A compendium of computational fluid dynamics at the Langley Research Center
NASA Technical Reports Server (NTRS)
1980-01-01
Through numerous summary examples, the scope and general nature of the computational fluid dynamics (CFD) effort at Langley is identified. These summaries will help inform researchers in CFD and line management at Langley of the overall effort. In addition to the inhouse efforts, out of house CFD work supported by Langley through industrial contracts and university grants are included. Researchers were encouraged to include summaries of work in preliminary and tentative states of development as well as current research approaching definitive results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clouse, C. J.; Edwards, M. J.; McCoy, M. G.
2015-07-07
Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.
Turbulence modeling of free shear layers for high performance aircraft
NASA Technical Reports Server (NTRS)
Sondak, Douglas
1993-01-01
In many flowfield computations, accuracy of the turbulence model employed is frequently a limiting factor in the overall accuracy of the computation. This is particularly true for complex flowfields such as those around full aircraft configurations. Free shear layers such as wakes, impinging jets (in V/STOL applications), and mixing layers over cavities are often part of these flowfields. Although flowfields have been computed for full aircraft, the memory and CPU requirements for these computations are often excessive. Additional computer power is required for multidisciplinary computations such as coupled fluid dynamics and conduction heat transfer analysis. Massively parallel computers show promise in alleviating this situation, and the purpose of this effort was to adapt and optimize CFD codes to these new machines. The objective of this research effort was to compute the flowfield and heat transfer for a two-dimensional jet impinging normally on a cool plate. The results of this research effort were summarized in an AIAA paper titled 'Parallel Implementation of the k-epsilon Turbulence Model'. Appendix A contains the full paper.
ERIC Educational Resources Information Center
Bozzone, Meg A.
1997-01-01
Purchasing custom-made desks with durable glass tops to house computers and double as student work space solved the problem of how to squeeze in additional classroom computers at Johnson Park Elementary School in Princeton, New Jersey. This article describes a K-5 grade school's efforts to overcome barriers to integrating technology. (PEN)
A Man-Machine System for Contemporary Counseling Practice: Diagnosis and Prediction.
ERIC Educational Resources Information Center
Roach, Arthur J.
This paper looks at present and future capabilities for diagnosis and prediction in computer-based guidance efforts and reviews the problems and potentials which will accompany the implementation of such capabilities. In addition to necessary procedural refinement in prediction, future developments in computer-based educational and career…
Using a cloud to replenish parched groundwater modeling efforts.
Hunt, Randall J; Luchette, Joseph; Schreuder, Willem A; Rumbaugh, James O; Doherty, John; Tonkin, Matthew J; Rumbaugh, Douglas B
2010-01-01
Groundwater models can be improved by introduction of additional parameter flexibility and simultaneous use of soft-knowledge. However, these sophisticated approaches have high computational requirements. Cloud computing provides unprecedented access to computing power via the Internet to facilitate the use of these techniques. A modeler can create, launch, and terminate "virtual" computers as needed, paying by the hour, and save machine images for future use. Such cost-effective and flexible computing power empowers groundwater modelers to routinely perform model calibration and uncertainty analysis in ways not previously possible.
Using a cloud to replenish parched groundwater modeling efforts
Hunt, Randall J.; Luchette, Joseph; Schreuder, Willem A.; Rumbaugh, James O.; Doherty, John; Tonkin, Matthew J.; Rumbaugh, Douglas B.
2010-01-01
Groundwater models can be improved by introduction of additional parameter flexibility and simultaneous use of soft-knowledge. However, these sophisticated approaches have high computational requirements. Cloud computing provides unprecedented access to computing power via the Internet to facilitate the use of these techniques. A modeler can create, launch, and terminate “virtual” computers as needed, paying by the hour, and save machine images for future use. Such cost-effective and flexible computing power empowers groundwater modelers to routinely perform model calibration and uncertainty analysis in ways not previously possible.
Quadratic Programming for Allocating Control Effort
NASA Technical Reports Server (NTRS)
Singh, Gurkirpal
2005-01-01
A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.
Deconstructing Hub Drag. Part 2. Computational Development and Anaysis
2013-09-30
leveraged a Vertical Lift Consortium ( VLC )-funded hub drag scaling research effort. To confirm this objective, correlations are performed with the...Technology™ Demonstrator aircraft using an unstructured computational solver. These simpler faired elliptical geome- tries can prove to be challenging ...possible. However, additional funding was obtained from the Vertical Lift Consortium ( VLC ) to perform this study. This analysis is documented in
[Use of cyber library and digital tools are crucial for academic surgeons].
Tomizawa, Yasuko
2010-10-01
In addition to busy clinical work, an academic surgeon has to spend a lot of time and efforts in writing and submitting articles to scientific journals, teaching young surgical trainees to write an article, organizing and updating his/her academic performances in the curriculum vitae, and writing research grant applications. The use of cyber library and commercially available computer software is useful in saving time and effort.
Kapur, Tina; Pieper, Steve; Fedorov, Andriy; Fillion-Robin, J-C; Halle, Michael; O'Donnell, Lauren; Lasso, Andras; Ungi, Tamas; Pinter, Csaba; Finet, Julien; Pujol, Sonia; Jagadeesan, Jayender; Tokuda, Junichi; Norton, Isaiah; Estepar, Raul San Jose; Gering, David; Aerts, Hugo J W L; Jakab, Marianna; Hata, Nobuhiko; Ibanez, Luiz; Blezek, Daniel; Miller, Jim; Aylward, Stephen; Grimson, W Eric L; Fichtinger, Gabor; Wells, William M; Lorensen, William E; Schroeder, Will; Kikinis, Ron
2016-10-01
The National Alliance for Medical Image Computing (NA-MIC) was launched in 2004 with the goal of investigating and developing an open source software infrastructure for the extraction of information and knowledge from medical images using computational methods. Several leading research and engineering groups participated in this effort that was funded by the US National Institutes of Health through a variety of infrastructure grants. This effort transformed 3D Slicer from an internal, Boston-based, academic research software application into a professionally maintained, robust, open source platform with an international leadership and developer and user communities. Critical improvements to the widely used underlying open source libraries and tools-VTK, ITK, CMake, CDash, DCMTK-were an additional consequence of this effort. This project has contributed to close to a thousand peer-reviewed publications and a growing portfolio of US and international funded efforts expanding the use of these tools in new medical computing applications every year. In this editorial, we discuss what we believe are gaps in the way medical image computing is pursued today; how a well-executed research platform can enable discovery, innovation and reproducible science ("Open Science"); and how our quest to build such a software platform has evolved into a productive and rewarding social engineering exercise in building an open-access community with a shared vision. Copyright © 2016 Elsevier B.V. All rights reserved.
Defining Computational Thinking for Mathematics and Science Classrooms
NASA Astrophysics Data System (ADS)
Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri
2016-02-01
Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.
Computation of Large Turbulence Structures and Noise of Supersonic Jets
NASA Technical Reports Server (NTRS)
Tam, Christopher
1996-01-01
Our research effort concentrated on obtaining an understanding of the generation mechanisms and the prediction of the three components of supersonic jet noise. In addition, we also developed a computational method for calculating the mean flow of turbulent high-speed jets. Below is a short description of the highlights of our contributions in each of these areas: (a) Broadband shock associated noise, (b) Turbulent mixing noise, (c) Screech tones and impingement tones, (d) Computation of the mean flow of turbulent jets.
Computational methods in metabolic engineering for strain design.
Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L
2015-08-01
Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neurocomputational mechanisms underlying subjective valuation of effort costs
Giehl, Kathrin; Sillence, Annie
2017-01-01
In everyday life, we have to decide whether it is worth exerting effort to obtain rewards. Effort can be experienced in different domains, with some tasks requiring significant cognitive demand and others being more physically effortful. The motivation to exert effort for reward is highly subjective and varies considerably across the different domains of behaviour. However, very little is known about the computational or neural basis of how different effort costs are subjectively weighed against rewards. Is there a common, domain-general system of brain areas that evaluates all costs and benefits? Here, we used computational modelling and functional magnetic resonance imaging (fMRI) to examine the mechanisms underlying value processing in both the cognitive and physical domains. Participants were trained on two novel tasks that parametrically varied either cognitive or physical effort. During fMRI, participants indicated their preferences between a fixed low-effort/low-reward option and a variable higher-effort/higher-reward offer for each effort domain. Critically, reward devaluation by both cognitive and physical effort was subserved by a common network of areas, including the dorsomedial and dorsolateral prefrontal cortex, the intraparietal sulcus, and the anterior insula. Activity within these domain-general areas also covaried negatively with reward and positively with effort, suggesting an integration of these parameters within these areas. Additionally, the amygdala appeared to play a unique, domain-specific role in processing the value of rewards associated with cognitive effort. These results are the first to reveal the neurocomputational mechanisms underlying subjective cost–benefit valuation across different domains of effort and provide insight into the multidimensional nature of motivation. PMID:28234892
CFD Based Computations of Flexible Helicopter Blades for Stability Analysis
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2011-01-01
As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.
System support software for the Space Ultrareliable Modular Computer (SUMC)
NASA Technical Reports Server (NTRS)
Hill, T. E.; Hintze, G. C.; Hodges, B. C.; Austin, F. A.; Buckles, B. P.; Curran, R. T.; Lackey, J. D.; Payne, R. E.
1974-01-01
The highly transportable programming system designed and implemented to support the development of software for the Space Ultrareliable Modular Computer (SUMC) is described. The SUMC system support software consists of program modules called processors. The initial set of processors consists of the supervisor, the general purpose assembler for SUMC instruction and microcode input, linkage editors, an instruction level simulator, a microcode grid print processor, and user oriented utility programs. A FORTRAN 4 compiler is undergoing development. The design facilitates the addition of new processors with a minimum effort and provides the user quasi host independence on the ground based operational software development computer. Additional capability is provided to accommodate variations in the SUMC architecture without consequent major modifications in the initial processors.
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C. C.
The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less
Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling
NASA Technical Reports Server (NTRS)
Tew, Roy C., Jr.
1988-01-01
NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.
Cyber Technology for Materials and Structures in Aeronautics and Aerospace
NASA Technical Reports Server (NTRS)
Pipes, R. Byron
1999-01-01
This report summarizes efforts undertaken during the 1998-99 program year and includes a survey of the field of computational mechanics, a discussion of biomimetics and intelligent simulation, a survey of the field of biomimetics, an illustration of biomimetics and computational mechanics through the example of the high performance composite tensile structure. In addition, the preliminary results of a state-of-the art survey of composite materials technology is presented.
Robotic tape library system level testing at NSA: Present and planned
NASA Technical Reports Server (NTRS)
Shields, Michael F.
1994-01-01
In the present of declining Defense budgets, increased pressure has been placed on the DOD to utilize Commercial Off the Shelf (COTS) solutions to incrementally solve a wide variety of our computer processing requirements. With the rapid growth in processing power, significant expansion of high performance networking, and the increased complexity of applications data sets, the requirement for high performance, large capacity, reliable and secure, and most of all affordable robotic tape storage libraries has greatly increased. Additionally, the migration to a heterogeneous, distributed computing environment has further complicated the problem. With today's open system compute servers approaching yesterday's supercomputer capabilities, the need for affordable, reliable secure Mass Storage Systems (MSS) has taken on an ever increasing importance to our processing center's ability to satisfy operational mission requirements. To that end, NSA has established an in-house capability to acquire, test, and evaluate COTS products. Its goal is to qualify a set of COTS MSS libraries, thereby achieving a modicum of standardization for robotic tape libraries which can satisfy our low, medium, and high performance file and volume serving requirements. In addition, NSA has established relations with other Government Agencies to complete this in-house effort and to maximize our research, testing, and evaluation work. While the preponderance of the effort is focused at the high end of the storage ladder, considerable effort will be extended this year and next at the server class or mid range storage systems.
Aerodynamic optimization studies on advanced architecture computers
NASA Technical Reports Server (NTRS)
Chawla, Kalpana
1995-01-01
The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.
Knowledge management: an application to wildfire prevention planning
Daniel L Schmoldt
1989-01-01
Residential encroachment into wildland areas places an additional burden on fire management activities. Prevention programs, fuel management efforts, and suppression strategies, previously employed in wildland areas, require modification for protection of increased values at risk in this interface area. Knowledge-based computer systems are being investigated as...
NASA Astrophysics Data System (ADS)
Lee, Timothy J.
2018-06-01
In this talk I will discuss laboratory and computational efforts to provide detailed line list data for use in characterizing the atmospheres of planets, exoplanets, and other astrophysical objects such as dwarf stars. The discussion will cover significant efforts on stable molecules routinely found in atmospheres such as CO2, NH3, H2O, and SO2. In addition, there will be some discussion towards efforts to provide more limited line lists or simulated spectra for molecules that might be present in trace amounts, but would be very significant if identified, such as possible biosignatures. How these efforts may provide insight into astronomical observations, especially with the upcoming James Webb Space Telescope, will also be discussed.
Detonation product EOS studies: Using ISLS to refine CHEETAH
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Fried, Larry; Hansen, Donald
2001-06-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
A structure adapted multipole method for electrostatic interactions in protein dynamics
NASA Astrophysics Data System (ADS)
Niedermeier, Christoph; Tavan, Paul
1994-07-01
We present an algorithm for rapid approximate evaluation of electrostatic interactions in molecular dynamics simulations of proteins. Traditional algorithms require computational work of the order O(N2) for a system of N particles. Truncation methods which try to avoid that effort entail untolerably large errors in forces, energies and other observables. Hierarchical multipole expansion algorithms, which can account for the electrostatics to numerical accuracy, scale with O(N log N) or even with O(N) if they become augmented by a sophisticated scheme for summing up forces. To further reduce the computational effort we propose an algorithm that also uses a hierarchical multipole scheme but considers only the first two multipole moments (i.e., charges and dipoles). Our strategy is based on the consideration that numerical accuracy may not be necessary to reproduce protein dynamics with sufficient correctness. As opposed to previous methods, our scheme for hierarchical decomposition is adjusted to structural and dynamical features of the particular protein considered rather than chosen rigidly as a cubic grid. As compared to truncation methods we manage to reduce errors in the computation of electrostatic forces by a factor of 10 with only marginal additional effort.
Miga, Michael I
2016-01-01
With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.
Identifying Differences between Depressed Adolescent Suicide Ideators and Attempters
Auerbach, Randy P.; Millner, Alexander J.; Stewart, Jeremy G.; Esposito, Erika
2015-01-01
Background Adolescent depression and suicide are pressing public health concerns, and identifying key differences among suicide ideators and attempters is critical. The goal of the current study is to test whether depressed adolescent suicide attempters report greater anhedonia severity and exhibit aberrant effort-cost computations in the face of uncertainty. Methods Depressed adolescents (n = 101) ages 13–19 years were administered structured clinical interviews to assess current mental health disorders and a history of suicidality (suicide ideators = 55, suicide attempters = 46). Then, participants completed self-report instruments assessing symptoms of suicidal ideation, depression, anhedonia, and anxiety as well as a computerized effort-cost computation task. Results Compared with depressed adolescent suicide ideators, attempters report greater anhedonia severity, even after concurrently controlling for symptoms of suicidal ideation, depression, and anxiety. Additionally, when completing the effort-cost computation task, suicide attempters are less likely to pursue the difficult, high value option when outcomes are uncertain. Follow-up, trial-level analyses of effort-cost computations suggest that receipt of reward does not influence future decision-making among suicide attempters, however, suicide ideators exhibit a win-stay approach when receiving rewards on previous trials. Limitations Findings should be considered in light of limitations including a modest sample size, which limits generalizability, and the cross-sectional design. Conclusions Depressed adolescent suicide attempters are characterized by greater anhedonia severity, which may impair the ability to integrate previous rewarding experiences to inform future decisions. Taken together, this may generate a feeling of powerlessness that contributes to increased suicidality and a needless loss of life. PMID:26233323
Progress of Stirling cycle analysis and loss mechanism characterization
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1986-01-01
An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.
1979-01-01
The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaug, J M; Howard, W M; Fried, L E
2001-08-08
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition themore » kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Computational models are systematically improved with each addition of experimental data.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... determined necessary for Year 2000 computer conversion efforts. 630.310 Section 630.310 Administrative... Scheduling of annual leave by employees determined necessary for Year 2000 computer conversion efforts. (a) Year 2000 computer conversion efforts are deemed to be an exigency of the public business for the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... determined necessary for Year 2000 computer conversion efforts. 630.310 Section 630.310 Administrative... Scheduling of annual leave by employees determined necessary for Year 2000 computer conversion efforts. (a) Year 2000 computer conversion efforts are deemed to be an exigency of the public business for the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... determined necessary for Year 2000 computer conversion efforts. 630.310 Section 630.310 Administrative... Scheduling of annual leave by employees determined necessary for Year 2000 computer conversion efforts. (a) Year 2000 computer conversion efforts are deemed to be an exigency of the public business for the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... determined necessary for Year 2000 computer conversion efforts. 630.310 Section 630.310 Administrative... Scheduling of annual leave by employees determined necessary for Year 2000 computer conversion efforts. (a) Year 2000 computer conversion efforts are deemed to be an exigency of the public business for the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... determined necessary for Year 2000 computer conversion efforts. 630.310 Section 630.310 Administrative... Scheduling of annual leave by employees determined necessary for Year 2000 computer conversion efforts. (a) Year 2000 computer conversion efforts are deemed to be an exigency of the public business for the...
Musings on the Internet, Part 2
ERIC Educational Resources Information Center
Cerf, Vinton G.
2004-01-01
In t his article, the author discusses the role of higher education research and development (R&D)--particularly R&D into the issues and problems that industry is less able to explore. In addition to high-speed computer communication, broadband networking efforts, and the use of fiber, a rich service environment is equally important and is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Kaifang; Reinhardt, Joseph M.; Christensen, Gary E.
2013-12-15
Purpose: Four-dimensional computed tomography (4DCT) can be used to make measurements of pulmonary function longitudinally. The sensitivity of such measurements to identify change depends on measurement uncertainty. Previously, intrasubject reproducibility of Jacobian-based measures of lung tissue expansion was studied in two repeat prior-RT 4DCT human acquisitions. Difference in respiratory effort such as breathing amplitude and frequency may affect longitudinal function assessment. In this study, the authors present normalization schemes that correct ventilation images for variations in respiratory effort and assess the reproducibility improvement after effort correction.Methods: Repeat 4DCT image data acquired within a short time interval from 24 patients priormore » to radiation therapy (RT) were used for this analysis. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. In addition to computing the ventilation maps from end expiration to end inspiration, the authors investigated the effort normalization strategies using other intermediated inspiration phases upon the principles of equivalent tidal volume (ETV) and equivalent lung volume (ELV). Scatter plots and mean square error of the repeat ventilation maps and the Jacobian ratio map were generated for four conditions: no effort correction, global normalization, ETV, and ELV. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2 mm distance-to-agreement and 5% ventilation difference.Results: The pattern of regional pulmonary ventilation changes as lung volume changes. All effort correction strategies improved reproducibility when changes in respiratory effort were greater than 150 cc (p < 0.005 with regard to the gamma pass rate). Improvement of reproducibility was correlated with respiratory effort difference (R = 0.744 for ELV in the cohort with tidal volume difference greater than 100 cc). In general for all subjects, global normalization, ETV and ELV significantly improved reproducibility compared to no effort correction (p = 0.009, 0.002, 0.005 respectively). When tidal volume difference was small (less than 100 cc), none of the three effort correction strategies improved reproducibility significantly (p = 0.52, 0.46, 0.46 respectively). For the cohort (N = 13) with tidal volume difference greater than 100 cc, the average gamma pass rate improves from 57.3% before correction to 66.3% after global normalization, and 76.3% after ELV. ELV was found to be significantly better than global normalization (p = 0.04 for all subjects, and p = 0.003 for the cohort with tidal volume difference greater than 100 cc).Conclusions: All effort correction strategies improve the reproducibility of the authors' pulmonary ventilation measures, and the improvement of reproducibility is highly correlated with the changes in respiratory effort. ELV gives better results as effort difference increase, followed by ETV, then global. However, based on the spatial and temporal heterogeneity in the lung expansion rate, a single scaling factor (e.g., global normalization) appears to be less accurate to correct the ventilation map when changes in respiratory effort are large.« less
Hellrich, Johannes; Hahn, Udo
2014-01-01
We here report on efforts to computationally support the maintenance and extension of multilingual biomedical terminology resources. Our main idea is to treat term acquisition as a classification problem guided by term alignment in parallel multilingual corpora, using termhood information coming from of a named entity recognition system as a novel feature. We report on experiments for Spanish, French, German and Dutch parts of a multilingual UMLS-derived biomedical terminology. These efforts yielded 19k, 18k, 23k and 12k new terms and synonyms, respectively, from which about half relate to concepts without a previously available term label for these non-English languages. Based on expert assessment of a novel German terminology sample, 80% of the newly acquired terms were judged as reasonable additions to the terminology. PMID:25954371
Fervaha, Gagan; Graff-Guerrero, Ariel; Zakzanis, Konstantine K; Foussias, George; Agid, Ofer; Remington, Gary
2013-11-01
Motivational impairments are a core feature of schizophrenia and although there are numerous reports studying this feature using clinical rating scales, objective behavioural assessments are lacking. Here, we use a translational paradigm to measure incentive motivation in individuals with schizophrenia. Sixteen stable outpatients with schizophrenia and sixteen matched healthy controls completed a modified version of the Effort Expenditure for Rewards Task that accounts for differences in motoric ability. Briefly, subjects were presented with a series of trials where they may choose to expend a greater amount of effort for a larger monetary reward versus less effort for a smaller reward. Additionally, the probability of receiving money for a given trial was varied at 12%, 50% and 88%. Clinical and other reward-related variables were also evaluated. Patients opted to expend greater effort significantly less than controls for trials of high, but uncertain (i.e. 50% and 88% probability) incentive value, which was related to amotivation and neurocognitive deficits. Other abnormalities were also noted but were related to different clinical variables such as impulsivity (low reward and 12% probability). These motivational deficits were not due to group differences in reward learning, reward valuation or hedonic capacity. Our findings offer novel support for incentive motivation deficits in schizophrenia. Clinical amotivation is associated with impairments in the computation of effort during cost-benefit decision-making. This objective translational paradigm may guide future investigations of the neural circuitry underlying these motivational impairments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Isolated Open Rotor Noise Prediction Assessment Using the F31A31 Historical Blade Set
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Jones, William T.; Boyd, D. Douglas, Jr.; Zawodny, Nikolas S.
2016-01-01
In an effort to mitigate next-generation fuel efficiency and environmental impact concerns for aviation, open rotor propulsion systems have received renewed interest. However, maintaining the high propulsive efficiency while simultaneously meeting noise goals has been one of the challenges in making open rotor propulsion a viable option. Improvements in prediction tools and design methodologies have opened the design space for next generation open rotor designs that satisfy these challenging objectives. As such, validation of aerodynamic and acoustic prediction tools has been an important aspect of open rotor research efforts. This paper describes validation efforts of a combined computational fluid dynamics and Ffowcs Williams and Hawkings equation methodology for open rotor aeroacoustic modeling. Performance and acoustic predictions were made for a benchmark open rotor blade set and compared with measurements over a range of rotor speeds and observer angles. Overall, the results indicate that the computational approach is acceptable for assessing low-noise open rotor designs. Additionally, this approach may be used to provide realistic incident source fields for acoustic shielding/scattering studies on various aircraft configurations.
Parallelized modelling and solution scheme for hierarchically scaled simulations
NASA Technical Reports Server (NTRS)
Padovan, Joe
1995-01-01
This two-part paper presents the results of a benchmarked analytical-numerical investigation into the operational characteristics of a unified parallel processing strategy for implicit fluid mechanics formulations. This hierarchical poly tree (HPT) strategy is based on multilevel substructural decomposition. The Tree morphology is chosen to minimize memory, communications and computational effort. The methodology is general enough to apply to existing finite difference (FD), finite element (FEM), finite volume (FV) or spectral element (SE) based computer programs without an extensive rewrite of code. In addition to finding large reductions in memory, communications, and computational effort associated with a parallel computing environment, substantial reductions are generated in the sequential mode of application. Such improvements grow with increasing problem size. Along with a theoretical development of general 2-D and 3-D HPT, several techniques for expanding the problem size that the current generation of computers are capable of solving, are presented and discussed. Among these techniques are several interpolative reduction methods. It was found that by combining several of these techniques that a relatively small interpolative reduction resulted in substantial performance gains. Several other unique features/benefits are discussed in this paper. Along with Part 1's theoretical development, Part 2 presents a numerical approach to the HPT along with four prototype CFD applications. These demonstrate the potential of the HPT strategy.
Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.
2013-01-01
A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 inch by 2.5 inch cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10% open area ratio, the drag increase would be about 4% of the turbulent boundary layer drag over a flat wall.
Bruno Garza, J L; Eijckelhof, B H W; Johnson, P W; Raina, S M; Rynell, P W; Huysmans, M A; van Dieën, J H; van der Beek, A J; Blatter, B M; Dennerlein, J T
2012-01-01
This study, a part of the PRedicting Occupational biomechanics in OFfice workers (PROOF) study, investigated whether there are differences in field-measured forces, muscle efforts, postures, velocities and accelerations across computer activities. These parameters were measured continuously for 120 office workers performing their own work for two hours each. There were differences in nearly all forces, muscle efforts, postures, velocities and accelerations across keyboard, mouse and idle activities. Keyboard activities showed a 50% increase in the median right trapezius muscle effort when compared to mouse activities. Median shoulder rotation changed from 25 degrees internal rotation during keyboard use to 15 degrees external rotation during mouse use. Only keyboard use was associated with median ulnar deviations greater than 5 degrees. Idle activities led to the greatest variability observed in all muscle efforts and postures measured. In future studies, measurements of computer activities could be used to provide information on the physical exposures experienced during computer use. Practitioner Summary: Computer users may develop musculoskeletal disorders due to their force, muscle effort, posture and wrist velocity and acceleration exposures during computer use. We report that many physical exposures are different across computer activities. This information may be used to estimate physical exposures based on patterns of computer activities over time.
Commercialization of NESSUS: Status
NASA Technical Reports Server (NTRS)
Thacker, Ben H.; Millwater, Harry R.
1991-01-01
A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.
Altan, Irem; Charbonneau, Patrick; Snell, Edward H.
2016-01-01
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536
Design of a modular digital computer system, CDRL no. D001, final design plan
NASA Technical Reports Server (NTRS)
Easton, R. A.
1975-01-01
The engineering breadboard implementation for the CDRL no. D001 modular digital computer system developed during design of the logic system was documented. This effort followed the architecture study completed and documented previously, and was intended to verify the concepts of a fault tolerant, automatically reconfigurable, modular version of the computer system conceived during the architecture study. The system has a microprogrammed 32 bit word length, general register architecture and an instruction set consisting of a subset of the IBM System 360 instruction set plus additional fault tolerance firmware. The following areas were covered: breadboard packaging, central control element, central processing element, memory, input/output processor, and maintenance/status panel and electronics.
NASA Astrophysics Data System (ADS)
Seamon, E.; Gessler, P. E.; Flathers, E.
2015-12-01
The creation and use of large amounts of data in scientific investigations has become common practice. Data collection and analysis for large scientific computing efforts are not only increasing in volume as well as number, the methods and analysis procedures are evolving toward greater complexity (Bell, 2009, Clarke, 2009, Maimon, 2010). In addition, the growth of diverse data-intensive scientific computing efforts (Soni, 2011, Turner, 2014, Wu, 2008) has demonstrated the value of supporting scientific data integration. Efforts to bridge this gap between the above perspectives have been attempted, in varying degrees, with modular scientific computing analysis regimes implemented with a modest amount of success (Perez, 2009). This constellation of effects - 1) an increasing growth in the volume and amount of data, 2) a growing data-intensive science base that has challenging needs, and 3) disparate data organization and integration efforts - has created a critical gap. Namely, systems of scientific data organization and management typically do not effectively enable integrated data collaboration or data-intensive science-based communications. Our research efforts attempt to address this gap by developing a modular technology framework for data science integration efforts - with climate variation as the focus. The intention is that this model, if successful, could be generalized to other application areas. Our research aim focused on the design and implementation of a modular, deployable technology architecture for data integration. Developed using aspects of R, interactive python, SciDB, THREDDS, Javascript, and varied data mining and machine learning techniques, the Modular Data Response Framework (MDRF) was implemented to explore case scenarios for bio-climatic variation as they relate to pacific northwest ecosystem regions. Our preliminary results, using historical NETCDF climate data for calibration purposes across the inland pacific northwest region (Abatzoglou, Brown, 2011), show clear ecosystems shifting over a ten-year period (2001-2011), based on multiple supervised classifier methods for bioclimatic indicators.
Motion and Stability of Saturated Soil Systems under Dynamic Loading.
1985-04-04
12 7.3 Experimental Verification of Theories ............................. 13 8. ADDITIONAL COMMENTS AND OTHER WORK, AT THE OHIO...theoretical/computational models. The continuing rsearch effort will extend and refine the theoretical models, allow for compressibility of soil as...motion of soil and water and, therefore, a correct theory of liquefaction should not include this assumption. Finite element methodologies have been
An Integrated Approach to Swept Wing Icing Simulation
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.; Broeren, Andy P.
2017-01-01
This paper describes the various elements of a simulation approach used to develop a database of ice shape geometries and the resulting aerodynamic performance data for a representative commercial transport wing model exposed to a variety of icing conditions. This effort included testing in the NASA Icing Research Tunnel, the Wichita State University Walter H. Beech Wind Tunnel, and the ONERA F1 Subsonic Wind Tunnel as well as the use of ice accretion codes, an inviscid design code, and computational fluid dynamics codes. Additionally, methods for capturing full three-dimensional ice shape geometries, geometry interpolation along the span of the wing, and creation of artificial ice shapes based upon that geometric data were developed for this effort. The icing conditions used for this effort were representative of actual ice shape encounter scenarios and run the gamut from ice roughness to full three-dimensional scalloped ice shapes. The effort is still underway so this paper is a status report of work accomplished to date and a description of the remaining elements of the effort.
Changing computing paradigms towards power efficiency
Klavík, Pavel; Malossi, A. Cristiano I.; Bekas, Costas; Curioni, Alessandro
2014-01-01
Power awareness is fast becoming immensely important in computing, ranging from the traditional high-performance computing applications to the new generation of data centric workloads. In this work, we describe our efforts towards a power-efficient computing paradigm that combines low- and high-precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large-scale data analytics, statistics and machine learning. Towards this goal, we developed tools for the seamless power profiling of applications at a fine-grain level. In addition, we verify here previous work on post-FLOPS/W metrics and show that these can shed much more light in the power/energy profile of important applications. PMID:24842033
Visual Computing Environment Workshop
NASA Technical Reports Server (NTRS)
Lawrence, Charles (Compiler)
1998-01-01
The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.
Aurorasaurus: Citizen Scientists Experiencing Extremes of Space Weather
NASA Astrophysics Data System (ADS)
MacDonald, E.; Hall, M.; Tapia, A.
2013-12-01
Aurorasaurus is a new citizen science mapping platform to nowcast the visibility of the Northern Lights for the public in the current solar maximum, the first with social media. As a recently funded NSF INSPIRE program, we have joint goals among three research disciplines: space weather forecasting, the study of human-computer interactions, and informal science education. We will highlight results from the prototype www.aurorasaurus.org and outline future efforts to motivate online participants and crowdsource viable data. Our citizen science effort is unique among space programs as it includes both reporting observations and data analysis activities to engage the broadest participant network possible. In addition, our efforts to improve space weather nowcasting by including real-time mapping of ground truth observers for rare, sporadic events are a first in the field.
NASA Astrophysics Data System (ADS)
Idaszak, R.; Lenhardt, W. C.; Jones, M. B.; Ahalt, S.; Schildhauer, M.; Hampton, S. E.
2014-12-01
The NSF, in an effort to support the creation of sustainable science software, funded 16 science software institute conceptualization efforts. The goal of these conceptualization efforts is to explore approaches to creating the institutional, sociological, and physical infrastructures to support sustainable science software. This paper will present the lessons learned from two of these conceptualization efforts, the Institute for Sustainable Earth and Environmental Software (ISEES - http://isees.nceas.ucsb.edu) and the Water Science Software Institute (WSSI - http://waters2i2.org). ISEES is a multi-partner effort led by National Center for Ecological Analysis and Synthesis (NCEAS). WSSI, also a multi-partner effort, is led by the Renaissance Computing Institute (RENCI). The two conceptualization efforts have been collaborating due to the complementarity of their approaches and given the potential synergies of their science focus. ISEES and WSSI have engaged in a number of activities to address the challenges of science software such as workshops, hackathons, and coding efforts. More recently, the two institutes have also collaborated on joint activities including training, proposals, and papers. In addition to presenting lessons learned, this paper will synthesize across the two efforts to project a unified vision for a science software institute.
A preliminary design study for a cosmic X-ray spectrometer
NASA Technical Reports Server (NTRS)
1972-01-01
The results are described of theoretical and experimental investigations aimed at the development of a curved crystal cosmic X-ray spectrometer to be used at the focal plane of the large orbiting X-ray telescope on the third High Energy Astronomical Observatory. The effort was concentrated on the development of spectrometer concepts and their evaluation by theoretical analysis, computer simulation, and laboratory testing with breadboard arrangements of crystals and detectors. In addition, a computer-controlled facility for precision testing and evaluation of crystals in air and vacuum was constructed. A summary of research objectives and results is included.
Learning from Failures: Archiving and Designing with Failure and Risk
NASA Technical Reports Server (NTRS)
VanWie, Michael; Bohm, Matt; Barrientos, Francesca; Turner, Irem; Stone, Robert
2005-01-01
Identifying and mitigating risks during conceptual design remains an ongoing challenge. This work presents the results of collaborative efforts between The University of Missouri-Rolla and NASA Ames Research Center to examine how an early stage mission design team at NASA addresses risk, and, how a computational support tool can assist these designers in their tasks. Results of our observations are given in addition to a brief example of our implementation of a repository based computational tool that allows users to browse and search through archived failure and risk data as related to either physical artifacts or functionality.
Power and Energy Considerations at Forward Operating Bases (FOBs)
2010-06-16
systems • Anticipated additional plug loads by users – Personal Computers and Gaming Devices – Coffee Pots – Refrigerators – Lights – Personal Heaters...effort was made to account for the significant amount of equipment that consumes power not on the unit’s MTOE (printers, plotters, coffee pots, etc...50 Warfighters including billeting, kitchen, laundry, shower, latrines, and new wastewater treatment system Capability/impact: Compact, lightweight
Hands-Free, Heads-Up Control System for Unmanned Ground Vehicles
2011-08-10
interface evaluation Industry evaluated two commercial-off-the-shelf (COTS) brain computer interfaces from two companies – Neurosky and Emotiv ...useless, resulting in very low command recognition accuracy. In addition, latency issues plagued the system. Figure 6 Emotiv Headset The... Emotiv system, unlike the Neurosky, required great effort to use and calibrate. It requires 16 foam tips to be wet with saline solution and then
Characterization of a Robotic Manipulator for Dynamic Wind Tunnel Applications
2015-03-26
further enhancements would need to be performed individually for each joint. This research effort focused on the improvement of the MTA wrist roll ...Measurement Unit ( IMU ), was used to validate the Euler angle output calculated by the MTA Computer using forward kinematics. Additionally, fast-response...61 3.7 Modeling the Wrist Roll Motor and Controller . . . . . . . . . . . . . . . . . . . . . 64 3.8 Proportional Control for Improved Performance
An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center
NASA Astrophysics Data System (ADS)
Gleason, J. L.; Little, M. M.
2013-12-01
NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.
Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.
1980-01-01
A computerized chemical model, WATEQ2, has resulted from extensive additions to and revision of the WATEQ model of Truesdell and Jones (Truesdell, A. H., and Jones, B. F., 1974, WATEQ, a computer program for calculating chemical equilibria of natural waters: J. Res. U. S. Geol, Survey, v. 2, p. 233-274). The model building effort has necessitated searching the literature and selecting thermochemical data pertinent to the reactions added to the model. This supplementary report manes available the details of the reactions added to the model together with the selected thermochemical data and their sources. Also listed are details of program operation and a brief description of the output of the model. Appendices-contain a glossary of identifiers used in the PL/1 computer code, the complete PL/1 listing, and sample output from three water analyses used as test cases.
Making intelligent systems team players: Additional case studies
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Rhoads, Ron W.
1993-01-01
Observations from a case study of intelligent systems are reported as part of a multi-year interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. A series of studies were conducted to investigate issues in designing intelligent fault management systems in aerospace applications for effective human-computer interaction. The results of the initial study are documented in two NASA technical memoranda: TM 104738 Making Intelligent Systems Team Players: Case Studies and Design Issues, Volumes 1 and 2; and TM 104751, Making Intelligent Systems Team Players: Overview for Designers. The objective of this additional study was to broaden the investigation of human-computer interaction design issues beyond the focus on monitoring and fault detection in the initial study. The results of this second study are documented which is intended as a supplement to the original design guidance documents. These results should be of interest to designers of intelligent systems for use in real-time operations, and to researchers in the areas of human-computer interaction and artificial intelligence.
An Overview of Recent Developments in Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Edwards, John W.
2004-01-01
The motivation for Computational Aeroelasticity (CA) and the elements of one type of the analysis or simulation process are briefly reviewed. The need for streamlining and improving the overall process to reduce elapsed time and improve overall accuracy is discussed. Further effort is needed to establish the credibility of the methodology, obtain experience, and to incorporate the experience base to simplify the method for future use. Experience with the application of a variety of Computational Aeroelasticity programs is summarized for the transonic flutter of two wings, the AGARD 445.6 wing and a typical business jet wing. There is a compelling need for a broad range of additional flutter test cases for further comparisons. Some existing data sets that may offer CA challenges are presented.
Changing computing paradigms towards power efficiency.
Klavík, Pavel; Malossi, A Cristiano I; Bekas, Costas; Curioni, Alessandro
2014-06-28
Power awareness is fast becoming immensely important in computing, ranging from the traditional high-performance computing applications to the new generation of data centric workloads. In this work, we describe our efforts towards a power-efficient computing paradigm that combines low- and high-precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large-scale data analytics, statistics and machine learning. Towards this goal, we developed tools for the seamless power profiling of applications at a fine-grain level. In addition, we verify here previous work on post-FLOPS/W metrics and show that these can shed much more light in the power/energy profile of important applications. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Space Station communications and tracking systems modeling and RF link simulation
NASA Technical Reports Server (NTRS)
Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.
1986-01-01
In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.
Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer.
Habermann, Nina; Mardin, Balca R; Yakneen, Sergei; Korbel, Jan O
2016-01-01
Characterizing genomic structural variations (SVs) in the human genome remains challenging, and there is a growing interest to understand somatic SVs occurring in cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis scars the genome when localized chromosome shattering and repair occur in a one-off catastrophe. Recent efforts led to the development of a set of conceptual criteria for the inference of chromothripsis events in cancer genomes and to the development of experimental model systems for studying this striking DNA alteration process in vitro. We discuss these approaches, and additionally touch upon current "Big Data" efforts that employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort to search for commonalities and differences in molecular DNA alteration processes in cancer. Copyright © 2016. Published by Elsevier SAS.
Using Computational Toxicology to Enable Risk-Based ...
presentation at Drug Safety Gordon Research Conference 2016 on research efforts in NCCT to enable Computational Toxicology to support risk assessment. Slide presentation at Drug Safety Gordon Research Conference 2016 on research efforts in NCCT to enable Computational Toxicology to support risk assessment.
EPA’s National Center for Computational Toxicology is engaged in high-profile research efforts to improve the ability to more efficiently and effectively prioritize and screen thousands of environmental chemicals for potential toxicity. A central component of these efforts invol...
Computational crystallization.
