Science.gov

Sample records for additional double bond

  1. Free radical addition of butanethiol to vegetable oil double bonds.

    PubMed

    Bantchev, Grigor B; Kenar, James A; Biresaw, Girma; Han, Moon Gyu

    2009-02-25

    Butanethiol was used in ultraviolet-initiated thiol-ene reaction with canola and corn oils to produce sulfide-modified vegetable oils (SMVO). The crude SMVO product was successfully purified by solvent extraction, vacuum evaporation, and silica gel chromatography. The SMVO products were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Further product characterization and analysis was conducted using GC and GC-MS on the fatty acid methyl esters obtained by the transesterification of the SMVO products. Investigation of the effect of reaction conditions showed that high yield and high conversion of double bonds into thiol were favored at low reaction temperatures and high butanethiol/vegetable oil ratios. Canola and corn oils gave similar double-bond conversions and yields of the desired SMVO product even though they have big differences in the relative numbers of single and multiple double bonds in their structures. Under best reaction conditions, up to 97% of double-bond conversion and 61% isolated yields of the purified SMVO products were attained.

  2. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  3. Energetics of tert-butoxyl addition reaction to norbornadiene: a method for estimating the pi-bond strength of a carbon-carbon double bond.

    PubMed

    Nunes, Paulo M; Estácio, Sílvia G; Lopes, Gustavo T; Agapito, Filipe; Santos, Rui C; Costa Cabral, Benedito J; Borges dos Santos, Rui M; Martinho Simões, José A

    2009-06-11

    The energetics of tert-butoxyl radical addition reaction to norbornadiene was investigated by time-resolved photoacoustic calorimetry (TR-PAC). The result, together with the C-O bond dissociation enthalpy (BDE) in the addition product, allowed us to calculate the pi-bond dissociation enthalpy in norbornadiene. Quantum chemistry (QC) methods were also used to obtain several enthalpies of reaction of the addition of oxygen-centered radicals to alkenes. The pi-bond dissociation enthalpies in these molecules were calculated by a procedure similar to that used in the case of norbornadiene and were compared with the pi-BDE values obtained by the method proposed by Benson. These two different approaches yield similar values for the pi-BDEs in alkenes, indicating that the addition method proposed in the present study is a valid way to derive that quantity. The influence of strain in the pi-BDEs of cyclic alkenes was investigated and allowed us to justify the difference between the pi-BDE in norbornene and norbornadiene. Finally, the thermochemistry of the addition and abstraction reactions involving these two molecules and tert-butoxyl radical was analyzed.

  4. Addition of quadricyclane to C[sub 60]: Easy access to fullerene derivatives bearing a reactive double bond in the side chain

    SciTech Connect

    Prato, M. ); Maggini, M.; Scorrano, G. ); Lucchini, V. )

    1993-07-02

    The reaction of C[sub 60] with quadricyclane gives a stable 6,6 adduct which has been spectroscopically characterized. The double bond of the [2.2.1]bicycloheptene moiety reacts readily with electrophiles (e.g., PhSCl). Soon after the isolation and characterization of fullerene C[sub 60], the electrophilic character of this carbon cluster was disclosed by both experimental and theoretical results. Additions of several electrophiles to C[sub 60] have also been reported, but the conditions necessary for these reactions to occur led often to inseparable mixtures of products of multiple addition. In order to allow a controlled addition of electrophiles and to enrich the chemistry of functionalization, C[sub 60] has to be structurally modified. Herein the authors report a simple cycloaddition approach to a stable and characterizable C[sub 60] derivative, in which the incorporated olefinic moiety shows high reactivity toward electrophiles. 3 figs.

  5. Respective contributions of polar vs enthalpy effects in the addition/fragmentation of mercaptobenzoxazole-derived thiyl radicals and analogues to double bonds.

    PubMed

    Lalevée, J; Allonas, X; Morlet-Savary, F; Fouassier, J P

    2006-10-19

    The formation and the reactivity of three selected sulfur-centered radicals formed from mercaptobenzoxazole, mercaptobenzimidazole, and mercaptobenzothiazole toward four double bonds (methyl acrylate, acrylonitrile, vinyl ether, and vinyl acetate) are investigated. The reversibility of the addition/fragmentation reaction in these widely used photoinitiating systems of radical polymerization was studied, for the first time, through the measurement of the corresponding rate constants by time-resolved laser spectroscopy. The combination of these results with quantum mechanical calculations clearly evidences that, contrary to previous studies on other aryl thiyl radicals, the addition rate constants (ka) are governed here by the polar effects associated with the very high electrophilic character of these radicals. However, interestingly, the back-fragmentation reaction (k-a) is mainly influenced by the enthalpy effects as supported by the relationship between the rate constants and the addition reaction enthalpy DeltaHR. The addition and fragmentation rate constants calculated from the transition state theory (TST) are in satisfactory agreement with the experimental ones. Therefore, molecular orbital (MO) calculations offered new opportunities for a better understanding of the sulfur-centered radical reactivity.

  6. Stereochemistry of enzymatic water addition to C=C bonds.

    PubMed

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction.

  7. Intermolecular cross-double-michael addition between nitro and carbonyl activated olefins as a new approach in C-C bond formation.

    PubMed

    Sun, Xiaohua; Sengupta, Sujata; Petersen, Jeffrey L; Wang, Hong; Lewis, James P; Shi, Xiaodong

    2007-10-25

    A novel intermolecular cross-double-Michael addition between nitro and carbonyl activated olefins has been developed through Lewis base catalysis. The reaction took place with a large group of beta-alkyl nitroalkenes and alpha,beta-unsaturated ketone/esters, producing an allylic nitro compound in good to excellent yields.

  8. 43 CFR 3154.2 - Additional bonding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Additional bonding. 3154.2 Section 3154.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Requirements § 3154.2 Additional bonding. The authorized officer may increase the amount of any bond that...

  9. Reversible methanol addition to copper Schiff base complexes: a kinetic, structural and spectroscopic study of reactions at azomethine C[double bond, length as m-dash]N bonds.

    PubMed

    Zhang, Wuyu; Saraei, Nina; Nie, Hanlin; Vaughn, John R; Jones, Alexis S; Mashuta, Mark S; Buchanan, Robert M; Grapperhaus, Craig A

    2016-10-12

    The reversible methanolysis of an azomethine C[double bond, length as m-dash]N in a series of copper(ii) Schiff base complexes has been investigated through combined spectroscopic, structural, and kinetic studies. Pentadentate copper(ii) complexes [L1-Cu(X)]Y (L1 = 1,2-bis[(1-methyl-2-imidazolyl)methyleneamino]ethane; X = Y = ClO4(-) (1); X = Y = TfO(-) (2); X = Y = BF4(-) (3); X = H2O, Y = (ClO4(-))2 (4) spontaneously add methanol in a ligand centered reaction to yield stable, isolable hemiaminal ether product complexes 5-8. In methanol free solution, 5-8 spontaneously release alcohol to regenerate 1-4. The methanol addition reaction is first-order in methanol and first-order in complex with second-order rate constants varying from 1.1 × 10(-4) to 187 × 10(-4) M(-1) s(-1) dependent on the donor ability of the axial ligand. Rate constants for methanol elimination vary from 0.67 to 3.7 × 10(-4) s(-1) with dependence on the counterion and water content of the solvent. Equilibrium constants for methanolysis range from 1.5 to 51 M(-1). Structural comparisons of the Schiff base complexes 1-4 and the hemiaminal ether complexes 5-8 suggest methanol addition is favored by the release of ligand strain associated with three planar five-membered chelates in 1-4.

