Sample records for additional controlled airspace

  1. 77 FR 5169 - Amendment of Class E Airspace; South Bend, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...-0250; Airspace Docket No. 11-AGL-6] Amendment of Class E Airspace; South Bend, IN AGENCY: Federal... South Bend, IN, area. Additional controlled airspace is necessary to accommodate new Area Navigation... South Bend, IN, area, creating additional controlled airspace at Jerry Tyler Memorial Airport (76 FR...

  2. 75 FR 31677 - Amendment of Class E Airspace; Corpus Christi, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ...-0089; Airspace Docket No. 10-ASW-1] Amendment of Class E Airspace; Corpus Christi, TX AGENCY: Federal... the Corpus Christi, TX area. Additional controlled airspace is necessary to accommodate new Standard... E airspace for the Corpus Christi, TX area, reconfiguring controlled airspace at Aransas County...

  3. 76 FR 43610 - Proposed Amendment of Class E Airspace; Spearfish, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...-0431; Airspace Docket No. 11-AGL-11] Proposed Amendment of Class E Airspace; Spearfish, SD AGENCY... action proposes to amend Class E airspace at Spearfish, SD. Additional controlled airspace is necessary... instrument approach procedures at Black Hills Airport-Clyde Ice Field, Spearfish, SD. Controlled airspace is...

  4. 77 FR 29920 - Proposed Amendment of Class E Airspace; Lemmon, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...-0391; Airspace Docket No. 12-AGL-2] Proposed Amendment of Class E Airspace; Lemmon, SD AGENCY: Federal... proposes to amend Class E airspace at Lemmon, SD. Additional controlled airspace is necessary to... Municipal Airport, Lemmon, SD. Controlled airspace is needed for the safety and management of IFR operations...

  5. 76 FR 43612 - Proposed Amendment of Class E Airspace; Sturgis, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...-0430; Airspace Docket No. 11-AGL-10] Proposed Amendment of Class E Airspace; Sturgis, SD AGENCY... action proposes to amend Class E airspace at Sturgis, SD. Additional controlled airspace is necessary to... instrument approach procedures at Sturgis Municipal Airport, Sturgis, SD. Controlled airspace is needed for...

  6. 75 FR 13453 - Proposed Amendment of Class E Airspace; Corpus Christi, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...-0089; Airspace Docket No. 10-ASW-1] Proposed Amendment of Class E Airspace; Corpus Christi, TX AGENCY... action proposes to amend Class E airspace in the Corpus Christi, TX area. Additional controlled airspace... adding additional Class E airspace extending upward from 700 feet above the surface in the Corpus Christi...

  7. 78 FR 73749 - Proposed Amendment of Class D Airspace; St. Joseph, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ...-0917; Airspace Docket No. 13-ACE-16] Proposed Amendment of Class D Airspace; St. Joseph, MO AGENCY... action proposes to amend Class D airspace at St. Joseph, MO. Additional controlled airspace is necessary... Rosecrans Municipal Airport, St. Joseph, MO. Accordingly, additional segments would extend from the 4.3-mile...

  8. 77 FR 56761 - Amendment of Class E Airspace; Kerrville, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ...-1399; Airspace Docket No. 11-ASW-14] Amendment of Class E Airspace; Kerrville, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Class E airspace for the Kerrville, TX, area, creating additional controlled airspace at Kerrville...

  9. 77 FR 46284 - Amendment of Class E Airspace; Lemmon, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...-0391; Airspace Docket No. 12-AGL-2] Amendment of Class E Airspace; Lemmon, SD AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Lemmon, SD... rulemaking (NPRM) to amend Class E airspace for the Lemmon, SD, area, creating additional controlled airspace...

  10. 76 FR 44254 - Amendment of Class D Airspace; Denton, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...-1327; Airspace Docket No. 10-ASW-19] Amendment of Class D Airspace; Denton, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class D airspace for Denton, TX, to... rulemaking to amend Class D airspace for Denton, TX, creating additional controlled airspace at Denton...

  11. 78 FR 48298 - Amendment of Class E Airspace; Commerce, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0269; Airspace Docket No. 13-ASW-3] Amendment of Class E Airspace; Commerce, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Commerce, TX. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV...

  12. 76 FR 78180 - Proposed Modification of Class E Airspace; Douglas, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ...-1313; Airspace Docket No. 11-AWP-17] Proposed Modification of Class E Airspace; Douglas, AZ AGENCY... action proposes to modify Class E airspace at Bisbee Douglas International Airport, Douglas, AZ... feet above the surface at Douglas, AZ. Additional controlled airspace is necessary to accommodate...

  13. 76 FR 21828 - Proposed Amendment of Class E Airspace; Mobridge, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ...-0134; Airspace Docket No. 11-AGL-3] Proposed Amendment of Class E Airspace; Mobridge, SD AGENCY... action proposes to amend Class E airspace at Mobridge, SD. Additional controlled airspace is necessary to... accommodate new standard instrument approach procedures at Mobridge Municipal Airport, Mobridge, SD...

  14. 75 FR 17851 - Amendment of Class E Airspace; Dallas-Fort Worth, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ...-0926; Airspace Docket No. 09-ASW-26] Amendment of Class E Airspace; Dallas-Fort Worth, TX AGENCY... airspace in the Dallas-Fort Worth, TX area. Additional controlled airspace is necessary to accommodate new... proposed rulemaking to amend Class E airspace for the Dallas- Fort Worth, TX area (74 FR 57617) Docket No...

  15. 75 FR 43886 - Proposed Amendment of Class E Airspace; Corpus Christi, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...-0404; Airspace Docket No. 10-ASW-7] Proposed Amendment of Class E Airspace; Corpus Christi, TX AGENCY... action proposes to amend Class E airspace in the Corpus Christi, TX area. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAPs) at Corpus Christi...

  16. 78 FR 73751 - Proposed Amendment of Class E Airspace; Philip, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ...-0916; Airspace Docket No. 13-AGL-30] Proposed Amendment of Class E Airspace; Philip, SD AGENCY: Federal... proposes to amend Class E airspace at Philip, SD. Additional controlled airspace is necessary to... the surface to accommodate new standard instrument approach procedures at Philip Airport, Philip, SD...

  17. 75 FR 27494 - Proposed Amendment of Class E Airspace; Pauls Valley, OK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... 0182; Airspace Docket No. 10-ASW-4] Proposed Amendment of Class E Airspace; Pauls Valley, OK AGENCY... action proposes to amend Class E airspace at Pauls Valley, OK. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAPs) at Pauls Valley Municipal...

  18. 78 FR 41685 - Amendment of Class E Airspace; Worthington, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ...-1139; Airspace Docket No. 12-AGL-12] Amendment of Class E Airspace; Worthington, MN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... rulemaking (NPRM) to amend Class E airspace for the Worthington, MN, area, creating additional controlled...

  19. 75 FR 15360 - Proposed Amendment of Class E Airspace; Austin, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ...-1152; Airspace Docket No. 09-ASW-31] Proposed Amendment of Class E Airspace; Austin, TX AGENCY: Federal... proposes to amend Class E airspace in the Austin, TX area. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAPs) at Austin Executive Airport, Austin, TX. The...

  20. 75 FR 6595 - Proposed Amendment of Class E Airspace; Mapleton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...-1155; Airspace Docket No. 09-ACE-14] Proposed Amendment of Class E Airspace; Mapleton, IA AGENCY... action proposes to amend Class E airspace at Mapleton, IA. Additional controlled airspace is necessary to..., Mapleton, IA. The FAA is taking this action to enhance the safety and management of Instrument Flight Rules...

  1. 75 FR 6592 - Proposed Amendment of Class E Airspace; Emmetsburg, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...-1153; Airspace Docket No. 09-ACE-13] Proposed Amendment of Class E Airspace; Emmetsburg, IA AGENCY... action proposes to amend Class E airspace at Emmetsburg, IA. Additional controlled airspace is necessary..., Emmetsburg, IA. The FAA is taking this action to enhance the safety and management of Instrument Flight Rules...

  2. 77 FR 49399 - Proposed Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...-0654; Airspace Docket No. 12-ACE-3] Proposed Amendment of Class E Airspace; Forest City, IA AGENCY... action proposes to amend Class E airspace at Forest City, IA. Additional controlled airspace is necessary... accommodate new standard instrument approach procedures at Forest City Municipal Airport, Forest City, IA. The...

  3. 77 FR 68683 - Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-0654; Airspace Docket No. 12-ACE-3] Amendment of Class E Airspace; Forest City, IA AGENCY: Federal... Forest City, IA. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Forest City, IA...

  4. 76 FR 49385 - Proposed Amendment of Class E Airspace; South Bend, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...-0250; Airspace Docket No. 11-AGL-6] Proposed Amendment of Class E Airspace; South Bend, IN AGENCY... action proposes to amend Class E airspace in the South Bend, IN area. Additional controlled airspace is... (IFR) operations for SIAPs at the airport. The geographic coordinates for South Bend Regional Airport...

  5. 75 FR 23581 - Amendment of Class E Airspace; Emmetsburg, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ...-1153; Airspace Docket No. 09-ACE-13] Amendment of Class E Airspace; Emmetsburg, IA AGENCY: Federal... Emmetsburg, IA, adding additional controlled airspace to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at Emmetsburg Municipal Airport, Emmetsburg, IA. The FAA is taking...

  6. 75 FR 23580 - Amendment of Class E Airspace; Mapleton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ...-1155; Airspace Docket No. 09-ACE-14] Amendment of Class E Airspace; Mapleton, IA AGENCY: Federal... Mapleton, IA, adding additional controlled airspace to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at James G. Whiting Memorial Field Airport, Mapleton, IA. The FAA is...

  7. 76 FR 44257 - Amendment of Class E Airspace; Mobridge, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...-0134; Airspace Docket No. 11-AGL-3] Amendment of Class E Airspace; Mobridge, SD AGENCY: Federal... Mobridge, SD, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Mobridge... notice of proposed rulemaking to amend Class E airspace for Mobridge, SD, creating additional controlled...

  8. 78 FR 14911 - Amendment of Class E Airspace; Hot Springs, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ...-0655; Airspace Docket No. 12-AGL-6] Amendment of Class E Airspace; Hot Springs, SD AGENCY: Federal... Springs, SD. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Hot Springs Municipal Airport. The FAA is taking this action to...

  9. 75 FR 18402 - Amendment of Class E Airspace; North Bend, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...-0831; Airspace Docket No. 09-ANM-13] Amendment of Class E Airspace; North Bend, OR AGENCY: Federal... at Southwest Oregon Regional Airport, North Bend, OR, to allow aircraft at Sunnyhill Airport to... rulemaking to establish additional controlled airspace at North Bend, OR (74 FR 57616). Interested parties...

  10. 78 FR 32085 - Amendment of Class E Airspace; Eureka, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... instrument approach procedures at the airport. This improves the safety and management of Instrument Flight... aircraft using the RNAV (GPS) standard instrument approach procedures at Eureka Airport. Class E airspace...) standard instrument approach procedures at the airport. Additional controlled airspace extending upward...

  11. 77 FR 56586 - Proposed Amendment of Class E Airspace; Gaylord, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Gaylord, MI. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at Gaylord Regional Airport. Also, this action...

  12. 77 FR 49400 - Proposed Amendment of Class E Airspace; Marysville, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Marysville, OH. Additional controlled airspace is necessary... taking this action to enhance the safety and management of Instrument Flight Rules (IFR) operations for...

  13. 78 FR 48841 - Proposed Amendment of Class E Airspace; Kankakee, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Kankakee, IL. Additional controlled airspace is necessary to... taking this action to enhance the safety and management of Instrument Flight Rules (IFR) operations for...

  14. Interaction of Airspace Partitions and Traffic Flow Management Delay

    NASA Technical Reports Server (NTRS)

    Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae

    2010-01-01

    To ensure that air traffic demand does not exceed airport and airspace capacities, traffic management restrictions, such as delaying aircraft on the ground, assigning them different routes and metering them in the airspace, are implemented. To reduce the delays resulting from these restrictions, revising the partitioning of airspace has been proposed to distribute capacity to yield a more efficient airspace configuration. The capacity of an airspace partition, commonly referred to as a sector, is limited by the number of flights that an air traffic controller can safely manage within the sector. Where viable, re-partitioning of the airspace distributes the flights over more efficient sectors and reduces individual sector demand. This increases the overall airspace efficiency, but requires additional resources in some sectors in terms of controllers and equipment, which is undesirable. This study examines the tradeoff of the number of sectors designed for a specified amount of traffic in a clear-weather day and the delays needed for accommodating the traffic demand. Results show that most of the delays are caused by airport arrival and departure capacity constraints. Some delays caused by airspace capacity constraints can be eliminated by re-partitioning the airspace. Analyses show that about 360 high-altitude sectors, which are approximately today s operational number of sectors of 373, are adequate for delays to be driven solely by airport capacity constraints for the current daily air traffic demand. For a marginal increase of 15 seconds of average delay, the number of sectors can be reduced to 283. In addition, simulations of traffic growths of 15% and 20% with forecasted airport capacities in the years 2018 and 2025 show that delays will continue to be governed by airport capacities. In clear-weather days, for small increases in traffic demand, increasing sector capacities will have almost no effect on delays.

  15. Impact of Airspace Charges on Transatlantic Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Linke, Florian; Chen, Neil Y.

    2015-01-01

    Aircraft flying over the airspace of different countries are subject to over-flight charges. These charges vary from country to country. Airspace charges, while necessary to support the communication, navigation and surveillance services, may lead to aircraft flying routes longer than wind-optimal routes and produce additional carbon dioxide and other gaseous emissions. This paper develops an optimal route between city pairs by modifying the cost function to include an airspace cost whenever an aircraft flies through a controlled airspace without landing or departing from that airspace. It is assumed that the aircraft will fly the trajectory at a constant cruise altitude and constant speed. The computationally efficient optimal trajectory is derived by solving a non-linear optimal control problem. The operational strategies investigated in this study for minimizing aircraft fuel burn and emissions include flying fuel-optimal routes and flying cost-optimal routes that may completely or partially reduce airspace charges en route. The results in this paper use traffic data for transatlantic flights during July 2012. The mean daily savings in over-flight charges, fuel cost and total operation cost during the period are 17.6 percent, 1.6 percent, and 2.4 percent respectively, along the cost- optimal trajectories. The transatlantic flights can potentially save $600,000 in fuel cost plus $360,000 in over-flight charges daily by flying the cost-optimal trajectories. In addition, the aircraft emissions can be potentially reduced by 2,070 metric tons each day. The airport pairs and airspace regions that have the highest potential impacts due to airspace charges are identified for possible reduction of fuel burn and aircraft emissions for the transatlantic flights. The results in the paper show that the impact of the variation in fuel price on the optimal routes is to reduce the difference between wind-optimal and cost-optimal routes as the fuel price increases. The additional fuel consumption is quantified using the 30 percent variation in fuel prices during March 2014 to March 2015.

  16. 76 FR 67596 - Amendment of Class E Airspace; Spearfish, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... Spearfish, SD, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Black... additional controlled airspace at Black Hills Airport--Clyde Ice Field (76 FR 43610) Docket No. FAA-2011-0431... procedures at Black Hills Airport--Clyde Ice Field, Spearfish, SD. This action is necessary for the safety...

  17. 75 FR 66301 - Amendment of Class E Airspace; Corpus Christi, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... the Corpus Christi, TX, area. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at Corpus Christi International Airport, Corpus Christi, TX. The FAA is taking this action to enhance the safety and management of Instrument Flight Rule (IFR) operations at the...

  18. 78 FR 65208 - Modification of Class D and E Airspace; Kenai, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-1174; Airspace Docket No. 12-AAL-12] Modification of Class D and E Airspace; Kenai, AK AGENCY: Federal... airspace at Kenai Municipal Airport, Kenai, AK. Controlled airspace is necessary to accommodate aircraft... (NPRM) to modify controlled airspace at Kenai Municipal Airport, Kenai, AK (78 FR 34609). Interested...

  19. A graph based algorithm for adaptable dynamic airspace configuration for NextGen

    NASA Astrophysics Data System (ADS)

    Savai, Mehernaz P.

    The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major (busy) airports need to be given more importance and hence treated separately. Thus the algorithm takes into account the air route structure while finding a balance between sector workloads. The performance of the proposed algorithms and performance metrics is validated with the Enhanced Traffic Management System (ETMS) air traffic data.

  20. 76 FR 5302 - Proposed Amendment of Class E Airspace; Terre Haute, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ...-1034; Airspace Docket No. 10-AGL-22] Proposed Amendment of Class E Airspace; Terre Haute, IN AGENCY... action proposes to amend Class E airspace at Terre Haute, IN. Controlled airspace is necessary to... (POINT-IN-SPACE) SIAP at Union Hospital Heliport, Terre Haute, IN. Controlled airspace is needed for the...

  1. Announced Strategy Types in Multiagent RL for Conflict-Avoidance in the National Airspace

    NASA Technical Reports Server (NTRS)

    Rebhuhn, Carrie; Knudson, Matthew D.; Tumer, Kagan

    2014-01-01

    The use of unmanned aerial systems (UAS) in the national airspace is of growing interest to the research community. Safety and scalability of control algorithms are key to the successful integration of autonomous system into a human-populated airspace. In order to ensure safety while still maintaining efficient paths of travel, these algorithms must also accommodate heterogeneity of path strategies of its neighbors. We show that, using multiagent RL, we can improve the speed with which conflicts are resolved in cases with up to 80 aircraft within a section of the airspace. In addition, we show that the introduction of abstract agent strategy types to partition the state space is helpful in resolving conflicts, particularly in high congestion.

  2. Diagnostic throughput factor analysis for en-route airspace and optimal aircraft trajectory generation based on capacity prediction and controller workload

    NASA Astrophysics Data System (ADS)

    Shin, Sanghyun

    Today's National Airspace System (NAS) is approaching its limit to efficiently cope with the increasing air traffic demand. Next Generation Air Transportation System (NextGen) with its ambitious goals aims to make the air travel more predictable with fewer delays, less time sitting on the ground and holding in the air to improve the performance of the NAS. However, currently the performance of the NAS is mostly measured using delay-based metrics which do not capture a whole range of important factors that determine the quality and level of utilization of the NAS. The factors affecting the performance of the NAS are themselves not well defined to begin with. To address these issues, motivated by the use of throughput-based metrics in many areas such as ground transportation, wireless communication and manufacturing, this thesis identifies the different factors which majorly affect the performance of the NAS as demand (split into flight cancellation and flight rerouting), safe separation (split into conflict and metering) and weather (studied as convective weather) through careful comparison with other applications and performing empirical sensitivity analysis. Additionally, the effects of different factors on the NAS's performance are quantitatively studied using real traffic data with the Future ATM Concepts Evaluation Tool (FACET) for various sectors and centers of the NAS on different days. In this thesis we propose a diagnostic tool which can analyze the factors that have greater responsibility for regions of poor and better performances of the NAS. Based on the throughput factor analysis for en-route airspace, it was found that weather and controller workload are the major factors that decrease the efficiency of the airspace. Also, since resources such as air traffic controllers, infrastructure and airspace are limited, it is becoming increasingly important to use the available resources efficiently. To alleviate the impact of the weather and controller workload while optimally utilizing limited resources, various aircraft rerouting strategies for Air Traffic Management (ATM) have been proposed. However, the number of rerouting tools available to address these issues for the center-level and the National Airspace System (NAS) are relatively less compared with the tools for the sector-level and terminal airspace. Additionally, previous works consider the airspace containing the weather as no-fly zones instead of reduced-traffic zones and do not explicitly consider controller workload when generating aircraft trajectories to avoid the weather-affected airspace, thereby reducing the overall performance of the airspace. In this thesis, a new rerouting algorithm for the center-level airspace is proposed to address these problems by introducing a feedback loop connecting a tactical rerouting algorithm with a strategic rerouting algorithm using dynamic programming and a modified A* algorithm respectively. This helps reduce the computational cost significantly while safely handling a large number of aircraft. In summary, this thesis suggests the ways in which the NAS's performance can be further improved, thereby supporting various concepts envisioned by the Next Generation Air Transportation System (NextGen) and providing vital information which can be used for suitable economic and environmental advantages.

  3. 78 FR 5129 - Amendment of Class E Airspace; Wilkes-Barre, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Wilkes-Barre, PA, creating controlled airspace to accommodate new area navigation (RNAV) Standard... Wilkes-Barre, PA, area by creating controlled airspace at Wilkes-Barre/ Wyoming Valley Airport, Wilkes... in the Wilkes-Barre, PA, area by creating controlled airspace extending upward form 700 feet above...

  4. Development of a framework for the assessment of capacity and throughput technologies within the National Airspace System

    NASA Astrophysics Data System (ADS)

    Garcia, Elena

    The demand for air travel is expanding beyond the capacity of the existing National Airspace System. Excess traffic results in delays and compromised safety. Thus, a number of initiatives to improve airspace capacity have been proposed. To assess the impact of these technologies on air traffic one must move beyond the vehicle to a system-of-systems point of view. This top-level perspective must include consideration of the aircraft, airports, air traffic control and airlines that make up the airspace system. In addition to these components and their interactions economics, safety and government regulations must also be considered. Furthermore, the air transportation system is inherently variable with changes in everything from fuel prices to the weather. The development of a modeling environment that enables a comprehensive probabilistic evaluation of technological impacts was the subject of this thesis. The final modeling environment developed used economics as the thread to tie the airspace components together. Airport capacities and delays were calculated explicitly with due consideration to the impacts of air traffic control. The delay costs were then calculated for an entire fleet, and an airline economic analysis, considering the impact of these costs, was carried out. Airline return on investment was considered the metric of choice since it brings together all costs and revenues, including the cost of delays, landing fees for airport use and aircraft financing costs. Safety was found to require a level of detail unsuitable for a system-of-systems approach and was relegated to future airspace studies. Environmental concerns were considered to be incorporated into airport regulations and procedures and were not explicitly modeled. A deterministic case study was developed to test this modeling environment. The Atlanta airport operations for the year 2000 were used for validation purposes. A 2005 baseline was used as a basis for comparing the four technologies considered: a very large aircraft, Terminal Area Productivity air traffic control technologies, smoothing of an airline schedule, and the addition of a runway. A case including all four technologies simultaneously was also considered. Unfortunately, the complexity of the system prevented full exploration of the probabilistic aspects of the National Airspace System.

  5. 78 FR 52112 - Proposed Amendment of Class E Airspace; Cut Bank, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ...-0664; Airspace Docket No. 13-ANM-22] Proposed Amendment of Class E Airspace; Cut Bank, MT AGENCY... action proposes to modify Class E airspace at Cut Bank Municipal Airport, Cut Bank, MT. Controlled... from 700/1,200 feet above the surface at Cut Bank Municipal Airport, Cut Bank, MT. Controlled airspace...

  6. 78 FR 17083 - Amendment of Class E Airspace; Scammon Bay, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...-0121; Airspace Docket No. 12-AAL-2] Amendment of Class E Airspace; Scammon Bay, AK AGENCY: Federal... Scammon Bay Airport, Scammon Bay, AK. Controlled airspace is necessary to accommodate aircraft using a new... Federal Register a notice of proposed rulemaking to modify controlled airspace at Scammon Bay, AK (77 FR...

  7. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  8. Human factors in aviation: Terminal control area boundary conflicts

    NASA Technical Reports Server (NTRS)

    Monan, William P.

    1989-01-01

    Air-to-air conflicts in the vicinity of Terminal Control Area (TCA) boundaries were studied to obtain a better understanding of the causal dynamics of these events with particular focus on human factor issues. The study dataset consisted of 381 Instrument Flight Rules/Visual Flight Rules (IFR/VFR) traffic conflicts in airspace layers above TCA ceiling and below TCA floors; 213 reports of incursions in TCA terminal airspace by VFR aircraft, of which 123 resulted in conflicts; and an additional set of reports describing problems with Air Traffic Control (ATC) services in and around TCAs. Results and conclusions are detailed.

  9. 75 FR 38406 - Amendment of Norton Sound Low and Control 1234L Offshore Airspace Areas; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ...-0071; Airspace Docket No. 10-AAL-1] RIN 2120-AA66 Amendment of Norton Sound Low and Control 1234L.... SUMMARY: This action modifies the Norton Sound Low and Control 1234L Offshore Airspace Areas in Alaska... rulemaking (NPRM) to modify two Alaskan Offshore Airspace Areas, Norton Sound Low, and Control 1234L (75 FR...

  10. 77 FR 66069 - Amendment of Class E Airspace; Perry, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ...-1435; Airspace Docket No. 11-ACE-28] Amendment of Class E Airspace; Perry, IA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Perry, IA... proposed rulemaking (NPRM) to amend Class E airspace for the Perry, IA, area, creating additional...

  11. 77 FR 66067 - Amendment of Class E Airspace; Boone, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ...-1432; Airspace Docket No. 11-ACE-25] Amendment of Class E Airspace; Boone, IA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Boone, IA... proposed rulemaking (NPRM) to amend Class E airspace for the Boone, IA, area, creating additional...

  12. 76 FR 31510 - Proposed Amendment of Class E Airspace; Rutherfordton, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ...; Airspace Docket No. 10-ASO-41) and be submitted in triplicate to the Docket Management System (see... airspace required to support new standard instrument approach procedures for Rutherford County Airport. The... action proposes to amend Class E Airspace at Rutherfordton, NC, to accommodate the additional airspace...

  13. 76 FR 44288 - Establishment of Class E Airspace; New Market, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...-380; Airspace Docket No. 11-AEA-12] Establishment of Class E Airspace; New Market, VA AGENCY: Federal... proposes to establish Class E Airspace at New Market, VA, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures developed for New Market Airport. This action would...

  14. En route Spacing Tool: Efficient Conflict-free Spacing to Flow-Restricted Airspace

    NASA Technical Reports Server (NTRS)

    Green, S.

    1999-01-01

    This paper describes the Air Traffic Management (ATM) problem within the U.S. of flow-restricted en route airspace, an assessment of its impact on airspace users, and a set of near-term tools and procedures to resolve the problem. The FAA is committed, over the next few years, to deploy the first generation of modem ATM decision support tool (DST) technology under the Free-Flight Phase-1 (FFp1) program. The associated en route tools include the User Request Evaluation Tool (URET) and the Traffic Management Advisor (TMA). URET is an initial conflict probe (ICP) capability that assists controllers with the detection and resolution of conflicts in en route airspace. TMA orchestrates arrivals transitioning into high-density terminal airspace by providing controllers with scheduled times of arrival (STA) and delay feedback advisories to assist with STA conformance. However, these FFPl capabilities do not mitigate the en route Miles-In-Trail (MIT) restrictions that are dynamically applied to mitigate airspace congestion. National statistics indicate that en route facilities (Centers) apply Miles-In-Trail (MIT) restrictions for approximately 5000 hours per month. Based on results from this study, an estimated 45,000 flights are impacted by these restrictions each month. Current-day practices for implementing these restrictions result in additional controller workload and an economic impact of which the fuel penalty alone may approach several hundred dollars per flight. To mitigate much of the impact of these restrictions on users and controller workload, a DST and procedures are presented. The DST is based on a simple derivative of FFP1 technology that is designed to introduce a set of simple tools for flow-rate (spacing) conformance and integrate them with conflict-probe capabilities. The tool and associated algorithms are described based on a concept prototype implemented within the CTAS baseline in 1995. A traffic scenario is used to illustrate the controller's use of the tool, and potential display options are presented for future controller evaluation.

  15. 76 FR 40598 - Establishment of Class E Airspace; Campbellton, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ...-1053; Airspace Docket No. 10-ASW-15] Establishment of Class E Airspace; Campbellton, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... proposed rulemaking to establish Class E airspace for Campbellton, TX, creating controlled airspace at 74...

  16. 76 FR 43822 - Establishment of Class E Airspace; Hearne, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...-0214; Airspace Docket No. 11-ASW-2] Establishment of Class E Airspace; Hearne, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... notice of proposed rulemaking to establish Class E airspace for Hearne, TX, creating controlled airspace...

  17. 76 FR 40597 - Amendment of Class E Airspace; Madison, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ...-0135; Airspace Docket No. 11-AGL-4] Amendment of Class E Airspace; Madison, SD AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Madison, SD, to... rulemaking to amend Class E airspace for Madison, SD, creating controlled airspace at Madison Municipal...

  18. 75 FR 68415 - Amendment of Class E Airspace; Kennett, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...; Airspace Docket No. 10-ACE-8] Amendment of Class E Airspace; Kennett, MO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Kennett, MO... rulemaking to amend Class E airspace for Kennett, MO, reconfiguring controlled airspace at Kennett Memorial...

  19. 77 FR 29918 - Proposed Amendment of Class E Airspace; Battle Creek, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at W. K. Kellogg.... Kellogg Airport, Battle Creek, MI. Controlled airspace is needed for the safety and management of IFR... controlled airspace at W.K. Kellogg Airport, Battle Creek, MI. Environmental Review This proposal will be...

  20. Joint Airspace Control, Doctrine Update 10-06

    DTIC Science & Technology

    2010-05-20

    Doctrine Update 10-06 Joint Publication 3-52, Joint Airspace Control JP 3-52 provides joint doctrine for airspace control across the full range...identification, combined operations, and unmanned aerial vehicle If you want read the complete new doctrine document, dated 20 May 2010, click here: JP 3-52...Joint Airspace Control. For more information, visit the LeMay Center for Doctrine Development and Education, call us at DSN 493-7442, or e-mail

  1. 78 FR 54413 - Proposed Establishment of Class E Airspace; Star, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ...-0440; Airspace Docket No. 13-ASO-10] Proposed Establishment of Class E Airspace; Star, NC AGENCY... action proposes to establish Class E Airspace at Star, NC, to accommodate a new Area Navigation (RNAV... establish Class E airspace at Star, NC, providing the controlled airspace required to support the new RNAV...

  2. 78 FR 7993 - Amendment of Class D and E Airspace; Tri-Cities, TN; Revocation of Class E Airspace; Tri-City, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... of Instrument Flight Rules (IFR) operations within the National Airspace System. This action also updates the geographic coordinates, airport name, and airspace designation. Also, this action corrects... controlled airspace within the National Airspace System. The FAA has determined that this regulation only...