Altan, Irem; Charbonneau, Patrick; Snell, Edward H
2016-07-15
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Kreibig, Sylvia D
2017-09-01
The emerging field of the psychophysiology of motivation bears many new findings, but little replication. Using my own data (Kreibig, Gendolla, & Scherer, 2012), I test the reproducibility of this specific study, provide the necessary materials to make the study reproducible, and instantiate proper reproducibility practices that other researchers can use as a road map toward the same goal. In addition, based on re-analyses of the original data, I report new evidence for the motivational effects of emotional responding to performance feedback. Specifically, greater appraisal of goal relevance amplifies the emotional response to events appraised as conducive (i.e., effort mobilization), but not to those appraised as obstructive to a person's goals (i.e., effort withdrawal). I conclude by providing a ten-step road map of best practices to facilitate computational reproducibility for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficient Kinematic Computations For 7-DOF Manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Long, Mark K.; Kreutz-Delgado, Kenneth
1994-01-01
Efficient algorithms for forward kinematic mappings of seven-degree-of-freedom (7-DOF) robotic manipulator having revolute joints developed on basis of representation of redundant DOF in terms of parameter called "arm angle." Continuing effort to exploit redundancy in manipulator according to concept of basic and additional tasks. Concept also discussed in "Configuration-Control Scheme Copes With Singularities" (NPO-18556) and "Increasing the Dexterity of Redundant Robots" (NPO-17801).
Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes
2015-09-30
goal is to improve ocean physical state and acoustic state predictive capabilities. The goal fitting the scope of this project is the creation of... Project -scale objectives are to complete targeted studies of oceanographic processes in a few regimes, accompanied by studies of acoustic propagation...by the basic research efforts of this project . An additional objective is to develop improved computational tools for acoustics and for the
Load Balancing Strategies for Multiphase Flows on Structured Grids
NASA Astrophysics Data System (ADS)
Olshefski, Kristopher; Owkes, Mark
2017-11-01
The computation time required to perform large simulations of complex systems is currently one of the leading bottlenecks of computational research. Parallelization allows multiple processing cores to perform calculations simultaneously and reduces computational times. However, load imbalances between processors waste computing resources as processors wait for others to complete imbalanced tasks. In multiphase flows, these imbalances arise due to the additional computational effort required at the gas-liquid interface. However, many current load balancing schemes are only designed for unstructured grid applications. The purpose of this research is to develop a load balancing strategy while maintaining the simplicity of a structured grid. Several approaches are investigated including brute force oversubscription, node oversubscription through Message Passing Interface (MPI) commands, and shared memory load balancing using OpenMP. Each of these strategies are tested with a simple one-dimensional model prior to implementation into the three-dimensional NGA code. Current results show load balancing will reduce computational time by at least 30%.
NASA Astrophysics Data System (ADS)
Kruger, Scott; Shasharina, S.; Vadlamani, S.; McCune, D.; Holland, C.; Jenkins, T. G.; Candy, J.; Cary, J. R.; Hakim, A.; Miah, M.; Pletzer, A.
2010-11-01
As various efforts to integrate fusion codes proceed worldwide, standards for sharing data have emerged. In the U.S., the SWIM project has pioneered the development of the Plasma State, which has a flat-hierarchy and is dominated by its use within 1.5D transport codes. The European Integrated Tokamak Modeling effort has developed a more ambitious data interoperability effort organized around the concept of Consistent Physical Objects (CPOs). CPOs have deep hierarchies as needed by an effort that seeks to encompass all of fusion computing. Here, we discuss ideas for implementing data interoperability that is complementary to both the Plasma State and CPOs. By making use of attributes within the netcdf and HDF5 binary file formats, the goals of data interoperability can be achieved with a more informal approach. In addition, a file can be simultaneously interoperable to several standards at once. As an illustration of this approach, we discuss its application to the development of synthetic diagnostics that can be used for multiple codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharibyan, N.
In order to fully characterize the NIF neutron spectrum, SAND-II-SNL software was requested/received from the Radiation Safety Information Computational Center. The software is designed to determine the neutron energy spectrum through analysis of experimental activation data. However, given that the source code was developed in Sparcstation 10, it is not compatible with current version of FORTRAN. Accounts have been established through the Lawrence Livermore National Laboratory’s High Performance Computing in order to access different compiles for FORTRAN (e.g. pgf77, pgf90). Additionally, several of the subroutines included in the SAND-II-SNL package have required debugging efforts to allow for proper compiling ofmore » the code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messer, Bronson; Harris, James A; Parete-Koon, Suzanne T
We describe recent development work on the core-collapse supernova code CHIMERA. CHIMERA has consumed more than 100 million cpu-hours on Oak Ridge Leadership Computing Facility (OLCF) platforms in the past 3 years, ranking it among the most important applications at the OLCF. Most of the work described has been focused on exploiting the multicore nature of the current platform (Jaguar) via, e.g., multithreading using OpenMP. In addition, we have begun a major effort to marshal the computational power of GPUs with CHIMERA. The impending upgrade of Jaguar to Titan a 20+ PF machine with an NVIDIA GPU on many nodesmore » makes this work essential.« less
Cost analysis for computer supported multiple-choice paper examinations
Mandel, Alexander; Hörnlein, Alexander; Ifland, Marianus; Lüneburg, Edeltraud; Deckert, Jürgen; Puppe, Frank
2011-01-01
Introduction: Multiple-choice-examinations are still fundamental for assessment in medical degree programs. In addition to content related research, the optimization of the technical procedure is an important question. Medical examiners face three options: paper-based examinations with or without computer support or completely electronic examinations. Critical aspects are the effort for formatting, the logistic effort during the actual examination, quality, promptness and effort of the correction, the time for making the documents available for inspection by the students, and the statistical analysis of the examination results. Methods: Since three semesters a computer program for input and formatting of MC-questions in medical and other paper-based examinations is used and continuously improved at Wuerzburg University. In the winter semester (WS) 2009/10 eleven, in the summer semester (SS) 2010 twelve and in WS 2010/11 thirteen medical examinations were accomplished with the program and automatically evaluated. For the last two semesters the remaining manual workload was recorded. Results: The cost of the formatting and the subsequent analysis including adjustments of the analysis of an average examination with about 140 participants and about 35 questions was 5-7 hours for exams without complications in the winter semester 2009/2010, about 2 hours in SS 2010 and about 1.5 hours in the winter semester 2010/11. Including exams with complications, the average time was about 3 hours per exam in SS 2010 and 2.67 hours for the WS 10/11. Discussion: For conventional multiple-choice exams the computer-based formatting and evaluation of paper-based exams offers a significant time reduction for lecturers in comparison with the manual correction of paper-based exams and compared to purely electronically conducted exams it needs a much simpler technological infrastructure and fewer staff during the exam. PMID:22205913
Cost analysis for computer supported multiple-choice paper examinations.
Mandel, Alexander; Hörnlein, Alexander; Ifland, Marianus; Lüneburg, Edeltraud; Deckert, Jürgen; Puppe, Frank
2011-01-01
Multiple-choice-examinations are still fundamental for assessment in medical degree programs. In addition to content related research, the optimization of the technical procedure is an important question. Medical examiners face three options: paper-based examinations with or without computer support or completely electronic examinations. Critical aspects are the effort for formatting, the logistic effort during the actual examination, quality, promptness and effort of the correction, the time for making the documents available for inspection by the students, and the statistical analysis of the examination results. Since three semesters a computer program for input and formatting of MC-questions in medical and other paper-based examinations is used and continuously improved at Wuerzburg University. In the winter semester (WS) 2009/10 eleven, in the summer semester (SS) 2010 twelve and in WS 2010/11 thirteen medical examinations were accomplished with the program and automatically evaluated. For the last two semesters the remaining manual workload was recorded. The cost of the formatting and the subsequent analysis including adjustments of the analysis of an average examination with about 140 participants and about 35 questions was 5-7 hours for exams without complications in the winter semester 2009/2010, about 2 hours in SS 2010 and about 1.5 hours in the winter semester 2010/11. Including exams with complications, the average time was about 3 hours per exam in SS 2010 and 2.67 hours for the WS 10/11. For conventional multiple-choice exams the computer-based formatting and evaluation of paper-based exams offers a significant time reduction for lecturers in comparison with the manual correction of paper-based exams and compared to purely electronically conducted exams it needs a much simpler technological infrastructure and fewer staff during the exam.
Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brown, Douglas L.
1994-01-01
In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.
Computation of Unsteady Flow in Flame Trench For Prediction of Ignition Overpressure Waves
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kris, Cetin
2010-01-01
Computational processes/issues for supporting mission tasks are discussed using an example from launch environment simulation. Entire CFD process has been discussed using an existing code; STS-124 conditions were revisited to support wall repair effort for STS-125 flight; when water bags were not included, computed results indicate that IOP waves with the peak values have been reflected from SRB s own exhaust hole; ARES-1X simulations show that there is a shock wave going through the unused exhaust hole, however, it plays a secondary role; all three ARES-1X cases and STS-1 simulations showed very similar IOP magnitudes and patters on the vehicle; with the addition of water bags and water injection, it will further diminish the IOP effects.
Multi-level Hierarchical Poly Tree computer architectures
NASA Technical Reports Server (NTRS)
Padovan, Joe; Gute, Doug
1990-01-01
Based on the concept of hierarchical substructuring, this paper develops an optimal multi-level Hierarchical Poly Tree (HPT) parallel computer architecture scheme which is applicable to the solution of finite element and difference simulations. Emphasis is given to minimizing computational effort, in-core/out-of-core memory requirements, and the data transfer between processors. In addition, a simplified communications network that reduces the number of I/O channels between processors is presented. HPT configurations that yield optimal superlinearities are also demonstrated. Moreover, to generalize the scope of applicability, special attention is given to developing: (1) multi-level reduction trees which provide an orderly/optimal procedure by which model densification/simplification can be achieved, as well as (2) methodologies enabling processor grading that yields architectures with varying types of multi-level granularity.
A comparative analysis of soft computing techniques for gene prediction.
Goel, Neelam; Singh, Shailendra; Aseri, Trilok Chand
2013-07-01
The rapid growth of genomic sequence data for both human and nonhuman species has made analyzing these sequences, especially predicting genes in them, very important and is currently the focus of many research efforts. Beside its scientific interest in the molecular biology and genomics community, gene prediction is of considerable importance in human health and medicine. A variety of gene prediction techniques have been developed for eukaryotes over the past few years. This article reviews and analyzes the application of certain soft computing techniques in gene prediction. First, the problem of gene prediction and its challenges are described. These are followed by different soft computing techniques along with their application to gene prediction. In addition, a comparative analysis of different soft computing techniques for gene prediction is given. Finally some limitations of the current research activities and future research directions are provided. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1991-01-01
The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.
NASA Astrophysics Data System (ADS)
Gerjuoy, Edward
2005-06-01
The security of messages encoded via the widely used RSA public key encryption system rests on the enormous computational effort required to find the prime factors of a large number N using classical (conventional) computers. In 1994 Peter Shor showed that for sufficiently large N, a quantum computer could perform the factoring with much less computational effort. This paper endeavors to explain, in a fashion comprehensible to the nonexpert, the RSA encryption protocol; the various quantum computer manipulations constituting the Shor algorithm; how the Shor algorithm performs the factoring; and the precise sense in which a quantum computer employing Shor's algorithm can be said to accomplish the factoring of very large numbers with less computational effort than a classical computer. It is made apparent that factoring N generally requires many successive runs of the algorithm. Our analysis reveals that the probability of achieving a successful factorization on a single run is about twice as large as commonly quoted in the literature.
The SGI/CRAY T3E: Experiences and Insights
NASA Technical Reports Server (NTRS)
Bernard, Lisa Hamet
1999-01-01
The focus of the HPCC Earth and Space Sciences (ESS) Project is capability computing - pushing highly scalable computing testbeds to their performance limits. The drivers of this focus are the Grand Challenge problems in Earth and space science: those that could not be addressed in a capacity computing environment where large jobs must continually compete for resources. These Grand Challenge codes require a high degree of communication, large memory, and very large I/O (throughout the duration of the processing, not just in loading initial conditions and saving final results). This set of parameters led to the selection of an SGI/Cray T3E as the current ESS Computing Testbed. The T3E at the Goddard Space Flight Center is a unique computational resource within NASA. As such, it must be managed to effectively support the diverse research efforts across the NASA research community yet still enable the ESS Grand Challenge Investigator teams to achieve their performance milestones, for which the system was intended. To date, all Grand Challenge Investigator teams have achieved the 10 GFLOPS milestone, eight of nine have achieved the 50 GFLOPS milestone, and three have achieved the 100 GFLOPS milestone. In addition, many technical papers have been published highlighting results achieved on the NASA T3E, including some at this Workshop. The successes enabled by the NASA T3E computing environment are best illustrated by the 512 PE upgrade funded by the NASA Earth Science Enterprise earlier this year. Never before has an HPCC computing testbed been so well received by the general NASA science community that it was deemed critical to the success of a core NASA science effort. NASA looks forward to many more success stories before the conclusion of the NASA-SGI/Cray cooperative agreement in June 1999.
Goals of Government-Funded Public Domain Software Efforts
Rishel, Wesley J.
1980-01-01
The development of public domain software under Federal aegis and support has made possible a broadly competitive field of computer - oriented management information system consulting organizations with high technical competence and the potential for strong user orientation and loyalty. The impact of this assumption of major “front-end costs” by the Federal government has additional spin-off effects in terms of standardization and transportability features as well as reduced capital costs to the user.
Cost considerations in automating the library.
Bolef, D
1987-01-01
The purchase price of a computer and its software is but a part of the cost of any automated system. There are many additional costs, including one-time costs of terminals, printers, multiplexors, microcomputers, consultants, workstations and retrospective conversion, and ongoing costs of maintenance and maintenance contracts for the equipment and software, telecommunications, and supplies. This paper examines those costs in an effort to produce a more realistic picture of an automated system. PMID:3594021
Proposed Directions for Research in Computer-Based Education.
ERIC Educational Resources Information Center
Waugh, Michael L.
Several directions for potential research efforts in the field of computer-based education (CBE) are discussed. (For the purposes of this paper, CBE is defined as any use of computers to promote learning with no intended inference as to the specific nature or organization of the educational application under discussion.) Efforts should be directed…
NASA Astrophysics Data System (ADS)
Yoon, S.
2016-12-01
To define geodetic reference frame using GPS data collected by Continuously Operating Reference Stations (CORS) network, historical GPS data needs to be reprocessed regularly. Reprocessing GPS data collected by upto 2000 CORS sites for the last two decades requires a lot of computational resource. At National Geodetic Survey (NGS), there has been one completed reprocessing in 2011, and currently, the second reprocessing is undergoing. For the first reprocessing effort, in-house computing resource was utilized. In the current second reprocessing effort, outsourced cloud computing platform is being utilized. In this presentation, the outline of data processing strategy at NGS is described as well as the effort to parallelize the data processing procedure in order to maximize the benefit of the cloud computing. The time and cost savings realized by utilizing cloud computing approach will also be discussed.
NASA Astrophysics Data System (ADS)
Landgrebe, Anton J.
1987-03-01
An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.
NASA Technical Reports Server (NTRS)
Landgrebe, Anton J.
1987-01-01
An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.
NASA Astrophysics Data System (ADS)
Bucks, Gregory Warren
Computers have become an integral part of how engineers complete their work, allowing them to collect and analyze data, model potential solutions and aiding in production through automation and robotics. In addition, computers are essential elements of the products themselves, from tennis shoes to construction materials. An understanding of how computers function, both at the hardware and software level, is essential for the next generation of engineers. Despite the need for engineers to develop a strong background in computing, little opportunity is given for engineering students to develop these skills. Learning to program is widely seen as a difficult task, requiring students to develop not only an understanding of specific concepts, but also a way of thinking. In addition, students are forced to learn a new tool, in the form of the programming environment employed, along with these concepts and thought processes. Because of this, many students will not develop a sufficient proficiency in programming, even after progressing through the traditional introductory programming sequence. This is a significant problem, especially in the engineering disciplines, where very few students receive more than one or two semesters' worth of instruction in an already crowded engineering curriculum. To address these issues, new pedagogical techniques must be investigated in an effort to enhance the ability of engineering students to develop strong computing skills. However, these efforts are hindered by the lack of published assessment instruments available for probing an individual's understanding of programming concepts across programming languages. Traditionally, programming knowledge has been assessed by producing written code in a specific language. This can be an effective method, but does not lend itself well to comparing the pedagogical impact of different programming environments, languages or paradigms. This dissertation presents a phenomenographic research study exploring the different ways of understanding held by individuals of two programming concepts: conditional structures and repetition structures. This work lays the foundation for the development of language independent assessment instruments, which can ultimately be used to assess the pedagogical implications of various programming environments.
Progress on the Fabric for Frontier Experiments Project at Fermilab
NASA Astrophysics Data System (ADS)
Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha
2015-12-01
The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.
Using OSG Computing Resources with (iLC)Dirac
NASA Astrophysics Data System (ADS)
Sailer, A.; Petric, M.; CLICdp Collaboration
2017-10-01
CPU cycles for small experiments and projects can be scarce, thus making use of all available resources, whether dedicated or opportunistic, is mandatory. While enabling uniform access to the LCG computing elements (ARC, CREAM), the DIRAC grid interware was not able to use OSG computing elements (GlobusCE, HTCondor-CE) without dedicated support at the grid site through so called ‘SiteDirectors’, which directly submit to the local batch system. This in turn requires additional dedicated effort for small experiments on the grid site. Adding interfaces to the OSG CEs through the respective grid middleware is therefore allowing accessing them within the DIRAC software without additional site-specific infrastructure. This enables greater use of opportunistic resources for experiments and projects without dedicated clusters or an established computing infrastructure with the DIRAC software. To allow sending jobs to HTCondor-CE and legacy Globus computing elements inside DIRAC the required wrapper classes were developed. Not only is the usage of these types of computing elements now completely transparent for all DIRAC instances, which makes DIRAC a flexible solution for OSG based virtual organisations, but it also allows LCG Grid Sites to move to the HTCondor-CE software, without shutting DIRAC based VOs out of their site. In these proceedings we detail how we interfaced the DIRAC system to the HTCondor-CE and Globus computing elements and explain the encountered obstacles and solutions developed, and how the linear collider community uses resources in the OSG.
ERIC Educational Resources Information Center
Ashcraft, Catherine
2015-01-01
To date, girls and women are significantly underrepresented in computer science and technology. Concerns about this underrepresentation have sparked a wealth of educational efforts to promote girls' participation in computing, but these programs have demonstrated limited impact on reversing current trends. This paper argues that this is, in part,…
Gard, David E.; Sanchez, Amy H.; Cooper, Kathryn; Fisher, Melissa; Garrett, Coleman; Vinogradov, Sophia
2014-01-01
Motivation deficits are common in schizophrenia, but little is known about underlying mechanisms, or the specific goals that people with schizophrenia set in daily life. Using neurobiological heuristics of pleasure anticipation and effort assessment, we examined the quality of activities and goals of 47 people with and 41 people without schizophrenia, utilizing Ecological Momentary Assessment. Participants were provided cell phones and called four times a day for seven days, and were asked about their current activities and anticipation of upcoming goals. Activities and goals were later coded by independent raters on pleasure and effort. In line with recent laboratory findings on effort computation deficits in schizophrenia, relative to healthy participants, people with schizophrenia reported engaging in less effortful activities and setting less effortful goals, which were related to patient functioning. In addition, patients showed some inaccuracy in estimating how difficult an effortful goal would be, which in turn was associated with lower neurocognition. In contrast to previous research, people with schizophrenia engaged in activities and set goals that were more pleasure-based, and anticipated goals as being more pleasurable than controls. Thus, this study provided evidence for difficulty with effortful behavior and not anticipation of pleasure. These findings may have psychosocial treatment implications, focusing on effort assessment/effort expenditure. For example, in order to help people with schizophrenia engage in more meaningful goal pursuits, treatment providers may leverage low-effort pleasurable goals by helping patients to break down larger, more complex goals into smaller, lower-effort steps that are associated with specific pleasurable rewards. PMID:25133986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somayaji, Anil B.; Amai, Wendy A.; Walther, Eleanor A.
This reports describes the successful extension of artificial immune systems from the domain of computer security to the domain of real time control systems for robotic vehicles. A biologically-inspired computer immune system was added to the control system of two different mobile robots. As an additional layer in a multi-layered approach, the immune system is complementary to traditional error detection and error handling techniques. This can be thought of as biologically-inspired defense in depth. We demonstrated an immune system can be added with very little application developer effort, resulting in little to no performance impact. The methods described here aremore » extensible to any system that processes a sequence of data through a software interface.« less
Initial dynamic load estimates during configuration design
NASA Technical Reports Server (NTRS)
Schiff, Daniel
1987-01-01
This analysis includes the structural response to shock and vibration and evaluates the maximum deflections and material stresses and the potential for the occurrence of elastic instability, fatigue and fracture. The required computations are often performed by means of finite element analysis (FEA) computer programs in which the structure is simulated by a finite element model which may contain thousands of elements. The formulation of a finite element model can be time consuming, and substantial additional modeling effort may be necessary if the structure requires significant changes after initial analysis. Rapid methods for obtaining rough estimates of the structural response to shock and vibration are presented for the purpose of providing guidance during the initial mechanical design configuration stage.
Fernando, Rohan L; Cheng, Hao; Golden, Bruce L; Garrick, Dorian J
2016-12-08
Two types of models have been used for single-step genomic prediction and genome-wide association studies that include phenotypes from both genotyped animals and their non-genotyped relatives. The two types are breeding value models (BVM) that fit breeding values explicitly and marker effects models (MEM) that express the breeding values in terms of the effects of observed or imputed genotypes. MEM can accommodate a wider class of analyses, including variable selection or mixture model analyses. The order of the equations that need to be solved and the inverses required in their construction vary widely, and thus the computational effort required depends upon the size of the pedigree, the number of genotyped animals and the number of loci. We present computational strategies to avoid storing large, dense blocks of the MME that involve imputed genotypes. Furthermore, we present a hybrid model that fits a MEM for animals with observed genotypes and a BVM for those without genotypes. The hybrid model is computationally attractive for pedigree files containing millions of animals with a large proportion of those being genotyped. We demonstrate the practicality on both the original MEM and the hybrid model using real data with 6,179,960 animals in the pedigree with 4,934,101 phenotypes and 31,453 animals genotyped at 40,214 informative loci. To complete a single-trait analysis on a desk-top computer with four graphics cards required about 3 h using the hybrid model to obtain both preconditioned conjugate gradient solutions and 42,000 Markov chain Monte-Carlo (MCMC) samples of breeding values, which allowed making inferences from posterior means, variances and covariances. The MCMC sampling required one quarter of the effort when the hybrid model was used compared to the published MEM. We present a hybrid model that fits a MEM for animals with genotypes and a BVM for those without genotypes. Its practicality and considerable reduction in computing effort was demonstrated. This model can readily be extended to accommodate multiple traits, multiple breeds, maternal effects, and additional random effects such as polygenic residual effects.
NASA Technical Reports Server (NTRS)
Ferzali, Wassim; Zacharakis, Vassilis; Upadhyay, Triveni; Weed, Dennis; Burke, Gregory
1995-01-01
The ICAO Aeronautical Mobile Communications Panel (AMCP) completed the drafting of the Aeronautical Mobile Satellite Service (AMSS) Standards and Recommended Practices (SARP's) and the associated Guidance Material and submitted these documents to ICAO Air Navigation Commission (ANC) for ratification in May 1994. This effort, encompassed an extensive, multi-national SARP's validation. As part of this activity, the US Federal Aviation Administration (FAA) sponsored an effort to validate the SARP's via computer simulation. This paper provides a description of this effort. Specifically, it describes: (1) the approach selected for the creation of a high-fidelity AMSS computer model; (2) the test traffic generation scenarios; and (3) the resultant AMSS performance assessment. More recently, the AMSS computer model was also used to provide AMSS performance statistics in support of the RTCA standardization activities. This paper describes this effort as well.
Aerothermal modeling program, phase 2. Element B: Flow interaction experiment
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Mongia, H. C.; Murthy, S. N. B.; Sullivan, J. P.
1986-01-01
The design process was improved and the efficiency, life, and maintenance costs of the turbine engine hot section was enhanced. Recently, there has been much emphasis on the need for improved numerical codes for the design of efficient combustors. For the development of improved computational codes, there is a need for an experimentally obtained data base to be used at test cases for the accuracy of the computations. The purpose of Element-B is to establish a benchmark quality velocity and scalar measurements of the flow interaction of circular jets with swirling flow typical of that in the dome region of annular combustor. In addition to the detailed experimental effort, extensive computations of the swirling flows are to be compared with the measurements for the purpose of assessing the accuracy of current and advanced turbulence and scalar transport models.
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros; Jasra, Ajay; Law, Kody; ...
2016-08-24
Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level h L. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h 0>h 1 ...>h L. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less
Collaborative Information Technologies
NASA Astrophysics Data System (ADS)
Meyer, William; Casper, Thomas
1999-11-01
Significant effort has been expended to provide infrastructure and to facilitate the remote collaborations within the fusion community and out. Through the Office of Fusion Energy Science Information Technology Initiative, communication technologies utilized by the fusion community are being improved. The initial thrust of the initiative has been collaborative seminars and meetings. Under the initiative 23 sites, both laboratory and university, were provided with hardware required to remotely view, or project, documents being presented. The hardware is capable of delivering documents to a web browser, or to compatible hardware, over ESNET in an access controlled manner. The ability also exists for documents to originate from virtually any of the collaborating sites. In addition, RealNetwork servers are being tested to provide audio and/or video, in a non-interactive environment with MBONE providing two-way interaction where needed. Additional effort is directed at remote distributed computing, file systems, security, and standard data storage and retrieval methods. This work supported by DoE contract No. W-7405-ENG-48
2008-09-15
however, a variety of so-called variance-reduction techniques ( VRTs ) that have been developed, which reduce output variance with little or no...additional computational effort. VRTs typically achieve this via judicious and careful reuse of the basic underlying random nmnbers. Perhaps the best-known...typical simulation situation- change a weapons-system configuration and see what difference it makes). Key to making CRN and most other VRTs work
Progress in computational toxicology.
Ekins, Sean
2014-01-01
Computational methods have been widely applied to toxicology across pharmaceutical, consumer product and environmental fields over the past decade. Progress in computational toxicology is now reviewed. A literature review was performed on computational models for hepatotoxicity (e.g. for drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity and genotoxicity. In addition various publications have been highlighted that use machine learning methods. Several computational toxicology model datasets from past publications were used to compare Bayesian and Support Vector Machine (SVM) learning methods. The increasing amounts of data for defined toxicology endpoints have enabled machine learning models that have been increasingly used for predictions. It is shown that across many different models Bayesian and SVM perform similarly based on cross validation data. Considerable progress has been made in computational toxicology in a decade in both model development and availability of larger scale or 'big data' models. The future efforts in toxicology data generation will likely provide us with hundreds of thousands of compounds that are readily accessible for machine learning models. These models will cover relevant chemistry space for pharmaceutical, consumer product and environmental applications. Copyright © 2013 Elsevier Inc. All rights reserved.
Algorithmic design for 3D printing at building scale
Guerguis, Maged; Eikevik, Leif; Obendorf, Andrew; ...
2017-01-01
Here, this paper addresses the use of algorithmic design paired with additive manufacturing and their potential impact on architectural design and fabrication of a full-sized building, as demonstrated with the AMIE project. AMIE (Additive Manufacturing and Integrated Energy) was collaboration to 3d print a building and vehicle. Both the car and building were designed to generate, store and share energy in an effort to reduce or eliminate reliability on the power grid. This paper is intended to outline our methodology in successfully designing for these innovative strategies, with a focus on the use of computational design tools as a catalystmore » for design optimization, integrated project delivery, rapid prototyping and fabrication of building elements using additive manufacturing.« less
Algorithmic design for 3D printing at building scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerguis, Maged; Eikevik, Leif; Obendorf, Andrew
Here, this paper addresses the use of algorithmic design paired with additive manufacturing and their potential impact on architectural design and fabrication of a full-sized building, as demonstrated with the AMIE project. AMIE (Additive Manufacturing and Integrated Energy) was collaboration to 3d print a building and vehicle. Both the car and building were designed to generate, store and share energy in an effort to reduce or eliminate reliability on the power grid. This paper is intended to outline our methodology in successfully designing for these innovative strategies, with a focus on the use of computational design tools as a catalystmore » for design optimization, integrated project delivery, rapid prototyping and fabrication of building elements using additive manufacturing.« less
Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network
2012-01-01
Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Conclusions Yeast 5 expands and refines the computational reconstruction of yeast metabolism and improves the predictive accuracy of a stoichiometrically constrained yeast metabolic model. It differs from previous reconstructions and models by emphasizing the distinction between the yeast metabolic reconstruction and the stoichiometrically constrained model, and makes both available as Additional file 4 and Additional file 5 and at http://yeast.sf.net/ as separate systems biology markup language (SBML) files. Through this separation, we intend to make the modeling process more accessible, explicit, transparent, and reproducible. PMID:22663945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyler, L L; Trent, D S; Budden, M J
During the course of the TEMPEST computer code development a concurrent effort was conducted to assess the code's performance and the validity of computed results. The results of this work are presented in this document. The principal objective of this effort was to assure the code's computational correctness for a wide range of hydrothermal phenomena typical of fast breeder reactor application. 47 refs., 94 figs., 6 tabs.
42 CFR 441.182 - Maintenance of effort: Computation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES Inpatient Psychiatric Services for Individuals Under Age 21 in Psychiatric Facilities or Programs § 441.182 Maintenance of effort: Computation. (a) For expenditures for inpatient psychiatric services... total State Medicaid expenditures in the current quarter for inpatient psychiatric services and...
London, Nir; Ambroggio, Xavier
2014-02-01
Computational protein design efforts aim to create novel proteins and functions in an automated manner and, in the process, these efforts shed light on the factors shaping natural proteins. The focus of these efforts has progressed from the interior of proteins to their surface and the design of functions, such as binding or catalysis. Here we examine progress in the development of robust methods for the computational design of non-natural interactions between proteins and molecular targets such as other proteins or small molecules. This problem is referred to as the de novo computational design of interactions. Recent successful efforts in de novo enzyme design and the de novo design of protein-protein interactions open a path towards solving this problem. We examine the common themes in these efforts, and review recent studies aimed at understanding the nature of successes and failures in the de novo computational design of interactions. While several approaches culminated in success, the use of a well-defined structural model for a specific binding interaction in particular has emerged as a key strategy for a successful design, and is therefore reviewed with special consideration. Copyright © 2013 Elsevier Inc. All rights reserved.
Space shuttle propulsion estimation development verification, volume 1
NASA Technical Reports Server (NTRS)
Rogers, Robert M.
1989-01-01
The results of the Propulsion Estimation Development Verification are summarized. A computer program developed under a previous contract (NAS8-35324) was modified to include improved models for the Solid Rocket Booster (SRB) internal ballistics, the Space Shuttle Main Engine (SSME) power coefficient model, the vehicle dynamics using quaternions, and an improved Kalman filter algorithm based on the U-D factorized algorithm. As additional output, the estimated propulsion performances, for each device are computed with the associated 1-sigma bounds. The outputs of the estimation program are provided in graphical plots. An additional effort was expended to examine the use of the estimation approach to evaluate single engine test data. In addition to the propulsion estimation program PFILTER, a program was developed to produce a best estimate of trajectory (BET). The program LFILTER, also uses the U-D factorized algorithm form of the Kalman filter as in the propulsion estimation program PFILTER. The necessary definitions and equations explaining the Kalman filtering approach for the PFILTER program, the models used for this application for dynamics and measurements, program description, and program operation are presented.
Desjardins, Jamie L
2016-01-01
Older listeners with hearing loss may exert more cognitive resources to maintain a level of listening performance similar to that of younger listeners with normal hearing. Unfortunately, this increase in cognitive load, which is often conceptualized as increased listening effort, may come at the cost of cognitive processing resources that might otherwise be available for other tasks. The purpose of this study was to evaluate the independent and combined effects of a hearing aid directional microphone and a noise reduction (NR) algorithm on reducing the listening effort older listeners with hearing loss expend on a speech-in-noise task. Participants were fitted with study worn commercially available behind-the-ear hearing aids. Listening effort on a sentence recognition in noise task was measured using an objective auditory-visual dual-task paradigm. The primary task required participants to repeat sentences presented in quiet and in a four-talker babble. The secondary task was a digital visual pursuit rotor-tracking test, for which participants were instructed to use a computer mouse to track a moving target around an ellipse that was displayed on a computer screen. Each of the two tasks was presented separately and concurrently at a fixed overall speech recognition performance level of 50% correct with and without the directional microphone and/or the NR algorithm activated in the hearing aids. In addition, participants reported how effortful it was to listen to the sentences in quiet and in background noise in the different hearing aid listening conditions. Fifteen older listeners with mild sloping to severe sensorineural hearing loss participated in this study. Listening effort in background noise was significantly reduced with the directional microphones activated in the hearing aids. However, there was no significant change in listening effort with the hearing aid NR algorithm compared to no noise processing. Correlation analysis between objective and self-reported ratings of listening effort showed no significant relation. Directional microphone processing effectively reduced the cognitive load of listening to speech in background noise. This is significant because it is likely that listeners with hearing impairment will frequently encounter noisy speech in their everyday communications. American Academy of Audiology.
Uncertainty in sample estimates and the implicit loss function for soil information.
NASA Astrophysics Data System (ADS)
Lark, Murray
2015-04-01
One significant challenge in the communication of uncertain information is how to enable the sponsors of sampling exercises to make a rational choice of sample size. One way to do this is to compute the value of additional information given the loss function for errors. The loss function expresses the costs that result from decisions made using erroneous information. In certain circumstances, such as remediation of contaminated land prior to development, loss functions can be computed and used to guide rational decision making on the amount of resource to spend on sampling to collect soil information. In many circumstances the loss function cannot be obtained prior to decision making. This may be the case when multiple decisions may be based on the soil information and the costs of errors are hard to predict. The implicit loss function is proposed as a tool to aid decision making in these circumstances. Conditional on a logistical model which expresses costs of soil sampling as a function of effort, and statistical information from which the error of estimates can be modelled as a function of effort, the implicit loss function is the loss function which makes a particular decision on effort rational. In this presentation the loss function is defined and computed for a number of arbitrary decisions on sampling effort for a hypothetical soil monitoring problem. This is based on a logistical model of sampling cost parameterized from a recent geochemical survey of soil in Donegal, Ireland and on statistical parameters estimated with the aid of a process model for change in soil organic carbon. It is shown how the implicit loss function might provide a basis for reflection on a particular choice of sample size by comparing it with the values attributed to soil properties and functions. Scope for further research to develop and apply the implicit loss function to help decision making by policy makers and regulators is then discussed.
Earth's external magnetic fields at low orbital altitudes
NASA Technical Reports Server (NTRS)
Klumpar, D. M.
1990-01-01
Under our Jun. 1987 proposal, Magnetic Signatures of Near-Earth Distributed Currents, we proposed to render operational a modeling procedure that had been previously developed to compute the magnetic effects of distributed currents flowing in the magnetosphere-ionosphere system. After adaptation of the software to our computing environment we would apply the model to low altitude satellite orbits and would utilize the MAGSAT data suite to guide the analysis. During the first year, basic computer codes to run model systems of Birkeland and ionospheric currents and several graphical output routines were made operational on a VAX 780 in our research facility. Software performance was evaluated using an input matchstick ionospheric current array, field aligned currents were calculated and magnetic perturbations along hypothetical satellite orbits were calculated. The basic operation of the model was verified. Software routines to analyze and display MAGSAT satellite data in terms of deviations with respect to the earth's internal field were also made operational during the first year effort. The complete set of MAGSAT data to be used for evaluation of the models was received at the end of the first year. A detailed annual report in May 1989 described these first year activities completely. That first annual report is included by reference in this final report. This document summarizes our additional activities during the second year of effort and describes the modeling software, its operation, and includes as an attachment the deliverable computer software specified under the contract.
Dopamine Manipulation Affects Response Vigor Independently of Opportunity Cost.
Zénon, Alexandre; Devesse, Sophie; Olivier, Etienne
2016-09-14
Dopamine is known to be involved in regulating effort investment in relation to reward, and the disruption of this mechanism is thought to be central in some pathological situations such as Parkinson's disease, addiction, and depression. According to an influential model, dopamine plays this role by encoding the opportunity cost, i.e., the average value of forfeited actions, which is an important parameter to take into account when making decisions about which action to undertake and how fast to execute it. We tested this hypothesis by asking healthy human participants to perform two effort-based decision-making tasks, following either placebo or levodopa intake in a double blind within-subject protocol. In the effort-constrained task, there was a trade-off between the amount of force exerted and the time spent in executing the task, such that investing more effort decreased the opportunity cost. In the time-constrained task, the effort duration was constant, but exerting more force allowed the subject to earn more substantial reward instead of saving time. Contrary to the model predictions, we found that levodopa caused an increase in the force exerted only in the time-constrained task, in which there was no trade-off between effort and opportunity cost. In addition, a computational model showed that dopamine manipulation left the opportunity cost factor unaffected but altered the ratio between the effort cost and reinforcement value. These findings suggest that dopamine does not represent the opportunity cost but rather modulates how much effort a given reward is worth. Dopamine has been proposed in a prevalent theory to signal the average reward rate, used to estimate the cost of investing time in an action, also referred to as opportunity cost. We contrasted the effect of dopamine manipulation in healthy participants in two tasks, in which increasing response vigor (i.e., the amount of effort invested in an action) allowed either to save time or to earn more reward. We found that levodopa-a synthetic precursor of dopamine-increases response vigor only in the latter situation, demonstrating that, rather than the opportunity cost, dopamine is involved in computing the expected value of effort. Copyright © 2016 the authors 0270-6474/16/369516-10$15.00/0.
Overview of Materials Qualification Needs for Metal Additive Manufacturing
NASA Astrophysics Data System (ADS)
Seifi, Mohsen; Salem, Ayman; Beuth, Jack; Harrysson, Ola; Lewandowski, John J.
2016-03-01
This overview highlights some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum. AM technology has experienced considerable publicity and growth in the past few years with many successful insertions for non-mission-critical applications. However, to meet the full potential that AM has to offer, especially for flight-critical components (e.g., rotating parts, fracture-critical parts, etc.), qualification and certification efforts are necessary. While development of qualification standards will address some of these needs, this overview outlines some of the other key areas that will need to be considered in the qualification path, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components. Ongoing work in the Advanced Manufacturing and Mechanical Reliability Center at Case Western Reserve University is focusing on fracture and fatigue testing to rapidly assess critical mechanical properties of some titanium alloys before and after post-processing, in addition to conducting nondestructive testing/evaluation using micro-computerized tomography at General Electric. Process mapping studies are being conducted at Carnegie Mellon University while large area microstructure characterization and informatics (EBSD and BSE) analyses are being conducted at Materials Resources LLC to enable future integration of these efforts via an Integrated Computational Materials Engineering approach to AM. Possible future pathways for materials qualification are provided.
Large Scale Computing and Storage Requirements for High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Richard A.; Wasserman, Harvey
2010-11-24
The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. Themore » effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.« less
Modeling of Powder Bed Manufacturing Defects
NASA Astrophysics Data System (ADS)
Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.
2018-01-01
Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.
Montague, P. Read; Dolan, Raymond J.; Friston, Karl J.; Dayan, Peter
2013-01-01
Computational ideas pervade many areas of science and have an integrative explanatory role in neuroscience and cognitive science. However, computational depictions of cognitive function have had surprisingly little impact on the way we assess mental illness because diseases of the mind have not been systematically conceptualized in computational terms. Here, we outline goals and nascent efforts in the new field of computational psychiatry, which seeks to characterize mental dysfunction in terms of aberrant computations over multiple scales. We highlight early efforts in this area that employ reinforcement learning and game theoretic frameworks to elucidate decision-making in health and disease. Looking forwards, we emphasize a need for theory development and large-scale computational phenotyping in human subjects. PMID:22177032
NASA Astrophysics Data System (ADS)
Stout, Jane G.; Blaney, Jennifer M.
2017-10-01
Research suggests growth mindset, or the belief that knowledge is acquired through effort, may enhance women's sense of belonging in male-dominated disciplines, like computing. However, other research indicates women who spend a great deal of time and energy in technical fields experience a low sense of belonging. The current study assessed the benefits of a growth mindset on women's (and men's) sense of intellectual belonging in computing, accounting for the amount of time and effort dedicated to academics. We define "intellectual belonging" as the sense that one is believed to be a competent member of the community. Whereas a stronger growth mindset was associated with stronger intellectual belonging for men, a growth mindset only boosted women's intellectual belonging when they did not work hard on academics. Our findings suggest, paradoxically, women may not benefit from a growth mindset in computing when they exert a lot of effort.