  10. 30 CFR 256.53 - Additional bonds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Additional bonds. 256.53 Section 256.53 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... the Government and the estimated costs of lease abandonment and cleanup are less than the...

  11. Bond additivity corrections for quantum chemistry methods

    SciTech Connect

    C. F. Melius; M. D. Allendorf

    1999-04-01

    In the 1980's, the authors developed a bond-additivity correction procedure for quantum chemical calculations called BAC-MP4, which has proven reliable in calculating the thermochemical properties of molecular species, including radicals as well as stable closed-shell species. New Bond Additivity Correction (BAC) methods have been developed for the G2 method, BAC-G2, as well as for a hybrid DFT/MP2 method, BAC-Hybrid. These BAC methods use a new form of BAC corrections, involving atomic, molecular, and bond-wise additive terms. These terms enable one to treat positive and negative ions as well as neutrals. The BAC-G2 method reduces errors in the G2 method due to nearest-neighbor bonds. The parameters within the BAC-G2 method only depend on atom types. Thus the BAC-G2 method can be used to determine the parameters needed by BAC methods involving lower levels of theory, such as BAC-Hybrid and BAC-MP4. The BAC-Hybrid method should scale well for large molecules. The BAC-Hybrid method uses the differences between the DFT and MP2 as an indicator of the method's accuracy, while the BAC-G2 method uses its internal methods (G1 and G2MP2) to provide an indicator of its accuracy. Indications of the average error as well as worst cases are provided for each of the BAC methods.

  12. Scope and limitations of aliphatic Friedel-Crafts alkylations. Lewis acid catalyzed addition reactions of alkyl chlorides to carbon-carbon double bonds

    SciTech Connect

    Mayr, H.; Striepe, W.

    1983-04-22

    Lewis acid catalyzed addition reactions of alkyl halides with unsaturated hydrocarbons have been studied. 1:1 addition products are formed if the addends dissociate faster than the corresponding products; otherwise, polymerization takes place. For reaction conditions under which these compounds exist mainly undissociated, solvolysis constants of model compounds can be used to predict the outcome of any such addition reactions if systems with considerable steric hindrance are excluded.

  13. Ambiphilic properties of SF5CF2CF2Br derived perfluorinated radical in addition reactions across carbon-carbon double bonds.

    PubMed

    Dudziński, Piotr; Matsnev, Andrej V; Thrasher, Joseph S; Haufe, Günter

    2015-03-06

    The extraordinary properties of the pentafluorosulfanyl (SF5) group attract attention of organic chemists. While numerous SF5-substituted compounds have been synthesized, the direct introduction of SF5(CF2)n moieties has remained almost unexplored. Our investigations revealed the ambiphilic character of the SF5CF2CF2 radical. Addition reactions to electron-rich or electron-deficient alkenes profit either from its electrophilic or nucleophilic properties. Thus, the readily available SF5CF2CF2Br proved to be a promising and versatile building block for the introduction of this perfluorinated moiety.

  14. Bond additivity corrections for quantum chemistry methods

    SciTech Connect

    Melius, C.F.; Allendorf, M.D.

    2000-03-23

    New bond additivity correction (BAC) methods have been developed for the G2 method, BAC-G2, as well as for a hybrid density functional theory (DFT) Moller-Plesset (MP)2 method, BAC-hybrid. These BAC methods use a new form of BAC corrections, involving atomic, molecular, and bond-wise additive terms. These terms enable one to treat positive and negative ions as well as neutrals. The BAC-G2 method reduces errors in the G2 method due to nearest-neighbor bonds. The parameters within the BAC-G2 method only depend on atom types. Thus the BAC-G2 method can be used to determine the parameters needed by BAC methods involving lower levels of theory, such as BAC-hybrid and BAC-MP4. The BAC-hybrid method is expected to scale well for large molecules. The BAC-hybrid method uses the differences between the DFT and MP2 predictions as an indication of the method's accuracy, whereas the BAC-G2 method uses its internal methods (G1 and G2MP2) to accomplish this. A statistical analysis of the error in each of the methods is presented on the basis of calculations performed for large sets (more than 120) of molecules.

  15. Radiation Crosslinking of Polyurethane Enhanced by Introducing Terminal Double-Bonds

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng-Fei; Liu, Yang; Jiu, Yong-Bin; Cao, Wei; Zhai, Tong; Wang, Lian-Cai

    2016-05-01

    In this article, the enhanced radiation crosslinking of polyurethane via double-bond capping method were discussed in detail. Meanwhile, the Enhanced radiation crosslinking of polyurethane based on polyimide as hard segment were emphasized. In addition, the preparation of radiation crosslinking foam by introducing terminal double-bond were introduced.

  16. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  17. A novel palladium-catalyzed hydroalkoxylation of alkenes with a migration of double bond.

    PubMed

    Tan, Jiajing; Zhang, Zuhui; Wang, Zhiyong

    2008-04-21

    A novel palladium-catalyzed addition of alcohols to olefins was developed, in which a migration of double bond was involved. By this new method, a variety of allylic ethers were prepared with moderate to high yields under mild conditions.

  18. 30 CFR 556.53 - Additional bonds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL... but before he/she approves drilling activities under the EP. (iii) You may satisfy the bond... drilling activities under the DPP or DOCD. (iii) You may satisfy the bond requirement of this paragraph...

  19. 30 CFR 556.53 - Additional bonds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL... but before he/she approves drilling activities under the EP. (iii) You may satisfy the bond... drilling activities under the DPP or DOCD. (iii) You may satisfy the bond requirement of this paragraph...

  20. 30 CFR 556.53 - Additional bonds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL... but before he/she approves drilling activities under the EP. (iii) You may satisfy the bond... drilling activities under the DPP or DOCD. (iii) You may satisfy the bond requirement of this paragraph...

  1. Theoretical characterization of the sulfilimine bond: Double or single?

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2010-03-01

    Using quantum mechanical calculations in combination with AIM and NBO analyses, we investigate the properties of the sulfilimine bond, which has been recently detected in collagen IV [Vanacore et al., Science 325 (2009) 1230]. Contrary to the general belief that this is a double bond, -N dbnd S<, our analysis of the wavefunction of a model compound indicates it being a coordinate covalent (dative) single bond, -N ← S<, with a strong polarization towards nitrogen.

  2. Double hydrogen bond mediating self-assembly structure of cyanides on metal surface

    NASA Astrophysics Data System (ADS)

    Wang, Zhongping; Xiang, Feifei; Lu, Yan; Wei, Sheng; Li, Chao; Liu, Xiaoqing; Liu, Lacheng; Wang, Li

    2016-10-01

    Cyanides with different numbers of -C≡N, 1,2,4,5-Tetracyanobenzene (TCNB) and 2,3-Dicyanonaphthalene (2,3-DCN) deposited on Ag(111) and Ag(110) surfaces, have been investigated by room temperature scanning tunneling microscopy (RTSTM), respectively. High resolution STM images show double hydrogen bond is the main driving force to form variety of self-assembly structures, indicating the double hydrogen bond affects the electron distribution of cyanides and leads to a more stable structure with lower energy. In addition, the difference between Ag(111) and Ag(110) surfaces in their lattice structure induces a bigger assembly structural change of 2,3-DCN than that of 1,2,4,5-TCNB, which confirms the fact that the opposite double hydrogen bond formation formed by 1,2,4,5-TCNB is more stable than the neighboring double hydrogen bond formation formed by molecule 2,3-DCN.

