively; deep versus shallow trenches and foreland basins; shallow versus deep decollement; low versus high basement involvement; high versus low heat flow and gravity anomaly; shallow versus deep asthenosphere; etc. The western limbs of rift zones show S-waves faster in the lithosphere and slower in the asthenosphere with respect to the eastern limb. The asymmetry can be recognized when moving along the "tectonic equator", which describes the fastest flow of plates relative to the mantle, and it undulates relative to the geographic equator. In our reconstructions, the best fit for the tectonic equator has a pole of rotation at latitude -56.4° and longitude 136.7°, with an angular velocity of 1.2036°/Ma. Shear-wave splitting alignments tend to parallel the tectonic flow, apart along the subduction zones where they become orthogonal, as a flow encountering an obstacle. The tectonic equator lies close to the revolution plane of the Moon about the Earth. All these data and interpretations point for an asymmetric Earth, whose nature appears to be related to the rotation and its tidal despinning, combined with the thermal cooling of the planet. However, this model has been questioned on the basis of the high viscosity so far inferred in the asthenosphere. Preliminary modelling shows that the tidal oscillation can generate gravitational wave propagation in the lithosphere, and the wave velocity can increase with the decrease of the asthenospheric viscosity.

  2. Targeted silencing of DNA-specific B cells combined with partial plasma cell depletion displays additive effects on delaying disease onset in lupus-prone mice

    PubMed Central

    Nikolova-Ganeva, K A; Gesheva, V V; Todorov, T A; Voll, R E; Vassilev, T L

    2013-01-01

    Targeting autoreactive B lymphocytes at any stage of their differentiation could yield viable therapeutic strategies for treating autoimmunity. All currently used drugs, including the most recently introduced biological agents, lack target specificity. Selective silencing of double-stranded DNA-specific B cells in animals with spontaneous lupus has been achieved previously by the administration of a chimeric antibody molecule that cross-links their DNA-reactive B cell immunoglobulin receptors with inhibitory FcγIIb (CD32) receptors. However, long-lived plasmacytes are resistant to this chimeric antibody as well as to all conventional treatments. Bortezomib (a proteasome inhibitor) depletes most plasma cells and has been shown recently to suppress disease activity in lupus mice. We hypothesized that the co-administration of non-toxic doses of bortezomib, that partially purge long-lived plasma cells, together with an agent that selectively silences DNA-specific B cells, should have additive effects in an autoantibody-mediated disease. Indeed, our data show that the simultaneous treatment of lupus-prone MRL/lpr mice with suboptimal doses of bortezomib plus the chimeric antibody resulted in the prevention or the delayed appearance of the disease manifestations as well as in a prolonged survival. The effect of the combination therapy was significantly stronger than that of the respective monotherapies and was comparable to that observed after cyclophosphamide administration. PMID:23808414

  3. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques.

    PubMed

    Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina

    2017-04-11

    nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.

  4. Combined SO{sub 2}/NO{sub x} control using ferrous{center_dot}EDTA and a secondary additive in a lime-based aqueous scrubber system

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.; Harkness, J.B.L.

    1991-12-01

    Integration of NO{sub x} control into existing flue-gas desulfurization (FGD) systems addresses site-specific control requirements while minimizing retrofit difficulties. Argonne has studied the use of the metal-chelate additives, such as ferrous{center_dot}EDTA in various wet FGD chemistries, to promote combined SO{sub 2}/NO{sub x} scrubbing. A major process problem is oxidation of the iron to the ferric species, leading to a significant decrease in NO{sub x}-removal capability. Argonne discovered a class of organic compounds that, when used with ferrous{center_dot}EDTA in a sodium carbonate chemistry, could maintain high levels of NO{sub x} removal. However, those antioxidant/reducing agents are not effective in a lime-based chemistry, and a broader investigation of antioxidants was initiated. This paper discusses results of that investigation, which found a practical antioxidant/reducing agent capable of maintaining NO{sub x} removals of about 50% (compared with about 15% without the agent) in a lime-based FGD chemistry with FE(II){center_dot}EDTA. 5 refs., 10 figs.

  5. Combined SO sub 2 /NO sub x control using ferrouster dot EDTA and a secondary additive in a lime-based aqueous scrubber system. [Sodium ascorbate

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.; Harkness, J.B.L.

    1991-01-01

    Integration of NO{sub x} control into existing flue-gas desulfurization (FGD) systems addresses site-specific control requirements while minimizing retrofit difficulties. Argonne has studied the use of the metal-chelate additives, such as ferrous{center dot}EDTA in various wet FGD chemistries, to promote combined SO{sub 2}/NO{sub x} scrubbing. A major process problem is oxidation of the iron to the ferric species, leading to a significant decrease in NO{sub x}-removal capability. Argonne discovered a class of organic compounds that, when used with ferrous{center dot}EDTA in a sodium carbonate chemistry, could maintain high levels of NO{sub x} removal. However, those antioxidant/reducing agents are not effective in a lime-based chemistry, and a broader investigation of antioxidants was initiated. This paper discusses results of that investigation, which found a practical antioxidant/reducing agent capable of maintaining NO{sub x} removals of about 50% (compared with about 15% without the agent) in a lime-based FGD chemistry with FE(II){center dot}EDTA. 5 refs., 10 figs.

  6. Targeted silencing of DNA-specific B cells combined with partial plasma cell depletion displays additive effects on delaying disease onset in lupus-prone mice.

    PubMed

    Nikolova-Ganeva, K A; Gesheva, V V; Todorov, T A; Voll, R E; Vassilev, T L

    2013-11-01

    Targeting autoreactive B lymphocytes at any stage of their differentiation could yield viable therapeutic strategies for treating autoimmunity. All currently used drugs, including the most recently introduced biological agents, lack target specificity. Selective silencing of double-stranded DNA-specific B cells in animals with spontaneous lupus has been achieved previously by the administration of a chimeric antibody molecule that cross-links their DNA-reactive B cell immunoglobulin receptors with inhibitory FcγIIb (CD32) receptors. However, long-lived plasmacytes are resistant to this chimeric antibody as well as to all conventional treatments. Bortezomib (a proteasome inhibitor) depletes most plasma cells and has been shown recently to suppress disease activity in lupus mice. We hypothesized that the co-administration of non-toxic doses of bortezomib, that partially purge long-lived plasma cells, together with an agent that selectively silences DNA-specific B cells, should have additive effects in an autoantibody-mediated disease. Indeed, our data show that the simultaneous treatment of lupus-prone MRL/lpr mice with suboptimal doses of bortezomib plus the chimeric antibody resulted in the prevention or the delayed appearance of the disease manifestations as well as in a prolonged survival. The effect of the combination therapy was significantly stronger than that of the respective monotherapies and was comparable to that observed after cyclophosphamide administration.

  7. Uderstanding Snowball Earth Deglaciation

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  8. Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    1999-01-01

    Workshop for middle and high school teachers to enhance their knowledge of the Earth as a system. NASA data and materials developed by teachers (all available via the Internet) will be used to engage participants in hands-on, investigative approaches to the Earth system. All materials are ready to be applied in pre-college classrooms. Remotely-sensed data will be used in combination with familiar resources, such as maps, to examine global climate change.

  9. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  10. World Wind 3D Earth Viewing

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  11. Guided earth boring tool

    SciTech Connect

    McDonald, W.J.; Pittard, G.T.; Maurer, W.C.; Wasson, M.R.; Herben, W.C.

    1989-08-22

    This patent describes a controllable tool for drilling holes in soft earth. The tool comprising an elongated rigid supporting drill rod or pipe, means supporting the drill rod or pipe for earth boring or piercing movement, including means for moving the drill rod or pipe longitudinally for penetrating the earth, means for rotating the drill rod or pipe while penetrating the earth, and means for controlling the direction of movement of the drill rod or pipe along a straight or curved path. The drill rod or pipe moving and rotating means being constructed to permit addition and removal of supporting drill rod or pipe during earth penetrating operation, an earth piercing member of substantially cylindrical shape. The tool being operable to penetrate the earth upon longitudinal movement of the drill rod or pipe by the longitudinal rod or pipe moving means, and the direction controlling means comprising means causing drill rod or pipe movement in a curved path through the earth when the rod or pipe is not rotated and causing drill rod or pipe straight line movement when the rod or pipe is rotated.

  12. Skylab explores the Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data from visual observations are integrated with results of analyses of approxmately 600 of the nearly 2000 photographs taken of Earth during the 84-day Skylab 4 mission to provide additional information on (1) Earth features and processes; (2) operational procedures and constraints in observing and photographing the planet; and (3) the use of man in real-time analysis of oceanic and atmospheric phenomena.

  13. A Field Scale Investigation of Enhanced Petroleum Hydrocarbon Biodegradation in the Vadose Zone Combining Soil Venting as an Oxygen Source with Moisture and Nutrient Addition

    DTIC Science & Technology

    1990-01-01

    AND SUBTITLF A Field Scale Investigation of Enhanced 5. FUNDING NUMBERS Petroleum Hydrocarbon Biodegradation in the Vadose Zone Combining Soil Venting...24 Enhanced Biodegradation Through Soil Venting ...................... 30 MATERIALS AND METHODS...378 ABSTRACT xx’ A Field Scale Investigation of Enhanced Petroleum Hydrocarbon Biodegradation in the Vadose Zone Combining Soil Venting as an

  14. Rainbow Earth.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Library and Archives, Phoenix.

    The environment is a great concern in the 1990s, and everyone needs to work at maintaining our planet. The 1992 Arizona State Library Reading Program, "Rainbow Earth," provides children with many techniques they can use to help the Earth. This reading program guide provides information on the following: goals, objectives, and evaluation;…

  15. Earth tides

    SciTech Connect

    Harrison, J.C.

    1984-01-01

    Nineteen papers on gravity, tilt, and strain tides are compiled into this volume. Detailed chapters cover the calculation of the tidal forces and of the Earth's response to them, as well as actual observations of earth tides. Partial Contents: On Earth tides. The tidal forces: Tidal Forces. New Computations of the Tide-Generating Potential. Corrected Tables of Tidal Harmonics. The Theory of Tidal Deformations. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth, Deformation of the Earth by Surface Loads. Gravimetric Tidal Loading Computed from Integrated Green's Functions. Tidal Friction in the Solid Earth. Loading Tides Versus Body Tides. Lunar Tidal Acceleration from Earth Satellite Orbit Analysis. Observations: gravity. Tidal Gravity in Britain: Tidal Loading and the Spatial Distribution of the Marine Tide. Tidal Loading along a Profile Europe-East Africa-South Asia-Australia and the Pacific Ocean. Detailed Gravity-Tide Spectrum between One and Four Cycles per Day. Observations: tilt and strain. Cavity and Topographic Effects in Tilt and Strain Measurement. Observations of Local Elastic Effects on Earth Tide Tilts and Strains.

  16. Earth as art three

    USGS Publications Warehouse

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  17. Practices of Integrating the Earth Charter into Education Activities in German Federal States of Hessen and Rheinland-Pfalz

    ERIC Educational Resources Information Center

    Mathar, Reiner

    2010-01-01

    The integration of Earth Charter into everyday practice of schools in Germany has to be combined with the curriculum development in different subjects. Two states of Germany started this process by organizing inservice training for primary and secondary teachers. Additionally they translated and adopted the Earth Charter Teachers Guidebook to…

  18. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  19. Visualization of 3D Geological Models on Google Earth

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Um, J.; Park, M.

    2013-05-01

    Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth

  20. Combined use of the leucoxene ores of the Yarega deposit with the formation of synthetic rutile and wollastonite and the recovery of rare and rare-earth elements

    NASA Astrophysics Data System (ADS)

    Sadykhov, G. B.; Zablotskaya, Yu. V.; Anisonyan, K. G.; Olyunina, T. V.

    2016-11-01

    A new process of catalytic autoclave desiliconization of the leucoxene concentrate by lime milk with the formation of synthetic rutile and wollastonite is developed. The general laws of the processes occurring under the conditions of pressure leaching of the concentrate are revealed, and the main leaching parameters that ensure selective desiliconization of leucoxene grains are determined. The leucoxene concentrate is shown to contain rare and rare-earth elements. They are concentrated in synthetic rutile during desiliconization, which facilitates their extraction during subsequent chlorination of rutile.

  1. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  2. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  3. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  4. Next step in Earth interior modeling for nutation

    NASA Astrophysics Data System (ADS)

    Dehant, V.; Folgueira, M.; Puica, M.; Koot, L.; Van Hoolst, T.; Trinh, A.

    2014-12-01

    Accurate reference systems are important for many geophysical applications and satellite observations. It is therefore necessary to know the Earth rotation and orientation with high precision. Interactions between the solid Earth and its fluid layers (liquid core, atmosphere, ocean) induce variations in the Earth's speed of rotation. In addition, because the Earth is not a perfect sphere, but rather an ellipsoid flattened at its poles, the combined gravitational forces acting upon it produce changes in the orientation of its spin axis. Precession describes the long-term trend in the orientation of the Earth, while nutation refers to shorter-term periodic variations. The nutations of the Earth are the prime focus of the present paper. Models are used to predict the real-time Earth rotation and orientation, based on past observations and theoretical considerations of geophysical processes. In particular, the coupling mechanisms at the internal boundaries have been shown to be important for rotation. We here address the coupling mechanisms at the core boundaries such as the topographic, electromagnetic and viscous couplings, and discuss improvements in their computation and observation. The study uses and compares numerical and semi-analytical approaches, with the objective of both improving the nutation model and the rotation, and better understanding the interior of the Earth.

  5. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  6. Combined effects of nitrogen addition and litter manipulation on nutrient resorption of Leymus chinensis in a semi-arid grassland of northern China.

    PubMed

    Li, X; Liu, J; Fan, J; Ma, Y; Ding, S; Zhong, Z; Wang, D

    2015-01-01

    Plant growth in semi-arid ecosystems is usually severely limited by soil nutrient availability. Alleviation of these resource stresses by fertiliser application and aboveground litter input may affect plant internal nutrient cycling in such regions. We conducted a 4-year field experiment to investigate the effects of nitrogen (N) addition (10 g N·m(-2) ·year(-1)) and plant litter manipulation on nutrient resorption of Leymus chinensis, the dominant native grass in a semi-arid grassland in northern China. Although N addition had no clear effects on N and phosphorus (P) resorption efficiencies in leaves and culms, N fertilisation generally decreased leaf N resorption proficiency by 54%, culm N resorption proficiency by 65%. Moreover, N fertilisation increased leaf P resorption proficiency by 13%, culm P resorption proficiency by 20%. Under ambient or enriched N conditions, litter addition reduced N and P resorption proficiencies in both leaves and culms. The response of P resorption proficiency to litter manipulation was more sensitive than N resorption proficiency: P resorption proficiency in leaves and culms decreased strongly with increasing litter amount under both ambient and enriched N conditions. In contrast, N resorption proficiency was not significantly affected by litter addition, except for leaf N resorption proficiency under ambient N conditions. Furthermore, although litter addition caused a general decrease of leaf and culm nutrient resorption efficiencies under both ambient and enriched N conditions, litter addition effects on nutrient resorption efficiency were much weaker than the effects of litter addition on nutrient resorption proficiency. Taken together, our results show that leaf and non-leaf organs of L. chinensis respond consistently to altered soil N availability. Our study confirms the strong effects of N addition on plant nutrient resorption processes and the potential role of aboveground litter, the most important natural fertiliser in

  7. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    NASA Technical Reports Server (NTRS)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  8. Fuel additives

    SciTech Connect

    Gheysens, J.L.G.

    1990-11-27

    This patent describes a composition for the improvement of hydrocarbon fuels exhibiting a boiling range of gasoline being suitable for use in spark ignition-type engines. It comprises an aromatic amine; a polyaminated detergent; a catalyst comprising a colloidal suspension or amine salt of transition/alkali/alkaline earth metal organic coordinations having at least one metal oxidehydroxide linked to an alkyl chain via a carboxyl group; and a solvent comprising an alkanol-aliphatic ether oxygenated hydrocarbon.

  9. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  10. Combined action of time-delay and colored cross-associated multiplicative and additive noises on stability and stochastic resonance for a stochastic metapopulation system

    NASA Astrophysics Data System (ADS)

    Wang, Kang-Kang; Zong, De-Cai; Wang, Ya-Jun; Li, Sheng-Hong

    2016-05-01

    In this paper, the transition between the stable state of a big density and the extinction state and stochastic resonance (SR) for a time-delayed metapopulation system disturbed by colored cross-correlated noises are investigated. By applying the fast descent method, the small time-delay approximation and McNamara and Wiesenfeld's SR theory, we investigate the impacts of time-delay, the multiplicative, additive noises and colored cross-correlated noise on the SNR and the shift between the two states of the system. Numerical results show that the multiplicative, additive noises and time-delay can all speed up the transition from the stable state to the extinction state, while the correlation noise and its correlation time can slow down the extinction process of the population system. With respect to SNR, the multiplicative noise always weakens the SR effect, while noise correlation time plays a dual role in motivating the SR phenomenon. Meanwhile, time-delay mainly plays a negative role in stimulating the SR phenomenon. Conversely, it could motivate the SR effect to increase the strength of the cross-correlation noise in the SNR-β plot, while the increase of additive noise intensity will firstly excite SR, and then suppress the SR effect.

  11. Single and combined effects of deoxynivalenol mycotoxin and a microbial feed additive on lymphocyte DNA damage and oxidative stress in broiler chickens.

    PubMed

    Awad, Wageha A; Ghareeb, Khaled; Dadak, Agnes; Hess, Michael; Böhm, Josef

    2014-01-01

    The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99 ± 0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82 ± 1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23 ± 2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON.

  12. Single and Combined Effects of Deoxynivalenol Mycotoxin and a Microbial Feed Additive on Lymphocyte DNA Damage and Oxidative Stress in Broiler Chickens

    PubMed Central

    Awad, Wageha A.; Ghareeb, Khaled; Dadak, Agnes; Hess, Michael; Böhm, Josef

    2014-01-01

    The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99±0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82±1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23±2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON. PMID:24498242

  13. Data fusion for food authentication. Combining rare earth elements and trace metals to discriminate "Fava Santorinis" from other yellow split peas using chemometric tools.

    PubMed

    Drivelos, Spiros A; Higgins, Kevin; Kalivas, John H; Haroutounian, Serkos A; Georgiou, Constantinos A

    2014-12-15

    "Fava Santorinis", is a protected designation of origin (PDO) yellow split pea species growing only in the island of Santorini in Greece. Due to its nutritional quality and taste, it has gained a high monetary value. Thus, it is prone to adulteration with other yellow split peas. In order to discriminate "Fava Santorinis" from other yellow split peas, four classification methods utilising rare earth elements (REEs) measured through inductively coupled plasma-mass spectrometry (ICP-MS) are studied. The four classification processes are orthogonal projection analysis (OPA), Mahalanobis distance (MD), partial least squares discriminant analysis (PLS-DA) and k nearest neighbours (KNN). Since it is known that trace elements are often useful to determine geographical origin of food products, we further quantitated for trace elements using ICP-MS. Presented in this paper are results using the four classification processes based on the fusion of the REEs data with the trace element data. Overall, the OPA method was found to perform best with up to 100% accuracy using the fused data.

  14. Gene trees, species trees and Earth history combine to shed light on the evolution of migration in a model avian system.

    PubMed

    Voelker, Gary; Bowie, Rauri C K; Klicka, John

    2013-06-01

    The evolution of migration in birds has fascinated biologists for centuries. In this study, we performed phylogenetic-based analyses of Catharus thrushes, a model genus in the study of avian migration, and their close relatives. For these analyses, we used both mitochondrial and nuclear genes, and the resulting phylogenies were used to trace migratory traits and biogeographic patterns. Our results provide the first robust assessment of relationships within Catharus and relatives and indicate that both mitochondrial and autosomal genes contribute to overall support of the phylogeny. Measures of phylogenetic informativeness indicated that mitochondrial genes provided more signal within Catharus than did nuclear genes, whereas nuclear loci provided more signal for relationships between Catharus and close relatives than did mitochondrial genes. Insertion and deletion events also contributed important support across the phylogeny. Across all taxa included in the study, and for Catharus, possession of long-distance migration is reconstructed as the ancestral condition, and a North American (north of Mexico) ancestral area is inferred. Within Catharus, sedentary behaviour evolved after the first speciation event in the genus and is geographically and temporally correlated with Central American distributions and the final closure of the Central American Seaway. Migratory behaviour subsequently evolved twice in Catharus and is geographically and temporally correlated with a recolonization of North America in the late Pleistocene. By temporally linking speciation events with changes in migratory condition and events in Earth history, we are able to show support for several competing hypotheses relating to the geographic origin of migration.

  15. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  16. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  17. Effect of the combined addition of Zn and Pb on partitioning in sediments and their accumulation by the emergent macrophyte Schoenoplectus californicus.

    PubMed

    Arreghini, Silvana; de Cabo, Laura; Serafini, Roberto; de Iorio, Alicia Fabrizio

    2017-01-31

    Wetlands usually provide a natural mechanism that diminishes the transport of toxic compounds to other compartments of the ecosystem by immobilization and accumulation in belowground tissues and/or soil. This study was conducted to assess the ability of Schoenoplectus californicus growing in natural marsh sediments, with zinc and lead addition, to tolerate and accumulate these metals, taking account of the metal distribution in the sediment fractions. The Zn and Pb were mainly found in available (exchangeable) and potentially available (bound to organic matter) forms, respectively. The absorption of Zn and Pb by plants increased in sediments with added metals. Both metals were largely retained in roots (translocation factor < 1). Lead rhizome concentrations only increased significantly in treatments with high doses of metal independently of added Zn. The addition of Zn increased its concentration in roots and shoots significantly, while its concentration in rhizomes only increased when both metals were added together. Zinc concentration in shoots did not reach the toxic level for plants. Zinc and Pb concentrations in roots were high, but they were not sufficient to reduce biomass growth.

  18. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho; Diggles, M.F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  19. Think Earth.

    ERIC Educational Resources Information Center

    Niedermeyer, Fred; Ice, Kay

    1992-01-01

    Describes a series of environmental education instructional units for grades K-6 developed by the Think Earth Consortium that cover topics such as conservation, pollution control, and waste reduction. Provides testimony from one sixth-grade teacher that field tested the second-grade unit. (MDH)

  20. Rare earths

    USGS Publications Warehouse

    Gambogi, J.

    2013-01-01

    Global mine production of rare earths was estimated to have declined slightly in 2012 relative to 2011 (Fig. 1). Production in China was estimated to have decreased to 95 from 105 kt (104,700 from 115,700 st) in 2011, while new mine production in the United States and Australia increased.

  1. Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry

    SciTech Connect

    Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape

    2005-12-01

    High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

  2. Combined complementary plasma diagnostics to characterize a 2f plasma with additional DC current with conditioning effects at the chamber wall

    NASA Astrophysics Data System (ADS)

    Klick, Michael; Rothe, Ralf; Baek, Kye Hyun; Lee, Eunwoo

    2016-09-01

    Multiple frequencies and DC current used in a low-pressure plasma rf discharge result in an increased complexity. This needs plasma diagnostics applied, in particular in a plasma process chamber. That is done under manufacturing conditions which restrict the applicable plasma diagnostics to non-invasive methods with small footprint. So plasma chamber parameters, optical emission spectroscopy (OES), and self-excited electron spectroscopy (SEERS) are used to characterize the plasma and to understand chamber wall conditioning effects in an Ar plasma. The parameters are classified according to their origin--the region they are representative for. The center ion density is estimated from the DC current and compared to the SEERS electron density reflecting the electron density close to that at the chamber wall. The conditioning effects are caused by Si sputtering at a Si wafer changing the chamber wall state only when the chamber is clean, subsequent plasmas in the same chamber are not affected in that way. Through the combination of the complementary methods it can be shown that the chamber wall condition finally changes the radial plasma density distribution. Also the heating of electrons in the sheath is shown to be influenced by conditioning effects.