  3. 78 FR 48299 - Establishment of Class D Airspace; Bryant AAF, Anchorage, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0433; Airspace Docket No. 12-AAL-5] Establishment of Class D Airspace; Bryant AAF, Anchorage, AK AGENCY... airspace at Bryant Army Airfield (AAF), Anchorage AK. This action provides controlled airspace to improve... proposed rulemaking (NPRM) to establish Class D airspace at Bryant AAF, Anchorage AK (77 FR 50646...

  4. 76 FR 9219 - Amendment of Class E Airspace; Muncie, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...-1032; Airspace Docket No. 10-AGL-20] Amendment of Class E Airspace; Muncie, IN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Muncie, IN, to... proposed rulemaking to amend Class E airspace for Muncie, IN, creating controlled airspace at Ball Memorial...

  5. Analysis of Aircraft Clusters to Measure Sector-Independent Airspace Congestion

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Lee, Hilda Q.

    2005-01-01

    The Distributed Air/Ground Traffic Management (DAG-TM) concept of operations* permits appropriately equipped aircraft to conduct Free Maneuvering operations. These independent aircraft have the freedom to optimize their trajectories in real time according to user preferences; however, they also take on the responsibility to separate themselves from other aircraft while conforming to any local Traffic Flow Management (TFM) constraints imposed by the air traffic service provider (ATSP). Examples of local-TFM constraints include temporal constraints such as a required time of arrival (RTA), as well as spatial constraints such as regions of convective weather, special use airspace, and congested airspace. Under current operations, congested airspace typically refers to a sector(s) that cannot accept additional aircraft due to controller workload limitations; hence Dynamic Density (a metric that is indicative of controller workload) can be used to quantify airspace congestion. However, for Free Maneuvering operations under DAG-TM, an additional metric is needed to quantify the airspace congestion problem from the perspective of independent aircraft. Such a metric would enable the ATSP to prevent independent aircraft from entering any local areas of congestion in which the flight deck based systems and procedures may not be able to ensure separation. This new metric, called Gaggle Density, offers the ATSP a mode of control to regulate normal operations and to ensure safety and stability during rare-normal or off-normal situations (e.g., system failures). It may be difficult to certify Free Maneuvering systems for unrestricted operations, but it may be easier to certify systems and procedures for specified levels of Gaggle Density that could be monitored by the ATSP, and maintained through relatively minor flow-rate (RTA type) restrictions. Since flight deck based separation assurance is airspace independent, the challenge is to measure congestion independent of sector boundaries. Figure 1 , reproduced from Ref. 1, depicts an example traffic situation. When the situation is analyzed by sector boundaries (left side of figure), a Dynamic Density metric would identify excessive congestion in the central sector. When the same traffic situation is analyzed independent of sector boundaries (right side of figure), a Gaggle Density metric would identify congestion in two dynamically defined areas covering portions of several sectors. The first step towards measuring airspace-independent congestion is to identify aircraft clusters, i.e., groups of closely spaced aircraft. The objective of this work is to develop techniques to detect and classify clusters of aircraft.

  6. 76 FR 34627 - Proposed Modification of Offshore Airspace Areas: Norton Sound Low, Control 1234L and Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ...: Norton Sound Low, Control 1234L and Control 1487L; Alaska AGENCY: Federal Aviation Administration (FAA... Low, Control 1234L, and Control 1487L Offshore Airspace Areas in Alaska. The airspace floors would be... there is a requirement to provide Instrument Flight Rules (IFR) en route Air Traffic Control (ATC...

  7. 75 FR 62461 - Revocation and Establishment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...-0660; Airspace Docket No. 10-ANM-4] Revocation and Establishment of Class E Airspace; St. George, UT... Class E airspace at St. George, UT, as the airport will be closing, eliminating the need for controlled airspace. This action will establish Class E airspace for the new St. George Municipal Airport located to...

  8. 77 FR 4459 - Amendment of Class E Airspace; Greenfield, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ...-0846; Airspace Docket No. 11-ACE-18] Amendment of Class E Airspace; Greenfield, IA AGENCY: Federal... Greenfield, IA. Decommissioning of the Greenfield non-directional beacon (NDB) at Greenfield Municipal... rulemaking to amend Class E airspace for Greenfield, IA, reconfiguring controlled airspace at Greenfield...

  9. 76 FR 73505 - Establishment of Class E Airspace; Nashville, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ...-0497; Airspace Docket No. 11-ASW-4] Establishment of Class E Airspace; Nashville, AR AGENCY: Federal... for Nashville, AR, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures... a notice of proposed rulemaking to amend Class E airspace for Nashville, AR, creating additional...

  10. 76 FR 67058 - Amendment of Class E Airspace; Sturgis, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...-0430; Airspace Docket No. 11-AGL-10] Amendment of Class E Airspace; Sturgis, SD AGENCY: Federal... Sturgis, SD, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Sturgis... proposed rulemaking to amend Class E airspace for Sturgis, SD, creating controlled airspace at Sturgis...

  11. 78 FR 72006 - Establishment of Class D Airspace and Class E Airspace; Laguna AAF, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... establishes Class D airspace and Class E airspace at Laguna Army Air Field (AAF), (Yuma Proving Ground), Yuma...) within a 3.5- mile radius of Laguna AAF (Yuma Proving Ground), Yuma, AZ; and Class E airspace extending... scope of that authority as it establishes controlled airspace at Laguna AAF, (Yuma Proving Ground), Yuma...

  12. 77 FR 68682 - Amendment of Class E Airspace; Guthrie, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-1436; Airspace Docket No. 11-ACE-29] Amendment of Class E Airspace; Guthrie, IA AGENCY: Federal... Guthrie, IA. Decommissioning of the Guthrie Center non-directional radio beacon (NDB) at Guthrie County... proposed rulemaking (NPRM) to amend Class E airspace for the Guthrie, IA, area, creating additional...

  13. 75 FR 65251 - Proposed Amendment of Class E Airspace; Charleston, WV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...; Airspace Docket No. 10-AEA-24) and be submitted in triplicate to the Docket Management System (see... action proposes to modify Class E Airspace at Charleston, WV, to accommodate the additional airspace needed for the holding pattern associated with the new Standard Instrument Approach Procedures (SIAPs...

  14. 76 FR 36285 - Establishment of Class E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ...-0116; Airspace Docket No. 11-ANE-1] Establishment of Class E Airspace; Brunswick, ME AGENCY: Federal... at Brunswick, ME, to accommodate the additional airspace needed for the Standard Instrument Approach... Executive Airport, Brunswick, ME (75 FR 14824) Docket No. FAA-2011-0116. Interested parties were invited to...

  15. Helicopter pilots' views of air traffic controller responsibilities: a mismatch.

    PubMed

    Martin, Daniel; Nixon, Jim

    2018-02-21

    Controllers and pilots must work together to ensure safe and efficient helicopter flight within the London control zone. Subjective ratings of pilot perception of controller responsibility for five key flight tasks were obtained from thirty helicopter pilots. Three types of airspace were investigated. Results indicate that there is variation in pilot understanding of controller responsibility compared to the formal regulations that define controller responsibility. Significant differences in the perception of controller responsibility were found for the task of aircraft separation in class D airspace and along helicopter routes. Analysis of the patterns of response suggests that task type rather than the airspace type may be the key factor. Results are framed using the concept of a shared mental model. This research demonstrates that pilots flying in complex London airspace have an expectation of controller responsibility for certain flight tasks, in certain airspace types that is not supported by aviation regulation. Practitioner Summary: The responsibility for tasks during flight varies according to the flight rules used and airspace type. Helicopter pilots may attribute responsibility to controllers for tasks when controllers have no responsibility as defined by regulation. This variation between pilot perceptions of controller responsibility could affect safety within the London control zone.

  16. 76 FR 3571 - Proposed Establishment of Class E Airspace; Kahului, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...-1233; Airspace Docket No. 10-AWP-21] Proposed Establishment of Class E Airspace; Kahului, HI AGENCY... action proposes to establish Class E airspace at Kahului Airport, Kahului, HI. Controlled airspace is... procedures at Kahului Airport, Kahului, HI. The FAA is proposing this action to enhance the safety and...

  17. 75 FR 63708 - Establishment of Class E Airspace; Kalaupapa, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ...-0650; Airspace Docket No. 10-AWP-9] Establishment of Class E Airspace; Kalaupapa, HI AGENCY: Federal... airspace at Kalaupapa, HI, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning... Register a notice of proposed rulemaking to establish controlled airspace at Kalaupapa, HI (75 FR 49868...

  18. 76 FR 18041 - Establishment of Class E Airspace; Kahului, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ...-1233; Airspace Docket No. 10-AWP-21] Establishment of Class E Airspace; Kahului, HI AGENCY: Federal... airspace at Kahului Airport, Kahului, HI, to accommodate aircraft using Area Navigation (RNAV) standard... establish controlled airspace at Kahului, HI (76 FR 3571). Interested parties were invited to participate in...

  19. 76 FR 53360 - Proposed Establishment of Class E Airspace; Stuart, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0831; Airspace Docket No. 11-ACE-17] Proposed Establishment of Class E Airspace; Stuart, IA AGENCY... action proposes to establish Class E airspace at Stuart, IA. Controlled airspace is necessary to... surface for new standard instrument approach procedures at the City of Stuart Helistop, Stuart, IA...

  20. 78 FR 48302 - Establishment of Class E Airspace; Wagner, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0004; Airspace Docket No. 13-AGL-1] Establishment of Class E Airspace; Wagner, SD AGENCY: Federal... at Wagner, SD. Controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard... Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace for the Wagner, SD...

  1. 75 FR 37291 - Amendment of Class E Airspace; Osceola, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ...-1183; Airspace Docket No. 09-ASW-38] Amendment of Class E Airspace; Osceola, AR AGENCY: Federal... Osceola, AR. Decommissioning of the Osceola non-directional beacon (NDB) at Osceola Municipal Airport has... rulemaking to amend Class E airspace for Osceola, AR, reconfiguring controlled airspace at Osceola Municipal...

  2. 78 FR 65238 - Proposed Establishment of Class E Airspace; Eagle, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-0777; Airspace Docket No. 12-AAL-16] Proposed Establishment of Class E Airspace; Eagle, AK AGENCY... action proposes to establish Class E airspace at Eagle Airport, Eagle, AK. Controlled airspace is... management of aircraft operations at Eagle Airport, Eagle, AK. DATES: Comments must be received on or before...

  3. 78 FR 65237 - Proposed Establishment of Class E Airspace; Central, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-0017; Airspace Docket No. 13-AAL-1] Proposed Establishment of Class E Airspace; Central, AK AGENCY... action proposes to establish Class E airspace at Central Airport, Central, AK. Controlled airspace is... of aircraft operations at Central Airport, Central, AK. DATES: Comments must be received on or before...

  4. 78 FR 65239 - Proposed Establishment of Class E Airspace; Brevig Mission, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-0078; Airspace Docket No. 12-AAL-1] Proposed Establishment of Class E Airspace; Brevig Mission, AK...: This action proposes to establish Class E airspace at Brevig Mission Airport, Brevig Mission, AK... at Brevig Mission Airport, Brevig Mission, AK. Controlled airspace extending 2 miles north, 6 miles...

  5. 77 FR 9840 - Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...-1191; Airspace Docket No. 11-ANM-21] Amendment of Class E Airspace; Colorado Springs, CO AGENCY... airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black... controlled airspace at Colorado Springs, CO (76 FR 70920). Interested parties were invited to participate in...

  6. 76 FR 43821 - Establishment of Class E Airspace; Ranger, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...-1240; Airspace Docket No. 10-ASW-18] Establishment of Class E Airspace; Ranger, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... Register a notice of proposed rulemaking to establish Class E airspace for Ranger, TX, creating controlled...

  7. 75 FR 64971 - Proposed Establishment of Class E Airspace; Central City, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...-0837; Airspace Docket No. 10-ACE-10] Proposed Establishment of Class E Airspace; Central City, NE...: This action proposes to establish Class E airspace at Central City, NE. Controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at Central City Municipal--Larry...

  8. 76 FR 30299 - Proposed Establishment of Class E Airspace; Kayenta, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ...-0393; Airspace Docket No. 11-AWP-2] Proposed Establishment of Class E Airspace; Kayenta, AZ AGENCY... action proposes to establish Class E Airspace at Kayenta Airport, Kayenta, AZ. Controlled airspace is...) standard instrument approach procedures at Kayenta Airport. The FAA is proposing this action to enhance the...

  9. 77 FR 37569 - Establishment of Class D Airspace and Amendment of Class E Airspace; East Hampton, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... accommodate the new mobile airport traffic control tower (ATCT) at East Hampton Airport. Controlled airspace... helicopter operators to enter into a Letter of Agreement (LOA) with the FAA. Use of these rules will allow the helicopter operators to minimize any delays they may experience due to the airspace, as well as...

  10. Benefits Assessment of the Interaction Between Traffic Flow Management Delay and Airspace Partitions in the Presence of Weather

    NASA Technical Reports Server (NTRS)

    Palopo, Kee; Lee, Hak-Tae; Chatterji, Gano

    2011-01-01

    The concept of re-partitioning the airspace into a new set of sectors for allocating capacity rather than delaying flights to comply with the capacity constraints of a static set of sectors is being explored. The reduction in delay, a benefit, achieved by this concept needs to be greater than the cost of controllers and equipment needed for the additional sectors. Therefore, tradeoff studies are needed for benefits assessment of this concept.

  11. Analysis of Different Cost Functions in the Geosect Airspace Partitioning Tool

    NASA Technical Reports Server (NTRS)

    Wong, Gregory L.

    2010-01-01

    A new cost function representing air traffic controller workload is implemented in the Geosect airspace partitioning tool. Geosect currently uses a combination of aircraft count and dwell time to select optimal airspace partitions that balance controller workload. This is referred to as the aircraft count/dwell time hybrid cost function. The new cost function is based on Simplified Dynamic Density, a measure of different aspects of air traffic controller workload. Three sectorizations are compared. These are the current sectorization, Geosect's sectorization based on the aircraft count/dwell time hybrid cost function, and Geosect s sectorization based on the Simplified Dynamic Density cost function. Each sectorization is evaluated for maximum and average workload along with workload balance using the Simplified Dynamic Density as the workload measure. In addition, the Airspace Concept Evaluation System, a nationwide air traffic simulator, is used to determine the capacity and delay incurred by each sectorization. The sectorization resulting from the Simplified Dynamic Density cost function had a lower maximum workload measure than the other sectorizations, and the sectorization based on the combination of aircraft count and dwell time did a better job of balancing workload and balancing capacity. However, the current sectorization had the lowest average workload, highest sector capacity, and the least system delay.

  12. UAS Conflict-Avoidance Using Multiagent RL with Abstract Strategy Type Communication

    NASA Technical Reports Server (NTRS)

    Rebhuhn, Carrie; Knudson, Matt; Tumer, Kagan

    2014-01-01

    The use of unmanned aerial systems (UAS) in the national airspace is of growing interest to the research community. Safety and scalability of control algorithms are key to the successful integration of autonomous system into a human-populated airspace. In order to ensure safety while still maintaining efficient paths of travel, these algorithms must also accommodate heterogeneity of path strategies of its neighbors. We show that, using multiagent RL, we can improve the speed with which conflicts are resolved in cases with up to 80 aircraft within a section of the airspace. In addition, we show that the introduction of abstract agent strategy types to partition the state space is helpful in resolving conflicts, particularly in high congestion.

  13. Loss of controller-pilot voice communications in domestic en route airspace

    DOT National Transportation Integrated Search

    2017-02-10

    With the planned implementation of ControllerPilot Data Link Communications (CPDLC) in en route airspace, information on voice communication performance in this airspace can help to predict specific benefits associated with CPDLC, identify adjustm...

  14. 75 FR 14381 - Amendment of Class E Airspace; Mount Airy, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... triplicate to the Docket Management System (see ADDRESSES section for address and phone number). You may also... proposes to amend Class E Airspace at Mount Airy, NC, to accommodate the additional airspace needed for the... enhances the safety and airspace management of Instrument Flight Rules (IFR) operations at the airport...

  15. 75 FR 43885 - Proposed Amendment of Class E Airspace; Kaiser/Lake Ozark, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...-0604; Airspace Docket No. 10-ACE-5] Proposed Amendment of Class E Airspace; Kaiser/Lake Ozark, MO...: This action proposes to amend Class E airspace for the Kaiser/ Lake Ozark, MO, area. Additional... for the Kaiser/Lake Ozark, MO area, to accommodate SIAPs at Camdenton Memorial Airport, Camdenton, MO...

  16. 76 FR 3570 - Proposed Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...-1189; Airspace Docket No. 10-AWP-19] Proposed Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal... proposes to modify Class E airspace at Taylor Airport, Taylor, AZ. Controlled airspace is necessary to accommodate aircraft using the CAMBO One Departure Area Navigation (RNAV) out of Taylor Airport. The FAA is...

  17. 75 FR 32652 - Revocation and Establishment of Class E Airspace; Nuiqsut, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ...-0502; Airspace Docket No. 10-AAL-15] Revocation and Establishment of Class E Airspace; Nuiqsut, AK... establishes Class E airspace on the north slope of Alaska near Nuiqsut, AK, to provide controlled airspace to..., Pioneer Heliport (AA27), Nuiqsut, AK, and Oooguruk Island Heliport (AK32), Nuiqsut, AK, both formerly...

  18. 77 FR 5 - Amendment of Class E Airspace; Kipnuk, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ...-0866; Airspace Docket No. 11-AAL-15] Amendment of Class E Airspace; Kipnuk, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at Kipnuk, AK. The... a notice of proposed rulemaking (NPRM) to amend controlled airspace at Kipnuk, AK (76 FR 54149...

  19. 76 FR 80230 - Amendment of Class D and E Airspace; Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... November 28, 2011, amending controlled airspace at Martin State Airport, Baltimore, MD. DATES: Effective... published a final rule in the Federal Register amending Class D and E airspace at Martin State Airport... the airspace designation for the Class D and Class E airspace areas at Martin State Airport, Baltimore...

  20. 75 FR 64972 - Proposed Revocation of Class E Airspace; Lone Star, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...-0772; Airspace Docket No. 10-ASW-10] Proposed Revocation of Class E Airspace; Lone Star, TX AGENCY... action proposes to remove Class E airspace at Lone Star, TX. Abandonment of the former Lone Star Steel... need for controlled airspace in the Lone Star, TX, area. The FAA is taking this action to ensure the...

  1. 76 FR 28888 - Revocation of Class E Airspace; Gruver Cluck Ranch Airport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ...-0272; Airspace Docket No. 11-ASW-3] Revocation of Class E Airspace; Gruver Cluck Ranch Airport, TX... Class E airspace at Gruver, Cluck Ranch Airport, TX. The airport has been abandoned, thereby eliminating the need for controlled airspace in the Gruver, Cluck Ranch Airport, TX, area. The FAA is taking this...

  2. The Airspace Concepts Evaluation System Architecture and System Plant

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Meyn, Larry; Manikonda, Vikram; Carlos, Patrick; Capozzi, Brian

    2006-01-01

    The Airspace Concepts Evaluation System is a simulation of the National Airspace System. It includes models of flights, airports, airspaces, air traffic controls, traffic flow managements, and airline operation centers operating throughout the United States. It is used to predict system delays in response to future capacity and demand scenarios and perform benefits assessments of current and future airspace technologies and operational concepts. Facilitation of these studies requires that the simulation architecture supports plug and play of different air traffic control, traffic flow management, and airline operation center models and multi-fidelity modeling of flights, airports, and airspaces. The simulation is divided into two parts that are named, borrowing from classical control theory terminology, control and plant. The control consists of air traffic control, traffic flow management, and airline operation center models, and the plant consists of flight, airport, and airspace models. The plant can run open loop, in the absence of the control. However, undesired affects, such as conflicts and over congestions in the airspaces and airports, can occur. Different controls are applied, "plug and played", to the plant. A particular control is evaluated by analyzing how well it managed conflicts and congestions. Furthermore, the terminal area plants consist of models of airports and terminal airspaces. Each model consists of a set of nodes and links which are connected by the user to form a network. Nodes model runways, fixes, taxi intersections, gates, and/or other points of interest, and links model taxiways, departure paths, and arrival paths. Metering, flow distribution, and sequencing functions can be applied at nodes. Different fidelity model of how a flight transits are can be used by links. The fidelity of the model can be adjusted by the user by either changing the complexity of the node/link network-or the way that the link models how the flights transit from one node to the other.

  3. 76 FR 59306 - Proposed Establishment of Class D and E Airspace and Amendment of Class E Airspace; Punta Gorda, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... new air traffic control tower at Punta Gorda Airport. Controlled airspace is necessary for the safety... is necessary to support the operation of the new air traffic control tower, and would enhance the... Traffic Organization, Federal Aviation Administration, P.O. Box 20636, Atlanta, Georgia 30320; telephone...

  4. 76 FR 55298 - Proposed Establishment of Class D and E Airspace and Amendment of Class E; Brooksville, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... E airspace at Brooksville, FL. to accommodate a new air traffic control tower at Hernando County Airport. Controlled airspace is necessary for the support of air traffic operations at Hernando County... operation of the new air traffic control tower, and new standard instrument approach procedures, and would...

  5. 77 FR 24159 - Proposed Modification of Class E Airspace; Plentywood, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... action proposes to modify Class E airspace at Plentywood Sher-Wood Airport, Plentywood, MT. Controlled...) standard instrument approach procedures at Plentywood Sher-Wood Airport. The FAA is proposing this action... Sher-Wood Airport, Plentywood, MT. Controlled airspace is necessary to accommodate aircraft using RNAV...

  6. 78 FR 5128 - Amendment of Class E Airspace; Savoonga, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ...-0323; Airspace Docket No. 12-AAL-4] Amendment of Class E Airspace; Savoonga, AK AGENCY: Federal... Savoonga, AK, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS) standard... modify controlled airspace at Savoonga, AK (77 FR 61304). Interested parties were invited to participate...

  7. 78 FR 65241 - Proposed Modification of Class D and Class E Airspace; Kailua-Kona, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...- Kona, HI AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... Keahole, Kailua-Kona, HI. Controlled airspace is necessary to accommodate the Area Navigation (RNAV... surface, at Kona International Airport at Keahole, Kailua-Kona, HI. The segment of controlled airspace...

  8. 75 FR 29963 - Proposed Revocation of Class E Airspace; Eastsound, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... action proposes to remove Class E surface airspace at Orcas Island Airport, Eastsound, WA. Controlled... operations at Orcas Island Airport. DATES: Comments must be received on or before July 12, 2010. ADDRESSES... at Orcas Island Airport, Eastsound, WA. The controlled airspace is unnecessary because existing...

  9. 75 FR 36587 - Proposed Revocation of Class E Airspace; Chillicotte, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... control facility management have determined that this airspace is no longer needed and would not... action proposes to remove Class E airspace at Chillicotte, MO. Airport management and air traffic control facility managers have determined that the Class E surface area at Chillicotte Municipal Airport is no...

  10. 75 FR 14385 - Revocation of Class D and E Airspace; Panama City, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ..., as the old airport and control tower is scheduled to be closed. Controlled airspace will be..., Airspace Specialist, Operations Support Group, Eastern Service Center, Air Traffic Organization, Federal... the proposed rule. The proposal contained in this notice may be changed in light of the comments...

  11. Airspace Control

    DTIC Science & Technology

    2011-02-02

    This Doctrine Update highlights the revision of AFDD 3-52, Airspace Control, dated 2 February 2011. The AFDD was substantially revised...and must be completely reviewed. The format of the publication was changed to adhere to the LeMay Center doctrine document template and increases the...particular airspace control considerations in crisis response and in limited contingency operations. (Page 30) • Introducing to Air Force doctrine

  12. 78 FR 48301 - Establishment of Class E Airspace; Walker, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0266; Airspace Docket No. 13-AGL-11] Establishment of Class E Airspace; Walker, MN AGENCY: Federal... at Walker, MN. Controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Walker Municipal Airport. The FAA is taking this action to enhance the...

  13. 76 FR 5471 - Amendment of Class E Airspace; La Porte, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2010-1030; Airspace Docket No. 10-AGL-18] Amendment of Class E Airspace; La Porte, IN AGENCY: Federal... controlled airspace at La Porte Hospital Heliport (75 FR 68556) Docket No. FAA-2010-1030. Interested parties...

  14. 75 FR 51177 - Revocation of Class E Airspace; Eastsound, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... airspace at Orcas Island Airport, Eastsound, WA. Controlled airspace already exists in the Eastsound, WA area that accommodates the safety and management of aircraft operations at Orcas Island Airport. DATES... Regulations (14 CFR) part 71 by removing Class E surface airspace at Orcas Island Airport, Eastsound, WA...

  15. 76 FR 57633 - Amendment of Class E Airspace; Miles City, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ...-0515; Airspace Docket No. 11-ANM-11] Amendment of Class E Airspace; Miles City, MT AGENCY: Federal... Miles City, MT, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System... proposed rulemaking to modify controlled airspace at Miles City, MT (76 FR 41725). Interested parties were...

  16. 77 FR 61248 - Establishment of Class E Airspace; Deer Lodge, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ...-0379; Airspace Docket No. 12-ANM-7 Establishment of Class E Airspace; Deer Lodge, MT AGENCY: Federal... at Deer Lodge-City- County Airport, Deer Lodge, MT. Controlled airspace is necessary to accommodate... procedures at Deer Lodge-City-County Airport. This improves the safety and management of Instrument Flight...

  17. 77 FR 64714 - Modification of Class E Airspace; Wolf Point, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ...-0569; Airspace Docket No. 12-ANM-17] Modification of Class E Airspace; Wolf Point, MT AGENCY: Federal... Wolf Point, MT. Controlled airspace is necessary to accommodate aircraft using Nondirectional Radio Beacon (NDB) standard instrument approach procedures at L M Clayton Airport, Wolf Point, MT. This...

  18. 78 FR 8962 - Establishment of Class E Airspace; Kasigluk, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ...-0952; Airspace Docket No. 12-AAL-6] Establishment of Class E Airspace; Kasigluk, AK AGENCY: Federal... at Kasigluk, AK, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS... rulemaking to modify controlled airspace at Kasigluk, AK (77 FR 60660). Interested parties were invited to...

  19. 78 FR 45849 - Amendment of Class E Airspace; Gustavus, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ...-0282; Airspace Docket No. 13-AAL-3] Amendment of Class E Airspace; Gustavus, AK AGENCY: Federal... Gustavus Airport, Gustavus, AK. Decommissioning of the Gustavus Nondirectional Radio Beacon (NDB) has made... Register a notice of proposed rulemaking (NPRM) to amend controlled airspace at Gustavus, AK (78 FR 31871...

  20. 75 FR 65228 - Revocation of Class E Airspace; Chilicothe, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0268; Airspace Docket No. 10-ACE-2] Revocation of Class E Airspace; Chilicothe, MO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E airspace for Chilicothe, MO. Airport management and air traffic control facility managers have determined that the Class E...

  1. UAS Integration Into the NAS: An Examination of Baseline Compliance in the Current Airspace System

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Kenny, Caitlin A.; Shively, Robert J.; Johnson, Walter

    2012-01-01

    As a result of the FAA Modernization and Reform Act of 2012, Unmanned Aerial Systems (UAS) are expected to be integrated into the National Airspace System (NAS) by 2015. Several human factors challenges need to be addressed before UAS can safely and routinely fly in the NAS with manned aircraft. Perhaps the most significant challenge is for the UAS to be non-disruptive to the air traffic management system. Another human factors challenge is how to provide UAS pilots with intuitive traffic information in order to support situation awareness (SA) of their airspace environment as well as a see-and-avoid capability comparable to manned aircraft so that a UAS pilot could safely maneuver the aircraft to maintain separation and collision avoidance if necessary. A simulation experiment was conducted to examine baseline compliance of UAS operations in the current airspace system. Researchers also examined the effects of introducing a Cockpit Situation Display (CSD) into a UAS Ground Control Station (GCS) on UAS pilot performance, workload and situation awareness while flying in a positively controlled sector. Pilots were tasked with conducting a highway patrol police mission with a Medium Altitude Long Endurance (MALE) UAS in L.A. Center airspace with two mission objectives: 1) to reroute the UAS when issued new instructions from their commander, and 2) to communicate with Air Traffic Control (ATC) to negotiate flight plan changes and respond to vectoring and altitude change instructions. Objective aircraft separation data, workload ratings, SA data, and subjective ratings regarding UAS operations in the NAS were collected. Results indicate that UAS pilots were able to comply appropriately with ATC instructions. In addition, the introduction of the CSD improved pilot SA and reduced workload associated with UAS and ATC interactions.

  2. Tactical Conflict Detection in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Tang, Huabin; Robinson, John E.; Denery, Dallas G.

    2010-01-01

    Air traffic systems have long relied on automated short-term conflict prediction algorithms to warn controllers of impending conflicts (losses of separation). The complexity of terminal airspace has proven difficult for such systems as it often leads to excessive false alerts. Thus, the legacy system, called Conflict Alert, which provides short-term alerts in both en-route and terminal airspace currently, is often inhibited or degraded in areas where frequent false alerts occur, even though the alerts are provided only when an aircraft is in dangerous proximity of other aircraft. This research investigates how a minimal level of flight intent information may be used to improve short-term conflict detection in terminal airspace such that it can be used by the controller to maintain legal aircraft separation. The flight intent information includes a site-specific nominal arrival route and inferred altitude clearances in addition to the flight plan that includes the RNAV (Area Navigation) departure route. A new tactical conflict detection algorithm is proposed, which uses a single analytic trajectory, determined by the flight intent and the current state information of the aircraft, and includes a complex set of current, dynamic separation standards for terminal airspace to define losses of separation. The new algorithm is compared with an algorithm that imitates a known en-route algorithm and another that imitates Conflict Alert by analysis of false-alert rate and alert lead time with recent real-world data of arrival and departure operations and a large set of operational error cases from Dallas/Fort Worth TRACON (Terminal Radar Approach Control). The new algorithm yielded a false-alert rate of two per hour and an average alert lead time of 38 seconds.