Vassena, Eliana; Deraeve, James; Alexander, William H
2017-10-01
Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response-outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO model based on hierarchical error prediction, developed to explain MPFC-DLPFC interactions. We derive behavioral predictions that describe how effort and reward information is coded in PFC and how changing the configuration of such environmental information might affect decision-making and task performance involving motivation.
Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.
2016-01-01
A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.
Current Grid operation and future role of the Grid
NASA Astrophysics Data System (ADS)
Smirnova, O.
2012-12-01
Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place, Grid will become limited to HEP; if however the current multitude of Grid-like systems will converge to a generic, modular and extensible solution, Grid will become true to its name.
Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase
Preiswerk, Nathalie; Beck, Tobias; Schulz, Jessica D.; Milovník, Peter; Mayer, Clemens; Siegel, Justin B.; Baker, David; Hilvert, Donald
2014-01-01
By combining targeted mutagenesis, computational refinement, and directed evolution, a modestly active, computationally designed Diels-Alderase was converted into the most proficient biocatalyst for [4+2] cycloadditions known. The high stereoselectivity and minimal product inhibition of the evolved enzyme enabled preparative scale synthesis of a single product diastereomer. X-ray crystallography of the enzyme–product complex shows that the molecular changes introduced over the course of optimization, including addition of a lid structure, gradually reshaped the pocket for more effective substrate preorganization and transition state stabilization. The good overall agreement between the experimental structure and the original design model with respect to the orientations of both the bound product and the catalytic side chains contrasts with other computationally designed enzymes. Because design accuracy appears to correlate with scaffold rigidity, improved control over backbone conformation will likely be the key to future efforts to design more efficient enzymes for diverse chemical reactions. PMID:24847076
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
NASA Astrophysics Data System (ADS)
Zaug, J. M.; Howard, W. M.; Fried, L. E.; Hansen, D. W.
2002-07-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
Multiple Embedded Processors for Fault-Tolerant Computing
NASA Technical Reports Server (NTRS)
Bolotin, Gary; Watson, Robert; Katanyoutanant, Sunant; Burke, Gary; Wang, Mandy
2005-01-01
A fault-tolerant computer architecture has been conceived in an effort to reduce vulnerability to single-event upsets (spurious bit flips caused by impingement of energetic ionizing particles or photons). As in some prior fault-tolerant architectures, the redundancy needed for fault tolerance is obtained by use of multiple processors in one computer. Unlike prior architectures, the multiple processors are embedded in a single field-programmable gate array (FPGA). What makes this new approach practical is the recent commercial availability of FPGAs that are capable of having multiple embedded processors. A working prototype (see figure) consists of two embedded IBM PowerPC 405 processor cores and a comparator built on a Xilinx Virtex-II Pro FPGA. This relatively simple instantiation of the architecture implements an error-detection scheme. A planned future version, incorporating four processors and two comparators, would correct some errors in addition to detecting them.
NASA Astrophysics Data System (ADS)
Sheshkus, Alexander; Limonova, Elena; Nikolaev, Dmitry; Krivtsov, Valeriy
2017-03-01
In this paper, we propose an expansion of convolutional neural network (CNN) input features based on Hough Transform. We perform morphological contrasting of source image followed by Hough Transform, and then use it as input for some convolutional filters. Thus, CNNs computational complexity and the number of units are not affected. Morphological contrasting and Hough Transform are the only additional computational expenses of introduced CNN input features expansion. Proposed approach was demonstrated on the example of CNN with very simple structure. We considered two image recognition problems, that were object classification on CIFAR-10 and printed character recognition on private dataset with symbols taken from Russian passports. Our approach allowed to reach noticeable accuracy improvement without taking much computational effort, which can be extremely important in industrial recognition systems or difficult problems utilising CNNs, like pressure ridge analysis and classification.
A database to enable discovery and design of piezoelectric materials
de Jong, Maarten; Chen, Wei; Geerlings, Henry; Asta, Mark; Persson, Kristin Aslaug
2015-01-01
Piezoelectric materials are used in numerous applications requiring a coupling between electrical fields and mechanical strain. Despite the technological importance of this class of materials, for only a small fraction of all inorganic compounds which display compatible crystallographic symmetry, has piezoelectricity been characterized experimentally or computationally. In this work we employ first-principles calculations based on density functional perturbation theory to compute the piezoelectric tensors for nearly a thousand compounds, thereby increasing the available data for this property by more than an order of magnitude. The results are compared to select experimental data to establish the accuracy of the calculated properties. The details of the calculations are also presented, along with a description of the format of the database developed to make these computational results publicly available. In addition, the ways in which the database can be accessed and applied in materials development efforts are described. PMID:26451252
The European computer model for optronic system performance prediction (ECOMOS)
NASA Astrophysics Data System (ADS)
Repasi, Endre; Bijl, Piet; Labarre, Luc; Wittenstein, Wolfgang; Bürsing, Helge
2017-05-01
ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defence and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses and combines well-accepted existing European tools to build up a strong competitive position. This includes two TA models: the analytical TRM4 model and the image-based TOD model. In addition, it uses the atmosphere model MATISSE. In this paper, the central idea of ECOMOS is exposed. The overall software structure and the underlying models are shown and elucidated. The status of the project development is given as well as a short outlook on validation tests and the future potential of simulation for sensor assessment.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Myers, R. A.; Topp, D. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document is intended to serve as a user's manual for the computer programs which comprise the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework.
Progress on the FabrIc for Frontier Experiments project at Fermilab
Box, Dennis; Boyd, Joseph; Dykstra, Dave; ...
2015-12-23
The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercialmore » cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. Hence, the progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Box, D.; Boyd, J.; Di Benedetto, V.
2016-01-01
The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites alongmore » with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.« less
Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Tony; Sutherland, James C.
To address the coding and software challenges of modern hybrid architectures, we propose an approach to multiphysics code development for high-performance computing. This approach is based on using a Domain Specific Language (DSL) in tandem with a directed acyclic graph (DAG) representation of the problem to be solved that allows runtime algorithm generation. When coupled with a large-scale parallel framework, the result is a portable development framework capable of executing on hybrid platforms and handling the challenges of multiphysics applications. In addition, we share our experience developing a code in such an environment – an effort that spans an interdisciplinarymore » team of engineers and computer scientists.« less
Saad, Tony; Sutherland, James C.
2016-05-04
To address the coding and software challenges of modern hybrid architectures, we propose an approach to multiphysics code development for high-performance computing. This approach is based on using a Domain Specific Language (DSL) in tandem with a directed acyclic graph (DAG) representation of the problem to be solved that allows runtime algorithm generation. When coupled with a large-scale parallel framework, the result is a portable development framework capable of executing on hybrid platforms and handling the challenges of multiphysics applications. In addition, we share our experience developing a code in such an environment – an effort that spans an interdisciplinarymore » team of engineers and computer scientists.« less
Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows
NASA Astrophysics Data System (ADS)
Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan
2018-05-01
This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.
Air Force construction automation/robotics
NASA Technical Reports Server (NTRS)
Nease, A. D.; Alexander, E. F.
1993-01-01
The Air Force has several missions which generate unique requirements that are being met through the development of construction robotic technology. One especially important mission will be the conduct of Department of Defense (DOD) space activities. Space operations and other missions place construction/repair equipment operators in dangerous environments and potentially harmful situations. Additionally, force reductions require that human resources be leveraged to the maximum extent possible, and more stringent construction repair requirements push for increased automation. To solve these problems, the U.S. Air Force is undertaking a research and development effort at Tyndall AFB, FL, to develop robotic construction/repair equipment. This development effort involves the following technologies: teleoperation, telerobotics, construction operations (excavation, grading, leveling, tool change), robotic vehicle communications, vehicle navigation, mission/vehicle task control architecture, and associated computing environment. The ultimate goal is the fielding of a robotic repair capability operating at the level of supervised autonomy. This paper will discuss current and planned efforts in space construction/repair, explosive ordnance disposal, hazardous waste cleanup, and fire fighting.
Automated Design of Complex Dynamic Systems
Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni
2014-01-01
Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969
Cloud-based Jupyter Notebooks for Water Data Analysis
NASA Astrophysics Data System (ADS)
Castronova, A. M.; Brazil, L.; Seul, M.
2017-12-01
The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative and reproducible science.
Biocellion: accelerating computer simulation of multicellular biological system models
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-01-01
Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572
Singh, Mansher; Ricci, Joseph A.
2015-01-01
Background: In patients with panfacial fractures and distorted anatomic landmarks of zygomatic and orbital complex, there is a risk of zygomaticomaxillary complex (ZMC) malpositioning even with the best efforts for surgical repair. This results in increased number of additional procedures to achieve accurate positioning. Methods: We describe the usage of intraoperative C-arm cone-beam computed tomographic (CT) scan for ZMC malpositioning in a representative patient with panfacial fractures. Results: We have successfully used intraoperative CT scan for ZMC malpositioning in 3 patients. The representative patient had ZMC malposition after the initial attempt of surgical repair without any intraoperative imaging. On using intraoperative CT scan during the next attempt, we were able to reposition the ZMC accurately. Conclusions: Intraoperative CT scan might improve the accuracy of ZMC positioning and decrease the chances of potential additional surgeries. In patients with distorted anatomical landmarks and panfacial fractures, it can be especially helpful toward correcting ZMC malposition. PMID:26301152
Teaching Computational Thinking: Deciding to Take Small Steps in a Curriculum
NASA Astrophysics Data System (ADS)
Madoff, R. D.; Putkonen, J.
2016-12-01
While computational thinking and reasoning are not necessarily the same as computer programming, programs such as MATLAB can provide the medium through which the logical and computational thinking at the foundation of science can be taught, learned, and experienced. And while math and computer anxiety are often discussed as critical obstacles to students' progress in their geoscience curriculum, it is here suggested that an unfamiliarity with the computational and logical reasoning is what poses a first stumbling block, in addition to the hurdle of expending the effort to learn how to translate a computational problem into the appropriate computer syntax in order to achieve the intended results. Because computational thinking is so vital for all fields, there is a need to initiate many and to build support in the curriculum for it. This presentation focuses on elements to bring into the teaching of computational thinking that are intended as additions to learning MATLAB programming as a basic tool. Such elements include: highlighting a key concept, discussing a basic geoscience problem where the concept would show up, having the student draw or outline a sketch of what they think an operation needs to do in order to perform a desired result, and then finding the relevant syntax to work with. This iterative pedagogy simulates what someone with more experience in programming does, so it discloses the thinking process in the black box of a result. Intended as only a very early stage introduction, advanced applications would need to be developed as students go through an academic program. The objective would be to expose and introduce computational thinking to majors and non-majors and to alleviate some of the math and computer anxiety so that students would choose to advance on with programming or modeling, whether it is built into a 4-year curriculum or not.
New Mexico district work-effort analysis computer program
Hiss, W.L.; Trantolo, A.P.; Sparks, J.L.
1972-01-01
The computer program (CAN 2) described in this report is one of several related programs used in the New Mexico District cost-analysis system. The work-effort information used in these programs is accumulated and entered to the nearest hour on forms completed by each employee. Tabulating cards are punched directly from these forms after visual examinations for errors are made. Reports containing detailed work-effort data itemized by employee within each project and account and by account and project for each employee are prepared for both current-month and year-to-date periods by the CAN 2 computer program. An option allowing preparation of reports for a specified 3-month period is provided. The total number of hours worked on each account and project and a grand total of hours worked in the New Mexico District is computed and presented in a summary report for each period. Work effort not chargeable directly to individual projects or accounts is considered as overhead and can be apportioned to the individual accounts and projects on the basis of the ratio of the total hours of work effort for the individual accounts or projects to the total New Mexico District work effort at the option of the user. The hours of work performed by a particular section, such as General Investigations or Surface Water, are prorated and charged to the projects or accounts within the particular section. A number of surveillance or buffer accounts are employed to account for the hours worked on special events or on those parts of large projects or accounts that require a more detailed analysis. Any part of the New Mexico District operation can be separated and analyzed in detail by establishing an appropriate buffer account. With the exception of statements associated with word size, the computer program is written in FORTRAN IV in a relatively low and standard language level to facilitate its use on different digital computers. The program has been run only on a Control Data Corporation 6600 computer system. Central processing computer time has seldom exceeded 5 minutes on the longest year-to-date runs.
Developing a Science Commons for Geosciences
NASA Astrophysics Data System (ADS)
Lenhardt, W. C.; Lander, H.
2016-12-01
Many scientific communities, recognizing the research possibilities inherent in data sets, have created domain specific archives such as the Incorporated Research Institutions for Seismology (iris.edu) and ClinicalTrials.gov. Though this is an important step forward, most scientists, including geoscientists, also use a variety of software tools and at least some amount of computation to conduct their research. While the archives make it simpler for scientists to locate the required data, provisioning disk space, compute resources, and network bandwidth can still require significant efforts. This challenge exists despite the wealth of resources available to researchers, namely lab IT resources, institutional IT resources, national compute resources (XSEDE, OSG), private clouds, public clouds, and the development of cyberinfrastructure technologies meant to facilitate use of those resources. Further tasks include obtaining and installing required tools for analysis and visualization. If the research effort is a collaboration or involves certain types of data, then the partners may well have additional non-scientific tasks such as securing the data and developing secure sharing methods for the data. These requirements motivate our investigations into the "Science Commons". This paper will present a working definition of a science commons, compare and contrast examples of existing science commons, and describe a project based at RENCI to implement a science commons for risk analytics. We will then explore what a similar tool might look like for the geosciences.
Reduction of community alcohol problems: computer simulation experiments in three counties.
Holder, H D; Blose, J O
1987-03-01
A series of alcohol abuse prevention strategies was evaluated using computer simulation for three counties in the United States: Wake County, North Carolina, Washington County, Vermont and Alameda County, California. A system dynamics model composed of a network of interacting variables was developed for the pattern of alcoholic beverage consumption in a community. The relationship of community drinking patterns to various stimulus factors was specified in the model based on available empirical research. Stimulus factors included disposable income, alcoholic beverage prices, advertising exposure, minimum drinking age and changes in cultural norms. After a generic model was developed and validated on the national level, a computer-based system dynamics model was developed for each county, and a series of experiments was conducted to project the potential impact of specific prevention strategies. The project concluded that prevention efforts can both lower current levels of alcohol abuse and reduce projected increases in alcohol-related problems. Without such efforts, already high levels of alcohol-related family disruptions in the three counties could be expected to rise an additional 6% and drinking-related work problems 1-5%, over the next 10 years after controlling for population growth. Of the strategies tested, indexing the price of alcoholic beverages to the consumer price index in conjunction with the implementation of a community educational program with well-defined target audiences has the best potential for significant problem reduction in all three counties.
Hypersonic Experimental and Computational Capability, Improvement and Validation. Volume 2
NASA Technical Reports Server (NTRS)
Muylaert, Jean (Editor); Kumar, Ajay (Editor); Dujarric, Christian (Editor)
1998-01-01
The results of the phase 2 effort conducted under AGARD Working Group 18 on Hypersonic Experimental and Computational Capability, Improvement and Validation are presented in this report. The first volume, published in May 1996, mainly focused on the design methodology, plans and some initial results of experiments that had been conducted to serve as validation benchmarks. The current volume presents the detailed experimental and computational data base developed during this effort.
[Earth Science Technology Office's Computational Technologies Project
NASA Technical Reports Server (NTRS)
Fischer, James (Technical Monitor); Merkey, Phillip
2005-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
Computational Methods for Stability and Control (COMSAC): The Time Has Come
NASA Technical Reports Server (NTRS)
Hall, Robert M.; Biedron, Robert T.; Ball, Douglas N.; Bogue, David R.; Chung, James; Green, Bradford E.; Grismer, Matthew J.; Brooks, Gregory P.; Chambers, Joseph R.
2005-01-01
Powerful computational fluid dynamics (CFD) tools have emerged that appear to offer significant benefits as an adjunct to the experimental methods used by the stability and control community to predict aerodynamic parameters. The decreasing costs for and increasing availability of computing hours are making these applications increasingly viable as time goes on and the cost of computing continues to drop. This paper summarizes the efforts of four organizations to utilize high-end computational fluid dynamics (CFD) tools to address the challenges of the stability and control arena. General motivation and the backdrop for these efforts will be summarized as well as examples of current applications.
Motivational Beliefs, Student Effort, and Feedback Behaviour in Computer-Based Formative Assessment
ERIC Educational Resources Information Center
Timmers, Caroline F.; Braber-van den Broek, Jannie; van den Berg, Stephanie M.
2013-01-01
Feedback can only be effective when students seek feedback and process it. This study examines the relations between students' motivational beliefs, effort invested in a computer-based formative assessment, and feedback behaviour. Feedback behaviour is represented by whether a student seeks feedback and the time a student spends studying the…
Establishing a K-12 Circuit Design Program
ERIC Educational Resources Information Center
Inceoglu, Mustafa M.
2010-01-01
Outreach, as defined by Wikipedia, is an effort by an organization or group to connect its ideas or practices to the efforts of other organizations, groups, specific audiences, or the general public. This paper describes a computer engineering outreach project of the Department of Computer Engineering at Ege University, Izmir, Turkey, to a local…
ERIC Educational Resources Information Center
Sexton, Randall; Hignite, Michael; Margavio, Thomas M.; Margavio, Geanie W.
2009-01-01
Information Literacy is a concept that evolved as a result of efforts to move technology-based instructional and research efforts beyond the concepts previously associated with "computer literacy." While computer literacy was largely a topic devoted to knowledge of hardware and software, information literacy is concerned with students' abilities…
NASA Astrophysics Data System (ADS)
Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian
2016-05-01
Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).
Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities
NASA Astrophysics Data System (ADS)
Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu
Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.
Accelerating deep neural network training with inconsistent stochastic gradient descent.
Wang, Linnan; Yang, Yi; Min, Renqiang; Chakradhar, Srimat
2017-09-01
Stochastic Gradient Descent (SGD) updates Convolutional Neural Network (CNN) with a noisy gradient computed from a random batch, and each batch evenly updates the network once in an epoch. This model applies the same training effort to each batch, but it overlooks the fact that the gradient variance, induced by Sampling Bias and Intrinsic Image Difference, renders different training dynamics on batches. In this paper, we develop a new training strategy for SGD, referred to as Inconsistent Stochastic Gradient Descent (ISGD) to address this problem. The core concept of ISGD is the inconsistent training, which dynamically adjusts the training effort w.r.t the loss. ISGD models the training as a stochastic process that gradually reduces down the mean of batch's loss, and it utilizes a dynamic upper control limit to identify a large loss batch on the fly. ISGD stays on the identified batch to accelerate the training with additional gradient updates, and it also has a constraint to penalize drastic parameter changes. ISGD is straightforward, computationally efficient and without requiring auxiliary memories. A series of empirical evaluations on real world datasets and networks demonstrate the promising performance of inconsistent training. Copyright © 2017 Elsevier Ltd. All rights reserved.
In Silico Chemogenomics Drug Repositioning Strategies for Neglected Tropical Diseases.
Andrade, Carolina Horta; Neves, Bruno Junior; Melo-Filho, Cleber Camilo; Rodrigues, Juliana; Silva, Diego Cabral; Braga, Rodolpho Campos; Cravo, Pedro Vitor Lemos
2018-03-08
Only ~1% of all drug candidates against Neglected Tropical Diseases (NTDs) have reached clinical trials in the last decades, underscoring the need for new, safe and effective treatments. In such context, drug repositioning, which allows finding novel indications for approved drugs whose pharmacokinetic and safety profiles are already known, is emerging as a promising strategy for tackling NTDs. Chemogenomics is a direct descendent of the typical drug discovery process that involves the systematic screening of chemical compounds against drug targets in high-throughput screening (HTS) efforts, for the identification of lead compounds. However, different to the one-drug-one-target paradigm, chemogenomics attempts to identify all potential ligands for all possible targets and diseases. In this review, we summarize current methodological development efforts in drug repositioning that use state-of-the-art computational ligand- and structure-based chemogenomics approaches. Furthermore, we highlighted the recent progress in computational drug repositioning for some NTDs, based on curation and modeling of genomic, biological, and chemical data. Additionally, we also present in-house and other successful examples and suggest possible solutions to existing pitfalls. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Technical Reports Server (NTRS)
Potter, R. C.; Vandam, C. P.
1995-01-01
High-lift system aerodynamics has been gaining attention in recent years. In an effort to improve aircraft performance, comprehensive studies of multi-element airfoil systems are being undertaken in wind-tunnel and flight experiments. Recent developments in Computational Fluid Dynamics (CFD) offer a relatively inexpensive alternative for studying complex viscous flows by numerically solving the Navier-Stokes (N-S) equations. Current limitations in computer resources restrict practical high-lift N-S computations to two dimensions, but CFD predictions can yield tremendous insight into flow structure, interactions between airfoil elements, and effects of changes in airfoil geometry or free-stream conditions. These codes are very accurate when compared to strictly 2D data provided by wind-tunnel testing, as will be shown here. Yet, additional challenges must be faced in the analysis of a production aircraft wing section, such as that of the NASA Langley Transport Systems Research Vehicle (TSRV). A primary issue is the sweep theory used to correlate 2D predictions with 3D flight results, accounting for sweep, taper, and finite wing effects. Other computational issues addressed here include the effects of surface roughness of the geometry, cove shape modeling, grid topology, and transition specification. The sensitivity of the flow to changing free-stream conditions is investigated. In addition, the effects of Gurney flaps on the aerodynamic characteristics of the airfoil system are predicted.
Leveraging Crowdsourcing and Linked Open Data for Geoscience Data Sharing and Discovery
NASA Astrophysics Data System (ADS)
Narock, T. W.; Rozell, E. A.; Hitzler, P.; Arko, R. A.; Chandler, C. L.; Wilson, B. D.
2013-12-01
Data citation standards can form the basis for increased incentives, recognition, and rewards for scientists. Additionally, knowing which data were utilized in a particular publication can enhance discovery and reuse. Yet, a lack of data citation information in existing publications as well as ambiguities across datasets can limit the accuracy of automated linking approaches. We describe a crowdsourcing approach, based on Linked Open Data, in which AGU abstracts are linked to the data used in those presentations. We discuss our efforts to incentivize participants through promotion of their research, the role that the Semantic Web can play in this effort, and how this work differs from existing platforms such as Mendeley and ResearchGate. Further, we discuss the benefits and challenges of Linked Open Data as a technical solution including the role of provenance, trust, and computational reasoning.
Modelling human problem solving with data from an online game.
Rach, Tim; Kirsch, Alexandra
2016-11-01
Since the beginning of cognitive science, researchers have tried to understand human strategies in order to develop efficient and adequate computational methods. In the domain of problem solving, the travelling salesperson problem has been used for the investigation and modelling of human solutions. We propose to extend this effort with an online game, in which instances of the travelling salesperson problem have to be solved in the context of a game experience. We report on our effort to design and run such a game, present the data contained in the resulting openly available data set and provide an outlook on the use of games in general for cognitive science research. In addition, we present three geometrical models mapping the starting point preferences in the problems presented in the game as the result of an evaluation of the data set.
Air Force construction automation/robotics
NASA Technical Reports Server (NTRS)
Nease, AL; Dusseault, Christopher
1994-01-01
The Air Force has several unique requirements that are being met through the development of construction robotic technology. The missions associated with these requirements place construction/repair equipment operators in potentially harmful situations. Additionally, force reductions require that human resources be leveraged to the maximum extent possible and that more stringent construction repair requirements push for increased automation. To solve these problems, the U.S. Air Force is undertaking a research and development effort at Tyndall AFB, FL to develop robotic teleoperation, telerobotics, robotic vehicle communications, automated damage assessment, vehicle navigation, mission/vehicle task control architecture, and associated computing environment. The ultimate goal is the fielding of robotic repair capability operating at the level of supervised autonomy. The authors of this paper will discuss current and planned efforts in construction/repair, explosive ordnance disposal, hazardous waste cleanup, fire fighting, and space construction.
Automation of electromagnetic compatability (EMC) test facilities
NASA Technical Reports Server (NTRS)
Harrison, C. A.
1986-01-01
Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.
Flowfield visualization for SSME hot gas manifold
NASA Technical Reports Server (NTRS)
Roger, Robert P.
1988-01-01
The objective of this research, as defined by NASA-Marshall Space Flight Center, was two-fold: (1) to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME), and (2) to provide analytical support for SSME related numerical computational experiments, being performed by the Computational Fluid Dynamics staff in the Aerophysics Division of the Structures and Dynamics Laboratory at NASA-MSFC. Numerical results of HGM were calculations to complement both water flow visualization experiments and air flow visualization experiments and air experiments in two-duct geometries performed at NASA-MSFC and Rocketdyne. In addition, code modification and improvement efforts were to strengthen the CFD capabilities of NASA-MSFC for producing reliable predictions of flow environments within the SSME.
Crossflow Instability on a Wedge-Cone at Mach 3.5
NASA Technical Reports Server (NTRS)
Beeler, George B.; Wilkinson, Stephen P.; Balakumar, P.; McDaniel, Keith S.
2012-01-01
As a follow-on activity to the HyBoLT flight experiment, a six degree half angle wedge-cone model at zero angle of attack has been employed to experimentally and computationally study the boundary layer crossflow instability at Mach 3.5 under low disturbance freestream conditions. Computed meanflow and linear stability analysis results are presented along with corresponding experimental Pitot probe data. Using a model-mounted probe survey apparatus, data acquired to date show a well defined stationary crossflow vortex pattern on the flat wedge surface. This effort paves the way for additional detailed, calibrated flow field measurements of the crossflow instability, both stationary and traveling modes, and transition-to-turbulence under quiet flow conditions as a means of validating existing stability theory and providing a foundation for dynamic flight instrumentation development.
Polylactides in additive biomanufacturing.
Poh, Patrina S P; Chhaya, Mohit P; Wunner, Felix M; De-Juan-Pardo, Elena M; Schilling, Arndt F; Schantz, Jan-Thorsten; van Griensven, Martijn; Hutmacher, Dietmar W
2016-12-15
New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Impact of remote sensing upon the planning, management, and development of water resources
NASA Technical Reports Server (NTRS)
Loats, H. L.; Fowler, T. R.; Frech, S. L.
1974-01-01
A survey of the principal water resource users was conducted to determine the impact of new remote data streams on hydrologic computer models. The analysis of the responses and direct contact demonstrated that: (1) the majority of water resource effort of the type suitable to remote sensing inputs is conducted by major federal water resources agencies or through federally stimulated research, (2) the federal government develops most of the hydrologic models used in this effort; and (3) federal computer power is extensive. The computers, computer power, and hydrologic models in current use were determined.
An opportunity cost model of subjective effort and task performance
Kurzban, Robert; Duckworth, Angela; Kable, Joseph W.; Myers, Justus
2013-01-01
Why does performing certain tasks cause the aversive experience of mental effort and concomitant deterioration in task performance? One explanation posits a physical resource that is depleted over time. We propose an alternate explanation that centers on mental representations of the costs and benefits associated with task performance. Specifically, certain computational mechanisms, especially those associated with executive function, can be deployed for only a limited number of simultaneous tasks at any given moment. Consequently, the deployment of these computational mechanisms carries an opportunity cost – that is, the next-best use to which these systems might be put. We argue that the phenomenology of effort can be understood as the felt output of these cost/benefit computations. In turn, the subjective experience of effort motivates reduced deployment of these computational mechanisms in the service of the present task. These opportunity cost representations, then, together with other cost/benefit calculations, determine effort expended and, everything else equal, result in performance reductions. In making our case for this position, we review alternate explanations both for the phenomenology of effort associated with these tasks and for performance reductions over time. Likewise, we review the broad range of relevant empirical results from across subdisciplines, especially psychology and neuroscience. We hope that our proposal will help to build links among the diverse fields that have been addressing similar questions from different perspectives, and we emphasize ways in which alternate models might be empirically distinguished. PMID:24304775
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1994-01-01
Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.
NASA Technical Reports Server (NTRS)
Schwan, Karsten
1997-01-01
This final report has four sections. We first describe the actual scientific results attained by our research team, followed by a description of the high performance computing research enhancing those results and prompted by the scientific tasks being undertaken. Next, we describe our research in data and program visualization motivated by the scientific research and also enabling it. Last, we comment on the indirect effects this research effort has had on our work, in terms of follow up or additional funding, student training, etc.
1987-08-01
Two ROTC/OLRDB data sets result from this effort. They reside at the National Institutes of Health (NIH) computer facility. They were both built and...59Z) 1985 8.326 3.836 (46%) Total 31,967 18,617 (58%) Research use of these data sets would benefit from further documentation for some data which...to the existing files, there vould appear to be significant benefit from the inclusion of additional years of OLRDB data vith the newly formed ROTC
NASA Technical Reports Server (NTRS)
Warren, Wayne H., Jr.; Ochsenbein, Francois; Rappaport, Barry N.
1990-01-01
The entire series of Durchmusterung (DM) catalogs (Bonner, Southern, Cordoba, Cape Photographic) has been computerized through a collaborative effort among institutions and individuals in France and the United States of America. Complete verification of the data, both manually and by computer, the inclusion of all supplemental stars (represented by lower case letters), complete representation of all numerical data, and a consistent format for all catalogs, should make this collection of machine-readable data a valuable addition to digitized astronomical archives.
Migrating the Belle II collaborative services and tools
NASA Astrophysics Data System (ADS)
Braun, N.; Dossett, D.; Dramburg, M.; Frost, O.; Gellrich, A.; Grygier, J.; Hauth, T.; Jahnke-Zumbusch, D.; Knittel, D.; Kuhr, T.; Levonian, S.; Moser, H.-G.; Li, L.; Nakao, N.; Prim, M.; Reest, P. v. d.; Schwenssen, F.; Urquijo, P.; Vennemann, B.
2017-10-01
The Belle II collaboration decided in 2016 to migrate its collaborative services and tools into the existing IT infrastructure at DESY. The goal was to reduce the maintenance effort for solutions operated by Belle II members as well as to deploy state-of-art technologies. In addition, some new services and tools were or will be introduced. Planning and migration work was carried out by small teams consisting of experts form Belle II and the involved IT divisions. The migration was successfully accomplished before the KEK computer centre replacement in August 2016.
Challenges & Roadmap for Beyond CMOS Computing Simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Arun F.; Frank, Michael P.
Simulating HPC systems is a difficult task and the emergence of “Beyond CMOS” architectures and execution models will increase that difficulty. This document presents a “tutorial” on some of the simulation challenges faced by conventional and non-conventional architectures (Section 1) and goals and requirements for simulating Beyond CMOS systems (Section 2). These provide background for proposed short- and long-term roadmaps for simulation efforts at Sandia (Sections 3 and 4). Additionally, a brief explanation of a proof-of-concept integration of a Beyond CMOS architectural simulator is presented (Section 2.3).
A Study of Gaps in Network Knowledge Synthesis
2015-10-18
several authorizations is present. PPSI has an additional nm computational overhead beyond the complexity of PSI itself, where n is the maximum number of...devices are black boxes M L 5 Sensors require collection across multiple layers M L D at a C ol le ct io n 1 Collection at line speed is very hard H H 2...Requires manual effort to specify what data to collect M L 10 Cannot work on encoded/compressed data M L D at a F il te ri n g 1 Trade-off between
Acceleration of low order finite element computation with GPUs (Invited)
NASA Astrophysics Data System (ADS)
Knepley, M. G.
2010-12-01
Considerable effort has been focused on the acceleration using GPUs of high order spectral element methods and discontinuous Galerkin finite element methods. However, these methods are not universally applicable, and much of the existing FEM software base employs low order methods. In this talk, we present a formulation of FEM, using the PETSc framework from ANL, which is amenable to GPU acceleration even at very low order. In addition, using the FEniCS system for FEM, we show that the relevant kernels can be automatically generated and optimized using a symbolic manipulation system.
POEM: Identifying Joint Additive Effects on Regulatory Circuits.
Botzman, Maya; Nachshon, Aharon; Brodt, Avital; Gat-Viks, Irit
2016-01-01
Expression Quantitative Trait Locus (eQTL) mapping tackles the problem of identifying variation in DNA sequence that have an effect on the transcriptional regulatory network. Major computational efforts are aimed at characterizing the joint effects of several eQTLs acting in concert to govern the expression of the same genes. Yet, progress toward a comprehensive prediction of such joint effects is limited. For example, existing eQTL methods commonly discover interacting loci affecting the expression levels of a module of co-regulated genes. Such "modularization" approaches, however, are focused on epistatic relations and thus have limited utility for the case of additive (non-epistatic) effects. Here we present POEM (Pairwise effect On Expression Modules), a methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically designed to achieve high performance in the case of additive joint effects. We applied POEM to transcription profiles measured in bone marrow-derived dendritic cells across a population of genotyped mice. Our study reveals widespread additive, trans-acting pairwise effects on gene modules, characterizes their organizational principles, and highlights high-order interconnections between modules within the immune signaling network. These analyses elucidate the central role of additive pairwise effect in regulatory circuits, and provide computational tools for future investigations into the interplay between eQTLs. The software described in this article is available at csgi.tau.ac.il/POEM/.
POEM: Identifying Joint Additive Effects on Regulatory Circuits
Botzman, Maya; Nachshon, Aharon; Brodt, Avital; Gat-Viks, Irit
2016-01-01
Motivation: Expression Quantitative Trait Locus (eQTL) mapping tackles the problem of identifying variation in DNA sequence that have an effect on the transcriptional regulatory network. Major computational efforts are aimed at characterizing the joint effects of several eQTLs acting in concert to govern the expression of the same genes. Yet, progress toward a comprehensive prediction of such joint effects is limited. For example, existing eQTL methods commonly discover interacting loci affecting the expression levels of a module of co-regulated genes. Such “modularization” approaches, however, are focused on epistatic relations and thus have limited utility for the case of additive (non-epistatic) effects. Results: Here we present POEM (Pairwise effect On Expression Modules), a methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically designed to achieve high performance in the case of additive joint effects. We applied POEM to transcription profiles measured in bone marrow-derived dendritic cells across a population of genotyped mice. Our study reveals widespread additive, trans-acting pairwise effects on gene modules, characterizes their organizational principles, and highlights high-order interconnections between modules within the immune signaling network. These analyses elucidate the central role of additive pairwise effect in regulatory circuits, and provide computational tools for future investigations into the interplay between eQTLs. Availability: The software described in this article is available at csgi.tau.ac.il/POEM/. PMID:27148351
An efficient method for hybrid density functional calculation with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui
2018-03-01
In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.
Computational Models of Anterior Cingulate Cortex: At the Crossroads between Prediction and Effort.
Vassena, Eliana; Holroyd, Clay B; Alexander, William H
2017-01-01
In the last two decades the anterior cingulate cortex (ACC) has become one of the most investigated areas of the brain. Extensive neuroimaging evidence suggests countless functions for this region, ranging from conflict and error coding, to social cognition, pain and effortful control. In response to this burgeoning amount of data, a proliferation of computational models has tried to characterize the neurocognitive architecture of ACC. Early seminal models provided a computational explanation for a relatively circumscribed set of empirical findings, mainly accounting for EEG and fMRI evidence. More recent models have focused on ACC's contribution to effortful control. In parallel to these developments, several proposals attempted to explain within a single computational framework a wider variety of empirical findings that span different cognitive processes and experimental modalities. Here we critically evaluate these modeling attempts, highlighting the continued need to reconcile the array of disparate ACC observations within a coherent, unifying framework.
Biocellion: accelerating computer simulation of multicellular biological system models.
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-11-01
Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Additive manufacturing technology in reconstructive surgery.
Fuller, Scott C; Moore, Michael G
2016-10-01
Technological advances have been part and parcel of modern reconstructive surgery, in that practitioners of this discipline are continually looking for innovative ways to perfect their craft and improve patient outcomes. We are currently in a technological climate wherein advances in computers, imaging, and science have coalesced with resulting innovative breakthroughs that are not merely limited to improved outcomes and enhanced patient care, but may provide novel approaches to training the next generation of reconstructive surgeons. New developments in software and modeling platforms, imaging modalities, tissue engineering, additive manufacturing, and customization of implants are poised to revolutionize the field of reconstructive surgery. The interface between technological advances and reconstructive surgery continues to expand. Additive manufacturing techniques continue to evolve in an effort to improve patient outcomes, decrease operative time, and serve as instructional tools for the training of reconstructive surgeons.
An Investigation of the Flow Physics of Acoustic Liners by Direct Numerical Simulation
NASA Technical Reports Server (NTRS)
Watson, Willie R. (Technical Monitor); Tam, Christopher
2004-01-01
This report concentrates on reporting the effort and status of work done on three dimensional (3-D) simulation of a multi-hole resonator in an impedance tube. This work is coordinated with a parallel experimental effort to be carried out at the NASA Langley Research Center. The outline of this report is as follows : 1. Preliminary consideration. 2. Computation model. 3. Mesh design and parallel computing. 4. Visualization. 5. Status of computer code development. 1. Preliminary Consideration.
[Earth and Space Sciences Project Services for NASA HPCC
NASA Technical Reports Server (NTRS)
Merkey, Phillip
2002-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
Automated Estimation Of Software-Development Costs
NASA Technical Reports Server (NTRS)
Roush, George B.; Reini, William
1993-01-01
COSTMODL is automated software development-estimation tool. Yields significant reduction in risk of cost overruns and failed projects. Accepts description of software product developed and computes estimates of effort required to produce it, calendar schedule required, and distribution of effort and staffing as function of defined set of development life-cycle phases. Written for IBM PC(R)-compatible computers.
Optimizing R with SparkR on a commodity cluster for biomedical research.
Sedlmayr, Martin; Würfl, Tobias; Maier, Christian; Häberle, Lothar; Fasching, Peter; Prokosch, Hans-Ulrich; Christoph, Jan
2016-12-01
Medical researchers are challenged today by the enormous amount of data collected in healthcare. Analysis methods such as genome-wide association studies (GWAS) are often computationally intensive and thus require enormous resources to be performed in a reasonable amount of time. While dedicated clusters and public clouds may deliver the desired performance, their use requires upfront financial efforts or anonymous data, which is often not possible for preliminary or occasional tasks. We explored the possibilities to build a private, flexible cluster for processing scripts in R based on commodity, non-dedicated hardware of our department. For this, a GWAS-calculation in R on a single desktop computer, a Message Passing Interface (MPI)-cluster, and a SparkR-cluster were compared with regards to the performance, scalability, quality, and simplicity. The original script had a projected runtime of three years on a single desktop computer. Optimizing the script in R already yielded a significant reduction in computing time (2 weeks). By using R-MPI and SparkR, we were able to parallelize the computation and reduce the time to less than three hours (2.6 h) on already available, standard office computers. While MPI is a proven approach in high-performance clusters, it requires rather static, dedicated nodes. SparkR and its Hadoop siblings allow for a dynamic, elastic environment with automated failure handling. SparkR also scales better with the number of nodes in the cluster than MPI due to optimized data communication. R is a popular environment for clinical data analysis. The new SparkR solution offers elastic resources and allows supporting big data analysis using R even on non-dedicated resources with minimal change to the original code. To unleash the full potential, additional efforts should be invested to customize and improve the algorithms, especially with regards to data distribution. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David
The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes weremore » used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge« less
NASA Technical Reports Server (NTRS)
Jutte, Christine; Stanford, Bret K.
2014-01-01
This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.
Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing
NASA Astrophysics Data System (ADS)
Salamone, Joseph A., III
Sonic boom focusing theory has been augmented with new terms that account for mean flow effects in the direction of propagation and also for atmospheric absorption/dispersion due to molecular relaxation due to oxygen and nitrogen. The newly derived model equation was numerically implemented using a computer code. The computer code was numerically validated using a spectral solution for nonlinear propagation of a sinusoid through a lossy homogeneous medium. An additional numerical check was performed to verify the linear diffraction component of the code calculations. The computer code was experimentally validated using measured sonic boom focusing data from the NASA sponsored Superboom Caustic and Analysis Measurement Program (SCAMP) flight test. The computer code was in good agreement with both the numerical and experimental validation. The newly developed code was applied to examine the focusing of a NASA low-boom demonstration vehicle concept. The resulting pressure field was calculated for several supersonic climb profiles. The shaping efforts designed into the signatures were still somewhat evident despite the effects of sonic boom focusing.