  3. Combining Kepler and HARPS Exoplanet Occurrence Rates to Infer the Period-Mass-Radius Distribution of Super-Earths/Sub-Neptunes

    NASA Astrophysics Data System (ADS)

    Wolfgang, A.; Laughlin, G.

    2011-12-01

    The ongoing High Accuracy Radial velocity Planet Search (HARPS) has found that 30-50% of FGK stars in the solar neighborhood host planets with Mpl < MNep in orbits of P < 50 days. At first glance, this high overall occurrence rate seems at best to be marginally consistent with the planet frequency measured during Q0-Q2 of the Kepler Mission, whose 1235 detected planetary candidates imply that ˜ 15% of main sequence dwarfs harbor a short-period planet with Rpl < 4 R⊕ . A rigorous comparison between the two surveys is difficult, however, as they observe different stellar populations, measure different planetary physical properties, and are subject to radically different sampling plans. In this article, we report the results of a Monte Carlo study which seeks to partially overcome this apparent discrepancy by identifying plausible planetary population distributions which can jointly conform to the results of the two surveys. We find that a population concurrently consisting of (1) dense silicate-iron planets and (2) low-density volatile and gas-dominated worlds provides a natural fit to the current data. In this scenario, the fraction of dense planets decreases with increasing mass, from frocky = 90% at M = 1 M⊕ to frocky = 10% at M = MNep. Our best fit population has a total occurrence rate of 40% for 2 ≤ P ≤ 50 days and 1 ≤ M ≤ 17 M⊕ , and is characterized by simple power-law indices of the form N(M)dM ∝ Mα dM and N(P)dP ∝ Pβ dP with α = -1.0 and β = 0.0. Our model population therefore contains four free parameters and is readily testable with future observations. Furthermore, our model's insistence that at least two distinct types of planets must exist in the survey data indicates that multiple formation mechanisms are at work to produce the population of planets commonly referred to as ``super-Earths".

  4. Earth meandering

    NASA Astrophysics Data System (ADS)

    Asadiyan, H.; Zamani, A.

    2009-04-01

    In this paper we try to put away current Global Tectonic Model to look the tectonic evolution of the earth from new point of view. Our new dynamic model is based on study of river meandering (RM) which infer new concept as Earth meandering(EM). In a universal gravitational field if we consider a clockwise spiral galaxy model rotate above Ninety East Ridge (geotectonic axis GA), this system with applying torsion field (likes geomagnetic field) in side direction from Rocky Mt. (west geotectonic pole WGP) to Tibetan plateau TP (east geotectonic pole EGP),it seems that pulled mass from WGP and pushed it in EGP due to it's rolling dynamics. According to this idea we see in topographic map that North America and Green land like a tongue pulled from Pacific mouth toward TP. Actually this system rolled or meander the earth over itself fractaly from small scale to big scale and what we see in the river meandering and Earth meandering are two faces of one coin. River transport water and sediments from high elevation to lower elevation and also in EM, mass transport from high altitude-Rocky Mt. to lower altitude Himalaya Mt. along 'S' shape geodetic line-optimum path which connect points from high altitude to lower altitude as kind of Euler Elastica(EE). These curves are responsible for mass spreading (source) and mass concentration (sink). In this regard, tiltness of earth spin axis plays an important role, 'S' are part of sigmoidal shape which formed due to intersection of Earth rolling with the Earth glob and actual feature of transform fault and river meandering. Longitudinal profile in mature rivers as a part of 'S' curve also is a kind of EE. 'S' which bound the whole earth is named S-1(S order 1) and cube corresponding to this which represent Earth fracturing in global scale named C-1(cube order 1 or side vergence cube SVC), C-1 is a biggest cycle of spiral polygon, so it is not completely closed and it has separation about diameter of C-7. Inside SVC we introduce cone

  5. ESA's Earth Observation in Support of Geoscience

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-04-01

    The intervention will present ESA's Earth Observation Programme and its contribution to Geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. A special focus will be put on the Earth Explorers, who form the science and research element of ESA's Living Planet Programme and focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. In addition the operational Sentinel satellites have a huge potential for Geoscience. Earth Explorers' emphasis is also on learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The process of Earth Explorer mission selection has given the Earth science community an efficient tool for advancing the understanding of Earth as a system.

  6. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  7. Mapping Near-Earth Hazards

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    proxy for its size is a poor approximation, due to asteroids large spread in albedos. Roughly 23% of NEOs larger than 140 m have absolute magnitudes fainter than H = 22 mag, the authors show which is the value usually assumed as the default absolute magnitude of a 140 m NEO.Fraction of NEOs weve detected as a function of time based on the authors simulations of the current surveys (red), LSST plus the current surveys (black), NEOCam plus the current surveys (blue), and the combined result for all surveys (green). [Grav et al. 2016]Taking this into account, Grav and collaborators then use information about the planned LSST survey strategies and detection limits to test what fraction of this synthetic NEO population LSST will be able to detect in its proposed 10-year mission.The authors find that, within 10 years, LSST will likely be able to detect only 63% of NEOs larger than 140 m. Luckily, LSST may not have to work alone; in addition to the current surveys in operation, a proposed infrared space-based survey mission called NEOCam is planned for launch in 2021. If NEOCam is funded, it will complement LSSTs discovery capabilities, potentially allowing the two surveys to jointly achieve the 90% detection goal within a decade.CitationT. Grav et al 2016 AJ 151 172. doi:10.3847/0004-6256/151/6/172

  8. Amino group combined P/Ge and P/Sn Lewis pairs: synthesis and dipolar addition reactions to alkyne and aldehyde molecules.

    PubMed

    Yu, Ying; Li, Jiancheng; Liu, Weiping; Ye, Qingsong; Zhu, Hongping

    2016-04-14

    Amino group combined P/Ge-based frustrated Lewis pairs (FLPs) Ph2PN(R)GeCl3 (R = 2,6-iPr2C6H3 (1), 2,4,6-Me3C6H2 (2), and C6H11 (3)) and Ph2PN(2,6-iPr2C6H3)GeMe3 (4) as well as P/Sn-based FLP Ph2PN(2,6-iPr2C6H3)SnMe3 (5) were prepared and utilized for reactions with alkyne and aldehyde molecules. Compounds 1-3 each reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give zwitterionic cyclic vinyls [Ph2PN(R)GeCl3](MeO2CC[double bond, length as m-dash]CCO2Me) (6-8) and compound 1 reacted with HC[triple bond, length as m-dash]CCO2Me to give the similar compound [Ph2PN(2,4,6-Me3C6H2)GeCl3](HC[double bond, length as m-dash]CCO2Me) (9). Compound 4 reacted with RC[triple bond, length as m-dash]CCO2Me to afford acyclic vinyls 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(R)[double bond, length as m-dash]C(CO2Me)GeMe3 (R = CO2Me (10), H (11)) and 5 reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(CO2Me)[double bond, length as m-dash]C(CO2Me)SnMe3 (12). The reactions of 1 with CH3CH2CHO and 1,4-(CHO)2C6H4 were also investigated and yielded novel zwitterionic OCPNGe five-heteroatom cycles [Ph2PN(2,6-iPr2C6H3)GeCl3][CH(CH2CH3)O] (13) and [Ph2PN(2,6-iPr2C6H3)GeCl3][p-(OCH)C6H4CHO][Cl3GeN(2,6-iPr2C6H3)PPh2] (14). Compounds 1-14 were characterized by NMR ((1)H, (13)C, and (31)P) and CHN elemental analysis, of which 1, 7, and 10-14 were further studied by X-ray crystallography. The reactions of 4 (or 5) with RC[triple bond, length as m-dash]CCO2Me to produce 10-12 present a novel way of obtaining the germyl (or stannyl) and iminophosphoranyl co-substituted vinyls.

  9. Colostrum replacer feeding regimen, addition of sodium bicarbonate, and milk replacer: the combined effects on absorptive efficiency of immunoglobulin G in neonatal calves.

    PubMed

    Cabral, R G; Cabral, M A; Chapman, C E; Kent, E J; Haines, D M; Erickson, P S

    2014-01-01

    Eighty Holstein and Holstein cross dairy calves were blocked by birth date and randomly assigned to 1 of 8 treatments within each block to examine the effect of a colostrum replacer (CR) feeding regimen, supplementation of CR with sodium bicarbonate (NaHCO3), and provision of a milk replacer (MR) feeding on IgG absorption. Calves were offered a CR containing 184.5g/L of IgG in either 1 feeding at 0h (within 30 min of birth), with or without 30g of NaHCO3, with or without a feeding of MR at 6h of age, or 2 feedings of CR (123g of IgG at 0h with or without 20g of NaHCO3 and 61.5g of IgG at 6h with or without 10g of NaHCO3), with or without a MR feeding at 12h. Therefore, treatments were (1) 1 feeding of CR; (2) 2 feedings of CR; (3) 1 feeding of CR + 30g of NaHCO3; (4) 2 feedings of CR + 30g of NaHCO3; (5) 1 feeding of CR + MR feeding; (6) 2 feedings of CR + MR feeding; (7) 1 feeding of CR + 30g NaHCO3 + MR feeding; and (8) 2 feedings of CR + 30g NaHCO3 + MR feeding. Blood samples were obtained at 0, 6, 12, 18, and 24h after birth and were analyzed for IgG via radial immunoassay. Results indicated that CR feeding schedule, MR feeding, and the interactions CR × Na, CR × MR, and CR × Na × MR were similar for 24-h serum IgG, apparent efficiency of absorption, or area under the curve. Serum IgG at 24h, apparent efficiency of absorption, and area under the curve were decreased with addition of NaHCO3 compared with calves not supplemented with NaHCO3. These data indicate that supplementation of CR with NaHCO3 is not beneficial to IgG absorption and feeding MR within 6h of CR feeding does not affect IgG absorption.

  10. Combination therapy with ONO-KK1-300-01, a cathepsin K inhibitor, and parathyroid hormone results in additive beneficial effect on bone mineral density in ovariectomized rats.

    PubMed

    Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Kawada, Naoki; Tanaka, Makoto; Imagawa, Akira; Ohmoto, Kazuyuki; Kawabata, Kazuhito

    2016-01-01

    This study examined the effects of a novel cathepsin K inhibitor, ONO-KK1-300-01 (KK1-300), used concurrently with parathyroid hormone (PTH) in ovariectomized (OVX) rats. KK1-300 (3 mg/kg, twice daily), alendronate (1 mg/kg, once daily) or vehicle were orally administered to OVX rats for 56 days, starting the day after ovariectomy, followed by combination treatment with or without PTH (3 μg/kg, subcutaneously three times a week) for another 28 days. OVX control animals exhibited a significant increase in both bone resorption (urinary deoxypyridinoline; DPD) and formation markers (serum osteocalcin) as well as microstructural changes associated with decreased bone mineral density (BMD). Combination treatment with KK1-300 and PTH significantly decreased urinary DPD and increased serum osteocalcin, indicating a sustained beneficial effect compared to the effect of each mono-therapy. On the other hand, combination therapy with alendronate and PTH weakened the PTH-induced increase in osteocalcin. In proximal tibia, combination treatment with KK1-300 and PTH increased BMD to a level significantly higher than that achieved following single treatment with KK1-300 or PTH alone. On the other hand, combination treatment with alendronate and PTH failed to produce any significant additive effect on BMD following single treatment with alendronate or PTH alone. Microstructural analysis revealed that the PTH-induced increase in bone formation (MS/BS and BFR/BS) was fully maintained following combination treatment with KK1-300 and PTH, but not following combination treatment with alendronate and PTH. These findings indicate that KK1-300, unlike alendronate, has an additive effect on the preventive action of PTH on bone loss in OVX rats.

  11. Temporal trend of the snow-related variables in Sierra Nevada in the last years: An analysis combining Earth Observation and hydrological modelling

    NASA Astrophysics Data System (ADS)

    Pérez-Luque, Antonio J.; Herrero, Javier; Bonet, Francisco J.; Pérez-Pérez, Ramón

    2016-04-01

    negative trend for the snow-cover melting date). Precipitation does not show a significant trend for these years, even though its inter-annual variability has been outstanding. The maximum mean annual precipitation of 906 mm/year doubles the mean precipitation, which somehow compensates for the occurrence of a sequence of dry years with a minimum of 250 mm/year. The assessment of the spatial pattern of snow cover duration shows that both the trend and the slope of the trend becomes more pronounced with elevation. At higher elevations the snow-cover duration decreased an average of 3 days from 2000-2014. This research has been funded by ECOPOTENTIAL (Improving future ecosystem benefits through Earth Observations) Horizon 2020 EU project, and Sierra Nevada Global Change Observatory (LTER-site)

  12. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  13. Earth Viewing Applications Laboratory (EVAL). Instrument catalog

    NASA Technical Reports Server (NTRS)

    1976-01-01

    There were 87 instruments described that are used in earth observation, with an additional 51 instruments containing references to programs and their major functions. These instruments were selected from such sources as: (1) earth observation flight program, (2) operational satellite improvement programs, (3) advanced application flight experiment program, (4) shuttle experiment definition program, and (5) earth observation aircraft program.

  14. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, N.

    2012-12-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  15. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, Noel

    2013-04-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  16. Rates of Earth degassing

    NASA Technical Reports Server (NTRS)

    Onions, R. K.

    1994-01-01

    The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.

  17. The Earth & Moon

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During its flight, the Galileo spacecraft returned images of the Earth and Moon. Separate images of the Earth and Moon were combined to generate this view. The Galileo spacecraft took the images in 1992 on its way to explore the Jupiter system in 1995-97. The image shows a partial view of the Earth centered on the Pacific Ocean about latitude 20 degrees south. The west coast of South America can be observed as well as the Caribbean; swirling white cloud patterns indicate storms in the southeast Pacific. The distinct bright ray crater at the bottom of the Moon is the Tycho impact basin. The lunar dark areas are lava rock filled impact basins. This picture contains same scale and relative color/albedo images of the Earth and Moon. False colors via use of the 1-micron filter as red, 727-nm filter as green, and violet filter as blue. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  18. The Earth and Moon

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During its flight, the Galileo spacecraft returned images of the Earth and Moon. Separate images of the Earth and Moon were combined to generate this view. The Galileo spacecraft took the images in 1992 on its way to explore the Jupiter system in 1995-97. The image shows a partial view of the Earth centered on the Pacific Ocean about latitude 20 degrees south. The west coast of South America can be observed as well as the Caribbean; swirling white cloud patterns indicate storms in the southeast Pacific. The distinct bright ray crater at the bottom of the Moon is the Tycho impact basin. The lunar dark areas are lava rock filled impact basins. This picture contains same scale and relative color/albedo images of the Earth and Moon. False colors via use of the 1-micron filter as red, 727-nm filter as green, and violet filter as blue. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  19. SeismoGeodesy: Combination of High Rate, Real-time GNSS and Accelerometer Observations and Rapid Seismic Event Notification for Earth Quake Early Warning and Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Zimakov, Leonid; Moessmer, Matthias

    2015-04-01

    Scientific GNSS networks are moving towards a model of real-time data acquisition, epoch-by-epoch storage integrity, and on-board real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 Hz) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies, volcano monitoring, and critical infrastructure monitoring applications. Our presentation will focus on the characteristics of GNSS, seismic, and strong motion sensors in high dynamic environments, including historic earthquakes replicated on a shake table over a range of displacements and frequencies. We will explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios. We will also explore the tradeoffs between various GNSS processing schemes including real-time precise point positioning (PPP) and real-time kinematic (RTK) as applied to seismogeodesy. In addition we will discuss implementation of a Rapid Seismic Event Notification System that provides quick delivery of digital data from seismic stations to the acquisition and processing center and a full data integrity model for real-time earthquake notification that provides warning prior to significant ground shaking.

  20. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  1. The composition of mantle plumes and the deep Earth

    NASA Astrophysics Data System (ADS)

    Hastie, Alan R.; Fitton, J. Godfrey; Kerr, Andrew C.; McDonald, Iain; Schwindrofska, Antje; Hoernle, Kaj

    2016-06-01

    Determining the composition and geochemical diversity of Earth's deep mantle and subsequent ascending mantle plumes is vital so that we can better understand how the Earth's primitive mantle reservoirs initially formed and how they have evolved over the last 4.6 billion years. Further data on the composition of mantle plumes, which generate voluminous eruptions on the planet's surface, are also essential to fully understand the evolution of the Earth's hydrosphere and atmosphere with links to surface environmental changes that may have led to mass extinction events. Here we present new major and trace element and Sr-Nd-Pb-Hf isotope data on basalts from Curacao, part of the Caribbean large igneous province. From these and literature data, we calculate combined major and trace element compositions for the mantle plumes that generated the Caribbean and Ontong Java large igneous provinces and use mass balance to determine the composition of the Earth's lower mantle. Incompatible element and isotope results indicate that mantle plumes have broadly distinctive depleted and enriched compositions that, in addition to the numerous mantle reservoirs already proposed in the literature, represent large planetary-scale geochemical heterogeneity in the Earth's deep mantle that are similar to non-chondritic Bulk Silicate Earth compositions.

  2. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  3. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  4. Earth as art 4

    USGS Publications Warehouse

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  5. Sulfur Earth

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  6. The Composition and Early Evolution of Earth

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Lewis, J. S.

    1993-09-01

    A weighted average composition is suggestd as the "Best Bulk Silicate Earth" (BBSE). BBSE, thought to represent Earth's primitive mantle (modern mantle + crust), is a concept based on analyses of oceanic theoleiites and continental flood basalts, oceanic and continental alkali basalts, ultramafic ophiolites, Archean komatiites, and spinel- and garnet-bearing xenoliths from basalts and kimberlites. BBSE shows the combined effects of core formation and volatility, presumably including condensation and sublimation in the solar nebula and volatile loss during the accretion and early evolution of Earth. The abundances of volatile lithophile elements show a volatility trend (VT) when plotted against condensation temperature. The slope of VT suggests that Earth accreted matter that had condensed over a wide range of temperatures, consistent with planet-formation scenarios of G. W. Wetherill (1988, Mercury, pp. 670-691, Univ. of Arizona Press, Tucson; 1990, Annu. Rev. Earth Planet. Sci. 18, 205-256). Using VT, BBSE, and long-standing seismic constraints, we infer the composition of the entire Earth and its core. The bulk Earth's VT closely resembles the average composition of H-chondrites (H3-H6). The 10 most abundant elements in the core nominally include ∼85.55 mass% Fe, 5.18% O, 4.88% Ni, 2.69% S, 0.45% Cr, 0.41% Mn, 0.35% P, 0.22% Co, 0.07% Cl, and possibly 0.02% K. The core may contain most of Earth's heavy alkali and halogen elements, in addition to chalcophiles and siderophiles; alternatively, depletions of alkali halide components in BBSE may have resulted from impact blow-off of an early saline ocean. It is unclear whether the core contains a significant fraction of Earth's K and Pb. Possible partitioning of substantial quantities of O, Rb, and Cs into the core and the partitioning behavior of fourth-period transition metals suggests that metal-silicate equilibration occurred at characteristic pressures of several hundred kilobars or more; if correct, this

  7. In situ sulfur isotopes (δ(34)S and δ(33)S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS.

    PubMed

    Fu, Jiali; Hu, Zhaochu; Zhang, Wen; Yang, Lu; Liu, Yongsheng; Li, Ming; Zong, Keqing; Gao, Shan; Hu, Shenghong

    2016-03-10

    The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N2 on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4-8 ml min(-1) nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N2 = 4 ml min(-1)). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d90 values of the particles in pressed powder pellets for accurate and precise S isotope analysis

  8. Earth Camp: Exploring Earth Change through the Use of Satellite Images and Scientific Practices

    NASA Astrophysics Data System (ADS)

    Baldridge, A.; Buxner, S.; Crown, D. A.; Colodner, D.; Orchard, A.; King, B.; Schwartz, K.; Prescott, A.; Prietto, J.; Titcomb, A.

    2014-07-01

    Earth Camp is a NASA-funded program that gives students and teachers opportunities to explore local, regional, and global earth change through a combination of hands-on investigations and the use of satellite images. Each summer, 20 middle school and 20 high school students participate in a two-week leadership program investigating contemporary issues (e.g., changes in river sheds, water quality, and land use management) through hands-on investigations, analyzing remote sensing data, and working with experts. Each year, 20 teachers participate in a year-long professional development program that includes monthly workshops, field investigations on Mt. Lemmon in Tucson, Arizona, and a week-long summer design workshop. Teachers conduct investigations of authentic questions using satellite images and create posters to present results of their study of earth change. In addition, teachers design lesson plans to expand their students' ability to investigate earth change with 21st Century tools. Lessons can be used as classroom exercises or for after-school club programs. Independent evaluation has been an integral part of program development and delivery for all three audiences, enabling the program staff and participants to reflect on and continually improve their practice and learning over the three-year period.

  9. Determination of the specific site occupation of rare earth additions in Y/sub 1/ /sub 7/SM/sub 0/ /sub 6/Lu/sub 0/ /sub 7/Fe/sub 5/O/sub 12/ thin films by the orientation dependence of characteristic x-ray emissions

    SciTech Connect

    Krishnan, K.M.; Rez, P.; Mishra, R.; Thomas, G.

    1983-11-01

    The orientation dependence of characteristic x-ray emissions have been used to determine specific site occupations of Rare Earth additions in epitaxially grown films of Y/sub 1/ /sub 7/Sm/sub 0/ /sub 6/Lu/sub 0/ /sub 7/Fe/sub 5/O/sub 12/. A theoretical formulation based on the assumption of highly localized inner shell excitations was used not only to predict specific site sensitive orientations, but also to refine experimentally observed data employing a constrained least squares analysis to give probabilities for the occupation of the RE additions in the different crystallographic sites. Thus, it has been shown that in this compound the preference for the RE additions is a predominantly octahedral occupation with a probability greater than or equal to 95%. Some of the assumptions and limitations of the technique have also been discussed.

  10. 21 CFR 573.340 - Diatomaceous earth.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diatomaceous earth. 573.340 Section 573.340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.340 Diatomaceous earth. (a) Identity. The additive consists of siliceous...

  11. 21 CFR 573.340 - Diatomaceous earth.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Diatomaceous earth. 573.340 Section 573.340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.340 Diatomaceous earth. (a) Identity. The additive consists of siliceous...

  12. 21 CFR 573.340 - Diatomaceous earth.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Diatomaceous earth. 573.340 Section 573.340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.340 Diatomaceous earth. (a) Identity. The additive consists of siliceous...

  13. 21 CFR 573.340 - Diatomaceous earth.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Diatomaceous earth. 573.340 Section 573.340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.340 Diatomaceous earth. (a) Identity. The additive consists of siliceous...