  3. FACET: Future ATM Concepts Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Bilmoria, Karl D.; Banavar, Sridhar; Chatterji, Gano B.; Sheth, Kapil S.; Grabbe, Shon

    2000-01-01

    FACET (Future ATM Concepts Evaluation Tool) is an Air Traffic Management research tool being developed at the NASA Ames Research Center. This paper describes the design, architecture and functionalities of FACET. The purpose of FACET is to provide E simulation environment for exploration, development and evaluation of advanced ATM concepts. Examples of these concepts include new ATM paradigms such as Distributed Air-Ground Traffic Management, airspace redesign and new Decision Support Tools (DSTs) for controllers working within the operational procedures of the existing air traffic control system. FACET is currently capable of modeling system-wide en route airspace operations over the contiguous United States. Airspace models (e.g., Center/sector boundaries, airways, locations of navigation aids and airports) are available from databases. A core capability of FACET is the modeling of aircraft trajectories. Using round-earth kinematic equations, aircraft can be flown along flight plan routes or great circle routes as they climb, cruise and descend according to their individual aircraft-type performance models. Performance parameters (e.g., climb/descent rates and speeds, cruise speeds) are obtained from data table lookups. Heading, airspeed and altitude-rate dynamics are also modeled. Additional functionalities will be added as necessary for specific applications. FACET software is written in Java and C programming languages. It is platform-independent, and can be run on a variety of computers. FACET has been designed with a modular software architecture to enable rapid integration of research prototype implementations of new ATM concepts. There are several advanced ATM concepts that are currently being implemented in FACET airborne separation assurance, dynamic density predictions, airspace redesign (re-sectorization), benefits of a controller DST for direct-routing, and the integration of commercial space transportation system operations into the U.S. National Airspace System (NAS).

  4. 77 FR 5429 - Proposed Modification of the Atlanta Class B Airspace Area; GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    .... Aircraft are then normally assigned 5,000 feet, or higher, upon initial contact with departure control. The... foot floor would produce a safer airspace environment for aircraft arriving at the world's busiest... containment of aircraft within Class B airspace, reduce controller workload and enhance safety in the Atlanta...

  5. Airspace Complexity and its Application in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano; Sheth, Kapil; Edwards, Thomas (Technical Monitor)

    1998-01-01

    The United States Air Traffic Management (ATM) system provides services to enable safe, orderly and efficient aircraft operations within the airspace over the continental United States and over large portions of the Pacific and Atlantic Oceans, and the Gulf of Mexico. It consists of two components, Air Traffic Control (ATC) and Traffic Flow Management (TFM). The ATC function ensures that the aircraft within the airspace are separated at all times while the TFM function organizes the aircraft into a flow pattern to ensure their safe and efficient movement. In order to accomplish the ATC and TFM functions, the airspace over United States is organized into 22 Air Route Traffic Control Centers (ARTCCs). The Center airspace is stratified into low-altitude, high-altitude and super-high altitude groups of Sectors. Each vertical layer is further partitioned into several horizontal Sectors. A typical ARTCC airspace is partitioned into 20 to 80 Sectors. These Sectors are the basic control units within the ATM system.

  6. 75 FR 34624 - Revocation of Class D and E Airspace; Big Delta, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...-0083; Airspace Docket No. 10-AAL-5] Revocation of Class D and E Airspace; Big Delta, AK AGENCY: Federal... at Big Delta, AK, to eliminate duplicated controlled airspace serving Allen Army Airfield. The FAA is.../systemops/fs/alaskan/rulemaking/ . SUPPLEMENTARY INFORMATION: History On Tuesday April 6, 2010, the FAA...

  7. 76 FR 64041 - Proposed Amendment of Class E Airspace; Show Low, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ...-1023; Airspace Docket No. 11-AWP-15] Proposed Amendment of Class E Airspace; Show Low, AZ AGENCY... action proposes to modify Class E airspace at Show Low Regional Airport, Show Low, AZ. Controlled...) standard instrument approach procedures at Show Low Regional Airport. The FAA is proposing this action to...

  8. 77 FR 771 - Proposed Establishment of Class E Airspace; Marion, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ...) Global Positioning System (GPS) Standard Instrument Approach Procedures at Vaiden Field. This action... airspace at Marion, AL, providing the controlled airspace required to support the new RNAV GPS standard...

  9. 77 FR 15297 - Proposed Establishment of Class D and E Airspace Amendment of Class E Airspace; East Hampton, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... existing Class E airspace at East Hampton, NY, to accommodate the new air traffic control tower at East... the operation of the new air traffic control tower, and would enhance the safety and management of IFR..., Operations Support Group, Eastern Service Center, Air Traffic Organization, Federal Aviation Administration...

  10. 75 FR 57216 - Proposed Establishment of Class E Airspace; Bamberg, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... submitted in triplicate to the Docket Management System (see ADDRESSES section for address and phone number... action proposes to establish Class E Airspace at Bamberg, SC, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures (SIAPs) developed for Bamberg County Airport. This...

  11. 75 FR 57215 - Proposed Establishment of Class E Airspace; Crewe, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... submitted in triplicate to the Docket Management System (see ADDRESSES section for address and phone number... action proposes to establish Class E Airspace at Crewe, VA, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures (SIAPs) developed for Crewe Municipal Airport. This...

  12. 75 FR 28765 - Amendment of Class E Airspace; Pine Mountain, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... triplicate to the Docket Management System (see ADDRESSES section for address and phone number). You may also... proposes to amend Class E Airspace at Pine Mountain, GA, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures (SIAPs) developed for Harris County Airport. This action...

  13. U.S. Army Airspace Command and Control at Echelons Above Brigade

    DTIC Science & Technology

    2010-01-01

    Systems TACS Theater Air Control System TAIS Tactical Airspace Integrations System TAGS Theater Air Ground System TBMCS Theater Battle Management...Systems ( TBMCS ) in the C/JAOC. The approved Airspace Control Measure Requests are passed to all the Service’s ACS via the TBMCS . The TAIS receives the...shared between TBMCS and the Advanced Field 42 Artillery Tactical Data System through the Publish and Subscribe Server or via the TAIS. There is

  14. 78 FR 34554 - Establishment of Class E Airspace; Blue Mesa, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ...This action establishes Class E airspace at Blue Mesa VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME), Blue Mesa, CO, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Denver and Albuquerque Air Route Traffic Control Centers (ARTCCs). This improves the safety and management of IFR operations within the National Airspace System.

  15. 76 FR 8627 - Revision of Class E Airspace; Platinum, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-1105; Airspace Docket No. 10-AAL-20] Revision of Class E Airspace; Platinum, AK AGENCY: Federal... Platinum, AK, to accommodate the addition of a Standard Instrument Approach Procedure (SIAP), at the... 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907) 271-2850; e...

  16. 78 FR 78794 - Proposed Establishment of Class E Airspace; Flagstaff, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...This action proposes to establish Class E airspace at the Flagstaff VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Flagstaff, AZ, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Albuquerque Air Route Traffic Control Center (ARTCC). The FAA is proposing this action to enhance the safety and management of aircraft operations within the National Airspace System.

  17. 14 CFR 11.77 - Is there any additional information I must include in my petition for designating airspace?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., including a detailed description of the type, volume, duration, time, and place of the operations to be conducted in the area; (c) A description of the air navigation, air traffic control, surveillance, and...

  18. 14 CFR 11.77 - Is there any additional information I must include in my petition for designating airspace?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., including a detailed description of the type, volume, duration, time, and place of the operations to be conducted in the area; (c) A description of the air navigation, air traffic control, surveillance, and...

  19. A Sector Capacity Assessment Method Based on Airspace Utilization Efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Zhang, Ping; Li, Zhen; Zou, Xiang

    2018-02-01

    Sector capacity is one of the core factors affecting the safety and the efficiency of the air traffic system. Most of previous sector capacity assessment methods only considered the air traffic controller’s (ATCO’s) workload. These methods are not only limited which only concern about the safety, but also not accurate enough. In this paper, we employ the integrated quantitative index system proposed in one of our previous literatures. We use the principal component analysis (PCA) to find out the principal indicators among the indicators so as to calculate the airspace utilization efficiency. In addition, we use a series of fitting functions to test and define the correlation between the dense of air traffic flow and the airspace utilization efficiency. The sector capacity is then decided as the value of the dense of air traffic flow corresponding to the maximum airspace utilization efficiency. We also use the same series of fitting functions to test the correlation between the dese of air traffic flow and the ATCOs’ workload. We examine our method with a large amount of empirical operating data of Chengdu Controlling Center and obtain a reliable sector capacity value. Experiment results also show superiority of our method against those only consider the ATCO’s workload in terms of better correlation between the airspace utilization efficiency and the dense of air traffic flow.

  20. 77 FR 75597 - Proposed Establishment of Class E Airspace; Wilbur, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to establish Class E airspace at Wilbur Airport, Wilbur, WA. Controlled airspace is...) standard instrument approach procedures at Wilbur Airport, Wilbur, WA. The FAA is proposing this action to...

  1. 78 FR 41837 - Establishment of Class E Airspace; Parkston, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... Instrument Approach Procedures at Parkston Municipal Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rule (IFR) operations at the airport. DATES: Effective date... airspace exists to contain new standard instrument approach procedures at the airport. Controlled airspace...

  2. 76 FR 14799 - Amendment of Class E Airspace; Newport, VT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... cancellation of the NDB approach. Controlled airspace is necessary for the safety and management of IFR... Instrument Approach Procedures (SIAPs) have been developed for Newport State Airport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations at the airport. DATES...

  3. 78 FR 41290 - Establishment of Class E Airspace; Sanibel, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... 10, 2013, establishing controlled airspace at Sanibel Island Heliport, Sanibel, FL. DATES: Effective..., Georgia 30320; telephone (404) 305-6364. SUPPLEMENTARY INFORMATION: History On June 10, 2013, the FAA published a final rule, in the Federal Register establishing Class E airspace at Sanibel Island Heliport...

  4. 77 FR 33687 - Proposed Establishment of Class E Airspace; Fort Morgan, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to establish Class E airspace at Fort Morgan, CO. Controlled airspace is necessary to... approach procedure at Fort Morgan Municipal Airport, Fort Morgan, CO. The FAA is proposing this action to...

  5. 77 FR 56796 - Proposed Amendment of Class E Airspace; Sault Ste Marie, ON

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Sault Ste Marie, ON. Changes to controlled airspace are... action to enhance the safety and management of Instrument Flight Rules (IFR) operations at the airport...

  6. 78 FR 54415 - Proposed Establishment of Class E Airspace; Ennis, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... action proposes to establish Class E airspace at Ennis- Big Sky Airport, Ennis, MT. Controlled airspace...) standard instrument approach procedures at Ennis-Big Sky Airport, Ennis, MT. The FAA is proposing this... parties are invited to participate in this proposed rulemaking by submitting such written data, views, or...

  7. 77 FR 29873 - Establishment of Class E Airspace; Eldon, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... at Eldon, MO. Controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Eldon Model Airpark. The FAA is taking this action to enhance the safety... Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace at Eldon Model...

  8. 78 FR 65556 - Establishment of Class E Airspace; Cut Bank, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...-0532; Airspace Docket No. 13-ANM-21] Establishment of Class E Airspace; Cut Bank, MT AGENCY: Federal... at the Cut Bank VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC) navigation aid, Cut Bank, MT, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of...

  9. 78 FR 78299 - Proposed Establishment of Class E Airspace; Truth or Consequences, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...-0995; Airspace Docket No. 13-ASW-30] Proposed Establishment of Class E Airspace; Truth or Consequences... Truth or Consequences VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Truth or Consequences, NM, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of...

  10. 77 FR 41259 - Modification of Class E Airspace; Plentywood, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Plentywood Sher-Wood Airport, Plentywood, MT. Controlled airspace is necessary to accommodate aircraft using... Plentywood Sher-Wood Airport. This improves the safety and management of Instrument Flight Rules (IFR... modifying Class E airspace extending upward from 700 feet above the surface at Plentywood Sher-Wood Airport...

  11. 78 FR 65555 - Establishment of Class E Airspace; Salmon, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...-0531; Airspace Docket No. 13-ANM-20] Establishment of Class E Airspace; Salmon, ID AGENCY: Federal... at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Salt Lake...

  12. Charlotte - EDC Evaluation and Demonstration (CEED) Human-in-the-Loop Results Briefing to ATD-2 FAA Partners

    NASA Technical Reports Server (NTRS)

    Chevalley, Eric

    2016-01-01

    The Charlotte EDC Evaluation and Demonstration (CEED) was the first Human-In-The-Loop experiment under the Air Traffic Management Technology Demonstration-2 (ATD-2) project. The purpose of the study was fourfold: 1) to establish a simulation environment (Charlotte) for airspace operations for ATD-2 technology, 2) to simulate current-day departures and arrival operations, 3) to assess the impact of current Traffic Management Initiatives (TMI) on Charlotte (CLT) departure flows and en route operations in Washington (ZDC) and Atlanta Centers (ZTL), and 4) to assess the impact of departure takeoff time compliance on airspace operations. The experimental design compared 3 TMIs and 2 compliance levels. Fourteen FAA retired controllers participated in the simulation. In addition, two Traffic Management Coordinators from ZTL and ZDC managed traffic flows. Surface and airborne delays, control efficiency, throughput, realism, workload, and acceptability were assessed and will be compared across the experimental conditions. Participants rated the simulation as very realistic. Results indicate that different TMIs have different impacts on surface and airspace delay. Departure compliance indicates partial benefits to sector complexity and controller workload. This simulation will provide an initial assessment of the tactical scheduling problems that the ATD-2 technology will address in the near term.

  13. Generic Airspace Survey

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Bridges, Wayne; Gujarl, Vimmy; Lee, Paul U.; Preston, William

    2013-01-01

    This paper reports on an extension of generic airspace research to explore the amount of memorization and specialized skills required to manage sectors with specific characteristics or factors. Fifty-five retired controllers were given an electronic survey where they rated the amount of memorization or specialized skills needed for sixteen generic airspace factors. The results suggested similarities in the pattern of ratings between different areas of the US (East, Central, and West). The average of the ratings for each area also showed some differences between regions, with ratings being generally higher in the East area. All sixteen factors were rated as moderately to highly important and may be useful for future research on generic airspace, air traffic controller workload, etc.

  14. Benefits of controller-pilot data link ATC communications in terminal airspace : final report

    DOT National Transportation Integrated Search

    1996-09-30

    This report documents a Federal Aviation Administration (FAA) study that was : conducted to demonstrate and quantify benefits associated with the implementation of controller-pilot Data Link communications in terminal : airspace. The study was suppor...

  15. Data Mining for Understanding and Improving Decision-making Affecting Ground Delay Programs

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao; Sridhar, Banavar

    2013-01-01

    The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions.

  16. 75 FR 63730 - Proposed Establishment of Class E Airspace; Panguitch, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... include a portion extending upward from 1,200 feet above the surface at Panguitch Municipal Airport... controlled airspace from 700 feet above the surface. The FAA has reassessed the proposal to include Class E airspace 700 feet and 1,200 feet above the surface to further the safety and management of Instrument...

  17. 77 FR 5691 - Amendment of Class C Airspace; Springfield, MO; Lincoln, NE; Grand Rapids, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ...This action modifies the Springfield, MO; Lincoln, NE; and Grand Rapids, MI, Class C airspace areas by amending the legal descriptions to contain the current airport names and updated airport reference point (ARP) information. This action does not change the boundaries of the controlled airspace areas.

  18. 76 FR 43821 - Amendment of Class E Airspace; Ava, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    .... Decommissioning of the Bilmart non-directional beacon (NDB) at Ava Bill Martin Memorial Airport, Ava, MO, has made... Register approves this incorporation by reference action under 1 CFR part 51, subject to the annual... to amend Class E airspace for Ava, MO, reconfiguring controlled airspace at Ava Bill Martin Memorial...

  19. 78 FR 34608 - Proposed Establishment of Class D Airspace; Bryant AAF, Anchorage, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Association (AOPA), Alaska Airmen's Association (AAA), and the Alaskan Aviation Safety Foundation (AASF). One... D airspace. The AAA requested additional time to review the proposal and that the entire composition...

  20. 75 FR 4268 - Establishment of Class D and E Airspace and Modification of Class E Airspace; State College, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... E Airspace; State College, PA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule... College, PA, to accommodate a new air traffic control tower at University Park Airport. The FAA is taking this action to enhance the safety and management of instrument Flight Rules (IFR) operations. DATES...

  1. Flexible Airspace Management (FAM) Research 2010 Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Brasil, Connie; Homola, Jeffrey; Kessell, Angela; Prevot, Thomas; Smith, Nancy

    2011-01-01

    A human-in-the-Ioop (HITL) simulation was conducted to assess potential user and system benefits of Flexible Airspace Management (FAM) concept, as well as designing role definitions, procedures, and tools to support the FAM operations in the mid-term High Altitude Airspace (HAA) environment. The study evaluated the benefits and feasibility of flexible airspace reconfiguration in response to traffic overload caused by weather deviations, and compared them to those in a baseline condition without the airspace reconfiguration. The test airspace consisted of either four sectors in one Area of Specialization or seven sectors across two Areas. The test airspace was assumed to be at or above FL340 and fully equipped Vvith data communications (Data Comm). Other assumptions were consistent with those of the HAA concept. Overall, results showed that FAM operations with multiple Traffic Management Coordinators, Area Supervisors, and controllers worked remarkably well. The results showed both user and system benefits, some of which include the increased throughput, decreased flight distance, more manageable sector loads, and better utilized airspace. Also, the roles, procedures, airspace designs, and tools were all very well received. Airspace configuration options that resulted from a combination of algorithm-generated airspace configurations with manual modifications were well acceptec and posed little difficuIty and/or workload during airspace reconfiguration process. The results suggest a positive impact of FAM operations in HAA. Further investigation would be needed to evaluate if the benefits and feasibility would extend in either non-HAA or mixed equipage environment.

  2. Violations of Temporary Flight Restrictions and Air Defense Identification Zones: An Analysis of Airspace Violations and Pilot Report Data

    NASA Technical Reports Server (NTRS)

    Zuschlag, Michael

    2005-01-01

    This document provides the results from a study into the apparent factors and causes of violations of restricted airspace, particularly temporary flight restrictions (TFRs) and air defense identification zones (ADIZs). By illuminating the reasons for these violations, this study aims to take the first step towards reducing them. The study assesses the basic characteristics of restricted airspace violations as well as the probable causes and factors contributing to violations. Results from the study imply most violations occur where the restriction has been in place for a significant amount of time prior to the violation. Additionally, the study results imply most violations are not due to the pilot simply being unaware of the airspace at the time of violation. In most violations, pilots are aware of the presence of the restricted airspace but have incorrect information about it, namely, its exact boundaries or procedures for authorized penetration. These results imply that the best means to reduce violations of restricted airspace is to improve the effectiveness of providing pilots the details required to avoid the airspace.

  3. 78 FR 33265 - Proposed Establishment of Class E Airspace; Umatilla, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ...) Global Positioning System (GPS) Standard Instrument Approach Procedures at Umatilla Municipal Airport... (GPS) standard instrument approach procedures for Umatilla Municipal Airport. Controlled airspace...

  4. An Overview of Current Capabilities and Research Activities in the Airspace Operations Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Smith, Nancy M.; Palmer, Everett; Callantine, Todd; Lee, Paul; Mercer, Joey; Homola, Jeff; Martin, Lynne; Brasil, Connie; Cabrall, Christopher

    2014-01-01

    The Airspace Operations Laboratory at NASA Ames conducts research to provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems. The research encompasses developing, evaluating, and integrating operational concepts and technologies for near-, mid-, and far-term air traffic operations. Current research threads include efficient arrival operations, function allocation in separation assurance and efficient airspace and trajectory management. The AOL has developed powerful air traffic simulation capabilities, most notably the Multi Aircraft Control System (MACS) that is used for many air traffic control simulations at NASA and its partners in government, academia and industry. Several additional NASA technologies have been integrated with the AOL's primary simulation capabilities where appropriate. Using this environment, large and small-scale system-level evaluations can be conducted to help make near-term improvements and transition NASA technologies to the FAA, such as the technologies developed under NASA's Air Traffic Management Demonstration-1 (ATD-1). The AOL's rapid prototyping and flexible simulation capabilities have proven a highly effective environment to progress the initiation of trajectory-based operations and support the mid-term implementation of NextGen. Fundamental questions about accuracy requirements have been investigated as well as realworld problems on how to improve operations in some of the most complex airspaces in the US. This includes using advanced trajectory-based operations and prototype tools for coordinating arrivals to converging runways at Newark airport and coordinating departures and arrivals in the San Francisco and the New York metro areas. Looking beyond NextGen, the AOL has started exploring hybrid human/automation control strategies as well as highly autonomous operations in the air traffic control domain. Initial results indicate improved capacity, low operator workload, good situation awareness and acceptability for controllers teaming with autonomous air traffic systems. While much research and development needs to be conducted to make such concepts a reality, these approaches have the potential to truly transform the airspace system towards increased mobility, safe and efficient growth in global operations and enabling many of the new vehicles and operations that are expected over the next decades. This paper describes how the AOL currently contributes to the ongoing air transportation transformation.

  5. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  6. A Complexity Metric for Automated Separation

    NASA Technical Reports Server (NTRS)

    Aweiss, Arwa

    2009-01-01

    A metric is proposed to characterize airspace complexity with respect to an automated separation assurance function. The Maneuver Option metric is a function of the number of conflict-free trajectory change options the automated separation assurance function is able to identify for each aircraft in the airspace at a given time. By aggregating the metric for all aircraft in a region of airspace, a measure of the instantaneous complexity of the airspace is produced. A six-hour simulation of Fort Worth Center air traffic was conducted to assess the metric. Results showed aircraft were twice as likely to be constrained in the vertical dimension than the horizontal one. By application of this metric, situations found to be most complex were those where level overflights and descending arrivals passed through or merged into an arrival stream. The metric identified high complexity regions that correlate well with current air traffic control operations. The Maneuver Option metric did not correlate with traffic count alone, a result consistent with complexity metrics for human-controlled airspace.

  7. 76 FR 21268 - Proposed Establishment of Class E Airspace; Lincoln, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ...This action proposes to establish Class E airspace at Lincoln, OR. Controlled airspace is necessary to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at Samaritan North Lincoln Hospital Heliport, Lincoln, OR. The FAA is proposing this action to enhance the safety and management of aircraft operations at the heliport.

  8. 78 FR 57545 - Proposed Establishment of Class D Airspace and Class E Airspace; Laguna AAF, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... Air Field (AAF), (Yuma Proving Ground), Yuma, AZ. The establishment of an air traffic control tower... Ground Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC 20590; telephone (202) 366-9826... Proving Ground), Yuma, AZ, excluding R-2306E and R- 2307 when in effect; and Class E airspace extending...

  9. 78 FR 46497 - Amendment of Class D and E Airspace, and Establishment of Class E Airspace; Oceana NAS, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Soucek Field) now operating on a part time basis. This action enhances the safety and airspace management... Soucek Field), VA, as the air traffic control tower is transitioning from a full time facility to part... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2013...

  10. Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy

    2011-01-01

    This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.

  11. The Effects of Projected Future Demand Including Very Light Jet Air-Taxi Operations on U.S. National Airspace System Delays as a Function of Next Generation Air Transportation System Airspace Capacity

    NASA Technical Reports Server (NTRS)

    Smith, Jerry; Viken, Jeff; Dollyhigh, Samuel; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu

    2007-01-01

    This paper presents the results from a study which investigates the potential effects of the growth in air traffic demand including projected Very Light Jet (VLJ) air-taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The geographic region studied is the contiguous United States (U.S.) of America, although international air traffic to and from the U.S. is included. The main focus of this paper is to determine how much air traffic growth, including VLJ air-taxi operations will add to enroute airspace congestion and determine what additional airspace capacity will be needed to accommodate the expected demand. Terminal airspace is not modeled and increased airport capacity is assumed.

  12. Design, Development, and Testing of a UAV Hardware-in-the-Loop Testbed for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Teubert, Chris; Gorospe, George; Burgett, Drew; Quach, Cuong C.; Hogge, Edward

    2016-01-01

    The airspace is becoming more and more complicated, and will continue to do so in the future with the integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, other forms of aviation technology into the airspace. The new technology and complexity increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems & systems of systems can be very difficult, expensive, and sometimes unsafe in real life scenarios. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. The framework injects flight related anomalies related to ground systems, routing, airport congestion, etc. to test and verify algorithms for NAS safety. In our research work, we develop a live, distributed, hardware-in-the-loop testbed for aviation and airspace prognostics along with exploring further research possibilities to verify and validate future algorithms for NAS safety. The testbed integrates virtual aircraft using the X-Plane simulator and X-PlaneConnect toolbox, UAVs using onboard sensors and cellular communications, and hardware in the loop components. In addition, the testbed includes an additional research framework to support and simplify future research activities. It enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. This paper describes the design, development, and testing of this system. Software reliability, safety and latency are some of the critical design considerations in development of the testbed. Integration of HITL elements in the development phases and veri cation/ validation are key elements to this report.

  13. 78 FR 14032 - Proposed Establishment of Class E Airspace; Cherokee, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Rules (IFR) aircraft under control of Denver and Salt Lake City Air Route Traffic Control Centers... be changed in light of comments received. All comments submitted will be available for examination in... http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace_amendments/ . You may review...

  14. 78 FR 78300 - Proposed Establishment of Class E Airspace; Albuquerque, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... Instrument Flight Rules (IFR) aircraft under control of Albuquerque Air Route Traffic Control Center (ARTCC... be changed in light of comments received. All comments submitted will be available for examination in... http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace_amendments/ . You may review...

  15. 78 FR 18266 - Proposed Establishment of Class E Airspace; Gillette, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...) aircraft under control of Denver, Salt Lake City and Minneapolis Air Route Traffic Control Centers (ARTCCs... be changed in light of comments received. All comments submitted will be available for examination in... http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace_amendments/ . You may review...

  16. 78 FR 78296 - Proposed Establishment of Class E Airspace; Needles, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... Instrument Flight Rules (IFR) aircraft under control of Los Angeles Air Route Traffic Control Center (ARTCC... be changed in light of comments received. All comments submitted will be available for examination in... http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace_amendments/ . You may review...

  17. 78 FR 18264 - Proposed Establishment of Class E Airspace; Tobe, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... under control of Denver and Albuquerque Air Route Traffic Control Centers (ARTCCs). The FAA is proposing... light of comments received. All comments submitted will be available for examination in the public... http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace_amendments/ . You may review...

  18. 78 FR 77023 - Proposed Establishment of Class E Airspace; Tucumcari, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... Instrument Flight Rules (IFR) aircraft under control of Albuquerque Air Route Traffic Control Center (ARTCC... be changed in light of comments received. All comments submitted will be available for examination in... http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace_amendments/ . You may review...

  19. Future ATM Concepts Evaluation Tool (FACET) Interface Control Document

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.

    2017-01-01

    This Interface Control Document (ICD) documents the airspace adaptation and air traffic inputs of NASA's Future ATM Concepts and Evaluation Tool (FACET). Its intended audience is the project manager, project team, development team, and stakeholders interested in interfacing with the system. FACET equips Air Traffic Management (ATM) researchers and service providers with a way to explore, develop and evaluate advanced air transportation concepts before they are field-tested and eventually deployed. FACET is a flexible software tool that is capable of quickly generating and analyzing thousands of aircraft trajectories. It provides researchers with a simulation environment for preliminary testing of advanced ATM concepts. Using aircraft performance profiles, airspace models, weather data, and flight schedules, the tool models trajectories for the climb, cruise, and descent phases of flight for each type of aircraft. An advanced graphical interface displays traffic patterns in two and three dimensions, under various current and projected conditions for specific airspace regions or over the entire continental United States. The system is able to simulate a full day's dynamic national airspace system (NAS) operations, model system uncertainty, measure the impact of different decision-makers in the NAS, and provide analysis of the results in graphical form, including sector, airport, fix, and airway usage statistics. NASA researchers test and analyze the system-wide impact of new traffic flow management algorithms under anticipated air traffic growth projections on the nation's air traffic system. In addition to modeling the airspace system for NASA research, FACET has also successfully transitioned into a valuable tool for operational use. Federal Aviation Administration (FAA) traffic flow managers and commercial airline dispatchers have used FACET technology for real-time operations planning. FACET integrates live air traffic data from FAA radar systems and weather data from the National Weather Service to summarize NAS performance. This information allows system operators to reroute flights around congested airspace and severe weather to maintain safety and minimize delay. FACET also supports the planning and post-operational evaluation of reroute strategies at the national level to maximize system efficiency. For the commercial airline passenger, strategic planning with FACET can result in fewer flight delays and cancellations. The performance capabilities of FACET are largely due to its architecture, which strikes a balance between flexibility and fidelity. FACET is capable of modeling the airspace operations for the continental United States, processing thousands of aircraft on a single computer. FACET was written in Java and C, enabling the portability of its software to a variety of operating systems. In addition, FACET was designed with a modular software architecture to facilitate rapid prototyping of diverse ATM concepts. Several advanced ATM concepts have already been implemented in FACET, including aircraft self-separation, prediction of aircraft demand and sector congestion, system-wide impact assessment of traffic flow management constraints, and wind-optimal routing.

  20. 75 FR 76650 - Proposed Modification of Class E Airspace; Bryce Canyon, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ...) Global Positioning System (GPS) Standard Instrument Approach Procedures at Bryce Canyon Airport. The FAA.... Controlled airspace is necessary to accommodate aircraft using the RNAV (GPS) Standard Instrument Approach...

  1. 76 FR 34576 - Amendment of Class E Airspace; Waynesboro, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... Waynesboro, VA, to accommodate the additional airspace need for the Standard Instrument Approach Procedures developed for Eagle's Nest Airport. This action enhances the safety and management of Instrument Flight... upward from 700 feet above the surface to accommodate new standard instrument approach procedures...

  2. 76 FR 52229 - Establishment of Area Navigation Route Q-37; Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... route around potentially constrained airspace during convective weather events in west Texas. DATES... around potentially constrained airspace during convective weather events in west Texas. Additionally, the new route is being integrated into the existing severe weather national playbook routes to Houston, TX...