  3. 29 CFR 2580.412-20 - Use of existing bonds, separate bonds and additional bonding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bonding. 2580.412-20 Section 2580.412-20 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-20 Use of existing...

  4. 29 CFR 2580.412-20 - Use of existing bonds, separate bonds and additional bonding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bonding. 2580.412-20 Section 2580.412-20 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-20 Use of existing...

  5. A History of the Double-Bond Rule

    NASA Astrophysics Data System (ADS)

    Hoogenboom, Bernard E.

    1998-05-01

    The tautomeric polar systems recognized by Laar in 1886 contain an active atom that appeared to migrate from its original position. The tautomeric systems are of a general structural form and can be represented as X=Y-Z-A. Later workers recognized the same bond weakening effect in a variety of organic structures in which atom A is halogen, hydrogen, carbon, or nitrogen. Hermann Staudinger recognized the weakness of that bond, an allyl bond, in hydrocarbons and exploited the behavior for the preparation of isoprene from terpene hydrocarbons. In 1922 he formulated a generality, a rule, regarding the allyl bond reactivity He noted that natural rubber also decomposed to form isoprene and therefore concluded that natural rubber is an unsaturated hydrocarbon, that isoprene units in natural rubber represent weakly held allyl substituents, and that natural rubber is a macromolecular combination of isoprene units. From his different experience as an industrial chemist, Otto Schmidt recognized the same bond weakening effect in hydrocarbons and in 1932 postulated the "Double-Bond Rule," stating that the presence of a double bond in a hydrocarbon has an alternating strengthening and weakening effect on single bonds throughout the molecule, diminishing with distance from the double bond. Schmidt not only understood the practical benefit of this rule, but he also offered an explanation for the Rule on theoretical grounds. Novel in its time, his theoretical explanation did not find popular acceptance, despite his considerable efforts to promote it in the literature. His concept of the Rule was supplanted by the new theory of resonance devised by Pauling and Wheland and by the implied notion of the stabilization of products by delocalization effects.

  6. Understanding Rotation about a C=C Double Bond

    NASA Astrophysics Data System (ADS)

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-09-01

    In this article, twisting about the C=C double bond and the consequential pyramidalization of sp 2 carbon atoms in alkenes were examined in a molecular modeling study using trans -2-butene as a model system. According to our trans -2-butene model and other similar work, most of the strength of a π bond is retained upon twisting, even for remarkably large C C=C C dihedral angles (up to 90°). The phenomenon of sp 2 carbon atom pyramidalization and preservation of π bond strength upon twisting a C=C double bond is well established in the literature, but is rarely discussed in introductory textbooks. This absence is noteworthy because profound manifestations of this effect do occur in compounds that are covered in an introductory organic chemistry curriculum. We present a simple method of introducing the concept of a flexible C=C π bond into beginning organic chemistry courses. We report the energetic demands of partial twisting about the C=C bond in 2-butene as calculated using DFT, LMP2, and MCSCF methods. Finally, using the results of these calculations, we assessed the degree of strain introduced by the twisted nature of the C=C bond in trans cycloalkenes.

  7. [Determination of double bonds in olive and sunflower oils by ozonize method].

    PubMed

    Evteeva, N M

    2007-01-01

    Kinetics of spending double bonds of tocotherol and accumulation of peroxides during oxidation of olive and sunflower oils were investigated. Date on spending double bonds during oxidation of commercial oils were measured for the first time.

  8. Stress analysis of adhesive bonded stiffener plates and double joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The general problem of adhesive bonded stiffener plates and double joints of dissimilar orthotropic adherends with transverse shear deformations are analyzed. Adhesive layers are assumed to be of an isotropic, elastic and relatively flexible material. It is shown that the stress distributions in the adhesive layers are very much dependent on the bending deformations in adherends. Also, it is found that, in the adhesive layer, maximum transverse normal stress is, in many cases, larger than the longitudinal shear stress and that both occur at the edge of the joint. The general method of solution developed is applied to several practical examples.

  9. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  10. Single Molecule Study of Force-Induced Rotation of Carbon-Carbon Double Bonds in Polymers.

    PubMed

    Huang, Wenmao; Zhu, Zhenshu; Wen, Jing; Wang, Xin; Qin, Meng; Cao, Yi; Ma, Haibo; Wang, Wei

    2017-01-24

    Carbon-carbon double bonds (C═C) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing C═C bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of C═C bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis C═C bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼10(9) times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to C═C double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis C═C bonds. This explains the apparently low transition force for such thermally "forbidden" reactions and offers an additional explanation of the "lever-arm effect" of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.

  11. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    ERIC Educational Resources Information Center

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  12. Three-Component Azidation of Styrene-Type Double Bonds: Light-Switchable Behavior of a Copper Photoredox Catalyst.

    PubMed

    Fumagalli, Gabriele; Rabet, Pauline T G; Boyd, Scott; Greaney, Michael F

    2015-09-21

    [Cu(dap)2]Cl effectively catalyzes azide addition from the Zhdankin reagent to styrene-type double bonds, and subsequent addition of a third component to the benzylic position. In the presence of light, a photoredox cycle is implicated with polar components such as methanol or bromide adding to a benzylic cation. In the absence of light, by contrast, double azidation takes place to give diazides. Therefore, regioselective double functionalization can be achieved in good to excellent yields, with a switch between light and dark controlling the degree of azidation.

  13. The sEDA(=) and pEDA(=) descriptors of the double bonded substituent effect.

    PubMed

    Mazurek, Andrzej; Dobrowolski, Jan Cz

    2013-05-14

    New descriptors of the double bonded substituent effect, sEDA(=) and pEDA(=), were constructed based on quantum chemical calculations and NBO methodology. They show to what extent the σ and π electrons are donated to or withdrawn from the substituted system by a double bonded substituent. The new descriptors differ from descriptors of the classical substituent effect for which the pz orbital of the ipso carbon atom is engaged in the π-electron system of the two neighboring atoms in the ring. For double bonded substituents, the pz orbital participates in double bond formation with only one external atom. Moreover, the external double bond forces localization of the double bond system of the ring, significantly changing the core molecule. We demonstrated good agreement between our descriptors and the Weinhold and Landis' "natural σ and π-electronegativities": so far only descriptors allowing for evaluation of the substitution effect by a double bonded atom. The equivalency between descriptors constructed for 5- and 6-membered model structures as well as linear dependence/independence of the constructed parameters was discussed. Some interrelations between sEDA(=) and pEDA(=) and the other descriptors of (hetero)cyclic systems such as aromaticity and electron density in the ring and bond critical points were also examined.