Personal computer security: part 1. Firewalls, antivirus software, and Internet security suites.
Caruso, Ronald D
2003-01-01
Personal computer (PC) security in the era of the Health Insurance Portability and Accountability Act of 1996 (HIPAA) involves two interrelated elements: safeguarding the basic computer system itself and protecting the information it contains and transmits, including personal files. HIPAA regulations have toughened the requirements for securing patient information, requiring every radiologist with such data to take further precautions. Security starts with physically securing the computer. Account passwords and a password-protected screen saver should also be set up. A modern antivirus program can easily be installed and configured. File scanning and updating of virus definitions are simple processes that can largely be automated and should be performed at least weekly. A software firewall is also essential for protection from outside intrusion, and an inexpensive hardware firewall can provide yet another layer of protection. An Internet security suite yields additional safety. Regular updating of the security features of installed programs is important. Obtaining a moderate degree of PC safety and security is somewhat inconvenient but is necessary and well worth the effort. Copyright RSNA, 2003
Enabling Disabled Persons to Gain Access to Digital Media
NASA Technical Reports Server (NTRS)
Beach, Glenn; OGrady, Ryan
2011-01-01
A report describes the first phase in an effort to enhance the NaviGaze software to enable profoundly disabled persons to operate computers. (Running on a Windows-based computer equipped with a video camera aimed at the user s head, the original NaviGaze software processes the user's head movements and eye blinks into cursor movements and mouse clicks to enable hands-free control of the computer.) To accommodate large variations in movement capabilities among disabled individuals, one of the enhancements was the addition of a graphical user interface for selection of parameters that affect the way the software interacts with the computer and tracks the user s movements. Tracking algorithms were improved to reduce sensitivity to rotations and reduce the likelihood of tracking the wrong features. Visual feedback to the user was improved to provide an indication of the state of the computer system. It was found that users can quickly learn to use the enhanced software, performing single clicks, double clicks, and drags within minutes of first use. Available programs that could increase the usability of NaviGaze were identified. One of these enables entry of text by using NaviGaze as a mouse to select keys on a virtual keyboard.
A Survey of Techniques for Approximate Computing
Mittal, Sparsh
2016-03-18
Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less
A new look at the simultaneous analysis and design of structures
NASA Technical Reports Server (NTRS)
Striz, Alfred G.
1994-01-01
The minimum weight optimization of structural systems, subject to strength and displacement constraints as well as size side constraints, was investigated by the Simultaneous ANalysis and Design (SAND) approach. As an optimizer, the code NPSOL was used which is based on a sequential quadratic programming (SQP) algorithm. The structures were modeled by the finite element method. The finite element related input to NPSOL was automatically generated from the input decks of such standard FEM/optimization codes as NASTRAN or ASTROS, with the stiffness matrices, at present, extracted from the FEM code ANALYZE. In order to avoid ill-conditioned matrices that can be encountered when the global stiffness equations are used as additional nonlinear equality constraints in the SAND approach (with the displacements as additional variables), the matrix displacement method was applied. In this approach, the element stiffness equations are used as constraints instead of the global stiffness equations, in conjunction with the nodal force equilibrium equations. This approach adds the element forces as variables to the system. Since, for complex structures and the associated large and very sparce matrices, the execution times of the optimization code became excessive due to the large number of required constraint gradient evaluations, the Kreisselmeier-Steinhauser function approach was used to decrease the computational effort by reducing the nonlinear equality constraint system to essentially a single combined constraint equation. As the linear equality and inequality constraints require much less computational effort to evaluate, they were kept in their previous form to limit the complexity of the KS function evaluation. To date, the standard three-bar, ten-bar, and 72-bar trusses have been tested. For the standard SAND approach, correct results were obtained for all three trusses although convergence became slower for the 72-bar truss. When the matrix displacement method was used, correct results were still obtained, but the execution times became excessive due to the large number of constraint gradient evaluations required. Using the KS function, the computational effort dropped, but the optimization seemed to become less robust. The investigation of this phenomenon is continuing. As an alternate approach, the code MINOS for the optimization of sparse matrices can be applied to the problem in lieu of the Kreisselmeier-Steinhauser function. This investigation is underway.
34 CFR 461.45 - How does the Secretary compute maintenance of effort in the event of a waiver?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION... awarded for the year after the year of the waiver by comparing the amount spent for adult education from... 34 Education 3 2012-07-01 2012-07-01 false How does the Secretary compute maintenance of effort in...
34 CFR 461.45 - How does the Secretary compute maintenance of effort in the event of a waiver?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION... awarded for the year after the year of the waiver by comparing the amount spent for adult education from... 34 Education 3 2013-07-01 2013-07-01 false How does the Secretary compute maintenance of effort in...
34 CFR 461.45 - How does the Secretary compute maintenance of effort in the event of a waiver?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION... awarded for the year after the year of the waiver by comparing the amount spent for adult education from... 34 Education 3 2011-07-01 2011-07-01 false How does the Secretary compute maintenance of effort in...
34 CFR 461.45 - How does the Secretary compute maintenance of effort in the event of a waiver?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION... awarded for the year after the year of the waiver by comparing the amount spent for adult education from... 34 Education 3 2014-07-01 2014-07-01 false How does the Secretary compute maintenance of effort in...
34 CFR 461.45 - How does the Secretary compute maintenance of effort in the event of a waiver?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION... awarded for the year after the year of the waiver by comparing the amount spent for adult education from... 34 Education 3 2010-07-01 2010-07-01 false How does the Secretary compute maintenance of effort in...
NASA Astrophysics Data System (ADS)
Chonacky, Norman; Winch, David
2008-04-01
There is substantial evidence of a need to make computation an integral part of the undergraduate physics curriculum. This need is consistent with data from surveys in both the academy and the workplace, and has been reinforced by two years of exploratory efforts by a group of physics faculty for whom computation is a special interest. We have examined past and current efforts at reform and a variety of strategic, organizational, and institutional issues involved in any attempt to broadly transform existing practice. We propose a set of guidelines for development based on this past work and discuss our vision of computationally integrated physics.
Micro-video display with ocular tracking and interactive voice control
NASA Technical Reports Server (NTRS)
Miller, James E.
1993-01-01
In certain space-restricted environments, many of the benefits resulting from computer technology have been foregone because of the size, weight, inconvenience, and lack of mobility associated with existing computer interface devices. Accordingly, an effort to develop a highly miniaturized and 'wearable' computer display and control interface device, referred to as the Sensory Integrated Data Interface (SIDI), is underway. The system incorporates a micro-video display that provides data display and ocular tracking on a lightweight headset. Software commands are implemented by conjunctive eye movement and voice commands of the operator. In this initial prototyping effort, various 'off-the-shelf' components have been integrated into a desktop computer and with a customized menu-tree software application to demonstrate feasibility and conceptual capabilities. When fully developed as a customized system, the interface device will allow mobile, 'hand-free' operation of portable computer equipment. It will thus allow integration of information technology applications into those restrictive environments, both military and industrial, that have not yet taken advantage of the computer revolution. This effort is Phase 1 of Small Business Innovative Research (SBIR) Topic number N90-331 sponsored by the Naval Undersea Warfare Center Division, Newport. The prime contractor is Foster-Miller, Inc. of Waltham, MA.
Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle.
Aeromechanics Analysis of a Boundary Layer Ingesting Fan
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Reddy, T. S. R.; Herrick, Gregory P.; Shabbir, Aamir; Florea, Razvan V.
2013-01-01
Boundary layer ingesting propulsion systems have the potential to significantly reduce fuel burn but these systems must overcome the challe nges related to aeromechanics-fan flutter stability and forced response dynamic stresses. High-fidelity computational analysis of the fan a eromechanics is integral to the ongoing effort to design a boundary layer ingesting inlet and fan for fabrication and wind-tunnel test. A t hree-dimensional, time-accurate, Reynolds-averaged Navier Stokes computational fluid dynamics code is used to study aerothermodynamic and a eromechanical behavior of the fan in response to both clean and distorted inflows. The computational aeromechanics analyses performed in th is study show an intermediate design iteration of the fan to be flutter-free at the design conditions analyzed with both clean and distorte d in-flows. Dynamic stresses from forced response have been calculated for the design rotational speed. Additional work is ongoing to expan d the analyses to off-design conditions, and for on-resonance conditions.
Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow
NASA Technical Reports Server (NTRS)
Tucker, P. Kevin
1993-01-01
The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.
Performance of a parallel code for the Euler equations on hypercube computers
NASA Technical Reports Server (NTRS)
Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.
1990-01-01
The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.
The European computer model for optronic system performance prediction (ECOMOS)
NASA Astrophysics Data System (ADS)
Keßler, Stefan; Bijl, Piet; Labarre, Luc; Repasi, Endre; Wittenstein, Wolfgang; Bürsing, Helge
2017-10-01
ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defence and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses and combines well-accepted existing European tools to build up a strong competitive position. This includes two TA models: the analytical TRM4 model and the image-based TOD model. In addition, it uses the atmosphere model MATISSE. In this paper, the central idea of ECOMOS is exposed. The overall software structure and the underlying models are shown and elucidated. The status of the project development is given as well as a short discussion of validation tests and an outlook on the future potential of simulation for sensor assessment.
Functional near-infrared spectroscopy for adaptive human-computer interfaces
NASA Astrophysics Data System (ADS)
Yuksel, Beste F.; Peck, Evan M.; Afergan, Daniel; Hincks, Samuel W.; Shibata, Tomoki; Kainerstorfer, Jana; Tgavalekos, Kristen; Sassaroli, Angelo; Fantini, Sergio; Jacob, Robert J. K.
2015-03-01
We present a brain-computer interface (BCI) that detects, analyzes and responds to user cognitive state in real-time using machine learning classifications of functional near-infrared spectroscopy (fNIRS) data. Our work is aimed at increasing the narrow communication bandwidth between the human and computer by implicitly measuring users' cognitive state without any additional effort on the part of the user. Traditionally, BCIs have been designed to explicitly send signals as the primary input. However, such systems are usually designed for people with severe motor disabilities and are too slow and inaccurate for the general population. In this paper, we demonstrate with previous work1 that a BCI that implicitly measures cognitive workload can improve user performance and awareness compared to a control condition by adapting to user cognitive state in real-time. We also discuss some of the other applications we have used in this field to measure and respond to cognitive states such as cognitive workload, multitasking, and user preference.
Adaptive subdomain modeling: A multi-analysis technique for ocean circulation models
NASA Astrophysics Data System (ADS)
Altuntas, Alper; Baugh, John
2017-07-01
Many coastal and ocean processes of interest operate over large temporal and geographical scales and require a substantial amount of computational resources, particularly when engineering design and failure scenarios are also considered. This study presents an adaptive multi-analysis technique that improves the efficiency of these computations when multiple alternatives are being simulated. The technique, called adaptive subdomain modeling, concurrently analyzes any number of child domains, with each instance corresponding to a unique design or failure scenario, in addition to a full-scale parent domain providing the boundary conditions for its children. To contain the altered hydrodynamics originating from the modifications, the spatial extent of each child domain is adaptively adjusted during runtime depending on the response of the model. The technique is incorporated in ADCIRC++, a re-implementation of the popular ADCIRC ocean circulation model with an updated software architecture designed to facilitate this adaptive behavior and to utilize concurrent executions of multiple domains. The results of our case studies confirm that the method substantially reduces computational effort while maintaining accuracy.
Measuring and Modeling Change in Examinee Effort on Low-Stakes Tests across Testing Occasions
ERIC Educational Resources Information Center
Sessoms, John; Finney, Sara J.
2015-01-01
Because schools worldwide use low-stakes tests to make important decisions, value-added indices computed from test scores must accurately reflect student learning, which requires equal test-taking effort across testing occasions. Evaluating change in effort assumes effort is measured equivalently across occasions. We evaluated the longitudinal…
Minimal-effort planning of active alignment processes for beam-shaping optics
NASA Astrophysics Data System (ADS)
Haag, Sebastian; Schranner, Matthias; Müller, Tobias; Zontar, Daniel; Schlette, Christian; Losch, Daniel; Brecher, Christian; Roßmann, Jürgen
2015-03-01
In science and industry, the alignment of beam-shaping optics is usually a manual procedure. Many industrial applications utilizing beam-shaping optical systems require more scalable production solutions and therefore effort has been invested in research regarding the automation of optics assembly. In previous works, the authors and other researchers have proven the feasibility of automated alignment of beam-shaping optics such as collimation lenses or homogenization optics. Nevertheless, the planning efforts as well as additional knowledge from the fields of automation and control required for such alignment processes are immense. This paper presents a novel approach of planning active alignment processes of beam-shaping optics with the focus of minimizing the planning efforts for active alignment. The approach utilizes optical simulation and the genetic programming paradigm from computer science for automatically extracting features from a simulated data basis with a high correlation coefficient regarding the individual degrees of freedom of alignment. The strategy is capable of finding active alignment strategies that can be executed by an automated assembly system. The paper presents a tool making the algorithm available to end-users and it discusses the results of planning the active alignment of the well-known assembly of a fast-axis collimator. The paper concludes with an outlook on the transferability to other use cases such as application specific intensity distributions which will benefit from reduced planning efforts.
Unsteady numerical simulations of the stability and dynamics of flames
NASA Technical Reports Server (NTRS)
Kailasanath, K.; Patnaik, G.; Oran, E. S.
1995-01-01
In this report we describe the research performed at the Naval Research Laboratory in support of the NASA Microgravity Science and Applications Program over the past three years (from Feb. 1992) with emphasis on the work performed since the last microgravity combustion workshop. The primary objective of our research is to develop an understanding of the differences in the structure, stability, dynamics and extinction of flames in earth gravity and in microgravity environments. Numerical simulations, in which the various physical and chemical processes can be independently controlled, can significantly advance our understanding of these differences. Therefore, our approach is to use detailed time-dependent, multi-dimensional, multispecies numerical models to perform carefully designed computational experiments. The basic issues we have addressed, a general description of the numerical approach, and a summary of the results are described in this report. More detailed discussions are available in the papers published which are referenced herein. Some of the basic issues we have addressed recently are (1) the relative importance of wall losses and gravity on the extinguishment of downward-propagating flames; (2) the role of hydrodynamic instabilities in the formation of cellular flames; (3) effects of gravity on burner-stabilized flames, and (4) effects of radiative losses and chemical-kinetics on flames near flammability limits. We have also expanded our efforts to include hydrocarbon flames in addition to hydrogen flames and to perform simulations in support of other on-going efforts in the microgravity combustion sciences program. Modeling hydrocarbon flames typically involves a larger number of species and a much larger number of reactions when compared to hydrogen. In addition, more complex radiation models may also be needed. In order to efficiently compute such complex flames recent developments in parallel computing have been utilized to develop a state-of-the-art parallel flame code. This is discussed below in some detail after a brief discussion of the numerical models.
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes
Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen
2007-01-01
The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.
Nonlinear Unsteady Aerodynamic Modeling Using Wind Tunnel and Computational Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.
2016-01-01
Extensions to conventional aircraft aerodynamic models are required to adequately predict responses when nonlinear unsteady flight regimes are encountered, especially at high incidence angles and under maneuvering conditions. For a number of reasons, such as loss of control, both military and civilian aircraft may extend beyond normal and benign aerodynamic flight conditions. In addition, military applications may require controlled flight beyond the normal envelope, and civilian flight may require adequate recovery or prevention methods from these adverse conditions. These requirements have led to the development of more general aerodynamic modeling methods and provided impetus for researchers to improve both techniques and the degree of collaboration between analytical and experimental research efforts. In addition to more general mathematical model structures, dynamic test methods have been designed to provide sufficient information to allow model identification. This paper summarizes research to develop a modeling methodology appropriate for modeling aircraft aerodynamics that include nonlinear unsteady behaviors using both experimental and computational test methods. This work was done at Langley Research Center, primarily under the NASA Aviation Safety Program, to address aircraft loss of control, prevention, and recovery aerodynamics.
Theoretical research program to study chemical reactions in AOTV bow shock tubes
NASA Technical Reports Server (NTRS)
Taylor, Peter
1992-01-01
Effort continued through this period to refine and expand the SIRIUS/ABACUS program package for CASSCF and RASSCF second derivatives. A new approach to computing the Gaussian integral derivatives that require much of the time in gradient and Hessian calculations was devised. Several different studies were undertaken in the area of application calculations. These include a study of proton transfer in the HF trimer, which provides an analog of rearrangement reactions, and the extension of our previous work on Be and Mg clusters to Ca clusters. In addition, a very accurate investigation of the lowest-lying potential curves of the O2 molecule was completed. These curves are essential for evaluating different models of the terrestrial atmosphere nightglow. The most effort this year was devoted to a large scale investigation of stationary points on the C4H4 surface, and the thermochemistry of acetylene/acetylene reaction.
Good, Andrew C; Hermsmeier, Mark A
2007-01-01
Research into the advancement of computer-aided molecular design (CAMD) has a tendency to focus on the discipline of algorithm development. Such efforts are often wrought to the detriment of the data set selection and analysis used in said algorithm validation. Here we highlight the potential problems this can cause in the context of druglikeness classification. More rigorous efforts are applied to the selection of decoy (nondruglike) molecules from the ACD. Comparisons are made between model performance using the standard technique of random test set creation with test sets derived from explicit ontological separation by drug class. The dangers of viewing druglike space as sufficiently coherent to permit simple classification are highlighted. In addition the issues inherent in applying unfiltered data and random test set selection to (Q)SAR models utilizing large and supposedly heterogeneous databases are discussed.
Comparison of Aircraft Icing Growth Assessment Software
NASA Technical Reports Server (NTRS)
Wright, William; Potapczuk, Mark G.; Levinson, Laurie H.
2011-01-01
A research project is underway to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has been performed, including additional data taken to extend the database in the Super-cooled Large Drop (SLD) regime. The project shows the differences in ice shape between LEWICE 3.2.2, GlennICE, and experimental data. The project addresses the validation of the software against a recent set of ice-shape data in the SLD regime. This validation effort mirrors a similar effort undertaken for previous validations of LEWICE. Those reports quantified the ice accretion prediction capabilities of the LEWICE software. Several ice geometry features were proposed for comparing ice shapes in a quantitative manner. The resulting analysis showed that LEWICE compared well to the available experimental data.
Design, fabrication and test of a trace contaminant control system
NASA Technical Reports Server (NTRS)
1975-01-01
A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.
PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joubert, Wayne; Kothe, Douglas B; Nam, Hai Ah
2009-12-01
In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for themore » longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and memory bandwidth. (2) Effective parallel programming interfaces must be developed to exploit the power of emerging hardware. (3) Science application teams must now begin to adapt and reformulate application codes to the new hardware and software, typified by hierarchical and disparate layers of compute, memory and concurrency. (4) Algorithm research must be realigned to exploit this hierarchy. (5) When possible, mathematical libraries must be used to encapsulate the required operations in an efficient and useful way. (6) Software tools must be developed to make the new hardware more usable. (7) Science application software must be improved to cope with the increasing complexity of computing systems. (8) Data management efforts must be readied for the larger quantities of data generated by larger, more accurate science models. Requirements elicitation, analysis, validation, and management comprise a difficult and inexact process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling process is becoming increasingly quantitative and actionable, as the process becomes more developed and mature, and the process this year has identified clear and concrete steps to be taken. This report discloses (1) the fundamental science case driving the need for the next generation of computer hardware, (2) application usage trends that illustrate the science need, (3) application performance characteristics that drive the need for increased hardware capabilities, (4) resource and process requirements that make the development and deployment of science applications on next-generation hardware successful, and (5) summary recommendations for the required next steps within the computer and computational science communities.« less
Multiphysics Thrust Chamber Modeling for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Cheng, Gary; Chen, Yen-Sen
2006-01-01
The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation. A two-pronged approach is employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of heat transfer on thrust performance. Preliminary results on both aspects are presented.
Analysis and assessment of STES technologies
NASA Astrophysics Data System (ADS)
Brown, D. R.; Blahnik, D. E.; Huber, H. D.
1982-12-01
Technical and economic assessments completed in FY 1982 in support of the Seasonal Thermal Energy Storage (STES) segment of the Underground Energy Storage Program included: (1) a detailed economic investigation of the cost of heat storage in aquifers, (2) documentation for AQUASTOR, a computer model for analyzing aquifer thermal energy storage (ATES) coupled with district heating or cooling, and (3) a technical and economic evaluation of several ice storage concepts. This paper summarizes the research efforts and main results of each of these three activities. In addition, a detailed economic investigation of the cost of chill storage in aquifers is currently in progress. The work parallels that done for ATES heat storage with technical and economic assumptions being varied in a parametric analysis of the cost of ATES delivered chill. The computer model AQUASTOR is the principal analytical tool being employed.
Quantum chemical study of methane oxidation species
NASA Technical Reports Server (NTRS)
Jackels, Charles F.
1993-01-01
The research funded by this project has focused on quantum chemical investigations of molecular species thought to be important in the chemistry of the earth's upper and lower atmospheres. The body of this report contains brief discussions of the results of the several phases of this investigation. In many instances these results have been presented at scientific meetings and/or published in refereed journals. Those bibliographic references are given. In addition to the study of specific chemical systems, there were several phases during the course of this investigation where much of the effort went into the development and modification of computer codes necessary to carry out these calculations on the wide range of computer equipment used during this study. This type of code maintenance and development work did not generally result in publications and presentations, but a brief review is given.
Computerized LCC/ORLA methodology. [Life cycle cost/optimum repair level analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, J.T.
1979-01-01
The effort by Sandia Laboratories in developing CDC6600 computer programs for Optimum Repair Level Analysis (ORLA) and Life Cycle Cost (LCC) analysis is described. Investigation of the three repair-level strategies referenced in AFLCM/AFSCM 800-4 (base discard of subassemblies, base repair of subassemblies, and depot repair of subassemblies) was expanded to include an additional three repair-level strategies (base discard of complete assemblies and, upon shipment of complete assemblies to the depot, depot repair of assemblies by subassembly repair, and depot repair of assemblies by subassembly discard). The expanded ORLA was used directly in an LCC model that was procedurally altered tomore » accommodate the ORLA input data. Available from the LCC computer run was an LCC value corresponding to the strategy chosen from the ORLA. 2 figures.« less
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineer's perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for "graceful" rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; map a simplistic failure strength envelope of the material; develop a statistically based reliability computer algorithm, verify the reliability model and computer algorithm, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macroanalysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal, and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineers perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(sub x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; map a simplistic future strength envelope of the material; develop a statistically based reliability computer algorithm; verify the reliability model and computer algorithm-, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macro-analysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.
34 CFR 403.185 - How does the Secretary compute maintenance of effort in the event of a waiver?
Code of Federal Regulations, 2010 CFR
2010-07-01
... VOCATIONAL AND APPLIED TECHNOLOGY EDUCATION PROGRAM What Financial Conditions Must Be Met by a State? § 403... 34 Education 3 2010-07-01 2010-07-01 false How does the Secretary compute maintenance of effort in the event of a waiver? 403.185 Section 403.185 Education Regulations of the Offices of the Department...
Computational Fluid Dynamics Technology for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2003-01-01
Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.
ERIC Educational Resources Information Center
Kolata, Gina
1984-01-01
Examines social influences which discourage women from pursuing studies in computer science, including monopoly of computer time by boys at the high school level, sexual harassment in college, movies, and computer games. Describes some initial efforts to encourage females of all ages to study computer science. (JM)
NASA Astrophysics Data System (ADS)
Lee, M.; Leiter, K.; Eisner, C.; Breuer, A.; Wang, X.
2017-09-01
In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.
Lee, M; Leiter, K; Eisner, C; Breuer, A; Wang, X
2017-09-21
In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.
NASA Technical Reports Server (NTRS)
Goodwin, Sabine A.; Raj, P.
1999-01-01
Progress to date towards the development and validation of a fast, accurate and cost-effective aeroelastic method for advanced parallel computing platforms such as the IBM SP2 and the SGI Origin 2000 is presented in this paper. The ENSAERO code, developed at the NASA-Ames Research Center has been selected for this effort. The code allows for the computation of aeroelastic responses by simultaneously integrating the Euler or Navier-Stokes equations and the modal structural equations of motion. To assess the computational performance and accuracy of the ENSAERO code, this paper reports the results of the Navier-Stokes simulations of the transonic flow over a flexible aeroelastic wing body configuration. In addition, a forced harmonic oscillation analysis in the frequency domain and an analysis in the time domain are done on a wing undergoing a rigid pitch and plunge motion. Finally, to demonstrate the ENSAERO flutter-analysis capability, aeroelastic Euler and Navier-Stokes computations on an L-1011 wind tunnel model including pylon, nacelle and empennage are underway. All computational solutions are compared with experimental data to assess the level of accuracy of ENSAERO. As the computations described above are performed, a meticulous log of computational performance in terms of wall clock time, execution speed, memory and disk storage is kept. Code scalability is also demonstrated by studying the impact of varying the number of processors on computational performance on the IBM SP2 and the Origin 2000 systems.
Combining Computational and Social Effort for Collaborative Problem Solving
Wagy, Mark D.; Bongard, Josh C.
2015-01-01
Rather than replacing human labor, there is growing evidence that networked computers create opportunities for collaborations of people and algorithms to solve problems beyond either of them. In this study, we demonstrate the conditions under which such synergy can arise. We show that, for a design task, three elements are sufficient: humans apply intuitions to the problem, algorithms automatically determine and report back on the quality of designs, and humans observe and innovate on others’ designs to focus creative and computational effort on good designs. This study suggests how such collaborations should be composed for other domains, as well as how social and computational dynamics mutually influence one another during collaborative problem solving. PMID:26544199
NASA Astrophysics Data System (ADS)
Lele, Sanjiva K.
2002-08-01
Funds were received in April 2001 under the Department of Defense DURIP program for construction of a 48 processor high performance computing cluster. This report details the hardware which was purchased and how it has been used to enable and enhance research activities directly supported by, and of interest to, the Air Force Office of Scientific Research and the Department of Defense. The report is divided into two major sections. The first section after this summary describes the computer cluster, its setup, and some cluster performance benchmark results. The second section explains ongoing research efforts which have benefited from the cluster hardware, and presents highlights of those efforts since installation of the cluster.
Native American casino gambling in Arizona: A case study of the Fort McDowell reservation.
Anders, G C
1996-09-01
Since Congress passed the American Indian Gambling Regulatory Act (IGRA) in 1988, there has been an explosion in the number of gambling casinos located on Native American reservations. It is estimated that in 1994 the total net revenue from 81 Native American casinos exceeded $2.3 billion dollars. As the number of Native American casinos grows along with the volume of gambling activity, opposition increases from states, the established gambling industry hurt by lost revenues, and groups with moral objections to gambling. This article reports on an effort to measure the economic impact of the Fort McDowell casino located near Phoenix, Arizona. The article discusses the casino's history and current operations. Next, it explains the use of an input-output model to compute the impact of casino's income and employment effects on the economy of Maricopa County. It is estimated that the casino is responsible for 2,483 new jobs, and an increase of approximately $80.35 million in regional output. Additional information is necessary to more accurately assess both the benefits and costs of the casino. Unfortunately, subsequent efforts to collect additional data have been unsuccessful. The conclusion discusses why, and raises questions regarding Native American gaming.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr. (Principal Investigator)
1996-01-01
The goal of this research project is to develop assumed-stress hybrid elements with rotational degrees of freedom for analyzing composite structures. During the first year of the three-year activity, the effort was directed to further assess the AQ4 shell element and its extensions to buckling and free vibration problems. In addition, the development of a compatible 2-node beam element was to be accomplished. The extensions and new developments were implemented in the Computational Structural Mechanics Testbed COMET. An assessment was performed to verify the implementation and to assess the performance of these elements in terms of accuracy. During the second and third years, extensions to geometrically nonlinear problems were developed and tested. This effort involved working with the nonlinear solution strategy as well as the nonlinear formulation for the elements. This research has resulted in the development and implementation of two additional element processors (ES22 for the beam element and ES24 for the shell elements) in COMET. The software was developed using a SUN workstation and has been ported to the NASA Langley Convex named blackbird. Both element processors are now part of the baseline version of COMET.
Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Mary Ann; Richards, Andrew Walter; Holby, Edward F.
2016-12-20
Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.
Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators
Pérez-Regidor, Lucía; Zarioh, Malik; Ortega, Laura; Martín-Santamaría, Sonsoles
2016-01-01
This review aims to summarize the latest efforts performed in the search for novel chemical entities such as Toll-like receptor (TLR) modulators by means of virtual screening techniques. This is an emergent research field with only very recent (and successful) contributions. Identification of drug-like molecules with potential therapeutic applications for the treatment of a variety of TLR-regulated diseases has attracted considerable interest due to the clinical potential. Additionally, the virtual screening databases and computational tools employed have been overviewed in a descriptive way, widening the scope for researchers interested in the field. PMID:27618029
Complementary Reliability-Based Decodings of Binary Linear Block Codes
NASA Technical Reports Server (NTRS)
Fossorier, Marc P. C.; Lin, Shu
1997-01-01
This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.
contributes to the research efforts for commercial buildings. This effort is dedicated to studying the , commercial sector whole-building energy simulation, scientific computing, and software configuration and
Uncertainty propagation for statistical impact prediction of space debris
NASA Astrophysics Data System (ADS)
Hoogendoorn, R.; Mooij, E.; Geul, J.
2018-01-01
Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research.
NASA Technical Reports Server (NTRS)
Messitt, Don G.; Myrabo, Leik N.
1991-01-01
Rensselaer Polytechnic Institute has been developing a transatmospheric 'Lightcraft' technology which uses beamed laser energy to propel advanced shuttle craft to orbit. In the past several years, Rensselaer students have analyzed the unique combined-cycle Lightcraft engine, designed a small unmanned Lightcraft Technology Demonstrator, and conceptualized larger manned Lightcraft - to name just a few of the interrelated design projects. The 1990-91 class carried out preliminary and detailed design efforts for a one-person 'Mercury' Lightcraft, using computer-aided design and finite-element structural modeling techniques. In addition, they began construction of a 2.6 m-diameter, full-scale engineering prototype mockup. The mockup will be equipped with three robotic legs that 'kneel' for passenger entry and exit. More importantly, the articulated tripod gear is crucial for accurately pointing at, and tracking the laser relay mirrors, a maneuver that must be performed just prior to liftoff. Also accomplished were further design improvements on a 6-inch-diameter Lightcraft model (for testing in RPI's hypersonic tunnel), and new laser propulsion experiments. The resultant experimental data will be used to calibrate Computational Fluid Dynamic (CFD) codes and analytical laser propulsion models that can simulate vehicle/engine flight conditions along a transatmospheric boost trajectory. These efforts will enable the prediction of distributed aerodynamic and thruster loads over the entire full-scale spacecraft.
Chapter 13. Exploring Use of the Reserved Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmen, John; Humphrey, Alan; Berzins, Martin
2015-07-29
In this chapter, we illustrate benefits of thinking in terms of thread management techniques when using a centralized scheduler model along with interoperability of MPI and PThread. This is facilitated through an exploration of thread placement strategies for an algorithm modeling radiative heat transfer with special attention to the 61st core. This algorithm plays a key role within the Uintah Computational Framework (UCF) and current efforts taking place at the University of Utah to model next-generation, large-scale clean coal boilers. In such simulations, this algorithm models the dominant form of heat transfer and consumes a large portion of compute time.more » Exemplified by a real-world example, this chapter presents our early efforts in porting a key portion of a scalability-centric codebase to the Intel Xeon Phi coprocessor. Specifically, this chapter presents results from our experiments profiling the native execution of a reverse Monte-Carlo ray tracing-based radiation model on a single coprocessor. These results demonstrate that our fastest run configurations utilized the 61st core and that performance was not profoundly impacted when explicitly oversubscribing the coprocessor operating system thread. Additionally, this chapter presents a portion of radiation model source code, a MIC-centric UCF cross-compilation example, and less conventional thread management technique for developers utilizing the PThreads threading model.« less
Adiabatic invariance with first integrals of motion
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2002-10-01
The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.
Study of the Use of Time-Mean Vortices to Generate Lift for MAV Applications
2011-05-31
microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters (geometry, frequency, amplitude of oscillation, etc...issue involved. Towards this end, a suspended microplate was fabricated via MEMS technology and driven to in-plane resonance via Lorentz force...force to drive the suspended MEMS-based microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters
A General Approach to Measuring Test-Taking Effort on Computer-Based Tests
ERIC Educational Resources Information Center
Wise, Steven L.; Gao, Lingyun
2017-01-01
There has been an increased interest in the impact of unmotivated test taking on test performance and score validity. This has led to the development of new ways of measuring test-taking effort based on item response time. In particular, Response Time Effort (RTE) has been shown to provide an assessment of effort down to the level of individual…
Efforts to integrate CMIP metadata and standards into NOAA-GFDL's climate model workflow
NASA Astrophysics Data System (ADS)
Blanton, C.; Lee, M.; Mason, E. E.; Radhakrishnan, A.
2017-12-01
Modeling centers participating in CMIP6 run model simulations, publish requested model output (conforming to community data standards), and document models and simulations using ES-DOC. GFDL developed workflow software implementing some best practices to meet these metadata and documentation requirements. The CMIP6 Data Request defines the variables that should be archived for each experiment and specifies their spatial and temporal structure. We used the Data Request's dreqPy python library to write GFDL model configuration files as an alternative to hand-crafted tables. There was also a largely successful effort to standardize variable names within the model to reduce the additional overhead of translating "GFDL to CMOR" variables at a later stage in the pipeline. The ES-DOC ecosystem provides tools and standards to create, publish, and view various types of community-defined CIM documents, most notably model and simulation documents. Although ES-DOC will automatically create simulation documents during publishing by harvesting NetCDF global attributes, the information must be collected, stored, and placed in the NetCDF files by the workflow. We propose to develop a GUI to collect the simulation document precursors. In addition, a new MIP for CMIP6-CPMIP, a comparison of computational performance of climate models-is documented using machine and performance CIM documents. We used ES-DOC's pyesdoc python library to automatically create these machine and performance documents. We hope that these and similar efforts will become permanent features of the GFDL workflow to facilitate future participation in CMIP-like activities.
Computational strategies for three-dimensional flow simulations on distributed computer systems
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Weed, Richard A.
1995-01-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
Computational strategies for three-dimensional flow simulations on distributed computer systems
NASA Astrophysics Data System (ADS)
Sankar, Lakshmi N.; Weed, Richard A.
1995-08-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
NASA Technical Reports Server (NTRS)
Bennett, Jerome (Technical Monitor)
2002-01-01
The NASA Center for Computational Sciences (NCCS) is a high-performance scientific computing facility operated, maintained and managed by the Earth and Space Data Computing Division (ESDCD) of NASA Goddard Space Flight Center's (GSFC) Earth Sciences Directorate. The mission of the NCCS is to advance leading-edge science by providing the best people, computers, and data storage systems to NASA's Earth and space sciences programs and those of other U.S. Government agencies, universities, and private institutions. Among the many computationally demanding Earth science research efforts supported by the NCCS in Fiscal Year 1999 (FY99) are the NASA Seasonal-to-Interannual Prediction Project, the NASA Search and Rescue Mission, Earth gravitational model development efforts, the National Weather Service's North American Observing System program, Data Assimilation Office studies, a NASA-sponsored project at the Center for Ocean-Land-Atmosphere Studies, a NASA-sponsored microgravity project conducted by researchers at the City University of New York and the University of Pennsylvania, the completion of a satellite-derived global climate data set, simulations of a new geodynamo model, and studies of Earth's torque. This document presents highlights of these research efforts and an overview of the NCCS, its facilities, and its people.
NASTRAN Modeling of Flight Test Components for UH-60A Airloads Program Test Configuration
NASA Technical Reports Server (NTRS)
Idosor, Florentino R.; Seible, Frieder
1993-01-01
Based upon the recommendations of the UH-60A Airloads Program Review Committee, work towards a NASTRAN remodeling effort has been conducted. This effort modeled and added the necessary structural/mass components to the existing UH-60A baseline NASTRAN model to reflect the addition of flight test components currently in place on the UH-60A Airloads Program Test Configuration used in NASA-Ames Research Center's Modern Technology Rotor Airloads Program. These components include necessary flight hardware such as instrument booms, movable ballast cart, equipment mounting racks, etc. Recent modeling revisions have also been included in the analyses to reflect the inclusion of new and updated primary and secondary structural components (i.e., tail rotor shaft service cover, tail rotor pylon) and improvements to the existing finite element mesh (i.e., revisions of material property estimates). Mode frequency and shape results have shown that components such as the Trimmable Ballast System baseplate and its respective payload ballast have caused a significant frequency change in a limited number of modes while only small percent changes in mode frequency are brought about with the addition of the other MTRAP flight components. With the addition of the MTRAP flight components, update of the primary and secondary structural model, and imposition of the final MTRAP weight distribution, modal results are computed representative of the 'best' model presently available.
Computerizing the Accounting Curriculum.
ERIC Educational Resources Information Center
Nash, John F.; England, Thomas G.
1986-01-01
Discusses the use of computers in college accounting courses. Argues that the success of new efforts in using computers in teaching accounting is dependent upon increasing instructors' computer skills, and choosing appropriate hardware and software, including commercially available business software packages. (TW)
Finite Element Models for Electron Beam Freeform Fabrication Process
NASA Technical Reports Server (NTRS)
Chandra, Umesh
2012-01-01
Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the computation of thermal gradient, solidification rate, and velocity (G,R,V) coupled with the use of a solidification map that should be known a priori. The second approach relies completely on computer simulation. For this purpose a criterion for the prediction of morphology was proposed, which was combined with three alternative models for the prediction of microstructure; one based on solidification kinetics, the second on phase diagram, and the third on differential scanning calorimetry data. The last was found to be the simplest and the most versatile; it can be used with multicomponent alloys and rapid solidification without any additional difficulty. For the purpose of (limited) experimental validation, finite element models developed in this effort were applied to three different shapes made of stainless steel 304 material, designed expressly for this effort with an increasing level of complexity. These finite element models require large computation time, especially when applied to deposits with multiple adjacent beads and layers. This problem can be overcome, to some extent, by the use of fast, multi-core computers. Also, due to their numerical nature coupled with the fact that solid mechanics- based models are being used to represent the material behavior in liquid and vapor phases as well, the models have some inherent approximations that become more pronounced when dealing with multi-bead and multi-layer deposits.
Computers in Schools: White Boys Only?
ERIC Educational Resources Information Center
Hammett, Roberta F.
1997-01-01
Discusses the role of computers in today's world and the construction of computer use attitudes, such as gender gaps. Suggests how schools might close the gaps. Includes a brief explanation about how facility with computers is important for women in their efforts to gain equitable treatment in all aspects of their lives. (PA)
Computers and Instruction: Implications of the Rising Tide of Criticism for Reading Education.
ERIC Educational Resources Information Center
Balajthy, Ernest
1988-01-01
Examines two major reasons that schools have adopted computers without careful prior examination and planning. Surveys a variety of criticisms targeted toward some aspects of computer-based instruction in reading in an effort to direct attention to the beneficial implications of computers in the classroom. (MS)
Preparing Future Secondary Computer Science Educators
ERIC Educational Resources Information Center
Ajwa, Iyad
2007-01-01
Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…
Bott, O J; Ammenwerth, E; Brigl, B; Knaup, P; Lang, E; Pilgram, R; Pfeifer, B; Ruderich, F; Wolff, A C; Haux, R; Kulikowski, C
2005-01-01
To review recent research efforts in the field of ubiquitous computing in health care. To identify current research trends and further challenges for medical informatics. Analysis of the contents of the Yearbook on Medical Informatics 2005 of the International Medical Informatics Association (IMIA). The Yearbook of Medical Informatics 2005 includes 34 original papers selected from 22 peer-reviewed scientific journals related to several distinct research areas: health and clinical management, patient records, health information systems, medical signal processing and biomedical imaging, decision support, knowledge representation and management, education and consumer informatics as well as bioinformatics. A special section on ubiquitous health care systems is devoted to recent developments in the application of ubiquitous computing in health care. Besides additional synoptical reviews of each of the sections the Yearbook includes invited reviews concerning E-Health strategies, primary care informatics and wearable healthcare. Several publications demonstrate the potential of ubiquitous computing to enhance effectiveness of health services delivery and organization. But ubiquitous computing is also a societal challenge, caused by the surrounding but unobtrusive character of this technology. Contributions from nearly all of the established sub-disciplines of medical informatics are demanded to turn the visions of this promising new research field into reality.