  14. Earth as Seen from Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On its 449th martian day, or sol (April 29, 2005), NASA's Mars rover Opportunity woke up approximately an hour after sunset and took this picture of the fading twilight as the stars began to come out. Set against the fading red glow of the sky, the pale dot near the center of the picture is not a star, but a planet -- Earth.

    Earth appears elongated because it moved slightly during the 15-second exposures. The faintly blue light from the Earth combines with the reddish sky glow to give the pale white appearance.

    The images were taken with Opportunity's panoramic camera, using 440-nanometer, 530-nanometer, and 750-nanometer color filters. In processing on the ground, the images were shifted slightly to compensate for Earth's motion between one image and the next.

  15. Liquid sodium models of the Earth's core

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Stone, Douglas R.; Zimmerman, Daniel S.; Lathrop, Daniel P.

    2015-12-01

    Our understanding of the dynamics of the Earth's core can be advanced by a combination of observation, experiments, and simulations. A crucial aspect of the core is the interplay between the flow of the conducting liquid and the magnetic field this flow sustains via dynamo action. This non-linear interaction, and the presence of turbulence in the flow, precludes direct numerical simulation of the system with realistic turbulence. Thus, in addition to simulations and observations (both seismological and geomagnetic), experiments can contribute insight into the core dynamics. Liquid sodium laboratory experiments can serve as models of the Earth's core with the key ingredients of conducting fluid, turbulent flow, and overall rotation, and can also approximate the geometry of the core. By accessing regions of parameter space inaccessible to numerical studies, experiments can benchmark simulations and reveal phenomena relevant to the Earth's core and other planetary cores. This review focuses on the particular contribution of liquid sodium spherical Couette devices to this subject matter.

  16. Earth Observation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.

  17. Spectrometry of the Earth using Neutrino Oscillations.

    PubMed

    Rott, C; Taketa, A; Bose, D

    2015-10-22

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth's inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth's electron density. The Earth's chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth's matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject extreme cases of outer core composition. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways.

  18. Climate in Earth history

    NASA Technical Reports Server (NTRS)

    Berger, W. H.; Crowell, J. C.

    1982-01-01

    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  19. C3: A Collaborative Web Framework for NASA Earth Exchange

    NASA Astrophysics Data System (ADS)

    Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.

    2010-12-01

    The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.

  20. The EarthServer project: Exploiting Identity Federations, Science Gateways and Social and Mobile Clients for Big Earth Data Analysis

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Messina, Antonio; Pappalardo, Marco; Passaro, Gianluca

    2013-04-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. Six Lighthouse Applications are being established in EarthServer, each of which poses distinct challenges on Earth Data Analytics: Cryospheric Science, Airborne Science, Atmospheric Science, Geology, Oceanography, and Planetary Science. Altogether, they cover all Earth Science domains; the Planetary Science use case has been added to challenge concepts and standards in non-standard environments. In addition, EarthLook (maintained by Jacobs University) showcases use of OGC standards in 1D through 5D use cases. In this contribution we will report on the first applications integrated in the EarthServer Science Gateway and on the clients for mobile appliances developed to access them. We will also show how federated and social identity services can allow Big Earth Data Providers to expose their data in a distributed environment keeping a strict and fine-grained control on user authentication and authorisation. The degree of fulfilment of the EarthServer implementation with the recommendations made in the recent TERENA Study on

  1. The Dynamic Structure of the Deep Earth: An Interdisciplinary Approach

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, Carolina

    2004-04-01

    The interior of the Earth is largely inaccessible to direct observation; the deepest drill holes are only .1% of the Earth's radius. One might call it the undiscovered country. The mysteries of the interior have spanned a great deal of scientific and non-scientific literature. Most of what we know about the interior comes from seismological observations, our most informative probe of the deep Earth. Seismology reveals the variations of seismic velocities both laterally and at depth. Converting that information into knowledge about the structure, composition, and dynamical state of the Earth's interior requires other disciplines, high-pressure mineral physics, and geodynamics in the broadest sense. Without mineral physics, it would be impossible to properly translate the seismic information into knowledge of composition and dynamics. Shun Karato, a leader in mineral physics who is now at Yale University, provides the proper context to use a great variety of mineral physics data for interpreting both seismological observations and their relation to the dynamics of the interior. As such, The Dynamic Structure of the Deep Earth: An Interdisciplinary Approach is a welcome and unique addition to books on the geophysics of the Earth, as I can recall no other that combines a focus on the deep Earth with equal play given to several different disciplines. It is not a textbook, although it could be used as background reading in a graduate-level seminar. The book was originally published in Japanese in 2000 by the University of Tokyo Press; it was translated and updated for the current English edition.

  2. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    SciTech Connect

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; Papke, Brian L.; Luo, Huimin; West, Brian H.; Qu, Jun

    2015-09-29

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standard Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.

  3. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    DOE PAGES

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; ...

    2015-09-29

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standardmore » Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.« less

  4. The combined inhibitory effect of the adenosine A1 and cannabinoid CB1 receptors on cAMP accumulation in the hippocampus is additive and independent of A1 receptor desensitization.

    PubMed

    Serpa, André; Correia, Sara; Ribeiro, Joaquim A; Sebastião, Ana M; Cascalheira, José F

    2015-01-01

    Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3-30 μM) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6±2.7 μM and an Emax of 31%±2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10-150 nM), an EC50 of 35±19 nM, and an Emax of 29%±5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM) and CPA (100 nM) on cAMP accumulation was 41%±6% (n=4), which did not differ (P>0.7) from the sum of the individual effects of each agonist (43%±8%) but was different (P<0.05) from the effects of CPA or WIN55212-2 alone. Preincubation with CPA (100 nM) for 95 min caused desensitization of adenosine A1 activity, which did not modify the effect of WIN55212-2 (30 μM) on cAMP accumulation. In conclusion, the combined effect of CB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.

  5. Earth Orientation and Its Excitations by Atmosphere, Oceans, and Geomagnetic Jerks

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Ron, C.

    2015-12-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouël 2008, Malkin 2013). We (Ron et al. 2015) used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation). We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994) with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  6. New Atmospheric and Oceanic Angular Momentum Datasets for Predictions of Earth Rotation/Polar Motion

    NASA Astrophysics Data System (ADS)

    Salstein, D. A.; Stamatakos, N.

    2014-12-01

    We are reviewing the state of the art in available datasets for both atmospheric angular momentum (AAM) and oceanic angular momentum (OAM) for the purposes of analysis and prediction of both polar motion and length of day series. Both analyses and forecasts of these quantities have been used separately and in combination to aid in short and medium range predictions of Earth rotation parameters. The AAM and OAM combination, with the possible addition of hydrospheric angular momentum can form a proxy index for the Earth rotation parameters themselves due to the conservation of angular momentum in the Earth system. Such a combination of angular momentum of the geophysical fluids has helped in forecasts within periods up to about 10 days, due to the dynamic models, and together with extended statistical predictions of Earth rotation parameters out even as far as 90 days, according to Dill et al. (2013). We assess other dataset combinations that can be used in such analysis and prediction efforts for the Earth rotation parameters, and demonstrate the corresponding skill levels in doing so.

  7. Accessibility of near-Earth asteroids, 1990

    NASA Technical Reports Server (NTRS)

    Hulkower, Neal D.; Child, Jack B.

    1991-01-01

    Previous research which analyzed the accessibility of all known near-Earth asteroids is updated. Since then, many new near-Earth asteroids have been discovered, and 1928 DB, the most accessible asteroid at that time, has been recovered. Many of these recently discovered near-Earth asteroids have promising orbital characteristics. In addition to accessibility (as defined by minimum global delta v), ideal rendezvous opportunities are identified.

  8. Combined effect of Sn addition and post-rolling sintering on the superconducting properties of SmFeAsO1-xFx tapes fabricated by an ex-situ powder-in-tube process

    NASA Astrophysics Data System (ADS)

    Zhang, Qianjun; Wang, Chunlei; Yao, Chao; Lin, He; Zhang, Xianping; Wang, Dongliang; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2013-03-01

    Polycrystalline Sn-added SmFeAsO1-xFx tapes were prepared by an ex-situ powder-in-tube method. It is found that the transport critical current density (Jc) of the SmFeAsO1-xFx tapes can be significantly improved with 10-30 wt. % Sn addition. A transport Jc of 2.11 × 104 A cm-2 at 4.2 K in self-field was obtained in SmFeAsO1-xFx + 30 wt. % Sn sample. Most interestingly, Sn-added SmFeAsO1-xFx tapes without any sintering also showed substantial transport Jc of 9.81 × 103 A cm-2, which is reported for the first time. X-ray diffraction and scanning electron microscopy characterization revealed that the elemental Sn dispersed in the sample transformed into FeSn2 during the post-rolling sintering (PRS). The reaction between Sn and FeAs helps to eliminate the detrimental FeAs wetting phase, which blocks the supercurrent path between SmFeAsO1-xFx grains. The combined impact of fluorine loss and Sn reaction was discussed in this work by varying the Sn addition quantity and PRS condition.

  9. Alaska's rare earth deposits and resource potential

    USGS Publications Warehouse

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  10. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  11. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  12. Fourteen Times the Earth

    NASA Astrophysics Data System (ADS)

    2004-08-01

    light years away. This solar-like star is located in the southern constellation Ara (the Altar) and is bright enough (5th magnitude) to be observed with the unaided eye. Mu Arae was already known to harbour a Jupiter-sized planet with a 650 days orbital period. Previous observations also hinted at the presence of another companion (a planet or a star) much further away. The new measurements obtained by the astronomers on this object, combined with data from other teams confirm this picture. But as François Bouchy, member of the team, states: "Not only did the new HARPS measurements confirm what we previously believed to know about this star but they also showed that an additional planet on short orbit was present. And this new planet appears to be the smallest yet discovered around a star other than the sun. This makes mu Arae a very exciting planetary system." "Listening" to the star ESO PR Photo 25b/04 ESO PR Photo 25b/04 Observed Velocity Variation of mu Arae [Preview - JPEG: 440 x 400 pix - 98k] [Normal - JPEG: 879 x 800 pix - 230k] ESO PR Photo 25c/04 ESO PR Photo 25c/04 Velocity Variation of mu Arae Observed by HARPS [Preview - JPEG: 460 x 400 pix - 90k] [Normal - JPEG: 919 x 800 pix - 215k] Captions: ESO PR Photo 25b/04 shows the measurements of the radial velocity of the star mu Arae obtained by HARPS on the ESO 3.6m telescope at La Silla (green triangles), CORALIE on the Swiss Leonhard Euler 1.2m telescope also on La Silla (red dots) and UCLES on the Anglo-Australian Telescope (blue circles). The solid line shows the best fit to the measurements, assuming the existence of two planets and an additional long-period companion. The fact that the line happens to have a given width is related to the existence of the newly found short period planet. The data shown span the interval from July 1998 to August 2004. ESO PR Photo 25c/04 illustrates the high-quality radial velocity measurements obtained with HARPS. Here also, the solid line shows the best fit to the

  13. Models of the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  14. Models of the Earth's Core.

    PubMed

    Stevenson, D J

    1981-11-06

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data.

  15. Earthly Mechanics: Two Misapprehensions and a Heresy

    ERIC Educational Resources Information Center

    McClelland, G.

    1975-01-01

    In addition to two misapprehensions, that the earth is uninvolved in many physical phenomena and that it is infinite and unmoving, physics students often believe that the earth, without expending energy, can push things along its surface, giving rise to accelerations. (MLH)

  16. EarthScope: Earth Science Education and Outreach on a Continental Scale

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Arrowsmith, R.; Fouch, M. J.; Garnero, E. J.; Taylor, W. L.

    2011-12-01

    EarthScope, funded by the National Science Foundation, enables the exploration of the structure and evolution of the North American continent by scientists accessing a range of seismological, geodetic, in situ fault-zone sampling, geochronology, and high resolution topography resources. Interdisciplinary EarthScope science produces transformative knowledge for studying Earth processes and structures, addressing hazards, and informing resource exploration and environmental management. In addition, these data and technologies offer superb opportunities to enhance formal and informal science education in the solid Earth and Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves the broad and diverse community of EarthScope stakeholders, including EarthScope researchers, formal and informal educators in Earth science, and the general public. ESNO supports and promotes education and outreach (E&O) at a level comparable to that of its support for EarthScope science. This is accomplished through effective programs such as the EarthScope E&O website, Speaker Series, Interpretive Workshops for informal educators, newsletters, and the biannual EarthScope National Meeting. ESNO is adding further value to the programmatic E&O portfolio through new initiatives to: rapidly channel EarthScope science through social media; pilot and disseminate exemplary new Earth science content for K-12 science, technology, engineering, and mathematics (STEM) teacher professional development (in partnership with organizations such as American Geological Institute); use regional and local results from EarthScope research in promoting place-based teaching; and deliver continuing education for university researchers and educators. EarthScope E&O, infused with a place-based and educator-centered ethos, coordinates the compilation and presentation of the spectacular findings and scientific legacy of the continental-scale EarthScope program.

  17. Effects of black pepper (piper nigrum), turmeric powder (curcuma longa) and coriander seeds (coriandrum sativum) and their combinations as feed additives on growth performance, carcass traits, some blood parameters and humoral immune response of broiler chickens.

    PubMed

    Abou-Elkhair, R; Ahmed, H A; Selim, S

    2014-06-01

    Different herbs and spices have been used as feed additives for various purposes in poultry production. This study was conducted to assess the effect of feed supplemented with black pepper (Piper nigrum), turmeric powder (Curcuma longa), coriander seeds (Coriandrum sativum) and their combinations on the performance of broilers. A total of 210 (Cobb) one-d-old chicks were divided into seven groups of 30 birds each. The treatments were: a control group received no supplement, 0.5% black pepper (T1), 0.5% turmeric powder (T2), 2% coriander seeds (T3), a mixture of 0.5% black pepper and 0.5% turmeric powder (T4), a mixture of 0.5% black pepper and 2% coriander seed (T5), and a mixture of 0.5% black pepper, 0.5% turmeric powder and 2% coriander seeds (T6). Higher significant values of body weight gain during the whole period of 5 weeks (p<0.001) were observed in broilers on T1, T3, T5, and T6 compared to control. Dietary supplements with T1, T2, T3, and T6 improved the cumulative G:F of broilers during the whole period of 5 weeks (p<0.001) compared with control. The dressing percentage and edible giblets were not influenced by dietary supplements, while higher values of relative weight of the liver (p<0.05) were obtained in T5 and T6 compared to control. The addition of feed supplements in T5 and T6 significantly increased serum total protein and decreased serum glucose, triglycerides and alkaline phosphatase concentrations compared with the control group (p<0.05). Broilers on T6 showed significant decrease in the serum glutamate pyruvate transaminase concentration (p<0.05) compared to control. The broilers having T5 and T6 supplemented feed had relatively greater antibody titre (p<0.001) at 35 d of age than control. It is concluded that dietary supplements with black pepper or coriander seeds or their combinations enhanced the performance and health status of broiler chickens.

  18. Stovetop Earth Pecan Pie

    NASA Astrophysics Data System (ADS)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  19. Phase III randomized trial comparing moderate-dose cisplatin to combined cisplatin and carboplatin in addition to mitomycin and ifosfamide in patients with stage IV non-small-cell lung cancer

    PubMed Central

    Sculier, J-P; Lafitte, J-J; Paesmans, M; Thiriaux, J; Alexopoulos, C G; Baumöhl, J; Schmerber, J; Koumakis, G; Florin, M C; Zacharias, C; Berghmans, T; Mommen, P; Ninane, V; Klastersky, J

    2000-01-01

    A phase III randomized trial was conducted in patients with metastatic NSCLC, to determine if, in association with mitomycin (6 mg m–2) and ifosfamide (3 g m–2), the combination of moderate dosages of cisplatin (60 mg m–2) and carboplatin (200 mg m–2) – CarboMIP regimen – improved survival in comparison with cisplatin (50 mg m–2) alone – MIP regimen. A total of 305 patients with no prior chemotherapy were randomized, including 297 patients assessable for survival (147 in the MIP arm and 150 in the CarboMIP arm) and 268 patients assessable for response to chemotherapy. All but eight (with malignant pleural effusion) had stage IV disease. There was a 27% (95% CI, 19–34) objective response (OR) rate to MIP (25% of the eligible patients) and a 33% (95% CI, 24–41) OR rate to CarboMIP (29% of the eligible patients). This difference was not statistically significant (P = 0.34). Duration of response was not significantly different between both arms. There was also no difference (P = 0.67) in survival: median survival times were 28 weeks (95% Cl, 24–32) for MIP and 32 weeks (95% Cl, 26–35) for CarboMIP, with respectively 1-year survival rates of 24% and 23% and 2-year survival rates of 5% and 2%. The main toxicities consisted in emesis, alopecia, leucopenia and thrombocytopenia, that were, except alopecia, significantly more severe in the CarboMIP arm. Our trial failed to demonstrate a significant improvement in response or survival when patients with metastatic NSCLC were treated, in addition to ifosfamide and mitomycin, by combination of moderate dosages of cisplatin and carboplatin instead of moderate dosage of cisplatin alone. The results support the use of a moderate dose (50 mg m–2) of cisplatin in combination with ifosfamide and mitomycin for the chemotherapy of this disease. © 2000 Cancer Research Campaign PMID:11027424

  20. Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  1. Preliminary reference Earth model

    NASA Astrophysics Data System (ADS)

    Dziewonski, Adam M.; Anderson, Don L.

    1981-06-01

    A large data set consisting of about 1000 normal mode periods, 500 summary travel time observations, 100 normal mode Q values, mass and moment of inertia have been inverted to obtain the radial distribution of elastic properties, Q values and density in the Earth's interior. The data set was supplemented with a special study of 12 years of ISC phase data which yielded an additional 1.75 × 10 6 travel time observations for P and S waves. In order to obtain satisfactory agreement with the entire data set we were required to take into account anelastic dispersion. The introduction of transverse isotropy into the outer 220 km of the mantle was required in order to satisfy the shorter period fundamental toroidal and spheroidal modes. This anisotropy also improved the fit of the larger data set. The horizontal and vertical velocities in the upper mantle differ by 2-4%, both for P and S waves. The mantle below 220 km is not required to be anisotropic. Mantle Rayleigh waves are surprisingly sensitive to compressional velocity in the upper mantle. High S n velocities, low P n velocities and a pronounced low-velocity zone are features of most global inversion models that are suppressed when anisotropy is allowed for in the inversion. The Preliminary Reference Earth Model, PREM, and auxiliary tables showing fits to the data are presented.

  2. Skylab and Earth Limb

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An overhead view of the Skylab Orbital Workshop in Earth orbit as photographed from the Skylab 4 Command and Service Modules (CSM) during the final fly-around by the CSM before returning home. The space station is contrasted against the pale blue Earth. During launch on May 14, 1973, some 63 seconds into flight, the micrometeor shield on the Orbital Workshop (OWS) experienced a failure that caused it to be caught up in the supersonic air flow during ascent. This ripped the shield from the OWS and damaged the tie downs that secured one of the solar array systems. Complete loss of one of the solar arrays happened at 593 seconds when the exhaust plume from the S-II's separation rockets impacted the partially deployed solar array system. Without the micrometeoroid shield that was to protect against solar heating as well, temperatures inside the OWS rose to 126 degrees fahrenheit. The gold 'parasol' clearly visible in the photo, was designed to replace the missing micrometeoroid shield, protecting the workshop against solar heating. The replacement solar shield was deployed by the Skylab I crew. This enabled the Skylab Orbital Workshop to fulfill all its mission objects serving as home to additional crews before being deorbited in 1978.

  3. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  4. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  5. The Lifeworld Earth and a Modelled Earth

    ERIC Educational Resources Information Center

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  6. The Sun: Source of the Earth's Energy

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Sun is the primary source of the Earth's energy. However, due to the complexity in the way the energy affects Earth, the various solar sources of the energy, and the variation exhibited by the Sun it is difficult to understand and predict the Earth's response to solar drivers. In addition to visible light the radiant energy of the Sun can exhibit variation in nearly all wavelengths, which can vary over nearly all timescales. Depending on the wavelength of the incident radiation the light can deposit energy in a wide variety or locations and drive processes from below Earth's surface to interplanetary space. Other sources of energy impacting Earth include energetic particles, magnetic fields, and mass and flow variations in the solar wind. Many of these variable energetic processes cannot be coupled and recent results continue to demonstrate that the complex dynamics of the Sun can have a great range of measurable impacts on Earth.

  7. Astrobiology and the Possibility of Life on Earth and Elsewhere…

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances

    2015-09-01

    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our

  8. Effects of various additives on sintering of aluminum nitride

    NASA Technical Reports Server (NTRS)

    Komeya, K.; Inoue, H.; Tsuge, A.

    1982-01-01

    Effects of thirty additives on sintering A/N were investigated. The addition of alkali earth oxides and rare earth oxides gave fully densified aluminum nitride. This is due to the formation of nitrogen-containing aluminate liquid in the system aluminum nitride-alkali earth oxides or rare earth oxides. Microstructural studies of the sintered specimens with the above two types of additives suggested that the densification was due to the liquid phase sintering. Additions of silicon compounds resulted in poor densification by the formation of highly refractory compounds such as A/N polytypes.

  9. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  10. Large Igneous Provinces, Sulfur Aerosols, and Initiation of Snowball Earth

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Wordsworth, R. D.

    2015-12-01

    The events that led to the initiation of Snowball Earth remain poorly understood. Proposed scenarios include a methane addiction, a biological innovation that led to an increase in organic carbon burial and anaerobic remineralization, or an increase in global weatherability due to a paleogeography with a preponderance of low latitude continents, and the subareal implacement of large igneous provinces (LIPs) at the equator. The Franklin LIP was emplaced between 730 and 710 Ma and covers an area of over 2.25 Mkm2 with lavas, sills, and dikes extending over much of northern Laurentia from Alaska through northern Canada to Greenland and potentially to Siberia. The most precise geochronological constraints on the Franklin LIP overlap with the onset of the Sturtian Snowball Earth glaciation, which began between 717 and 716 Ma and marked the first glaciation in over 1 billion years. The Franklin LIP is the largest preserved Neoproterozoic LIP and one of the largest in Earth History. Additionally, it was emplaced at equatorial latitudes with associated sills that invaded epicontinental sulfur evaporite basins, potentially maximizing environmental effects. Here we explore the hypothesis that the Sturtian Snowball Earth was initiated in part by an increase in planetary albedo from the conversion of volcanic SO2/H2S emissions to tropospheric and stratospheric sulfate aerosols through a combination of geochemical and modeling studies.

  11. Earth on the Move.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the layers of the earth, the relationship between changes on the surface of the earth and its insides, and plate tectonics. Teaching activities are included, with some containing reproducible worksheets and handouts to accompany them. (TW)

  12. Earth's changeable atmosphere

    NASA Astrophysics Data System (ADS)

    2016-06-01

    Billions of years ago, high atmospheric greenhouse gas concentrations were vital to life's tenuous foothold on Earth. Despite new constraints, the composition and evolution of Earth's early atmosphere remains hazy.

  13. HABEBEE: habitability of eyeball-exo-Earths.

    PubMed

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  14. The Dynamic Earth.

    ERIC Educational Resources Information Center

    Siever, Raymond

    1983-01-01

    Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)

  15. Earth Science, K-12.

    ERIC Educational Resources Information Center

    Finson, Kevin D.; Enochs, Larry G.