  14. Transition-Metal-Catalyzed C-H Bond Addition to Carbonyls, Imines, and Related Polarized π Bonds.

    PubMed

    Hummel, Joshua R; Boerth, Jeffrey A; Ellman, Jonathan A

    2016-12-12

    The transition-metal-catalyzed addition of C-H bonds to carbonyls, imines, and related polarized π bonds has emerged as a particularly efficient and powerful approach for the construction of an incredibly diverse array of heteroatom-substituted products. Readily available and stable inputs are typically employed, and reactions often proceed with very high functional group compatibility and without the production of waste byproducts. Additionally, many transition-metal-catalyzed C-H bond additions to polarized π bonds occur within cascade reaction sequences to provide rapid access to a diverse array of different heterocyclic as well as carbocyclic products. This review highlights the diversity of transformations that have been achieved, catalysts that have been used, and types of products that have been prepared through the transition-metal-catalyzed addition of C-H bonds to carbonyls, imines, and related polarized π bonds.

  15. Pinpointing double bonds in lipids by Paternò-Büchi reactions and mass spectrometry.

    PubMed

    Ma, Xiaoxiao; Xia, Yu

    2014-03-03

    The positions of double bonds in lipids play critical roles in their biochemical and biophysical properties. In this study, by coupling Paternò-Büchi (P-B) reaction with tandem mass spectrometry, we developed a novel method that can achieve confident, fast, and sensitive determination of double bond locations within various types of lipids. The P-B reaction is facilitated by UV irradiation of a nanoelectrospray plume entraining lipids and acetone. Tandem mass spectrometry of the on-line reaction products via collision activation leads to the rupture of oxetane rings and the formation of diagnostic ions specific to the double bond location.

  16. Carbon additives for electrical double layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  17. 31 CFR 315.91 - Additional requirements; bond of indemnity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT REGULATIONS GOVERNING U.S. SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Miscellaneous...

  18. Thermodynamic analysis of chain-melting transition temperatures for monounsaturated phospholipid membranes: dependence on cis-monoenoic double bond position.

    PubMed Central

    Marsh, D

    1999-01-01

    Unsaturated phospholipid is the membrane component that is essential to the dynamic environment needed for biomembrane function. The dependence of the chain-melting transition temperature, T(t), of phospholipid bilayer membranes on the position, n(u), of the cis double bond in the glycerophospholipid sn-2 chain can be described by an expression of the form T(t) = T(t)(c)(1 + h'(c)|n(u) - n(c)|)/(1 + s'(c)|n(u) - n(c)|), where n(c) is the chain position of the double bond corresponding to the minimum transition temperature, T(t)(c), for constant diacyl lipid chain lengths. This implies that the incremental transition enthalpy (and entropy) contributed by the sn-2 chain is greater for whichever of the chain segments, above or below the double-bond position, is the longer. The critical position, n(c), of the double bond is offset from the center of the sn-2 chain by an approximately constant amount, deltan(c) approximately 1. 5 C-atom units. The dependence of the parameters T(t)(c), h'(c), and s'(c) on sn-1 and sn-2 chain lengths can be interpreted consistently when allowance is made for the chain packing mismatch between the sn-1 and sn-2 chains. The length of the sn-2 chain is reduced by approximately 0.8 C-atom units by the cis double bond, in addition to a shortening by approximately 1.3 C-atom units by the bent configuration at the C-2 position. Based on this analysis, a general thermodynamic expression is proposed for the dependence of the chain-melting transition temperature on the position of the cis double bond and on the sn-1 and sn-2 chain lengths. The above treatment is restricted mostly to double-bond positions close to the center of the sn-2 chain. For double bonds positioned closer to the carboxyl or terminal methyl ends of the sn-2 chain, the effects on transition enthalpy can be considerably larger. They may be interpreted by the same formalism, but with different characteristic parameters, h'(c) and s'(c), such that the shorter of the chain segments

  19. Restorative resins: hardness and strength vs. quantity of remaining double bonds.

    PubMed

    Asmussen, E

    1982-12-01

    It has been hypothesized that the Wallace indentation hardness of smooth surface resins is a factor of prime importance for the abrasion by food of Class 1 restorations. In the present work factors affecting the hardness of polymers were investigated. In addition the tensile strength of composite resins was measured and related to the catalytic system of the polymer. It was found that for a given composition of the monomer the Wallace hardness number increased with increasing content of inhibitor, decreased with increasing content of peroxide, and was unaffected by changes in the content of amine. The hardness was well correlated with the quantity of double bonds remaining in the polymer. BISGMA-based polymers showed no variation in hardness when the originating monomer varied with respect to content of a bi- or a trifunctional diluting monomer. Light-polymerized polymers were relatively hard as compared to chemically cured materials of adequate setting time. The tensile strength of composite resins was predominantly determined by the monomer content of peroxide and increased herewith. The tensile strength was well correlated with the quantity of remaining double bonds in the constituting polymer.

  20. Unprecedented Double aza-Michael Addition within a Sapphyrin Core.

    PubMed

    Figueira, Flávio; Marques, Igor; Farinha, Andreia S F; Tomé, Augusto C; Cavaleiro, José A S; Silva, Artur M S; Sessler, Jonathan; Félix, Vítor; Tomé, João P C

    2016-09-26

    A novel sapphyrin derivative was obtained from the reaction between a free-base sapphyrin and dimethyl acetylenedicarboxylate (DMAD). The formation of the new compound involved a double aza-Michael addition of two pyrrolic NH groups to a DMAD molecule, with the formation of a disubstituted ethano bridge. The NMR spectral data reveal a product with an unsymmetrical structure; DFT calculations provided support for a structure in which the ethano bridge links two adjacent pyrrole units. The present study provides a seemingly unprecedented example of an N,N'-dinucleophile reacting with DMAD to form a heterocyclic compound in which the two N-atoms are linked to the two sp(3) carbon atoms derived from a substituted acetylene.

  1. Oxidative addition of methane and benzene C--H bonds to rhodium center: A DFT study

    NASA Astrophysics Data System (ADS)

    Bi, Siwei; Zhang, Zhenwei; Zhu, Shufen

    2006-11-01

    A density functional theory study on mechanisms of the oxidative addition of methane and benzene C-H bonds to the rhodium center containing Cp and PMe 3 ligands has been performed. Our calculated results confirm that the C-H bond cleavage from a sigma complex to a hydride alkyl complex is the rate-determining step. Compared with the case of methane C-H bond, the oxidative addition of benzene C-H bond is more favorable kinetically and thermodynamically. Stronger backdonation from metal center to the σ ∗ antibonding orbital of benzene C-H bond is responsible for the observations.

  2. Transition-metal-catalyzed additions of C-H bonds to C-X (X = N, O) multiple bonds via C-H bond activation.

    PubMed

    Yan, Guobing; Wu, Xiangmei; Yang, Minghua

    2013-09-14

    Chemical transformations via catalytic C-H bond activation have been established as one of the most powerful tools in organic synthetic chemistry. Transition-metal-catalyzed addition reactions of C-H bonds to polar C-X (X = N, O) multiple bonds, such as aldehydes, ketones, imines, isocyanates, nitriles, isocyanides, carbon monoxide and carbon dioxide, have undergone a rapid development in recent years. In this review, recent advances in this active area have been highlighted and their mechanisms have been discussed.