Holt, Thomas J; Bossler, Adam M
2012-09-01
Cybercrime has created substantial challenges for law enforcement, particularly at the local level. Most scholars and police administrators believe that patrol officers need to become more effective first responders to cybercrime calls. The evidence illustrates, however, that many patrol officers are neither adequately prepared nor strongly interested in taking an active role in addressing cybercrime at the local level. This study, therefore, examined the factors that predicted patrol officer interest in cybercrime training and investigations in two southeastern U.S. cities. The study specifically examined the relationship between demographics, cybercrime exposure, computer training, computer proficiency, Internet and cybercrime perceptions, and views on policing cybercrime with officer interest in cybercrime investigation training and conducting cybercrime investigations in the future. Officer views on policing cybercrime, particularly whether they valued cybercrime investigations and believed that cybercrime would dramatically change policing, along with their computer skills, were the strongest predictors of interest in cybercrime efforts. Officers who had received previous computer training were less interested in additional training and conducting investigations. These findings support the argument that more command and departmental meetings focusing on the value of investigating these types of crime need to be held in order to increase officer interest.
Computers for the Faculty: How on a Limited Budget.
ERIC Educational Resources Information Center
Arman, Hal; Kostoff, John
An informal investigation of the use of computers at Delta College (DC) in Michigan revealed reasonable use of computers by faculty in disciplines such as mathematics, business, and technology, but very limited use in the humanities and social sciences. In an effort to increase faculty computer usage, DC decided to make computers available to any…
Possible Computer Vision Systems and Automated or Computer-Aided Edging and Trimming
Philip A. Araman
1990-01-01
This paper discusses research which is underway to help our industry reduce costs, increase product volume and value recovery, and market more accurately graded and described products. The research is part of a team effort to help the hardwood sawmill industry automate with computer vision systems, and computer-aided or computer controlled processing. This paper...
Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers: Phase 2 and 3
2016-08-01
understanding of the biomechanics of the head and brain. Task 2.3 details the computational modeling efforts conducted to evaluate the response of the...section also details the progress made on the development of a testing apparatus to evaluate cervical spine implants in survivable loading scenarios...computational modeling efforts conducted to evaluate the response of the cervical spine and the effects of cervical arthrodesis and arthroplasty during
Limits on fundamental limits to computation.
Markov, Igor L
2014-08-14
An indispensable part of our personal and working lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the past fifty years. Such Moore scaling now requires ever-increasing efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and increase our understanding of integrated-circuit scaling, here I review fundamental limits to computation in the areas of manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, I recapitulate how some limits were circumvented, and compare loose and tight limits. Engineering difficulties encountered by emerging technologies may indicate yet unknown limits.
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C C
The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less
Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program
NASA Technical Reports Server (NTRS)
Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.
2010-01-01
The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the Aeroelasticity Branch will examine other experimental efforts within the Subsonic Fixed Wing (SFW) program (such as testing of the NASA Common Research Model (CRM)) and other NASA programs and assess aeroelasticity issues and research topics.
Infrastructure for Training and Partnershipes: California Water and Coastal Ocean Resources
NASA Technical Reports Server (NTRS)
Siegel, David A.; Dozier, Jeffrey; Gautier, Catherine; Davis, Frank; Dickey, Tommy; Dunne, Thomas; Frew, James; Keller, Arturo; MacIntyre, Sally; Melack, John
2000-01-01
The purpose of this project was to advance the existing ICESS/Bren School computing infrastructure to allow scientists, students, and research trainees the opportunity to interact with environmental data and simulations in near-real time. Improvements made with the funding from this project have helped to strengthen the research efforts within both units, fostered graduate research training, and helped fortify partnerships with government and industry. With this funding, we were able to expand our computational environment in which computer resources, software, and data sets are shared by ICESS/Bren School faculty researchers in all areas of Earth system science. All of the graduate and undergraduate students associated with the Donald Bren School of Environmental Science and Management and the Institute for Computational Earth System Science have benefited from the infrastructure upgrades accomplished by this project. Additionally, the upgrades fostered a significant number of research projects (attached is a list of the projects that benefited from the upgrades). As originally proposed, funding for this project provided the following infrastructure upgrades: 1) a modem file management system capable of interoperating UNIX and NT file systems that can scale to 6.7 TB, 2) a Qualstar 40-slot tape library with two AIT tape drives and Legato Networker backup/archive software, 3) previously unavailable import/export capability for data sets on Zip, Jaz, DAT, 8mm, CD, and DLT media in addition to a 622Mb/s Internet 2 connection, 4) network switches capable of 100 Mbps to 128 desktop workstations, 5) Portable Batch System (PBS) computational task scheduler, and vi) two Compaq/Digital Alpha XP1000 compute servers each with 1.5 GB of RAM along with an SGI Origin 2000 (purchased partially using funds from this project along with funding from various other sources) to be used for very large computations, as required for simulation of mesoscale meteorology or climate.
Office workers' computer use patterns are associated with workplace stressors.
Eijckelhof, Belinda H W; Huysmans, Maaike A; Blatter, Birgitte M; Leider, Priscilla C; Johnson, Peter W; van Dieën, Jaap H; Dennerlein, Jack T; van der Beek, Allard J
2014-11-01
This field study examined associations between workplace stressors and office workers' computer use patterns. We collected keyboard and mouse activities of 93 office workers (68F, 25M) for approximately two work weeks. Linear regression analyses examined the associations between self-reported effort, reward, overcommitment, and perceived stress and software-recorded computer use duration, number of short and long computer breaks, and pace of input device usage. Daily duration of computer use was, on average, 30 min longer for workers with high compared to low levels of overcommitment and perceived stress. The number of short computer breaks (30 s-5 min long) was approximately 20% lower for those with high compared to low effort and for those with low compared to high reward. These outcomes support the hypothesis that office workers' computer use patterns vary across individuals with different levels of workplace stressors. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Parallel computing for automated model calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, John S.; Danielson, Gary R.; Schulz, Douglas A.
2002-07-29
Natural resources model calibration is a significant burden on computing and staff resources in modeling efforts. Most assessments must consider multiple calibration objectives (for example magnitude and timing of stream flow peak). An automated calibration process that allows real time updating of data/models, allowing scientists to focus effort on improving models is needed. We are in the process of building a fully featured multi objective calibration tool capable of processing multiple models cheaply and efficiently using null cycle computing. Our parallel processing and calibration software routines have been generically, but our focus has been on natural resources model calibration. Somore » far, the natural resources models have been friendly to parallel calibration efforts in that they require no inter-process communication, only need a small amount of input data and only output a small amount of statistical information for each calibration run. A typical auto calibration run might involve running a model 10,000 times with a variety of input parameters and summary statistical output. In the past model calibration has been done against individual models for each data set. The individual model runs are relatively fast, ranging from seconds to minutes. The process was run on a single computer using a simple iterative process. We have completed two Auto Calibration prototypes and are currently designing a more feature rich tool. Our prototypes have focused on running the calibration in a distributed computing cross platform environment. They allow incorporation of?smart? calibration parameter generation (using artificial intelligence processing techniques). Null cycle computing similar to SETI@Home has also been a focus of our efforts. This paper details the design of the latest prototype and discusses our plans for the next revision of the software.« less
Numerical Technology for Large-Scale Computational Electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, R; Champagne, N; White, D
The key bottleneck of implicit computational electromagnetics tools for large complex geometries is the solution of the resulting linear system of equations. The goal of this effort was to research and develop critical numerical technology that alleviates this bottleneck for large-scale computational electromagnetics (CEM). The mathematical operators and numerical formulations used in this arena of CEM yield linear equations that are complex valued, unstructured, and indefinite. Also, simultaneously applying multiple mathematical modeling formulations to different portions of a complex problem (hybrid formulations) results in a mixed structure linear system, further increasing the computational difficulty. Typically, these hybrid linear systems aremore » solved using a direct solution method, which was acceptable for Cray-class machines but does not scale adequately for ASCI-class machines. Additionally, LLNL's previously existing linear solvers were not well suited for the linear systems that are created by hybrid implicit CEM codes. Hence, a new approach was required to make effective use of ASCI-class computing platforms and to enable the next generation design capabilities. Multiple approaches were investigated, including the latest sparse-direct methods developed by our ASCI collaborators. In addition, approaches that combine domain decomposition (or matrix partitioning) with general-purpose iterative methods and special purpose pre-conditioners were investigated. Special-purpose pre-conditioners that take advantage of the structure of the matrix were adapted and developed based on intimate knowledge of the matrix properties. Finally, new operator formulations were developed that radically improve the conditioning of the resulting linear systems thus greatly reducing solution time. The goal was to enable the solution of CEM problems that are 10 to 100 times larger than our previous capability.« less
Methodology, status and plans for development and assessment of TUF and CATHENA codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luxat, J.C.; Liu, W.S.; Leung, R.K.
1997-07-01
An overview is presented of the Canadian two-fluid computer codes TUF and CATHENA with specific focus on the constraints imposed during development of these codes and the areas of application for which they are intended. Additionally a process for systematic assessment of these codes is described which is part of a broader, industry based initiative for validation of computer codes used in all major disciplines of safety analysis. This is intended to provide both the licensee and the regulator in Canada with an objective basis for assessing the adequacy of codes for use in specific applications. Although focused specifically onmore » CANDU reactors, Canadian experience in developing advanced two-fluid codes to meet wide-ranging application needs while maintaining past investment in plant modelling provides a useful contribution to international efforts in this area.« less
Networked event-triggered control: an introduction and research trends
NASA Astrophysics Data System (ADS)
Mahmoud, Magdi S.; Sabih, Muhammad
2014-11-01
A physical system can be studied as either continuous time or discrete-time system depending upon the control objectives. Discrete-time control systems can be further classified into two categories based on the sampling: (1) time-triggered control systems and (2) event-triggered control systems. Time-triggered systems sample states and calculate controls at every sampling instant in a periodic fashion, even in cases when states and calculated control do not change much. This indicates unnecessary and useless data transmission and computation efforts of a time-triggered system, thus inefficiency. For networked systems, the transmission of measurement and control signals, thus, cause unnecessary network traffic. Event-triggered systems, on the other hand, have potential to reduce the communication burden in addition to reducing the computation of control signals. This paper provides an up-to-date survey on the event-triggered methods for control systems and highlights the potential research directions.
NASA Astrophysics Data System (ADS)
Zerkle, Ronald D.; Prakash, Chander
1995-03-01
This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.
NASA Technical Reports Server (NTRS)
Zerkle, Ronald D.; Prakash, Chander
1995-01-01
This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.
Xing, Fuyong; Yang, Lin
2016-01-01
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.
LAMMPS strong scaling performance optimization on Blue Gene/Q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffman, Paul; Jiang, Wei; Romero, Nichols A.
2014-11-12
LAMMPS "Large-scale Atomic/Molecular Massively Parallel Simulator" is an open-source molecular dynamics package from Sandia National Laboratories. Significant performance improvements in strong-scaling and time-to-solution for this application on IBM's Blue Gene/Q have been achieved through computational optimizations of the OpenMP versions of the short-range Lennard-Jones term of the CHARMM force field and the long-range Coulombic interaction implemented with the PPPM (particle-particle-particle mesh) algorithm, enhanced by runtime parameter settings controlling thread utilization. Additionally, MPI communication performance improvements were made to the PPPM calculation by re-engineering the parallel 3D FFT to use MPICH collectives instead of point-to-point. Performance testing was done using anmore » 8.4-million atom simulation scaling up to 16 racks on the Mira system at Argonne Leadership Computing Facility (ALCF). Speedups resulting from this effort were in some cases over 2x.« less
Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.H.; Michelotti, M.D.; Riemer, N.
2016-10-01
Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less
Summary of Pressure Gain Combustion Research at NASA
NASA Technical Reports Server (NTRS)
Perkins, H. Douglas; Paxson, Daniel E.
2018-01-01
NASA has undertaken a systematic exploration of many different facets of pressure gain combustion over the last 25 years in an effort to exploit the inherent thermodynamic advantage of pressure gain combustion over the constant pressure combustion process used in most aerospace propulsion systems. Applications as varied as small-scale UAV's, rotorcraft, subsonic transports, hypersonics and launch vehicles have been considered. In addition to studying pressure gain combustor concepts such as wave rotors, pulse detonation engines, pulsejets, and rotating detonation engines, NASA has studied inlets, nozzles, ejectors and turbines which must also process unsteady flow in an integrated propulsion system. Other design considerations such as acoustic signature, combustor material life and heat transfer that are unique to pressure gain combustors have also been addressed in NASA research projects. In addition to a wide range of experimental studies, a number of computer codes, from 0-D up through 3-D, have been developed or modified to specifically address the analysis of unsteady flow fields. Loss models have also been developed and incorporated into these codes that improve the accuracy of performance predictions and decrease computational time. These codes have been validated numerous times across a broad range of operating conditions, and it has been found that once validated for one particular pressure gain combustion configuration, these codes are readily adaptable to the others. All in all, the documentation of this work has encompassed approximately 170 NASA technical reports, conference papers and journal articles to date. These publications are very briefly summarized herein, providing a single point of reference for all of NASA's pressure gain combustion research efforts. This documentation does not include the significant contributions made by NASA research staff to the programs of other agencies, universities, industrial partners and professional society committees through serving as technical advisors, technical reviewers and research consultants.
Cross Domain Deterrence: Livermore Technical Report, 2014-2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Peter D.; Bahney, Ben; Matarazzo, Celeste
2016-08-03
Lawrence Livermore National Laboratory (LLNL) is an original collaborator on the project titled “Deterring Complex Threats: The Effects of Asymmetry, Interdependence, and Multi-polarity on International Strategy,” (CDD Project) led by the UC Institute on Global Conflict and Cooperation at UCSD under PIs Jon Lindsay and Erik Gartzke , and funded through the DoD Minerva Research Initiative. In addition to participating in workshops and facilitating interaction among UC social scientists, LLNL is leading the computational modeling effort and assisting with empirical case studies to probe the viability of analytic, modeling and data analysis concepts. This report summarizes LLNL work on themore » CDD Project to date, primarily in Project Years 1-2, corresponding to Federal fiscal year 2015. LLNL brings two unique domains of expertise to bear on this Project: (1) access to scientific expertise on the technical dimensions of emerging threat technology, and (2) high performance computing (HPC) expertise, required for analyzing the complexity of bargaining interactions in the envisioned threat models. In addition, we have a small group of researchers trained as social scientists who are intimately familiar with the International Relations research. We find that pairing simulation scientists, who are typically trained in computer science, with domain experts, social scientists in this case, is the most effective route to developing powerful new simulation tools capable of representing domain concepts accurately and answering challenging questions in the field.« less
RASSP signal processing architectures
NASA Astrophysics Data System (ADS)
Shirley, Fred; Bassett, Bob; Letellier, J. P.
1995-06-01
The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a display. This paper discusses the impact of simulation on choosing signal processing algorithms and architectures, drawing from the experiences of the Demonstration and Benchmark inter-company teams at Lockhhed Sanders, Motorola, Hughes, and ISX.
Technologies for Nondestructive Evaluation of Surfaces and Thin Coatings
NASA Technical Reports Server (NTRS)
1999-01-01
The effort included in this project included several related activities encompassing basic understanding, technological development, customer identification and commercial transfer of several methodologies for nondestructive evaluation of surfaces and thin surface coatings. Consistent with the academic environment, students were involved in the effort working with established investigators to further their training, provide a nucleus of experienced practitioners in the new technologies during their industrial introduction, and utilize their talents for project goals. As will be seen in various portions of the report, some of the effort has led to commercialization. This process has spawned other efforts related to this project which are supported from outside sources. These activities are occupying the efforts of some of the people who were previously supported within this grant and its predecessors. The most advanced of the supported technologies is thermography, for which the previous joint efforts of the investigators and NASA researchers have developed several techniques for extending the utility of straight thermographic inspection by producing methods of interpretation and analysis accessible to automatic image processing with computer data analysis. The effort reported for this technology has been to introduce the techniques to new user communities, who are then be able to add to the effective uses of existing products with only slight development work. In a related development, analysis of a thermal measurement situation in past efforts led to a new insight into the behavior of simple temperature probes. This insight, previously reported to the narrow community in which the particular measurement was made, was reported to the community of generic temperature measurement experts this year. In addition to the propagation of mature thermographic techniques, the development of a thermoelastic imaging system has been an important related development. Part of the work carried out in the effort reported here has been to prepare reports introducing the newly commercially available thermoelastic measurements to the appropriate user communities.
2010-07-01
Cloud computing , an emerging form of computing in which users have access to scalable, on-demand capabilities that are provided through Internet... cloud computing , (2) the information security implications of using cloud computing services in the Federal Government, and (3) federal guidance and...efforts to address information security when using cloud computing . The complete report is titled Information Security: Federal Guidance Needed to
Future Computer Requirements for Computational Aerodynamics
NASA Technical Reports Server (NTRS)
1978-01-01
Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.
2010-06-01
DATES COVEREDAPR 2009 – JAN 2010 (From - To) APR 2009 – JAN 2010 4. TITLE AND SUBTITLE EMERGING NEUROMORPHIC COMPUTING ARCHITECTURES AND ENABLING...14. ABSTRACT The highly cross-disciplinary emerging field of neuromorphic computing architectures for cognitive information processing applications...belief systems, software, computer engineering, etc. In our effort to develop cognitive systems atop a neuromorphic computing architecture, we explored
Overview 1993: Computational applications
NASA Technical Reports Server (NTRS)
Benek, John A.
1993-01-01
Computational applications include projects that apply or develop computationally intensive computer programs. Such programs typically require supercomputers to obtain solutions in a timely fashion. This report describes two CSTAR projects involving Computational Fluid Dynamics (CFD) technology. The first, the Parallel Processing Initiative, is a joint development effort and the second, the Chimera Technology Development, is a transfer of government developed technology to American industry.
Computing at the speed limit (supercomputers)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhard, R.
1982-07-01
The author discusses how unheralded efforts in the United States, mainly in universities, have removed major stumbling blocks to building cost-effective superfast computers for scientific and engineering applications within five years. These computers would have sustained speeds of billions of floating-point operations per second (flops), whereas with the fastest machines today the top sustained speed is only 25 million flops, with bursts to 160 megaflops. Cost-effective superfast machines can be built because of advances in very large-scale integration and the special software needed to program the new machines. VLSI greatly reduces the cost per unit of computing power. The developmentmore » of such computers would come at an opportune time. Although the US leads the world in large-scale computer technology, its supremacy is now threatened, not surprisingly, by the Japanese. Publicized reports indicate that the Japanese government is funding a cooperative effort by commercial computer manufacturers to develop superfast computers-about 1000 times faster than modern supercomputers. The US computer industry, by contrast, has balked at attempting to boost computer power so sharply because of the uncertain market for the machines and the failure of similar projects in the past to show significant results.« less
Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates
NASA Astrophysics Data System (ADS)
Carbogno, Christian; Scheffler, Matthias
In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.
NASA Astrophysics Data System (ADS)
Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho
2013-09-01
Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.
NASA Astrophysics Data System (ADS)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.
2016-09-01
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
Inventory of environmental impact models related to energy technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, P.T.; Dailey, N.S.; Johnson, C.A.
The purpose of this inventory is to identify and collect data on computer simulations and computational models related to the environmental effects of energy source development, energy conversion, or energy utilization. Information for 33 data fields was sought for each model reported. All of the information which could be obtained within the time alloted for completion of the project is presented for each model listed. Efforts will be continued toward acquiring the needed information. Readers who are interested in these particular models are invited to contact ESIC for assistance in locating them. In addition to the standard bibliographic information, othermore » data fields of interest to modelers, such as computer hardware and software requirements, algorithms, applications, and existing model validation information, are included. Indexes are provided for contact person, acronym, keyword, and title. The models are grouped into the following categories: atmospheric transport, air quality, aquatic transport, terrestrial food chains, soil transport, aquatic food chains, water quality, dosimetry, and human effects, animal effects, plant effects, and generalized environmental transport. Within these categories, the models are arranged alphabetically by last name of the contact person.« less
Integrative computational approach for genome-based study of microbial lipid-degrading enzymes.
Vorapreeda, Tayvich; Thammarongtham, Chinae; Laoteng, Kobkul
2016-07-01
Lipid-degrading or lipolytic enzymes have gained enormous attention in academic and industrial sectors. Several efforts are underway to discover new lipase enzymes from a variety of microorganisms with particular catalytic properties to be used for extensive applications. In addition, various tools and strategies have been implemented to unravel the functional relevance of the versatile lipid-degrading enzymes for special purposes. This review highlights the study of microbial lipid-degrading enzymes through an integrative computational approach. The identification of putative lipase genes from microbial genomes and metagenomic libraries using homology-based mining is discussed, with an emphasis on sequence analysis of conserved motifs and enzyme topology. Molecular modelling of three-dimensional structure on the basis of sequence similarity is shown to be a potential approach for exploring the structural and functional relationships of candidate lipase enzymes. The perspectives on a discriminative framework of cutting-edge tools and technologies, including bioinformatics, computational biology, functional genomics and functional proteomics, intended to facilitate rapid progress in understanding lipolysis mechanism and to discover novel lipid-degrading enzymes of microorganisms are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, J.N., E-mail: jnshadi@sandia.gov; Department of Mathematics and Statistics, University of New Mexico; Smith, T.M.
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts tomore » apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; ...
2016-05-20
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
Textual data compression in computational biology: a synopsis.
Giancarlo, Raffaele; Scaturro, Davide; Utro, Filippo
2009-07-01
Textual data compression, and the associated techniques coming from information theory, are often perceived as being of interest for data communication and storage. However, they are also deeply related to classification and data mining and analysis. In recent years, a substantial effort has been made for the application of textual data compression techniques to various computational biology tasks, ranging from storage and indexing of large datasets to comparison and reverse engineering of biological networks. The main focus of this review is on a systematic presentation of the key areas of bioinformatics and computational biology where compression has been used. When possible, a unifying organization of the main ideas and techniques is also provided. It goes without saying that most of the research results reviewed here offer software prototypes to the bioinformatics community. The Supplementary Material provides pointers to software and benchmark datasets for a range of applications of broad interest. In addition to provide reference to software, the Supplementary Material also gives a brief presentation of some fundamental results and techniques related to this paper. It is at: http://www.math.unipa.it/ approximately raffaele/suppMaterial/compReview/
Computer Augmented Video Education.
ERIC Educational Resources Information Center
Sousa, M. B.
1979-01-01
Describes project CAVE (Computer Augmented Video Education), an ongoing effort at the U.S. Naval Academy to present lecture material on videocassette tape, reinforced by drill and practice through an interactive computer system supported by a 12 channel closed circuit television distribution and production facility. (RAO)
Computer Guided Instructional Design.
ERIC Educational Resources Information Center
Merrill, M. David; Wood, Larry E.
1984-01-01
Describes preliminary efforts to create the Lesson Design System, a computer-guided instructional design system written in Pascal for Apple microcomputers. Its content outline, strategy, display, and online lesson editors correspond roughly to instructional design phases of content and strategy analysis, display creation, and computer programing…
CAROLINA CENTER FOR COMPUTATIONAL TOXICOLOGY
The Center will advance the field of computational toxicology through the development of new methods and tools, as well as through collaborative efforts. In each Project, new computer-based models will be developed and published that represent the state-of-the-art. The tools p...
Computational analysis of nanofluids: A review
NASA Astrophysics Data System (ADS)
Qureshi, M. Zubair Akbar; Ashraf, Muhammad
2018-02-01
Nanofluids and heat transfer enhancement in real systems continue to be a widely research area of nanotechnology. An effort has been made to give a comprehensive review on time-wise development from different aspects of the nanofluids. The exceptional structures of nanofluids, for example, dispersion of nanoparticles volume fraction, thermophoresis phenomenon, Brownian motion, improvement in thermal conductivity, and especially heat transfer enhancement, etc., have been addressed in a mathematical perspective. The influence of important parameters like particle's (loading, material, size and shape-factor), base fluids type, temperature, additives, clustering and p H value has been considered. In addition, the summary-chart is presented for a better understanding of the mathematical structure of the Newtonian as well as non-Newtonian nanofluids. Some important results have been discussed for future work. This review article will be helpful for scientists and researchers.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components
NASA Technical Reports Server (NTRS)
1991-01-01
The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.
Langley's Computational Efforts in Sonic-Boom Softening of the Boeing HSCT
NASA Technical Reports Server (NTRS)
Fouladi, Kamran
1999-01-01
NASA Langley's computational efforts in the sonic-boom softening of the Boeing high-speed civil transport are discussed in this paper. In these efforts, an optimization process using a higher order Euler method for analysis was employed to reduce the sonic boom of a baseline configuration through fuselage camber and wing dihedral modifications. Fuselage modifications did not provide any improvements, but the dihedral modifications were shown to be an important tool for the softening process. The study also included aerodynamic and sonic-boom analyses of the baseline and some of the proposed "softened" configurations. Comparisons of two Euler methodologies and two propagation programs for sonic-boom predictions are also discussed in the present paper.
The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diachin, L F; Garaizar, F X; Henson, V E
2009-10-12
In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE andmore » the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.« less
Overview of NASA/OAST efforts related to manufacturing technology
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1976-01-01
An overview of some of NASA's current efforts related to manufacturing technology and some possible directions for the future are presented. The topics discussed are: computer-aided design, composite structures, and turbine engine components.
Data Network Weather Service Reporting - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Frey
2012-08-30
A final report is made of a three-year effort to develop a new forecasting paradigm for computer network performance. This effort was made in co-ordination with Fermi Lab's construction of e-Weather Center.
NASA Astrophysics Data System (ADS)
Zeitler, T.; Kirchner, T. B.; Hammond, G. E.; Park, H.
2014-12-01
The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. In a broad modernization effort, the DOE has overseen the transfer of these codes to modern hardware and software platforms. Additionally, there is a current effort to establish new performance assessment capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Improvements to the current computational environment will result in greater detail in the final models due to the parallelization afforded by the modern code. Parallelization will allow for relatively faster calculations, as well as a move from a two-dimensional calculation grid to a three-dimensional grid. The result of the modernization effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.
NASA Astrophysics Data System (ADS)
Alderliesten, Tanja; Bosman, Peter A. N.; Bel, Arjan
2015-03-01
Incorporating additional guidance information, e.g., landmark/contour correspondence, in deformable image registration is often desirable and is typically done by adding constraints or cost terms to the optimization function. Commonly, deciding between a "hard" constraint and a "soft" additional cost term as well as the weighting of cost terms in the optimization function is done on a trial-and-error basis. The aim of this study is to investigate the advantages of exploiting guidance information by taking a multi-objective optimization perspective. Hereto, next to objectives related to match quality and amount of deformation, we define a third objective related to guidance information. Multi-objective optimization eliminates the need to a-priori tune a weighting of objectives in a single optimization function or the strict requirement of fulfilling hard guidance constraints. Instead, Pareto-efficient trade-offs between all objectives are found, effectively making the introduction of guidance information straightforward, independent of its type or scale. Further, since complete Pareto fronts also contain less interesting parts (i.e., solutions with near-zero deformation effort), we study how adaptive steering mechanisms can be incorporated to automatically focus more on solutions of interest. We performed experiments on artificial and real clinical data with large differences, including disappearing structures. Results show the substantial benefit of using additional guidance information. Moreover, compared to the 2-objective case, additional computational cost is negligible. Finally, with the same computational budget, use of the adaptive steering mechanism provides superior solutions in the area of interest.
Electrodynamic tether system study
NASA Technical Reports Server (NTRS)
1987-01-01
The purpose of this program is to define an Electrodynamic Tether System (ETS) that could be erected from the space station and/or platforms to function as an energy storage device. A schematic representation of the ETS concept mounted on the space station is presented. In addition to the hardware design and configuration efforts, studies are also documented involving simulations of the Earth's magnetic fields and the effects this has on overall system efficiency calculations. Also discussed are some preliminary computer simulations of orbit perturbations caused by the cyclic/night operations of the ETS. System cost estimates, an outline for future development testing for the ETS system, and conclusions and recommendations are also provided.
NASA Technical Reports Server (NTRS)
Kiusalaas, J.; Reddy, G. B.
1977-01-01
A finite element program is presented for computer-automated, minimum weight design of elastic structures with constraints on stresses (including local instability criteria) and displacements. Volume 1 of the report contains the theoretical and user's manual of the program. Sample problems and the listing of the program are included in Volumes 2 and 3. The element subroutines are organized so as to facilitate additions and changes by the user. As a result, a relatively minor programming effort would be required to make DESAP 1 into a special purpose program to handle the user's specific design requirements and failure criteria.
Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul
2010-01-01
Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.
Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul
2011-01-01
Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.
Evaluation of Market Design Agents: The Mertacor Perspective
NASA Astrophysics Data System (ADS)
Stavrogiannis, Lampros C.; Mitkas, Pericles A.
The annual Trading Agent Competition for Market Design, CAT, provides a testbed to study the mechanisms that modern stock exchanges use in their effort to attract potential traders while maximizing their profit. This paper presents an evaluation of the agents that participated in the 2008 competition. The evaluation is based on the analysis of the CAT finals as well as on the results obtained from post-tournament experiments. We present Mertacor, our entrant for 2008, and compare it with the other available agents. In addition, we introduce a simple yet effective way of computing the global competitive equilibrium that Mertacor utilizes and discuss its importance for the game.
Using the Wiimote as a sensor in water research
NASA Astrophysics Data System (ADS)
Hut, R. W.; Weijs, S. V.; Luxemburg, W. M. J.
2010-12-01
The $40 "Wiimote" (an input device belonging with the Nintendo® Wii™ game system) can be used by hydrologists as a sensor. The device contains three accelerometers and an infrared camera with built-in source tracking. It communicates by Bluetooth®. Because of the efforts of the hacking community it is now easy to let the Wiimote communicate with a standard personal computer. Using a floating evaporation pan as an example, we show that the Wiimote, although it may have potential drawbacks when used in field campaigns, is a good addition to the hydrologist's bag of tools, especially for proof of concept testing.
Cognitive Support During High-Consequence Episodes of Care in Cardiovascular Surgery.
Conboy, Heather M; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Christov, Stefan C; Goldman, Julian M; Yule, Steven J; Zenati, Marco A
2017-03-01
Despite significant efforts to reduce preventable adverse events in medical processes, such events continue to occur at unacceptable rates. This paper describes a computer science approach that uses formal process modeling to provide situationally aware monitoring and management support to medical professionals performing complex processes. These process models represent both normative and non-normative situations, and are validated by rigorous automated techniques such as model checking and fault tree analysis, in addition to careful review by experts. Context-aware Smart Checklists are then generated from the models, providing cognitive support during high-consequence surgical episodes. The approach is illustrated with a case study in cardiovascular surgery.
Implementing Equal Access Computer Labs.
ERIC Educational Resources Information Center
Clinton, Janeen; And Others
This paper discusses the philosophy followed in Palm Beach County to adapt computer literacy curriculum, hardware, and software to meet the needs of all children. The Department of Exceptional Student Education and the Department of Instructional Computing Services cooperated in planning strategies and coordinating efforts to implement equal…
The Effort Paradox: Effort Is Both Costly and Valued.
Inzlicht, Michael; Shenhav, Amitai; Olivola, Christopher Y
2018-04-01
According to prominent models in cognitive psychology, neuroscience, and economics, effort (be it physical or mental) is costly: when given a choice, humans and non-human animals alike tend to avoid effort. Here, we suggest that the opposite is also true and review extensive evidence that effort can also add value. Not only can the same outcomes be more rewarding if we apply more (not less) effort, sometimes we select options precisely because they require effort. Given the increasing recognition of effort's role in motivation, cognitive control, and value-based decision-making, considering this neglected side of effort will not only improve formal computational models, but also provide clues about how to promote sustained mental effort across time. Copyright © 2018 Elsevier Ltd. All rights reserved.
76 FR 28443 - President's National Security Telecommunications Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... Government's use of cloud computing; the Federal Emergency Management Agency's NS/EP communications... Commercial Satellite Mission Assurance; and the way forward for the committee's cloud computing effort. The...
System Award for developing a tool that has had a lasting influence on computing. Project Jupyter evolved lasting influence on computing. Project Jupyter evolved from IPython, an effort pioneered by Fernando PÃ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heffelfinger, Grant S.; Martino, Anthony; Rintoul, Mark Daniel
This SAND report provides the technical progress through October 2004 of the Sandia-led project, %22Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling,%22 funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO2 are important terms in the global environmental response to anthropogenic atmospheric inputs of CO2 and that oceanic microorganismsmore » play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes. In addition, we will develop a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these - 4 - pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. The ultimate goal of this effort is develop and apply new experimental and computational methods needed to generate a new level of understanding of how the Synechococcus genome affects carbon fixation at the global scale. Anticipated experimental and computational methods will provide ever-increasing insight about the individual elements and steps in the carbon fixation process, however relating an organism's genome to its cellular response in the presence of varying environments will require systems biology approaches. Thus a primary goal for this effort is to integrate the genomic data generated from experiments and lower level simulations with data from the existing body of literature into a whole cell model. We plan to accomplish this by developing and applying a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats. These challenges are unprecedented in high performance scientific computing and necessitate the development of a companion computational infrastructure to support this effort. More information about this project, including a copy of the original proposal, can be found at www.genomes-to-life.org Acknowledgment We want to gratefully acknowledge the contributions of the GTL Project Team as follows: Grant S. Heffelfinger1*, Anthony Martino2, Andrey Gorin3, Ying Xu10,3, Mark D. Rintoul1, Al Geist3, Matthew Ennis1, Hashimi Al-Hashimi8, Nikita Arnold3, Andrei Borziak3, Bianca Brahamsha6, Andrea Belgrano12, Praveen Chandramohan3, Xin Chen9, Pan Chongle3, Paul Crozier1, PguongAn Dam10, George S. Davidson1, Robert Day3, Jean Loup Faulon2, Damian Gessler12, Arlene Gonzalez2, David Haaland1, William Hart1, Victor Havin3, Tao Jiang9, Howland Jones1, David Jung3, Ramya Krishnamurthy3, Yooli Light2, Shawn Martin1, Rajesh Munavalli3, Vijaya Natarajan3, Victor Olman10, Frank Olken4, Brian Palenik6, Byung Park3, Steven Plimpton1, Diana Roe2, Nagiza Samatova3, Arie Shoshani4, Michael Sinclair1, Alex Slepoy1, Shawn Stevens8, Chris Stork1, Charlie Strauss5, Zhengchang Su10, Edward Thomas1, Jerilyn A. Timlin1, Xiufeng Wan11, HongWei Wu10, Dong Xu11, Gong-Xin Yu3, Grover Yip8, Zhaoduo Zhang2, Erik Zuiderweg8 *Author to whom correspondence should be addressed (gsheffe%40sandia.gov) 1. Sandia National Laboratories, Albuquerque, NM 2. Sandia National Laboratories, Livermore, CA 3. Oak Ridge National Laboratory, Oak Ridge, TN 4. Lawrence Berkeley National Laboratory, Berkeley, CA 5. Los Alamos National Laboratory, Los Alamos, NM 6. University of California, San Diego 7. University of Illinois, Urbana/Champaign 8. University of Michigan, Ann Arbor 9. University of California, Riverside 10. University of Georgia, Athens 11. University of Missouri, Columbia 12. National Center for Genome Resources, Santa Fe, NM Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.« less
Genomes to Life Project Quarterly Report April 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heffelfinger, Grant S.; Martino, Anthony; Rintoul, Mark Daniel
2006-02-01
This SAND report provides the technical progress through April 2005 of the Sandia-led project, "Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling," funded by the DOE Office of Science Genomics:GTL Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO2 are important terms in the global environmental response to anthropogenic atmospheric inputs of CO2 and that oceanic microorganisms play amore » key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes. In addition, we will develop a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these - 4 -pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. The ultimate goal of this effort is develop and apply new experimental and computational methods needed to generate a new level of understanding of how the Synechococcus genome affects carbon fixation at the global scale. Anticipated experimental and computational methods will provide ever-increasing insight about the individual elements and steps in the carbon fixation process, however relating an organism's genome to its cellular response in the presence of varying environments will require systems biology approaches. Thus a primary goal for this effort is to integrate the genomic data generated from experiments and lower level simulations with data from the existing body of literature into a whole cell model. We plan to accomplish this by developing and applying a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats. These challenges are unprecedented in high performance scientific computing and necessitate the development of a companion computational infrastructure to support this effort. More information about this project can be found at www.genomes-to-life.org Acknowledgment We want to gratefully acknowledge the contributions of: Grant Heffelfinger1*, Anthony Martino2, Brian Palenik6, Andrey Gorin3, Ying Xu10,3, Mark Daniel Rintoul1, Al Geist3, Matthew Ennis1, with Pratul Agrawal3, Hashim Al-Hashimi8, Andrea Belgrano12, Mike Brown1, Xin Chen9, Paul Crozier1, PguongAn Dam10, Jean-Loup Faulon2, Damian Gessler12, David Haaland1, Victor Havin4, C.F. Huang5, Tao Jiang9, Howland Jones1, David Jung3, Katherine Kang14, Michael Langston15, Shawn Martin1, Shawn Means1, Vijaya Natarajan4, Roy Nielson5, Frank Olken4, Victor Olman10, Ian Paulsen14, Steve Plimpton1, Andreas Reichsteiner5, Nagiza Samatova3, Arie Shoshani4, Michael Sinclair1, Alex Slepoy1, Shawn Stevens8, Charlie Strauss5, Zhengchang Su10, Ed Thomas1, Jerilyn Timlin1, WimVermaas13, Xiufeng Wan11, HongWei Wu10, Dong Xu11, Grover Yip8, Erik Zuiderweg8 *Author to whom correspondence should be addressed (gsheffe@sandia.gov) 1. Sandia National Laboratories, Albuquerque, NM 2. Sandia National Laboratories, Livermore, CA 3. Oak Ridge National Laboratory, Oak Ridge, TN 4. Lawrence Berkeley National Laboratory, Berkeley, CA 5. Los Alamos National Laboratory, Los Alamos, NM 6. University of California, San Diego 7. University of Illinois, Urbana/Champaign 8. University of Michigan, Ann Arbor 9. University of California, Riverside 10. University of Georgia, Athens 11. University of Missouri, Columbia 12. National Center for Genome Resources, Santa Fe, NM 13. Arizona State University 14. The Institute for Genomic Research 15. University of Tennessee 5 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500.« less
Stress analysis of the space telescope focal plane structure joint
NASA Technical Reports Server (NTRS)
Foster, W. A., Jr.; Shoemaker, W. L.
1985-01-01
Two major efforts were begun concerning the Space Telescope focal plane structure joint. The 3-D solid finite element modeling of the bipod flexure plate was carried out. Conceptual models were developed for the load transfer through the three major bolts to the flexure plate. The flexure plate drawings were reconstructed using DADAM for the purpose of developing a file from which the coordinates of any point on the flexure plate could be determined and also to locate the attachment points of the various components which connect with the flexure plate. For modeling convenience the CADAM drawing of the flexure plate has been divided into several regions which will be subdivided into finite elements using MSGMESH, which is a finite element mesh generator available with MSC/NASTRAN. In addition to the CADAM work on the flexure plate, an effort was also begun to develop computer aided drawings of the peripheral beam which will be used to assist in modeling the connection between it and the flexure plate.