  3. 78 FR 41337 - Proposed Establishment of Class E Airspace; Glasgow, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Rules (IFR) aircraft under control of Salt Lake City and Minneapolis Air Route Traffic Control Centers... contained in this action may be changed in light of comments received. All comments submitted will be... through the FAA's Web page at http://www.faa.gov/airports_airtraffic/air_traffic/publications/airspace...

  4. 14 CFR 137.43 - Operations in controlled airspace designated for an airport.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Operations in controlled airspace designated for an airport. 137.43 Section 137.43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... jurisdiction over that area. (b) No person may operate an aircraft in weather conditions below VFR minimums...

  5. 14 CFR 137.43 - Operations in controlled airspace designated for an airport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Operations in controlled airspace designated for an airport. 137.43 Section 137.43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... jurisdiction over that area. (b) No person may operate an aircraft in weather conditions below VFR minimums...

  6. 14 CFR 137.43 - Operations in controlled airspace designated for an airport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Operations in controlled airspace designated for an airport. 137.43 Section 137.43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... jurisdiction over that area. (b) No person may operate an aircraft in weather conditions below VFR minimums...

  7. 14 CFR 137.43 - Operations in controlled airspace designated for an airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Operations in controlled airspace designated for an airport. 137.43 Section 137.43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... jurisdiction over that area. (b) No person may operate an aircraft in weather conditions below VFR minimums...

  8. 14 CFR 137.43 - Operations in controlled airspace designated for an airport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Operations in controlled airspace designated for an airport. 137.43 Section 137.43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... jurisdiction over that area. (b) No person may operate an aircraft in weather conditions below VFR minimums...

  9. Development of Complexity Science and Technology Tools for NextGen Airspace Research and Applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Sawhill, Bruce K.; Herriot, James; Seehart, Ken; Zellweger, Dres; Shay, Rick

    2012-01-01

    The objective of this research by NextGen AeroSciences, LLC is twofold: 1) to deliver an initial "toolbox" of algorithms, agent-based structures, and method descriptions for introducing trajectory agency as a methodology for simulating and analyzing airspace states, including bulk properties of large numbers of heterogeneous 4D aircraft trajectories in a test airspace -- while maintaining or increasing system safety; and 2) to use these tools in a test airspace to identify possible phase transition structure to predict when an airspace will approach the limits of its capacity. These 4D trajectories continuously replan their paths in the presence of noise and uncertainty while optimizing performance measures and performing conflict detection and resolution. In this approach, trajectories are represented as extended objects endowed with pseudopotential, maintaining time and fuel-efficient paths by bending just enough to accommodate separation while remaining inside of performance envelopes. This trajectory-centric approach differs from previous aircraft-centric distributed approaches to deconfliction. The results of this project are the following: 1) we delivered a toolbox of algorithms, agent-based structures and method descriptions as pseudocode; and 2) we corroborated the existence of phase transition structure in simulation with the addition of "early warning" detected prior to "full" airspace. This research suggests that airspace "fullness" can be anticipated and remedied before the airspace becomes unsafe.

  10. 78 FR 34556 - Establishment of Class E Airspace; Tobe, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Denver and Albuquerque Air... Albuquerque ARTCC by vectoring aircraft from en route airspace to terminal areas. This action is necessary for...

  11. Cone-Beam Computed Tomography Analysis of Mucosal Thickening in Unilateral Cleft Lip and Palate Maxillary Sinuses.

    PubMed

    Kula, Katherine; Hale, Lindsay N; Ghoneima, Ahmed; Tholpady, Sunil; Starbuck, John M

    2016-11-01

      To compare maxillary mucosal thickening and sinus volumes of unilateral cleft lip and palate subjects (UCLP) with noncleft (nonCLP) controls.   Randomized, retrospective study of cone-beam computed tomographs (CBCT).   University.   Fifteen UCLP subjects and 15 sex- and age-matched non-CLP controls, aged 8 to 14 years.   Following institutional review board approval and reliability tests, Dolphin three-dimensional imaging software was used to segment and slice maxillary sinuses on randomly selected CBCTs. The surface area (SA) of bony sinus and airspace on all sinus slices was determined using Dolphin and multiplied by slice thickness (0.4 mm) to calculate volume. Mucosal thickening was the difference between bony sinus and airspace volumes. The number of slices with bony sinus and airspace outlines was totaled. Right and left sinus values for each group were pooled (t tests, P > .05; n = 30 each group). All measures were compared (principal components analysis, multivariate analysis of variance, analysis of variance) by group and age (P ≤ .016 was considered significant).   Principal components analysis axis 1 and 2 explained 89.6% of sample variance. Principal components analysis showed complete separation based on the sample on axis 1 only. Age groups showed some separation on axis 2. Unilateral cleft lip and palate subjects had significantly smaller bony sinus and airspace volumes, fewer bony and airspace slices, and greater mucosal thickening and percentage mucosal thickening when compared with controls. Older subjects had significantly greater bony sinus and airspace volumes than younger subjects.   Children with UCLP have significantly more maxillary sinus mucosal thickening and smaller sinuses than controls.

  12. Fast-time Simulation of an Automated Conflict Detection and Resolution Concept

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Erzberger, Heinz

    2006-01-01

    This paper investigates the effect on the National Airspace System of reducing air traffc controller workload by automating conflict detection and resolution. The Airspace Concept Evaluation System is used to perform simulations of the Cleveland Center with conventional and with automated conflict detection and resolution concepts. Results show that the automated conflict detection and resolution concept significantly decreases growth of delay as traffic demand is increased in en-route airspace.

  13. 76 FR 44944 - Intent To Request Renewal From OMB of One Current Public Collection of Information: TSA Airspace...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ...The Transportation Security Administration (TSA) invites public comment on one currently approved Information Collection Request (ICR), Office of Management and Budget (OMB) control number 1652-0033, abstracted below that we will submit to OMB for renewal in compliance with the Paperwork Reduction Act (PRA). The ICR describes the nature of the information collection and its expected burden. This collection of information allows TSA to conduct security threat assessments on individuals on board aircraft operating in restricted airspace pursuant to an airspace waiver. This collection will enhance aviation security and protect assets on the ground that are within the restricted airspace.

  14. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Terminal Operations HITL 1B Primary Results

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Monk, Kevin; Roberts, Zach; Brandt, Summer

    2018-01-01

    This presentation provides an overview of the primary results from the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project's second Terminal Operations human-in-the-loop simulation. This talk covers the background of this follow-on experiment, which includes an overview of the first Terminal Operations HITL performed by the project. The primary results include a look at the number and durations of detect and avoid (DAA) alerts issued by the two DAA systems under test. It also includes response time metrics and metrics on the ability of the pilot-in-command (PIC) to maintain sufficient separation. Additional interoperability metrics are included to illustrate how pilots interact with the tower controller. Implications and conclusions are covered at the end.

  15. How do tympanic-membrane perforations affect human middle-ear sound transmission?

    PubMed

    Voss, S E; Rosowski, J J; Merchant, S N; Peake, W T

    2001-01-01

    Although tympanic-membrane (TM) perforations are common sequelae of middle-ear disease, the hearing losses they cause have not been accurately determined, largely because additional pathological conditions occur in these ears. Our measurements of acoustic transmission before and after making controlled perforations in cadaver ears show that perforations cause frequency-dependent loss that: (1) is largest at low frequencies; (2) increases as perforation size increases; and (3) does not depend on perforation location. The dominant loss mechanism is the reduction in sound-pressure difference across the TM. Measurements of middle-ear air-space sound pressures show that transmission via direct acoustic stimulation of the oval and round windows is generally negligible. A quantitative model predicts the influence of middle-ear air-space volume on loss; with larger volumes, loss is smaller.

  16. 77 FR 30884 - Amendment of Restricted Area R-2502E; Fort Irwin, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ...-0461; Airspace Docket No. 12-AWP-1] RIN 2120-AA66 Amendment of Restricted Area R-2502E; Fort Irwin, CA... designated controlling agency for restricted area R-2502E, Fort Irwin, CA, from the Federal Aviation... Airspace System, the FAA is changing the assigned controlling agency for restricted area R-2502E, Fort...

  17. 75 FR 59608 - Amendment of Class D and E Airspace; Establishment of Class E Airspace; Patuxent River, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... River, MD, to reflect the part-time operating status of the control tower, and establishes Class E..., to reflect the part-time operations of the airport control tower, establishing in advance the dates... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2010...

  18. 78 FR 48842 - Proposed Establishment of Class D Airspace; Mesquite, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to establish Class D airspace at Mesquite, TX. Establishment of an air traffic control tower at Mesquite Metro Airport [[Page 48843

  19. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  20. Environmental Assessment: Transforming the 49th Fighter Wing’s Combat Capability, Holloman Air Force Base, New Mexico

    DTIC Science & Technology

    2006-08-01

    estimated 321 positions. The Proposed Action includes enhancements to training airspace within 100 nautical miles (nm) of Holloman AFB. The F-22A...Airspace enhancements within 100 nautical miles (nm) of Holloman AFB would permit the F-22A to realistically train and deploy RR-188 (or equivalent...nautical miles (nm) of Holloman AFB. This training would occur in restricted airspace, Military Operations Areas (MOAs) and Air Traffic Control

  1. How do Air Traffic Controllers Use Automation and Tools Differently During High Demand Situations?

    NASA Technical Reports Server (NTRS)

    Kraut, Joshua M.; Mercer, Joey; Morey, Susan; Homola, Jeffrey; Gomez, Ashley; Prevot, Thomas

    2013-01-01

    In a human-in-the-loop simulation, two air traffic controllers managed identical airspace while burdened with higher than average workload, and while using advanced tools and automation designed to assist with scheduling aircraft on multiple arrival flows to a single meter fix. This paper compares the strategies employed by each controller, and investigates how the controllers' strategies change while managing their airspace under more normal workload conditions and a higher workload condition. Each controller engaged in different methods of maneuvering aircraft to arrive on schedule, and adapted their strategies to cope with the increased workload in different ways. Based on the conclusions three suggestions are made: that quickly providing air traffic controllers with recommendations and information to assist with maneuvering and scheduling aircraft when burdened with increased workload will improve the air traffic controller's effectiveness, that the tools should adapt to the strategy currently employed by a controller, and that training should emphasize which traffic management strategies are most effective given specific airspace demands.

  2. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  3. 14 CFR Appendix B to Part 187 - Fees for FAA Services for Certain Flights

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....-controlled airspace.) Distance flown is based on the great circle distance (GCD) for the point of entry and the point of exit of U.S.-controlled airspace based on FAA flight data. Fees are assessed using the methodology presented in paragraph (e)(2) of this appendix. Where actual entry and exit points are not...

  4. Review of the FAA 1982 National Airspace System plan

    DOT National Transportation Integrated Search

    1982-08-01

    The National Airspace (NAS) Plan outlines the Federal Aviation Administration's most recent proposals for modernizing the facilities and equipment that make up the air traffic control (ATC) system. This review of the NAS Plan examines the Plan at two...

  5. An Assessment of Civil Tiltrotor Concept of Operations in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Chung, William W.; Salvano, Dan; Rinehart, David; Young, Ray; Cheng, Victor; Lindsey, James

    2012-01-01

    Based on a previous Civil Tiltrotor (CTR) National Airspace System (NAS) performance analysis study, CTR operations were evaluated over selected routes and terminal airspace configurations assuming noninterference operations (NIO) and runway-independent operations (RIO). This assessment aims to further identify issues associated with these concepts of operations (ConOps), and their dependency on the airspace configuration and interaction with conventional fixed-wing traffic. Safety analysis following a traditional Safety Management System (SMS) methodology was applied to CTR-unique departure and arrival failures in the selected airspace to identify any operational and certification issues. Additional CTR operational cases were then developed to get a broader understanding of issues and gaps that will need to be addressed in future CTR operational studies. Finally, needed enhancements to National Airspace System performance analysis tools were reviewed, and recommendations were made on improvements in these tools that are likely to be required to support future progress toward CTR fleet operations in the Next Generation Air Transportation System (NextGen).

  6. The Effectiveness of a Route Crossing Tool in a Simulated New York Airspace

    NASA Technical Reports Server (NTRS)

    Parke, Bonny; Chevalley, Eric; Bienert, Nancy; Lee, Paul; Gonter, Kari; Omar, Faisal; Kraut, Joshua; Yoo, Hyo-Sang; Borade, Abhay; Gabriel, Conrad; hide

    2015-01-01

    Congested airspace is the cause of many delays in the terminal area and these delays can have a ripple effect on the rest of a nation's airspace. The New York terminal area is an example of where this happens in the U. S. An important goal, therefore, is to increase the efficiency of operations in congested terminal airspace where possible. Modeling studies of arrival and departure flows have shown that sharing of arrival and departure airspace increases efficiency in terminal operations. One source of inefficiency in terminal operations is that departure aircraft are frequently held level under arrival flows when it would be more efficient to climb the departure aircraft earlier. A Route Crossing Tool was developed to help controllers climb Newark (EWR) departures to the south earlier by temporarily sharing airspace with arrivals coming into LaGuardia (LGA) from the south. Instead of flying under the arrivals, a departure to the south could climb earlier by flying through the arrival airspace if there was a suitable gap between arrivals. A Human-in-the-Loop (HITL) simulation was conducted in this environment which compared three tool conditions: Baseline (no tool), a Single Route Crossing tool in which one route through the arrival flow was evaluated for crossing, and a Multi-Route Crossing tool in which five parallel routes were evaluated. In all conditions, the departures could be held level under the arrival flow. The results showed that controllers climbed a higher proportion of departures in the Multi-Route tool condition than in the other two conditions, with a higher proportion of departures climbed in smaller gaps and in front of trailing arrivals. The controllers indicated that the Multi-Route and Single Route tools helped them estimate distances more accurately and rated safety, workload, and coordination in the simulation as acceptable.

  7. Preliminary Airspace Operations Simulations Findings Report

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Provides preliminary findings of the initial series (normal operations and contingency management) of airspace operations simulations. The key elements of this report discuss feedback from controller subjects for UAS flight above FL430. Findings provide initial evaluation of routine UAS operations above dense ARTCC airspace (ZOB), and identify areas of further research, policy direction and procedural development. This document further serves as an addendum to the detailed AOS simulation plan (Deliverable SIM001), incorporating feedback from FAA air traffic personnel and Access 5 IPTs.

  8. Final Environmental Impact Statement for Development of Facilities to Support Basing US Pacific Fleet F/A-18E/F Aircraft on the West Coast of the United States, Volume 1.

    DTIC Science & Technology

    1998-05-01

    ROG reactive organic compound RONA Record of Non -applicability RTV rational threshold value RWQCB Regional Water Quality Control Board SARA...over water. The ranges are either scheduled via a designated military or civilian controlling agency (for restricted or warning areas) or are used...operations areas (MOAs), and air traffic control authorized airspace (ATCAA). Airspace designations throughout the United States are controlled by the Federal

  9. Notional Airspace Operations Demonstration Plan

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The airspace operations demonstration (AOD) is intended to show that the Access 5 Step 1 functional requirements can be met. The demonstration will occur in two phases. The initial on-range phase will be carried out in restricted airspace to demonstrate the cooperative collision avoidance (CCA) functional requirements and to provide risk-reduction for the AOD by allowing the test team to rehearse some elements of the demonstration mission. The CCA system to be used in these flights is based on Automatic Dependent Surveillance-Broadcast (ADS-B) which is a commercially-available system by which airplanes constantly broadcast their current position and altitude to other aircraft and ground resources over a dedicated radio datalink. The final phase will occur in the national airspace (NAS) and will be the formal demonstration of the remainder of the proposed functional requirements. The general objectives of the AOD are as follows: (1) Demonstrate that the UAS can aviate in the NAS (2) Demonstrate that the UAS can navigate in the NAS (3) Demonstrate that the UAS can communicate with the NAS (4) Demonstrate that the UAS can perform selected collision avoidance functions in the NAS (5) Demonstrate that the UAS can evaluate and avoid weather conflicts in the NAS (6) Demonstrate that the UAS can provide adequate command and control in the NAS In addition to the stated objectives, there are a number of goals for the flight demonstration. The demo can be accomplished successfully without achieving these goals, but these goals are to be used as a guideline for preparing for the mission. The goals are: (1) Mission duration of at least 24 hours (2) Loiter over heavy traffic to evaluate the data block issue identified during the Access 5 Airspace Operations Simulations (3) Document the contingency management process and lessons learned (4) Document the coordination process for Ground Control Stations (GCS) handoff (5) Document lessons learned regarding the process of flying in the NAS Preliminary planning for a notional mission to achieve the objectives and goals has been prepared. The planning is intended to serve as a guide for detailed planning of the AOD.

  10. 78 FR 25006 - RIN 2120-AA66

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Advisory Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the... International Airport (IAD) area. The new routes support the Washington, DC Optimization of Airspace and... air traffic controller workload and enhance efficiency within the National Airspace System. RNAV...

  11. An initial survey of national airspace system auditory alarm issues in terminal air traffic control.

    DOT National Transportation Integrated Search

    2003-04-01

    A researcher from the Research Development & Human Factors Laboratory of the William J. Hughes Technical Center conducted an exploratory study to examine current National Airspace System (NAS) auditory alarm issues. The purpose was to identify proble...

  12. Unmanned Aviation Systems Models of the Radio Communications Links: Study Results - Appendices Annex 2. Volume 1 and Volume 2

    NASA Technical Reports Server (NTRS)

    Birr, Richard B.; Spencer, Roy; Murray, Jennifer; Lash, Andrew

    2013-01-01

    This report describes the analysis of communications between the Control Station and an Unmanned Aircraft (UA) flying in the National Airspace System (NAS). This work is based on the RTCA SC-203 Operational Services and Environment Description (OSED). The OSED document seeks to characterize the highly different attributes of all UAs navigating the airspace and define their relationship to airspace users, air traffic services, and operating environments of the NAS. One goal of this report is to lead to the development of Minimum Aviation System Performance Standards for Control and Communications. This report takes the nine scenarios found in the OSED and analyzes the communication links.

  13. IL-17 Plays a Role in Respiratory Syncytial Virus-induced Lung Inflammation and Emphysema in Elastase and LPS-injured Mice.

    PubMed

    Mebratu, Yohannes A; Tesfaigzi, Yohannes

    2018-06-01

    Respiratory syncytial virus (RSV) is associated with enhanced progression of chronic obstructive pulmonary disease (COPD) and COPD exacerbations. However, little is known about the role of IL-17 in RSV-induced lung injury. We first investigated the role of RSV infection in enhancing mucous cell hyperplasia (MCH) and airspace enlargement in the lungs of mice injured with elastase and LPS (E/LPS). Mice injured with E/LPS had an enhanced and prolonged neutrophilic response to RSV that was associated with decreased levels of type I IFN and increased levels of IL-17, IL-23, CXCL-1, granulocyte colony stimulating factor (GCSF), CXCL-5, and matrix metalloproteinase (MMP)-9. In addition, extent of MCH and mean weighted alveolar space were increased significantly in the lungs of E/LPS-injured mice infected with RSV compared with E/LPS-only or RSV-only controls. Interestingly, immunodepletion of IL-17 before viral infection diminished the RSV-driven MCH and airspace enlargement in the E/LPS-injured animals, suggesting that IL-17 may be a therapeutic target for MCH and airspace enlargement when enhanced by RSV infection.

  14. Simulation of the National Aerospace System for Safety Analysis

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy; Goldsman, Dave; Statler, Irv (Technical Monitor)

    2002-01-01

    Work started on this project on January 1, 1999, the first year of the grant. Following the outline of the grant proposal, a simulator architecture has been established which can incorporate the variety of types of models needed to accurately simulate national airspace dynamics. For the sake of efficiency, this architecture was based on an established single-aircraft flight simulator, the Reconfigurable Flight Simulator (RFS), already developed at Georgia Tech. Likewise, in the first year substantive changes and additions were made to the RFS to convert it into a simulation of the National Airspace System, with the flexibility to incorporate many types of models: aircraft models; controller models; airspace configuration generators; discrete event generators; embedded statistical functions; and display and data outputs. The architecture has been developed with the capability to accept any models of these types; due to its object-oriented structure, individual simulator components can be added and removed during run-time, and can be compiled separately. Simulation objects from other projects should be easy to convert to meet architecture requirements, with the intent that both this project may now be able to incorporate established simulation components from other projects, and that other projects may easily use this simulation without significant time investment.

  15. Generic Airspace Concepts and Research

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.

    2010-01-01

    The purpose of this study was to evaluate methods for reducing the training and memorization required to manage air traffic in mid-term, Next Generation Air Transportation System (NextGen) airspace. We contrasted the performance of controllers using a sector information display and NextGen automation tools while working with familiar and unfamiliar sectors. The airspace included five sectors from Oakland and Salt Lake City Centers configured as a "generic center" called "West High Center." The Controller Information Tool was used to present essential information for managing these sectors. The Multi Aircraft Control System air traffic control simulator provided data link and conflict detection and resolution. There were five experienced air traffic controller participants. Each was familiar with one or two of the five sectors, but not the others. The participants rotated through all five sectors during the ten data collection runs. The results addressing workload, traffic management, and safety, as well as controller and observer comments, supported the generic sector concept. The unfamiliar sectors were comparable to the familiar sectors on all relevant measures.

  16. 78 FR 72008 - Establishment of Class E Airspace; Aliceville, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ...) Standard Instrument Approach Procedure (SIAP) serving George Downer Airport. This action enhances the safety and management of Instrument Flight Rules (IFR) operations at the airport. DATES: Effective 0901..., providing the controlled airspace required to accommodate the new RNAV (GPS) Standard Instrument Approach...

  17. 77 FR 66068 - Amendment of Class E Airspace; Breckenridge, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ...) Standard Instrument Approach Procedures at Stephens County Airport. The airport's geographic coordinates... controlled airspace at Stephens County Airport (77 FR 50648) Docket No. FAA-2012-0653. Interested parties... instrument approach procedures at Stephens County Airport, Breckenridge, TX. This action is necessary for the...

  18. 78 FR 59622 - Establishment of Class E Airspace; Akutan, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... at Akutan Airport, Akutan, AK. Controlled airspace is necessary to accommodate aircraft using the new Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at the airport. This action enhances the safety and management of aircraft operations at the airport. DATES...

  19. 76 FR 21830 - Proposed Amendment of Class E Airspace; Harrisonville, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at Lawrence Smith Memorial... accommodate new standard instrument approach procedures at Lawrence Smith Memorial Airport, Harrisonville, MO... authority as it would amend controlled airspace at Lawrence Smith Memorial Airport, Harrisonville, MO. List...

  20. 77 FR 75836 - Establishment of Class E Airspace; Walsenburg, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... at Spanish Peaks Airfield, Walsenburg, CO, to accommodate aircraft using new Area Navigation (RNAV... controlled airspace at Spanish Peaks Airfield, Walsenburg, CO (77 FR 55776). Interested parties were invited... Spanish Peaks Airfield, Walsenburg, CO, to accommodate IFR aircraft executing new RNAV (GPS) standard...

  1. Configuring Airspace Sectors with Approximate Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  2. 78 FR 14649 - Amendment of Class B Airspace Description; Tampa, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... surveillance radar (ASR) antenna'' to ``Point of Origin.'' In addition, the description is edited throughout to... the airspace, the area was designed using the latitude/longitude position of the ASR antenna as the centerpoint. In 2012, the ASR antenna was moved to another location on the airport. So that there will be no...

  3. Lung Cancers Associated with Cystic Airspaces: Underrecognized Features of Early Disease.

    PubMed

    Sheard, Sarah; Moser, Joanna; Sayer, Charlie; Stefanidis, Konstantinos; Devaraj, Anand; Vlahos, Ioannis

    2018-01-01

    Early lung cancers associated with cystic airspaces are increasingly being recognized as a cause of delayed diagnoses-owing to data gathered from screening trials and encounters in routine clinical practice as more patients undergo serial imaging. Several morphologic subtypes of cancers associated with cystic airspaces exist and can exhibit variable patterns of progression as the solid elements of the tumor grow. Current understanding of the pathogenesis of these malignancies is limited, and the numbers of cases reported in the literature are small. However, several tumor cell types are represented in these lesions, with adenocarcinoma predominating. The features of cystic airspaces differ among cases and include emphysematous bullae, congenital or fibrotic cysts, subpleural blebs, bronchiectatic airways, and distended distal airspaces. Once identified, these cystic lesions pose management challenges to radiologists in terms of distinguishing them from benign mimics of cancer that are commonly seen in patients who also are at increased risk of lung cancer. Rendering a definitive tissue-based diagnosis can be difficult when the lesions are small, and affected patients tend to be in groups that are at higher risk of requiring biopsy or resection. In addition, the decision to monitor these cases can add to patient anxiety and cause the additional burden of strained departmental resources. The authors have drawn from their experience, emerging evidence from international lung cancer screening trials, and large databases of lung cancer cases from other groups to analyze the prevalence and evolution of lung cancers associated with cystic airspaces and provide guidance for managing these lesions. Although there are insufficient data to support specific management guidelines similar to those for managing small solid and ground-glass lung nodules, these data and guidelines should be the direction for ongoing research on early detection of lung cancer. © RSNA, 2018.

  4. 78 FR 74007 - Amendment of Class E Airspace; Grand Rapids, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... coordinates for Gerald R. Ford International Airport, formerly known as Kent County International Airport... Gerald R. Ford International Airport, Grand Rapids, MI, formerly called Kent County International Airport... authority as it amends controlled airspace at Gerald R. Ford International Airport, Grand Rapids, MI. List...

  5. 78 FR 41838 - Establishment of Class E Airspace; Colt, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... Instrument Approach Procedures at Delta Regional Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rule (IFR) operations at the airport. DATES: Effective date: 0901... exists to contain new standard instrument approach procedures at the airport. Controlled airspace...

  6. 78 FR 76053 - Establishment of Class E Airspace; Loup City, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... (RNAV) Standard Instrument Approach Procedures at Loup City Municipal Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rule (IFR) operations at the airport... contain aircraft executing new standard instrument approach procedures at the airport. Controlled airspace...

  7. 77 FR 55688 - Amendment of Class E Airspace; Boise, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... needed as a reference. The Donnelly Tactical Air Navigation System (TACAN) has been decommissioned and controlled airspace reconfigured. This action also makes a minor change to the legal description in reference.... No comments were received. The FAA's Aeronautical Products Office requested the legal description for...

  8. Department of Defense Air Traffic Control and Airspace Systems Interface with the National Airspace System

    DTIC Science & Technology

    1990-03-30

    systems on the DoD in terms of safety and operational- effectiveness and probable impacts on specific Air Force mission requirements. The report does... Systems ................................. 2-21 2.1.3 Flight Service and Weather Systems .......................... 2-22 2.1.3.1 Flight Service Automation...2-41 2.2.2 Terminal Control and Landing Systems .. ....................... 2-44 2.2.3 Flight Information and Weather Systems

  9. Airspace Analysis for Phase II of the Regional Airport Plan Update Program.

    DTIC Science & Technology

    1979-03-01

    Base; and Hamilton, Sonoma County , and Napa County Airports) is comparable in terms of airspace capacity. Note that if the aircraft redistributed to the...Oakland ARTCC (Oakland Center) Napa County Airport Sonoma County Airport (at Santa Rosa) Stockton Approach Control Livermore Municipal Airport... Sonoma County Airport The ATC Tower located at these airports exercises control of aircraft within the Airport Traffic Areas. Rules of aircraft

  10. Modeling Aircraft Position and Conservatively Calculating Airspace Violations for an Autonomous Collision Awareness System for Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Ueunten, Kevin K.

    With the scheduled 30 September 2015 integration of Unmanned Aerial System (UAS) into the national airspace, the Federal Aviation Administration (FAA) is concerned with UAS capabilities to sense and avoid conflicts. Since the operator is outside the cockpit, the proposed collision awareness plugin (CAPlugin), based on probability and error propagation, conservatively predicts potential conflicts with other aircraft and airspaces, thus increasing the operator's situational awareness. The conflict predictions are calculated using a forward state estimator (FSE) and a conflict calculator. Predicting an aircraft's position, modeled as a mixed Gaussian distribution, is the FSE's responsibility. Furthermore, the FSE supports aircraft engaged in the following three flight modes: free flight, flight path following and orbits. The conflict calculator uses the FSE result to calculate the conflict probability between an aircraft and airspace or another aircraft. Finally, the CAPlugin determines the highest conflict probability and warns the operator. In addition to discussing the FSE free flight, FSE orbit and the airspace conflict calculator, this thesis describes how each algorithm is implemented and tested. Lastly two simulations demonstrates the CAPlugin's capabilities.

  11. TSAFE Interface Control Document v 2.0

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    2013-01-01

    This document specifies the data interface for TSAFE, the Tactical Separation-Assured Flight Environment. TSAFE is a research prototype of a software application program for alerting air traffic controllers to imminent conflicts in enroute airspace. It is intended for Air Route Traffic Control Centers ("Centers") in the U.S. National Airspace System. It predicts trajectories for approximately 3 minutes into the future, searches for conflicts, and sends data about predicted conflicts to the client, which uses the data to alert an air traffic controller of conflicts. TSAFE itself does not provide a graphical user interface.

  12. 76 FR 60713 - Establishment of Class E Airspace; Bumpass, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... controlled airspace required to support the new RNA V GPS standard instrument approach procedures developed... regulatory action'' under Executive Order 12866; (2) is not a ``significant rule'' under DOT Regulatory... Regulatory Evaluation as the anticipated impact is so minimal. Since this is a routine matter that will only...

  13. Toward n-Ship Computation of Trajectories for Shared Airspace

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Rothhaar, Paul M.

    2016-01-01

    This paper considers an approach for modelling transport aircraft trajectories that can facilitate their rapid evaluation and modification, either en route or in terminal control areas, with the goal of efficiently making use of airspace and runways by a large population of vehicles without pairwise violation of separation criteria.

  14. 76 FR 46212 - Proposed Modification of Class E Airspace; Blythe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... procedures at Blythe Airport. The FAA is proposing this action to enhance the safety and management of... be submitted in triplicate to the Docket Management System (see ADDRESSES section for address and... controlled airspace is necessary to accommodate aircraft using the RNAV (GPS) standard instrument approach...