  3. Preparation of tert-butyl-capped polyenes containing up to 15 double bonds

    SciTech Connect

    Knoll, K.; Schrock, R.R. )

    1989-11-27

    7,8-Bis(trifluoromethyl)tricyclo(4.2.2.0{sup 2.5})deca-3,7,9-triene (TCDT) can be ring-opened in a controlled manner by W(CH-t-Bu)(NAr)(O-t-Bu){sub 2} (Ar = 2,6-C{sub 6}H{sub 3}-i-Pr{sub 2}) to give living oligomers from which the metal can be removed in a Wittig-like reaction with pivaldehyde or 4,4-dimethyl-trans-2-pentenal. Mixtures of odd and even polyenes have been analyzed by reversed-phase HPLC methods, and those having as many as 13 double bonds have been isolated by column chromatography on silica gel under dinitrogen at {minus}40{degree}C and characterized by {sup 1}H and {sup 13}C NMR and UV-vis studies. The 17-ene has been observed by HPLC. Polyenes containing more than 17 double bonds are relatively unstable under the reaction and subsequent isolation conditions; those containing between 11 and 15 double bonds decompose thermally progressively more readily. UV-vis and {sup 13}C and {sup 1}H NMR data have been collected and analyzed in detail for the trans(cis,trans){sub x} isomers for x = 1-5 (up to 11 double bonds) and for the odd and even all-trans forms containing up to nine double bonds.

  4. The Double-Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis.

    PubMed

    Eckermann, Ruben; Gaich, Tanja

    2016-04-11

    Experimental evidence is provided for the coherence of the double-bond geometry and the occurrence of "secondary cyclizations" in the biosynthesis of monoterpenoid indole alkaloids. Biosynthetically, akuammiline, C-mavacurine, and Strychnos alkaloids are proposed to be derived from the corynanthean alkaloid geissoschizine, a key intermediate in the biosynthetic pathway of these monoterpenoid indole alkaloids. This process occurs by so-called "secondary cyclizations" from geissoschizine or its derivatives. Although corynanthean alkaloids like geissoschizine incorporate E or Z double bonds located at C19-C20, the alkaloids downstream in the biosynthesis exclusively exhibit the E double bond. This study shows that secondary cyclizations preferentially occur with the E isomer of geissoschizine or its derivatives. This is attributed to the flexibility of the quinolizidine system of the corynanthean alkaloids, which can adopt a cis or trans conformation. For the secondary cyclization to take place, the cis-quinolizidine conformation is required. Experimental evidence supports the hypothesis that the E double bond of geissoschizine induces the cis conformation, whereas the Z double bond induces the trans conformation, which prohibits secondary cyclization of the Z compounds.

  5. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  6. The Variable Transition State in Polar Additions to Pi Bonds

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2010-01-01

    A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…

  7. Double Pancake Versus Long Chalcogen-Chalcogen Bonds in Six-Membered C,N,S-Heterocycles.

    PubMed

    Haberhauer, Gebhard; Gleiter, Rolf

    2016-06-13

    The double "pancake" bonding in the dimers of the six-membered heterocycles 1,3-dithia-2,4,6-triazine (4) and 1,3-dithia-2,4-diazine (16) were investigated by means of high-level quantum chemical calculations (B3LYP and CCSD(T)). It was found that the S-S dimers, 20 a and 27, are not the most stable isomers, but the dimers showing short S-N (21 a) and S-C (25, 28) bonds. An investigation of the 5-phenyl-1,3-dithia-2,4,6-triazine (4 b) yields that the syn dimer with two S-S bonds (2.57 Å) is the most stable one. In this dimer, the phenyl groups are placed on top of each other. The additional dispersion energy of the phenyl rings causes a stabilization of the syn-S-S (C2v -like) isomer. As a result, two weak albeit relevant single S-S bonds (2.57 Å) are predicted. These findings contradict the recently published concept of double "pancake" bonding in the dimer 4 b2 .

  8. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate.

    PubMed

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-02

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  9. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  10. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    PubMed Central

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-01-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances. PMID:28252049

  11. Access to B=S and B=Se double bonds via sulfur and selenium insertion into a B-H bond and hydrogen migration.

    PubMed

    Wang, Hao; Zhang, Jianying; Hu, Hongfan; Cui, Chunming

    2010-08-18

    Stable compounds with a boron-chalcogen (S or Se) valence double bond have been prepared via sequences involving insertion of the chalcogen into a B-H bond and subsequent hydrogen migration. X-ray diffraction studies and density functional theory calculations on the resulting compounds provide convincing evidence for the boron-chalcogen multiple bonding.

  12. On the existence of Si-C double bonded graphene-like layers

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad N.; Yan, Yanfa; Al-Jassim, Mowafak M.

    2009-09-01

    Upon analyzing an earlier experimental study by density-functional theory we have shown that graphene-like SiC layers can exist. We found that, for a particular stacking sequence, Si dbnd C double bond was responsible for the much larger interlayer distances observed in synthesized multi-walled SiC nanotubes. The Si/C ratios in SiC layers determine the extent of interlayer distances and bonding nature. It has been also shown that for some intermediate ratios of Si:C and/or with other stacking sequences, a collapse of SiC layers to tetrahedrally bonded system is possible. We have argued that these synthesized Si dbnd C double-bonded multi-wall silicon-carbide nanotubes may provide a pathway for future realization of SiC graphene-like materials.

  13. Biocatalytic Asymmetric Alkene Reduction: Crystal Structure and Characterization of a Double Bond Reductase from Nicotiana tabacum

    PubMed Central

    2013-01-01

    The application of biocatalysis for the asymmetric reduction of activated C=C is a powerful tool for the manufacture of high-value chemical commodities. The biocatalytic potential of “-ene” reductases from the Old Yellow Enzyme (OYE) family of oxidoreductases is well-known; however, the specificity of these enzymes toward mainly small molecule substrates has highlighted the need to discover “-ene” reductases from different enzymatic classes to broaden industrial applicability. Here, we describe the characterization of a flavin-free double bond reductase from Nicotiana tabacum (NtDBR), which belongs to the leukotriene B4 dehydrogenase (LTD) subfamily of the zinc-independent, medium chain dehydrogenase/reductase superfamily of enzymes. Using steady-state kinetics and biotransformation reactions, we have demonstrated the regio- and stereospecificity of NtDBR against a variety of α,β-unsaturated activated alkenes. In addition to catalyzing the reduction of typical LTD substrates and several classical OYE-like substrates, NtDBR also exhibited complementary activity by reducing non-OYE substrates (i.e., reducing the exocyclic C=C double bond of (R)-pulegone) and in some cases showing an opposite stereopreference in comparison with the OYE family member pentaerythritol tetranitrate (PETN) reductase. This serves to augment classical OYE “-ene” reductase activity and, coupled with its aerobic stability, emphasizes the potential industrial value of NtDBR. Furthermore, we also report the X-ray crystal structures of the holo-, binary NADP(H)-bound, and ternary [NADP+ and 4-hydroxy-3-methoxycinnamaldehyde (9a)-bound] NtDBR complexes. These will underpin structure-driven site-saturated mutagenesis studies aimed at enhancing the reactivity, stereochemistry, and specificity of this enzyme. PMID:27547488

  14. Double bonding system for deeply impacted tooth--a technic clinic.

    PubMed

    Singh, Gyan P; Tandon, Pradeep; Shastri, Dipti; Verma, Sneh Lata; Verma, Sneh Lata; Verma, Umesh P

    2013-01-01

    Close eruption technique is preferred in deep, buried, intraosseous and labially impacted teeth to provide healthy and fuinctional attached gingiva but in this technique failure of bonded attachment usually means, repeat exposure of the impacted tooth. This article describes an innovative method for bonding two attachments (Double Bonding System) in combination instead of one. It provides the safe and determinate system for ortho-eruption, avoid the trauma of patient from re-exposure and enhance the comfort as well the confidence of the operator.