    1987-01-01

    Argues that the teaching of earth science is largely neglected in the elementary science curriculum. Provides examples of how more instruction in the earth sciences at all levels can enhance decision-making skills. Discusses the relationship between various learning theories and certain instructional strategies in earth science. (TW)

  16. Earth Science Imagery Registration

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Morisette, Jeffrey; Cole-Rhodes, Arlene; Johnson, Kisha; Netanyahu, Nathan S.; Eastman, Roger; Stone, Harold; Zavorin, Ilya

    2003-01-01

    The study of global environmental changes involves the comparison, fusion, and integration of multiple types of remotely-sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, as well as for the validation of new instruments or for new data analysis. Furthermore, future multiple satellite missions will include many different sensors carried on separate platforms, and the amount of remote sensing data to be combined is increasing tremendously. For all of these applications, the first required step is fast and automatic image registration, and as this need for automating registration techniques is being recognized, it becomes necessary to survey all the registration methods which may be applicable to Earth and space science problems and to evaluate their performances on a large variety of existing remote sensing data as well as on simulated data of soon-to-be-flown instruments. In this paper we present one of the first steps toward such an exhaustive quantitative evaluation. First, the different components of image registration algorithms are reviewed, and different choices for each of these components are described. Then, the results of the evaluation of the corresponding algorithms combining these components are presented o n several datasets. The algorithms are based on gray levels or wavelet features and compute rigid transformations (including scale, rotation, and shifts). Test datasets include synthetic data as well as data acquired over several EOS Land Validation Core Sites with the IKONOS and the Landsat-7 sensors.

  17. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07)

    NASA Astrophysics Data System (ADS)

    Leslie, Fred

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthlyand geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, Earth-GRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-00) with the associated Harmonic Wind Model (HWM-93). In place of the GUACA and MAP datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which produce wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99. In addition, the dispersions are more normally distributed, especially at the extremes.

  18. Tectonically Asymmetric Earth

    NASA Astrophysics Data System (ADS)

    Doglioni, C.; Carminati, E.; Crespi, M.; Cuffaro, M.; Panza, G. F.; Riguzzi, F.

    2011-12-01

    interpretations point for an asymmetric Earth, whose nature appears to be related to the rotation and its tidal despinning, combined with the thermal cooling of the planet.

  19. Geophysical Effects of the Earth's Monthly Motion

    NASA Astrophysics Data System (ADS)

    Sidorenkov, N. S.; Zhigailo, T. S.

    The generation of a lunar tidal force is a major geophysical effect of the Earth's monthly motion.It is shown that synoptic processes vary simultaneously with tidal oscillations of the Earth's rotation rate and weather exhibits changes near their extremes, i.e., when the Earth is in certain positions on its monthly orbit.It is found that the quasi-biennial oscillation of the wind direction in the equatorial stratosphere is a combined oscillation caused by three periodic processes experienced by the atmosphere: (a) lunisolar tides, (b) the precession of the orbit of the Earth's monthly rotation around the barycenter of the Earth-Moon system, and (c) the motion of the perigee of this orbit.Interference of the 1.20-year Chandler wobble with sidereal, anomalistic, and synodic lunar oscillations gives rise to beats, i.e., to slow periodic variations in the wobble amplitude with periods of 32 to 51 years.

  20. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  1. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  2. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  3. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  4. Prostate Specific Antigen (PSA) as Predicting Marker for Clinical Outcome and Evaluation of Early Toxicity Rate after High-Dose Rate Brachytherapy (HDR-BT) in Combination with Additional External Beam Radiation Therapy (EBRT) for High Risk Prostate Cancer.

    PubMed

    Ecke, Thorsten H; Huang-Tiel, Hui-Juan; Golka, Klaus; Selinski, Silvia; Geis, Berit Christine; Koswig, Stephan; Bathe, Katrin; Hallmann, Steffen; Gerullis, Holger

    2016-11-10

    High-dose-rate brachytherapy (HDR-BT) with external beam radiation therapy (EBRT) is a common treatment option for locally advanced prostate cancer (PCa). Seventy-nine male patients (median age 71 years, range 50 to 79) with high-risk PCa underwent HDR-BT following EBRT between December 2009 and January 2016 with a median follow-up of 21 months. HDR-BT was administered in two treatment sessions (one week interval) with 9 Gy per fraction using a planning system and the Ir192 treatment unit GammaMed Plus iX. EBRT was performed with CT-based 3D-conformal treatment planning with a total dose administration of 50.4 Gy with 1.8 Gy per fraction and five fractions per week. Follow-up for all patients was organized one, three, and five years after radiation therapy to evaluate early and late toxicity side effects, metastases, local recurrence, and prostate-specific antigen (PSA) value measured in ng/mL. The evaluated data included age, PSA at time of diagnosis, PSA density, BMI (body mass index), Gleason score, D'Amico risk classification for PCa, digital rectal examination (DRE), PSA value after one/three/five year(s) follow-up (FU), time of follow-up, TNM classification, prostate volume, and early toxicity rates. Early toxicity rates were 8.86% for gastrointestinal, and 6.33% for genitourinary side effects. Of all treated patients, 84.81% had no side effects. All reported complications in early toxicity were grade 1. PSA density at time of diagnosis (p = 0.009), PSA on date of first HDR-BT (p = 0.033), and PSA on date of first follow-up after one year (p = 0.025) have statistical significance on a higher risk to get a local recurrence during follow-up. HDR-BT in combination with additional EBRT in the presented design for high-risk PCa results in high biochemical control rates with minimal side-effects. PSA is a negative predictive biomarker for local recurrence during follow-up. A longer follow-up is needed to assess long-term outcome and toxicities.

  5. Prostate Specific Antigen (PSA) as Predicting Marker for Clinical Outcome and Evaluation of Early Toxicity Rate after High-Dose Rate Brachytherapy (HDR-BT) in Combination with Additional External Beam Radiation Therapy (EBRT) for High Risk Prostate Cancer

    PubMed Central

    Ecke, Thorsten H.; Huang-Tiel, Hui-Juan; Golka, Klaus; Selinski, Silvia; Geis, Berit Christine; Koswig, Stephan; Bathe, Katrin; Hallmann, Steffen; Gerullis, Holger

    2016-01-01

    High-dose-rate brachytherapy (HDR-BT) with external beam radiation therapy (EBRT) is a common treatment option for locally advanced prostate cancer (PCa). Seventy-nine male patients (median age 71 years, range 50 to 79) with high-risk PCa underwent HDR-BT following EBRT between December 2009 and January 2016 with a median follow-up of 21 months. HDR-BT was administered in two treatment sessions (one week interval) with 9 Gy per fraction using a planning system and the Ir192 treatment unit GammaMed Plus iX. EBRT was performed with CT-based 3D-conformal treatment planning with a total dose administration of 50.4 Gy with 1.8 Gy per fraction and five fractions per week. Follow-up for all patients was organized one, three, and five years after radiation therapy to evaluate early and late toxicity side effects, metastases, local recurrence, and prostate-specific antigen (PSA) value measured in ng/mL. The evaluated data included age, PSA at time of diagnosis, PSA density, BMI (body mass index), Gleason score, D’Amico risk classification for PCa, digital rectal examination (DRE), PSA value after one/three/five year(s) follow-up (FU), time of follow-up, TNM classification, prostate volume, and early toxicity rates. Early toxicity rates were 8.86% for gastrointestinal, and 6.33% for genitourinary side effects. Of all treated patients, 84.81% had no side effects. All reported complications in early toxicity were grade 1. PSA density at time of diagnosis (p = 0.009), PSA on date of first HDR-BT (p = 0.033), and PSA on date of first follow-up after one year (p = 0.025) have statistical significance on a higher risk to get a local recurrence during follow-up. HDR-BT in combination with additional EBRT in the presented design for high-risk PCa results in high biochemical control rates with minimal side-effects. PSA is a negative predictive biomarker for local recurrence during follow-up. A longer follow-up is needed to assess long-term outcome and toxicities. PMID:27834929

  6. Contributions to the Earth's Obliquity Rate, Precession, and Nutation

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1994-01-01

    The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub 2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024 sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The effects have generally been allowed for in past nutation theories and some precession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta(psi) plus out-of-phase contributions of 0.14 mas in Delta(psi) and -0.03 mas in Delta(sub epsilon). The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C =0.003 273 763 4 which, in combination with a satellite-derived J(sub 2), gives a normalized polar moment of inertia C/MR(exp 2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from

  7. Contributions to the Earth's obliquity rate, precession, and nutation

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1994-01-01

    The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The J(sub2) effects have generally been allowed for in past nutation theories and some procession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta phi plus out-of-phase contributions of 0.14 mas in Delta phi and -0.03 mas in Delta epsilon. The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C = 0.003 273 763 4 which, in combination with a satellite-derived J(sub2), gives a normalized polar moment of inertia C/MR(exp2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from tides

  8. HMMR (High-Resolution Multifrequency Microwave Radiometer) Earth observing system, volume 2e. Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Recommendations and background are provided for a passive microwave remote sensing system of the future designed to meet the observational needs of Earth scientist in the next decade. This system, called the High Resolution Multifrequency Microwave Radiometer (HMMR), is to be part of a complement of instruments in polar orbit. Working together, these instruments will form an Earth Observing System (EOS) to provide the information needed to better understand the fundamental, global scale processes which govern the Earth's environment. Measurements are identified in detail which passive observations in the microwave portion of the spectrum could contribute to an Earth Observing System in polar orbit. Requirements are established, e.g., spatial and temporal resolution, for these measurements so that, when combined with the other instruments in the Earth Observing System, they would yield a data set suitable for understanding the fundamental processes governing the Earth's environment. Existing and/or planned sensor systems are assessed in the light of these requirements, and additional sensor hardware needed to meet these observational requirements are defined.

  9. Earth Rings for Planetary Environment Control

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph

    2002-01-01

    For most of its past, large parts of the Earth have experienced subtropical climates, with high sea levels and no polar icecaps. This warmer environment was punctuated 570, 280, and 3 million years ago with periods of glaciation that covered temperate regions with thick ice for millions of years. At the end of the current ice age, a warmer climate could flood coastal cities, even without human-caused global warming. In addition, asteroids bombard the Earth periodically, with impacts large enough to destroy most life on Earth, and the sun is warming inexorably. This paper proposes a concept to solve these problems simultaneously, by creating an artificial planetary ring about the Earth to shade it. Past proposals for space climate control have depended on gigantic engineering structures launched from Earth and placed in Earth orbit or at the Earth-Sun L1 libration point, requiring fabrication, large launch masses and expense, constant control, and repair. Our solution is to begin by using lunar material, and then mine and remove Earth-orbit-crossing asteroids and discard the tailings into Earth orbit, to form a broad, flat ring like those of Saturn. This solution is evaluated and compared with other alternatives. Such ring systems can persist for thousands of years, and can be maintained by shepherding satellites or by continual replenishment from new asteroids to replace the edges of the ring lost by diffusion. An Earth ring at R = 1.3-1.83 RE would shade only the equatorial regions, moderating climate extremes, and could reverse a century of global warming. It could also absorb particles from the radiation belts, making trips to high Earth orbit and GEO safer for humans and for electronics. It would also light the night many times as bright as the full moon. A preliminary design of the ring is developed, including its location, mass, composition, stability, and timescale required. A one-dimensional climate model is used to evaluate the Earth ring performance

  10. People and the Earth

    NASA Astrophysics Data System (ADS)

    Rogers, John James William; Feiss, P. Geoffrey

    1998-03-01

    People and the Earth examines the numerous ways in which this planet enhances and limits our lifestyles. Written with wit and remarkable insight, and illustrated with numerous case histories, it provides a balanced view of the complex environmental issues facing our civilization. The authors look at the geologic restrictions on our ability to withdraw resources--food, water, energy, and minerals--from the earth, the effect human activity has on the earth, and the lingering damage caused by natural disasters. People and the Earth examines the basic components of our interaction with this planet, provides a lucid, scientific discussion of each issue, and speculates on what the future may hold. It provides the fundamental concepts that will enable us to make wise and conscientious choices on how to live our day-to-day lives. People and the Earth is an ideal introductory textbook and will also appeal to anyone concerned with our evolving relationship to the earth.

  11. CEOS Committee on Earth Observations Satellites Consolidated Report, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  12. Volcano Monitoring Using Google Earth

    NASA Astrophysics Data System (ADS)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  13. Changes in earth's dipole.

    PubMed

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  14. EarthExplorer

    USGS Publications Warehouse

    Houska, Treva

    2012-01-01

    The EarthExplorer trifold provides basic information for on-line access to remotely-sensed data from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center archive. The EarthExplorer (http://earthexplorer.usgs.gov/) client/server interface allows users to search and download aerial photography, satellite data, elevation data, land-cover products, and digitized maps. Minimum computer system requirements and customer service contact information also are included in the brochure.

  15. Low Earth Orbiter: Terminal

    NASA Technical Reports Server (NTRS)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  16. Earth on the Horizon

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. Earth is the tiny white dot in the center. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see.

  17. The influence of earth tides on earth's coordinates

    NASA Technical Reports Server (NTRS)

    Vincente, R. O.

    1978-01-01

    The importance of the Earth's tides on Earth coordinates were examined for the following reasons: (1) the precision for obtaining the Earth's coordinates shows that the effects of Earth tides appear on the values obtained for the coordinates; (2) the possibility of determining the values of the Earth tides; and (3) the consideration of theoretical models that can compute the values of Earth tides. The astronomical and geodetic coordinates of a point at the Earth's surface are described.

  18. Mission to Very Early Earth

    SciTech Connect

    Hutcheon, I D; Weber, P K; Fallon, S J; Smith, J B; Aleon, J; Ryerson, F J; Harrison, T M; Cavosie, A J; Valley, J W

    2007-03-13

    The Hadean Earth is often viewed as an inhospitable and, perhaps, unlikely setting for the rise of primordial life. However, carbonaceous materials supplied by accreting meteorites and sources of chemical energy similar to those fueling life around modern deep-sea volcanic vents would have been present in abundance. More questionable are two other essential ingredients for life - liquid water and clement temperatures. Did the Hadean Earth possess a hydrosphere and temperate climate compatible with the initiation of biologic activity? If so, the popular model of an excessively hot planetary surface characterized by a basaltic crust, devoid of continental material is invalid. Similarly, establishment of an Hadean hydrosphere prior to the cessation of heavy asteroid bombardment may mean that primitive life could have evolved and then been extinguished, only to rise again. The most effective means of determining the environmental conditions on this young planet is through geochemical analysis of samples retrieved from the Early Earth. While rocks older than 4 billion years (4 Ga) have not been found, individual zircon grains, the detritus of rocks long since eroded away, have been identified with ages as old as 4.4 Ga - only {approx}160 million years younger than the Earth itself. If we can use the geochemical information contained in these unique samples to infer the nature of their source rocks and the processes that formed them, we can place constraints on the conditions prevailing at the Earth's surface shortly after formation. This project utilizes a combined analytical and experimental approach to gather the necessary geochemical data to determine the parameters required to relate the zircons to their parent materials. Mission to Early Earth involves dating, isotopic and chemical analyses of mineral and melt inclusions within zircons and of the zircons themselves. The major experimental activity at LLNL focused on the partitioning of trace elements between zircon

  19. Reflectives: Phosphors and lasers - shedding light on rare earths

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    The first powder electroluminescent phosphor was introduced in 1936. Today, phosphors, particularly those made of high-purity rare earths, have found their way into a variety of products: industrial, commercial, and consumer, alike. The fluorescent lamp industry which remains the leading market for the use of high-purity rare earths, lit the way for the future of rare earths in the optical, x-ray, and display screen applications. Light combined with rare earth materials is also a successful recipe for reflectivity needed in filtering applications such as optics, lasers, and conductors. This article discusses the applications and markets for phosphors and rare earths.

  20. Earth System Science Education Alliance

    NASA Astrophysics Data System (ADS)

    Myers, R.; Schwerin, T.

    2007-12-01

    systems content knowledge; 3. Using the ESSEA courses as a model to introduce newly upgrade Earth system science undergraduate and graduate courses; and 4. Disseminating model teaching practices and program success through annual conferences and presentations at national and regional geoscience and science teacher conferences. ESSEA has created a national professional development program aimed at improving the knowledge, skills, and resources of Earth system science educators. This professional development program offers state-of-the-art, online courses to promote understanding of Earth system science, to encourage communication and cooperation among teachers, and to facilitate the use of exceptional classroom materials. IGES furthers this vision by; updating the courses with additional tools, modules, and resources; and providing continuing support to institutions and faculty teaching middle-high school teachers (pre- and in-service) using the ESSEA courses and instructional resources. URL Address: http://esseacourses.strategies.org/

  1. Additive composition, for gasoline

    SciTech Connect

    Vataru, M.

    1989-01-10

    An admixture is described that comprises Diesel fuel and an additive composition added thereto which is between about 0.05 to about 2.0 percent by weight of the fuel, the composition comprising: (a) between about 0.05 and 25% relative weight parts of an organic peroxide, and (b) between about 0.1 and 25% relative weight parts of detergent selected from the component group that consists of: (i) fatty amines; (ii) ethoxylated and propoxylated derivatives of fatty amines; (iii) fatty diamines; (iv) fatty imidazlines; (v) polymeric amines and derivatives thereof; (vi) combination of one or more of the (i) through (v) components with carboxylic acid or acids having from three to forth carbon atoms, (c) from about 99.0 to about 50% by weight of a hydrocarbon solvent.

  2. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  3. Cool Earth Solar

    SciTech Connect

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  4. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  5. The Earth Charter

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2010

    2010-01-01

    Humanity is part of a vast evolving universe. Earth is alive with a unique community of life. The forces of nature make existence a demanding and uncertain adventure, but Earth has provided the conditions essential to life's evolution. The resilience of the community of life and the well-being of humanity depend upon preserving a healthy biosphere…

  6. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  7. Earth physics, overview

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1973-01-01

    Satellite applications in earth and ocean dynamic studies are considered for: earthquake hazard assessment and alleviation; prediction of general ocean circulation, surface currents, and heat transport; monitoring of transient phenomena of the ocean surface, such as sea state and wave conditions, wind-surface interactions and storm searches; and refinement of the global geoid, the gravity and magnetic fields of the earth.

  8. The Earth's Core.

    ERIC Educational Resources Information Center

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  9. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2016-07-12

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  10. The Earth Needs You!

    ERIC Educational Resources Information Center

    Curriculum Review, 2008

    2008-01-01

    Celebrated annually on April 22, schools and communities organize numerous activities during Earth Day to promote awareness. To help teachers plan their own initiatives and to learn more about what is happening around the world, they can join the Earth Day Network at: http://network.earthday.net/. Once they have joined, they can create a webpage…

  11. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  12. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  13. Skylab Explores the Earth.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This book describes the Skylab 4 Earth Explorations Project. Photographs of the earth taken by the Skylab astronauts are reproduced here and accompanied by an analytical and explanatory text. Some of the geological and geographical topics covered are: (1) global tectonics - some geological analyses of observations and photographs from Skylab; (2)…

  14. Research and Teaching About the Deep Earth

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Mogk, David W.; McDaris, John

    2010-08-01

    Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.

  15. Earth Science Week evolves

    NASA Astrophysics Data System (ADS)

    Earth Science Week, October 7-13, is an annual grassroots effort sponsored by the American Geological Institute (AGI) and its member societies, of which AGU is the largest. This year, for the first time, Earth Science Week has a general theme, evolution in Earth history. The Earth Science Week information kit for 2001, available from AGI, includes a variety of posters, bookmarks, and other materials that illustrate this concept. The kit contains a new 32-page “Ideas and Activities” booklet that emphasizes evolution in Earth history through an array of activities about rocks, fossils, and geologic time. It also has information on the upcoming Public Broadcasting Service series, “Evolution,” which is to be aired in late September.

  16. Solid Earth: Introduction

    NASA Astrophysics Data System (ADS)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  17. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. An overview of the MTPE, flight programs, data and information systems, interdisciplinary research efforts, and international coordination, is presented.

  18. Workbook-Text Combination.

    ERIC Educational Resources Information Center

    Shaw, Eddie

    1982-01-01

    "Science Work-A-Text" combines a text and workbook approach to studying/teaching grades 1-6 elementary science. Five major themes (living things; health/nutrition; planet earth; the universe; matter and energy) are covered at each grade level. Major focus of the series is on reading and content rather than process. (Author/SK)

  19. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  20. The Earth Radiation Budget Experiment nonscanner instrument

    NASA Technical Reports Server (NTRS)

    Luther, M. R.; Cooper, J. E.; Taylor, G. R.

    1986-01-01

    Two Earth Radiation Budget Experiment (ERBE) nonscanner instruments are flying with companion scanner instruments to measure the earth's energy budget from low earth orbit. A third set of instruments will be launched in March 1986. This program is the first designed to make a comprehensive set of highly accurate measurements of the earth's energy budget on the spectral, spatial, and temporal scales specified by the scientific community for use in climatological research. The ERBE nonscanner combines the use of the highly accurate active cavity radiometer (ACR) detector with a comprehensive preflight calibration and characterization program and a design which includes operational flexibility and in-flight calibration checks to achieve and maintain, throughout its 2-year design life, a measurement accuracy capability not previously possible. This paper describes the ERBE nonscanner instrument, its operation, calibration, and mission profile.

  1. The formation of crystals in glasses containing rare earth oxides

    NASA Astrophysics Data System (ADS)

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod; Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt

    2014-02-01

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd2O3-22.7CeO2-11.7La2O3-10.9PrO2-1.3Eu2O3-1.3Gd2O3-8.1Sm2O3-4.8Y2O3 with a baseline glass of composition 60.2SiO2-16.0B2O3-12.6Na2O-3.8Al2O3-5.7CaO-1.7ZrO2. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La2O3 and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO5) and oxyapatite (Ca2La8Si6O26) were found in glasses containing La2O3, while oxyapatite (Ca2La8Si6O26 and NaNd9Si6O26) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (TL) of the glasses containing 5%, 10% and 15% La2O3 were 800°C, 959°C and 986°C, respectively; while TL was 825°C, 1059°C and 1267°C for glasses with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients TB2O3, TSiO2, TCaO, and TRE2O3 were also evaluated using a recently published study.

  2. Impact-induced melting during accretion of the Earth

    NASA Astrophysics Data System (ADS)

    de Vries, Jellie; Nimmo, Francis; Melosh, H. Jay; Jacobson, Seth A.; Morbidelli, Alessandro; Rubie, David C.

    2016-12-01

    Because of the high energies involved, giant impacts that occur during planetary accretion cause large degrees of melting. The depth of melting in the target body after each collision determines the pressure and temperature conditions of metal-silicate equilibration and thus geochemical fractionation that results from core-mantle differentiation. The accretional collisions involved in forming the terrestrial planets of the inner Solar System have been calculated by previous studies using N-body accretion simulations. Here we use the output from such simulations to determine the volumes of melt produced and thus the pressure and temperature conditions of metal-silicate equilibration, after each impact, as Earth-like planets accrete. For these calculations a parameterised melting model is used that takes impact velocity, impact angle and the respective masses of the impacting bodies into account. The evolution of metal-silicate equilibration pressures (as defined by evolving magma ocean depths) during Earth's accretion depends strongly on the lifetime of impact-generated magma oceans compared to the time interval between large impacts. In addition, such results depend on starting parameters in the N-body simulations, such as the number and initial mass of embryos. Thus, there is the potential for combining the results, such as those presented here, with multistage core formation models to better constrain the accretional history of the Earth.