  15. 78 FR 31430 - Proposed Establishment of Class E Airspace; Wagner, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... accommodate new Standard Instrument Approach Procedures (SIAP) at Wagner Municipal Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rules (IFR) operations for SIAPs... approach procedures at the airport. Controlled airspace is needed for the safety and management of IFR...

  16. 78 FR 33019 - Proposed Amendment of Class E Airspace; Commerce, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... accommodate new Standard Instrument Approach Procedures (SIAPs) at Commerce Municipal Airport (AAF). The FAA is taking this action to enhance the safety and management of Instrument Flight Rules (IFR... airport to provide adequate controlled airspace for the safety and management of IFR operations at the...

  17. 76 FR 41145 - Proposed Amendment of Class E Airspace; Glendive, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... procedures at the airport. The FAA is proposing this action to enhance the safety and management of aircraft... submitted in triplicate to the Docket Management System (see ADDRESSES section for address and phone number.... Controlled airspace is necessary to accommodate aircraft using the RNAV (GPS) standard instrument approach...

  18. 78 FR 67297 - Establishment of Class E Airspace; Curtis, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... approach procedures. Controlled airspace is needed for the safety and management of IFR operations at the... Instrument Approach Procedures at Curtis Municipal Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rule (IFR) operations at the airport. DATES: Effective date...

  19. 76 FR 53636 - Amendment of Class E Airspace; Gary, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Gary/Chicago International Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rule (IFR... controlled airspace at Gary/Chicago International Airport (76 FR 28686) Docket No. FAA-2011-0427. Interested...

  20. 78 FR 25005 - Proposed Establishment of Class E Airspace; Port Townsend, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Jefferson County International Airport, Port Townsend, WA. Controlled airspace is necessary to accommodate... procedures at Jefferson County International Airport. The FAA is proposing this action to enhance the safety and management of aircraft operations at the airport. DATES: Comments must be received on or before...

  1. 78 FR 34557 - Establishment of Class E Airspace; Sanibel, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... the FAA found that the heliport coordinates were incorrectly listed as point in space coordinates; and point in space coordinates were inadvertently omitted. This action makes the correction. Except for.... Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is necessary for...

  2. 78 FR 33967 - Establishment of Class E Airspace; Captiva, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... the FAA found that the heliport coordinates were incorrectly listed as point in space coordinates; and point in space coordinates were inadvertently omitted. This action makes the correction. Except for... Heliport. Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is...

  3. Development of Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Capability 2 and Experimental Plans

    NASA Technical Reports Server (NTRS)

    Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.; hide

    2006-01-01

    The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.

  4. Wargaming the Enemy Unmanned Aircraft System (UAS) Threat

    DTIC Science & Technology

    2013-01-01

    and various current and future short range air defense systems. In addition, the EWF experiments had Army high altitude airship (HAA) with a...component during these experiments dealt with controlling high speed fighters operating at low altitude over the ground commander’s AO. The...JAGIC).18 “”During experimentation with JAGIC, the ACA delegated a volume of airspace, either below a coordinating altitude or within a high density

  5. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve the robustness and efficiency of the graph based DAC algorithm by incorporating the Multilevel Graph Partitioning (MGP) method into the graph model, and develop a MGP based sectorization algorithm for DAC in the en route airspace. In a comprehensive benefit analysis, the performance of the proposed algorithms are tested in numerical simulations with Enhanced Traffic Management System (ETMS) data. Simulation results demonstrate that the algorithmically generated sectorizations outperform the current sectorizations in different sectors for different time periods. Secondly, based on our experience with DAC in the en route airspace, we further study the sectorization problem for DAC in the terminal airspace. The differences between the en route and terminal airspace are identified, and their influence on the terminal sectorization is analyzed. After adjusting the graph model to better capture the unique characteristics of the terminal airspace and the requirements of terminal sectorization, we develop a graph based geometric sectorization algorithm for DAC in the terminal airspace. Moreover, the graph based model is combined with the region based sector design method to better handle the complicated geometric and operational constraints in the terminal sectorization problem. In the benefit analysis, we identify the contributing factors to terminal controller workload, define evaluation metrics, and develop a bebefit analysis framework for terminal sectorization evaluation. With the evaluation framework developed, we demonstrate the improvements on the current sectorizations with real traffic data collected from several major international airports in the U.S., and conduct a detailed analysis on the potential benefits of dynamic reconfiguration in the terminal airspace. Finally, in addition to the research on the macroscopic behavior of a large number of aircraft, we also study the dynamical behavior of individual aircraft from the perspective of traffic flow management. We formulate the mode-confusion problem as hybrid estimation problem, and develop a state estimation algorithm for the linear hybrid system with continuous-state-dependent transitions based on sparse observations. We also develop an estimated time of arrival prediction algorithm based on the state-dependent transition hybrid estimation algorithm, whose performance is demonstrated with simulations on the landing procedure following the Continuous Descend Approach (CDA) profile.

  6. 77 FR 46283 - Amendment of Class E Airspace; Battle Creek, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...) Standard Instrument Approach Procedures at W.K. Kellogg Airport. The airport's geographic coordinates also... controlled airspace at W.K. Kellogg Airport (77 FR 29918) Docket No. FAA-2011-1110. Interested parties were... instrument approach procedures at W.K. Kellogg Airport, Battle Creek, MI. This action is necessary for the...

  7. 78 FR 33968 - Establishment of Class E Airspace; Boca Grande, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... publication the FAA found that the heliport coordinates were incorrectly listed as point in space coordinates; and point in space coordinates were inadvertently omitted. This action makes the correction. Except.... Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is necessary for...

  8. 78 FR 33966 - Establishment of Class E Airspace; Pine Island, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... publication the FAA found that the heliport coordinates were incorrectly listed as point in space coordinates; and point in space coordinates were inadvertently omitted. This action makes the correction. Except.... Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is necessary for...

  9. 78 FR 32553 - Establishment of Class E Airspace; Boothbay, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... the FAA found that the points of space coordinates were incorrect. This action makes the correction... Heliport. Controlled airspace within a 6-mile radius of the point in space coordinates of the heliport is... heliport and point in space are corrected and separately listed. The FAA has determined that this...

  10. 75 FR 29657 - Establishment of Class E Airspace; Marianna, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ...) at Marianna/Lee County Airport--Steve Edwards Field, Marianna, AR. The FAA is taking this action to... controlled airspace at Marianna/Lee County Airport--Steve Edwards Field (75 FR 12161) Docket No. FAA-2009... from 700 feet above the surface to accommodate SIAPs at Marianna/Lee County Airport-- Steve Edwards...

  11. Enabling Airspace Integration for High Density Urban Air Mobility

    NASA Technical Reports Server (NTRS)

    Mueller, Eric Richard

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. These challenge for ODM may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude the UAS traffic management (UTM) system to higher altitudes and aircraft with humans onboard in controlled airspace, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  12. 76 FR 70469 - Extension of Agency Information Collection Activity Under OMB Review: TSA Airspace Waiver Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ...This notice announces that the Transportation Security Administration (TSA) has forwarded the Information Collection Request (ICR), Office of Management and Budget (OMB) control number 1652-0033, abstracted below to OMB for review and approval of an extension of the currently approved collection under the Paperwork Reduction Act (PRA). The ICR describes the nature of the information collection and its expected burden. TSA published a Federal Register notice, with a 60-day comment period soliciting comments, of the following collection of information on July 27, 2011, 76 FR 44944. This collection of information allows TSA to conduct security threat assessments on individuals on board aircraft operating in restricted airspace pursuant to an airspace waiver. This collection will enhance aviation security and protect assets on the ground that are within the restricted airspace.

  13. Real-Time Safety Monitoring and Prediction for the National Airspace System

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil

    2016-01-01

    As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have both an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecasts, predicted health of assets in the airspace, and so on. To this end, we have developed a Real-Time Safety Monitoring (RTSM) that first, estimates the state of the NAS using the dynamic models. Then, given the state estimate and a probability distribution of future inputs to the NAS, the framework predicts the evolution of the NAS, i.e., the future state, and analyzes these future states to predict the occurrence of unsafe events. The entire probability distribution of airspace safety metrics is computed, not just point estimates, without significant assumptions regarding the distribution type and or parameters. We demonstrate our overall approach by predicting the occurrence of some unsafe events and show how these predictions evolve in time as flight operations progress.

  14. Identification and Characterization of Key Human Performance Issues and Research in the Next Generation Air Transportation System (NextGen)

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Sheridan, Tom; Poage, james L.; Martin, Lynne Hazel; Jobe, Kimberly K.

    2010-01-01

    This report identifies key human-performance-related issues associated with Next Generation Air Transportation System (NextGen) research in the NASA NextGen-Airspace Project. Four Research Focus Areas (RFAs) in the NextGen-Airspace Project - namely Separation Assurance (SA), Airspace Super Density Operations (ASDO), Traffic Flow Management (TFM), and Dynamic Airspace Configuration (DAC) - were examined closely. In the course of the research, it was determined that the identified human performance issues needed to be analyzed in the context of NextGen operations rather than through basic human factors research. The main gaps in human factors research in NextGen were found in the need for accurate identification of key human-systems related issues within the context of specific NextGen concepts and better design of the operational requirements for those concepts. By focusing on human-system related issues for individual concepts, key human performance issues for the four RFAs were identified and described in this report. In addition, mixed equipage airspace with components of two RFAs were characterized to illustrate potential human performance issues that arise from the integration of multiple concepts.

  15. An Evaluation of Operational Airspace Sectorization Integrated System (OASIS) Advisory Tool

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Mogford, Richard H.; Bridges, Wayne; Buckley, Nathan; Evans, Mark; Gujral, Vimmy; Lee, Hwasoo; Peknik, Daniel; Preston, William

    2013-01-01

    In January 2013, a human-in-the-loop evaluation of the Operational Airspace Sectorization Integrated System (OASIS) was conducted in the Airspace Operations Laboratory of the Human Systems Integration Division (Code TH) in conjunction with the Aviation Systems Division (Code AF). The development of OASIS is a major activity of the Dynamic Airspace Configuration (DAC) research focus area within the Aeronautics Research Mission Directorate (ARMD) Airspace Systems Program. OASIS is an advisory tool to assist Federal Aviation Administration (FAA) En Route Area Supervisors in their planning of sector combinedecombine operations as well as opening closing of Data-side (D-side) control positions. These advisory solutions are tailored to the predicted traffic demand over the next few hours. During the experiment, eight retired FAA personnel served as participants for a part-task evaluation of OASIS functionality, covering the user interface as well as the underlying algorithm. Participants gave positive feedback on both the user interface and the algorithm solutions for airspace configuration, including an excellent average rating of 94 on the tool usability scales. They also suggested various enhancements to the OASIS tool, which will be incorporated into the next tool development cycle for the full-scale human-in-the-loop evaluation to be conducted later this year.

  16. 76 FR 53352 - Proposed Amendment of Class E Airspace; Alice, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... procedures at Old Hoppe Place Airport, Agua Dulce, TX, has made this action necessary for the safety and..., area. Controlled airspace extending upward from 700 feet above the surface is being removed at Old... extending upward from 700 feet or more above the surface of the earth. * * * * * ASW TX E5 Alice, TX...

  17. 78 FR 58158 - Establishment of Class E Airspace; Wasatch, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...., long. 111[deg]07'28'' W.; to Lat. 39[deg]03'55'' N., long. 110[deg]37'49'' W.; to Lat. 38[deg]28'51'' N... Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace..., Wasatch, UT, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Salt Lake...

  18. 75 FR 47736 - Amendment of Class D and E Airspace, Establishment of Class E Airspace; Patuxent River, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... Air Station (NAS), Patuxent River, MD, to reflect the part-time operating status of the control tower... extension to Class D surface area at Patuxent River NAS, Patuxent River, MD, to reflect the part-time... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2010...

  19. Structure, Intent and Conformance Monitoring in ATC

    NASA Technical Reports Server (NTRS)

    Reynolds, Tom G.; Histon, Jonathan M.; Davison, Hayley J.; Hansman, R. John

    2004-01-01

    Infield studies of current Air Traffic Control operations it is found that controllers rely on underlying airspace structure to reduce the complexity of the planning and conformance monitoring tasks. The structure appears to influence the controller's working mental model through abstractions that reduce the apparent cognitive complexity. These structure-based abstractions are useful for the controller's key tasks of planning, implementing, monitoring, and evaluating tactical situations. In addition, the structure-based abstractions appear to be important in the maintenance of Situation Awareness. The process of conformance monitoring is analyzed in more detail and an approach to conformance monitoring which utilizes both the structure-based abstractions and intent is presented.

  20. Army Airspace Command and Control (A2C2): Action Plan for Issue Resolution

    DTIC Science & Technology

    1993-09-01

    INFO Information INTEL Intelligence IPR In-Process Review IVIS Inter-Vehicular Information System JACC Joint Airspace Control Center JAOC Joint Air...base, centralized such as intelligence at Fort Huachuca and combat service support at Fort Lee , or a combination of both. It is no longer efficient to...Regiment (ATS) Ft. Bragg, NC 28307 ATTN: AFZF-ATS-C (LTC Ledbetter ) (919) 396-8899/7649 Bldg 87009, 16th Street Ft. Hood, TX 76544 Commander, 1st

  1. Nextgen Technologies for Mid-Term and Far-Term Air Traffic Control Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2009-01-01

    This paper describes technologies for mid-term and far-term air traffic control operations in the Next Generation Air Transportation System (NextGen). The technologies were developed and evaluated with human-in-the-loop simulations in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The simulations were funded by several research focus areas within NASA's Airspace Systems program and some were co-funded by the FAA's Air Traffic Organization for Planning, Research and Technology.

  2. Validating an Air Traffic Management Concept of Operation Using Statistical Modeling

    NASA Technical Reports Server (NTRS)

    He, Yuning; Davies, Misty Dawn

    2013-01-01

    Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis

  3. Scheduling and Separating Departures Crossing Arrival Flows in Shared Airspace

    NASA Technical Reports Server (NTRS)

    Chevalley, Eric; Parke, Bonny K.; Lee, Paul; Omar, Faisal; Lee, Hwasoo; Beinert, Nancy; Kraut, Joshua M.; Palmer, Everett

    2013-01-01

    Flight efficiency and reduction of flight delays are among the primary goals of NextGen. In this paper, we propose a concept of shared airspace where departures fly across arrival flows, provided gaps are available in these flows. We have explored solutions to separate departures temporally from arrival traffic and pre-arranged procedures to support controllers' decisions. We conducted a Human-in-the-Loop simulation and assessed the efficiency and safety of 96 departures from the San Jose airport (SJC) climbing across the arrival airspace of the Oakland and San Francisco arrival flows. In our simulation, the SJC tower had a tool to schedule departures to fly across predicted gaps in the arrival flow. When departures were mistimed and separation could not be ensured, a safe but less efficient route was provided to the departures to fly under the arrival flows. A coordination using a point-out procedure allowed the arrival controller to control the SJC departures right after takeoff. We manipulated the accuracy of departure time (accurate vs. inaccurate) as well as which sector took control of the departures after takeoff (departure vs. arrival sector) in a 2x2 full factorial plan. Results show that coordination time decreased and climb efficiency increased when the arrival sector controlled the aircraft right after takeoff. Also, climb efficiency increased when the departure times were more accurate. Coordination was shown to be a critical component of tactical operations in shared airspace. Although workload, coordination, and safety were judged by controllers as acceptable in the simulation, it appears that in the field, controllers would need improved tools and coordination procedures to support this procedure.

  4. 77 FR 21510 - Proposed Revocation of Class D Airspace; Andalusia, AL and Proposed Amendment of Class E Airspace...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Andalusia, AL, as the Air Traffic Control Tower at South Alabama Regional Airport at Bill Benton Field has... Alabama Regional Airport at Bill Benton Field. This action also would update the geographic coordinates of... 1, Code of Federal Regulations, part 51, subject to the annual revision of FAA, Order 7400.9 and...

  5. 78 FR 21084 - Proposed Amendment of Class D and E Airspace, and Establishment of Class E Airspace; Oceana NAS, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... Control Tower at Oceana NAS (Apollo Soucek Field) operating on a part time basis. This action would... facility to part time. The geographic coordinates of the airport also would be adjusted to coincide with... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2013...

  6. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  7. Strategic planning for aircraft noise route impact analysis: A three dimensional approach

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.; Rowan, M. J.; Ahuja, K. K.

    1993-01-01

    The strategic routing of aircraft through navigable and controlled airspace to minimize adverse noise impact over sensitive areas is critical in the proper management and planning of the U.S. based airport system. A major objective of this phase of research is to identify, inventory, characterize, and analyze the various environmental, land planning, and regulatory data bases, along with potential three dimensional software and hardware systems that can be potentially applied for an impact assessment of any existing or planned air route. There are eight data bases that have to be assembled and developed in order to develop three dimensional aircraft route impact methodology. These data bases which cover geographical information systems, sound metrics, land use, airspace operational control measures, federal regulations and advisories, census data, and environmental attributes have been examined and aggregated. A three dimensional format is necessary for planning, analyzing space and possible noise impact, and formulating potential resolutions. The need to develop this three dimensional approach is essential due to the finite capacity of airspace for managing and planning a route system, including airport facilities. It appears that these data bases can be integrated effectively into a strategic aircraft noise routing system which should be developed as soon as possible, as part of a proactive plan applied to our FAA controlled navigable airspace for the United States.

  8. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  9. A Human-in-the Loop Exploration of the Dynamic Airspace Configuration Concept

    NASA Technical Reports Server (NTRS)

    Homola, Jeffrey; Lee, Paul U.; Prevot, Thomas; Lee, Hwasoo; Kessell, Angela; Brasil, Connie; Smith, Nancy

    2010-01-01

    An exploratory human-in-the-loop study was conducted to better understand the impact of Dynamic Airspace Configuration (DAC) on air traffic controllers. To do so, a range of three progressively more aggressive algorithmic approaches to sectorizations were chosen. Sectorizations from these algorithms were used to test and quantify the range of impact on the controller and traffic. Results show that traffic count was more equitably distributed between the four test sectors and duration of counts over MAP were progressively lower as the magnitude of boundary change increased. However, taskload and workload were also shown to increase with the increase in aggressiveness and acceptability of the boundary changes decreased. Overall, simulated operations of the DAC concept did not appear to compromise safety. Feedback from the participants highlighted the importance of limiting some aspects of boundary changes such as amount of volume gained or lost and the extent of change relative to the initial airspace design.

  10. 76 FR 22011 - Amendment of Class E Airspace; Carizzo Springs, Glass Ranch Airport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ...-0877; Airspace Docket No. 10-ASW-13] Amendment of Class E Airspace; Carizzo Springs, Glass Ranch... amends Class E airspace for the Carizzo Springs, Glass Ranch Airport, TX, airspace area, to accommodate... rulemaking to amend Class E airspace for the Carizzo Springs, Glass Ranch Airport, TX, airspace area...

  11. 77 FR 7525 - Revision of Class D and Class E Airspace; Hawthorne, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ...-0610; Airspace Docket No. 11-AWP-10] Revision of Class D and Class E Airspace; Hawthorne, CA AGENCY... Part 71.1. The Class D airspace and Class E airspace designations listed in this document will be... CFR) Part 71 by revising Class D airspace and Class E surface airspace designated as an extension to...

  12. 75 FR 20323 - Proposed Amendment to and Establishment of Restricted Areas and Other Special Use Airspace...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... Restricted Areas and Other Special Use Airspace; Razorback Range Airspace Complex, AR AGENCY: Federal... special use airspace in the Razorback Range Airspace Complex, AR. The airspace docket number in that NPRM...

  13. X-48B Phase 1 Flight Maneuver Database and ICP Airspace Constraint Analysis

    NASA Technical Reports Server (NTRS)

    Fast, Peter Alan

    2010-01-01

    The work preformed during the Summer 2010 by Peter Fast. The main tasks assigned were to update and improve the X-48 Flight Maneuver Database and conduct an Airspace Constraint Analysis for the Remotely Operated Aircraft Area used to flight test Unmanned Arial Vehicles. The final task was to develop and demonstrate a working knowledge of flight control theory.

  14. Towards FAA Certification of UAVs

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2003-01-01

    As of June 30, 2003, all Unmanned Aerial Vehicles (UAV), no matter how small, must adhere to the same FAA regulations as human-piloted aircraft. These regulations include certification for flying in controlled airspace and certification of flight software based on RTCA DO-178B. This paper provides an overview of the steps necessary to obtain certification, as well as a discussion about the challenges UAV's face when trying to meet these requirements. It is divided into two parts: 1) Certifications for Flying in Controlled Airspace; 2) Certification of Flight Software per RTCA DO-178B.

  15. Using Neural Networks to Explore Air Traffic Controller Workload

    NASA Technical Reports Server (NTRS)

    Martin, Lynne; Kozon, Thomas; Verma, Savita; Lozito, Sandra C.

    2006-01-01

    When a new system, concept, or tool is proposed in the aviation domain, one concern is the impact that this will have on operator workload. As an experience, workload is difficult to measure in a way that will allow comparison of proposed systems with those already in existence. Chatterji and Sridhar (2001) suggested a method by which airspace parameters can be translated into workload ratings, using a neural network. This approach was employed, and modified to accept input from a non-real time airspace simulation model. The following sections describe the preparations and testing work that will enable comparison of a future airspace concept with a current day baseline in terms of workload levels.

  16. 75 FR 65250 - Proposed Amendment of Class E Airspace and Revocation of Class E Airspace; Easton, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... rulemaking (NPRM). SUMMARY: This action proposes to modify Class E surface airspace and airspace 700 feet... modify Class E surface airspace and Class E airspace extending upward from 700 feet above the surface to... Class E airspace extending upward from 700 feet above the surface are published in Paragraph 6002, 6004...

  17. 78 FR 33015 - Proposed Amendment of Class D Airspace; Waco, TX, and Establishment of Class D Airspace; Waco...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ...-0136; Airspace Docket No. 13-ASW-4] Proposed Amendment of Class D Airspace; Waco, TX, and Establishment of Class D Airspace; Waco, TSTC-Waco Airport, TX AGENCY: Federal Aviation Administration (FAA), DOT... Waco, TX, by separating the Class D airspace at Waco Regional Airport from the Class D airspace at TSTC...

  18. 78 FR 48290 - Amendment of Class D Airspace; Waco, TX, and Establishment of Class D Airspace; Waco, TSTC-Waco...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0136; Airspace Docket No. 13-ASW-4] Amendment of Class D Airspace; Waco, TX, and Establishment of Class D Airspace; Waco, TSTC-Waco Airport, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class D airspace at Waco, TX, by separating the Class D airspace...

  19. 77 FR 40488 - Amendment of Class D and Class E Airspace; Lakehurst, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-0456; Airspace Docket No. 12-AEA-9] Amendment of Class D and Class E Airspace; Lakehurst, NJ AGENCY... changes the name of the airport associated with the Class D and Class E airspace at Lakehurst, NJ. The... associated with the Class D airspace and Class E airspace designated as an extension to a Class D airspace...

  20. 78 FR 65554 - Establishment of Class E Airspace; Rome, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...-0533; Airspace Docket No. 13-ANM-19] Establishment of Class E Airspace; Rome, OR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... (NBAA) supporting the establishment of Class E en route airspace. Class E airspace designations are...

  1. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude - the UAS traffic management (UTM) system - to higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODM's economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  2. 75 FR 18047 - Amendment of Class D Airspace; Hollywood, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ...; Airspace Docket No. 10-ASO-17] Amendment of Class D Airspace; Hollywood, FL AGENCY: Federal Aviation... rule published in the Federal Register on July 23, 1997, amending Class D airspace at North Perry... airspace area exclusion as Class D airspace area. This action corrects that error. The FAAs National...

  3. A System Concept for Facilitating User Preferences in En Route Airspace

    NASA Technical Reports Server (NTRS)

    Vivona, R. A.; Ballin, M. G.; Green, S. M.; Bach, R. E.; McNally, B. D.

    1996-01-01

    The Federal Aviation Administration is trying to make its air traffic management system more responsive to the needs of the aviation community by exploring the concept of 'free flight' for aircraft flying under instrument flight rules. A logical first step toward free flight could be made without significantly altering current air traffic control (ATC) procedures or requiring new airborne equipment by designing a ground-based system to be highly responsive to 'user preference' in en route airspace while providing for an orderly transition to the terminal area. To facilitate user preference in all en route environments, a system based on an extension of the Center/TRACON Automation System (CTAS) is proposed in this document. The new system would consist of two integrated components. An airspace tool (AT) focuses on unconstrained en route aircraft (e.g., not transitioning to the terminal airspace), taking advantage of the relatively unconstrained nature of their flights and using long-range trajectory prediction to provide cost-effective conflict resolution advisories to sector controllers. A sector tool (ST) generates efficient advisories for all aircraft, with a focus on supporting controllers in analyzing and resolving complex, highly constrained traffic situations. When combined, the integrated AT/ST system supports user preference in any air route traffic control center sector. The system should also be useful in evaluating advanced free-flight concepts by serving as a test bed for future research. This document provides an overview of the design concept, explains its anticipated benefits, and recommends a development strategy that leads to a deployable system.

  4. A Virtual Laboratory for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh

    2017-01-01

    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X-Plane simulator and X-PlaneConnect toolbox, the live aircraft module which connects fielded aircraft using onboard cellular communications devices, the hardware in the loop (HITL) module which connects laboratory based bench-top hardware testbeds and the research module which contains diagnostics and prognostics tools for analysis of live air traffic situations and vehicle health conditions. The testbed also features other modules for data recording and playback, information visualization, and air traffic generation. Software reliability, safety, and latency are some of the critical design considerations in development of the testbed.

  5. 75 FR 62460 - Revocation and Establishment of Class E Airspace; Northeast Alaska, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...-0445; Airspace Docket No. 10-AAL-13] Revocation and Establishment of Class E Airspace; Northeast Alaska... removes redundant Class E airspace in Northeast Alaska and establishes Class E airspace near Eagle, Alaska... proposed rulemaking in the Federal Register to remove some Class E airspace in Northeast Alaska and...

  6. 75 FR 57848 - Revocation of Class E Airspace, Brunswick, ME; and Establishment of Class E Airspace, Wiscasset, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ...-0248; Airspace Docket No. 10-ANE-10] Revocation of Class E Airspace, Brunswick, ME; and Establishment of Class E Airspace, Wiscasset, ME AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E Airspace at Brunswick NAS, Brunswick, ME, as the airport has...

  7. 14 CFR 71.51 - Class C airspace.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS Class C Airspace § 71.51 Class C airspace. The Class C airspace areas listed in subpart C of FAA Order... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Class C airspace. 71.51 Section 71.51...

  8. 14 CFR 71.51 - Class C airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS Class C Airspace § 71.51 Class C airspace. The Class C airspace areas listed in subpart C of FAA Order... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class C airspace. 71.51 Section 71.51...

  9. 77 FR 64889 - Amendment of Class D and Class E Airspace; Hawthorne, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ...-2012-1092; Airspace Docket No. 12-AWP-6] Amendment of Class D and Class E Airspace; Hawthorne, CA...: This action amends the airspace description for Class D and Class E airspace at Jack Northrop Field... the legal description of the existing Class D and E airspace at Jack Northrop Field/Hawthorne...

  10. 78 FR 52422 - Amendment of Class D and E Airspace; Wrightstown, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ...-0565; Airspace Docket No. 13-AEA-11] Amendment of Class D and E Airspace; Wrightstown, NJ AGENCY... amends Class D and E Airspace at Wrightstown, NJ, by updating the geographic coordinates and changing the... (14 CFR) part 71 amends Class D airspace and E airspace designated as an extension to a Class D...

  11. 76 FR 67103 - Proposed Revision of Class D and Class E Airspace; Hawthorne, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...-0610; Airspace Docket No. 11-AWP-10] Proposed Revision of Class D and Class E Airspace; Hawthorne, CA...: This action proposes to revise Class D and E airspace at Jack Northrop Field/Hawthorne Municipal... (14 CFR) Part 71 by revising Class D airspace and Class E airspace designated as an extension to Class...

  12. 75 FR 51171 - Amendment of Class D and Class E Airspace; Kaneohe, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ...; Airspace Docket No. 10-AWP-10] Amendment of Class D and Class E Airspace; Kaneohe, HI AGENCY: Federal... Class D and Class E airspace at Kaneohe Bay Marine Corps Air Station (MCAS), Kaneohe, HI. The FAA is... airspace and Class E airspace upward from 700 feet above the surface at Kaneohe Bay MCAS, Kaneohe Bay, HI...

  13. 76 FR 38580 - Proposed Amendment of Class D Airspace; Eglin AFB, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...-0087; Airspace Docket No. 11-ASO-12] Proposed Amendment of Class D Airspace; Eglin AFB, FL AGENCY... action proposes to amend Class D Airspace in the Eglin Air Force Base (AFB), FL airspace area. The Destin... amendment to Title 14, Code of Federal Regulations (14 CFR) part 71 to amend Class D airspace in the Eglin...