  15. Reduction of carbon-carbon double bonds using organocatalytically generated diimide.

    PubMed

    Smit, Christian; Fraaije, Marco W; Minnaard, Adriaan J

    2008-12-05

    An efficient method has been developed for the reduction of carbon-carbon double bonds with diimide, catalytically generated in situ from hydrazine hydrate. The employed catalyst is prepared in one step from riboflavin (vitamin B(2)). Reactions are carried out in air and are a valuable alternative when metal-catalyzed hydrogenations are problematic.

  16. Carbon–carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Jin, Zhichao; Zheng, Pengcheng; Ganguly, Rakesh; Chi, Yonggui Robin

    2015-01-01

    The activation of carbon–carbon (C–C) bonds is an effective strategy in building functional molecules. The C–C bond activation is typically accomplished via metal catalysis, with which high levels of enantioselectivity are difficult to achieve due to high reactivity of metal catalysts and the metal-bound intermediates. It remains largely unexplored to use organocatalysis for C–C bond activation. Here we describe an organocatalytic activation of C–C bonds through the addition of an NHC to a ketone moiety that initiates a C–C single bond cleavage as a key step to generate an NHC-bound intermediate for chemo- and stereo-selective reactions. This reaction constitutes an asymmetric functionalization of cyclobutenones using organocatalysts via a C–C bond activation process. Structurally diverse and multicyclic compounds could be obtained with high optical purities via an atom and redox economic process. PMID:25652912

  17. Double-bridge bonding of aluminium and hydrogen in the crystal structure of gamma-AlH3.

    PubMed

    Yartys, Volodymyr A; Denys, Roman V; Maehlen, Jan Petter; Frommen, Christoph; Fichtner, Maximilian; Bulychev, Boris M; Emerich, Hermann

    2007-02-19

    Aluminum trihydride (alane) is one of the most promising among the prospective solid hydrogen-storage materials, with a high gravimetric and volumetric density of hydrogen. In the present work, the alane, crystallizing in the gamma-AlH3 polymorphic modification, was synthesized and then structurally characterized by means of synchrotron X-ray powder diffraction. This study revealed that gamma-AlH3 crystallizes with an orthorhombic unit cell (space group Pnnm, a = 5.3806(1) A, b = 7.3555(2) A, c = 5.77509(5) A). The crystal structure of gamma-AlH3 contains two types of AlH6 octahedra as the building blocks. The Al-H bond distances in the structure vary in the range of 1.66-1.79 A. A prominent feature of the crystal structure is the formation of the bifurcated double-bridge bonds, Al-2H-Al, in addition to the normal bridge bonds, Al-H-Al. This former feature has not been previously reported for Al-containing hydrides so far. The geometry of the double-bridge bond shows formation of short Al-Al (2.606 A) and Al-H (1.68-1.70 A) bonds compared to the Al-Al distances in Al metal (2.86 A) and Al-H distances for Al atoms involved in the formation of normal bridge bonds (1.769-1.784 A). The crystal structure of gamma-AlH3 contains large cavities between the AlH6 octahedra. As a consequence, the density is 11% less than for alpha-AlH3.

  18. Stereoselective synthesis of cyclohexanones via phase transfer catalyzed double addition of nucleophiles to divinyl ketones.

    PubMed

    Silvanus, Andrew C; Groombridge, Benjamin J; Andrews, Benjamin I; Kociok-Köhn, Gabriele; Carbery, David R

    2010-11-05

    Functionalized cyclohexanones are formed in excellent yield and diastereoselectivity from a phase transfer catalyzed double addition of active methylene pronucleophiles to nonsymmetrical divinyl ketones.

  19. A diabatic state model for double proton transfer in hydrogen bonded complexes.

    PubMed

    McKenzie, Ross H

    2014-09-14

    Four diabatic states are used to construct a simple model for double proton transfer in hydrogen bonded complexes. Key parameters in the model are the proton donor-acceptor separation R and the ratio, D1/D2, between the proton affinity of a donor with one and two protons. Depending on the values of these two parameters the model describes four qualitatively different ground state potential energy surfaces, having zero, one, two, or four saddle points. Only for the latter are there four stable tautomers. In the limit D2 = D1 the model reduces to two decoupled hydrogen bonds. As R decreases a transition can occur from a synchronous concerted to an asynchronous concerted to a sequential mechanism for double proton transfer.

  20. The effect of additional etching and curing mechanism of composite resin on the dentin bond strength

    PubMed Central

    Lee, In-Su; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2013-01-01

    PURPOSE The aim of this study was to evaluate the effects of additional acid etching and curing mechanism (light-curing or self-curing) of a composite resin on the dentin bond strength and compatibility of one-step self-etching adhesives. MATERIALS AND METHODS Sixteen human permanent molars were randomly divided into eight groups according to the adhesives used (All-Bond Universal: ABU, Clearfil S3 Bond: CS3), additional acid etching (additional acid etching performed: EO, no additional acid etching performed: EX), and composite resins (Filtek Z-250: Z250, Clearfil FII New Bond: CFNB). Group 1: ABU-EO-Z250, Group 2: ABU-EO-CFNB, Group 3: ABU-EX-Z250, Group 4: ABU-EX-CFNB, Group 5: CS3-EO-Z250, Group 6: CS3-EO-CFNB, Group 7: CS3-EX-Z250, Group 8: CS3-EX-CFNB. After bonding procedures, composite resins were built up on dentin surfaces. After 24-hour water storage, the teeth were sectioned to make 10 specimens for each group. The microtensile bond strength test was performed using a microtensile testing machine. The failure mode of the fractured specimens was examined by means of an optical microscope at ×20 magnification. The data was analyzed using a one-way ANOVA and Scheffe's post-hoc test (α=.05). RESULTS Additional etching groups showed significantly higher values than the no additional etching group when using All-Bond Universal. The light-cured composite resin groups showed significantly higher values than the self-cured composite resin groups in the Clearfil S3 Bond. CONCLUSION The additional acid etching is beneficial for the dentin bond strength when using low acidic one-step self-etch adhesives, and low acidic one-step self-etch adhesives are compatible with self-cured composite resin. The acidity of the one-step self-etch adhesives is an influencing factor in terms of the dentin bonding strength and incompatibility with a self-cured composite resin. PMID:24353889

  1. Using ambient ozone for assignment of double bond position in unsaturated lipids.

    PubMed

    Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J

    2012-03-07

    Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.

  2. Hydrogen Bonding in 4-AMINOPHENYL Ethanol: a Combined Ir-Uv Double Resonance and Microwave Study

    NASA Astrophysics Data System (ADS)

    Bray, Caitlin; Rivera, Cara Rae; Arsenault, E. A.; Obenchain, Daniel A.; Novick, Stewart E.; Knee, Joseph L.