  3. A revised, hazy methane greenhouse for the Archean Earth.

    PubMed

    Haqq-Misra, Jacob D; Domagal-Goldman, Shawn D; Kasting, Patrick J; Kasting, James F

    2008-12-01

    Geological and biological evidence suggests that Earth was warm during most of its early history, despite the fainter young Sun. Upper bounds on the atmospheric CO2 concentration in the Late Archean/Paleoproterozoic (2.8-2.2 Ga) from paleosol data suggest that additional greenhouse gases must have been present. Methanogenic bacteria, which were arguably extant at that time, may have contributed to a high concentration of atmospheric CH4, and previous calculations had indicated that a CH4-CO2-H2O greenhouse could have produced warm Late Archean surface temperatures while still satisfying the paleosol constraints on pCO2. Here, we revisit this conclusion. Correction of an error in the CH4 absorption coefficients, combined with the predicted early onset of climatically cooling organic haze, suggest that the amount of greenhouse warming by CH4 was more limited and that pCO2 must therefore have been 0.03 bar, at or above the upper bound of the value obtained from paleosols. Enough warming from CH4 remained in the Archean, however, to explain why Earth's climate cooled and became glacial when atmospheric O2 levels rose in the Paleoproterozoic. Our new model also shows that greenhouse warming by higher hydrocarbon gases, especially ethane (C2H6), may have helped to keep the Late Archean Earth warm.

  4. How Deep and Hot was Earth's Magma Ocean? Combined Experimental Datasets for the Metal-silicate Partitioning of 11 Siderophile Elements - Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2008-01-01

    Since approximately 1990 high pressure and temperature (PT) experiments on metal-silicate systems have showed that partition coefficients (D) for siderophile (iron-loving) elements are much different than those measured at low PT conditions. The high PT data have been used to argue for a magma ocean during growth of the early Earth. Initial conclusions were based on experiments and calculations for a small number of elements such as Ni and Co. However, for many elements only a limited number of experimental data were available then, and they only hinted at values of metal-silicate D's at high PT conditions. In the ensuing decades there have been hundreds of new experiments carried out and published on a wide range of siderophile elements. At the same time several different models have been advanced to explain the siderophile elements in the earth's mantle: a) intermediate depth magma ocean; 25-30 GPa, b) deep magma ocean; up to 50 GPa, and c) early reduced and later oxidized magma ocean. Some studies have drawn conclusions based on a small subset of siderophile elements, or a set of elements that provides little leverage on the big picture (like slightly siderophile elements), and no single study has attempted to quantitatively explain more than 5 elements at a time. The purpose of this abstract is to update the predictive expressions outlined by Righter et al. (1997) with new experimental data from the last decade, test the predictive ability of these expressions against independent datasets (there are more data now to do this properly), and to apply the resulting expressions to the siderophile element patterns in Earth's upper mantle. The predictive expressions have the form: lnD = alnfO2 + b/T + cP/T + d(1Xs) + e(1Xc) + SigmafiXi + g These expressions are guided by the thermodynamics of simple metal-oxide equilibria that control each element, include terms that mimic the activity coefficients of each element in the metal and silicate, and quantify the effect of

  5. Earth System Science Education Alliance

    NASA Astrophysics Data System (ADS)

    Myers, R.; Schwerin, T.

    2006-12-01

    system science undergraduate and graduate courses; 2. Introducing extensive use of data, models and existing Earth system educational materials to support the courses; 3.Disseminating model teaching practices and program success through annual conferences and presentations at national and regional geoscience and science teacher conferences; and 4.Expanding the base of 17 ESSEA colleges and universities to 40 participating institutions. ESSEA has created a national professional development program aimed at improving the knowledge, skills, and resources of Earth system science educators. This professional development program offers state-of-the- art, online courses to promote understanding of Earth system science, to encourage communication and cooperation among teachers, and to facilitate the use of exceptional classroom materials. Beginning in 2006 IGES will further this vision by expanding the number of institutions offering the courses; updating the courses with additional tools, modules, and resources; and providing continuing support to institutions and faculty teaching middle-high school teachers (pre- and in-service) using the ESSEA courses and instructional resources.

  6. Limited Effect of Rebamipide in Addition to Proton Pump Inhibitor (PPI) in the Treatment of Post-Endoscopic Submucosal Dissection Gastric Ulcers: A Randomized Controlled Trial Comparing PPI Plus Rebamipide Combination Therapy with PPI Monotherapy

    PubMed Central

    Nakamura, Kazuhiko; Ihara, Eikichi; Akiho, Hirotada; Akahoshi, Kazuya; Harada, Naohiko; Ochiai, Toshiaki; Nakamura, Norimoto; Ogino, Haruei; Iwasa, Tsutomu; Aso, Akira; Iboshi, Yoichiro; Takayanagi, Ryoichi

    2016-01-01

    Background/Aims The ability of endoscopic submucosal dissection (ESD) to resect large early gastric cancers (EGCs) results in the need to treat large artificial gastric ulcers. This study assessed whether the combination therapy of rebamipide plus a proton pump inhibitor (PPI) offered benefits over PPI monotherapy. Methods In this prospective, randomized, multicenter, open-label, and comparative study, patients who had undergone ESD for EGC or gastric adenoma were randomized into groups receiving either rabeprazole monotherapy (10 mg/day, n=64) or a combination of rabeprazole plus rebamipide (300 mg/day, n=66). The Scar stage (S stage) ratio after treatment was compared, and factors independently associated with ulcer healing were identified by using multivariate analyses. Results The S stage rates at 4 and 8 weeks were similar in the two groups, even in the subgroups of patients with large amounts of tissue resected and regardless of CYP2C19 genotype. Independent factors for ulcer healing were circumferential location of the tumor and resected tissue size; the type of treatment did not affect ulcer healing. Conclusions Combination therapy with rebamipide and PPI had limited benefits compared with PPI monotherapy in the treatment of post-ESD gastric ulcer (UMIN Clinical Trials Registry, UMIN000007435). PMID:27282261

  7. Other Worlds, Other Earths

    NASA Astrophysics Data System (ADS)

    Sunbury, Susan; Gould, R. R.

    2011-05-01

    The Harvard-Smithsonian Center for Astrophysics is developing a two-to-three week NSF-funded program for middle and high school students using telescope-based investigations of real world cutting edge scientific questions. The goal is to reveal and enhance students' understanding of core concepts in the physical sciences as well as to develop their proficiency in the practice of scientific inquiry. Specifically, students and teachers are joining scientists in the search for habitable worlds by exploring transiting exoplanets. Using robotic telescopes, image processing software and simulations, students take images and then measure the brightness of their target star to create a portrait of a transiting planet including how large it is; the tilt of its orbit; how far it is from its star and what its environment might be like. Once classes collect and analyze their own data, they can begin to compare, combine, and communicate their findings with others in the community. Interactive models help students predict what they might expect to find and interpret what they do find. During the past two years, the Center for Astrophysics has tested the concept in fifty middle-and high-school classrooms, enrichment classes and after school science clubs in 13 states across the United States. To date, astronomy, earth science, and physics students have successfully detected Jupiter-sized planets transiting stars such as TRES-3, HATP-10, and HATP-12. Preliminary results indicate that learning of core concept did occur. Gains in content were most significant in middle school students as this project delivered new information to them while it served primarily as a review of concepts and application of skills for advanced placement classes. A significant change also occurred in students’ self reported knowledge of exoplanets. There was also an increase in students’ awareness of exoplanets and attitudes about science after participating in this project.

  8. Chemical earth models

    NASA Astrophysics Data System (ADS)

    Javoy, Marc

    1999-10-01

    This article presents a critical review of method, concepts and prejudices used bv modelists of the Earth's chemical composition over approximate the last fifty years and of the resulting compositions. Brief descriptions are given of admitted accretion mechanisms, of the starting materials most often considered and of the major parameters and recurrent concepts: 'reduced" state, mantle homogeneity vs heterogeneity, 'low pressure' core formation, 'great impact', refractory, lithophile, siderophile, compatible, incompatible character of elements, depleted and degassed mantle, Urey ratio, as well as the description of a commonly-used instrument, possibly harmful to Iogic, the famous Ockham's razor. Differences between models are now restricted to the lower mantle composition:the 'primary' (before crust differentiation) upper mentle varies little from model to model and the idea of a 10-15% combined Si-O-S concentration as representing the necessary light elements in the core is gaining more and more ground. The dominant type of model derives more or less directly from the CI cabonaceous composition by complete devolatilization and reduction. Its mantle is homogeneous and convecting mainly in a one-level mode, in accordence with dominant geophysicists' views but in rather strong disagreement with geochemical data and models which insist on the strong decoupling between lower and upper mantle. Its low Si excess is generally supposed to have been absorbed by the core, whereas its high refractory lithophile element (RLE) content creates mass balance problems relative to presently observed mantle and crust concentrations. The alternative type is a two-lavel mantle with a Si and Fe-rich, RLE-poor, lower mantle, previously based mainly on seismic and mineral physics data, and now also on geochemical and cosmochemical arguments.

  9. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  10. Sun-Earth Days

    NASA Astrophysics Data System (ADS)

    Thieman, J.; Ng, C.; Lewis, E.; Cline, T.

    2010-08-01

    Sun-Earth Day is a well-coordinated series of programs, resources and events under a unique yearly theme highlighting the fundamentals of heliophysics research and missions. A menu of activities, conducted throughout the year, inspire and educate participants. Sun-Earth Day itself can vary in date, but usually is identified by a celebration on or near the spring equinox. Through the Sun-Earth Day framework we have been able to offer a series of coordinated events that promote and highlight the Sun, its connection to Earth and the other planets. Sun-Earth Day events are hosted by educators, museums, amateur astronomers and scientists and occur at schools, community groups, parks, planetaria and science centers around the globe. Sun-Earth Day raises the awareness and knowledge of formal and informal education audiences concerning space weather and heliophysics. By building on the success of Sun-Earth Day yearly celebrations, we seek to affect people of all backgrounds and ages with the wonders of heliophysics science, discovery, and exploration in ways that are both tangible and meaningful to their lives.

  11. South Polar Projection of Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This view of the Earth shows a wonderfully unique but physically impossible view of the southern hemisphere and Antarctica. While a spacecraft could find itself directly over the Earth's pole, roughly half of the image should be in darkness! This view was created by mosaicing together several images taken by Galileo over a 24 hour period and projecting them as they would be seen from above the pole. The continents of South America, Africa, and Australia are respectively seen at the middle left, upper right, and lower right. The slightly bluish ice and snow of Antarctica include large ice shelves (upper left, lower middle), a broad fan of broken offshore pack ice (lower left and middle) and continental glaciers protruding into the sea (lower right). The regularly spaced weather systems are prominent.

    Most spacecraft traveling near the Earth's poles are in very low Earth orbit, and cannot acquire panoramic shots like this one. Galileo's view of the southern hemisphere, combined with the spacecraft's special spectral properties (four separate narrowband filters that measure the brightness of reflected light at specific infrared wavelengths), led to a number of unique observations. For example, Galileo's cameras distinguished between ice and high stratospheric clouds, allowing scientists to study the correlation between these clouds and growth of the ozone hole.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  12. Earths, Super-Earths, and Jupiters

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene; Lee, Eve J.

    2015-12-01

    We review and add to the theory of how planets acquire atmospheres from parent circumstellar disks. We derive (in real time) a simple and general analytic expression for how a planet's atmosphere grows with time, as a function of the underlying core mass and nebular conditions, including the gas metallicity. Planets accrete as much gas as can cool: an atmosphere's doubling time is given by its Kelvin-Helmholtz time. The theory can be applied in any number of settings --- gas-rich vs. gas-poor nebulae; dusty vs. dust-free atmospheres; close-in vs. far-out distances --- and is confirmed against detailed numerical models for objects ranging in mass from Mars (0.1 Mearth) to the most extreme super Earths (10--20 Mearth). We explain why heating from planetesimal accretion, commonly invoked in models of core accretion, is irrelevant. This talk sets the stage for another presentation, "Breeding Super-Earths and Birthing Super-Puffs".

  13. Future Earth observation program in JAXA

    NASA Astrophysics Data System (ADS)

    Matsuura, Naoto

    2005-01-01

    The Japan Aerospace Exploration Agency (JAXA) has some Earth observation programs such as disaster and crisis monitoring, investigation of the Earth resources, global environmental to contribute to a safe and secure society. Presently, there are many global issues such as shortage of water resources, desertification, increase in natural disasters, which inflict a serious impact on our community. To overcome such problems and take appropriate measures against them, it is necessary to cooperate among many countries and ensure the establishment of a comprehensive, coordinated, and sustained Earth observation. The 2nd Earth Observation Summit was held in April 2004 and adopted the framework for the 10-year implementation plan, aimed at the establishment of an integrated earth observation system of systems, so called Global Earth Observation System of Systems (GEOSS). JAXA has been developping a future Earth observation program to contribute the GEOSS in cooperate with other space agencies. JAXA committed the contribution to GEOSS using satellites such as ALOS, GPM/DPR and GOSAT mainly focused on observations of global warming and water cycle at the 2nd Summit. In addition, JAXA will propose a series of satellites for establishing GEOSS to monitor climate change. JAXA is studying the Global Change Observation Mission (GCOM) to contribute to process study, prediction of the global change phenomena and the preservation of the global environments.

  14. Earth Limb Radiance Transformation.

    DTIC Science & Technology

    1981-03-02

    AD-A097 523 AEROSPACE CORP EL SEGUNDO CA CHEMISTRY AND PHYSICS LAB F/G 4/1 EARTH LIMB RADIANCE TRANSFORMATION (U) MAR AI S 4 YOUNG F0701-80 -C-0081... Earth Limb Radiance Trafisformation Prepared by S. J. YOUNG Chemistr and Physics Laboratory Laboratory Operations The Aerospace Corporation S.El...ITLEK (and Subtitle) TYPE OF REPORT & P53100 COVERED Earth Limb Radiance Transformation. ( Interim ./ / /TR-OJ081(697j7-g4)-l-- i7.Step hen J. Young

  15. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  16. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  17. Cross-Over Study Comparing Postprandial Glycemic Increase After Addition of a Fixed-Dose Mitiglinide/Voglibose Combination or a Dipeptidyl Peptidase-4 Inhibitor to Basal Insulin Therapy in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Ihana-Sugiyama, Noriko; Yamamoto-Honda, Ritsuko; Sugiyama, Takehiro; Tsujimoto, Tetsuro; Kakei, Masafumi; Noda, Mitsuhiko

    2017-01-01

    Background Although the efficacy of combination therapy consisting of basal insulin and oral hypoglycemic agents (OHAs) has been shown, which OHAs are the most efficient remains unclear. Material/Methods Five patients with type 2 diabetes were enrolled and treated with insulin degludec and metformin as a basal therapy. The patients were randomized in a cross-over fashion to receive a combination of mitiglinide (10 mg) and voglibose (0.2 mg) (M+V) 3 times daily or linagliptin (5 mg) (L) once daily for 8 weeks. After 8 weeks, 2 kinds of meal tolerance tests were performed as breakfast on 2 consecutive days. The first breakfast contained 460 kcal (carbohydrates, 49.1%; protein, 15.7%; fat, 35.2%), while the second contained 462 kcal (carbohydrates, 37.2%; protein, 19.6%; fat, 43.2%). Self-monitoring blood glucose levels were measured at 0, 30, 60, and 120 min after the meal tests, and the increase in the postprandial area under the curve (AUC)0–120 min was determined. The HbA1c, glycated albumin, and 1,5-anhydroglucitol (AG) levels were measured, and continuous glucose monitoring was performed. Results The increase in the postprandial AUC0–120 min was significantly smaller in the M+V group than in the L group after both meals. The 24-h average, 24-h standard deviations, 24-h AUC, and mean amplitude of glycemic excursion (MAGE) were similar for both groups and after both meals. The change in 1,5-AG was higher in the M+V group than in the L group. Conclusions The combination of M+V with basal therapy improved postprandial glucose excursion more effectively than L in T2DM patients. PMID:28242866

  18. Space exercise and Earth benefits.

    PubMed

    Macias, Brandon R; Groppo, Eli R; Eastlack, Robert K; Watenpaugh, Donald E; Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Smith, Scott M; Cutuk, Adnan; Pedowitz, Robert A; Meyer, R Scott; Hargens, Alan R

    2005-08-01

    The detrimental impact of long duration space flight on physiological systems necessitates the development of exercise countermeasures to protect work capabilities in gravity fields of Earth, Moon and Mars. The respective rates of physiological deconditioning for different organ systems during space flight has been described as a result of data collected during and after missions on the Space Shuttle, International Space Station, Mir, and bed rest studies on Earth. An integrated countermeasure that simulates the body's hydrostatic pressure gradient, provides mechanical stress to the bones and muscles, and stimulates the neurovestibular system may be critical for maintaining health and well being of crew during long-duration space travel, such as a mission to Mars. Here we review the results of our studies to date of an integrated exercise countermeasure for space flight, lower body negative pressure (LBNP) treadmill exercise, and potential benefits of its application to athletic training on Earth. Additionally, we review the benefits of Lower Body Positive Pressure (LBPP) exercise for rehabilitation of postoperative patients. Presented first are preliminary data from a 30-day bed rest study evaluating the efficacy of LBNP exercise as an integrated exercise countermeasure for the deconditioning effects of microgravity. Next, we review upright LBNP exercise as a training modality for athletes by evaluating effects on the cardiovascular system and gait mechanics. Finally, LBPP exercise as a rehabilitation device is examined with reference to gait mechanics and safety in two groups of postoperative patients.

  19. Volatile accretion history of the Earth.

    PubMed

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.

  20. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  1. Beautiful Earth with GPM

    NASA Video Gallery

    This is a musical and visual tour of Earth from space followed by a discussion with scientists from NASA's new rain and snow satellite. During this one-hour event, students and teachers from across...

  2. Earth Reconnect -- July 2012

    NASA Video Gallery

    A visualization of Earth's magnetosphere on July 15-16, 2012, shows how constant magnetic reconnection caused by an arriving coronal mass ejection, or CME, from the sun disrupted the magnetosphere,...

  3. LANL Studies Earth's Magnetosphere

    ScienceCinema

    Daughton, Bill

    2016-07-12

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  4. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  5. Earth study from space

    NASA Technical Reports Server (NTRS)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  6. Analyzing earth's surface data

    NASA Technical Reports Server (NTRS)

    Barr, D. J.; Elifrits, C. D.

    1979-01-01

    Manual discusses simple inexpensive image analysis technique used to interpret photographs and scanner of data of Earth's surface. Manual is designed for those who have no need for sophisticated computer-automated analysis procedures.

  7. Down to earth relativity

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.

    1978-01-01

    The basic concepts of the special and general theories of relativity are described. Simple examples are given to illustrate the effect of relativity on measurements of time and frequency in the near-earth environment.

  8. NASA 2014: Earth

    NASA Video Gallery

    For the first time in more than a decade, five NASA Earth science missions will be launched into space in the same year, opening new and improved remote eyes to monitor our changing planet. The lau...

  9. Welcome Back to Earth

    NASA Video Gallery

    NASA astronaut Scott Kelly is interviewed by public affairs officer Rob Navias just after returning to Earth aboard a Soyuz spacecraft on March 1, 2016 (March 2, local Kazakh time) following a 340 ...

  10. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  11. LANL Studies Earth's Magnetosphere

    SciTech Connect

    Daughton, Bill

    2011-04-15

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  12. Astronomy: Earth's seven sisters

    NASA Astrophysics Data System (ADS)

    Snellen, Ignas A. G.

    2017-02-01

    Seven small planets whose surfaces could harbour liquid water have been spotted around a nearby dwarf star. If such a configuration is common in planetary systems, our Galaxy could be teeming with Earth-like planets. See Letter p.456

  13. Managing Planet Earth.

    ERIC Educational Resources Information Center

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  14. Skylab Earth Observation Studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This concept illustrates Skylab Earth observation studies, an Earth Resources Experiment Package (EREP). EREP was designed to explore the use of the widest possible portion of the electromagnetic spectrum for Earth resource investigations with sensors that recorded data in the visible, infrared, and microwave spectral regions. Resources subject to this study included a capability of mapping Earth resources and land uses, crop and forestry cover, health of vegetation, types of soil, water storage in snow pack, surface or near-surface mineral deposits, sea surface temperature, and the location of likely feeding areas for fish, etc. A significant feature of EREP was the ability of man to operate the sensors in a laboratory fashion.

  15. Biological responses to solar UV radiation in space and on Earth

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Scherer, K.; Horneck, G.

    2001-08-01

    Solar UV radiation is a dynamic driving force of organic chemical evolution. However, it has had also severe constraints in biological evolution. During the early history of life on Earth, before the formation of a protective ozone layer in the atmosphere, high intensities of solar UV radiation of short wavelengths could reach the surface of the Earth. Today the full spectrum of solar UV radiation is only experienced in space, where other important space parameters influence survival and genetic stability additionally, like vacuum, cosmic radiation, temperature, extremes, microgravity. To reach a better understanding of the processes leading to the origin, evolution and distribution of life on Earth we have performed several space experiments with microorganisms. The ability of resistant life forms like bacterial spores to survive high doses of extraterrestrial solar UV alone or in combination with other space parameters, e.g. vacuum, was investigated. Extraterrestrial solar UV was found to have a thousand times higher biological effectiveness than UV radiation filtered by stratospheric ozone concentrations found today on Earth. Radiative transfer models predicting a strong correlation between the decrease in biologically effective UV radiation with increasing ozone concentrations during the history of life on Earth could be validated experimentally in space.

  16. High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses

    NASA Astrophysics Data System (ADS)

    Habermann, D.; Götte, T.; Meijer, J.; Stephan, A.; Richter, D. K.; Niklas, J. R.

    2000-03-01

    The rare-earth element (REE) distribution in natural apatite is analysed by micro-PIXE, cathodoluminescence (CL) microscopy and spectroscopy and electron spin resonance (ESR) spectroscopy. The micro-PIXE analyses of an apatite crystal from Cerro de Mercado (Mexico) and the summary of 20 analyses of six francolite (conodonts of Triassic age) samples indicate that most of the REEs are enriched in apatite and francolite comparative to average shale standard (NASC). The analyses of fossil francolite revealing the REE-distribution not to be in balance with the REE-distribution of seawater and fish bone debris. Strong inhomogenous lateral REE-distribution in fossil conodont material is shown by CL-mapping and most probably not being a vital effect. Therefore, the resulting REE-signal from fossil francolite is the sum of vital and post-mortem incorporation. The necessary charge compensation for the substitution of divalent Ca by trivalent REE being done by different kind of electron defects and defect ions.

  17. Venus and the Archean Earth: Thermal considerations

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.

    1989-01-01

    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus.