Computational fluid dynamics (CFD) in the design of a water-jet-drive system
NASA Technical Reports Server (NTRS)
Garcia, Roberto
1994-01-01
NASA/Marshall Space Flight Center (MSFC) has an ongoing effort to transfer to industry the technologies developed at MSFC for rocket propulsion systems. The Technology Utilization (TU) Office at MSFC promotes these efforts and accepts requests for assistance from industry. One such solicitation involves a request from North American Marine Jet, Inc. (NAMJ) for assistance in the design of a water-jet-drive system to fill a gap in NAMJ's product line. NAMJ provided MSFC with a baseline axial flow impeller design as well as the relevant working parameters (rpm, flow rate, etc.). This baseline design was analyzed using CFD, and significant deficiencies identified. Four additional analyses were performed involving MSFC changes to the geometric and operational parameters of the baseline case. Subsequently, the impeller was redesigned by NAMJ and analyzed by MSFC. This new configuration performs significantly better than the baseline design. Similar cooperative activities are planned for the design of the jet-drive inlet.
PACES Participation in Educational Outreach Programs at the University of Texas at El Paso
NASA Technical Reports Server (NTRS)
Dodge, Rebecca L.
1997-01-01
The University of Texas at El Paso (UTEP) is involved in several initiatives to improve science education within the El Paso area public schools. These include outreach efforts into the K- 12 classrooms; training programs for in-service teachers; and the introduction of a strong science core curricula within the College of Education. The Pan American Center for Earth and Environmental Studies (PACES), a NASA-funded University Research Center, will leverage off the goals of these existing initiatives to provide curriculum support materials at all levels. We will use currently available Mission to Planet Earth (MTPE) materials as well as new materials developed specifically for this region, in an effort to introduce the Earth System Science perspective into these programs. In addition, we are developing curriculum support materials and classes within the Geology and Computer Departments, to provide education in the area of remote sensing and GIS applications at the undergraduate and graduate levels.
Children’s Sleep and Academic Achievement: The Moderating Role of Effortful Control
Diaz, Anjolii; Berger, Rebecca; Valiente, Carlos; Eisenberg, Nancy; VanSchyndel, Sarah; Tao, Chun; Spinrad, Tracy L.; Doane, Leah D.; Thompson, Marilyn S.; Silva, Kassondra M.; Southworth, Jody
2016-01-01
Poor sleep is thought to interfere with children’s learning and academic achievement (AA). However, existing research and theory indicate there are factors that may mitigate the academic risk associated with poor sleep. The purpose of this study was to examine the moderating role of children’s effortful control (EC) on the relation between sleep and AA in young children. One hundred and three 4.5- to 7-year-olds (M = 5.98 years, SD = 0.61) wore a wrist-based actigraph for five continuous weekday nights. Teachers and coders reported on children’s EC. EC was also assessed with a computer-based task at school. Additionally, we obtained a standardized measure of children’s AA. There was a positive main effect of sleep efficiency to AA. Several relations between sleep and AA were moderated by EC and examination of the simple slopes indicated that the negative relation between sleep and AA was only significant at low levels of EC. PMID:28255190
Predicting Pilot Error in Nextgen: Pilot Performance Modeling and Validation Efforts
NASA Technical Reports Server (NTRS)
Wickens, Christopher; Sebok, Angelia; Gore, Brian; Hooey, Becky
2012-01-01
We review 25 articles presenting 5 general classes of computational models to predict pilot error. This more targeted review is placed within the context of the broader review of computational models of pilot cognition and performance, including such aspects as models of situation awareness or pilot-automation interaction. Particular emphasis is placed on the degree of validation of such models against empirical pilot data, and the relevance of the modeling and validation efforts to Next Gen technology and procedures.
NASA Astrophysics Data System (ADS)
Chitta, Varun
Modeling of complex flows involving the combined effects of flow transition and streamline curvature using two advanced turbulence models, one in the Reynolds-averaged Navier-Stokes (RANS) category and the other in the hybrid RANS-Large eddy simulation (LES) category is considered in this research effort. In the first part of the research, a new scalar eddy-viscosity model (EVM) is proposed, designed to exhibit physically correct responses to flow transition, streamline curvature, and system rotation effects. The four equation model developed herein is a curvature-sensitized version of a commercially available three-equation transition-sensitive model. The physical effects of rotation and curvature (RC) enter the model through the added transport equation, analogous to a transverse turbulent velocity scale. The eddy-viscosity has been redefined such that the proposed model is constrained to reduce to the original transition-sensitive model definition in nonrotating flows or in regions with negligible RC effects. In the second part of the research, the developed four-equation model is combined with a LES technique using a new hybrid modeling framework, dynamic hybrid RANS-LES. The new framework is highly generalized, allowing coupling of any desired LES model with any given RANS model and addresses several deficiencies inherent in most current hybrid models. In the present research effort, the DHRL model comprises of the proposed four-equation model for RANS component and the MILES scheme for LES component. Both the models were implemented into a commercial computational fluid dynamics (CFD) solver and tested on a number of engineering and generic flow problems. Results from both the RANS and hybrid models show successful resolution of the combined effects of transition and curvature with reasonable engineering accuracy, and for only a small increase in computational cost. In addition, results from the hybrid model indicate significant levels of turbulent fluctuations in the flowfield, improved accuracy compared to RANS models predictions, and are obtained at a significant reduction of computational cost compared to full LES models. The results suggest that the advanced turbulence modeling techniques presented in this research effort have potential as practical tools for solving low/high Re flows over blunt/curved bodies for the prediction of transition and RC effects.
A neuronal model of a global workspace in effortful cognitive tasks.
Dehaene, S; Kerszberg, M; Changeux, J P
1998-11-24
A minimal hypothesis is proposed concerning the brain processes underlying effortful tasks. It distinguishes two main computational spaces: a unique global workspace composed of distributed and heavily interconnected neurons with long-range axons, and a set of specialized and modular perceptual, motor, memory, evaluative, and attentional processors. Workspace neurons are mobilized in effortful tasks for which the specialized processors do not suffice. They selectively mobilize or suppress, through descending connections, the contribution of specific processor neurons. In the course of task performance, workspace neurons become spontaneously coactivated, forming discrete though variable spatio-temporal patterns subject to modulation by vigilance signals and to selection by reward signals. A computer simulation of the Stroop task shows workspace activation to increase during acquisition of a novel task, effortful execution, and after errors. We outline predictions for spatio-temporal activation patterns during brain imaging, particularly about the contribution of dorsolateral prefrontal cortex and anterior cingulate to the workspace.
A specific role for serotonin in overcoming effort cost.
Meyniel, Florent; Goodwin, Guy M; Deakin, Jf William; Klinge, Corinna; MacFadyen, Christine; Milligan, Holly; Mullings, Emma; Pessiglione, Mathias; Gaillard, Raphaël
2016-11-08
Serotonin is implicated in many aspects of behavioral regulation. Theoretical attempts to unify the multiple roles assigned to serotonin proposed that it regulates the impact of costs, such as delay or punishment, on action selection. Here, we show that serotonin also regulates other types of action costs such as effort. We compared behavioral performance in 58 healthy humans treated during 8 weeks with either placebo or the selective serotonin reuptake inhibitor escitalopram. The task involved trading handgrip force production against monetary benefits. Participants in the escitalopram group produced more effort and thereby achieved a higher payoff. Crucially, our computational analysis showed that this effect was underpinned by a specific reduction of effort cost, and not by any change in the weight of monetary incentives. This specific computational effect sheds new light on the physiological role of serotonin in behavioral regulation and on the clinical effect of drugs for depression. ISRCTN75872983.
DARPA-funded efforts in the development of novel brain-computer interface technologies.
Miranda, Robbin A; Casebeer, William D; Hein, Amy M; Judy, Jack W; Krotkov, Eric P; Laabs, Tracy L; Manzo, Justin E; Pankratz, Kent G; Pratt, Gill A; Sanchez, Justin C; Weber, Douglas J; Wheeler, Tracey L; Ling, Geoffrey S F
2015-04-15
The Defense Advanced Research Projects Agency (DARPA) has funded innovative scientific research and technology developments in the field of brain-computer interfaces (BCI) since the 1970s. This review highlights some of DARPA's major advances in the field of BCI, particularly those made in recent years. Two broad categories of DARPA programs are presented with respect to the ultimate goals of supporting the nation's warfighters: (1) BCI efforts aimed at restoring neural and/or behavioral function, and (2) BCI efforts aimed at improving human training and performance. The programs discussed are synergistic and complementary to one another, and, moreover, promote interdisciplinary collaborations among researchers, engineers, and clinicians. Finally, this review includes a summary of some of the remaining challenges for the field of BCI, as well as the goals of new DARPA efforts in this domain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways
NASA Astrophysics Data System (ADS)
Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia
2018-06-01
The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.
Computer Technology and Social Issues.
ERIC Educational Resources Information Center
Garson, G. David
Computing involves social issues and political choices. Issues such as privacy, computer crime, gender inequity, disemployment, and electronic democracy versus "Big Brother" are addressed in the context of efforts to develop a national public policy for information technology. A broad range of research and case studies are examined in an…
Advances in computational design and analysis of airbreathing propulsion systems
NASA Technical Reports Server (NTRS)
Klineberg, John M.
1989-01-01
The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.
The TeraShake Computational Platform for Large-Scale Earthquake Simulations
NASA Astrophysics Data System (ADS)
Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas
Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.
Secure Retrieval of FFTF Testing, Design, and Operating Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butner, R. Scott; Wootan, David W.; Omberg, Ronald P.
One of the goals of the Advanced Fuel Cycle Initiative (AFCI) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMR). In addition, preserving LMR information and knowledge is part of a larger international collaborative activity conducted under the auspices of the International Atomic Energy Agency (IAEA). A similar program is being conducted for EBR-II at the Idaho Nuclear Laboratory (INL) and international programs are also in progress. Knowledge preservation at the FFTF is focused on the areas of design, construction, startup, and operation of the reactor. As the primary function ofmore » the FFTF was testing, the focus is also on preserving information obtained from irradiation testing of fuels and materials. This information will be invaluable when, at a later date, international decisions are made to pursue new LMRs. In the interim, this information may be of potential use for international exchanges with other LMR programs around the world. At least as important in the United States, which is emphasizing large-scale computer simulation and modeling, this information provides the basis for creating benchmarks for validating and testing these large scale computer programs. Although the preservation activity with respect to FFTF information as discussed below is still underway, the team of authors above is currently retrieving and providing experimental and design information to the LMR modeling and simulation efforts for use in validating their computer models. On the Hanford Site, the FFTF reactor plant is one of the facilities intended for decontamination and decommissioning consistent with the cleanup mission on this site. The reactor facility has been deactivated and is being maintained in a cold and dark minimal surveillance and maintenance mode until final decommissioning is pursued. In order to ensure protection of information at risk, the program to date has focused on sequestering and secure retrieval. Accomplishments include secure retrieval of: more than 400 boxes of FFTF information, several hundred microfilm reels including Clinch River Breeder Reactor (CRBR) information, and 40 boxes of information on the Fuels and Materials Examination Facility (FMEF). All information preserved to date is now being stored and categorized consistent with the IAEA international standardized taxonomy. Earlier information largely related to irradiation testing is likewise being categorized. The fuel test results information exists in several different formats depending upon the final stage of the test evaluation. In some cases there is information from both non-destructive and destructive examination while in other cases only non-destructive results are available. Non-destructive information would include disassembly records, dimensional profilometry, gamma spectrometry, and neutron radiography. Information from destructive examinations would include fission gas analysis, metallography, and photomicrographs. Archiving of FFTF data, including both the reactor plant and the fuel test information, is being performed in coordination with other data archiving efforts underway under the aegis of the AFCI program. In addition to the FFTF efforts, archiving of data from the EBR-II reactor is being carried out by INL. All material at risk associated with FFTF documentation has been secured in a timely manner consistent with the stated plan. This documentation is now being categorized consistent with internationally agreed upon IAEA standards. Documents are being converted to electronic format for transfer to a large searchable electronic database being developed by INL. In addition, selected FFTF information is being used to generate test cases for large-scale simulation modeling efforts and for providing Design Data Need (DDN) packages as requested by the AFCI program.« less
Multiphysics Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen
2006-01-01
The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.
Experimental Evaluation and Workload Characterization for High-Performance Computer Architectures
NASA Technical Reports Server (NTRS)
El-Ghazawi, Tarek A.
1995-01-01
This research is conducted in the context of the Joint NSF/NASA Initiative on Evaluation (JNNIE). JNNIE is an inter-agency research program that goes beyond typical.bencbking to provide and in-depth evaluations and understanding of the factors that limit the scalability of high-performance computing systems. Many NSF and NASA centers have participated in the effort. Our research effort was an integral part of implementing JNNIE in the NASA ESS grand challenge applications context. Our research work under this program was composed of three distinct, but related activities. They include the evaluation of NASA ESS high- performance computing testbeds using the wavelet decomposition application; evaluation of NASA ESS testbeds using astrophysical simulation applications; and developing an experimental model for workload characterization for understanding workload requirements. In this report, we provide a summary of findings that covers all three parts, a list of the publications that resulted from this effort, and three appendices with the details of each of the studies using a key publication developed under the respective work.
Topical perspective on massive threading and parallelism.
Farber, Robert M
2011-09-01
Unquestionably computer architectures have undergone a recent and noteworthy paradigm shift that now delivers multi- and many-core systems with tens to many thousands of concurrent hardware processing elements per workstation or supercomputer node. GPGPU (General Purpose Graphics Processor Unit) technology in particular has attracted significant attention as new software development capabilities, namely CUDA (Compute Unified Device Architecture) and OpenCL™, have made it possible for students as well as small and large research organizations to achieve excellent speedup for many applications over more conventional computing architectures. The current scientific literature reflects this shift with numerous examples of GPGPU applications that have achieved one, two, and in some special cases, three-orders of magnitude increased computational performance through the use of massive threading to exploit parallelism. Multi-core architectures are also evolving quickly to exploit both massive-threading and massive-parallelism such as the 1.3 million threads Blue Waters supercomputer. The challenge confronting scientists in planning future experimental and theoretical research efforts--be they individual efforts with one computer or collaborative efforts proposing to use the largest supercomputers in the world is how to capitalize on these new massively threaded computational architectures--especially as not all computational problems will scale to massive parallelism. In particular, the costs associated with restructuring software (and potentially redesigning algorithms) to exploit the parallelism of these multi- and many-threaded machines must be considered along with application scalability and lifespan. This perspective is an overview of the current state of threading and parallelize with some insight into the future. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johanna H Oxstrand; Katya L Le Blanc
The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use performance, researchers, together with the nuclear industry, have been looking at replacing the current paper-based procedures with computer-based procedure systems. The concept of computer-based procedures is not new by any means; however most research has focused on procedures used in the main control room. Procedures reviewed in these efforts are mainly emergency operating procedures and normal operating procedures. Based on lessons learned for these previous efforts wemore » are now exploring a more unknown application for computer based procedures - field procedures, i.e. procedures used by nuclear equipment operators and maintenance technicians. The Idaho National Laboratory, the Institute for Energy Technology, and participants from the U.S. commercial nuclear industry are collaborating in an applied research effort with the objective of developing requirements and specifications for a computer-based procedure system to be used by field operators. The goal is to identify the types of human errors that can be mitigated by using computer-based procedures and how to best design the computer-based procedures to do this. The underlying philosophy in the research effort is “Stop – Start – Continue”, i.e. what features from the use of paper-based procedures should we not incorporate (Stop), what should we keep (Continue), and what new features or work processes should be added (Start). One step in identifying the Stop – Start – Continue was to conduct a baseline study where affordances related to the current usage of paper-based procedures were identified. The purpose of the study was to develop a model of paper based procedure use which will help to identify desirable features for computer based procedure prototypes. Affordances such as note taking, markups, sharing procedures between fellow coworkers, the use of multiple procedures at once, etc. were considered. The model describes which affordances associated with paper based procedures should be transferred to computer-based procedures as well as what features should not be incorporated. The model also provides a means to identify what new features not present in paper based procedures need to be added to the computer-based procedures to further enhance performance. The next step is to use the requirements and specifications to develop concepts and prototypes of computer-based procedures. User tests and other data collection efforts will be conducted to ensure that the real issues with field procedures and their usage are being addressed and solved in the best manner possible. This paper describes the baseline study, the construction of the model of procedure use, and the requirements and specifications for computer-based procedures that were developed based on the model. It also addresses how the model and the insights gained from it were used to develop concepts and prototypes for computer based procedures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnack, Dalton D.
Final technical report for research performed by Dr. Thomas G. Jenkins in collaboration with Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodyanics, DE-FC02-06ER54899, for the period of 8/15/06 - 8/14/11. This report centers on the Slow MHD physics campaign work performed by Dr. Jenkins while at UW-Madison and then at Tech-X Corporation. To make progress on the problem of RF induced currents affect magnetic island evolution in toroidal plasmas, a set of research approaches are outlined. Three approaches can be addressed in parallel. These are: (1) Analytically prescribed additional term in Ohm's law tomore » model the effect of localized ECCD current drive; (2) Introduce an additional evolution equation for the Ohm's law source term. Establish a RF source 'box' where information from the RF code couples to the fluid evolution; and (3) Carry out a more rigorous analytic calculation treating the additional RF terms in a closure problem. These approaches rely on the necessity of reinvigorating the computation modeling efforts of resistive and neoclassical tearing modes with present day versions of the numerical tools. For the RF community, the relevant action item is - RF ray tracing codes need to be modified so that general three-dimensional spatial information can be obtained. Further, interface efforts between the two codes require work as well as an assessment as to the numerical stability properties of the procedures to be used.« less
User's Manual for LEWICE Version 3.2
NASA Technical Reports Server (NTRS)
Wright, William
2008-01-01
A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 3.2 of this software, which is called LEWICE. This version differs from release 2.0 due to the addition of advanced thermal analysis capabilities for de-icing and anti-icing applications using electrothermal heaters or bleed air applications, the addition of automated Navier-Stokes analysis, an empirical model for supercooled large droplets (SLD) and a pneumatic boot option. An extensive effort was also undertaken to compare the results against the database of electrothermal results which have been generated in the NASA Glenn Icing Research Tunnel (IRT) as was performed for the validation effort for version 2.0. This report will primarily describe the features of the software related to the use of the program. Appendix A has been included to list some of the inner workings of the software or the physical models used. This information is also available in the form of several unpublished documents internal to NASA. This report is intended as a replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this software.
Near-Source Modeling Updates: Building Downwash & Near-Road
The presentation describes recent research efforts in near-source model development focusing on building downwash and near-road barriers. The building downwash section summarizes a recent wind tunnel study, ongoing computational fluid dynamics simulations and efforts to improve ...
76 FR 17424 - President's National Security Telecommunications Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
... discuss and vote on the Communications Resiliency Report and receive an update on the cloud computing... Communications Resiliency Report III. Update on the Cloud Computing Scoping Effort IV. Closing Remarks Dated...
Conjugate Gradient Algorithms For Manipulator Simulation
NASA Technical Reports Server (NTRS)
Fijany, Amir; Scheid, Robert E.
1991-01-01
Report discusses applicability of conjugate-gradient algorithms to computation of forward dynamics of robotic manipulators. Rapid computation of forward dynamics essential to teleoperation and other advanced robotic applications. Part of continuing effort to find algorithms meeting requirements for increased computational efficiency and speed. Method used for iterative solution of systems of linear equations.
Using Information Technology in Mathematics Education.
ERIC Educational Resources Information Center
Tooke, D. James, Ed.; Henderson, Norma, Ed.
This collection of essays examines the history and impact of computers in mathematics and mathematics education from the early, computer-assisted instruction efforts through LOGO, the constructivist educational software for K-9 schools developed in the 1980s, to MAPLE, the computer algebra system for mathematical problem solving developed in the…
Cooperation Support in Computer-Aided Authoring and Learning.
ERIC Educational Resources Information Center
Muhlhauser, Max; Rudebusch, Tom
This paper discusses the use of Computer Supported Cooperative Work (CSCW) techniques for computer-aided learning (CAL); the work was started in the context of project Nestor, a joint effort of German universities about cooperative multimedia authoring/learning environments. There are four major categories of cooperation for CAL: author/author,…
2016 Annual Report - Argonne Leadership Computing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Jim; Papka, Michael E.; Cerny, Beth A.
The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.
Computer-Based Training: Capitalizing on Lessons Learned
ERIC Educational Resources Information Center
Bedwell, Wendy L.; Salas, Eduardo
2010-01-01
Computer-based training (CBT) is a methodology for providing systematic, structured learning; a useful tool when properly designed. CBT has seen a resurgence given the serious games movement, which is at the forefront of integrating primarily entertainment computer-based games into education and training. This effort represents a multidisciplinary…
"Computer Science Can Feed a Lot of Dreams"
ERIC Educational Resources Information Center
Educational Horizons, 2014
2014-01-01
Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…
ERIC Educational Resources Information Center
Oblinger, Diana
The Internet is an international network linking hundreds of smaller computer networks in North America, Europe, and Asia. Using the Internet, computer users can connect to a variety of computers with little effort or expense. The potential for use by college faculty is enormous. The largest problem faced by most users is understanding what such…
"Intelligent" Computer Assisted Instruction (CAI) Applications. Interim Report.
ERIC Educational Resources Information Center
Brown, John Seely; And Others
Interim work is documented describing efforts to modify computer techniques used to recognize and process English language requests to an instructional simulator. The conversion from a hand-coded to a table driven technique are described in detail. Other modifications to a simulation based computer assisted instruction program to allow a gaming…
NASA Astrophysics Data System (ADS)
Foo, Kam Keong
A two-dimensional dual-mode scramjet flowpath is developed and evaluated using the ANSYS Fluent density-based flow solver with various computational grids. Results are obtained for fuel-off, fuel-on non-reacting, and fuel-on reacting cases at different equivalence ratios. A one-step global chemical kinetics hydrogen-air model is used in conjunction with the eddy-dissipation model. Coarse, medium and fine computational grids are used to evaluate grid sensitivity and to investigate a lack of grid independence. Different grid adaptation strategies are performed on the coarse grid in an attempt to emulate the solutions obtained from the finer grids. The goal of this study is to investigate the feasibility of using various mesh adaptation criteria to significantly decrease computational efforts for high-speed reacting flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhai, B.
A new method for solving radiation transport problems is presented. The heart of the technique is a new cross section processing procedure for the calculation of group-to-point and point-to-group cross sections sets. The method is ideally suited for problems which involve media with highly fluctuating cross sections, where the results of the traditional multigroup calculations are beclouded by the group averaging procedures employed. Extensive computational efforts, which would be required to evaluate double integrals in the multigroup treatment numerically, prohibit iteration to optimize the energy boundaries. On the other hand, use of point-to-point techniques (as in the stochastic technique) ismore » often prohibitively expensive due to the large computer storage requirement. The pseudo-point code is a hybrid of the two aforementioned methods (group-to-group and point-to-point) - hence the name pseudo-point - that reduces the computational efforts of the former and the large core requirements of the latter. The pseudo-point code generates the group-to-point or the point-to-group transfer matrices, and can be coupled with the existing transport codes to calculate pointwise energy-dependent fluxes. This approach yields much more detail than is available from the conventional energy-group treatments. Due to the speed of this code, several iterations could be performed (in affordable computing efforts) to optimize the energy boundaries and the weighting functions. The pseudo-point technique is demonstrated by solving six problems, each depicting a certain aspect of the technique. The results are presented as flux vs energy at various spatial intervals. The sensitivity of the technique to the energy grid and the savings in computational effort are clearly demonstrated.« less
Modeling methods for merging computational and experimental aerodynamic pressure data
NASA Astrophysics Data System (ADS)
Haderlie, Jacob C.
This research describes a process to model surface pressure data sets as a function of wing geometry from computational and wind tunnel sources and then merge them into a single predicted value. The described merging process will enable engineers to integrate these data sets with the goal of utilizing the advantages of each data source while overcoming the limitations of both; this provides a single, combined data set to support analysis and design. The main challenge with this process is accurately representing each data source everywhere on the wing. Additionally, this effort demonstrates methods to model wind tunnel pressure data as a function of angle of attack as an initial step towards a merging process that uses both location on the wing and flow conditions (e.g., angle of attack, flow velocity or Reynold's number) as independent variables. This surrogate model of pressure as a function of angle of attack can be useful for engineers that need to predict the location of zero-order discontinuities, e.g., flow separation or normal shocks. Because, to the author's best knowledge, there is no published, well-established merging method for aerodynamic pressure data (here, the coefficient of pressure Cp), this work identifies promising modeling and merging methods, and then makes a critical comparison of these methods. Surrogate models represent the pressure data for both data sets. Cubic B-spline surrogate models represent the computational simulation results. Machine learning and multi-fidelity surrogate models represent the experimental data. This research compares three surrogates for the experimental data (sequential--a.k.a. online--Gaussian processes, batch Gaussian processes, and multi-fidelity additive corrector) on the merits of accuracy and computational cost. The Gaussian process (GP) methods employ cubic B-spline CFD surrogates as a model basis function to build a surrogate model of the WT data, and this usage of the CFD surrogate in building the WT data could serve as a "merging" because the resulting WT pressure prediction uses information from both sources. In the GP approach, this model basis function concept seems to place more "weight" on the Cp values from the wind tunnel (WT) because the GP surrogate uses the CFD to approximate the WT data values. Conversely, the computationally inexpensive additive corrector method uses the CFD B-spline surrogate to define the shape of the spanwise distribution of the Cp while minimizing prediction error at all spanwise locations for a given arc length position; this, too, combines information from both sources to make a prediction of the 2-D WT-based Cp distribution, but the additive corrector approach gives more weight to the CFD prediction than to the WT data. Three surrogate models of the experimental data as a function of angle of attack are also compared for accuracy and computational cost. These surrogates are a single Gaussian process model (a single "expert"), product of experts, and generalized product of experts. The merging approach provides a single pressure distribution that combines experimental and computational data. The batch Gaussian process method provides a relatively accurate surrogate that is computationally acceptable, and can receive wind tunnel data from port locations that are not necessarily parallel to a variable direction. On the other hand, the sequential Gaussian process and additive corrector methods must receive a sufficient number of data points aligned with one direction, e.g., from pressure port bands (tap rows) aligned with the freestream. The generalized product of experts best represents wind tunnel pressure as a function of angle of attack, but at higher computational cost than the single expert approach. The format of the application data from computational and experimental sources in this work precluded the merging process from including flow condition variables (e.g., angle of attack) in the independent variables, so the merging process is only conducted in the wing geometry variables of arc length and span. The merging process of Cp data allows a more "hands-off" approach to aircraft design and analysis, (i.e., not as many engineers needed to debate the Cp distribution shape) and generates Cp predictions at any location on the wing. However, the cost with these benefits are engineer time (learning how to build surrogates), computational time in constructing the surrogates, and surrogate accuracy (surrogates introduce error into data predictions). This dissertation effort used the Trap Wing / First AIAA CFD High-Lift Prediction Workshop as a relevant transonic wing with a multi-element high-lift system, and this work identified that the batch GP model for the WT data and the B-spline surrogate for the CFD might best be combined using expert belief weights to describe Cp as a function of location on the wing element surface. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell
1999-01-01
AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined for use in aeroelastic code validation.
2015-01-01
Many commonly used coarse-grained models for proteins are based on simplified interaction sites and consequently may suffer from significant limitations, such as the inability to properly model protein secondary structure without the addition of restraints. Recent work on a benzene fluid (LettieriS.; ZuckermanD. M.J. Comput. Chem.2012, 33, 268−27522120971) suggested an alternative strategy of tabulating and smoothing fully atomistic orientation-dependent interactions among rigid molecules or fragments. Here we report our initial efforts to apply this approach to the polar and covalent interactions intrinsic to polypeptides. We divide proteins into nearly rigid fragments, construct distance and orientation-dependent tables of the atomistic interaction energies between those fragments, and apply potential energy smoothing techniques to those tables. The amount of smoothing can be adjusted to give coarse-grained models that range from the underlying atomistic force field all the way to a bead-like coarse-grained model. For a moderate amount of smoothing, the method is able to preserve about 70–90% of the α-helical structure while providing a factor of 3–10 improvement in sampling per unit computation time (depending on how sampling is measured). For a greater amount of smoothing, multiple folding–unfolding transitions of the peptide were observed, along with a factor of 10–100 improvement in sampling per unit computation time, although the time spent in the unfolded state was increased compared with less smoothed simulations. For a β hairpin, secondary structure is also preserved, albeit for a narrower range of the smoothing parameter and, consequently, for a more modest improvement in sampling. We have also applied the new method in a “resolution exchange” setting, in which each replica runs a Monte Carlo simulation with a different degree of smoothing. We obtain exchange rates that compare favorably to our previous efforts at resolution exchange (LymanE.; ZuckermanD. M.J. Chem. Theory Comput.2006, 2, 656−666). PMID:25400525
The effect of technology on student science achievement
NASA Astrophysics Data System (ADS)
Hilton, June Kraft
2003-10-01
Prior research indicates that technology has had little effect on raising student achievement. Little empirical research exists, however, studying the effects of technology as a tool to improve student achievement through development of higher order thinking skills. Also, prior studies have not focused on the manner in which technology is being used in the classroom and at home to enhance teaching and learning. Empirical data from a secondary school representative of those in California were analyzed to determine the effects of technology on student science achievement. The quantitative analysis methods for the school data study included a multiple linear path analysis, using final course grade as the ultimate exogenous variable. In addition, empirical data from a nationwide survey on how Americans use the Internet were disaggregated by age and analyzed to determine the relationships between computer and Internet experience and (a) Internet use at home for school assignments and (b) more general computer use at home for school assignments for school age children. Analysis of data collected from the a "A Nation Online" Survey conducted by the United States Census Bureau assessed these relationships via correlations and cross-tabulations. Finally, results from these data analyses were assessed in conjunction with systemic reform efforts from 12 states designed to address improvements in science and mathematics education in light of the Third International Mathematics and Science Survey (TIMSS). Examination of the technology efforts in those states provided a more nuanced understanding of the impact technology has on student achievement. Key findings included evidence that technology training for teachers increased their use of the computer for instruction but students' final science course grade did not improve; school age children across the country did not use the computer at home for such higher-order cognitive activities as graphics and design or spreadsheets/databases; and states whose systemic reform initiatives included a mix of capacity building and alignment to state standards realized improved student achievement on the 2000 NAEP Science Assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, Patrick
The primary challenge motivating this project is the widening gap between the ability to compute information and to store it for subsequent analysis. This gap adversely impacts science code teams, who can perform analysis only on a small fraction of the data they calculate, resulting in the substantial likelihood of lost or missed science, when results are computed but not analyzed. Our approach is to perform as much analysis or visualization processing on data while it is still resident in memory, which is known as in situ processing. The idea in situ processing was not new at the time ofmore » the start of this effort in 2014, but efforts in that space were largely ad hoc, and there was no concerted effort within the research community that aimed to foster production-quality software tools suitable for use by Department of Energy (DOE) science projects. Our objective was to produce and enable the use of production-quality in situ methods and infrastructure, at scale, on DOE high-performance computing (HPC) facilities, though we expected to have an impact beyond DOE due to the widespread nature of the challenges, which affect virtually all large-scale computational science efforts. To achieve this objective, we engaged in software technology research and development (R&D), in close partnerships with DOE science code teams, to produce software technologies that were shown to run efficiently at scale on DOE HPC platforms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, T; Du, K; Bayouth, J
Purpose: Ventilation change caused by radiation therapy (RT) can be predicted using four-dimensional computed tomography (4DCT) and image registration. This study tested the dependency of predicted post-RT ventilation on effort correction and pre-RT lung function. Methods: Pre-RT and 3 month post-RT 4DCT images were obtained for 13 patients. The 4DCT images were used to create ventilation maps using a deformable image registration based Jacobian expansion calculation. The post-RT ventilation maps were predicted in four different ways using the dose delivered, pre-RT ventilation, and effort correction. The pre-RT ventilation and effort correction were toggled to determine dependency. The four different predictedmore » ventilation maps were compared to the post-RT ventilation map calculated from image registration to establish the best prediction method. Gamma pass rates were used to compare the different maps with the criteria of 2mm distance-to-agreement and 6% ventilation difference. Paired t-tests of gamma pass rates were used to determine significant differences between the maps. Additional gamma pass rates were calculated using only voxels receiving over 20 Gy. Results: The predicted post-RT ventilation maps were in agreement with the actual post-RT maps in the following percentage of voxels averaged over all subjects: 71% with pre-RT ventilation and effort correction, 69% with no pre-RT ventilation and effort correction, 60% with pre-RT ventilation and no effort correction, and 58% with no pre-RT ventilation and no effort correction. When analyzing only voxels receiving over 20 Gy, the gamma pass rates were respectively 74%, 69%, 65%, and 55%. The prediction including both pre- RT ventilation and effort correction was the only prediction with significant improvement over using no prediction (p<0.02). Conclusion: Post-RT ventilation is best predicted using both pre-RT ventilation and effort correction. This is the only prediction that provided a significant improvement on agreement. Research support from NIH grants CA166119 and CA166703, a gift from Roger Koch, and a Pilot Grant from University of Iowa Carver College of Medicine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, H.J.; Mortensen, G.A.
1978-04-01
Approximately 60% of the full CDC 6600/7600 Datatran 2.0 capability was made operational on IBM 360/370 equipment. Sufficient capability was made operational to demonstrate adequate performance for modular program linking applications. Also demonstrated were the basic capabilities and performance required to support moderate-sized data base applications and moderately active scratch input/output applications. Approximately one to two calendar years are required to develop DATATRAN 2.0 capabilities fully for the entire spectrum of applications proposed. Included in the next stage of conversion should be syntax checking and syntax conversion features that would foster greater FORTRAN compatibility between IBM and CDC developed modules.more » The batch portion of the JOSHUA Modular System, which was developed by Savannah River Laboratory to run on an IBM computer, was examined for the feasibility of conversion to run on a Control Data Corporation (CDC) computer. Portions of the JOSHUA Precompiler were changed so as to be operable on the CDC computer. The Data Manager and Batch Monitor were also examined for conversion feasibility, but no changes were made in them. It appears to be feasible to convert the batch portion of the JOSHUA Modular System to run on a CDC computer with an estimated additional two to three man-years of effort. 9 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zi-Kui; Gleeson, Brian; Shang, Shunli
This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities,more » which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.« less
NASA Astrophysics Data System (ADS)
Lindsey, Martin Forrester
Sustained hypersonic flight using scramjet propulsion is the key technology bridging the gap between turbojets and the exoatmospheric environment where a rocket is required. Recent efforts have focused on electromagnetic (EM) flow control to mitigate the problems of high thermomechanical loads and low propulsion efficiencies associated with scramjet propulsion. This research effort is the first flight-scale, three-dimensional computational analysis of a realistic scramjet to determine how EM flow control can improve scramjet performance. Development of a quasi-one dimensional design tool culminated in the first open source geometry of an entire scramjet flowpath. This geometry was then tested extensively with the Air Force Research Laboratory's three-dimensional Navier-Stokes and EM coupled computational code. As part of improving the model fidelity, a loosely coupled algorithm was developed to incorporate thermochemistry. This resulted in the only open-source model of fuel injection, mixing and combustion in a magnetogasdynamic (MGD) flow controlled engine. In addition, a control volume analysis tool with an electron beam ionization model was presented for the first time in the context of the established computational method used. Local EM flow control within the internal inlet greatly impacted drag forces and wall heat transfer but was only marginally successful in raising the average pressure entering the combustor. The use of an MGD accelerator to locally increase flow momentum was an effective approach to improve flow into the scramjet's isolator. Combustor-based MGD generators proved superior to the inlet generator with respect to power density and overall engine efficiency. MGD acceleration was shown to be ineffective in improving overall performance, with all of the bypass engines having approximately 33% more drag than baseline and none of them achieving a self-powered state.
Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi
2011-01-01
Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chame, Jacqueline
2011-05-27
The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and formore » the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.« less
Baugh, J; Moussa, O; Ryan, C A; Nayak, A; Laflamme, R
2005-11-24
The counter-intuitive properties of quantum mechanics have the potential to revolutionize information processing by enabling the development of efficient algorithms with no known classical counterparts. Harnessing this power requires the development of a set of building blocks, one of which is a method to initialize the set of quantum bits (qubits) to a known state. Additionally, fresh ancillary qubits must be available during the course of computation to achieve fault tolerance. In any physical system used to implement quantum computation, one must therefore be able to selectively and dynamically remove entropy from the part of the system that is to be mapped to qubits. One such method is an 'open-system' cooling protocol in which a subset of qubits can be brought into contact with an external system of large heat capacity. Theoretical efforts have led to an implementation-independent cooling procedure, namely heat-bath algorithmic cooling. These efforts have culminated with the proposal of an optimal algorithm, the partner-pairing algorithm, which was used to compute the physical limits of heat-bath algorithmic cooling. Here we report the experimental realization of multi-step cooling of a quantum system via heat-bath algorithmic cooling. The experiment was carried out using nuclear magnetic resonance of a solid-state ensemble three-qubit system. We demonstrate the repeated repolarization of a particular qubit to an effective spin-bath temperature, and alternating logical operations within the three-qubit subspace to ultimately cool a second qubit below this temperature. Demonstration of the control necessary for these operations represents an important step forward in the manipulation of solid-state nuclear magnetic resonance qubits.
Correlation models for waste tank sludges and slurries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, L.A.; Trent, D.S.
This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This reportmore » presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.« less
Lessons Learned in Deploying the World s Largest Scale Lustre File System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillow, David A; Fuller, Douglas; Wang, Feiyi
2010-01-01
The Spider system at the Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) is the world's largest scale Lustre parallel file system. Envisioned as a shared parallel file system capable of delivering both the bandwidth and capacity requirements of the OLCF's diverse computational environment, the project had a number of ambitious goals. To support the workloads of the OLCF's diverse computational platforms, the aggregate performance and storage capacity of Spider exceed that of our previously deployed systems by a factor of 6x - 240 GB/sec, and 17x - 10 Petabytes, respectively. Furthermore, Spider supports over 26,000 clients concurrently accessing themore » file system, which exceeds our previously deployed systems by nearly 4x. In addition to these scalability challenges, moving to a center-wide shared file system required dramatically improved resiliency and fault-tolerance mechanisms. This paper details our efforts in designing, deploying, and operating Spider. Through a phased approach of research and development, prototyping, deployment, and transition to operations, this work has resulted in a number of insights into large-scale parallel file system architectures, from both the design and the operational perspectives. We present in this paper our solutions to issues such as network congestion, performance baselining and evaluation, file system journaling overheads, and high availability in a system with tens of thousands of components. We also discuss areas of continued challenges, such as stressed metadata performance and the need for file system quality of service alongside with our efforts to address them. Finally, operational aspects of managing a system of this scale are discussed along with real-world data and observations.« less
Computation of viscous blast wave flowfields
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1991-01-01
A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.
Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.
Trudgian, David C; Mirzaei, Hamid
2012-12-07
We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.
Numerical Propulsion System Simulation (NPSS) 1999 Industry Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Greg; Naiman, Cynthia; Evans, Austin
2000-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. In addition, the paper contains a summary of the feedback received from industry partners in the development effort and the actions taken over the past year to respond to that feedback. The NPSS development was supported in FY99 by the High Performance Computing and Communications Program.
Non-parallel processing: Gendered attrition in academic computer science
NASA Astrophysics Data System (ADS)
Cohoon, Joanne Louise Mcgrath
2000-10-01
This dissertation addresses the issue of disproportionate female attrition from computer science as an instance of gender segregation in higher education. By adopting a theoretical framework from organizational sociology, it demonstrates that the characteristics and processes of computer science departments strongly influence female retention. The empirical data identifies conditions under which women are retained in the computer science major at comparable rates to men. The research for this dissertation began with interviews of students, faculty, and chairpersons from five computer science departments. These exploratory interviews led to a survey of faculty and chairpersons at computer science and biology departments in Virginia. The data from these surveys are used in comparisons of the computer science and biology disciplines, and for statistical analyses that identify which departmental characteristics promote equal attrition for male and female undergraduates in computer science. This three-pronged methodological approach of interviews, discipline comparisons, and statistical analyses shows that departmental variation in gendered attrition rates can be explained largely by access to opportunity, relative numbers, and other characteristics of the learning environment. Using these concepts, this research identifies nine factors that affect the differential attrition of women from CS departments. These factors are: (1) The gender composition of enrolled students and faculty; (2) Faculty turnover; (3) Institutional support for the department; (4) Preferential attitudes toward female students; (5) Mentoring and supervising by faculty; (6) The local job market, starting salaries, and competitiveness of graduates; (7) Emphasis on teaching; and (8) Joint efforts for student success. This work contributes to our understanding of the gender segregation process in higher education. In addition, it contributes information that can lead to effective solutions for an economically significant issue in modern American society---gender equality in computer science.