    2015-06-01

    Both amine and hydroxyl functional groups are present in 4-aminophenyl ethanol (4-AE), and each functional group can form hydrogen bonds with carboxylic acids, such as formic acid and acetic acid. Predicting the structures of such complexes involving 4-AE is rather complex, given the many possible conformations and their similar (and method and basis-dependent) energies. In particular, the carboxyl group, -COOH, can act as both as a hydrogen bond donor or acceptor, or both at once. In this study we report the formic acid - 4-AE hydrogen bonded complex. An infrared-ultraviolet double resonance spectrometer is used to examine the shifts in IR frequencies of 4-AE from the monomer to the complex. Fourier transform microwave spectroscopy is used to determine structures of the species. Results from both experiments are compared to DFT and ab initio results. Time permitting, results of the water complex with 4-AE will also be presented.

  3. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  4. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry.

    PubMed

    Michaud, Anthony L; Diau, Guan-Yeu; Abril, Reuben; Brenna, J Thomas

    2002-08-15

    Double bond position in natural fatty acids is critical to biochemical properties, however, common instrument-based methods cannot locate double bonds in fatty acid methyl esters (FAME), the predominant analysis form of fatty acids. A recently described mass spectrometry (MS) method for locating double bonds in FAME is reported here for the analysis of minor (<1%) components of real FAME mixtures derived from three natural sources; golden algae (Schizochytrium sp.), primate brain white matter, and transgenic mouse liver. Acetonitrile chemical ionization tandem MS was used to determine double bond positions in 39 FAME, most at concentrations well below 1% of all fatty acid methyl esters. FAME identified in golden algae are 14:1n-6, 14:3n-3, 16:1n-7, 16:2n-6, 16:3n-6, 16:3n-3, 16:4n-3, 18:2n-7, 18:3n-7, 18:3n-8, 18:4n-3, 18:4n-5, 20:3n-7, 20:4n-3, 20:4n-5, 20:4n-7, 20:5n-3, and 22:4n-9. Additional FAME identified in primate brain white matter are 20:1n-7, 20:1n-9, 20:2n-7, 20:2n-9, 22:1n-7, 22:1n-9, 22:1n-13, 22:2n-6, 22:2n-7, 22:2n-9, 22:3n-6, 22:3n-7, 22:3n-9, 22:4n-6, 24:1n-7, 24:1n-9, and 24:4n-6. Additional FAME identified in mouse liver are 26:5n-6, 26:6n-3, 28:5n-6, and 28:6n-3. The primate brain 22:3n-7 and algae 18:4n-5 are novel fatty acids. These results demonstrate the usefulness of the technique for analysis of real samples. Tables are presented to aid in interpretation of acetonitrile CIMS/MS spectra.

  5. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions.

    PubMed

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-08-01

    A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.

  6. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

    PubMed Central

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-01-01

    A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197

  7. Insulin analog with additional disulfide bond has increased stability and preserved activity

    PubMed Central

    Vinther, Tine N; Norrman, Mathias; Ribel, Ulla; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Pedersen, Thomas Å; Pettersson, Ingrid; Ludvigsen, Svend; Kjeldsen, Thomas; Jensen, Knud J; Hubálek, František

    2013-01-01

    Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function. PMID:23281053

  8. Atmospheric chemistry of Z- and E-CF3CH[double bond, length as m-dash]CHCF3.

    PubMed

    Østerstrøm, Freja F; Andersen, Simone Thirstrup; Sølling, Theis I; Nielsen, Ole John; Sulbaek Andersen, Mads P

    2016-12-21

    The atmospheric fates of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 have been studied, investigating the kinetics and the products of the reactions of the two compounds with Cl atoms, OH radicals, OD radicals, and O3. FTIR smog chamber experiments measured: k(Cl + Z-CF3CH[double bond, length as m-dash]CHCF3) = (2.59 ± 0.47) × 10(-11), k(Cl + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.36 ± 0.27) × 10(-11), k(OH + Z-CF3CH[double bond, length as m-dash]CHCF3) = (4.21 ± 0.62) × 10(-13), k(OH + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.72 ± 0.42) × 10(-13), k(OD + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.94 ± 1.25) × 10(-13), k(OD + E-CF3CH[double bond, length as m-dash]CHCF3) = (5.61 ± 0.98) × 10(-13), k(O3 + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.25 ± 0.70) × 10(-22), and k(O3 + E-CF3CH[double bond, length as m-dash]CHCF3) = (4.14 ± 0.42) × 10(-22) cm(3) molecule(-1) s(-1) in 700 Torr of air/N2/O2 diluents at 296 ± 2 K. E-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give CF3CHClC(O)CF3 in a yield indistinguishable from 100%. Z-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give (95 ± 10)% CF3CHClC(O)CF3 and (7 ± 1)% E-CF3CH[double bond, length as m-dash]CHCF3. CF3CHClC(O)CF3 reacts with Cl atoms to give the secondary product CF3C(O)Cl in a yield indistinguishable from 100%, with the observed co-products C(O)F2 and CF3O3CF3. The main atmospheric fate for Z- and E-CF3CH[double bond, length as m-dash]CHCF3 is reaction with OH radicals. The atmospheric lifetimes of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 are estimated as 27 and 67 days, respectively. IR absorption cross sections are reported and the global warming potentials (GWPs) of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 for the 100 year time horizon are calculated to be GWP100 = 2 and 7, respectively. This study provides a comprehensive description of the atmospheric fate and impact of Z- and E

  9. Competitive Low Pressure Oxygen Plasma Interactions with Different= Carbon-Carbon Double Bonds

    NASA Astrophysics Data System (ADS)

    Patiño, P.; Sifontes, A.; Gambús, G.

    1999-10-01

    Recently we have shown advances from reactions of O(^3P) with both, l ong-chain hydrocarbons and refinery residuum. The oxidation products of t he process, a mixture of alcohols, epoxides and carbonyl compounds, might have potential properties as additives in formulating fuels. This work s hows the results of the interactions of an oxygen plasma with double bond s, both olefin and aromatic, in the same compound. The reactions have bee n carried out by making the plasma, created by a high voltage glow discha rge, reach the low vapor pressure surface of liquid 4-phenyl-1-butene. Th is (3 mL) was cooled down to -45 ^oC in a glass reactor, applied power was 24 W, at an oxygen pressure of 20 Pa. Products were analyzed by IR, N MR and mass spectroscopies. Conversions were studied as a function of the reaction time, this ranging from 5 to 120 minutes. At short times the O( ^3P) atoms produced in the discharge only reacted with the alkene fra ction of the hydrocarbon, 4-phenyl-1,2-epoxibutane (52%) and 4-phenyl-bu tanal (48%) being the products. Reactions on the benzene ring were obser ved from about 30 minutes on, the corresponding phenols having being prod uced at ratios ortho:para:meta :: 4:1:0.7. At 120 minutes, the ol efin have been completely oxidized and a low fraction of the non-equivale nt two methylene groups have reacted to produce alcohols and ketones.

  10. Theoretical Analysis of the Effect of C═C Double Bonds on the Low-Temperature Reactivity of Alkenylperoxy Radicals.

    PubMed

    You, Xiaoqing; Chi, Yawei; He, Tanjin

    2016-08-04

    Biodiesel contains a large proportion of unsaturated fatty acid methyl esters. Its combustion characteristics, especially its ignition behavior at low temperatures, have been greatly affected by these C═C double bonds. In this work, we performed a theoretical analysis of the effect of C═C double bonds on the low-temperature reactivity of alkenylperoxy radicals, the key intermediates from the low-temperature combustion of biodiesel. To understand how double bonds affect the fate of peroxy radicals, we selected three representative peroxy radicals from heptane, heptene, and heptadiene having zero, one, and two double C═C bonds, respectively, for study. The potential energy surfaces were explored at the CBS-QB3 level, and the reaction rate constants were computed using canonical/variational transition state theories. We have found that the double bond is responsible for the very different bond dissociation energies of the various types of C-H bonds, which in turn affect significantly the reaction kinetics of alkenylperoxy radicals.