  18. Combination of Insecticide Treated Nets and Indoor Residual Spraying in Northern Tanzania Provides Additional Reduction in Vector Population Density and Malaria Transmission Rates Compared to Insecticide Treated Nets Alone: A Randomised Control Trial

    PubMed Central

    Protopopoff, Natacha; Wright, Alexandra; West, Philippa A; Tigererwa, Robinson; Mosha, Franklin W; Kisinza, William; Kleinschmidt, Immo; Rowland, Mark

    2015-01-01

    Indoor residual spraying (IRS) combined with insecticide treated nets (ITN) has been implemented together in several sub-Saharan countries with inconclusive evidence that the combined intervention provides added benefit. The impact on malaria transmission was evaluated in a cluster randomised trial comparing two rounds of IRS with bendiocarb plus universal coverage ITNs, with ITNs alone in northern Tanzania. From April 2011 to December 2012, eight houses in 20 clusters per study arm were sampled monthly for one night with CDC light trap collections. Anopheles gambiae s.l. were identified to species using real time PCR Taq Man and tested for the presence of Plasmodium falciparum circumsporozoite protein. ITN and IRS coverage was estimated from household surveys. IRS coverage was more than 85% in two rounds of spraying in January and April 2012. Household coverage with at least one ITN per house was 94.7% after the universal coverage net campaign in the baseline year and the proportion of household with all sleeping places covered by LLIN was 50.1% decreasing to 39.1% by the end of the intervention year. An.gambiae s.s. comprised 80% and An.arabiensis 18.3% of the anopheline collection in the baseline year. Mean An.gambiae s.l. density in the ITN+IRS arm was reduced by 84% (95%CI: 56%-94%, p = 0.001) relative to the ITN arm. In the stratum of clusters categorised as high anopheline density at baseline EIR was lower in the ITN+IRS arm compared to the ITN arm (0.5 versus 5.4 per house per month, Incidence Rate Ratio: 0.10, 95%CI: 0.01–0.66, p-value for interaction <0.001). This trial provides conclusive evidence that combining carbamate IRS and ITNs produces major reduction in Anopheles density and entomological inoculation rate compared to ITN alone in an area of moderate coverage of LLIN and high pyrethroid resistance in An.gambiae s.s. PMID:26569492

  19. Combination of Insecticide Treated Nets and Indoor Residual Spraying in Northern Tanzania Provides Additional Reduction in Vector Population Density and Malaria Transmission Rates Compared to Insecticide Treated Nets Alone: A Randomised Control Trial.

    PubMed

    Protopopoff, Natacha; Wright, Alexandra; West, Philippa A; Tigererwa, Robinson; Mosha, Franklin W; Kisinza, William; Kleinschmidt, Immo; Rowland, Mark

    2015-01-01

    Indoor residual spraying (IRS) combined with insecticide treated nets (ITN) has been implemented together in several sub-Saharan countries with inconclusive evidence that the combined intervention provides added benefit. The impact on malaria transmission was evaluated in a cluster randomised trial comparing two rounds of IRS with bendiocarb plus universal coverage ITNs, with ITNs alone in northern Tanzania. From April 2011 to December 2012, eight houses in 20 clusters per study arm were sampled monthly for one night with CDC light trap collections. Anopheles gambiae s.l. were identified to species using real time PCR Taq Man and tested for the presence of Plasmodium falciparum circumsporozoite protein. ITN and IRS coverage was estimated from household surveys. IRS coverage was more than 85% in two rounds of spraying in January and April 2012. Household coverage with at least one ITN per house was 94.7% after the universal coverage net campaign in the baseline year and the proportion of household with all sleeping places covered by LLIN was 50.1% decreasing to 39.1% by the end of the intervention year. An.gambiae s.s. comprised 80% and An.arabiensis 18.3% of the anopheline collection in the baseline year. Mean An.gambiae s.l. density in the ITN+IRS arm was reduced by 84% (95%CI: 56%-94%, p = 0.001) relative to the ITN arm. In the stratum of clusters categorised as high anopheline density at baseline EIR was lower in the ITN+IRS arm compared to the ITN arm (0.5 versus 5.4 per house per month, Incidence Rate Ratio: 0.10, 95%CI: 0.01-0.66, p-value for interaction <0.001). This trial provides conclusive evidence that combining carbamate IRS and ITNs produces major reduction in Anopheles density and entomological inoculation rate compared to ITN alone in an area of moderate coverage of LLIN and high pyrethroid resistance in An.gambiae s.s.

  20. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  1. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  2. Toward other Earths

    NASA Astrophysics Data System (ADS)

    Hatzes, Artie P.

    2016-04-01

    How common are habitable Earth-like planets? This is a key question that drives much of current research in exoplanets. To date, we have discovered over one thousand exoplanets, mostly through the transit method. Among these are Earth-size planets, but these orbit very close to the star (semi-major axis approximately 0.01 Astronomical Units). Potentially rocky planets have also been discovered in a star's habitable zone, but these have approximately twice the radius of the Earth. These certainly do not qualify as Earth "twins". Several hundreds of multi-planet systems have also been discovered, but these are mostly ultra-compact systems with up to seven planets all with orbital distances less than that of Mercury in our solar system. The detection of a planetary system that is the direct analog of our solar system still eludes us. After an overview of the current status of exoplanet discoveries I will discuss the prospects and challenges of finding such Earth analogs from the ground and from future space missions like PLATO. After over two decades of searching, we may well be on the brink of finding other Earths.

  3. The albedo of Earth

    NASA Astrophysics Data System (ADS)

    Stephens, Graeme L.; O'Brien, Denis; Webster, Peter J.; Pilewski, Peter; Kato, Seiji; Li, Jui-lin

    2015-03-01

    The fraction of the incoming solar energy scattered by Earth back to space is referred to as the planetary albedo. This reflected energy is a fundamental component of the Earth's energy balance, and the processes that govern its magnitude, distribution, and variability shape Earth's climate and climate change. We review our understanding of Earth's albedo as it has progressed to the current time and provide a global perspective of our understanding of the processes that define it. Joint analyses of surface solar flux data that are a complicated mix of measurements and model calculations with top-of-atmosphere (TOA) flux measurements from current orbiting satellites yield a number of surprising results including (i) the Northern and Southern Hemispheres (NH, SH) reflect the same amount of sunlight within ~ 0.2 W m-2. This symmetry is achieved by increased reflection from SH clouds offsetting precisely the greater reflection from the NH land masses. (ii) The albedo of Earth appears to be highly buffered on hemispheric and global scales as highlighted by both the hemispheric symmetry and a remarkably small interannual variability of reflected solar flux (~0.2% of the annual mean flux). We show how clouds provide the necessary degrees of freedom to modulate the Earth's albedo setting the hemispheric symmetry. We also show that current climate models lack this same degree of hemispheric symmetry and regulation by clouds. The relevance of this hemispheric symmetry to the heat transport across the equator is discussed.

  4. Biosignatures of Early Earths

    NASA Astrophysics Data System (ADS)

    Pilcher, Carl B.

    2003-11-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1½ billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH3SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-μm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  5. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  6. Effect of combined addition of nano-SiC and nano-Ho2O3 on the in-field critical current density of MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Varghese, Neson; Vinod, K.; Chattopadhyay, M. K.; Roy, S. B.; Syamaprasad, U.

    2010-01-01

    MgB2 superconducting samples added with nano-Ho2O3 (n-Ho2O3) and/or nano-SiC (n-SiC) have been prepared by an in situ solid state reaction method to investigate and compare the combined and individual effects of n-SiC and n-Ho2O3 on a crystal structure, critical temperature (TC), and critical current density (JC) of MgB2. All the doped samples exhibit significantly enhanced in-field JC and the codoped sample with 2.5 wt % n-Ho2O3 and 5 wt % n-SiC gives the best performance in in-field JC, and the enhancement is around 100 times and 2 times greater than the undoped and monodoped n-SiC samples, respectively, at 5 K and 8 T. For the n-SiC added sample, lattice distortions due to C substitution on the B site and the formation of reacted phase Mg2Si as flux pinners cause enhanced JC up to the maximum field studied (8 T). While in the n-Ho2O3 added sample, a reacted phase HoB4 having a strong magnetic moment forms, without any substitution at the Mg or B site, which acts as a flux pinner in order to enhance the in-field JC. Accordingly the best codoped sample exhibits these combined benefits of n-SiC and n-Ho2O3 in MgB2 superconductor.

  7. Earth Science Data for a Mobile Age

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Chambers, L. H.; Lewis, P. M.; Baize, R.; Oots, P.; Rogerson, T.; Crecelius, S.; Coleman, T.

    2012-12-01

    Earth science data access needs to be interoperable and automatic. Recently, increasingly savvy data users combined with more complex web and mobile applications have placed increasing demands on how this Earth science data is being delivered to educators and students. The MY NASA DATA (MND) and S'COOL projects are developing a strategy to interact with the education community in the age of mobile devices and platforms. How can we provide data and meaningful scientific experiences to educational users through mobile technologies? This initiative will seek out existing technologies and stakeholders within the Earth Science community to identify datasets that are relevant and appropriate for mobile application development and use by the educational community. Targeting efforts within the educational community will give the project a better understanding of the previous attempts at data/mobile application use in the classroom and its problems. In addition, we will query developers and data providers on what successes and failures they've experienced in trying to provide data for applications designed on mobile platforms. This feedback will be implemented in new websites, applications and lessons that will provide authentic scientific experiences for students and end users. We want to create tools that help sort through the vast amounts of NASA data, and deliver it to users automatically. NASA provides millions of gigabytes of data that is publicly available through a large number of services spread across the World Wide Web. Accessing and navigating this data can be time consuming and problematic with variety of file types and methods for accessing this data. The MND project, through its' Live Access Server system, provides selected datasets that are relevant and targets National Standards of Learning for educators to easily integrate into existing curricula. In the future, we want to provide desired data to users with automatic updates, anticipate future data queries

  8. A pilot study of cytoreductive chemotherapy combined with infusion of additional peripheral blood stem cells reserved at time of harvest for transplantation in case of relapsed hematologic malignancies after allogeneic peripheral blood stem cell transplant.

    PubMed

    Kim, J G; Sohn, S K; Kim, D H; Lee, N Y; Suh, J S; Lee, K S; Lee, K B

    2004-01-01

    Reharvesting leukocytes from donors for a donor leukocyte infusion (DLI) is inconvenient and occasionally impossible in case of unrelated donors. It is well known that the effect of a growth factor-primed DLI is comparable to that of a nonprimed DLI. In total, 42 patients with hematologic malignancies and a high risk of relapse were allocated, on an intent-to-treat basis, a peripheral blood stem cell transplantation (PBSCT) from HLA-matched sibling donors, and then at the time of harvest, additional peripheral blood stem cells (PBSCs) were also reserved for a therapeutic primed DLI in case of relapse. In all, 12 patients who relapsed after allogeneic PBSCT were treated with mainly cytarabine-based chemotherapy followed by a cryopreserved PBSC infusion. The median dose of CD3+ and CD34+ cells for the primed DLIs was 1.43 x 10(8)/kg and 4.75 x 10(6)/kg, respectively. Six of the 12 relapsed patients exhibited a complete response after the primed DLI, plus their 1-year survival rate was 33%. The new development or progression of graft-versus-host disease after a primed DLI was observed in 50% of the patients. Overall, the survival at 1 year was 16.7%. Accordingly, the induction of a graft-versus-leukemia effect through a primed DLI, using additional PBSCs reserved at the original time of harvest, would appear to be feasible for patients with relapsed hematologic malignancies. Furthermore, this approach is also more convenient for donors.

  9. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.

    PubMed

    Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin

    2015-08-18

    The search for new catalysts for more efficient, selective chemical transformations and for the synthesis of new functional materials has been a long-standing research subject in both academia and industry. To develop new generations of catalysts that are superior or complementary to the existing ones, exploring the potential of untapped elements is an important strategy. Rare-earth elements, including scandium, yttrium, and the lanthanides (La-Lu), constitute one important frontier in the periodic table. Rare-earth elements possess unique chemical and physical properties that are different from those of main-group and late-transition metals. The development of rare-earth-based catalysts by taking the advantage of these unique properties is of great interest and importance. The most stable oxidation state of rare-earth metals is 3+, which is difficult to change under many reaction conditions. The oxidative addition and reductive elimination processes often observed in catalytic cycles involving late transition metals are generally difficult in the case of rare-earth complexes. The 18-electron rule that is applicable to late-transition-metal complexes does not fit rare-earth complexes, whose structures are mainly governed by the sterics (rather than the electron numbers) of the ligands. In the lanthanide series (La-Lu), the ionic radius gradually decreases with increasing atomic number because of the influence of the 4f electrons, which show poor shielding of nuclear charge. Rare-earth metal ions generally show strong Lewis acidity and oxophilicity. Rare-earth metal alkyl and hydride species are highly reactive, showing both nucleophilicity and basicity. The combination of these features, such as the strong nucleophilicity and moderate basicity of the alkyl and hydride species and the high stability, strong Lewis acidity, and unsaturated C-C bond affinity of the 3+ metal ions, can make rare-earth metals unique candidates for the formation of excellent single

  10. EarthScope and Its Influence at the IRIS DMC

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Trabant, C. M.; Sharer, G.; Benson, R. B.; Templeton, M. E.; Ahern, T. K.

    2009-12-01

    at the DMC. Changes at the DMC that have benefitted EarthScope include two broad classes: web system architecture and core data management infrastructure. Examples of the former are additional, newly-acquired web servers, the installation of new load balancers, and the implementation of parallel request processing. Examples of the latter class include upgrades to the mass storage system (from the Powderhorn tape robot to two Isilon disk archives); recently upgraded Oracle software and server; a fully functional, synced off-site data back-up system (upgraded from an off-site tape archive); and the virtual network concept, allowing grouping of arbitrary stations across networks, which has proven extremely useful for specifying the ever-changing USArray TA network and other components of EarthScope in user-friendly terms. An additional significant change regarding EarthScope data at the DMC is that we are now archiving USArray TA final data sets, which combine in situ disk data and real time data to create the most complete data set for the TA stations.

  11. Evaluating key parameters for the initiation of a Neoproterozoic Snowball Earth with a single Earth System Model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Spiegl, T. C.; Paeth, H.; Frimmel, H. E.

    2015-04-01

    Even after more than two decades of intense research the main drivers for a potential Neoproterozoic Snowball Earth continue to be discussed controversially. In this study we present results from 37 sensitivity experiments that were performed with the Planet Simulator (PlaSim), an Earth System Model of intermediate complexity. In contrast to previous studies, in which only a limited number of potential climate-controlling parameters were assessed with different climate models, we tested our presumed key parameters within one single model. This approach makes it easier to compare the influence of the various parameters on extreme climate change as postulated for the Neoproterozoic Era. Furthermore we compare the results obtained to most recent high complexity state-of-the-art approaches. This comparison helps to estimate, which internal model interactions and physics are crucial for a Snowball Earth simulation and hence should be included into a model that is capable of realistically simulating a Neoproterozoic climate. To this effect we carried out simulations that involved reduced solar irradiation, land-sea distributions, atmospheric CO2 concentrations, relief of the land surface and length of day. In addition, we focus on different land surface albedo values, which were most likely exceptionally low and similar to the Martian albedo, and obliquity changes between 23.5° and 80°. Our findings suggest that changes in land surface albedo are a strong climate driver that can compensate a much lower Neoproterozoic total solar irradiance if it is combined with shifts in obliquity or atmospheric CO2 levels. We also obtained a critical threshold for increased obliquities beyond which a Snowball Earth situation turns into an extreme greenhouse climate with almost absent cryosphere, and furthermore, obliquity values that lead to a tropical ice age with sea ice spreading from the equator to high latitudes.

  12. Visualizing Energy Resources Dynamically on Earth

    SciTech Connect

    Shankar, Mallikarjun; Stovall, John P.; Sorokine, Alexandre; Bhaduri, Budhendra L.; King, Jr., Thomas J.

    2008-01-01

    For the North American hurricane season, in partnership with the Tennessee Valley Authority (TVA) and working with the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, we have developed a capability that helps visualize the status of the electric transmission system infrastructure. The capability toolkit, called VERDE - Visualizing Energy Resources Dynamically on Earth, takes advantage of the Google Earth platform to display spatiotemporally informed power grid and related data. Custom libraries describe the electrical transmission network in the Eastern United States and the dynamic status of each transmission line. Standard Google Earth layers provide additional spatial context. In addition to live status, VERDE provides a framework and mechanism to ingest and intuitively present predictive models, data from different sources, and response needs.

  13. Global Images of Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Global images of Earth from Galileo. In each frame, the continent of Antarctica is visible at the bottom of the globe. South America may be seen in the first frame (top left), the great Pacific Ocean in the second (bottom left), India at the top and Australia to the right in the third (top right), and Africa in the fourth (bottom right). Taken at six-hour intervals on December 11, 1990, at a range of between 2 and 2.7 million kilometers (1.2 to 1.7 million miles). P-37630

    These images were taken during Galileo's first Earth flyby. This gravity assist increased Galileo's speed around the Sun by about 5.2 kilometers per second (or 11,600 miles per hour) and substantially redirected Galileo as required for its flybys of the asteroid Gaspra in October 1991 and Earth in 1992. Galileo's closest approach (960 kilometers, or 597 miles, above the Earth's surface) to the Earth was on December 8, 1990, 3 days before these pictures were taken.

    Each of these images is a color composite, made up using images taken through red, green, and violet filters. The four images are part of the Galileo Earth spin movie, a 256-frame time-lapse motion picture that shows a 25-hour period of Earth's rotation and atmospheric dynamics. The movie gives scientists a unique overall view of global weather patterns, as opposed to the limited view of weather satellite images.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  14. Earth's earliest atmospheres.

    PubMed

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-10-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases.

  15. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  16. Mitigating Climate Change with Earth Orbital Sunshades

    NASA Technical Reports Server (NTRS)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  17. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  18. Alkaline earth metal catalysts for asymmetric reactions.

    PubMed

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  19. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  20. The Sun and Earth

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  1. Modeling the earth system

    SciTech Connect

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  2. Earth boring machine

    SciTech Connect

    Durham, M. E.

    1985-11-19

    An earth boring machine for boring straight and level elongated holes through rock-laden earth. The machine includes a stationary elongated frame upon which a first slide is carried. A second slide is carried on the first slide. An elongated auger guiding sleeve is carried adjacent one end of the first slide and has a cutting edge on a remote end thereof. A power-driven auger assembly is carried on the second slide and includes an auger which extends within the guiding sleeve. A cutting tool is carried on the end of the auger adjacent a remote end of the guiding sleeve. An hydraulic cylinder is provided for advancing the first sleeve for driving the cutting edge of the guiding sleeve into the earth while the power driven auger removes the earth as the guiding sleeve is advanced. Another set of hydraulic cylinders are provided for advancing the second slide on the first slide causing the cutting tool to extend out beyond the remote end of the guiding sleeve for cutting through obstructions in the earth when the cutting edge of the guiding sleeve is prevented from moving forward.

  3. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  4. Crescent Earth and Moon

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA's Office of Space Science.

  5. Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides.

    PubMed

    Li, Yongtao; Fang, Fang; Song, Yun; Li, Yuesheng; Sun, Dalin; Zheng, Shiyou; Bendersky, Leonid A; Zhang, Qingan; Ouyang, Liuzhang; Zhu, Min

    2013-02-07

    Bimetallic hydride NaMgH(3) is used for the first time as a vehicle to enhance hydrogen release and uptake from LiNH(2). The combination of NaMgH(3) with LiNH(2) at a molar ratio of 1 : 2 can release about 4.0 wt% of hydrogen without detectable NH(3) emission in the temperature range of 45 °C to 325 °C and exhibiting superior dehydrogenation as compared to individual NaH and/or MgH(2) combined with LiNH(2). A high capacity retention of about 75% resulting from the introduction of NaMgH(3) is also achieved in LiNH(2) as well as re-hydrogenation under milder conditions of 180 °C and 5 MPa H(2) pressure. These significant improvements are attributed to synergistic effects of in situ formed NaH and MgH(2)via the decomposition of NaMgH(3) where a succession of competing reactions from the cyclic consumption/recovery of NaH are involved and serve as a "carrier" for the ultra-rapid conveyance of the N-containing species between the [NH(2)](-) amide and the resulting [NH](2-) imide complexes.

  6. Near-Earth Asteroid Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Allen, C. C.; Britt, D. T.; Brownlee, D. E.; Cheng, A.; Chapman, C. R.; Clark, B. C.; Drake, B. G.; Franchi, I. A.; Gorevan, S.

    2001-01-01

    The rate of discovery of new Near Earth Asteroids (NEAs) and the success of D-S 1 and NEAR-Shoemaker, suggest that sample return from NEAs is now technically feasible. Here we present a summary of a recent workshop on the topic. Additional information is contained in the original extended abstract.

  7. Clouds and the Earth's Radiant Energy System

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)

    The Clouds and the Earth's Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. The CERES instrument provides radiometric measurements of the Earth's atmosphere from three broadband channels. The CERES missions are a follow-on to the successful Earth Radiation Budget Experiment (ERBE) mission. The first CERES instrument (PFM) was launched on November 27, 1997, as part of the Tropical Rainfall Measuring Mission (TRMM). Two CERES instruments (FM1 and FM2) were launched into polar orbit on board the EOS flagship Terra on December 18, 1999, and two additional CERES instruments (FM3 and FM4) were launched on board EOS Aqua on May 4,2002. [Mission Objectives] The scientific justification for the CERES measurements can be summarized by three assertions: (1) changes in the radiative energy balance of the Earth-atmosphere system can cause long-term climate changes (e.g., carbon dioxide inducing global warming); (2) besides the systematic diurnal and seasonal cycles of incoming solar energy, changes in cloud properties (amount, height, optical thickness) cause the largest changes of the Earth's radiative energy balance; and (3) cloud physics is one of the weakest components of current climate models used to predict potential global climate change. CERES has four main objectives: 1) For climate change analysis, provide a continuation of the ERBE record of radiative fluxes at the top of the atmosphere (TOA), analyzed using the same algorithms that produced the ERBE data. 2) Double the accuracy of estimates of radiative fluxes at TOA and the Earth's surface. 3) Provide the first long-term global estimates of the radiative fluxes within the Earth's atmosphere. 4) Provide cloud property estimates that are consistent with the radiative fluxes from surface to TOA. [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  8. The Earth's variable Chandler wobble

    NASA Astrophysics Data System (ADS)

    Bizouard, C.; Remus, F.; Lambert, S. B.; Seoane, L.; Gambis, D.

    2011-02-01

    Aims: We investigated the causes of the Earth's Chandler wobble variability over the past 60 years. Our approach is based on integrating of the atmospheric and oceanic angular momentum computed by global circulation models. We directly compared the result of the integration with the Earth's pole coordinate observed by precise astrometric, space, and geodetic techniques. This approach differs from the traditional approach in which the observed polar motion is transformed into a so-called geodetic excitation function, and compared afterwards with the angular momentum of the external geophysical fluid layers. Methods: In the time domain, we integrated the atmospheric angular momentum time series from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis project and the oceanic angular momentum data from the ECCO consortium. We extracted the Chandler wobble from this modeled polar motion by singular spectrum analysis, and compared it with the Chandler wobble extracted from the observed polar motion given by the International Earth Rotation and Reference Systems Service data. Results: We showed that the combination of the atmosphere and the oceans explains most of the observed Chandler wobble variations, and is consistent with results reported in the literature and obtained with the traditional approach. Our approach allows one to appreciate the separate contributions of the atmosphere and the oceans to the various bumps and valleys observed in the Chandler wobble. Though the atmosphere explains the Chandler wobble amplitude variations between 1949 and 1970, the reexcitation of the Chandler wobble that begins in the 1980s, after a minimum around 1970, and that reaches its maximum in the late 1990s is due to the oceans, while the atmospheric contribution remains stable within the same period.