  14. Airborne Trajectory Management (ABTM): A Blueprint for Greater Autonomy in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Wing, David

    2017-01-01

    The aviation users of the National Airspace System (NAS) - the airlines, General Aviation (GA), the military and, most recently, operators of Unmanned Aircraft Systems (UAS) - are constrained in their operations by the design of the current paradigm for air traffic control (ATC). Some of these constraints include ATC preferred routes, departure fix restrictions and airspace ground delay programs. As a result, most flights cannot operate on their most efficient business trajectories and a great many flights are delayed even getting into the air, which imposes a significant challenge to maintaining efficient flight and network operations. Rather than accepting ever more sophisticated scheduling solutions to accommodate the existing constraints in the airspace, a series of increasingly capable airborne technologies, integrated with planned improvements in the ground system through the Federal Aviation Administration (FAA) Next Generation Air Traffic Management System (NextGen) programs, could produce much greater operational flexibility for flight path optimization by the aviation system users. These capabilities, described in research coming out of NASA's Aeronautics Research Mission Directorate, can maintain or improve operational safety while taking advantage of air and ground NextGen technologies in novel ways. The underlying premise is that the nation's physical airspace is still abundant and underused, and that the delays and inefficient flight operations resulting from artificial structure in airspace use and procedural constraints on those operations may not be necessary for safe and efficient flight. This article is not an indictment of today's NAS or the people who run it. Indeed, it is an exceptional achievement that Air Traffic Management (ATM) - the complex human/machine conglomeration of communications, navigation and surveillance equipment and the rules and procedures for controlling traffic in the airspace - has both the capacity and enables the degree of efficiency in air travel that it does. But it is also true that sixty years of the "radar religion" (i.e., reliance on radar-based command and control) has produced several generations of ATM system operators and researchers who believe that introducing automation within the existing functional structure of ATM is the only way to "modernize" the system. Even NextGen, which began as a proposal for "transformational" change in the way ATC is performed, has morphed over the last decade and a half to become just the inclusion of Global Positioning System (GPS) for navigation, Automatic Dependent Surveillance Broadcast (ADS-B) for surveillance, and Data Communications (Data Comm) for communications, while still operating in rigidly structured airspace with human controllers being responsible for separation and traffic flow management (TFM) within defined sectors of airspace, using the same horizontal separation standards that have been in use since raw primary radar was introduced in the 1950s. No system as massive as the current NAS ATM can be replaced with a better system while simultaneously meeting the transportation and other aviation needs of the nation. A new generation of more flexible operations must emerge and yet coexist in harmony with the current operation (i.e., share the same airspace without segregation), thereby enabling a long-term transformation to take place in the way increasing numbers of flights are handled. Market forces will be the ultimate driver of this transformation, and investment realities mandate that real benefits must accrue to the first operators to adopt these new capabilities. In fact, the kinds of missions envisioned in the emerging world of UAS operations, unachievable under conventional ATM, demand that this transformation take place. Airborne Trajectory Management (ABTM) is proposed as a series of transformational steps leading to vastly increased flexibility in flight operations and capacity in the airspace to accommodate many varied airspace uses while improving safety. As will be described, ABTM enables the gradual emergence of a new paradigm for user-based trajectory management in ATM that brings tangible benefits to equipped operators at every step while leveraging the air and ground investments of NextGen. There are five steps in this ABTM transformation.1 NASA has extensively studied the first and last of these steps, and a roadmap of increasing capabilities and benefits is proposed for bridging between these operational concepts.

  15. General Aviation Avionics Statistics: 1977.

    DTIC Science & Technology

    1980-06-01

    combustion of fuel, the gases of combustion (or the heated air) being used both to rotate the turbine and to create a thrust-producing engine. Turboprop...cc 0 4) 0 𔃾) cu z 4) 0 a$. .- MCI 1001 APPENDIX D AIRSPACE STRUCTURE 101 APPENDIX D. AIRSPACE STRUCTURE -t FLIO* - -FL450 I ContinentalI Control...Compass 9. Landing gear 4. Tachometer 10. Belts 5. Oil temperature 11. Special equipment for 6. Emergency locator over water flights transmitter

  16. Airspace Command and Control in the Contemporary Operating Environment

    DTIC Science & Technology

    2010-05-07

    entities including the TACPs, the Theater Battle Management Core System ( TBMCS ), and MIRC chat. The role of the TACPs was discussed in a previous...section under the elements of TAGS. Planners at the CAOC use TBMCS to build, distribute, and execute the ATO and ACO. TBMCS interfaces with AFATDS and... TBMCS , a validity check is conducted on all airspace users to determine potential conflicts. The deconfliction analysis uses take-off times, routes

  17. Unmanned Aircraft Systems (UAS): Addressing the Regulatory Issues for National Airspace System (NAS) Integration

    DTIC Science & Technology

    2009-04-01

    terms of IFR operations or passenger enplanements. The configuration of each Class B airspace area is individually tailored and consists of a surface...are serviced by a radar approach control, and that have a certain number of IFR operations or passenger enplanements. Although the configuration of...ft MSL Figure 3 depicts DoD UASs operating in their respective NAS classifications: Global Hawk Predator B Transponder See & Avoid DME IFR

  18. Hyperpolarized gas diffusion MRI for the study of atelectasis and acute respiratory distress syndrome.

    PubMed

    Cereda, Maurizio; Xin, Yi; Kadlecek, Stephen; Hamedani, Hooman; Rajaei, Jennia; Clapp, Justin; Rizi, Rahim R

    2014-12-01

    Considerable uncertainty remains about the best ventilator strategies for the mitigation of atelectasis and associated airspace stretch in patients with acute respiratory distress syndrome (ARDS). In addition to several immediate physiological effects, atelectasis increases the risk of ventilator-associated lung injury, which has been shown to significantly worsen ARDS outcomes. A number of lung imaging techniques have made substantial headway in clarifying the mechanisms of atelectasis. This paper reviews the contributions of computed tomography, positron emission tomography, and conventional MRI to understanding this phenomenon. In doing so, it also reveals several important shortcomings inherent to each of these approaches. Once these shortcomings have been made apparent, we describe how hyperpolarized (HP) gas MRI--a technique that is uniquely able to assess responses to mechanical ventilation and lung injury in peripheral airspaces--is poised to fill several of these knowledge gaps. The HP-MRI-derived apparent diffusion coefficient (ADC) quantifies the restriction of (3) He diffusion by peripheral airspaces, thereby obtaining pulmonary structural information at an extremely small scale. Lastly, this paper reports the results of a series of experiments that measured ADC in mechanically ventilated rats in order to investigate (i) the effect of atelectasis on ventilated airspaces, (ii) the relationship between positive end-expiratory pressure (PEEP), hysteresis, and the dimensions of peripheral airspaces, and (iii) the ability of PEEP and surfactant to reduce airspace dimensions after lung injury. An increase in ADC was found to be a marker of atelectasis-induced overdistension. With recruitment, higher airway pressures were shown to reduce stretch rather than worsen it. Moving forward, HP MRI has significant potential to shed further light on the atelectatic processes that occur during mechanical ventilation. Copyright © 2014 John Wiley & Sons, Ltd.

  19. 77 FR 71362 - Proposed Amendment of Class E Airspace; Decorah, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...-1433; Airspace Docket No. 11-ACE-26] Proposed Amendment of Class E Airspace; Decorah, IA AGENCY... action proposes to amend Class E airspace at Decorah, IA. Decommissioning of the Decorah non-directional... instrument approach procedures at Decorah Municipal Airport, Decorah, IA. Airspace reconfiguration is...

  20. 78 FR 47237 - Proposed Amendment of Class E Airspace; Chariton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ...-0255; Airspace Docket No. 13-ACE-4] Proposed Amendment of Class E Airspace; Chariton, IA AGENCY... action proposes to amend Class E airspace at Chariton, IA. Decommissioning of the Chariton non... for standard instrument approach procedures at Chariton Municipal Airport, Chariton, IA. Airspace...

  1. 77 FR 12992 - Amendment of Class E Airspace; Jacksonville, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... the airport to aid in the navigation of our National Airspace System. The airport dimensions and... amending Class E surface airspace, and Class E airspace extending upward from 700 feet above the surface... change, and does not involve a change in the dimensions or operating requirements of that airspace...

  2. 77 FR 45985 - Proposed Amendment of Class E Airspace; Lincoln, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...-0764; Airspace Docket No. 12-ANE-12] Proposed Amendment of Class E Airspace; Lincoln, ME AGENCY... action proposes to amend Class E Airspace at Lincoln, ME, as the Lincoln Non-Directional Radio Beacon..., Lincoln, ME. Airspace reconfiguration is necessary due to the decommissioning of the Lincoln NDB and...

  3. 76 FR 39259 - Establishment of Class E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ...-0116; Airspace Docket No. 11-ANE-1] Establishment of Class E Airspace; Brunswick, ME AGENCY: Federal... Class E airspace at Brunswick Executive Airport, Brunswick, ME. DATES: The effective date is moved from... Class E airspace at Brunswick Executive Airport, Brunswick, ME. This action will move up the effective...

  4. 76 FR 14824 - Proposed Establishment of Class E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...-0116; Airspace Docket No. 11-ANE-1] Proposed Establishment of Class E Airspace; Brunswick, ME AGENCY... action proposes to establish Class E Airspace at Brunswick, ME, to accommodate new Standard Instrument... Brunswick, ME to provide airspace required to support the standard instrument approach procedures developed...

  5. 77 FR 16783 - Proposed Amendment of Class E Airspace; Orlando, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ...-0503; Airspace Docket No. 11-ASO-19] Proposed Amendment of Class E Airspace; Orlando, FL AGENCY... action proposes to amend Class E Airspace at Orlando, FL, as new Standard Instrument Approach Procedures have been developed at Orlando Executive Airport. This action would enhance the safety and airspace...

  6. 78 FR 74006 - Amendment of Class E Airspace; Green Bay, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ...-0941; Airspace Docket No. 13-AGL-32] Amendment of Class E Airspace; Green Bay, WI AGENCY: Federal... Class E airspace within the Green Bay, WI, area by updating the geographic coordinates for Austin... coordinates, within Class E airspace, of Austin-Straubel International Airport, Green Bay, WI, to coincide...

  7. 75 FR 13667 - Amendment of Class E Airspace; Huntingburg, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...; Airspace Docket No. 09-AGL-21] Amendment of Class E Airspace; Huntingburg, IN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Huntingburg, IN... rulemaking to amend Class E airspace for Huntingburg Airport, Huntingburg, IN (74 FR 66592) Docket No. FAA...

  8. 75 FR 18403 - Amendment of Class E Airspace; Rifle, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...-1014; Airspace Docket No. 09-ANM-10] Amendment of Class E Airspace; Rifle, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will establish Class E airspace at Rifle, CO.... This action also changes the airport name in the existing Class E airspace description. DATES...

  9. 77 FR 46282 - Amendment of Class E Airspace; Sweetwater, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...-0829; Airspace Docket No. 11-ASW-9] Amendment of Class E Airspace; Sweetwater, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Sweetwater, TX, area...

  10. 77 FR 51464 - Amendment of Class E Airspace; Augusta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ...-1334; Airspace Docket No. 11-ASO-43] Amendment of Class E Airspace; Augusta, GA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace in... amend Class E airspace in the Augusta, GA area (77 FR 21506). Interested parties were invited to...

  11. 75 FR 65224 - Amendment of Class E Airspace; Williston, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0407; Airspace Docket No. 10-AGL-7] Amendment of Class E Airspace; Williston, ND AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace for Williston...

  12. 78 FR 27031 - Amendment of Class E Airspace; Kingston, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ...-0831; Airspace Docket No. 12-AEA-13] Amendment of Class E Airspace; Kingston, NY AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace at Kingston, NY...

  13. 75 FR 41075 - Amendment of Class E Airspace; Bozeman, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ...-1220; Airspace Docket No. 09-ANM-30] Amendment of Class E Airspace; Bozeman, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at... proposed rulemaking to amend Class E airspace at Bozeman, MT (75 FR 20321). Interested parties were invited...

  14. 76 FR 55554 - Amendment of Class E Airspace; Rutherfordton, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ...-1330; Airspace Docket No. 10-ASO-41] Amendment of Class E Airspace; Rutherfordton, NC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace 700 feet above...

  15. 75 FR 13668 - Amendment of Class E Airspace; Georgetown, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...-0934; Airspace Docket No. 09-ASW-29] Amendment of Class E Airspace; Georgetown, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Register a notice of proposed rulemaking to amend Class E airspace for Georgetown Municipal Airport...

  16. 76 FR 70865 - Modification of Class E Airspace; Driggs, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ...-0837; Airspace Docket No. 11-ANM-17] Modification of Class E Airspace; Driggs, ID AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at... were received. Class E airspace designations are published in paragraph 6005, of FAA Order 7400.9V...

  17. 76 FR 16530 - Establishment of Class E Airspace; Creighton, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ...-1170; Airspace Docket No. 10-ACE-13] Establishment of Class E Airspace; Creighton, NE AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... Federal Register a notice of proposed rulemaking to establish Class E airspace for Creighton, NE, creating...

  18. 77 FR 10649 - Modification of Class E Airspace; Douglas, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ...-1313; Airspace Docket No. 11-AWP-17] Modification of Class E Airspace; Douglas, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at... airport, and corrects a typographical error in the legal description for the Class E 700 foot airspace...

  19. 76 FR 47061 - Amendment of Class E Airspace; Lakeland, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...-0005; Airspace Docket No. 10-ASO-42] Amendment of Class E Airspace; Lakeland, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... proposed rulemaking (NPRM) to amend Class E airspace at Lakeland Linder Regional Airport, Lakeland, FL (75...

  20. 77 FR 32896 - Modification of Class E Airspace; Billings, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ...-0316; Airspace Docket No. 12-ANM-1] Modification of Class E Airspace; Billings, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at... were received. Class E airspace designations are published in paragraph 6005, of FAA Order 7400.9V...

  1. 76 FR 80232 - Establishment of Class E Airspace; Oneonta, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...-0744; Airspace Docket No. 11-ASO-33] Establishment of Class E Airspace; Oneonta, AL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E Airspace... published in the Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace at...

  2. 75 FR 65226 - Establishment of Class E Airspace; Bamberg, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0685; Airspace Docket No. 10-ASO-27] Establishment of Class E Airspace; Bamberg, SC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E Airspace... Register a notice of proposed rulemaking to establish Class E airspace at Bamberg, SC (75 FR 52654) Docket...

  3. 78 FR 11980 - Amendment of Class E Airspace; Casper, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ...-0509; Airspace Docket No. 12-ANM-15] Amendment of Class E Airspace; Casper, WY AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace areas at Casper... were received. Class E airspace designations are published in paragraphs 6004, 6005 and 6006...

  4. 75 FR 65227 - Revocation of Class E Airspace; Franklin, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0603; Airspace Docket No. 10-ASW-9] Revocation of Class E Airspace; Franklin, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E airspace for... published in the Federal Register a notice of proposed rulemaking to remove Class E airspace for Franklin...

  5. 75 FR 65225 - Amendment of Class E Airspace; Youngstown, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-267; Airspace Docket No. 10-AGL-5] Amendment of Class E Airspace; Youngstown, OH AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for... Federal Register a notice of proposed rulemaking to amend Class E airspace for Youngstown, OH, creating...

  6. 14 CFR 71.71 - Class E airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class E airspace. 71.71 Section 71.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE... (2) The airspace below 1,500 feet above the surface of the earth. (b) The airspace areas designated...

  7. 77 FR 38472 - Amendment of Class D Airspace; Pontiac, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...-1142; Airspace Docket No. 11-AGL-22] Amendment of Class D Airspace; Pontiac, MI AGENCY: Federal... Class D airspace within the Pontiac, MI, area by changing the name of the airport from [[Page 38473... County International Airport and adjusting the geographic coordinates within Class D airspace to coincide...

  8. 75 FR 43814 - Amendment of Class D Airspace; Goldsboro, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...-0095; Airspace Docket No. 10-ASO-18] Amendment of Class D Airspace; Goldsboro, NC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends the Class D Airspace at... published in the Federal Register a notice of proposed rulemaking to amend Class D airspace for Seymour...

  9. 78 FR 67296 - Establishment of Class D Airspace; Mesquite, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ...-0580; Airspace Docket No. 12-ASW-2] Establishment of Class D Airspace; Mesquite, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class D airspace... establish Class D airspace for Mesquite Metro Airport, Mesquite, TX (78 FR 48842) Docket No. FAA-2012- 0580...

  10. 78 FR 27029 - Modification of Class C Airspace; Nashville International Airport; TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ...-0031; Airspace Docket No. 12-AWA-7] Modification of Class C Airspace; Nashville International Airport... modifies the Nashville International Airport, TN, Class C airspace area by removing a cutout from the... modify the Nashville International Airport, TN, Class C airspace area (78 FR 6257). Interested parties...

  11. Interval Management Display Design Study

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Beyer, Timothy M.; Cooke, Stuart D.; Grant, Karlus A.

    2014-01-01

    In 2012, the Federal Aviation Administration (FAA) estimated that U.S. commercial air carriers moved 736.7 million passengers over 822.3 billion revenue-passenger miles. The FAA also forecasts, in that same report, an average annual increase in passenger traffic of 2.2 percent per year for the next 20 years, which approximates to one-and-a-half times the number of today's aircraft operations and passengers by the year 2033. If airspace capacity and throughput remain unchanged, then flight delays will increase, particularly at those airports already operating near or at capacity. Therefore it is critical to create new and improved technologies, communications, and procedures to be used by air traffic controllers and pilots. National Aeronautics and Space Administration (NASA), the FAA, and the aviation industry are working together to improve the efficiency of the National Airspace System and the cost to operate in it in several ways, one of which is through the creation of the Next Generation Air Transportation System (NextGen). NextGen is intended to provide airspace users with more precise information about traffic, routing, and weather, as well as improve the control mechanisms within the air traffic system. NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) Project is designed to contribute to the goals of NextGen, and accomplishes this by integrating three NASA technologies to enable fuel-efficient arrival operations into high-density airports. The three NASA technologies and procedures combined in the ATD-1 concept are advanced arrival scheduling, controller decision support tools, and aircraft avionics to enable multiple time deconflicted and fuel efficient arrival streams in high-density terminal airspace.

  12. 77 FR 71361 - Proposed Amendment of Class E Airspace; West Union, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...-1434; Airspace Docket No. 11-ACE-27] Proposed Amendment of Class E Airspace; West Union, IA AGENCY... action proposes to amend Class E airspace at West Union, IA. Decommissioning of the West Union non... instrument approach procedures at George L. Scott Municipal Airport, West Union, IA. Airspace reconfiguration...

  13. 77 FR 50646 - Proposed Establishment of Class D Airspace; Bryant AAF, Anchorage, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ...-0433; Airspace Docket No. 12-AAL-5] Proposed Establishment of Class D Airspace; Bryant AAF, Anchorage...). SUMMARY: This action proposes to establish Class D airspace at Bryant Army Airfield (AAF), Anchorage AK... 71 by establishing Class D airspace extending upward from the surface at Bryant AAF, Anchorage AK...

  14. 77 FR 27666 - Proposed Amendment of Class E Airspace; Bar Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...-1366; Airspace Docket No. 11-ANE-13] Proposed Amendment of Class E Airspace; Bar Harbor, ME AGENCY... action proposes to amend Class E Airspace at Bar Harbor, ME, as the Surry Non-Directional Radio Beacon... Airport, Bar Harbor, ME. Airspace reconfiguration is necessary due to the decommissioning of the Surry NDB...

  15. 77 FR 49712 - Amendment to Class B Airspace; Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... operating in the vicinity of SLC. The modified Class B airspace areas were designed to ensure all instrument... final Salt Lake City Class B airspace design provides operational and safety benefits to all airspace... Salt Lake City Class B airspace design also incorporated reductions to the northern and southern...

  16. 78 FR 57545 - Proposed Amendment of Class D Airspace; Dallas, Addison Airport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ...-0749; Airspace Docket No. 13-ASW-16] Proposed Amendment of Class D Airspace; Dallas, Addison Airport... airspace ceiling at Addison Airport, Dallas, TX, is being withdrawn. Upon review, the FAA determined that the proposed rulemaking action is premature in that an existing Dallas/Fort Worth Class B airspace...

  17. 77 FR 17363 - Proposed Establishment of Class E Airspace; West Memphis, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ...-0155; Airspace Docket No. 12-ASW-1] Proposed Establishment of Class E Airspace; West Memphis, AR AGENCY... action proposes to establish Class E airspace at West Memphis, AR. Separation of existing Class E... surface at West Memphis, AR, to accommodate the separation of existing Class E airspace surrounding West...

  18. 78 FR 30797 - Proposed Amendment of Class E Airspace; Point Thomson, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...-1175; Airspace Docket No. 12-AAL-11] Proposed Amendment of Class E Airspace; Point Thomson, AK AGENCY... action proposes to modify the airspace at Point Thomson, AK by establishing Class E Airspace at Point Thomson Airstrip Airport, Point Thomson, AK. This will accommodate aircraft using a new Area Navigation...

  19. 78 FR 69787 - Proposed Modification of Class E Airspace; Sitka, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ...-0921; Airspace Docket No. 13-AAL-4] Proposed Modification of Class E Airspace; Sitka, AK AGENCY... rulemaking (NPRM). SUMMARY: This action proposes to modify Class E airspace at Sitka, AK, to [[Page 69788... Gutierrez, AK. After review of the airspace, the FAAs Western Terminal Products Office found modification of...

  20. 76 FR 55555 - Amendment of Class E Airspace; Shelby, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ...-0280; Airspace Docket No. 11-ASO-16] Amendment of Class E Airspace; Shelby, NC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at Shelby, NC, to... rulemaking to amend Class E airspace at Shelby, NC (76 FR 35799) Docket No. FAA-2011-0280. Interested parties...

  1. 76 FR 28887 - Revocation of Class E Airspace; Ozark, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ...-0432; Airspace Docket No. 11-ACE-8] Revocation of Class E Airspace; Ozark, MO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E airspace at Ozark, MO... Regulations (14 CFR) Part 71 by removing Class E airspace in the Ozark, MO, area. Abandonment of the former...

  2. 78 FR 57788 - Amendment of Class E Airspace; Everett, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ...-0434; Airspace Docket No. 13-ANM-1] Amendment of Class E Airspace; Everett, WA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at Everett, WA, to... the FAA. No comments were received. Class E airspace designations are published in paragraph 6004, of...

  3. 75 FR 13669 - Amendment of Class E Airspace; Dumas, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...-1151; Airspace Docket No. 09-ASW-30] Amendment of Class E Airspace; Dumas, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Dumas, TX, adding... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace for Dumas, TX...

  4. 77 FR 68067 - Establishment of Class E Airspace; Coaldale, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ...-0705; Airspace Docket No. 12-AWP-4] Establishment of Class E Airspace; Coaldale, NV AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... forth in the NPRM for lowering the Class E airspace down to 1,200 feet above the surface was vague and...

  5. 76 FR 35966 - Amendment of Class E Airspace; Cocoa, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ...-0070; Airspace Docket No. 10-ASO-43] Amendment of Class E Airspace; Cocoa, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at Cocoa, FL, as the... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace at Merritt...

  6. 76 FR 53049 - Amendment of Class E Airspace; Shelby, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ...-0536; Airspace Docket No. 11-ANM-13] Amendment of Class E Airspace; Shelby, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at Shelby, MT, to... E airspace designations are published in paragraph 6005 of FAA Order 7400.9U dated August 18, 2010...

  7. 76 FR 2800 - Establishment of Class E Airspace; Lucin, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ...-2010-1208; Airspace Docket No. 10-ANM-16] Establishment of Class E Airspace; Lucin, UT AGENCY: Federal... E en route domestic airspace for the Lucin VORTAC, Lucin, UT. DATES: Effective 0901 UTC, February 17..., UT, incorrectly referenced the existing Class E en route domestic airspace exclusion above 8,500 feet...

  8. 78 FR 33963 - Amendment of Class E Airspace; Atwood, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ...; Airspace Docket No. 11-ACE-24] Amendment of Class E Airspace; Atwood, KS AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Atwood, KS... published in the Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the...

  9. 77 FR 68681 - Amendment of Class E Airspace; Anthony, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-0652; Airspace Docket No. 12-ACE-4] Amendment of Class E Airspace; Anthony, KS AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Anthony, KS... the Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Anthony...

  10. 77 FR 5169 - Amendment of Class D Airspace; Saginaw, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...-1144; Airspace Docket No. 11-AGL-24] Amendment of Class D Airspace; Saginaw, MI AGENCY: Federal... Class D airspace within the Saginaw, MI, area by changing the name of the airport from Tri-City... International Airport and updating the geographic coordinates within Class D airspace to coincide with the FAA's...

  11. 76 FR 66662 - Proposed Amendment of Class D Airspace; Santa Monica, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ...-0611; Airspace Docket No. 11-AWP-11] Proposed Amendment of Class D Airspace; Santa Monica, CA AGENCY... action proposes to modify Class D airspace at Santa Monica Municipal Airport, CA, to accommodate aircraft... an amendment to Title 14 Code of Federal Regulations (14 CFR) Part 71 by modifying Class D airspace...

  12. 75 FR 17891 - Amendment of Class D Airspace; Goldsboro, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ...-0095; Airspace Docket No. 10-ASO-18] Amendment of Class D Airspace; Goldsboro, NC AGENCY: Federal... proposes to amend the Class D airspace at Seymour Johnson AFB, Goldsboro, NC, to reflect the part-time... amend Class D airspace at Seymour Johnson AFB, Goldsboro, NC, to reflect the part-time operations of the...

  13. 77 FR 5170 - Amendment of Class D Airspace; Jackson, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...-1143; Airspace Docket No. 11-AGL-23] Amendment of Class D Airspace; Jackson, MI AGENCY: Federal... Class D airspace within the Jackson, MI, area by changing the name of the airport from Jackson County... Class D airspace to coincide with the FAA's aeronautical database. This is an administrative change and...

  14. 78 FR 48291 - Amendment of Class D Airspace; Sparta, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0165; Airspace Docket No. 13-AGL-6] Amendment of Class D Airspace; Sparta, WI AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class D airspace at Sparta, WI... Register a notice of proposed rulemaking (NPRM) to amend Class D airspace for Sparta/Fort McCoy Airport (78...

  15. 76 FR 39038 - Proposed Establishment of Class E Airspace; Lebanon, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ...-0558; Airspace Docket No. 11-AEA-13] Proposed Establishment of Class E Airspace; Lebanon, PA AGENCY... action proposes to establish Class E Airspace at Lebanon, PA, to accommodate new Standard Instrument... amendment to Title 14, Code of Federal Regulations (14 CFR) part 71 to establish Class E airspace at Lebanon...

  16. 75 FR 39145 - Amendment of Class C Airspace; Flint, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ...-0599; Airspace Docket No. 10-AWA-3] RIN 2120-AA66 Amendment of Class C Airspace; Flint, MI AGENCY... description of the Bishop International Airport, Flint, MI, Class C airspace area by amending the airport... defines the Class C airspace area's center point. The Rule This action amends Title 14 Code of Federal...

  17. [A case of loxoprofen sodium-induced bronchiolitis obliterans organizing pneumonia (BOOP)].

    PubMed

    Fujita, Kazue; Sakamoto, Osamu; Matsumoto, Mitsuhiro; Kohrogi, Hirotsugu; Suga, Moritaka

    2003-12-01

    A 78-year-old man was referred to our department because of an abnormal shadow on the chest radiograph and liver dysfunction after lung resection for lung cancer. Following the operation, loxoprofen sodium was administered to control his chest pain. A chest radiograph on admission showed airspace consolidation in the right lower lung field. In addition, leukocytosis and elevation of CRP were observed. Although piperacillin sodium was given to him, airspace consolidation on a chest radiograph was increased. A bronchoalveolar lavage fluid study showed that total cell counts and proportion of lymphocytes were increased, and the CD4/CD8 ratio was 1.77. A transbronchial lung biopsy specimen revealed organizing pneumonia with Masson bodies. Furthermore, a lymphocyte stimulation test for loxoprofen sodium was positive. From the clinical course, laboratory data and pathologic findings, we considered this case to be loxoprofen sodium-induced BOOP. Withdrawal of loxoprofen sodium and treatment with corticosteroid resulted in marked improvement of the clinical findings. Although a rare occurrence, it is important to recognize that BOOP can be caused by loxoprofen sodium.

  18. Concepts of Integration for UAS Operations in the NAS

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Munoz, Cesar A.; Hoffler, Keith D.

    2012-01-01

    One of the major challenges facing the integration of Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is the lack of an onboard pilot that can comply with the legal requirement identified in the US Code of Federal Regulations (CFR) that pilots see and avoid other aircraft. UAS will be expected to demonstrate the means to perform the function of see and avoid while preserving the safety level of the airspace and the efficiency of the air traffic system. This paper introduces a Sense and Avoid (SAA) concept for integration of UAS into the NAS that is currently being developed by the National Aeronautics and Space Administration (NASA) and identifies areas that require additional experimental evaluation to further inform various elements of the concept. The concept design rests on interoperability principles that take into account both the Air Traffic Control (ATC) environment as well as existing systems such as the Traffic Alert and Collision Avoidance System (TCAS). Specifically, the concept addresses the determination of well clear values that are large enough to avoid issuance of TCAS corrective Resolution Advisories, undue concern by pilots of proximate aircraft and issuance of controller traffic alerts. The concept also addresses appropriate declaration times for projected losses of well clear conditions and maneuvers to regain well clear separation.

  19. Differing Air Traffic Controller Responses to Similar Trajectory Prediction Errors

    NASA Technical Reports Server (NTRS)

    Mercer, Joey; Hunt-Espinosa, Sarah; Bienert, Nancy; Laraway, Sean

    2016-01-01

    A Human-In-The-Loop simulation was conducted in January of 2013 in the Airspace Operations Laboratory at NASA's Ames Research Center. The simulation airspace included two en route sectors feeding the northwest corner of Atlanta's Terminal Radar Approach Control. The focus of this paper is on how uncertainties in the study's trajectory predictions impacted the controllers ability to perform their duties. Of particular interest is how the controllers interacted with the delay information displayed in the meter list and data block while managing the arrival flows. Due to wind forecasts with 30-knot over-predictions and 30-knot under-predictions, delay value computations included errors of similar magnitude, albeit in opposite directions. However, when performing their duties in the presence of these errors, did the controllers issue clearances of similar magnitude, albeit in opposite directions?

  20. Beyond NextGen: AutoMax Overview and Update

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal; Alexandrov, Natalia

    2013-01-01

    Main Message: National and Global Needs - Develop scalable airspace operations management system to accommodate increased mobility needs, emerging airspace uses, mix, future demand. Be affordable and economically viable. Sense of Urgency. Saturation (delays), emerging airspace uses, proactive development. Autonomy is Needed for Airspace Operations to Meet Future Needs. Costs, time critical decisions, mobility, scalability, limits of cognitive workload. AutoMax to Accommodate National and Global Needs. Auto: Automation, autonomy, autonomicity for airspace operations. Max: Maximizing performance of the National Airspace System. Interesting Challenges and Path Forward.

  1. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  2. 75 FR 44719 - Amendment and Establishment of Restricted Areas and Other Special Use Airspace, Razorback Range...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... airspace needed for military aircraft to conduct medium to high altitude standoff weapon delivery profiles... existing restricted area, and amends the boundaries description of the Special Use Airspace (SUA) Hog High..., MOAs are not rulemaking airspace actions. However, since the proposed R-2402B airspace and the Hog High...