A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.; Fogle, Frank (Technical Monitor)
2002-01-01
Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.
NASA Technical Reports Server (NTRS)
Rosen, Bruce S.
1991-01-01
An upwind three-dimensional volume Navier-Stokes code is modified to facilitate modeling of complex geometries and flow fields represented by proposed National Aerospace Plane concepts. Code enhancements include an equilibrium air model, a generalized equilibrium gas model and several schemes to simplify treatment of complex geometric configurations. The code is also restructured for inclusion of an arbitrary number of independent and dependent variables. This latter capability is intended for eventual use to incorporate nonequilibrium/chemistry gas models, more sophisticated turbulence and transition models, or other physical phenomena which will require inclusion of additional variables and/or governing equations. Comparisons of computed results with experimental data and results obtained using other methods are presented for code validation purposes. Good correlation is obtained for all of the test cases considered, indicating the success of the current effort.
Application Portable Parallel Library
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Blech, Richard A.; Quealy, Angela; Townsend, Scott
1995-01-01
Application Portable Parallel Library (APPL) computer program is subroutine-based message-passing software library intended to provide consistent interface to variety of multiprocessor computers on market today. Minimizes effort needed to move application program from one computer to another. User develops application program once and then easily moves application program from parallel computer on which created to another parallel computer. ("Parallel computer" also include heterogeneous collection of networked computers). Written in C language with one FORTRAN 77 subroutine for UNIX-based computers and callable from application programs written in C language or FORTRAN 77.
Lebeda, Frank J; Zalatoris, Jeffrey J; Scheerer, Julia B
2018-02-07
This position paper summarizes the development and the present status of Department of Defense (DoD) and other government policies and guidances regarding cloud computing services. Due to the heterogeneous and growing biomedical big datasets, cloud computing services offer an opportunity to mitigate the associated storage and analysis requirements. Having on-demand network access to a shared pool of flexible computing resources creates a consolidated system that should reduce potential duplications of effort in military biomedical research. Interactive, online literature searches were performed with Google, at the Defense Technical Information Center, and at two National Institutes of Health research portfolio information sites. References cited within some of the collected documents also served as literature resources. We gathered, selected, and reviewed DoD and other government cloud computing policies and guidances published from 2009 to 2017. These policies were intended to consolidate computer resources within the government and reduce costs by decreasing the number of federal data centers and by migrating electronic data to cloud systems. Initial White House Office of Management and Budget information technology guidelines were developed for cloud usage, followed by policies and other documents from the DoD, the Defense Health Agency, and the Armed Services. Security standards from the National Institute of Standards and Technology, the Government Services Administration, the DoD, and the Army were also developed. Government Services Administration and DoD Inspectors General monitored cloud usage by the DoD. A 2016 Government Accountability Office report characterized cloud computing as being economical, flexible and fast. A congressionally mandated independent study reported that the DoD was active in offering a wide selection of commercial cloud services in addition to its milCloud system. Our findings from the Department of Health and Human Services indicated that the security infrastructure in cloud services may be more compliant with the Health Insurance Portability and Accountability Act of 1996 regulations than traditional methods. To gauge the DoD's adoption of cloud technologies proposed metrics included cost factors, ease of use, automation, availability, accessibility, security, and policy compliance. Since 2009, plans and policies were developed for the use of cloud technology to help consolidate and reduce the number of data centers which were expected to reduce costs, improve environmental factors, enhance information technology security, and maintain mission support for service members. Cloud technologies were also expected to improve employee efficiency and productivity. Federal cloud computing policies within the last decade also offered increased opportunities to advance military healthcare. It was assumed that these opportunities would benefit consumers of healthcare and health science data by allowing more access to centralized cloud computer facilities to store, analyze, search and share relevant data, to enhance standardization, and to reduce potential duplications of effort. We recommend that cloud computing be considered by DoD biomedical researchers for increasing connectivity, presumably by facilitating communications and data sharing, among the various intra- and extramural laboratories. We also recommend that policies and other guidances be updated to include developing additional metrics that will help stakeholders evaluate the above mentioned assumptions and expectations. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using specially designed test hardware enabling measurement of heat transferred through a simulated Stirling cycle. The overall effort and results are discussed.
Infrared Algorithm Development for Ocean Observations with EOS/MODIS
NASA Technical Reports Server (NTRS)
Brown, Otis B.
1997-01-01
Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared measurements. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, development of experimental instrumentation, and participation in MODIS (project) related activities. Activities in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, undertake field campaigns, analysis of field data, and participation in MODIS meetings.
Hypercube matrix computation task
NASA Technical Reports Server (NTRS)
Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.
1988-01-01
A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).
Nikoloudaki, Georgia E.; Kontogiannis, Taxiarchis G.; Kerezoudis, Nikolaos P.
2015-01-01
Objectives: Cone-Beam Computed Tomography is an alternative imaging technique which has been recently introduced in the field of Oral & Maxillofacial Radiology. It has rapidly gained great popularity among clinicians due to its ability to detect lesions and defects of the orofacial region and provide three-dimensional information about them. In the field of Endodontics, CBCT can be a useful tool to reveal tooth morphology irregularities, additional root canals and vertical root fractures. The objective of this study is to evaluate the root and root canal morphology of the maxillary permanent molars in Greek population using Cone-Beam Computed Tomography. Materials and Methods : 273 cone-beam computed tomography (CBCT) images were examined. The number of roots and root canals of the first and second maxillary molars were evaluated. Root canal configuration was classified according to Weine’s classification by two independent examiners and statistical analysis was performed. Results : A total of 812 molars (410 first and 402 second ones) were evaluated. The vast majority of both first and second molars had three roots (89.26% and 85.07%, respectively). Most first molars had four canals, while most second molars had three. In the mesiobuccal roots, one foramen was recorded in 80.91% of all teeth. Other rare morphologic variations were also found, such as fusion of a maxillary second molar with a supernumerary tooth. Conclusion : Within the limitations of this study, it can be concluded that more attention should be given to the detection of additional canals during root canal treatment in maxillary permanent molars. Towards this effort, CBCT can provide the clinician with supplemental information about the different root canal configurations for successful Root Canal Treatment. PMID:26464594
Probabilistic Learning by Rodent Grid Cells
Cheung, Allen
2016-01-01
Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723
A SEARCH FOR MULTI-PLANET SYSTEMS USING THE HOBBY-EBERLY TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittenmyer, Robert A.; Endl, Michael; Cochran, William D.
Extrasolar multiple-planet systems provide valuable opportunities for testing theories of planet formation and evolution. The architectures of the known multiple-planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investigation of 22 planetary systems in an effort to answer three questions: (1) are there additional planets? (2) where could additional planets reside in stable orbits? and (3) what limits can these observations place on such objects? We find no evidence for additional bodies in any of thesemore » systems; indeed, these new data do not support three previously announced planets (HD 20367 b: Udry et al.; HD 74156 d: Bean et al.; and 47 UMa c: Fischer et al.). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these nondetections.« less
Staff | Computational Science | NREL
develops and leads laboratory-wide efforts in high-performance computing and energy-efficient data centers Professional IV-High Perf Computing Jim.Albin@nrel.gov 303-275-4069 Ananthan, Shreyas Senior Scientist - High -Performance Algorithms and Modeling Shreyas.Ananthan@nrel.gov 303-275-4807 Bendl, Kurt IT Professional IV-High
ERIC Educational Resources Information Center
Dasuki, Salihu Ibrahim; Ogedebe, Peter; Kanya, Rislana Abdulazeez; Ndume, Hauwa; Makinde, Julius
2015-01-01
Efforts are been made by Universities in developing countries to ensure that it's graduate are not left behind in the competitive global information society; thus have adopted international computing curricular for their computing degree programs. However, adopting these international curricula seem to be very challenging for developing countries…
Automated computer grading of hardwood lumber
P. Klinkhachorn; J.P. Franklin; Charles W. McMillin; R.W. Conners; H.A. Huber
1988-01-01
This paper describes an improved computer program to grade hardwood lumber. The program was created as part of a system to automate various aspects of the hardwood manufacturing industry. It enhances previous efforts by considering both faces of the board and provides easy application of species dependent rules. The program can be readily interfaced with a computer...
Distance Learning and Cloud Computing: "Just Another Buzzword or a Major E-Learning Breakthrough?"
ERIC Educational Resources Information Center
Romiszowski, Alexander J.
2012-01-01
"Cloud computing is a model for the enabling of ubiquitous, convenient, and on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and other services) that can be rapidly provisioned and released with minimal management effort or service provider interaction." This…
The Use of Computers in the Math Classroom.
ERIC Educational Resources Information Center
Blass, Barbara; And Others
In an effort to increase faculty use and knowledge of computers, Oakland Community College (OCC), in Michigan, developed a Summer Technology Institute (STI), and a Computer Technology Grants (CTG) project beginning in 1989. The STI involved 3-day forums during summers 1989, 1990, and 1991 to expose faculty to hardware and software applications.…
Commentary: It Is Not Only about the Computers--An Argument for Broadening the Conversation
ERIC Educational Resources Information Center
DeWitt, Scott W.
2006-01-01
In 2002 the members of the National Technology Leadership Initiative (NTLI) framed seven conclusions relating to handheld computers and ubiquitous computing in schools. While several of the conclusions are laudable efforts to increase research and professional development, the factual and conceptual bases for this document are seriously flawed.…
The Relationship between Computational Fluency and Student Success in General Studies Mathematics
ERIC Educational Resources Information Center
Hegeman, Jennifer; Waters, Gavin
2012-01-01
Many developmental mathematics programs emphasize computational fluency with the assumption that this is a necessary contributor to student success in general studies mathematics. In an effort to determine which skills are most essential, scores on a computational fluency test were correlated with student success in general studies mathematics at…
NASA Technical Reports Server (NTRS)
Iida, H. T.
1966-01-01
Computational procedure reduces the numerical effort whenever the method of finite differences is used to solve ablation problems for which the surface recession is large relative to the initial slab thickness. The number of numerical operations required for a given maximum space mesh size is reduced.
Computer-Based Simulations for Maintenance Training: Current ARI Research. Technical Report 544.
ERIC Educational Resources Information Center
Knerr, Bruce W.; And Others
Three research efforts that used computer-based simulations for maintenance training were in progress when this report was written: Game-Based Learning, which investigated the use of computer-based games to train electronics diagnostic skills; Human Performance in Fault Diagnosis Tasks, which evaluated the use of context-free tasks to train…
Computational protein design-the next generation tool to expand synthetic biology applications.
Gainza-Cirauqui, Pablo; Correia, Bruno Emanuel
2018-05-02
One powerful approach to engineer synthetic biology pathways is the assembly of proteins sourced from one or more natural organisms. However, synthetic pathways often require custom functions or biophysical properties not displayed by natural proteins, limitations that could be overcome through modern protein engineering techniques. Structure-based computational protein design is a powerful tool to engineer new functional capabilities in proteins, and it is beginning to have a profound impact in synthetic biology. Here, we review efforts to increase the capabilities of synthetic biology using computational protein design. We focus primarily on computationally designed proteins not only validated in vitro, but also shown to modulate different activities in living cells. Efforts made to validate computational designs in cells can illustrate both the challenges and opportunities in the intersection of protein design and synthetic biology. We also highlight protein design approaches, which although not validated as conveyors of new cellular function in situ, may have rapid and innovative applications in synthetic biology. We foresee that in the near-future, computational protein design will vastly expand the functional capabilities of synthetic cells. Copyright © 2018. Published by Elsevier Ltd.
Design and implementation of a Windows NT network to support CNC activities
NASA Technical Reports Server (NTRS)
Shearrow, C. A.
1996-01-01
The Manufacturing, Materials, & Processes Technology Division is undergoing dramatic changes to bring it's manufacturing practices current with today's technological revolution. The Division is developing Computer Automated Design and Computer Automated Manufacturing (CAD/CAM) abilities. The development of resource tracking is underway in the form of an accounting software package called Infisy. These two efforts will bring the division into the 1980's in relationship to manufacturing processes. Computer Integrated Manufacturing (CIM) is the final phase of change to be implemented. This document is a qualitative study and application of a CIM application capable of finishing the changes necessary to bring the manufacturing practices into the 1990's. The documentation provided in this qualitative research effort includes discovery of the current status of manufacturing in the Manufacturing, Materials, & Processes Technology Division including the software, hardware, network and mode of operation. The proposed direction of research included a network design, computers to be used, software to be used, machine to computer connections, estimate a timeline for implementation, and a cost estimate. Recommendation for the division's improvement include action to be taken, software to utilize, and computer configurations.
Many Masses on One Stroke:. Economic Computation of Quark Propagators
NASA Astrophysics Data System (ADS)
Frommer, Andreas; Nöckel, Bertold; Güsken, Stephan; Lippert, Thomas; Schilling, Klaus
The computational effort in the calculation of Wilson fermion quark propagators in Lattice Quantum Chromodynamics can be considerably reduced by exploiting the Wilson fermion matrix structure in inversion algorithms based on the non-symmetric Lanczos process. We consider two such methods: QMR (quasi minimal residual) and BCG (biconjugate gradients). Based on the decomposition M/κ = 1/κ-D of the Wilson mass matrix, using QMR, one can carry out inversions on a whole trajectory of masses simultaneously, merely at the computational expense of a single propagator computation. In other words, one has to compute the propagator corresponding to the lightest mass only, while all the heavier masses are given for free, at the price of extra storage. Moreover, the symmetry γ5M = M†γ5 can be used to cut the computational effort in QMR and BCG by a factor of two. We show that both methods then become — in the critical regime of small quark masses — competitive to BiCGStab and significantly better than the standard MR method, with optimal relaxation factor, and CG as applied to the normal equations.
Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2010-01-01
Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.
F‐GHG Emissions Reduction Efforts: FY2015 Supplier Profiles
The Supplier Profiles outlined in this document detail the efforts of large‐area flat panel suppliers to reduce their F‐GHG emissions in manufacturing facilities that make today’s large‐area panels used for products such as TVs and computer monitors.
F‐GHG Emissions Reduction Efforts: FY2016 Supplier Profiles
The Supplier Profiles outlined in this document detail the efforts of large‐area flat panel suppliers to reduce their F‐GHG emissions in manufacturing facilities that make today’s large‐area panels used for products such as TVs and computer monitors.
Operating manual for coaxial injection combustion model. [for the space shuttle main engine
NASA Technical Reports Server (NTRS)
Sutton, R. D.; Schuman, M. D.; Chadwick, W. D.
1974-01-01
An operating manual for the coaxial injection combustion model (CICM) is presented as the final report for an eleven month effort designed to provide improvement, to verify, and to document the comprehensive computer program for analyzing the performance of thrust chamber operation with gas/liquid coaxial jet injection. The effort culminated in delivery of an operation FORTRAN IV computer program and associated documentation pertaining to the combustion conditions in the space shuttle main engine. The computer program is structured for compatibility with the standardized Joint Army-Navy-NASA-Air Force (JANNAF) performance evaluation procedure. Use of the CICM in conjunction with the JANNAF procedure allows the analysis of engine systems using coaxial gas/liquid injection.
A compilation of technology spinoffs from the US Space Shuttle Program
NASA Technical Reports Server (NTRS)
Jackson, David Jeff
1993-01-01
As the successful transfer of NASA-developed technology is a stated mission of NASA, the documentation of such transfer is vital in support of the program. The purpose of this report is to document technology transfer, i.e. 'spinoffs', from the U.S. Space Shuttle Program to the commercial sector. These spinoffs have their origin in the many scientific and engineering fields associated with the shuttle program and, as such, span many diverse commercial applications. These applications include, but are not limited to, consumer products, medicine, industrial productivity, manufacturing technology, public safety, resources management, materials processing, transportation, energy, computer technology, construction, and environmental applications. To aide to the generation of this technology spinoff list, significant effort was made to establish numerous and complementary sources of information. The primary sources of information used in compiling this list include: the NASA 'Spinoff' publication, NASA Tech Briefs, the Marshall Space Flight Center (MSFC) Technology Utilization (TU) Office, the NASA Center for Aerospace Information (CASI), the NASA COSMIC Software Center, and MSFC laboratory and contractor personnel. A complete listing of resources may be found in the bibliography of this report. Additionally, effort was made to insure that the obtained information was placed in electronic database form to insure that the subsequent updating would be feasible with minimal effort.
Aviation security : vulnerabilities still exist in the aviation security system
DOT National Transportation Integrated Search
2000-04-06
The testimony today discusses the Federal Aviation Administration's (FAA) efforts to implement and improve security in two key areas: air traffic control computer systems and airport passenger screening checkpoints. Computer systems-and the informati...
Psychological Issues in Online Adaptive Task Allocation
NASA Technical Reports Server (NTRS)
Morris, N. M.; Rouse, W. B.; Ward, S. L.; Frey, P. R.
1984-01-01
Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed.
40 CFR 33.302 - Are there any additional contract administration requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Good Faith Efforts § 33.302 Are there any additional contract... faith efforts described in § 33.301 if soliciting a replacement subcontractor. (d) A recipient must require its prime contractor to employ the six good faith efforts described in § 33.301 even if the prime...
40 CFR 33.302 - Are there any additional contract administration requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Good Faith Efforts § 33.302 Are there any additional contract... faith efforts described in § 33.301 if soliciting a replacement subcontractor. (d) A recipient must require its prime contractor to employ the six good faith efforts described in § 33.301 even if the prime...
40 CFR 33.302 - Are there any additional contract administration requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Good Faith Efforts § 33.302 Are there any additional contract... faith efforts described in § 33.301 if soliciting a replacement subcontractor. (d) A recipient must require its prime contractor to employ the six good faith efforts described in § 33.301 even if the prime...
40 CFR 33.302 - Are there any additional contract administration requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Good Faith Efforts § 33.302 Are there any additional contract... faith efforts described in § 33.301 if soliciting a replacement subcontractor. (d) A recipient must require its prime contractor to employ the six good faith efforts described in § 33.301 even if the prime...
Automated Boundary Conditions for Wind Tunnel Simulations
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2018-01-01
Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Chemical Hazard Response Information System (CHRIS) is designed to provide timely information essential for proper decision-making by responsible Coast Guard personnel and others during emergencies involving the water transport of hazardous chemicals. A secondary purpose is the provision of certain basic non-emergency-related information to support the Coast Guard in its efforts to achieve improved levels of safety in the bulk shipment of hazardous chemicals. CHRIS consists of four reference guides or manuals, a regional contingency plan, a hazard-assessment computer system (HACS), and an organizational entity located at Coast Guard headquarters. The four manuals contain chemical data, hazard-assessment methods, andmore » response guides. Regional data for the entire coastline are included in the Coastal Regional Contingency Plans. The headquarters staff operates the hazard-assessment computer system and provides technical assistance on request by field personnel during emergencies. In addition, it is responsible for periodic update and maintenance of CHRIS. A brief description of each component of CHRIS and its relation to this manual - the Hazard-Assessment Handbook - is provided.« less
Evaluation of Computed Tomography of Mock Uranium Fuel Rods at the Advanced Photon Source
Hunter, James F.; Brown, Donald William; Okuniewski, Maria
2015-06-01
This study discusses a multi-year effort to evaluate the utility of computed tomography at the Advanced Photon Source (APS) as a tool for non-destructive evaluation of uranium based fuel rods. The majority of the data presented is on mock material made with depleted uranium which mimics the x-ray attenuation characteristics of fuel rods while allowing for simpler handling. A range of data is presented including full thickness (5mm diameter) fuel rodlets, reduced thickness (1.8mm) sintering test samples, and pre/post irradiation samples (< 1mm thick). These data were taken on both a white beam (bending magnet) beamline and a high energy,more » monochromatic beamline. This data shows the utility of a synchrotron type source in the evealuation of manufacturing defects (pre-irradiation) and lays out the case for in situ CT of fuel pellet sintering. Finally, in addition data is shown from small post-irradiation samples and a case is made for post-irradiation CT of larger samples.« less
Incorporating computational resources in a cancer research program
Woods, Nicholas T.; Jhuraney, Ankita; Monteiro, Alvaro N.A.
2015-01-01
Recent technological advances have transformed cancer genetics research. These advances have served as the basis for the generation of a number of richly annotated datasets relevant to the cancer geneticist. In addition, many of these technologies are now within reach of smaller laboratories to answer specific biological questions. Thus, one of the most pressing issues facing an experimental cancer biology research program in genetics is incorporating data from multiple sources to annotate, visualize, and analyze the system under study. Fortunately, there are several computational resources to aid in this process. However, a significant effort is required to adapt a molecular biology-based research program to take advantage of these datasets. Here, we discuss the lessons learned in our laboratory and share several recommendations to make this transition effectively. This article is not meant to be a comprehensive evaluation of all the available resources, but rather highlight those that we have incorporated into our laboratory and how to choose the most appropriate ones for your research program. PMID:25324189
Saving Water at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Andy
Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less
A CAD Approach to Integrating NDE With Finite Element
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Downey, James; Ghosn, Louis J.; Baaklini, George Y.
2004-01-01
Nondestructive evaluation (NDE) is one of several technologies applied at NASA Glenn Research Center to determine atypical deformities, cracks, and other anomalies experienced by structural components. NDE consists of applying high-quality imaging techniques (such as x-ray imaging and computed tomography (CT)) to discover hidden manufactured flaws in a structure. Efforts are in progress to integrate NDE with the finite element (FE) computational method to perform detailed structural analysis of a given component. This report presents the core outlines for an in-house technical procedure that incorporates this combined NDE-FE interrelation. An example is presented to demonstrate the applicability of this analytical procedure. FE analysis of a test specimen is performed, and the resulting von Mises stresses and the stress concentrations near the anomalies are observed, which indicates the fidelity of the procedure. Additional information elaborating on the steps needed to perform such an analysis is clearly presented in the form of mini step-by-step guidelines.
Xing, Fuyong; Yang, Lin
2016-01-01
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143
Parallelization of NAS Benchmarks for Shared Memory Multiprocessors
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry C.; Saini, Subhash (Technical Monitor)
1998-01-01
This paper presents our experiences of parallelizing the sequential implementation of NAS benchmarks using compiler directives on SGI Origin2000 distributed shared memory (DSM) system. Porting existing applications to new high performance parallel and distributed computing platforms is a challenging task. Ideally, a user develops a sequential version of the application, leaving the task of porting to new generations of high performance computing systems to parallelization tools and compilers. Due to the simplicity of programming shared-memory multiprocessors, compiler developers have provided various facilities to allow the users to exploit parallelism. Native compilers on SGI Origin2000 support multiprocessing directives to allow users to exploit loop-level parallelism in their programs. Additionally, supporting tools can accomplish this process automatically and present the results of parallelization to the users. We experimented with these compiler directives and supporting tools by parallelizing sequential implementation of NAS benchmarks. Results reported in this paper indicate that with minimal effort, the performance gain is comparable with the hand-parallelized, carefully optimized, message-passing implementations of the same benchmarks.
NASA Astrophysics Data System (ADS)
Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati
2012-01-01
Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.
Saving Water at Los Alamos National Laboratory
Erickson, Andy
2018-01-16
Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratoryâs national security mission and is one of the institutionâs larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.
Overcoming free energy barriers using unconstrained molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Hénin, Jérôme; Chipot, Christophe
2004-08-01
Association of unconstrained molecular dynamics (MD) and the formalisms of thermodynamic integration and average force [Darve and Pohorille, J. Chem. Phys. 115, 9169 (2001)] have been employed to determine potentials of mean force. When implemented in a general MD code, the additional computational effort, compared to other standard, unconstrained simulations, is marginal. The force acting along a chosen reaction coordinate ξ is estimated from the individual forces exerted on the chemical system and accumulated as the simulation progresses. The estimated free energy derivative computed for small intervals of ξ is canceled by an adaptive bias to overcome the barriers of the free energy landscape. Evolution of the system along the reaction coordinate is, thus, limited by its sole self-diffusion properties. The illustrative examples of the reversible unfolding of deca-L-alanine, the association of acetate and guanidinium ions in water, the dimerization of methane in water, and its transfer across the water liquid-vapor interface are examined to probe the efficiency of the method.
Overcoming free energy barriers using unconstrained molecular dynamics simulations.
Hénin, Jérôme; Chipot, Christophe
2004-08-15
Association of unconstrained molecular dynamics (MD) and the formalisms of thermodynamic integration and average force [Darve and Pohorille, J. Chem. Phys. 115, 9169 (2001)] have been employed to determine potentials of mean force. When implemented in a general MD code, the additional computational effort, compared to other standard, unconstrained simulations, is marginal. The force acting along a chosen reaction coordinate xi is estimated from the individual forces exerted on the chemical system and accumulated as the simulation progresses. The estimated free energy derivative computed for small intervals of xi is canceled by an adaptive bias to overcome the barriers of the free energy landscape. Evolution of the system along the reaction coordinate is, thus, limited by its sole self-diffusion properties. The illustrative examples of the reversible unfolding of deca-L-alanine, the association of acetate and guanidinium ions in water, the dimerization of methane in water, and its transfer across the water liquid-vapor interface are examined to probe the efficiency of the method. (c) 2004 American Institute of Physics.
Computational Prediction and Validation of an Expert's Evaluation of Chemical Probes
Litterman, Nadia K.; Lipinski, Christopher A.; Bunin, Barry A.; Ekins, Sean
2016-01-01
In a decade with over half a billion dollars of investment, more than 300 chemical probes have been identified to have biological activity through NIH funded screening efforts. We have collected the evaluations of an experienced medicinal chemist on the likely chemistry quality of these probes based on a number of criteria including literature related to the probe and potential chemical reactivity. Over 20% of these probes were found to be undesirable. Analysis of the molecular properties of these compounds scored as desirable suggested higher pKa, molecular weight, heavy atom count and rotatable bond number. We were particularly interested whether the human evaluation aspect of medicinal chemistry due diligence could be computationally predicted. We used a process of sequential Bayesian model building and iterative testing as we included additional probes. Following external validation of these methods and comparing different machine learning methods we identified Bayesian models with accuracy comparable to other measures of drug-likeness and filtering rules created to date. PMID:25244007
Design and Implementation of a Modern Automatic Deformation Monitoring System
NASA Astrophysics Data System (ADS)
Engel, Philipp; Schweimler, Björn
2016-03-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the University of Applied Sciences in Neubrandenburg (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annapureddy, HVR; Motkuri, RK; Nguyen, PTM
In this review, we describe recent efforts to systematically study nano-structured metal organic frameworks (MOFs), also known as metal organic heat carriers, with particular emphasis on their application in heating and cooling processes. We used both molecular dynamics and grand canonical Monte Carlo simulation techniques to gain a molecular-level understanding of the adsorption mechanism of gases in these porous materials. We investigated the uptake of various gases such as refrigerants R12 and R143a. We also evaluated the effects of temperature and pressure on the uptake mechanism. Our computed results compared reasonably well with available measurements from experiments, thus validating ourmore » potential models and approaches. In addition, we investigated the structural, diffusive and adsorption properties of different hydrocarbons in Ni-2(dhtp). Finally, to elucidate the mechanism of nanoparticle dispersion in condensed phases, we studied the interactions among nanoparticles in various liquids, such as n-hexane, water and methanol.« less
California coast nearshore processes study
NASA Technical Reports Server (NTRS)
Pirie, D. M. (Principal Investigator); Steller, D. D.
1973-01-01
The author has identified the following significant results. Remote sensor aircraft flights took place simultaneously with ERTS-1 overpasses at the San Francisco, Monterey Bay, and Santa Barbara test cells. The cameras and scanners used were configured for detecting suspended sediment and for maximum water penetration. The Ektachrome/Wratten 12 photographs which were intentionally overexposed 1-1/2 stops were found to show the most extensive sediment transport detail. Minus blue/K 2 photographs illustrate nearshore underwater bottom detail including the head of the Mugu submarine canyon. The EMSIDE 9 channel scanner was employed to classify and differentiate suspended sediment, oil, kelp, and other materials found in the nearshore area. Processing of bulk ERTS-1 computer compatible tapes was utilized to enhance and analyze nearshore sediments. This technique was most successful in enhancing subtle nearshore features found to be faint or invisible on prints made from the supplied negatives. In addition to this continuing computer process, an effort was initiated to interface density values from the bulk tapes into contouring and mapping software.
Anson, Colin W; Ghosh, Soumya; Hammes-Schiffer, Sharon; Stahl, Shannon S
2016-03-30
Macrocyclic metal complexes and p-benzoquinones are commonly used as co-catalytic redox mediators in aerobic oxidation reactions. In an effort to gain insight into the mechanism and energetic efficiency of these reactions, we investigated Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone. Kinetic and spectroscopic data suggest that the catalyst resting-state consists of an equilibrium between a Co(II)(salophen) complex, a Co(III)-superoxide adduct, and a hydrogen-bonded adduct between the hydroquinone and the Co(III)-O2 species. The kinetic data, together with density functional theory computational results, reveal that the turnover-limiting step involves proton-coupled electron transfer from a semi-hydroquinone species and a Co(III)-hydroperoxide intermediate. Additional experimental and computational data suggest that a coordinated H2O2 intermediate oxidizes a second equivalent of hydroquinone. Collectively, the results show how Co(salophen) and p-hydroquinone operate synergistically to mediate O2 reduction and generate the reactive p-benzoquinone co-catalyst.
RF Models for Plasma-Surface Interactions in VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, D. N.; Pankin, A. Y.; Roark, C. M.; Zhou, C. D.; Stoltz, P. H.; Kruger, S. E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath physics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath, can thus be simulated in complex geometries. Generalizations of the model to include sputtering, secondary electron emission, and effects from multiple ion species and background magnetic fields are summarized; related numerical results are also presented. In addition, improved tools for plasma chemistry and IEDF/EEDF visualization and modeling are discussed, as well as our initial efforts toward the development of hybrid fluid/kinetic transition capabilities within VSim. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling industrial plasma processes. Supported by US DoE SBIR-I/II Award DE-SC0009501.
Summary of synfuel characterization and combustion studies
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1983-01-01
Combustion component research studies aimed at evolving environmentally acceptable approaches for burning coal derived fuels for ground power applications were performed at the NASA Lewis Research Center under a program titled the ""Critical Research and Support Technology Program'' (CRT). The work was funded by the Department of Energy and was performed in four tasks. This report summarizes these tasks which have all been previously reported. In addition some previously unreported data from Task 4 is also presented. The first, Task 1 consisted of a literature survey aimed at determining the properties of synthetic fuels. This was followed by a computer modeling effort, Task 2, to predict the exhaust emissions resulting from burning coal liquids by various combustion techniques such as lean and rich-lean combustion. The computer predictions were then compared to the results of a flame tube rig, Task 3, in which the fuel properties were varied to simulate coal liquids. Two actual SRC 2 coal liquids were tested in this flame tube task.
Airborne optical tracking control system design study
NASA Astrophysics Data System (ADS)
1992-09-01
The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.
Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
Park, Sangsu; Noh, Jinwoo; Choo, Myung-Lae; Sheri, Ahmad Muqeem; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang
2013-09-27
Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption.In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.
A Noise-Assisted Reprogrammable Nanomechanical Logic Gate
2009-01-01
effort toward scalable mechanical computation.1-4 This effort can be traced back to 1822 (at least), when Charles Babbage presented a mechanical...the ONR (N000140910963). REFERENCES AND NOTES (1) Babbage , H. P. Babbage’s Calculating Engines; Charles Babbage Reprint Series for the History of
On the evaluation of derivatives of Gaussian integrals
NASA Technical Reports Server (NTRS)
Helgaker, Trygve; Taylor, Peter R.
1992-01-01
We show that by a suitable change of variables, the derivatives of molecular integrals over Gaussian-type functions required for analytic energy derivatives can be evaluated with significantly less computational effort than current formulations. The reduction in effort increases with the order of differentiation.
Meyniel, Florent; Safra, Lou; Pessiglione, Mathias
2014-01-01
A pervasive case of cost-benefit problem is how to allocate effort over time, i.e. deciding when to work and when to rest. An economic decision perspective would suggest that duration of effort is determined beforehand, depending on expected costs and benefits. However, the literature on exercise performance emphasizes that decisions are made on the fly, depending on physiological variables. Here, we propose and validate a general model of effort allocation that integrates these two views. In this model, a single variable, termed cost evidence, accumulates during effort and dissipates during rest, triggering effort cessation and resumption when reaching bounds. We assumed that such a basic mechanism could explain implicit adaptation, whereas the latent parameters (slopes and bounds) could be amenable to explicit anticipation. A series of behavioral experiments manipulating effort duration and difficulty was conducted in a total of 121 healthy humans to dissociate implicit-reactive from explicit-predictive computations. Results show 1) that effort and rest durations are adapted on the fly to variations in cost-evidence level, 2) that the cost-evidence fluctuations driving the behavior do not match explicit ratings of exhaustion, and 3) that actual difficulty impacts effort duration whereas expected difficulty impacts rest duration. Taken together, our findings suggest that cost evidence is implicitly monitored online, with an accumulation rate proportional to actual task difficulty. In contrast, cost-evidence bounds and dissipation rate might be adjusted in anticipation, depending on explicit task difficulty. PMID:24743711
Geldermann, Ina; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M; Spreckelsen, Cord
2013-08-01
Usability aspects of different integration concepts for picture archiving and communication systems (PACS) and computer-aided diagnosis (CAD) were inquired on the example of BoneXpert, a program determining the skeletal age from a left hand's radiograph. CAD-PACS integration was assessed according to its levels: data, function, presentation, and context integration focusing on usability aspects. A user-based study design was selected. Statements of seven experienced radiologists using two alternative types of integration provided by BoneXpert were acquired and analyzed using a mixed-methods approach based on think-aloud records and a questionnaire. In both variants, the CAD module (BoneXpert) was easily integrated in the workflow, found comprehensible and fitting in the conceptual framework of the radiologists. Weak points of the software integration referred to data and context integration. Surprisingly, visualization of intermediate image processing states (presentation integration) was found less important as compared to efficient handling and fast computation. Seamlessly integrating CAD into the PACS without additional work steps or unnecessary interrupts and without visualizing intermediate images may considerably improve software performance and user acceptance with efforts in time.
Biophysical Discovery through the Lens of a Computational Microscope
NASA Astrophysics Data System (ADS)
Amaro, Rommie
With exascale computing power on the horizon, improvements in the underlying algorithms and available structural experimental data are enabling new paradigms for chemical discovery. My work has provided key insights for the systematic incorporation of structural information resulting from state-of-the-art biophysical simulations into protocols for inhibitor and drug discovery. We have shown that many disease targets have druggable pockets that are otherwise ``hidden'' in high resolution x-ray structures, and that this is a common theme across a wide range of targets in different disease areas. We continue to push the limits of computational biophysical modeling by expanding the time and length scales accessible to molecular simulation. My sights are set on, ultimately, the development of detailed physical models of cells, as the fundamental unit of life, and two recent achievements highlight our efforts in this arena. First is the development of a molecular and Brownian dynamics multi-scale modeling framework, which allows us to investigate drug binding kinetics in addition to thermodynamics. In parallel, we have made significant progress developing new tools to extend molecular structure to cellular environments. Collectively, these achievements are enabling the investigation of the chemical and biophysical nature of cells at unprecedented scales.
EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases.
Wang, Yongbo; Liu, Zexian; Cheng, Han; Gao, Tianshun; Pan, Zhicheng; Yang, Qing; Guo, Anyuan; Xue, Yu
2014-01-01
We present here EKPD (http://ekpd.biocuckoo.org), a hierarchical database of eukaryotic protein kinases (PKs) and protein phosphatases (PPs), the key molecules responsible for the reversible phosphorylation of proteins that are involved in almost all aspects of biological processes. As extensive experimental and computational efforts have been carried out to identify PKs and PPs, an integrative resource with detailed classification and annotation information would be of great value for both experimentalists and computational biologists. In this work, we first collected 1855 PKs and 347 PPs from the scientific literature and various public databases. Based on previously established rationales, we classified all of the known PKs and PPs into a hierarchical structure with three levels, i.e. group, family and individual PK/PP. There are 10 groups with 149 families for the PKs and 10 groups with 33 families for the PPs. We constructed 139 and 27 Hidden Markov Model profiles for PK and PP families, respectively. Then we systematically characterized ∼50,000 PKs and >10,000 PPs in eukaryotes. In addition, >500 PKs and >400 PPs were computationally identified by ortholog search. Finally, the online service of the EKPD database was implemented in PHP + MySQL + JavaScript.
Quantitative phase and amplitude imaging using Differential-Interference Contrast (DIC) microscopy
NASA Astrophysics Data System (ADS)
Preza, Chrysanthe; O'Sullivan, Joseph A.
2009-02-01
We present an extension of the development of an alternating minimization (AM) method for the computation of a specimen's complex transmittance function (magnitude and phase) from DIC images. The ability to extract both quantitative phase and amplitude information from two rotationally-diverse DIC images (i.e., acquired by rotating the sample) extends previous efforts in computational DIC microscopy that have focused on quantitative phase imaging only. Simulation results show that the inverse problem at hand is sensitive to noise as well as to the choice of the AM algorithm parameters. The AM framework allows constraints and penalties on the magnitude and phase estimates to be incorporated in a principled manner. Towards this end, Green and De Pierro's "log-cosh" regularization penalty is applied to the magnitude of differences of neighboring values of the complex-valued function of the specimen during the AM iterations. The penalty is shown to be convex in the complex space. A procedure to approximate the penalty within the iterations is presented. In addition, a methodology to pre-compute AM parameters that are optimal with respect to the convergence rate of the AM algorithm is also presented. Both extensions of the AM method are investigated with simulations.
Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale Knowledge Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, Wes
2016-07-24
The primary challenge motivating this team’s work is the widening gap between the ability to compute information and to store it for subsequent analysis. This gap adversely impacts science code teams, who are able to perform analysis only on a small fraction of the data they compute, resulting in the very real likelihood of lost or missed science, when results are computed but not analyzed. Our approach is to perform as much analysis or visualization processing on data while it is still resident in memory, an approach that is known as in situ processing. The idea in situ processing wasmore » not new at the time of the start of this effort in 2014, but efforts in that space were largely ad hoc, and there was no concerted effort within the research community that aimed to foster production-quality software tools suitable for use by DOE science projects. In large, our objective was produce and enable use of production-quality in situ methods and infrastructure, at scale, on DOE HPC facilities, though we expected to have impact beyond DOE due to the widespread nature of the challenges, which affect virtually all large-scale computational science efforts. To achieve that objective, we assembled a unique team of researchers consisting of representatives from DOE national laboratories, academia, and industry, and engaged in software technology R&D, as well as engaged in close partnerships with DOE science code teams, to produce software technologies that were shown to run effectively at scale on DOE HPC platforms.« less
Developing and evaluating prediactive strategies to elucidate the mode of biological activity of environmental chemicals is a major objective of the concerted efforts of the US-EPA's computational toxicology program.
Globus Quick Start Guide. Globus Software Version 1.1
NASA Technical Reports Server (NTRS)
1999-01-01
The Globus Project is a community effort, led by Argonne National Laboratory and the University of Southern California's Information Sciences Institute. Globus is developing the basic software infrastructure for computations that integrate geographically distributed computational and information resources.
Additional support for the TDK/MABL computer program
NASA Technical Reports Server (NTRS)
Nickerson, G. R.; Dunn, Stuart S.
1993-01-01
An advanced version of the Two-Dimensional Kinetics (TDK) computer program was developed under contract and released to the propulsion community in early 1989. Exposure of the code to this community indicated a need for improvements in certain areas. In particular, the TDK code needed to be adapted to the special requirements imposed by the Space Transportation Main Engine (STME) development program. This engine utilizes injection of the gas generator exhaust into the primary nozzle by means of a set of slots. The subsequent mixing of this secondary stream with the primary stream with finite rate chemical reaction can have a major impact on the engine performance and the thermal protection of the nozzle wall. In attempting to calculate this reacting boundary layer problem, the Mass Addition Boundary Layer (MABL) module of TDK was found to be deficient in several respects. For example, when finite rate chemistry was used to determine gas properties, (MABL-K option) the program run times became excessive because extremely small step sizes were required to maintain numerical stability. A robust solution algorithm was required so that the MABL-K option could be viable as a rocket propulsion industry design tool. Solving this problem was a primary goal of the phase 1 work effort.
Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools
NASA Astrophysics Data System (ADS)
Boe, Bryce A.
There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.
A Comparison of Approaches for Solving Hard Graph-Theoretic Problems
2015-05-01
collaborative effort “ Adiabatic Quantum Computing Applications Research” (14-RI-CRADA-02) between the Information Directorate and Lock- 3 Algorithm 3...using Matlab, a quantum annealing approach using the D-Wave computer , and lastly using satisfiability modulo theory (SMT) and corresponding SMT...methods are explored and consist of a parallel computing approach using Matlab, a quantum annealing approach using the D-Wave computer , and lastly using
Computational Omics Pre-Awardees | Office of Cancer Clinical Proteomics Research
The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) is pleased to announce the pre-awardees of the Computational Omics solicitation. Working with NVIDIA Foundation's Compute the Cure initiative and Leidos Biomedical Research Inc., the NCI, through this solicitation, seeks to leverage computational efforts to provide tools for the mining and interpretation of large-scale publicly available ‘omics’ datasets.
Computers on Wheels: An Alternative to Each One Has One
ERIC Educational Resources Information Center
Grant, Michael M.; Ross, Steven M.; Wang, Weiping; Potter, Allison
2005-01-01
Four fifth-grade classrooms embarked on a modified ubiquitous computing initiative in the fall of 2003. Two 15-computer wireless laptop carts were shared among the four classrooms in an effort to integrate technology across the curriculum and affect change in student learning and teacher pedagogy. This initiative--in contrast to other one-to-one…
Apple Seeks To Regain Its Stature in World of Academic Computing.
ERIC Educational Resources Information Center
Young, Jeffrey R.; Blumenstyk, Goldie
1998-01-01
Managers of Apple Computer, the company that pioneered campus personal computing and later lost most of its share of the market, are again focusing energies on academic buyers. Campus technology officials, even those fond of Apples, are greeting the company's efforts with caution. Some feel it may be too late for Apple to regain a significant…
Crossbar Nanocomputer Development
2012-04-01
their utilization. Areas such as neuromorphic computing, signal processing, arithmetic processing, and crossbar computing are only some of the...due to its intrinsic, network-on- chip flexibility to re-route around defects. Preliminary efforts in crossbar computing have been demonstrated by...they approach their scaling limits [2]. Other applications that memristive devices are suited for include FPGA [3], encryption [4], and neuromorphic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahn, R.E.
1983-11-01
Fifth generation of computers is described. The three disciplines involved in bringing such a new generation to reality are: microelectronics; artificial intelligence and, computer systems and architecture. Applications in industry, offices, aerospace, education, health care and retailing are outlined. An analysis is given of research efforts in the US, Japan, U.K., and Europe. Fifth generation programming languages are detailed.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
Reading Teachers' Beliefs and Utilization of Computer and Technology: A Case Study
ERIC Educational Resources Information Center
Remetio, Jessica Espinas
2014-01-01
Many researchers believe that computers have the ability to help improve the reading skills of students. In an effort to improve the poor reading scores of students on state tests, as well as improve students' overall academic performance, computers and other technologies have been installed in Frozen Bay School classrooms. As the success of these…
Attitudes of Design Students toward Computer Usage in Design
ERIC Educational Resources Information Center
Pektas, Sule Tasli; Erkip, Feyzan
2006-01-01
The success of efforts to integrate technology with design education is largely affected by the attitudes of students toward technology. This paper presents the findings of a research on the attitudes of design students toward the use of computers in design and its correlates. Computer Aided Design (CAD) tools are the most widely used computer…
ERIC Educational Resources Information Center
Peng, Jacob C.
2009-01-01
The author investigated whether students' effort in working on homework problems was affected by their need for cognition, their perception of the system, and their computer efficacy when instructors used an online system to collect accounting homework. Results showed that individual intrinsic motivation and computer efficacy are important factors…
ERIC Educational Resources Information Center
Good, Jonathon; Keenan, Sarah; Mishra, Punya
2016-01-01
The popular press is rife with examples of how students in the United States and around the globe are learning to program, make, and tinker. The Hour of Code, maker-education, and similar efforts are advocating that more students be exposed to principles found within computer science. We propose an expansion beyond simply teaching computational…
2000 Numerical Propulsion System Simulation Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2001-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to respond to that feedback. NPSS was supported in fiscal year 2000 by the High Performance Computing and Communications Program.
2001 Numerical Propulsion System Simulation Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2002-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to respond to that feedback. NPSS was supported in fiscal year 2001 by the High Performance Computing and Communications Program.
Human-computer interaction in multitask situations
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1977-01-01
Human-computer interaction in multitask decisionmaking situations is considered, and it is proposed that humans and computers have overlapping responsibilities. Queueing theory is employed to model this dynamic approach to the allocation of responsibility between human and computer. Results of simulation experiments are used to illustrate the effects of several system variables including number of tasks, mean time between arrivals of action-evoking events, human-computer speed mismatch, probability of computer error, probability of human error, and the level of feedback between human and computer. Current experimental efforts are discussed and the practical issues involved in designing human-computer systems for multitask situations are considered.
Robotics-Centered Outreach Activities: An Integrated Approach
ERIC Educational Resources Information Center
Ruiz-del-Solar, Javier
2010-01-01
Nowadays, universities are making extensive efforts to attract prospective students to the fields of electrical, electronic, and computer engineering. Thus, outreach is becoming increasingly important, and activities with schoolchildren are being extensively carried out as part of this effort. In this context, robotics is a very attractive and…
Powsiri Klinkhachorn; J. Moody; Philip A. Araman
1995-01-01
For the past few decades, researchers have devoted time and effort to apply automation and modern computer technologies towards improving the productivity of traditional industries. To be competitive, one must streamline operations and minimize production costs, while maintaining an acceptable margin of profit. This paper describes the effort of one such endeavor...
Integrated modeling tool for performance engineering of complex computer systems
NASA Technical Reports Server (NTRS)
Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar
1989-01-01
This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.
NASA Astrophysics Data System (ADS)
Babbar-Sebens, M.
2016-12-01
Social computing technologies are transforming the way our society interacts and generates content on the Web via collective intelligence. Previously unimagined possibilities have arisen for using these technologies to engage stakeholders and involve them in policy making and planning efforts. While the Internet has been used in the past to support education and communication endeavors, we have developed a novel, web-based, interactive planning tool that engages the community in using science-based methods for the design of potential conservation practices on their landscape, and thereby, reducing undesirable impacts of extreme hydroclimatic events. The tool, Watershed REstoration using Spatio-Temporal Optimization of Resources (WRESTORE), uses a democratic voting process coupled with visualization interfaces, computational simulation and optimization models, and user modeling techniques to support a human-centered design approach. This human-centered design approach, which is reinforced by use of Web 2.0 technologies, has the potential to enable policy makers to connect to a larger community of stakeholders and directly engage them in environmental stewardship efforts. Additionally, the design framework can be used by watershed groups to plug-in their own hydrologic models, climate observations and forecasts, and various other simulation models unique to their watersheds. In this presentation, we will demonstrate the effectiveness of WRESTORE for designing alternatives of conservation practices in a HUC-11 Midwestern watershed, results of various experiments with a diverse set of test users and stakeholders, and discuss potential for future developments.
Zaman, Gaffar Sarwar
2015-01-01
Background: We evaluated the influence of lifestyle patterns such as watching TV, working with computer and idle sitting time on perceptions of obesity and beliefs about overweight are associated with obesity and overweight amongst Expatriates in Abha. Materials and Methods: The method used in this study was a cross-sectional survey with a self-administered paper-based questionnaire. The survey collected information on lifestyle choices and the risk factors that contribute to obesity. In addition, height and weight were measured. Results: Greater number of our study subjects spent over 2 h/day without any physical activity, specifically accounting for over 2 h/day each in viewing TV, computer, and spending idle time. This increased lack of physical activities was significantly associated with overweight. While the overweight subjects were aware of very wide options for treating their condition, a significant number believed in self-effort in managing their diet and exercise regimen as the best efforts to reduce their overweight. Interestingly very few overweight subjects considered medication or surgery as a potential therapeutic option and 75% of the overweight subjects considered overweight to be of no or only slight concern on wellbeing. Conclusions: Overweight and obesity among expatriates within Saudi Arabia poses an important public health problem. The lack of awareness about the potential impact of obesity on health and optimal treatment options is a serious concern, which needs to be addressed by appropriate public health programs at national level. PMID:26283823
Absolute versus relative intensity of physical activity in a dose-response context.
Shephard, R J
2001-06-01
To examine the importance of relative versus absolute intensities of physical activity in the context of population health. A standard computer-search of the literature was supplemented by review of extensive personal files. Consensus reports (Category D Evidence) have commonly recommended moderate rather than hard physical activity in the context of population health. Much of the available literature provides Category C Evidence. It has often confounded issues of relative intensity with absolute intensity or total weekly dose of exercise. In terms of cardiovascular health, there is some evidence for a threshold intensity of effort, perhaps as high as 6 METs, in addition to a minimum volume of physical activity. Decreases in blood pressure and prevention of stroke seem best achieved by moderate rather than high relative intensities of physical activity. Many aspects of metabolic health depend on the total volume of activity; moderate relative intensities of effort are more effective in mobilizing body fat, but harder relative intensities may help to increase energy expenditures postexercise. Hard relative intensities seem needed to augment bone density, but this may reflect an associated increase in volume of activity. Hard relative intensities of exercise induce a transient immunosuppression. The optimal intensity of effort, relative or absolute, for protection against various types of cancer remains unresolved. Acute effects of exercise on mood state also require further study; long-term benefits seem associated with a moderate rather than a hard relative intensity of effort. The importance of relative versus absolute intensity of effort depends on the desired health outcome, and many issues remain to be resolved. Progress will depend on more precise epidemiological methods of assessing energy expenditures and studies that equate total energy expenditures between differing relative intensities. There is a need to focus on gains in quality-adjusted life expectancy.
Positioning Continuing Education Computer Programs for the Corporate Market.
ERIC Educational Resources Information Center
Tilney, Ceil
1993-01-01
Summarizes the findings of the market assessment phase of Bellevue Community College's evaluation of its continuing education computer training program. Indicates that marketing efforts must stress program quality and software training to help overcome strong antiacademic client sentiment. (MGB)
Researching and Reducing the Health Burden of Stroke
... the result of continuing research to map the brain and interface it with a computer to enable stroke patients to regain function. How important is the new effort to map the human brain? The brain is more complex than any computer ...
User Manual for the NASA Glenn Ice Accretion Code LEWICE. Version 2.2.2
NASA Technical Reports Server (NTRS)
Wright, William B.
2002-01-01
A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 2.2.2 of this code, which is called LEWICE. This version differs from release 2.0 due to the addition of advanced thermal analysis capabilities for de-icing and anti-icing applications using electrothermal heaters or bleed air applications. An extensive effort was also undertaken to compare the results against the database of electrothermal results which have been generated in the NASA Glenn Icing Research Tunnel (IRT) as was performed for the validation effort for version 2.0. This report will primarily describe the features of the software related to the use of the program. Appendix A of this report has been included to list some of the inner workings of the software or the physical models used. This information is also available in the form of several unpublished documents internal to NASA. This report is intended as a replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this code.
Brain transcriptome atlases: a computational perspective.
Mahfouz, Ahmed; Huisman, Sjoerd M H; Lelieveldt, Boudewijn P F; Reinders, Marcel J T
2017-05-01
The immense complexity of the mammalian brain is largely reflected in the underlying molecular signatures of its billions of cells. Brain transcriptome atlases provide valuable insights into gene expression patterns across different brain areas throughout the course of development. Such atlases allow researchers to probe the molecular mechanisms which define neuronal identities, neuroanatomy, and patterns of connectivity. Despite the immense effort put into generating such atlases, to answer fundamental questions in neuroscience, an even greater effort is needed to develop methods to probe the resulting high-dimensional multivariate data. We provide a comprehensive overview of the various computational methods used to analyze brain transcriptome atlases.
Cloud Computing for Complex Performance Codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin
This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.
Space shuttle low cost/risk avionics study
NASA Technical Reports Server (NTRS)
1971-01-01
All work breakdown structure elements containing any avionics related effort were examined for pricing the life cycle costs. The analytical, testing, and integration efforts are included for the basic onboard avionics and electrical power systems. The design and procurement of special test equipment and maintenance and repair equipment are considered. Program management associated with these efforts is described. Flight test spares and labor and materials associated with the operations and maintenance of the avionics systems throughout the horizontal flight test are examined. It was determined that cost savings can be achieved by using existing hardware, maximizing orbiter-booster commonality, specifying new equipments to MIL quality standards, basing redundancy on cost effective analysis, minimizing software complexity and reducing cross strapping and computer-managed functions, utilizing compilers and floating point computers, and evolving the design as dictated by the horizontal flight test schedules.
Distributed Accounting on the Grid
NASA Technical Reports Server (NTRS)
Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.
2001-01-01
By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.
NASA Technical Reports Server (NTRS)
1993-01-01
This video documents efforts at NASA Langley Research Center to improve safety and economy in aircraft. Featured are the cockpit weather information needs computer system, which relays real time weather information to the pilot, and efforts to improve techniques to detect structural flaws and corrosion, such as the thermal bond inspection system.
MUMPS Based Integration of Disparate Computer-Assisted Medical Diagnosis Modules
1989-12-12
modules use a Bayesian approach, while the Opthalmology module uses a Rule Based approach. In the current effort, MUMPS is used to develop an...Abdominal and Chest Pain modules use a Bayesian approach, while the Opthalmology module uses a Rule Based approach. In the current effort, MUMPS is used
Interactive Electronic Storybooks for Kindergartners to Promote Vocabulary Growth
ERIC Educational Resources Information Center
Smeets, Daisy J. H.; Bus, Adriana G.
2012-01-01
The goals of this study were to examine (a) whether extratextual vocabulary instructions embedded in electronic storybooks facilitated word learning over reading alone and (b) whether instructional formats that required children to invest more effort were more effective than formats that required less effort. A computer-based "assistant" was added…
The Human Phenotype Ontology in 2017
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.
2017-01-01
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602
The Human Phenotype Ontology in 2017
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; ...
2016-11-24
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical softwaremore » tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.« less
Climate Change Community Outreach Initiative (CCCOI)--A Gulf of Mexico Education Partnership
NASA Astrophysics Data System (ADS)
Walker, S. H.; Stone, D.; Schultz, T.; LeBlanc, T.; Miller-Way, T.; Estrada, P.
2012-12-01
This five-year, Gulf of Mexico regional collaborative is funded by the National Oceanic and Atmospheric Administration (NOAA)-Office of Education and represents a successful grant submitted by the FL Aquarium as a member of the Association of Zoos and Aquariums (AZA). This climate change effort focuses on enhanced content knowledge and the manner in which personal actions and behaviors contribute to sustainability and stewardship. Diverse audiences—represented by visitors at the informal centers listed above—have been and are involved in the following activities: social networking via responses to climate change surveys; an "ocean and climate change defender" computer game, specifically designed for this project; an average of 10 annual outreach events implemented by these facilities at community festivals; climate change lectures provided to family audiences; and professional development workshops for informal and formal educators. This presentation will provide opportunities and challenges encountered during the first two years of implementation. This regional effort is also aligned with both the Ocean Literacy: Essential Principles and the Climate Literacy: Essential Principles. Additional partners include: Normandeau Associates, Conservation Enterprises, Unlimited, and Mindclay Creative.
Delamination Modeling of Composites for Improved Crash Analysis
NASA Technical Reports Server (NTRS)
Fleming, David C.
1999-01-01
Finite element crash modeling of composite structures is limited by the inability of current commercial crash codes to accurately model delamination growth. Efforts are made to implement and assess delamination modeling techniques using a current finite element crash code, MSC/DYTRAN. Three methods are evaluated, including a straightforward method based on monitoring forces in elements or constraints representing an interface; a cohesive fracture model proposed in the literature; and the virtual crack closure technique commonly used in fracture mechanics. Results are compared with dynamic double cantilever beam test data from the literature. Examples show that it is possible to accurately model delamination propagation in this case. However, the computational demands required for accurate solution are great and reliable property data may not be available to support general crash modeling efforts. Additional examples are modeled including an impact-loaded beam, damage initiation in laminated crushing specimens, and a scaled aircraft subfloor structures in which composite sandwich structures are used as energy-absorbing elements. These examples illustrate some of the difficulties in modeling delamination as part of a finite element crash analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical softwaremore » tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.« less
Intra-Engine Trace Species Chemistry
NASA Technical Reports Server (NTRS)
Waitz, Ian A.; Lukachko, S. P.; Chobot, A.; Miake-Lye, R. C.; Brown, R.
2002-01-01
Prompted by the needs of downstream plume-wake models, the Massachusetts Institute of Technology (MIT) and Aerodyne Research Incorporated (ART) initiated a collaborative effort, with funding from the NASA AEAP, to develop tools that would assist in understanding the fundamental drivers of chemical change within the intra-engine exhaust flow path. Efforts have been focused on the development of a modeling methodology that can adequately investigate the complex intra-engine environment. Over the history of this project, our research has increasingly pointed to the intra-engine environment as a possible site for important trace chemical activity. Modeling studies we initiated for the turbine and exhaust nozzle have contributed several important capabilities to the atmospheric effects of aviation assessment. These include a more complete understanding of aerosol precursor production, improved initial conditions for plume-wake modeling studies, and a more comprehensive analysis of ground-based test cell and in-flight exhaust measurement data. In addition, establishing a physical understanding of important flow and chemical processes through computational investigations may eventually assist in the design of engines to reduce undesirable species.
Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction.
Cheng, Hao; Garrick, Dorian J; Fernando, Rohan L
2017-01-01
A random multiple-regression model that simultaneously fit all allele substitution effects for additive markers or haplotypes as uncorrelated random effects was proposed for Best Linear Unbiased Prediction, using whole-genome data. Leave-one-out cross validation can be used to quantify the predictive ability of a statistical model. Naive application of Leave-one-out cross validation is computationally intensive because the training and validation analyses need to be repeated n times, once for each observation. Efficient Leave-one-out cross validation strategies are presented here, requiring little more effort than a single analysis. Efficient Leave-one-out cross validation strategies is 786 times faster than the naive application for a simulated dataset with 1,000 observations and 10,000 markers and 99 times faster with 1,000 observations and 100 markers. These efficiencies relative to the naive approach using the same model will increase with increases in the number of observations. Efficient Leave-one-out cross validation strategies are presented here, requiring little more effort than a single analysis.
Chattopadhyay, Sudip; Chaudhuri, Rajat K; Freed, Karl F
2011-04-28
The improved virtual orbital-complete active space configuration interaction (IVO-CASCI) method enables an economical and reasonably accurate treatment of static correlation in systems with significant multireference character, even when using a moderate basis set. This IVO-CASCI method supplants the computationally more demanding complete active space self-consistent field (CASSCF) method by producing comparable accuracy with diminished computational effort because the IVO-CASCI approach does not require additional iterations beyond an initial SCF calculation, nor does it encounter convergence difficulties or multiple solutions that may be found in CASSCF calculations. Our IVO-CASCI analytical gradient approach is applied to compute the equilibrium geometry for the ground and lowest excited state(s) of the theoretically very challenging 2,6-pyridyne, 1,2,3-tridehydrobenzene and 1,3,5-tridehydrobenzene anionic systems for which experiments are lacking, accurate quantum calculations are almost completely absent, and commonly used calculations based on single reference configurations fail to provide reasonable results. Hence, the computational complexity provides an excellent test for the efficacy of multireference methods. The present work clearly illustrates that the IVO-CASCI analytical gradient method provides a good description of the complicated electronic quasi-degeneracies during the geometry optimization process for the radicaloid anions. The IVO-CASCI treatment produces almost identical geometries as the CASSCF calculations (performed for this study) at a fraction of the computational labor. Adiabatic energy gaps to low lying excited states likewise emerge from the IVO-CASCI and CASSCF methods as very similar. We also provide harmonic vibrational frequencies to demonstrate the stability of the computed geometries.
Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic
Sanduja, S; Jewell, P; Aron, E; Pharai, N
2015-01-01
Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic. PMID:26451333
Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic.
Sanduja, S; Jewell, P; Aron, E; Pharai, N
2015-09-01
Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic.
Challenging the Myth of Disability.
ERIC Educational Resources Information Center
Brightman, Alan
1989-01-01
Discussion of the rhetoric of disability, including physical, hearing, and visual impairments, highlights possible benefits that computer technology can provide. Designing for disabled individuals is discussed, and product development efforts by Apple Computer to increase microcomputer access to disabled children and adults are described. (LRW)
ERIC Educational Resources Information Center
Stanford Univ., CA. Inst. for Mathematical Studies in Social Science.
In 1963, the Institute began a program of research and development in computer-assisted instruction (CAI). Their efforts have been funded at various times by the Carnegie Corporation of New York, The National Science Foundation and the United States Office of Education. Starting with a medium-sized computer and six student stations, the Institute…
Efficient Computational Prototyping of Mixed Technology Microfluidic Components and Systems
2002-08-01
AFRL-IF-RS-TR-2002-190 Final Technical Report August 2002 EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC...SUBTITLE EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC COMPONENTS AND SYSTEMS 6. AUTHOR(S) Narayan R. Aluru, Jacob White...Aided Design (CAD) tools for microfluidic components and systems were developed in this effort. Innovative numerical methods and algorithms for mixed
ERIC Educational Resources Information Center
Ke, Fengfeng; Im, Tami
2014-01-01
This case study examined team-based computer-game design efforts by children with diverse abilities to explore the nature of their collective design actions and cognitive processes. Ten teams of middle-school children, with a high percentage of minority students, participated in a 6-weeks, computer-assisted math-game-design program. Essential…
Computer Science Lesson Study: Building Computing Skills among Elementary School Teachers
ERIC Educational Resources Information Center
Newman, Thomas R.
2017-01-01
The lack of diversity in the technology workforce in the United States has proven to be a stubborn problem, resisting even the most well-funded reform efforts. With the absence of computer science education in the mainstream K-12 curriculum, only a narrow band of students in public schools go on to careers in technology. The problem persists…
Using Computer Games to Train Information Warfare Teams
2004-01-01
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004 2004 Paper No 1729 Page 1 of 10 Using Computer Games to...responses they will experience on real missions is crucial. 3D computer games have proved themselves to be highly effective in engaging players...motivationally and emotionally. This effort, therefore, uses gaming technology to provide realistic simulations. These games are augmented with
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC. Information Management and Technology Div.
This report was prepared in response to a request from the Senate Committee on Commerce, Science, and Transportation, and from the House Committee on Science, Space, and Technology, for information on efforts to develop high-speed computer networks in the United States, Europe (limited to France, Germany, Italy, the Netherlands, and the United…
Terrestrial implications of mathematical modeling developed for space biomedical research
NASA Technical Reports Server (NTRS)
Lujan, Barbara F.; White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini
1988-01-01
This paper summarizes several related research projects supported by NASA which seek to apply computer models to space medicine and physiology. These efforts span a wide range of activities, including mathematical models used for computer simulations of physiological control systems; power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and computer-aided diagnosis programs.
ERIC Educational Resources Information Center
Hiebert, Elfrieda H.; And Others
This report summarizes the curriculum development and research effort that took place at the Cupertino Apple Classrooms of Tomorrow (ACOT) site from January through June 1987. Based on the premise that computers make revising and editing much easier, the four major objectives emphasized by the computer-intensive writing program are fluency,…
Small Computer Applications for Base Supply.
1984-03-01
research on small computer utili- zation at bse level organizatins , This research effort studies whether small computers and commercial softure can assist...Doe has made !solid contributions to the full range of departmental activity. His demonstrated leadership skills and administrative ability warrent his...outstanding professionalism and leadership abilities were evidenced by his superb performance as unit key worker In the 1980 Combined Federal CauMign
Twenty Years of Girls into Computing Days: Has It Been Worth the Effort?
ERIC Educational Resources Information Center
Craig, Annemieke; Lang, Catherine; Fisher, Julie
2008-01-01
The first documented day-long program to encourage girls to consider computing as a career was held in 1987 in the U.K. Over the last 20 years these one-day events, labeled "Girls into Computing" days, have been conducted by academics and professionals to foster female-student interest in information technology (IT) degrees and careers.…
Wusor II: A Computer Aided Instruction Program with Student Modelling Capabilities. AI Memo 417.
ERIC Educational Resources Information Center
Carr, Brian
Wusor II is the second intelligent computer aided instruction (ICAI) program that has been developed to monitor the progress of, and offer suggestions to, students playing Wumpus, a computer game designed to teach logical thinking and problem solving. From the earlier efforts with Wusor I, it was possible to produce a rule-based expert which…
NASA Astrophysics Data System (ADS)
Hurtado, Daniel E.; Rojas, Guillermo
2018-04-01
Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.
Computational Lipidomics and Lipid Bioinformatics: Filling In the Blanks.
Pauling, Josch; Klipp, Edda
2016-12-22
Lipids are highly diverse metabolites of pronounced importance in health and disease. While metabolomics is a broad field under the omics umbrella that may also relate to lipids, lipidomics is an emerging field which specializes in the identification, quantification and functional interpretation of complex lipidomes. Today, it is possible to identify and distinguish lipids in a high-resolution, high-throughput manner and simultaneously with a lot of structural detail. However, doing so may produce thousands of mass spectra in a single experiment which has created a high demand for specialized computational support to analyze these spectral libraries. The computational biology and bioinformatics community has so far established methodology in genomics, transcriptomics and proteomics but there are many (combinatorial) challenges when it comes to structural diversity of lipids and their identification, quantification and interpretation. This review gives an overview and outlook on lipidomics research and illustrates ongoing computational and bioinformatics efforts. These efforts are important and necessary steps to advance the lipidomics field alongside analytic, biochemistry, biomedical and biology communities and to close the gap in available computational methodology between lipidomics and other omics sub-branches.
Retrieving the unretrievable in electronic imaging systems: emotions, themes, and stories
NASA Astrophysics Data System (ADS)
Joergensen, Corinne
1999-05-01
New paradigms such as 'affective computing' and user-based research are extending the realm of facets traditionally addressed in IR systems. This paper builds on previous research reported to the electronic imaging community concerning the need to provide access to more abstract attributes of images than those currently amenable to a variety of content-based and text-based indexing techniques. Empirical research suggest that, for visual materials, in addition to standard bibliographic data and broad subject, and in addition to such visually perceptual attributes such as color, texture, shape, and position or focal point, additional access points such as themes, abstract concepts, emotions, stories, and 'people-related' information such as social status would be useful in image retrieval. More recent research demonstrates that similar results are also obtained with 'fine arts' images, which generally have no access provided for these types of attributes. Current efforts to match image attributes as revealed in empirical research with those addressed both in current textural and content-based indexing systems are discussed, as well as the need for new representations for image attributes and for collaboration among diverse communities of researchers.
Probabilistic Design Storm Method for Improved Flood Estimation in Ungauged Catchments
NASA Astrophysics Data System (ADS)
Berk, Mario; Å pačková, Olga; Straub, Daniel
2017-12-01
The design storm approach with event-based rainfall-runoff models is a standard method for design flood estimation in ungauged catchments. The approach is conceptually simple and computationally inexpensive, but the underlying assumptions can lead to flawed design flood estimations. In particular, the implied average recurrence interval (ARI) neutrality between rainfall and runoff neglects uncertainty in other important parameters, leading to an underestimation of design floods. The selection of a single representative critical rainfall duration in the analysis leads to an additional underestimation of design floods. One way to overcome these nonconservative approximations is the use of a continuous rainfall-runoff model, which is associated with significant computational cost and requires rainfall input data that are often not readily available. As an alternative, we propose a novel Probabilistic Design Storm method that combines event-based flood modeling with basic probabilistic models and concepts from reliability analysis, in particular the First-Order Reliability Method (FORM). The proposed methodology overcomes the limitations of the standard design storm approach, while utilizing the same input information and models without excessive computational effort. Additionally, the Probabilistic Design Storm method allows deriving so-called design charts, which summarize representative design storm events (combinations of rainfall intensity and other relevant parameters) for floods with different return periods. These can be used to study the relationship between rainfall and runoff return periods. We demonstrate, investigate, and validate the method by means of an example catchment located in the Bavarian Pre-Alps, in combination with a simple hydrological model commonly used in practice.
The Computational Infrastructure for Geodynamics as a Community of Practice
NASA Astrophysics Data System (ADS)
Hwang, L.; Kellogg, L. H.
2016-12-01
Computational Infrastructure for Geodynamics (CIG), geodynamics.org, originated in 2005 out of community recognition that the efforts of individual or small groups of researchers to develop scientifically-sound software is impossible to sustain, duplicates effort, and makes it difficult for scientists to adopt state-of-the art computational methods that promote new discovery. As a community of practice, participants in CIG share an interest in computational modeling in geodynamics and work together on open source software to build the capacity to support complex, extensible, scalable, interoperable, reliable, and reusable software in an effort to increase the return on investment in scientific software development and increase the quality of the resulting software. The group interacts regularly to learn from each other and better their practices formally through webinar series, workshops, and tutorials and informally through listservs and hackathons. Over the past decade, we have learned that successful scientific software development requires at a minimum: collaboration between domain-expert researchers, software developers and computational scientists; clearly identified and committed lead developer(s); well-defined scientific and computational goals that are regularly evaluated and updated; well-defined benchmarks and testing throughout development; attention throughout development to usability and extensibility; understanding and evaluation of the complexity of dependent libraries; and managed user expectations through education, training, and support. CIG's code donation standards provide the basis for recently formalized best practices in software development (geodynamics.org/cig/dev/best-practices/). Best practices include use of version control; widely used, open source software libraries; extensive test suites; portable configuration and build systems; extensive documentation internal and external to the code; and structured, human readable input formats.
Aircraft integrated design and analysis: A classroom experience
NASA Technical Reports Server (NTRS)
1988-01-01
AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport (HSCT) design, the AIAA Long Duration Aircraft design and a Remotely Piloted Vehicle (RPV) design proposal as project objectives. The central goal of these efforts was to provide a user-friendly, computer-software-based, environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN), and stand-alone PC's were used for this development. This year's accomplishments centered primarily on aerodynamics software obtained from the NASA Langley Research Center and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of 10 HSCT designs were generated, ranging from twin-fuselage and forward-swept wing aircraft, to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance. Supporting these activities were three video satellite lectures beamed from NASA/Langley to Purdue. These lectures covered diverse areas such as an overview of HSCT design, supersonic-aircraft stability and control, and optimization of aircraft performance. Plans for next year's effort will be reviewed, including dedicated computer workstation utilization, remote satellite lectures, and university/industrial cooperative efforts.
2015-10-01
Clip Additively Manufactured • The Navy installed a 3D printer aboard the USS Essex to demonstrate the ability to additively develop and produce...desired result and vision to have the capability on the fleet. These officials stated that the Navy plans to install 3D printers on two additional...DEFENSE ADDITIVE MANUFACTURING DOD Needs to Systematically Track Department-wide 3D Printing Efforts Report to
Sharan, Deepak; Parijat, Prakriti; Sasidharan, Ajeesh Padinjattethil; Ranganathan, Rameshkumar; Mohandoss, Mathankumar; Jose, Jeena
2011-12-01
Work-related musculoskeletal disorders are common in computer professionals. Workstyle may be one of the risk factors in the development of musculoskeletal discomfort. The objective of this retrospective study was to examine the prevalence of adverse workstyle in computer professionals from India and to evaluate if workstyle factors were predictors of pain and loss of productivity. Office workers from various information technology (IT) companies in India responded to the short-form workstyle questionnaire and pain questionnaire. Correlation analyses were conducted to examine the associations between different variables followed by a multivariate logistic regression to understand the unique predictors of pain and loss of productivity. 4,500 participants responded to the workstyle and pain questionnaire. 22% of participants were reported to have a high risk of an adverse workstyle. 63% of participants reported pain symptoms. Social reactivity, lack of breaks, and deadlines/pressure subscales of workstyle questionnaire were significantly correlated with pain and loss of productivity. Regression analyses revealed that workstyle factors and duration of computer use per day were significant predictors of pain. Workstyle seems to be a mediating factor for musculoskeletal pain, discomfort, and loss of productivity. Based on the study findings, it is recommended that intervention efforts directed towards prevention of musculoskeletal disorders should focus on psychosocial work factors such adverse workstyle in addition to biomechanical risk factors.
Performance of VPIC on Trinity
NASA Astrophysics Data System (ADS)
Nystrom, W. D.; Bergen, B.; Bird, R. F.; Bowers, K. J.; Daughton, W. S.; Guo, F.; Li, H.; Nam, H. A.; Pang, X.; Rust, W. N., III; Wohlbier, J.; Yin, L.; Albright, B. J.
2016-10-01
Trinity is a new major DOE computing resource which is going through final acceptance testing at Los Alamos National Laboratory. Trinity has several new and unique architectural features including two compute partitions, one with dual socket Intel Haswell Xeon compute nodes and one with Intel Knights Landing (KNL) Xeon Phi compute nodes. Additional unique features include use of on package high bandwidth memory (HBM) for the KNL nodes, the ability to configure the KNL nodes with respect to HBM model and on die network topology in a variety of operational modes at run time, and use of solid state storage via burst buffer technology to reduce time required to perform I/O. An effort is in progress to port and optimize VPIC to Trinity and evaluate its performance. Because VPIC was recently released as Open Source, it is being used as part of acceptance testing for Trinity and is participating in the Trinity Open Science Program which has resulted in excellent collaboration activities with both Cray and Intel. Results of this work will be presented on performance of VPIC on both Haswell and KNL partitions for both single node runs and runs at scale. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.
Lunar laser ranging data processing in a Unix/X windows environment
NASA Technical Reports Server (NTRS)
Ricklefs, Randall L.; Ries, Judit G.
1993-01-01
In cooperation with the NASA Crustal Dynamics Project initiative placing workstation computers at each of its laser ranging stations to handle data filtering and normalpointing, MLRS personnel have developed a new generation of software to provide the same services for the lunar laser ranging data type. The Unix operating system and X windows/Motif provides an environment for both batch and interactive filtering and normalpointing as well as prediction calculations. The goal is to provide a transportable and maintainable data reduction environment. This software and some sample displays are presented. that the lunar (or satellite) datacould be processed on one computer while data was taken on the other. The reduction of the data was totally interactive and in no way automated. In addition, lunar predictions were produced on-site, another first in the effort to down-size historically mainframe-based applications. Extraction of earth rotation parameters was at one time attempted on site in near-realtime. In 1988, the Crustal Dynamics Project SLR Computer Panel mandated the installation of Hewlett-Packard 9000/360 Unix workstations at each NASA-operated laser ranging station to relieve the aging controller computers of much of their data and communications handling responsibility and to provide on-site data filtering and normal pointing for a growing list of artificial satellite targets. This was seen by MLRS staff as an opportunity to provide a better lunar data processing environment as well.
Validation of hydrogen gas stratification and mixing models
Wu, Hsingtzu; Zhao, Haihua
2015-05-26
Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for amore » large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. In conclusion, computing time for each BMIX++ model with a normal desktop computer is less than 5 min.« less
Lunar laser ranging data processing in a Unix/X windows environment
NASA Astrophysics Data System (ADS)
Ricklefs, Randall L.; Ries, Judit G.
1993-06-01
In cooperation with the NASA Crustal Dynamics Project initiative placing workstation computers at each of its laser ranging stations to handle data filtering and normalpointing, MLRS personnel have developed a new generation of software to provide the same services for the lunar laser ranging data type. The Unix operating system and X windows/Motif provides an environment for both batch and interactive filtering and normalpointing as well as prediction calculations. The goal is to provide a transportable and maintainable data reduction environment. This software and some sample displays are presented. that the lunar (or satellite) datacould be processed on one computer while data was taken on the other. The reduction of the data was totally interactive and in no way automated. In addition, lunar predictions were produced on-site, another first in the effort to down-size historically mainframe-based applications. Extraction of earth rotation parameters was at one time attempted on site in near-realtime. In 1988, the Crustal Dynamics Project SLR Computer Panel mandated the installation of Hewlett-Packard 9000/360 Unix workstations at each NASA-operated laser ranging station to relieve the aging controller computers of much of their data and communications handling responsibility and to provide on-site data filtering and normal pointing for a growing list of artificial satellite targets. This was seen by MLRS staff as an opportunity to provide a better lunar data processing environment as well.
Automatic prediction of tongue muscle activations using a finite element model.
Stavness, Ian; Lloyd, John E; Fels, Sidney
2012-11-15
Computational modeling has improved our understanding of how muscle forces are coordinated to generate movement in musculoskeletal systems. Muscular-hydrostat systems, such as the human tongue, involve very different biomechanics than musculoskeletal systems, and modeling efforts to date have been limited by the high computational complexity of representing continuum-mechanics. In this study, we developed a computationally efficient tracking-based algorithm for prediction of muscle activations during dynamic 3D finite element simulations. The formulation uses a local quadratic-programming problem at each simulation time-step to find a set of muscle activations that generated target deformations and movements in finite element muscular-hydrostat models. We applied the technique to a 3D finite element tongue model for protrusive and bending movements. Predicted muscle activations were consistent with experimental recordings of tongue strain and electromyography. Upward tongue bending was achieved by recruitment of the superior longitudinal sheath muscle, which is consistent with muscular-hydrostat theory. Lateral tongue bending, however, required recruitment of contralateral transverse and vertical muscles in addition to the ipsilateral margins of the superior longitudinal muscle, which is a new proposition for tongue muscle coordination. Our simulation framework provides a new computational tool for systematic analysis of muscle forces in continuum-mechanics models that is complementary to experimental data and shows promise for eliciting a deeper understanding of human tongue function. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Computational Approach for Model Update of an LS-DYNA Energy Absorbing Cell
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Jackson, Karen E.; Kellas, Sotiris
2008-01-01
NASA and its contractors are working on structural concepts for absorbing impact energy of aerospace vehicles. Recently, concepts in the form of multi-cell honeycomb-like structures designed to crush under load have been investigated for both space and aeronautics applications. Efforts to understand these concepts are progressing from tests of individual cells to tests of systems with hundreds of cells. Because of fabrication irregularities, geometry irregularities, and material properties uncertainties, the problem of reconciling analytical models, in particular LS-DYNA models, with experimental data is a challenge. A first look at the correlation results between single cell load/deflection data with LS-DYNA predictions showed problems which prompted additional work in this area. This paper describes a computational approach that uses analysis of variance, deterministic sampling techniques, response surface modeling, and genetic optimization to reconcile test with analysis results. Analysis of variance provides a screening technique for selection of critical parameters used when reconciling test with analysis. In this study, complete ignorance of the parameter distribution is assumed and, therefore, the value of any parameter within the range that is computed using the optimization procedure is considered to be equally likely. Mean values from tests are matched against LS-DYNA solutions by minimizing the square error using a genetic optimization. The paper presents the computational methodology along with results obtained using this approach.
Evaluating Application Resilience with XRay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sui; Bronevetsky, Greg; Li, Bin
2015-05-07
The rising count and shrinking feature size of transistors within modern computers is making them increasingly vulnerable to various types of soft faults. This problem is especially acute in high-performance computing (HPC) systems used for scientific computing, because these systems include many thousands of compute cores and nodes, all of which may be utilized in a single large-scale run. The increasing vulnerability of HPC applications to errors induced by soft faults is motivating extensive work on techniques to make these applications more resiilent to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithmspecific error detection andmore » tolerance techniques. Effective use of such techniques requires a detailed understanding of how a given application is affected by soft faults to ensure that (i) efforts to improve application resilience are spent in the code regions most vulnerable to faults and (ii) the appropriate resilience technique is applied to each code region. This paper presents XRay, a tool to view the application vulnerability to soft errors, and illustrates how XRay can be used in the context of a representative application. In addition to providing actionable insights into application behavior XRay automatically selects the number of fault injection experiments required to provide an informative view of application behavior, ensuring that the information is statistically well-grounded without performing unnecessary experiments.« less