  9. Earth's Trojan asteroid.

    PubMed

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  10. Better Than Earth

    NASA Astrophysics Data System (ADS)

    Heller, René

    2015-01-01

    Do we inhabit the best of all possible worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  11. Dagik Earth and IUGONET

    NASA Astrophysics Data System (ADS)

    Ebisawa, K.; Koyama, Y.; Saito, A.; Sakamoto, S.; Ishii, M.; Kumano, Y.; Hazumi, Y.

    2015-09-01

    In this paper we introduce two independent projects in progress in Japan. Dagik Earth is a visualization project of the Earth and planets on a spherical screen using only a standard PC and a projector. Surface images of the Earth or planets (or whatever having spherical shape) in the equirectangular (plate carre) projection are projected on a spherical screen in the orthographic projection. As a result, the spherical screen becomes a virtual digital globe, which can be rotated using mouse or remote controller. Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a collaboration of five Japanese institutes to build a comprehensive database system for the metadata of the upper-atmospheric data taken by these institutes. We explain the IUGONET metadata database and iUgonet Data Analysis Software (UDAS) for upper atmospheric research.

  12. Mission to planet earth

    SciTech Connect

    Baker, D.J.

    1988-07-01

    Plans for environmental monitoring using remote-sensing satellites in the era of the International Space Station are reviewed. The role of international cooperation is stressed, considering the present Landsat, SPOT, and Marine Observation Satellite programs; ERS-1 and Topex/Poseidon; and plans for the Italian Lageos-2, the Indian Remote Sensing Satellite, and the Japanese Advanced Earth Observation Satellite. The NASA Mission to Planet Earth proposal calls for four polar-orbit and five GEO platforms (five NASA, two ESA, and two NASDA), to be in place by the year 2000, as well as dedicated spacecraft of the Earth System Explorer series in the 1990s. Payloads will monitor the geomagnetic field, atmospheric temperature and water vapor, O3 and aerosols, outgoing radiation, precipitation, sea-surface temperature, sea ice, ocean chlorophyll, surface winds, wave height, ocean circulation, snow cover, land use, vegetation, crops, volcanic activity, and the hydrologic cycle.

  13. Florence Bascom and the Exclusion of Women From Earth Science Curriculum Materials

    ERIC Educational Resources Information Center

    Arnold, Lois

    1975-01-01

    Numerous excerpts from present day earth science curriculum materials reveal sexual discrimination. In addition, studies of photographs included in the materials reveal a high male dominance. The significant contributions of one earth scientist, Florence Bascom, are remembered. (CP)

  14. Capturing near-Earth asteroids into bounded Earth orbits using gravity assist

    NASA Astrophysics Data System (ADS)

    Bao, Changchun; Yang, Hongwei; Barsbold, Baza; Baoyin, Hexi

    2015-12-01

    In this paper, capturing Near-Earth asteroids (NEAs) into bounded orbits around the Earth is investigated. Several different potential schemes related with gravity assists are proposed. A global optimization method, the particle Swarm Optimization (PSO), is employed to obtain the minimal velocity increments for each scheme. With the optimized results, the minimum required velocity increments as well as the mission time are obtained. Results of numerical simulations also indicate that using MGAs is an efficient approach in the capturing mission. The conclusion complies with the analytical result in this paper that a NEA whose velocity relative to the Earth less than 1.8 km/s can be captured by Earth by just one MGA. For other situations, the combination of MGAs and EGAs is better in sense of the required velocity-increments.

  15. Human PIV-2 recombinant Sendai virus (rSeV) elicits durable immunity and combines with two additional rSeVs to protect against hPIV-1, hPIV-2, hPIV-3, and RSV.

    PubMed

    Jones, Bart; Zhan, Xiaoyan; Mishin, Vasiliy; Slobod, Karen S; Surman, Sherri; Russell, Charles J; Portner, Allen; Hurwitz, Julia L

    2009-03-13

    The human parainfluenza viruses (hPIVs) and respiratory syncytial viruses (RSVs) are the leading causes of hospitalizations due to respiratory viral disease in infants and young children, but no vaccines are yet available. Here we describe the use of recombinant Sendai viruses (rSeVs) as candidate vaccine vectors for these respiratory viruses in a cotton rat model. Two new Sendai virus (SeV)-based hPIV-2 vaccine constructs were generated by inserting the fusion (F) gene or the hemagglutinin-neuraminidase (HN) gene from hPIV-2 into the rSeV genome. The inoculation of either vaccine into cotton rats elicited neutralizing antibodies toward both homologous and heterologous hPIV-2 virus isolates. The vaccines elicited robust and durable antibodies toward hPIV-2, and cotton rats immunized with individual or mixed vaccines were fully protected against hPIV-2 infections of the lower respiratory tract. The immune responses toward a single inoculation with rSeV vaccines were long-lasting and cotton rats were protected against viral challenge for as long as 11 months after vaccination. One inoculation with a mixture of the hPIV-2-HN-expressing construct and two additional rSeVs (expressing the F protein of RSV and the HN protein of hPIV-3) resulted in protection against challenge viruses hPIV-1, hPIV-2, hPIV-3, and RSV. Results identify SeV vectors as promising vaccine candidates for four different paramyxoviruses, each responsible for serious respiratory infections in children.

  16. How Big is Earth?

    NASA Astrophysics Data System (ADS)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  17. You are here: Earth as seen from Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see.

    The inset shows a combination of four panoramic camera images zoomed in on Earth. The arrow points to Earth. Earth was too faint to be detected in images taken with the panoramic camera's color filters.

  18. Blowing up the Earth

    NASA Astrophysics Data System (ADS)

    Benge, Raymond

    2006-10-01

    An occasional theme in science fiction involves blowing up a planet. In ``Star Wars,'' the Death Star blows up Alderan. In ``The Hitchhiker's Guide to the Galaxy,'' a Vorgon destructor fleet blows up Earth to make room for a cosmic bypass. So, as an exercise for upper division students, or the more advance first year calculus based physics students, the energy needed to disassemble Earth can be computed. Assuming that advanced scifi aliens get their energy from matter-antimatter interactions, students can then compute the amount of antimatter needed to accomplish the task.

  19. The wooing of earth

    SciTech Connect

    Dubos, R.

    1981-02-01

    Reckless use of energy by industrial nations has begun to alter the global climate. Each year more arable land is lost to desertification and erosion due to anthropogenic activities. Air pollutants carried by winds contaminate ecosystems in many parts of the globe. Various kinds of wilderness are being spoiled by overexploitation or permanent occupation. However, human interventions into nature have often revealed potentialities of the earth that would have remained unexpressed in the state of wilderness. With knowledge and a sense of responsibility for the welfare of the earth, human intervention into nature can be ecologically sound, aesthetically satisfying, and economically rewarding.

  20. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  1. Earth Entry Vehicle for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; Braun, R. D.; Hughes. S. J.; Simonsen, L. C.

    2000-01-01

    The driving requirement for design of a Mars Sample return mission is assuring containment of the returned samples. The impact of this requirement on developmental costs, mass allocation, and design approach of the Earth Entry Vehicle is significant. A simple Earth entry vehicle is described which can meet these requirements and safely transport the Mars Sample Return mission's sample through the Earth's atmosphere to a recoverable location on the surface. Detailed analysis and test are combined with probabilistic risk assessment to design this entirely passive concept that circumvents the potential failure modes of a parachute terminal descent system. The design also possesses features that mitigate other risks during the entry, descent, landing and recovery phases. The results of a full-scale drop test are summarized.

  2. Earth Port-Moon Port design

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A pair of compatible transfer stations or Space Ports and associated transfer vehicles was designed in order to support permanent manned lunar facilities. One of the Space Ports was placed in earth orbit (not necessarily Low Earth Orbit - LEO), and the other in lunar orbit. The primary purposes of the Space Ports was to support the lunar surface facility, the return of lunar manufactured items to the earth, and the transfer of lunar manufactured items to space vehicles and earth orbital space stations. The design was constrained by the following: (1) The orbital altitudes and inclinations of the Earth Port and Moon Port were chosen to minimize the overall cost of transporting materials to and from the moon. The ETO (Earth-to-Orbit) costs were considered separately to allow consideration of initiating planetary missions, etc., from the Earth Port. (2) A new earth launch point was chosen to facilitate the support of the lunar facility. This launch point was chosen to minimize overall costs, maximize overall safety, and to avoid political problems. To this end, it was mandatory the launch site be owned by the United States or one of its close allies. In addition, the launch would take place over water and expendable stages would drop into the ocean. Space shuttle type vehicles could be used if appropriate provisions were made for aborts, SRB and ET impact, etc. The ground track and impact point studies included space shuttle type vehicles, current ELV's (expendable launch vehicles, and HLLV's (heavy lift launch vehicles). (3) The Earth Port and Moon Port orbits were selected so that transfer trajectories between the two facilities could be initiated often without major plane change penalties. The amount of these penalties was calculated. Families of Earth Port to Moon Port and Moon Port to Earth Port trajectories were calculated to document the energy requirements and penalties. (4) Space Port module designs included module systems definitions, module masses, system

  3. On the tidal force of the Moon on the Earth

    NASA Astrophysics Data System (ADS)

    Razmi, H.

    2005-09-01

    Here, first, the static formulation of tidal forces with completely spherical symmetry is reviewed (a differential calculus-based method is additionally introduced for readers with more familiarity with/interest in mathematical tools). Then, the result is generalized to the tidal force of the Moon acting on the Earth by considering the rotational dynamics and the (real) oblate spheroidal shape of the Earth.

  4. The Earth's Plamasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  5. NASA's Earth Data Coherent Web

    NASA Astrophysics Data System (ADS)

    Gonzalez, R.; Murphy, K. J.; Cechini, M. F.

    2011-12-01

    NASA Earth Science Data Systems are a large and continuing investment in science data management activities. The Earth Science Data and Information System (ESDIS) project manages the science systems of the Earth Observing System Data and Information System (EOSDIS). EOSDIS provides science data to a wide community of users. Websites are the front door to data and services for users (science, programmatic, missions, citizen scientist, etc...), but these are disparate and disharmonious. Earth science is interdisciplinary thus, EOSDIS must enable users to discover and use the information, data and services they need in an easy and coherent manner. Users should be able to interact with each EOSDIS element in a predictable way and see EOSDIS as a program of inter-related but distinct systems each with expertise in a different science and/or information technology domain. Additionally, users should be presented with a general search capability that can be customized for each research discipline. Furthermore, the array of domain specific expertise along with crosscutting capabilities should be harmonized so users are presented with a common language and information framework to efficiently perform science investigations. The Earthdata Coherent Web Project goals are (1) to present NASA's EOSDIS as a coherent yet transparent system of systems that provide a highly functioning, integrated web presence that ties together information content and web services throughout EOSDIS so science users can easily find, access, and use data collected by NASA's Earth science missions. (2) Fresh, engaging and continually updated and coordinated content. (3) Create an active and immersive science user experience leveraging Web Services (e.g. W*S, SOAP, RESTful) from remote and local data centers and projects to reduce barriers to using EOSDIS data. Goals will be reached through a phased approach where functionality and processes are incrementally added. Phase I focused on the following main

  6. Ringberg15: Earth's Climate Sensitivities

    NASA Technical Reports Server (NTRS)

    Stevens, Bjorn; Abe-Ouchi, Ayako; Bony, Sandrine; Hegerl, Gabi; Schmidt, Gavin; Sherwood, Steven; Webb, Mark

    2015-01-01

    To assess gaps in understanding of Earth's climate sensitivities a workshop was organised under the auspices of the WCRP (World Climate Research Programme) Grand Science Challenge on Clouds, Circulation and Climate Sensitivity (Ringberg15). The workshop took place in March 2015 and gathered together over thirty experts from around the world for one week. Attendees each gave short presentations and participated in moderated discussions of specific questions related to understanding Earth's climate sensitivities. Most of the time was focused on understanding of the equilibrium climate sensitivity, defined as the equilibrium near-surface warming associated with a doubling of atmospheric carbon dioxide. The workshop produced nine recommendations, many of them focusing on specific research avenues that could be exploited to advance understanding of climate sensitivity. Many of these dealt, in one fashion or another, with the need to more sharply focus research on identifying and testing story lines for a high (larger than 4 degrees Kelvin) or low (less than 2 degrees Kelvin) equilibrium climate sensitivity. Additionally, a subset of model intercomparison projects (CFMIP (Cloud Feedback Model Intercomparison Project), PMIP (Palaeoclimate Modelling Intercomparison Project), PDRMIP (Precipitation Driver and Response Model Intercomparison Project), RFMIP (Radiative Forcing Model Intercomparison Project) and VolMIP (Volcanic Forcings Model Intercomparison Project)) that have been proposed for inclusion within CMIP were identified as being central to resolving important issues raised at the workshop; for this reason modelling groups were strongly encouraged to participate in these projects. Finally the workshop participants encouraged the WCRP to initiate and support an assessment process lead by the Grand Science Challenge on Clouds, Circulation and Climate Sensitivity on the topic of Earth's Climate Sensitivities, culminating in a report that will be published in 2019

  7. Dynamics of a Snowball Earth ocean.

    PubMed

    Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli

    2013-03-07

    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

  8. Additive Similarity Trees

    ERIC Educational Resources Information Center

    Sattath, Shmuel; Tversky, Amos

    1977-01-01

    Tree representations of similarity data are investigated. Hierarchical clustering is critically examined, and a more general procedure, called the additive tree, is presented. The additive tree representation is then compared to multidimensional scaling. (Author/JKS)

  9. Earth's City Lights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  10. The Earth's Mantle.

    ERIC Educational Resources Information Center

    McKenzie, D. P.

    1983-01-01

    The nature and dynamics of the earth's mantle is discussed. Research indicates that the silicate mantle is heated by the decay of radioactive isotopes and that the heat energizes massive convention currents in the upper 700 kilometers of the ductile rock. These currents and their consequences are considered. (JN)

  11. Bones of the Earth

    ERIC Educational Resources Information Center

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  12. Venus - Lessons for earth

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.

    1992-01-01

    The old idea that Venus might possess surface conditions to those of an overcast earth has been thoroughly refuted by space-age measurements. Instead, the two planets may have started out similar, but diverged because of the greater solar flux at Venus. This cannot be proved, but is consistent with everything known. A runaway greenhouse effect could have evaporated an 'ocean'. The hydrogen would escape, and most of the oxygen would be incorporated into the crust. Without liquid water, CO2 would remain in the atmosphere. Chlorine atoms would catalyze the recombination of any free oxygen back to CO2. The same theories apply to the future of the earth, and to the explanation of the polar ozone holes; the analogies are striking. There is no likelihood that the earth will actually come to resemble Venus, but Venus serves both as a warning that major environmental effects can flow from seemingly small causes, and as a testbed for the predictive models of the earth.

  13. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  14. Exploring the Earth's Past

    ERIC Educational Resources Information Center

    Lindaman, Arnold D.; And Others

    1972-01-01

    Describes three approaches to a study of the earth's past: (1) development of a time line of the ages; (2) a study of rocks and how each was formed; and (3) a study of fossils as found in certain kinds of stone. (Editor)

  15. Meteorology: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean; Ford, Brent A.

    This document on meteorology is one of a four-volume series of Project Earth Science that includes exemplary hands-on science and reading materials for use in the classroom. This book is divided into three sections: activities, readings, and appendix. The activities are constructed around three basic concept divisions. First, students investigate…

  16. Trees for Mother Earth.

    ERIC Educational Resources Information Center

    Greer, Sandy

    1993-01-01

    Describes Trees for Mother Earth, a program in which secondary students raise funds to buy fruit trees to plant during visits to the Navajo Reservation. Benefits include developing feelings of self-worth among participants, promoting cultural exchange and understanding, and encouraging self-sufficiency among the Navajo. (LP)

  17. How life shaped Earth.

    PubMed

    Gross, Michael

    2015-10-05

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  18. Google Earth Science

    ERIC Educational Resources Information Center

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  19. Earth science data study

    NASA Technical Reports Server (NTRS)

    Graves, Sara J.; Hardin, Danny M.; Conover, Helen

    1992-01-01

    The research proposed in this contract concerning investigations of existing and planned Earth Science and Applications Division (ESAD) data management systems and research into utilities for the access and display of scientific data products was completed. A summary of this work is provided.

  20. Earth flyby anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    In the planet-centric system, a spacecraft should have the same initial and final energies, even though its energy and angular momentum will change in the barycenter of the solar system. However, without explanation, a number of earth flybys have yielded small energy changes.

  1. The Island Earth

    ERIC Educational Resources Information Center

    Mead, Margaret

    1970-01-01

    Dr. Mead, the world-renowned anthropologist and expert behavioral scientist, is associated with the American Museum of Natural History, which acts as her headquarters as she documents her observations on Man, society and technology. She discusses the need to develop specialists with concern for saving the endangered planet earth. (Editor/GR)

  2. Earth Science in 1970

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)

  3. Geology: The Active Earth.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1987-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Geology: The Active Earth." Contents are organized into the…

  4. Earth Science, Grade 7.

    ERIC Educational Resources Information Center

    Buffalo Public Schools, NY.

    GRADES OR AGES: Grade 7. SUBJECT MATTER: Earth science. ORGANIZATION AND PHYSICAL APPEARANCE: The introductory material suggests a time schedule for the major units and gives details of the reference materials referred to in the text. The main text is presented in four columns: topical outline, basic understandings, suggested activities and…

  5. Modeling Earth's Climate

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  6. DIORAMA Earth Terrain Model

    SciTech Connect

    Werley, Kenneth Alan

    2015-03-10

    When simulating near-surface nuclear detonations, the terrain of the Earth can have an effect on the observed outputs. The critical parameter is called the “height of burst”. In order to model the effect of terrain on the simulations we have incorporated data from multiple sources to give 9 km resolution data with global coverage.

  7. Beyond Earth's Boundaries

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Kennedy Space Center, FL. John F. Kennedy Space Center.

    This resource for teachers of elementary age students provides a foundation for building a life-long interest in the U.S. space program. It begins with a basic understanding of man's attempt to conquer the air, then moves on to how we expanded into near-Earth space for our benefit. Students learn, through hands-on experiences, from projects…

  8. Sun-Earth Day

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Michael Sandras, a member of the Pontchartrain Astronomical Society, explains his solar telescope to students of Second Street in Bay St. Louis, Hancock County and Nicholson elementary schools in StenniSphere's Millennium Hall on April 10. The students participated in several hands-on activities at Stennis Space Center's Sun-Earth Day celebration.

  9. An Earth Day Reader.

    ERIC Educational Resources Information Center

    Moser, Don, Ed.

    1990-01-01

    Presents what the author believes to be some of the most important environmental books published since Earth Day 1970. Discusses each selection and how it provides the historical background, basic information, and appreciation necessary to understand the character of our environmental dilemma and our need to address it. (MCO)

  10. Earth's magnetic environment

    SciTech Connect

    Lanzerotti, L.J.; Uberoi, C.

    1988-10-01

    The nature of the earth's magnetosphere is outlined. The magnetosphere is illustrated and its regions and features are discussed, including solar wind, bow shock, and the magnetopause. The formation process and characteristics of the magnetotail are presented. The plasmasphere, Van Allen belts, auroras, whistlers, and micropulsations are examined. Effects of the magnetosphere, including problems for communications lines, spacecraft electronics, and communication satellites are considered.

  11. Understanding Earth's Albedo Effect

    ERIC Educational Resources Information Center

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  12. Is the Earth special?

    NASA Astrophysics Data System (ADS)

    Waltham, Dave; Dartnell, Lewis

    2012-08-01

    MEETING REPORT Earth is the only inhabited planet we know of - so far - but is that the only distinguishing feature of our planet? Dave Waltham and Lewis Dartnell report from an RAS meeting that considered how and why our home planet is unusual.

  13. Mission: New Earth.

    ERIC Educational Resources Information Center

    Sparks, David

    1997-01-01

    Describes an interdisciplinary unit on the environment and space travel in which students plan a fictional departure from Earth which is on the brink of destruction from environmental waste and neglect. Students travel through concepts in environmental education, math, art, English, and astronomy before reaching their destination with a clearer…

  14. Using Google Earth for K-12 Education

    NASA Astrophysics Data System (ADS)

    Kennedy, K.; Bailey, J. E.; Ornduff, T.

    2009-12-01

    Google Earth offers powerful medium for people to view the world. The ability to explore over mountains, through canyons, under oceans and even back in time to historical views of the landscape, makes it an ideal tool for teaching about the planet we live on. However, the true power of Google Earth is only fully unlocked when it is used as a background for dynamic geospatial content visualized through Keyhole Markup Language. Google Earth provides data layers both (e.g., roads) and dynamic (e.g. clouds) in nature. But KML allows for other, user-created content to be added. All of these data can form the basis for stories and lessons told with the backdrop of an interactive model of the Earth. Since 2006, educators from the University of Alaska Fairbanks (UAF) have worked in collaboration with Google to promote use, understanding and knowledge of Google Earth and KML in K-12 schools across the state of Alaska. Activities have included running workshops for teachers (of all technical abilities), visits to students in rural classrooms to provide hands-on tuition, and the development of lesson plans in combination with teachers in the community. The goal is to foster an understanding of how these tools work and to generate ideas of how they might enhance learning in the classroom. In this case, Alaska offers an excellent testing ground for methods that could be employed in other states or countries.

  15. The Earth's Biosphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  16. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  17. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects.

  18. An Analysis of Earth Science Data Analytics Use Cases

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  19. An Analysis of Earth Science Data Analytics Use Cases

    NASA Astrophysics Data System (ADS)

    Shie, C. L.; Kempler, S. J.

    2015-12-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https://earthdata.nasa.gov/about/system-performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co-analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  20. Mission to Planet Earth - The Earth Observing System

    SciTech Connect

    Carruthers, G.R.; Lee, R.B. III NASA, Langley Research Center, Hampton, VA )

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth. 18 refs.

  1. Earth Sciences report, 1989--1990

    SciTech Connect

    Younker, L.W.; Peterson, S.J.; Price, M.E.

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

  2. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  3. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  4. EarthSpace: The Higher Education Clearinghouse for Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Dalton, H.; Cobabe-Ammann, E. A.; Shipp, S. S.

    2012-12-01

    EarthSpace is a searchable database of undergraduate classroom materials designed specifically for faculty teaching planetary sciences, Earth sciences, astrophysics, and solar and space physics at the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets, from homework and computer interactives to laboratory exercises, lectures, and demonstrations. The site capabilities are being expanded to allow assignment of a unique Digital Object Identifier (DOI) to submitted materials, which will provide material developers a way to identify their submitted materials as publications on their CVs. EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities (e.g., Connexions), providing a wider distribution of the resources. In addition to classroom materials, EarthSpace provides the latest news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. This information is emailed monthly in a newsletter to faculty members via the community mailing list, HENews. HENews is a place for the higher education community to share and receive news and information about higher education, teaching, and Earth and space science. EarthSpace also has an RSS feed to notify members when items are added. EarthSpace is a community-driven effort; higher education faculty members contribute and review materials and thus influence the content provided on the site. All materials are peer-reviewed before posting, and authors adhere to the Creative Commons Attribution (CC BY 3.0). You are invited to visit EarthSpace to search for teaching resources, submit your materials, or volunteer to review submitted resources in your discipline with a frequency designed to fit your schedule.