  3. 75 FR 52484 - Proposed Removal and Amendment of Class E Airspace, Oxford, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Class E airspace extending upward from 700 feet at Oxford, CT. Decommissioning of the Waterbury Non... extension to Class D airspace and amend the description of the Class E airspace extending upward 700 feet... extension to Class D and the Class E 700 foot airspace designations are published in Paragraph 6004 and 6005...

  4. 78 FR 6261 - Proposed Amendment of Class E Airspace; Griffin, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Airport, Griffin, GA (Lat. 33[deg]13'37'' N., long. 84[deg]16'30'' W.) That airspace extending upward from...-1219; Airspace Docket No. 12-ASO-43] Proposed Amendment of Class E Airspace; Griffin, GA AGENCY... action proposes to amend Class E Airspace at Griffin, GA, as the Griffin Non-Directional Beacon (NDB) has...

  5. 75 FR 17322 - Proposed Revocation of Class D and E Airspace; Big Delta, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...-0083 Airspace Docket No. 10-AAL-5] Proposed Revocation of Class D and E Airspace; Big Delta, AK AGENCY... action proposes to revoke Class D and E airspace at Big Delta, AK. This airspace duplicates the... NASSIF Building at the above address. An informal docket may also be examined during normal business...

  6. 77 FR 28243 - Amendment of Class D Airspace; Cocoa Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...-0099; Airspace Docket No. 12-ASO-11] Amendment of Class D Airspace; Cocoa Beach, FL AGENCY: Federal... Federal Register on April 11, 2012 that amends Class D airspace at Cocoa Beach, FL. DATES: Effective 0901...), amends Class D airspace at Cape Canaveral Skid Strip, Cocoa Beach, FL. A typographical error was made in...

  7. 75 FR 44727 - Proposed Revocation and Establishment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ...-0660; Airspace Docket No. 10-ANM-4] Proposed Revocation and Establishment of Class E Airspace; St... (NPRM). SUMMARY: This action proposes to remove Class E airspace at St. George Municipal Airport, St... also would establish Class E airspace for the new St. George Municipal Airport located to the south of...

  8. 75 FR 81518 - Proposed Establishment of Class E Airspace; Wolfeboro, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ...-1007; Airspace Docket No. 10-ANE-109] Proposed Establishment of Class E Airspace; Wolfeboro, NH AGENCY...-1007; Airspace Docket No. 10-ANE-109, at the beginning of your comments. You may also submit and review... is made: ``Comments to Docket No. FAA-2010-1007; Airspace Docket No. 10-ANE-109.'' The postcard will...

  9. 76 FR 53361 - Proposed Revocation and Amendment of Class E Airspace; Olathe, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0748; Airspace Docket No. 11-ACE-13] Proposed Revocation and Amendment of Class E Airspace; Olathe, KS... docket number FAA-2011-0748/Airspace Docket No. 11- ACE-13, at the beginning of your comments. You may... No. FAA-2011-0748/ Airspace Docket No. 11-ACE-13.'' The postcard will be date/time stamped and...

  10. 78 FR 25229 - Proposed Establishment of Class E Airspace; Stockton, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ...-0274; Airspace Docket No. 13-ACE-2] Proposed Establishment of Class E Airspace; Stockton, KS AGENCY... the docket number FAA-2013-0274/Airspace Docket No. 13- ACE-2, at the beginning of your comments. You... No. FAA-2013-0274/ Airspace Docket No. 13-ACE-2.'' The postcard will be date/time stamped and...

  11. 78 FR 26243 - Amendment of Class E Airspace; Easton, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ...-0394; Airspace Docket No. 12-AEA-8] Amendment of Class E Airspace; Easton, PA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at Easton, PA, as the... (NPRM) to amend Class E airspace at Easton, PA (78 FR 5152) Docket No. FAA-2012-0394. Interested parties...

  12. 78 FR 40382 - Modification of Class D and E Airspace; Twin Falls, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ...-0258; Airspace Docket No. 13-ANM-12] Modification of Class D and E Airspace; Twin Falls, ID AGENCY... Class D airspace, omitted from the Title in the notice of proposed rulemaking is included in this rule... were received. Subsequent to publication, the FAA found that the Class D airspace reference was omitted...

  13. 78 FR 58158 - Establishment of Class D Airspace; Bryant AAF, Anchorage, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...-2012-0433; Airspace Docket No. 12-AAL-5] Establishment of Class D Airspace; Bryant AAF, Anchorage, AK... corrects a final rule published in the Federal Register August 8, 2013 that establishes Class D airspace at... Bryant AAF, in that the language indicating Class D airspace as part time was left out. DATES: Effective...

  14. 76 FR 77383 - Amendment of Class C Airspace; Palm Beach International Airport, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ...-0527; Airspace Docket No. 11-AWA-2] Amendment of Class C Airspace; Palm Beach International Airport, FL... action modifies the Palm Beach International Airport, FL, Class C airspace area by raising the floor of Class C airspace over Palm Beach County Park Airport. The FAA is taking this action to enhance safety...

  15. 77 FR 34208 - Amendment of Class D and Class E Airspace; Leesburg, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... amends Class D and Class E airspace at Leesburg, FL, changing the airport's name to Leesburg... and public procedures under 5 U.S.C. 553(b) are unnecessary. The Class D airspace, Class E surface...-0445; Airspace Docket No. 12-ASO-27] Amendment of Class D and Class E Airspace; Leesburg, FL AGENCY...

  16. 77 FR 4712 - Proposed Establishment of Class E Airspace; Pender, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ...-1103; Airspace Docket No. 11-ACE-14] Proposed Establishment of Class E Airspace; Pender, NE AGENCY... the docket number FAA-2011-1103/Airspace Docket No. 11- ACE-14, at the beginning of your comments. You... made: ``Comments to Docket No. FAA-2011-1103/ Airspace Docket No. 11-ACE-14.'' The postcard will be...

  17. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics Research Mission Directorate. This project is focused on advancing the state of the art and providing research and analysis results in the areas of Separation Assurance, Communications (non-governmental spectrum allocation for UAS), Certification, and Human System Integration (ground control station design/pilot interfaces). The project is working in close coordination with the FAA and industry standards organizations (e.g. RTCA SC 203). More details on this project are provided in a separate article in this year's yearbook

  18. Military Unmanned Aircraft Systems in Support of Homeland Security

    DTIC Science & Technology

    2007-03-30

    14 CFR) part 91.1131, Right-of-Way Rules , there would be no UA flights in civil airspace.31 To meet this need, the FAA and DoD have agreed on an... rules , vice the current operations which are centered on combat operations. A step-by-step approach needs to be adopted now to introduce UAS into a...H-1. 45 Peter La Franchi , “US Industry Calls for National UAV in Controlled Airspace Initiative,” Flight International, 31 March 2006 [journal on

  19. Automatic construction of aerial corridor for navigation of unmanned aircraft systems in class G airspace using LiDAR

    NASA Astrophysics Data System (ADS)

    Feng, Dengchao; Yuan, Xiaohui

    2016-05-01

    According to the airspace classification by the Federal Aviation Agency, Class G airspace is the airspace at 1,200 feet or less to the ground, which is beneath class E airspace and between classes B-D cylinders around towered airstrips. However, the lack of flight supervision mechanism in this airspace, unmanned aerial system (UAS) missions pose many safety issues. Collision avoidance and route planning for UASs in class G airspace is critical for broad deployment of UASs in commercial and security applications. Yet, unlike road network, there is no stationary marker in airspace to identify corridors that are available and safe for UASs to navigate. In this paper, we present an automatic LiDAR-based airspace corridor construction method for navigation in class G airspace and a method for route planning to minimize collision and intrusion. Our idea is to combine LiDAR to automatically identify ground objects that pose navigation restrictions such as airports and high-rises. Digital terrain model (DTM) is derived from LiDAR point cloud to provide an altitude-based class G airspace description. Following the FAA Aeronautical Information Manual, the ground objects that define the restricted airspaces are used together with digital surface model derived from LiDAR data to construct the aerial corridor for navigation of UASs. Preliminary results demonstrate competitive performance and the construction of aerial corridor can be automated with much great efficiency.

  20. 78 FR 52114 - Proposed Amendment of Class E Airspace; Macon, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ..., GA (Lat. 32[deg]41'34'' N., long. 83[deg]38'57'' W.) Macon Downtown Airport (Lat. 32[deg]49'18'' N...-0552; Airspace Docket No. 13-ASO-14] Proposed Amendment of Class E Airspace; Macon, GA AGENCY: Federal... proposes to amend Class E Airspace at Macon, GA, as the Bay Creek NDB has been decommissioned and airspace...

  1. 75 FR 30689 - Modification of Class C Airspace; Beale Air Force Base, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ...-0367; Airspace Docket No. 10-AWA-2] RIN 2120-AA66 Modification of Class C Airspace; Beale Air Force... modifies the legal description of the Beale Air Force Base (AFB), CA, Class C airspace area by allowing the... Beale AFB Class C airspace area will be consistent with the actual hours of operation of the Beale AFB...

  2. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  3. 78 FR 63860 - Amendment of Class D Airspace; Kwajalein Island, Marshall Islands, RMI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...This action amends the Kwajalein Island Class D airspace description by amending the geographic coordinates for Bucholz Army Airfield (AAF), Kwajalein Island, Marshall Islands, RMI. The Bucholz AAF geographic coordinates information was updated in the Kwajalein Island Class E airspace descriptions in 2011, but was inadvertently overlooked in the Kwajalein Island Class D airspace description. This action ensures the safety of aircraft operating in the Kwajalein Island airspace area. This is an administrative action and does not affect the operating requirements of the airspace.

  4. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  5. Airborne Conflict Management within Confined Airspace in a Piloted Simulation of DAG-TM Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan; Johnson, Edward; Wing, David J.; Barhydt, Richard

    2003-01-01

    A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of Distributed Air/Ground Traffic Management (DAG-TM) autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special use airspace (SUA) regions on either side of the pilot s planned route. The available airspace was further varied by changing the separation standard for lateral separation between 3 nm and 5 nm. The pilot had to maneuver through the corridor between the SUA s, avoid other traffic and meet flow management constraints. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. This is a follow-up study to work presented at the 4th USA/Europe Air Traffic Management R&D Seminar in December 2001. Nearly all of the pilots were able to meet their TFM constraints while maintaining adequate separation from other traffic. In only 3 out of 59 runs were the pilots unable to meet their required time of arrival. Two loss of separation cases are studied and it is found that the pilots need conflict prevention information presented in a clearer manner. No degradation of performance or safety was seen between the wide and narrow corridors. Although this was not a thorough study of the consequences of reducing the en route lateral separation, nothing was found that would refute the feasibility of reducing the separation requirement from 5 nm to 3 nm. The creation of additional, second-generation conflicts is also investigated. Two resolution methods were offered to the pilots: strategic and tactical. The strategic method is a closed-loop alteration to the Flight Management System (FMS) active route that considers other traffic as well as TFM constraints. The tactical resolutions are short-term resolutions that leave avoiding other traffic conflicts and meeting the TFM constraints to the pilot. Those that made use of the strategic tools avoided additional conflicts, whereas, those making tactical maneuvers often caused additional conflicts. Many of these second-generation conflicts could be avoided by improved conflict prevention tools that clearly present to the pilot which maneuver choices will result in a conflict-free path. These results, together with previously reported studies, continue to support the feasibility of autonomous aircraft operations.

  6. The Air Traffic Control Environment in 2010

    DOT National Transportation Integrated Search

    1989-10-01

    This document has been prepared to assist the Airspace Control Planning Panel by describing the broad outline and general features of the environment for air traffic control functions anticipated in the 2010 timeframe. The description is based on est...

  7. Analysis of reportable events in Kansas City air route traffic control center

    DOT National Transportation Integrated Search

    2017-02-10

    The implementation of ControllerPilot Datalink Communications (CPDLC) in domestic en route airspace will change the controllers and pilots : tasks, which will, in turn change the types of observed errors. This study characterizes the current...

  8. Speed and path control for conflict-free flight in high air traffic demand in terminal airspace

    NASA Astrophysics Data System (ADS)

    Rezaei, Ali

    To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new waypoints in the airspace. As a byproduct, instead of minimal path modification, one can use the aircraft arrival time schedule to generate the sequence in which the aircraft reach their destinations.

  9. Data Mining for Understanding and Impriving Decision-Making Affecting Ground Delay Programs

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao Xun; Sridhar, Banavar

    2013-01-01

    The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions. The work reported in this paper is focused on ground delay programs. Data mining algorithms have the potential to develop associations between weather patterns and the corresponding ground delay program responses. If successful, they can be used to improve and standardize TFM decision resulting in better predictability of traffic flows on days with reliable weather forecasts. The approach here seeks to develop a set of data mining and machine learning models and apply them to historical archives of weather observations and forecasts and TFM initiatives to determine the extent to which the theory can predict and explain the observed traffic flow behaviors.

  10. 78 FR 11115 - Proposed Amendment of Class E Airspace; Atwood, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ...-1431; Airspace Docket No. 11-ACE-24] Proposed Amendment of Class E Airspace; Atwood, KS AGENCY: Federal..., Washington, DC 20590-0001. You must identify the docket number FAA-2011-1431/Airspace Docket No. 11- ACE-24... [[Page 11116

  11. 78 FR 52109 - Proposed Amendment of Class D and E Airspace, and Establishment of Class E Airspace; Salisbury, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ...]30'34'' W.) That airspace extending upward from the surface within 2.5 miles each side of a 133[deg...-Ocean City Wicomico Regional Airport, MD (Lat. 38[deg]20'25'' N., long. 75[deg]30'34'' W.) That airspace... (Lat. 38[deg]20'25'' N., long. 75[deg]30'34'' W.) That airspace extending upward from the surface...

  12. Concept of Operations for Interval Management Arrivals and Approach

    NASA Technical Reports Server (NTRS)

    Hicok, Daniel S.; Barmore, Bryan E.

    2016-01-01

    This paper presents the concept of operations for interval management operations to be deployed in the US National Airspace System (NAS) by the Federal Aviation Administration (FAA) after 2020. The use of interval management operations is described that begin in en route airspace and continue to a termination point inside the arrival terminal area, in a terminal environment that includes other arrival management tools such as arrival metering, Ground-based Interval Management - Spacing (GIM-S), and Terminal Sequencing and Spacing (TSAS). The roles of Air Traffic Controllers and Flight Crews and the ground automation tools that are used by Air Traffic Controllers to enable the primary operation and variations are described.

  13. Alternative Architectures for Distributed Work in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Billings, Charles E.; Chapman, Roger; Obradovich, Heintz; McCoy, C. Elaine; Orasanu, Judith

    2000-01-01

    The architecture for the National Airspace System (NAS) in the United States has evolved over time to rely heavily on the distribution of tasks and control authority in order to keep cognitive complexity manageable for any one individual. This paper characterizes a number of different subsystems that have been recently incorporated in the NAS. The goal of this discussion is to begin to identify the critical parameters defining the differences among alternative architectures in terms of the locus of control and in terms of access to relevant data and knowledge. At an abstract level, this analysis can be described as an effort to describe alternative "rules of the game" for the NAS.

  14. Guidance concepts for time-based flight operations

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1990-01-01

    Airport congestion and the associated delays are severe in today's airspace system and are expected to increase. NASA and the FAA is investigating various methods of alleviating this problem through new technology and operational procedures. One concept for improving airspace productivity is time-based control of aircraft. Research to date has focused primarily on the development of time-based flight management systems and Air Traffic Control operational procedures. Flight operations may, however, require special onboard guidance in order to satisfy the Air Traffic Control imposed time constraints. The results are presented of a simulation study aimed at evaluating several time-based guidance concepts in terms of tracking performance, pilot workload, and subjective preference. The guidance concepts tested varied in complexity from simple digital time-error feedback to an advanced time-referenced-energy guidance scheme.

  15. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  16. Improved Navigational Technology and Air Traffic Control: A Description of Controller Coordination and Workload

    DOT National Transportation Integrated Search

    1995-04-01

    Improved navigational technology, such as microwave landing systems (MLS) or : global positioning systems (GPS), installed in today's commercial aircraft : enable the air traffic control (ATC) system to better utilize its airspace. : This increased e...

  17. Analysis of Controller-Pilot Voice Communications from Kansas City Air Route Traffic Control Center

    DOT National Transportation Integrated Search

    2017-07-01

    The implementation of Controller Pilot Datalink Communications (CPDLC) in domestic en route airspace is a key enabling technology in the Next Generation Air Transportation System. The Federal Aviation Administration plans to implement en route CPDLC ...

  18. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Rios, Joseph

    2016-01-01

    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated coverage. Both would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. UTM is creating an airspace management tool that allows the ATM system to accommodate the number of UAS that will operate in the low altitude airspace. The analogy is just because we have a car, whether its autonomous or someone is driving, does not diminish the need for a road or road signs or rules of the road.

  19. Air traffic control specialist visual scanning II : task load, visual noise, and intrusions into controlled airspace.

    DOT National Transportation Integrated Search

    1999-12-01

    The Federal Aviation Administration (FAA) started an Air Traffic Control Specialist (ATCS) information-scanning program a number : of years ago. The goal is to learn about how controllers use information displays and develop techniques for reducing a...

  20. Team processes in airway facilities operations control centers.

    DOT National Transportation Integrated Search

    2000-07-01

    In October 2000, the Airway Facilities organization plans to transition the National Airspace System (NAS) monitoring responsibilities to three regional Operations Control Centers (OCCs). Teams in these facilities will be different from those that cu...

  1. Control of Future Air Traffic Systems via Complexity Bound Management

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia

    2013-01-01

    The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace

  2. Expression of Iroquois genes is up-regulated during early lung development in the nitrofen-induced pulmonary hypoplasia.

    PubMed

    Doi, Takashi; Lukošiūtė, Aušra; Ruttenstock, Elke; Dingemann, Jens; Puri, Prem

    2011-01-01

    Iroquois homeobox (Irx) genes have been implicated in the early lung morphogenesis of vertebrates. Irx1-3 and Irx5 gene expression is seen in fetal lung in rodents up to day (D) 18.5 of gestation. Fetal lung in Irx knockdown mice shows loss of mesenchyme and dilated airspaces, whereas nitrofen-induced hypoplastic lung displays thickened mesenchyme and diminished airspaces. We hypothesized that the Irx genes are up-regulated during early lung morphogenesis in the nitrofen-induced hypoplastic lung. Pregnant rats were exposed either to olive oil or nitrofen on D9. Fetal lungs harvested on D15 were divided into control and nitrofen groups; and the lungs harvested on D18 were divided into control, nitrofen without congenital diaphragmatic hernia (CDH[-]), and nitrofen with CDH (CDH[+]). Irx gene expression levels were analyzed by reverse transcriptase polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression of Irx family. Pulmonary Irx1-3 and Irx5 messenger RNA expression levels were significantly up-regulated in nitrofen group compared with controls at D15. On D15, Irx immunoreactivity was increased in nitrofen-induced hypoplastic lung compared with controls. Overexpression of Irx genes in the early lung development may cause pulmonary hypoplasia in the nitrofen CDH model by inducing lung dysmorphogenesis with thickened mesenchyme and diminished airspaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. 75 FR 4270 - Establishment of Class E Airspace; Tompkinsville, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0604; Airspace Docket No. 09-ASO-18] Establishment of Class E Airspace; Tompkinsville, KY AGENCY... September 14, 2009 that establishes Class E Airspace at Tompkinsville--Monroe County Airport, Tompkinsville...

  4. Conflict-free trajectory planning for air traffic control automation

    NASA Technical Reports Server (NTRS)

    Slattery, Rhonda; Green, Steve

    1994-01-01

    As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.

  5. A Human Factors Approach to Bridging Systems and Introducing New Technologies

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    2011-01-01

    The application of human factors in aviation has grown to cover a wide range of disciplines and methods capable of assessing human-systems integration at many levels. For example, at the individual level, pilot workload may be studied while at the team level, coordinated workload distribution may be the focal point. At the organizational level, the way in which individuals and teams are supported by training and standards, policies and procedures may introduce additional, relevant topics. A consideration of human factors at each level contributes to our understanding of successes and failures in pilot performance, but this system focused on the flight deck alone -- is only one part of the airspace system. In the FAA's NextGen plan to overhaul the National Airspace System (NAS), new capabilities will enhance flightdeck systems (pilots), flight operations centers (dispatchers) and air traffic control systems (controllers and air traffic managers). At a minimum, the current roles and responsibilities of these three systems are likely to change. Since increased automation will be central to many of the enhancements, the role of automation is also likely to change. Using NextGen examples, a human factors approach for bridging complex airspace systems will be the main focus of this presentation. It is still crucial to consider the human factors within each system, but the successful implementation of new technologies in the NAS requires an understanding of the collaborations that occur when these systems intersect. This human factors approach to studying collaborative systems begins with detailed task descriptions within each system to establish a baseline of the current operations. The collaborative content and context are delineated through the review of regulatory and advisory materials, letters of agreement, policies, procedures and documented practices. Field observations and interviews also help to fill out the picture. Key collaborative functions across systems are identified and placed on a phase-of-flight timeline including information requirements, decision authority and use of automation, as well as level of frequency and criticality.

  6. Pilot and Controller Evaluations of Separation Function Allocation in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Wing, David; Prevot, Thomas; Morey, Susan; Lewis, Timothy; Martin, Lynne; Johnson, Sally; Cabrall, Christopher; Como, Sean; Homola, Jeffrey; Sheth-Chandra, Manasi; hide

    2013-01-01

    Two human-in-the-loop simulation experiments were conducted in coordinated fashion to investigate the allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). Ground-based separation was provided by air traffic controllers without automation tools, with tools, or by ground-based automation with controllers in a managing role. Airborne self-separation was provided by airline pilots using self-separation automation enabled by airborne surveillance technology. The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations, assuming the starting point of current-day operations and modeling an emergence of NextGen technologies and procedures. In the controller-focused experiment, the impact of mixed operations on controller performance was assessed at four stages of NextGen implementation. In the pilot-focused experiment, the limits to which pilots with automation tools could take full responsibility for separation from ground-controlled aircraft were tested. Results indicate that the presence of self-separating aircraft had little impact on the controllers' ability to provide separation services for ground-controlled aircraft. Overall performance was best in the most automated environment in which all aircraft were data communications equipped, ground-based separation was highly automated, and self-separating aircraft had access to trajectory intent information for all aircraft. In this environment, safe, efficient, and highly acceptable operations could be achieved for twice today's peak airspace throughput. In less automated environments, reduced trajectory intent exchange and manual air traffic control limited the safely achievable airspace throughput and negatively impacted the maneuver efficiency of self-separating aircraft through high-density airspace. In a test of scripted conflicts with ground-managed aircraft, flight crews of self-separating aircraft prevented separation loss in all conflicts with detection time greater than one minute. In debrief, pilots indicated a preference for at least five minute's alerting notice and trajectory intent information on all aircraft. When intent information on ground-managed aircraft was available, self-separating aircraft benefited from fewer conflict alerts and fewer required deviations from trajectory-based operations.

  7. Design principles and algorithms for automated air traffic management

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    1995-01-01

    This paper presents design principles and algorithm for building a real time scheduler. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high altitude airspace far from the airport and low altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time.

  8. Data link communications in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    In the near future, conventional radio communications, currently the primary medium for the transfer of information between aircraft and ground stations, will be replaced by digital data link. This paper briefly describes this technology and summarizes what are believed to be the principal human factor issues associated with data link implementation in the airspace system. Integration of data link communications with existing systems on the flight deck and in the Air Traffic Control system is discussed with regard for both near term implementation and longer term operational issues.

  9. 77 FR 64919 - Proposed Establishment of Class E Airspace; Princeton, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... Class E Airspace; Princeton, KY AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to establish Class E Airspace at Princeton, KY to... serving the Princeton-Caldwell County Airport. This action would enhance the safety and airspace...

  10. 75 FR 12678 - Revision of Class E Airspace; Dillingham, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-1055; Airspace Docket No. 09-AAL-16] Revision of Class E Airspace; Dillingham, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at...

  11. 76 FR 14800 - Establishment of Class E Airspace; Wolfeboro, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2010-1007; Airspace Docket No. 10-ANE-109] Establishment of Class E Airspace; Wolfeboro, NH AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E Airspace...

  12. 75 FR 4269 - Establishment of Class E Airspace; Clayton, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0605; Airspace Docket No. 09-ASO-19] Establishment of Class E Airspace; Clayton, GA AGENCY: Federal... September 14, 2009 that establishes Class E Airspace at Heaven's Landing Airport, Clayton, GA. DATES...

  13. 75 FR 4270 - Modification of Class E Airspace; Anniston, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0653; Airspace Docket 09-ASO-22] Modification of Class E Airspace; Anniston, AL AGENCY: Federal... October 28, 2009 that modifies the Class E airspace at Anniston Metropolitan Airport, Anniston, AL. DATES...

  14. 76 FR 9220 - Establishment of Class E Airspace; Martinsville, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...-1031; Airspace Docket No. 10-AGL-19] Establishment of Class E Airspace; Martinsville, IN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Federal Register a notice of proposed rulemaking to establish Class E airspace for Martinsville, IN...

  15. 76 FR 44285 - Proposed Amendment of Class E Airspace; Fayette, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Class E Airspace; Fayette, AL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E Airspace at Fayette, AL, as the... at Richard Arthur Field, Fayette, AL. Airspace reconfiguration is necessary due to the...

  16. Airspace Technology Demonstration 2 (ATD-2) Integrated Surface and Airspace Simulation - Experiment Plan

    NASA Technical Reports Server (NTRS)

    Verma, Savita Arora; Jung, Yoon Chul

    2017-01-01

    This presentation describes the overview of the ATD-2 project and the integrated simulation of surface and airspace to evaluate the procedures of IADS system and evaluate surface metering capabilities via a high-fidelity human-in-the-loop simulation. Two HITL facilities, Future Flight Central (FFC) and Airspace Operations Laboratory (AOL), are integrated for simulating surface operations of the Charlotte-Douglas International Airport (CLT) and airspace in CLT TRACON and Washington Center.

  17. 78 FR 18800 - Amendment of Class E Airspace; Decorah, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ...-1433; Airspace Docket No. 11-ACE-26] Amendment of Class E Airspace; Decorah, IA AGENCY: Federal... Decorah, IA. Decommissioning of the Decorah non-directional beacon (NDB) at Decorah Municipal Airport has... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Decorah, IA, area...

  18. 76 FR 53356 - Proposed Amendment of Class E Airspace; Greenfield, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0846; Airspace Docket No. 11-ACE-18] Proposed Amendment of Class E Airspace; Greenfield, IA AGENCY... action proposes to amend Class E airspace at Greenfield, IA. Decommissioning of the Greenfield non-directional beacon (NDB) at Greenfield Municipal Airport, Greenfield, IA, has made this action necessary for...

  19. 76 FR 75447 - Amendment of Class E Airspace; Centerville, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ...-0830; Airspace Docket No. 11-ACE-16] Amendment of Class E Airspace; Centerville, IA AGENCY: Federal... Centerville, IA. Decommissioning of the Centerville non-directional beacon (NDB) and cancellation of the NDB... Federal Register a notice of proposed rulemaking to amend Class E airspace for the Centerville, IA, area...

  20. 76 FR 53358 - Proposed Amendment of Class E Airspace; Centerville, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0830; Airspace Docket No. 11-ACE-16] Proposed Amendment of Class E Airspace; Centerville, IA AGENCY... action proposes to amend Class E airspace at Centerville, IA. Decommissioning of the Centerville non... Centerville Municipal Airport, Centerville, IA. Decommissioning of the Centerville NDB and cancellation of the...

  1. 77 FR 42427 - Amendment of Class E Airspace; Grinnell, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ...-1430; Airspace Docket No. 11-ACE-23] Amendment of Class E Airspace; Grinnell, IA AGENCY: Federal... Class E airspace at Grinnell Regional Airport, Grinnell, IA, by removing reference to the Grinnell NDB... Regional Airport, Grinnell, IA, and amends the geographic coordinates of the airport to coincide with the...

  2. 78 FR 48840 - Proposed Amendment of Class E Airspace; Hampton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...-0585; Airspace Docket No. 13-ACE-7] Proposed Amendment of Class E Airspace; Hampton, IA AGENCY: Federal... proposes to amend Class E airspace at Hampton, IA. Decommissioning of the Hampton non-directional beacon... for standard instrument approach procedures at Hampton Municipal Airport, Hampton, IA. A segment would...

  3. 77 FR 45987 - Proposed Amendment of Class E Airspace; Guthrie, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...-1436; Airspace Docket No. 11-ACE-29] Proposed Amendment of Class E Airspace; Guthrie, IA AGENCY... action proposes to amend Class E airspace at Guthrie, IA. Decommissioning of the Guthrie Center non-directional radio beacon (NDB) at Guthrie County Regional Airport, Guthrie, IA, has made this action necessary...

  4. 78 FR 76053 - Amendment of Class E Airspace; Chariton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ...-0255; Airspace Docket No. 13-ACE-4] Amendment of Class E Airspace; Chariton, IA AGENCY: Federal... Chariton, IA. Decommissioning of the Chariton non-directional beacon (NDB) at Chariton Municipal Airport... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Chariton, IA, area...

  5. 76 FR 56127 - Proposed Amendment of Class E Airspace; Mercury, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ...-0894; Airspace Docket No. 11-AWP-14] Proposed Amendment of Class E Airspace; Mercury, NV AGENCY... action proposes to amend Class E airspace at Mercury, Desert Rock Airport, Mercury, NV. Decommissioning of the Mercury Non- Directional Beacon (NDB) at Mercury, Desert Rock Airport has made this action...

  6. 76 FR 18378 - Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ...-1189; Airspace Docket No. 10-AWP-19] Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at Taylor Airport, Taylor, AZ, to accommodate aircraft using the CAMBO One Departure, and the Area Navigation (RNAV...

  7. 78 FR 48294 - Amendment of Class E Airspace; Mason, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-1141; Airspace Docket No. 12-ASW-12] Amendment of Class E Airspace; Mason, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Mason, TX... Approach Procedures at Mason County Airport. This action enhances the safety and management of Instrument...