  5. Earth Cube Data Community Roadmap for Mining Services

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Graves, S. J.; Baker, J.; Falke, S. R.

    2012-12-01

    Data from Earth observation sensors have been accumulating at a very high rate for several years now. In combination with in-situ observations and physical model output, this enormous, distributed repository of geocience datasets holds the answers to important questions about our planet's past, present and future. However, the information is only usable if effective analysis capabilities can be brought to bear. For example, researchers may want to perform statistical correlations among multiple geophysical parameters, across many years of observations. Data mining/analytics has the potential to provide these capabilities, and, if employed in close coordination with domain geoscientists could increase the science return from these vast data collections. The goal of NSF's Earth Cube initiative is to transform the conduct of geosciences research by supporting the development of community-guided cyberinfrastructure to integrate data and information for knowledge management. Organizing the diverse array of geosciences datasets and software into one single "Earth Cube" will undoubtedly increase scientific productivity by making it easier for researchers to extract knowledge quickly. However, a major challenge is the reliable extraction of features of interest and knowledge from the massive archive of multi-dimensional datasets, many of which exhibit a large degree of spatiotemporal sparseness. As part of the Earth Cube Data Community activities, we held a series of virtual workshops to generate a community dialogue in the area of data mining/analytics. These discussions focused on reviewing existing data mining tools and approaches used by the geoscience community, identifying existing challenges that must be overcome and defining a roadmap for the future of data mining/analytics in Earth Cube. Several key themes emerged from these discussions. A need for workbench environments was identified that enable researchers to discover and use new analytic approaches and to

  6. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  7. The Earth: A Changing Planet

    NASA Astrophysics Data System (ADS)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    hours of class time for students from 13 to 14 years of age. During the learning process, different methodological tools of teaching and learning have been used. After reading and understanding news about natural disasters such as earthquakes and eruptions, cooperative group work and an oral presentation are prepared. In addition, it has been very useful to follow-up with some web simulations to predict natural phenomena, which can then be tested in the laboratory. Finally, the students apply their new understanding on a visit to a geological formation, where applying the language learned by observing the rocks, they demonstrate that the planet Earth has changed over the course of many millions of years. Natural hazards are a small and timely demonstration of the ability to change our planet.

  8. Earth System Science in a Nutshell: A Starting Point Module

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Manduca, C. A.

    2004-12-01

    "Earth System Science in a Nutshell" is a learning module describing an interdisciplinary approach for treating Earth as an integrated system. The module is one of twelve within the Starting Point project, an NSF-supported effort which explores the ability of on-line resources to catalyze improvements in undergraduate teaching. The Starting Point collection of modules integrate pedagogy with teaching resources to support a virtual community of educators teaching undergraduate entry-level geoscience, environmental science, or related courses. The Earth system science module outlines basic representations of the Earth system, and presents a series of short illustrated vignettes describing the Earth in space, the traditional air, water, land and life spheres, and the human dimension. Each section is linked to relevant online resources cataloged within the Starting Point Digital Library Collection, also linked to the Digital Library for Earth System Education (DLESE). The module also identifies and summarizes additional learning resources by Earth system sphere and theme. In a final section, the module catalogs, summarizes and links to Earth system science courses being offered at colleges and universities across the country. "Earth System Science in a Nutshell" is designed as a quick overview of Earth as a system, for faculty or students, with ready links to resources and programs offering more depth. The module serves as a content resource and reference for the other sections of Starting Point, which offer additional ideas for teaching entry level geoscience courses. A parallel module, Designing an Earth System Course, offers strategies and materials for course design and presents several examples of Earth system science courses with different emphases, each based on a matrix approach that systematically looks at interactions among the different spheres within a particular content area.

  9. Mission to Planet Earth's Geostationary Earth Observatories (GEO's)

    NASA Technical Reports Server (NTRS)

    Keller, V.; Beranek, R.; Herrmann, M.; Koczor, R.

    1992-01-01

    The Geostationary Earth Observatories (GEO's) are the space-based element of NASA's Mission to Planet Earth program which provide the excellent temporal resolution data required for a thorough understanding of earth processes and their role in global climate change. This paper discusses the scientific rationale, required instrumentation, observatory configuration, and data system of the GEO program.

  10. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  11. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  12. Additive manufacturing of hybrid circuits

    SciTech Connect

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  13. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  14. Food additives and preschool children.

    PubMed

    Martyn, Danika M; McNulty, Breige A; Nugent, Anne P; Gibney, Michael J

    2013-02-01

    Food additives have been used throughout history to perform specific functions in foods. A comprehensive framework of legislation is in place within Europe to control the use of additives in the food supply and ensure they pose no risk to human health. Further to this, exposure assessments are regularly carried out to monitor population intakes and verify that intakes are not above acceptable levels (acceptable daily intakes). Young children may have a higher dietary exposure to chemicals than adults due to a combination of rapid growth rates and distinct food intake patterns. For this reason, exposure assessments are particularly important in this age group. The paper will review the use of additives and exposure assessment methods and examine factors that affect dietary exposure by young children. One of the most widely investigated unfavourable health effects associated with food additive intake in preschool-aged children are suggested adverse behavioural effects. Research that has examined this relationship has reported a variety of responses, with many noting an increase in hyperactivity as reported by parents but not when assessed using objective examiners. This review has examined the experimental approaches used in such studies and suggests that efforts are needed to standardise objective methods of measuring behaviour in preschool children. Further to this, a more holistic approach to examining food additive intakes by preschool children is advisable, where overall exposure is considered rather than focusing solely on behavioural effects and possibly examining intakes of food additives other than food colours.

  15. Efficient disruption of small asteroids by Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Bland, P. A.; Artemieva, N. A.

    2003-07-01

    Accurate modelling of the interaction between the atmosphere and an incoming bolide is a complex task, but crucial to determining the fraction of small asteroids that actually hit the Earth's surface. Most semi-analytical approaches have simplified the problem by considering the impactor as a strengthless liquid-like object (`pancake' models), but recently a more realistic model has been developed that calculates motion, aerodynamic loading and ablation for each separate particle or fragment in a disrupted impactor. Here we report the results of a large number of simulations in which we use both models to develop a statistical picture of atmosphere-bolide interaction for iron and stony objects with initial diameters up to ~1km. We show that the separated-fragments model predicts the total atmospheric disruption of much larger stony bodies than previously thought. In addition, our data set of >1,000 simulated impacts, combined with the known pre-atmospheric flux of asteroids with diameters less than 1km, elucidates the flux of small bolides at the Earth's surface. We estimate that bodies >220m in diameter will impact every 170,000 years.

  16. The Near-Earth Object Population: Connections to Comets, Main-Belt Asteroids, and Meteorites

    NASA Astrophysics Data System (ADS)

    Binzel, R. P.; Reddy, V.; Dunn, T. L.

    Near-Earth objects (NEOs) owe their origins to both the main-belt asteroids and comets. They include (by definition) precursors for all meteorite samples. Thus understanding NEO connections is central to the modern study of small bodies in our solar system and serves as the principal focus of this chapter. Herein we also briefly highlight how the proximity of near-Earth objects enables detailed study of the smallest known and most accessible natural objects in space, and we provide links to other chapters addressing these aspects more fully. The success of Japan's Hayabusa mission sample return yields a definitive link between the most common class of near-Earth asteroids and one of the most common meteorites, a watershed whose ground truth enables a deeper level of understanding and new questions. We can now investigate the near-Earth population to pinpoint specific main-belt source regions for broad taxonomic classes and specific meteorite types in addition to estimating the extinct comet contribution. Spectral properties combined with long-term orbital modeling reveal a strong role played by planetary encounters to resurface (and likely reshape) many objects. Outstanding puzzles remain for many of the newly revealed details; their resolution will generate new insights to the basic physical processes governing small bodies.

  17. The Power of the Crowd: An Up Close and Personal Perspective on Planet Earth.

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2015-12-01

    The space-based view of Earth has changed the way we look at our home planet, providing a perspective on the Earth as a system that can only be realized when viewed from a distance. Throughout my career as a researcher, including 2 years as NASA Chief Scientist, this "power of perspective" has been a tool through which I have engaged both colleagues and the public. These capabilities have transformed our understanding of climate and weather phenomena, ecosystem dynamics, changes in the cryosphere, and much more, through their macro-scale look at the various, highly complex components of the Earth system. But within these domains, there is a tremendous amount of small-scale variability that, if appropriately observed, can reveal new information about how elements within the Earth system work in ways that can directly impact people's lives. Consequently, there is a different power in this additional local perspective: it is one fueled by up-close and personal data collection. Through their engagement and commitment, citizen scientists are providing valuable data as well as personalized experience in the collection of those data. This presentation will include video clips that show a diverse set of citizen science projects in North America and worldwide, illustrating this scientifically useful combination of local and global. Such projects engage citizens and scientists alike in efforts to understand the world in which we live.

  18. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    NASA Astrophysics Data System (ADS)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  19. Investigating the translation of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Day, E. A.; Cormier, V. F.; Geballe, Z. M.; Lasbleis, M.; Youssof, M.; Yue, H.

    2012-12-01

    The Earth's inner core provides unique insights into processes that are occurring deep within our Earth today, as well as processes that occurred in the past. The seismic structure of the inner core is complex, and is dominated by anisotropic and isotropic differences between the Eastern and Western 'hemispheres' of the inner core. Recent geodynamical models suggest that this hemispherical dichotomy can be explained by a fast translation of the inner core. In these models one side of the inner core is freezing, while the other side is melting, leading to the development of different seismic properties on either side of the inner core. A simple translating model of the inner core, however, does not seem to easily explain all of the seismically observed features, including the innermost inner core; the observed sharp lateral gradient in seismic properties between the two hemispheres; and a complex hemispherical and radial dependence of anisotropy, attenuation, and scattering in the uppermost inner core. We explore the compatibility of geodynamic models of a translating inner core with seismic observations. Using a relatively simple set of translation models we map the age of material in the inner core and apply mineral physics models for the evolution of grain size to estimate likely changes in seismic properties throughout the inner core. We then compare these predictions to the observations of seismic studies that target two regions that are highly sensitive to the translation of the inner core: the boundary between the two hemispheres and the regions of freezing and melting at the inner core boundary. To constrain the sharpness of the boundary between the two hemispheres of the inner core we collate a data set of PKiKP-PKIKP, PKP-PKIKP and P‧P‧bc-P‧P‧df differential travel times consisting of paths that sample the core near to the proposed hemisphere boundaries. This combination of body wave data samples a range of depths (and consequently ages) in the

  20. Satellite probes plasma processes in earth orbit

    NASA Technical Reports Server (NTRS)

    Christensen, Andrew B.; Reasoner, David L.

    1992-01-01

    The mission of the DOD/NASA Combined Release and Radiation Effects Satellite (CRRES) is to deepen understanding of the earth's near-space environment, including the radiation belts and the ionosphere; this will help spacecraft designers protect against radiation-belt particles that affect onboard electronics, solar panel arrays, and crewmembers. Attention is presently given to CRRES's study of ionospheric plasma processes through releases of Ba, Ca, Sr, and Li at altitudes of 400-36,000 km.

  1. NPP and the Earth System

    NASA Video Gallery

    NPP is a continuation of the existing Earth-observing satellites and it builds on the legacy of multi decades of critical data. NPP will continue to deliver data to all users on Earth who will use ...

  2. NASA Benefits Earth

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This slide presentation reviews several ways in which NASA research has benefited Earth and made life on Earth better. These innovations include: solar panels, recycled pavement, thermometer pill, invisible braces for straightening teeth, LASIK, aerodynamic helmets and tires for bicycles, cataract detection, technology that was used to remove Anthrax spores from mail handling facilities, study of atomic oxygen erosion of materials has informed the restoration of artwork, macroencapsulation (a potential mechanism to deliver anti cancer drugs to specific sites), and research on a salmonella vaccine. With research on the International Space Station just beginning, there will be opportunities for entrepreneurs and other government agencies to access space for their research and development. As well as NASA continuing its own research on human health and technology development.

  3. Earth resources data processor

    NASA Technical Reports Server (NTRS)

    Phillips, M. R.

    1972-01-01

    The recent development of manned and unmanned space vehicles has brought about an almost unprecedented advance in studies concerned with remotely sensed earth observations. With this advance comes an unprecedented amount of data. The problem arises of how to efficiently analyze and compress unmanageable amounts of data into manageable amounts of useful information. A recently developed computer program is proposed as a partial solution to the above problem. The computer program is designed to determine the ground scene location and distribution of features extracted from remotely sensed earth observation data without human involvement in the data processing or a priori knowledge of ground truth. Human involvement and judgement are reserved for identification of the features presented in the compressed data.

  4. The Sounds of Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Flying board Voyagers 1 and 2 are identical 'golden' records, carrying the story of Earth far into deep space. The 12 inch gold-plated copper discs contain greetings in 60 languages, samples of music from different cultures and eras, and natural and man-made sounds from Earth. They also contain electronic information that an advanced technological civilization could convert into diagrams and photographs. The cover of each gold plated aluminum jacket, designed to protect the record from micrometeorite bombardment, also serves a double purpose in providing the finder a key to playing the record. The explanatory diagram appears on both the inner and outer surfaces of the cover, as the outer diagram will be eroded in time. Currently, both Voyager probes are sailing adrift in the black sea of interplanetary space, having left our solar system years ago.

  5. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  6. Earth's core iron

    NASA Astrophysics Data System (ADS)

    Geophysicist J. Michael Brown of Texas A & M University noted recently at the Spring AGU Meeting in Baltimore that the structure and phase of metallic iron at pressures of the earth's inner core (approximately 3.3 Mbar) could have great significance in defining geometrical aspects of the core itself. Brown worked at the Los Alamos Scientific Laboratory with R.B. McQueen to redetermine the phase relations of metallic iron in a series of new shock-wave experiments. They found the melting point of iron at conditions equal to those at the boundary of the earth's outer (liquid) and inner (solid) cores to be 6000°±500°C (Geophysical Research Letters, 7, 533-536, 1980).

  7. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  8. Rare earth thermoelectrics

    SciTech Connect

    Mahan, G.D.

    1997-09-01

    The author reviews the thermoelectric properties of metallic compounds which contain rare-earth atoms. They are the group of metals with the largest value ever reported of the Seebeck coefficient. An increase by 50% of the Seebeck would make these compounds useful for thermoelectric devices. The largest Seebeck coefficient is found for compounds of cerium (e.g., CePd{sub 3}) and ytterbium (e.g., YbAl{sub 3}). Theoretical predictions are in agreement with the maximum observed Seebeck. The author discusses the theoretical model which has been used to calculate the Seebeck coefficient. He is solving this model for other configurations (4f){sup n} of rare-earth ground states.

  9. Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions

    DTIC Science & Technology

    2009-01-01

    object, it must utilize the five Earth orientation parameters (EOPs): polar motion (2 angles), UT1-UTC, and nutation (2 angles) (see Seidelmann...Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions Brian Luzum, U.S. Naval...the Earth Orientation Parameters Combination and Prediction Division in the USNO Earth Orientation Department. He is also the co-director of the

  10. USSR Report, Earth Sciences.

    DTIC Science & Technology

    2007-11-02

    85) 20 Ship ’Karpinskiy’ to Test Gear for Atlantic Floor Studies (K. Aleksandrov; LENINGRADSKAYA PRAVDA, 7 Feb 85) 21 Naval Unit’s Work on Five...quantity. The mean planetary albedo was assumed equal to 0.2, since the soil was not heavily eroded at that time. Products of degassing of the earth...Republic, West Germany, Italy, Canada, the People’s Republic of China, Cuba, the Netherlands, Poland , the Soviet Union, the United States, Finland

  11. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  12. Earth orientation parameters

    NASA Technical Reports Server (NTRS)

    Eanes, Richard J.

    1994-01-01

    Since the beginning of regular space geodetic measurements, Satellite Laser Ranging (SLR) has routinely provided polar motion and length of day solutions. At the present time, Global Positioning Systems (GPS) regularly produces daily polar motion solutions with 0.4 mas accuracy, equivalent to the routine 1-day VLBI experiments and SLR solutions using 3 days of Lageos-1 data. This rapid progress of the GPS technique forces a review of any resource allocations for VLBI and SLR measurements of Earth orientation.

  13. Photosynthesis and early Earth.

    PubMed

    Shih, Patrick M

    2015-10-05

    Life has been built on the evolution and innovation of microbial metabolisms. Even with our scant understanding of the full diversity of microbial life, it is clear that microbes have become integral components of the biogeochemical cycles that drive our planet. The antiquity of life further suggests that various microbial metabolisms have been core and essential to global elemental cycling for a majority of Earth's history.

  14. Superhydrophobic diatomaceous earth

    DOEpatents

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  15. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Wilson, Gregory S.; Backlund, Peter W.

    1991-01-01

    The NASA program described is an international study to predict changes in the earth's environment by means of multidisciplinary remote sensing from satellites. An international consortium dedicates satellites with advanced sensors to data collection, and a data processing system is described to collect and analyze a large amount of terrestrial data. The program requires international multidisciplinary involvement to collect and interpret the data and thereby manage and preserve the global environment.

  16. Visualization of Flow Behavior in Earth Mantle Convection.

    PubMed

    Schroder, S; Peterson, J A; Obermaier, H; Kellogg, L H; Joy, K I; Hagen, H

    2012-12-01

    A fundamental characteristic of fluid flow is that it causes mixing: introduce a dye into a flow, and it will disperse. Mixing can be used as a method to visualize and characterize flow. Because mixing is a process that occurs over time, it is a 4D problem that presents a challenge for computation, visualization, and analysis. Motivated by a mixing problem in geophysics, we introduce a combination of methods to analyze, transform, and finally visualize mixing in simulations of convection in a self-gravitating 3D spherical shell representing convection in the Earth's mantle. Geophysicists use tools such as the finite element model CitcomS to simulate convection, and introduce massless, passive tracers to model mixing. The output of geophysical flow simulation is hard to analyze for domain experts because of overall data size and complexity. In addition, information overload and occlusion are problems when visualizing a whole-earth model. To address the large size of the data, we rearrange the simulation data using intelligent indexing for fast file access and efficient caching. To address information overload and interpret mixing, we compute tracer concentration statistics, which are used to characterize mixing in mantle convection models. Our visualization uses a specially tailored version of Direct Volume Rendering. The most important adjustment is the use of constant opacity. Because of this special area of application, i. e. the rendering of a spherical shell, many computations for volume rendering can be optimized. These optimizations are essential to a smooth animation of the time-dependent simulation data. Our results show how our system can be used to quickly assess the simulation output and test hypotheses regarding Earth's mantle convection. The integrated processing pipeline helps geoscientists to focus on their main task of analyzing mantle homogenization.

  17. The Active Solid Earth

    NASA Astrophysics Data System (ADS)

    Ebinger, Cynthia

    2016-04-01

    Dynamic processes in Earth's crust, mantle and core shape Earth's surface and magnetic field over time scales of seconds to millennia, and even longer time scales as recorded in the ca. 4 Ga rock record. Our focus is the earthquake-volcano deformation cycles that occur over human time scales, and their comparison with time-averaged deformation studies, with emphasis on mantle plume provinces where magma and volatile release and vertical tectonics are readily detectable. Active deformation processes at continental and oceanic rift and back arc zones provide critical constraints on mantle dynamics, the role of fluids (volatiles, magma, water), and plate rheology. For example, recent studies of the East African rift zone, which formed above one of Earth's largest mantle upwellings reveal that magma production and volatile release rates are comparable to those of magmatic arcs, the archetypal zones of continental crustal creation. Finite-length faults achieve some plate deformation, but magma intrusion in the form of dikes accommodates extension in continental, back-arc, and oceanic rifts, and intrusion as sills causes permanent uplift that modulates the local time-space scales of earthquakes and volcanoes. Volatile release from magma intrusion may reduce fault friction and permeability, facilitating aseismic slip and creating magma pathways. We explore the implications of active deformation studies to models of the time-averaged structure of plume and extensional provinces in continental and oceanic plate settings.

  18. Mining the earth

    SciTech Connect

    Young, J.E.

    1992-01-01

    Substances extracted from the earth - stone, iron, bronze - have been so critical to human development that historians name the ages of our past after them. But while scholars have carefully tracked human use of minerals, they have never accounted for the vast environmental damage incurred in mineral production. Few people would guess that a copper mining operation has removed a piece of Utah seven times the weight of all the material dug for the Panama Canal. Few would dream that mines and smelters take up to a tenth of all the energy used each year, or that the waste left by mining measures in the billions of tons - dwarfing the world's total accumulation of more familiar kinds of waste, such as municipal garbage. Indeed, more material is now stripped from the earth by mining than by all the natural erosion of the earth's rivers. The effects of mining operations on the environment are discussed under the following topics: minerals in the global economy, laying waste, at what cost cleaning up, and dipping out. It is concluded that in the long run, the most effective strategy for minimizing new damage is not merely to make mineral extraction cleaner, but to reduce the rich nations needs for virgin (non-recycled) minerals.

  19. Earth System Monitoring, Introduction

    NASA Astrophysics Data System (ADS)

    Orcutt, John

    This section provides sensing and data collection methodologies, as well as an understanding of Earth's climate parameters and natural and man-made phenomena, to support a scientific assessment of the Earth system as a whole, and its response to natural and human-induced changes. The coverage ranges from climate change factors and extreme weather and fires to oil spill tracking and volcanic eruptions. This serves as a basis to enable improved prediction and response to climate change, weather, and natural hazards as well as dissemination of the data and conclusions. The data collection systems include satellite remote sensing, aerial surveys, and land- and ocean-based monitoring stations. Our objective in this treatise is to provide a significant portion of the scientific and engineering basis of Earth system monitoring and to provide this in 17 detailed articles or chapters written at a level for use by university students through practicing professionals. The reader is also directed to the closely related sections on Ecological Systems, Introduction and also Climate Change Modeling Methodology, Introduction as well as Climate Change Remediation, Introduction to. For ease of use by students, each article begins with a glossary of terms, while at an average length of 25 print pages each, sufficient detail is presented for use by professionals in government, universities, and industries. The chapters are individually summarized below.

  20. Finding the Next Earth

    NASA Astrophysics Data System (ADS)

    Batalha, Natalie M.; Kepler Team

    2013-01-01

    Twenty years ago, we knew of no planets orbiting other Sun-like stars, yet today, the roll call is nearly 1,000 strong. Statistical studies of exoplanet populations are possible, and words like "habitable zone" are heard around the dinner table. Theorists are scrambling to explain not only the observed physical characteristics but also the orbital and dynamical properties of planetary systems. The taxonomy is diverse but still reflects the observational biases that dominate the detection surveys. We've yet to find another planet that looks anything like home. The scene changed dramatically with the launch of the Kepler spacecraft in 2009 to determine, via transit photometry, the fraction of stars harboring earth-size planets in or near the Habitable Zone of their parent star. Early catalog releases hint that nature makes small planets efficiently: over half of the sample of 2,300 planet candidates discovered in the first two years are smaller than 2.5 times the Earth's radius. I will describe Kepler's milestone discoveries and progress toward an exo-Earth census. Humankind's speculation about the existence of other worlds like our own has become a veritable quest.