  8. 76 FR 43575 - Amendment of Class E Airspace; Staunton, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... airspace extending upward from 700 feet above the surface at Shenandoah Valley Regional Airport, Staunton... airspace extending upward from 700 feet above the surface to support new SIAPs developed at Shenandoah... E airspace areas extending upward from 700 feet or more above the surface of the earth...

  9. 78 FR 6727 - Amendment of Class E Airspace; Lincoln, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...-0764; Airspace Docket No. 12-ANE-12] Amendment of Class E Airspace; Lincoln, ME AGENCY: Federal... Lincoln, ME, as the Lincoln Non-Directional Beacon (NDB) has been decommissioned and new Standard... in the Federal Register a notice of proposed rulemaking to amend Class E airspace at Lincoln, ME (77...

  10. 78 FR 72009 - Establishment of Class E Airspace; Star, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ...-0440; Airspace Docket No. 13-ASO-10] Establishment of Class E Airspace; Star, NC AGENCY: Federal... at Star, NC, to accommodate a new Area Navigation (RNAV) Global Positioning System (GPS) Standard... Federal Register a notice of proposed rulemaking to establish Class E airspace at Star, NC (78 FR 54413...

  11. 77 FR 42430 - Establishment of Class E Airspace; West Memphis, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Airport from the Class E airspace of Memphis International Airport, Memphis, TN, has made this action necessary to enhance the safety and management of Instrument Flight Rules (IFR) operations at the airport... airspace surrounding West Memphis Municipal Airport from the Class E airspace area of Memphis International...

  12. 76 FR 28685 - Proposed Amendment of Class E Airspace; Hannibal, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ...-0046; Airspace Docket No. 11-ACE-1] Proposed Amendment of Class E Airspace; Hannibal, MO AGENCY... action proposes to amend Class E airspace at Hannibal, MO. Decommissioning of the Hannibal non-directional beacon (NDB) at Hannibal Regional Airport, Hannibal, MO, has made this action necessary for the...

  13. 75 FR 29656 - Amendment of Class E Airspace; Magnolia, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ...-1179; Airspace Docket No. 09-ASW-35] Amendment of Class E Airspace; Magnolia, AR AGENCY: Federal... airspace for Magnolia, AR. Decommissioning of the Magnolia non-directional beacon (NDB) at Magnolia Municipal Airport, Magnolia, AR has made this action necessary to enhance the safety and management of...

  14. 78 FR 78298 - Proposed Establishment of Class E Airspace; Phoenix, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...-0956; Airspace Docket No. 13-AWP-17] Proposed Establishment of Class E Airspace; Phoenix, AZ AGENCY... rulemaking (NPRM). SUMMARY: This action proposes to establish Class E airspace at the Phoenix VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Phoenix, AZ, to facilitate vectoring of...

  15. 78 FR 59806 - Establishment of Class E Airspace; White Mountain, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ...-1185; Airspace Docket No. 12-AAL-8] Establishment of Class E Airspace; White Mountain, AK AGENCY... airspace at White Mountain Airport, White Mountain, AK, to accommodate aircraft using new Area Navigation..., Airport, White Mountain, AK (77 FR 75598). Interested parties were invited to participate in this...

  16. 77 FR 6 - Amendment of Class E Airspace; Kwigillingok, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ...-0881; Airspace Docket No. 11-AAL-18] Amendment of Class E Airspace; Kwigillingok, AK AGENCY: Federal... Kwigillingok, AK. The revision of two standard instrument approach procedures at the Kwigillingok Airport has... airspace at Kwigillingok, AK (76 FR 54151). Interested parties were invited to participate in this...

  17. 76 FR 70920 - Proposed Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ...-1191; Airspace Docket No. 11-ANM-21] Proposed Amendment of Class E Airspace; Colorado Springs, CO...: This action proposes to amend Class E airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black Forest Tactical Air Navigation System (TACAN) has made this...

  18. 77 FR 4458 - Amendment of Class E Airspace; Rugby, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ...-0433; Airspace Docket No. 11-AGL-12] Amendment of Class E Airspace; Rugby, ND AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Rugby, ND. Decommissioning of the Rugby non-directional beacon (NDB) at Rugby Municipal Airport has made this action...

  19. 75 FR 41076 - Establishment of Class E Airspace; Monterey, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ...-1030; Airspace Docket No. 09-AWP-8] Establishment of Class E Airspace; Monterey, CA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will establish Class E... area. Class E airspace designations are published in paragraph 6002 of FAA Order 7400.9T signed August...

  20. 75 FR 4270 - Establishment of Class E Airspace; Saluda, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0603; Airspace Docket No. 09-ASO-16] Establishment of Class E Airspace; Saluda, SC AGENCY: Federal... September 14, 2009 that establishes Class E Airspace at Saluda County Airport, Saluda, SC. DATES: Effective...

  1. 75 FR 4269 - Establishment of Class E Airspace; Hertford, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0705; Airspace Docket No. 09-ASO-25] Establishment of Class E Airspace; Hertford, NC AGENCY: Federal... September 14, 2009 that establishes Class E Airspace at Harvey Point Defense Testing Activity, Hertford, NC...

  2. 75 FR 4269 - Establishment of Class E Airspace; Lewisport, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0706; Airspace Docket No. 09-ASO-26] Establishment of Class E Airspace; Lewisport, KY AGENCY: Federal... September 14, 2009 that establishes Class E Airspace at Hancock Co.--Ron Lewis Field, Lewisport, KY. DATES...

  3. 75 FR 41077 - Revision of Class E Airspace; Monterey, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ...-0633; Airspace Docket No. 10-AWP-12] Revision of Class E Airspace; Monterey, CA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at...: History The FAA received a request from NACO to clarify the legal description of the existing Class E...

  4. 75 FR 13670 - Amendment of Class E Airspace; Gadsden, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0955; Airspace Docket No. 09-ASO-28] Amendment of Class E Airspace; Gadsden, AL AGENCY: Federal... December 29, 2009 that amends Class E airspace at Northeast Alabama Regional, Gadsden, AL. DATES: Effective...

  5. 78 FR 50323 - Amendment of Class E Airspace; Lexington, OK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ...-0272; Airspace Docket No. 13-ASW-10] Amendment of Class E Airspace; Lexington, OK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Class E surface area to a Class E transition area. This action enhances the safety and management of...

  6. 78 FR 38828 - Establishment of Class E Airspace; Captiva, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ...-1335; Airspace Docket No. 12-ASO-19] Establishment of Class E Airspace; Captiva, FL AGENCY: Federal...: History On June 6, 2013, the FAA published a final rule, in the Federal Register establishing Class E... aeronautical data charting service, thereby making this action necessary. The Class E airspace designations are...

  7. 75 FR 20774 - Establishment of Class E Airspace; Mountain City, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0061; Airspace Docket No. 09-ASO-10] Establishment of Class E Airspace; Mountain City, TN AGENCY... December 7, 2009 that establishes Class E airspace at Johnson County Airport, Mountain City, TN. DATES...

  8. 77 FR 6 - Amendment of Class E Airspace; Galbraith Lake, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ...-0865; Airspace Docket No. 11-AAL-14] Amendment of Class E Airspace; Galbraith Lake, AK AGENCY: Federal... Galbraith Lake, AK. The creation of two standard instrument approach procedures at the Galbraith Lake... airspace at Galbraith Lake, AK (76 FR 54152). Interested parties were invited to participate in this...

  9. 75 FR 65255 - Proposed Modification of Class E Airspace; Show Low, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0903; Airspace Docket No. 10-AWP-16] Proposed Modification of Class E Airspace; Show Low, AZ AGENCY... action proposes to modify Class E airspace at Show Low, AZ to accommodate new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Show Low Regional...

  10. 78 FR 45478 - Proposed Establishment of Class E Airspace; Salmon, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0531; Airspace Docket No. 13-ANM-20] Proposed Establishment of Class E Airspace; Salmon, ID AGENCY... action proposes to establish Class E airspace at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules...

  11. 75 FR 20773 - Establishment of Class E Airspace; Jackson, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0937; Airspace Docket No. 09-ASO-27] Establishment of Class E Airspace; Jackson, AL AGENCY: Federal... December 7, 2009 that establishes Class E airspace at Jackson Muni, Jackson, AL. DATES: Effective Date...

  12. Situation awareness in air traffic control : enhanced displays for advanced operations

    DOT National Transportation Integrated Search

    2000-01-01

    Future changes in the National Airspace System indicate a self-separation operational concept. This study examined the Air Traffic : Control Specialists ability to maintain situation awareness and provide needed monitoring and separation functions...

  13. Cyber-Threat Assessment for the Air Traffic Management System: A Network Controls Approach

    NASA Technical Reports Server (NTRS)

    Roy, Sandip; Sridhar, Banavar

    2016-01-01

    Air transportation networks are being disrupted with increasing frequency by failures in their cyber- (computing, communication, control) systems. Whether these cyber- failures arise due to deliberate attacks or incidental errors, they can have far-reaching impact on the performance of the air traffic control and management systems. For instance, a computer failure in the Washington DC Air Route Traffic Control Center (ZDC) on August 15, 2015, caused nearly complete closure of the Centers airspace for several hours. This closure had a propagative impact across the United States National Airspace System, causing changed congestion patterns and requiring placement of a suite of traffic management initiatives to address the capacity reduction and congestion. A snapshot of traffic on that day clearly shows the closure of the ZDC airspace and the resulting congestion at its boundary, which required augmented traffic management at multiple locations. Cyber- events also have important ramifications for private stakeholders, particularly the airlines. During the last few months, computer-system issues have caused several airlines fleets to be grounded for significant periods of time: these include United Airlines (twice), LOT Polish Airlines, and American Airlines. Delays and regional stoppages due to cyber- events are even more common, and may have myriad causes (e.g., failure of the Department of Homeland Security systems needed for security check of passengers, see [3]). The growing frequency of cyber- disruptions in the air transportation system reflects a much broader trend in the modern society: cyber- failures and threats are becoming increasingly pervasive, varied, and impactful. In consequence, an intense effort is underway to develop secure and resilient cyber- systems that can protect against, detect, and remove threats, see e.g. and its many citations. The outcomes of this wide effort on cyber- security are applicable to the air transportation infrastructure, and indeed security solutions are being implemented in the current system. While these security solutions are important, they only provide a piecemeal solution. Particular computers or communication channels are protected from particular attacks, without a holistic view of the air transportation infrastructure. On the other hand, the above-listed incidents highlight that a holistic approach is needed, for several reasons. First, the air transportation infrastructure is a large scale cyber-physical system with multiple stakeholders and diverse legacy assets. It is impractical to protect every cyber- asset from known and unknown disruptions, and instead a strategic view of security is needed. Second, disruptions to the cyber- system can incur complex propagative impacts across the air transportation network, including its physical and human assets. Also, these implications of cyber- events are exacerbated or modulated by other disruptions and operational specifics, e.g. severe weather, operator fatigue or error, etc. These characteristics motivate a holistic and strategic perspective on protecting the air transportation infrastructure from cyber- events. The analysis of cyber- threats to the air traffic system is also inextricably tied to the integration of new autonomy into the airspace. The replacement of human operators with cyber functions leaves the network open to new cyber threats, which must be modeled and managed. Paradoxically, the mitigation of cyber events in the airspace will also likely require additional autonomy, given the fast time scale and myriad pathways of cyber-attacks which must be managed. The assessment of new vulnerabilities upon integration of new autonomy is also a key motivation for a holistic perspective on cyber threats.

  14. Characterization of Tactical Departure Scheduling in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Capps, Alan; Engelland, Shawn A.

    2011-01-01

    This paper discusses and analyzes current day utilization and performance of the tactical departure scheduling process in the National Airspace System (NAS) to understand the benefits in improving this process. The analysis used operational air traffic data from over 1,082,000 flights during the month of January, 2011. Specific metrics included the frequency of tactical departure scheduling, site specific variances in the technology's utilization, departure time prediction compliance used in the tactical scheduling process and the performance with which the current system can predict the airborne slot that aircraft are being scheduled into from the airport surface. Operational data analysis described in this paper indicates significant room for improvement exists in the current system primarily in the area of reduced departure time prediction uncertainty. Results indicate that a significant number of tactically scheduled aircraft did not meet their scheduled departure slot due to departure time uncertainty. In addition to missed slots, the operational data analysis identified increased controller workload associated with tactical departures which were subject to traffic management manual re-scheduling or controller swaps. An analysis of achievable levels of departure time prediction accuracy as obtained by a new integrated surface and tactical scheduling tool is provided to assess the benefit it may provide as a solution to the identified shortfalls. A list of NAS facilities which are likely to receive the greatest benefit from the integrated surface and tactical scheduling technology are provided.

  15. 78 FR 18268 - Proposed Establishment of Class E Airspace; Blue Mesa, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...-0193; Airspace Docket No. 13-ANM-9] Proposed Establishment of Class E Airspace; Blue Mesa, CO AGENCY... action proposes to establish Class E airspace at the Blue Mesa VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME), Blue Mesa, CO to facilitate vectoring of Instrument Flight Rules (IFR...

  16. 76 FR 53353 - Proposed Amendment of Class E Airspace; Carroll, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0845; Airspace Docket No. 11-ACE-19] Proposed Amendment of Class E Airspace; Carroll, IA AGENCY... action proposes to amend Class E airspace at Carroll, IA. Decommissioning of the Carroll non-directional beacon (NDB) at Arthur N. Neu Airport, Carroll, IA, has made this action necessary for the safety and...

  17. 78 FR 18798 - Amendment of Class E Airspace; West Union, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ...-1434; Airspace Docket No. 11-ACE-27] Amendment of Class E Airspace; West Union, IA AGENCY: Federal... West Union, IA. Decommissioning of the West Union non-directional beacon (NDB) at George L. Scott... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the West Union, IA...

  18. 76 FR 13505 - Amendment of Class E Airspace; La Porte, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2010-1030; Airspace Docket No. 10-AGL-18] Amendment of Class E Airspace; La Porte, IN AGENCY: Federal... amending Class E airspace in the La Porte, IN area (76 FR 5471), Docket No. FAA-2010-1030. Subsequent to...

  19. 76 FR 41725 - Proposed Amendment of Class E Airspace; Miles City, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Class E Airspace; Miles City, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of..., Miles City, MT, to accommodate aircraft using new Area Navigation (RNAV) Global Positioning System (GPS... airspace and Class E airspace extending upward from 700 feet above the surface at Frank Wiley Field, Miles...

  20. 77 FR 40834 - Proposed Amendment of Class E Airspace; Dillon, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... further expand the previous proposed amendment of Class E airspace extending upward from 700 feet above... an amendment of Class E airspace extending upward from 700 feet above the surface. DATES: Comments... published a NPRM to modify Class E airspace, extending upward from 700 feet or more above the surface, at...

  1. 77 FR 11796 - Proposed Amendment of Class E Airspace; Rock Springs, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ...-0131; Airspace Docket No. 12-ANM-2 Proposed Amendment of Class E Airspace; Rock Springs, WY AGENCY... action proposes to amend Class E airspace at Rock Springs-Sweetwater County Airport, Rock Springs, WY. Decommissioning of the Rock Springs Tactical Air Navigation System (TACAN) has made this action necessary for the...

  2. 75 FR 16333 - Establishment of Class E Airspace; Quitman, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ...-0053; Airspace Docket No. 10-ASO-12] Establishment of Class E Airspace; Quitman, GA AGENCY: Federal... establishes Class E Airspace at Quitman, GA, to accommodate Standard Instrument Approach Procedures (SIAPs) at... inclusion in the Rules Docket must be received on or before May 17, 2010. The Director of the Federal...

  3. 78 FR 25382 - Amendment of Class E Airspace; Griffin, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... County Airport, Griffin, GA (Lat. 33[deg]13'37'' N., long. 84[deg]16'30'' W.) That airspace extending...-1219; Airspace Docket No. 12-ASO-43] Amendment of Class E Airspace; Griffin, GA AGENCY: Federal... Griffin, GA, as the Griffin Non-Directional Beacon (NDB) has been decommissioned and new Standard...

  4. 77 FR 1429 - Proposed Amendment of Class E Airspace; Springfield, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ...-1247; Airspace Docket No. 11-ANM-24] Proposed Amendment of Class E Airspace; Springfield, CO AGENCY... received on or before February 24, 2012. ADDRESSES: Send comments on this proposal to the U.S. Department...- 1247; Airspace Docket No. 11-ANM-24, at the beginning of your comments. You may also submit comments...

  5. 75 FR 8485 - Revocation of Class D and E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ...-0981; Airspace Docket No. 09-ANE-105] Revocation of Class D and E Airspace; Brunswick, ME AGENCY... and E Airspace at Brunswick NAS Airport, Brunswick, ME, as the airport has closed and the associated... Brunswick NAS Airport in Brunswick, ME has closed in compliance with the 2005 Base Realignment and Closure...

  6. 77 FR 21662 - Amendment of Class D Airspace; Cocoa Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ...-0099; Airspace Docket No. 12-ASO-11] Amendment of Class D Airspace; Cocoa Beach, FL AGENCY: Federal... Class D airspace at Cape Canaveral Skid Strip, Cocoa Beach, FL, by correcting the geographic coordinates... of Cape Canaveral Skid Strip, Cocoa Beach, FL. Also, the geographic coordinates for the airport need...

  7. 76 FR 30298 - Proposed Amendment of Class E Airspace; Cocoa, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ...-0070; Airspace Docket No. 10-ASO-43] Proposed Amendment of Class E Airspace; Cocoa, FL AGENCY: Federal... proposes to amend Class E Airspace at Cocoa, FL, as the Merritt Island Non-Directional Beacon (NDB) has... surface to support new standard instrument approach procedures developed at Merritt Island Airport, Cocoa...

  8. 75 FR 65584 - Proposed Amendment of Class E Airspace; Savannah, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ...-1047; Airspace Docket No. 10-ASO-37] Proposed Amendment of Class E Airspace; Savannah, TN AGENCY...; Telephone: 1- 800-647-5527; Fax: 202-493-2251. You must identify the Docket Number FAA-2010-1047; Airspace... the proposal. Communications should identify both docket numbers (FAA Docket No. FAA-2010-1047...

  9. 77 FR 41939 - Proposed Establishment of Class E Airspace; Deer Lodge, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ...-0379; Airspace Docket No. 12-ANM-7 Proposed Establishment of Class E Airspace; Deer Lodge, MT AGENCY... action proposes to establish Class E airspace at Deer Lodge-City-County Airport, Deer Lodge, MT... System (GPS) standard instrument approach procedures at Deer Lodge-City-County Airport, Deer Lodge, MT...

  10. Integration into Civil Airspace Airworthiness and Safety

    DTIC Science & Technology

    2003-09-02

    Integration into Civil Airspace Airworthiness and Safety 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER......into civil airspace lPurpose : n to explore and propose French process and means for integrating UAV into civil airspace. lMethod based on : n first

  11. 78 FR 25227 - Proposed Amendment of Class E Airspace; Live Oak, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... action proposes to amend Class E Airspace in the Live Oak, FL area, as new Standard Instrument Approach...-0001; Airspace Docket No. 12-ASO-45] Proposed Amendment of Class E Airspace; Live Oak, FL AGENCY... continued safety and management of instrument flight rules (IFR) operations for SIAPs within the Live Oak...

  12. 75 FR 61993 - Amendment of Class E Airspace; Kwajalein Island, Marshall Islands, RMI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ...) System from the legal description of the Class E airspace areas for Kwajalein Island, Bucholz AAF... action corrects the legal descriptions for the Class E airspace areas in the vicinity of the Marshall... and Rules Group, Office of System Operations Airspace and AIM, Federal Aviation Administration, 800...

  13. 78 FR 45473 - Proposed Amendment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0600; Airspace Docket No. 13-ANM-18 Proposed Amendment of Class E Airspace; St. George, UT AGENCY... action proposes to amend Class E airspace at St. George Municipal Airport, St. George, UT, by removing... aircraft operations at St. George Municipal Airport, St. George, UT. DATES: Comments must be received on or...

  14. 78 FR 63380 - Amendment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...-0600; Airspace Docket No. 13-ANM-18] Amendment of Class E Airspace; St. George, UT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at St. George Municipal Airport, St. George, UT, by removing the operating hours established by a Notice to...

  15. 78 FR 45474 - Proposed Establishment of Class E Airspace; Cut Bank, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0532; Airspace Docket No. 13-ANM-21] Proposed Establishment of Class E Airspace; Cut Bank, MT AGENCY... action proposes to establish Class E airspace at the Cut Bank VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC) navigation aid, Cut Bank, MT, to facilitate vectoring of Instrument...

  16. 78 FR 25383 - Amendment of Class E Airspace; West Palm Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ...-0922; Airspace Docket No. 12-ASO-38] Amendment of Class E Airspace; West Palm Beach, FL AGENCY: Federal... West Palm Beach, FL area, as new Standard Instrument Approach Procedures (SIAPs) have been developed at Palm Beach County Park Airport. Airspace reconfiguration is necessary for the continued safety and...

  17. 78 FR 33965 - Establishment of Class E Airspace; Immokalee-Big Cypress Airfield, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2012-1051; Airspace Docket No. 12-ASO-39] Establishment of Class E Airspace; Immokalee-Big Cypress Airfield...: History Federal Register document FAA-2012-1051, Airspace Docket No. 12- ASO-39, published May 1, 2013...

  18. 75 FR 66300 - Amendment of Class E Airspace; Searcy, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ...-1182; Airspace Docket No. 09-ASW-37] Amendment of Class E Airspace; Searcy, AR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Searcy, AR. Decommissioning of the Searcy non-directional beacon (NDB) at Searcy Municipal Airport, Searcy, AR, has made this...

  19. 75 FR 29654 - Amendment of Class E Airspace; Manila, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ...-1184; Airspace Docket No. 09-ASW-39] Amendment of Class E Airspace; Manila, AR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Manila, AR. Decommissioning of the Manila non-directional beacon (NDB) at Manila Municipal Airport, Manila, AR has made this...

  20. 75 FR 6594 - Proposed Amendment of Class E Airspace; Osceola, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...-1183; Airspace Docket No. 09-ASW-38] Proposed Amendment of Class E Airspace; Osceola, AR AGENCY... action proposes to amend Class E airspace at Osceola, AR. Decommissioning of the Osceola non-directional beacon (NDB) at Osceola Municipal Airport, Osceola, AR, has made this action necessary for the safety and...

  1. 75 FR 43884 - Proposed Amendment of Class E Airspace; Searcy, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...-1182; Airspace Docket No. 09-ASW-37] Proposed Amendment of Class E Airspace; Searcy, AR AGENCY: Federal... proposes to amend Class E airspace at Searcy, AR. Decommissioning of the Searcy non-directional beacon (NDB) at Searcy Municipal Airport, Searcy, AR, has made this action necessary for the safety and management...

  2. 75 FR 62458 - Revision of Class E Airspace; Tanana, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...-0588 Airspace Docket No. 10-AAL-16] Revision of Class E Airspace; Tanana, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Tanana, AK. The... West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907) 271-2850...

  3. 75 FR 77574 - Proposed Revision of Class E Airspace; Savoonga, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...-1103Airspace Docket No. 10-AAL-18] Proposed Revision of Class E Airspace; Savoonga, AK AGENCY: Federal Aviation... proposes to revise Class E airspace at Savoonga, AK. The amendment of three Standard Instrument Approach... Operations, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587. FOR...

  4. 76 FR 3011 - Establishment of Class E Airspace; Port Clarence, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ...-0354, Airspace Docket No. 10-AAL-10] Establishment of Class E Airspace; Port Clarence, AK AGENCY... Coast Guard Station (CGS) Airport, Port Clarence, AK. The charting of this airspace has been delayed... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907...

  5. 76 FR 66178 - Revision of Class E Airspace; Umiat, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ...-0750; Airspace Docket No. 11-AAL-08] Revision of Class E Airspace; Umiat, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Umiat, AK, due to...-538G, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone...

  6. 76 FR 49387 - Proposed Amendment of Class E Airspace; Umiat, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...-0750 Airspace Docket No. 11-AAL-08] Proposed Amendment of Class E Airspace; Umiat, AK AGENCY: Federal... proposes to revise Class E airspace at Umiat, AK. The cancellation of two special Instrument Approach... Operations, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587. FOR...

  7. 75 FR 32271 - Revision of Class E Airspace; Nenana, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ...-0081; Airspace Docket No. 10-AAL-3] Revision of Class E Airspace; Nenana, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Nenana, AK, to..., Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number...

  8. 75 FR 77573 - Proposed Revision of Class E Airspace; Shungnak, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...-1104 Airspace Docket No. 10-AAL-19] Proposed Revision of Class E Airspace; Shungnak, AK AGENCY: Federal... proposes to revise Class E airspace at Shungnak, AK. The amendment of Standard Instrument Approach... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587. FOR FURTHER INFORMATION CONTACT: Martha...

  9. 75 FR 12679 - Revision of Class E Airspace; Iliamna, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ...-1036; Airspace Docket No. 09-AAL-17] Revision of Class E Airspace; Iliamna, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Iliamna, AK, to..., Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number...

  10. 75 FR 32272 - Revision of Class E Airspace; Kaltag, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ...-0082; Airspace Docket No. 10-AAL-4] Revision of Class E Airspace; Kaltag, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Kaltag, AK, to..., Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907) 271-2850; e-mail: [email protected

  11. 78 FR 34609 - Proposed Modification of Class D and E Airspace; Kenai, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ...-1174; Airspace Docket No. 12-AAL-12] Proposed Modification of Class D and E Airspace; Kenai, AK AGENCY... action proposes to modify Class D and E airspace at Kenai, AK, to accommodate aircraft departing and..., at Kenai Municipal Airport, Kenai, AK. Also, the geographic coordinates of the airport would be...

  12. 75 FR 33165 - Revision of Class E Airspace; Galena, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ...-0299; Airspace Docket No. 10-AAL-9] Revision of Class E Airspace; Galena, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final Rule. SUMMARY: This action revises Class E airspace at Galena, AK, to...-538G, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone...

  13. 75 FR 72939 - Modification of Class E Airspace; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ...-0719; Airspace Docket No. 10-ANM-8] Modification of Class E Airspace; Portland, OR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will modify existing Class E.... Class E airspace designations are published in paragraph 6005 of FAA Order 7400.9U dated August 18, 2010...

  14. 14 CFR 71.33 - Class A airspace areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class A airspace areas. 71.33 Section 71.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE... of the earth and the Alaska Peninsula west of longitude 160°00′00″ West. (c) The airspace areas...

  15. 78 FR 48303 - Establishment of Class E Airspace; Tuba City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-2013-0147; Airspace Docket No. 13-AWP-1] Establishment of Class E Airspace; Tuba City, AZ AGENCY... airspace at the Tuba City VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC), Tuba City, AZ. In that rule, an error was made in the legal description for Tuba City, identifying the...

  16. 76 FR 21832 - Proposed Revision of Class E Airspace; Yakutat, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ...-0244 Airspace Docket No. 11-AAL-05] Proposed Revision of Class E Airspace; Yakutat, AK AGENCY: Federal... proposes to revise Class E airspace at Yakutat, AK. The revision of eight Standard Instrument Approach... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587. FOR FURTHER INFORMATION CONTACT: Martha...

  17. 78 FR 13843 - Proposed Amendment of Class E Airspace; Bend, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ...-0026; Airspace Docket No. 13-ANM-3] Proposed Amendment of Class E Airspace; Bend, OR AGENCY: Federal... proposes to modify Class E airspace at Bend, OR to accommodate aircraft departing and arriving under Instrument Flight Rules (IFR) at Bend Municipal Airport. This action would enhance the safety and management...

  18. 75 FR 31677 - Amendment of Class E Airspace; Austin, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ...-1152; Airspace Docket No. 09-ASW-31] Amendment of Class E Airspace; Austin, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for the Austin, TX... Procedures (SIAPs) at Austin Executive Airport, Austin, TX. The FAA is taking this action to enhance the...

  19. Flight deck human factors issues for National Airspace System (NAS) en route controller pilot data link communications (CPDLC)

    DOT National Transportation Integrated Search

    2017-05-01

    Fundamental differences exist between transmissions of Air Traffic Control clearances over voice and those transmitted via Controller Pilot Data Link Communications (CPDLC). This paper provides flight deck human factors issues that apply to processin...

  20. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2016-01-01

    Unmanned Aircraft System (UAS) Traffic Management (UTM) Enabling Civilian Low-Altitude Airspace and Unmanned Aircraft System Operations What is the problem? Many beneficial civilian applications of UAS have been proposed, from goods delivery and infrastructure surveillance, to search and rescue, and agricultural monitoring. Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS operations, regardless of the type of UAS. A UAS traffic management (UTM) system for low-altitude airspace may be needed, perhaps leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today, whether the vehicles are driven by humans or are automated. What system technologies is NASA exploring? Building on its legacy of work in air traffic management for crewed aircraft, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that could develop airspace integration requirements for enabling safe, efficient low-altitude operations. While incorporating lessons learned from the today's well-established air traffic management system, which was a response that grew out of a mid-air collision over the Grand Canyon in the early days of commercial aviation, the UTM system would enable safe and efficient low-altitude airspace operations by providing services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning and re-routing, separation management, sequencing and spacing, and contingency management. One of the attributes of the UTM system is that it would not require human operators to monitor every vehicle continuously. The system could provide to human managers the data to make strategic decisions related to initiation, continuation, and termination of airspace operations. This approach would ensure that only authenticated UAS could operate in the airspace. In its most mature form, the UTM system could be developed using autonomicity characteristics that include self-configuration, self-optimization and self-protection. The self-configuration aspect could determine whether the operations should continue given the current andor predicted windweather conditions. NASA envisions concepts for two types of possible UTM systems. The first type would be a Portable UTM system, which would move from between geographical areas and support operations such as precision agriculture and disaster relief. The second type of system would be a Persistent UTM system, which would support low-altitude operations and provide continuous coverage for a geographical area. Either system would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. What is NASA doing to test the technologies? NASA's near-term goal is the development and demonstration of a possible future UTM system that could safely enable low-altitude airspace and UAS operations. Working alongside many committed government, industry and academic partners, NASA is leading the research, development and testing that is taking place in a series of activities called Technology Capability Levels (TCL), each increasing in complexity. UTM TCL1 concluded field testing in August 2015 and is undergoing additional testing at an FAA site.

Top