  11. Highly enantioselective Michael addition of nitroalkanes to chalcones using chiral squaramides as hydrogen bonding organocatalysts.

    PubMed

    Yang, Wen; Du, Da-Ming

    2010-12-03

    A series of squaramide-based organocatalysts were facilely synthesized and applied as hydrogen bonding organocatalysts in the enantioselective Michael addition of nitroalkanes to chalcones. These organocatalysts promoted the Michael addition with low catalyst loading under high temperature (80 °C), affording the desired R or S enantiomers of the products flexibly in high yields with excellent enantioselectivities (93-96% ee) by the appropriate choice of organocatalysts.

  12. A fusion of the closed-shell coupled cluster singles and doubles method and valence-bond theory for bond breaking.

    PubMed

    Small, David W; Head-Gordon, Martin

    2012-09-21

    Closed-shell coupled cluster singles and doubles (CCSD) is among the most important of electronic-structure methods. However, it fails qualitatively when applied to molecular systems with more than two strongly correlated electrons, such as those with stretched or broken covalent bonds. We show that it is possible to modify the doubles amplitudes to obtain a closed-shell CCSD method that retains the computational cost and desirable features of standard closed-shell CCSD, e.g., correct spin symmetry, size extensivity, orbital invariance, etc., but produces greatly improved energies upon bond dissociation of multiple electron pairs; indeed, under certain conditions the dissociation energies are exact.

  13. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    SciTech Connect

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs.

  14. Synthesis of substituted β-diketiminate gallium hydrides via oxidative addition of H-O bonds.

    PubMed

    Herappe-Mejía, Eduardo; Trujillo-Hernández, Karla; Carlos Garduño-Jiménez, Juan; Cortés-Guzmán, Fernando; Martínez-Otero, Diego; Jancik, Vojtech

    2015-10-14

    Oxidative addition of LGa into the OH bonds from HCCCH2OH, Ph2Si(OH)2, (nBuO)2P(O)(OH) and 4-MeC6H4S(O)2(OH) results in the formation of four compounds of the general formula LGa(H)(O-X). The correlation of the Ga-O bond length and the strength of the Ga-H bond depending on the acidity of the OH group in the starting materials has been demonstrated. The molecular structures of all four compounds have been determined using single crystal X-ray diffraction experiments. DFT calculations were performed on the reacting complex of LGa with propargyl alcohol and show an OHGa hydrogen bond as the first interaction between the reagents. This reacting complex changes into a D-A complex where the oxygen atom of the propargyl alcohol coordinates to the gallium atom and in a concerted reaction the oxidative addition product is formed.

  15. Influence of additional adhesive application on the microtensile bond strength of adhesive systems.

    PubMed

    de Silva, André Luís Faria; Lima, Débora Alves Nunes Leite; de Souza, Grace Mendonça Dias; dos Santos, Carlos Tadeu Dias; Paulillo, Luís Alexandre Maffei Sartini

    2006-01-01

    This study evaluated microtensile bond strength (pTBS) when an additional adhesive layer was applied to the dentin surface. Thirty-five human third molars were flattened to expose the occlusal dentin surface. The teeth were randomly assigned to 7 experimental groups: G1-Single Bond (SB); G2-additional layer of SB; G3--a layer of Scotchbond Multi-purpose (SMP) adhesive applied over SB; G4-Clearfil SE Bond (CE); G5-additional layer of CE; G6-Adper Prompt (AP) and G7-additional layer of AP. For the G2, G3, G5 and G7 groups, the first adhesive layer was light-cured before application of the additional layer. After bonding procedures, 5-mm high composite crowns were incrementally built up. The samples were sectioned to obtain 0.9 x 0.9 beams, which were tested under tension at a crosshead speed of 0.5-mm/minute until failure. The failure mode and adhesive thickness were evaluated under SEM. The pTBS data were analyzed by 1-way ANOVA and post-hoc Ducan's Test (a=0.05). Mean adhesive thickness was analyzed by 1-way ANOVA and post-hoc Tukey's test (a=0.05). The results indicated that G3 presented the highest microTBS and the thickest adhesive layer. G6 and G7 presented the lowest microTBS values. When solvent-free adhesives systems were used, microTBS values were not affected by the thicker layer.

  16. Rh(III)-Catalyzed C-H Bond Addition/Amine-Mediated Cyclization of Bis-Michael Acceptors.

    PubMed

    Potter, Tyler J; Ellman, Jonathan A

    2016-08-05

    A Rh(III)-catalyzed C-H bond addition/primary amine-promoted cyclization of bis-Michael acceptors is reported. The C-H bond addition step occurs with high chemoselectivity, and the subsequent intramolecular Michael addition, mediated by a primary amine catalyst, sets three contiguous stereocenters with high diastereoselectivity. A broad range of directing groups and both aromatic and alkenyl C-H bonds were shown to be effective in this transformation, affording functionalized piperidines, tetrahydropyrans, and cyclohexanes.

  17. The role of intramolecular hydrogen bonds in nucleophilic addition reactions of ketenaminals

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2012-08-01

    Quantum-chemical calculations of the geometries and electronic structures of molecules of ketenaminals 3-(diaminomethylene)-2,4-pentanedione and dimethyl-2-(diaminomethylene)-malonate and calculations of the structures of intermediates in the reaction of the nucleophilic addition of the ketenaminals to the acetonitrile molecule are performed by B3LYP/6-31+G** method. Two possible scenarios of the process are shown, depending on the mutual orientation of reacting molecules. The nucleophilic addition proceeds in two stages. It is found that the rate-limiting stage of the process is the transfer of the proton of the intramolecular hydrogen bond in a ketenaminal molecule. The experimentally observed faster reaction of pyrimidine formation for the 3-(diaminomethylene)-2,4-pentanedione molecule relative to that for dimethyl-2-(diaminomethylene)-malonate is explained by the hydrogen bond being stronger and the barrier of proton transfer from the aminogroup to the ketogroup oxygen falling upon nucleophilic attack in the former molecule.

  18. Oxidative addition of the C-I bond on aluminum nanoclusters

    NASA Astrophysics Data System (ADS)

    Sengupta, Turbasu; Das, Susanta; Pal, Sourav

    2015-07-01

    Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly sensitive to the geometrical shapes and electronic structures of the clusters rather than their size, imposing the fact that comprehensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology. To understand the possible reaction mechanism in detail, the reaction pathway is investigated with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural Bond Orbital (NBO) analysis. In short, our theoretical study highlights the thermodynamic and kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster chemistry.Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly

  19. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    PubMed

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  20. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry.

    PubMed

    Sun, Chenxing; Zhao, Yuan-Yuan; Curtis, Jonathan M

    2013-01-31

    The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O(3)-MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O(3)-MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O(3)-MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O(3)-MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures.

  1. On the bonding nature of electron states for the Fe-Mo double perovskite

    NASA Astrophysics Data System (ADS)

    Carvajal, E.; Oviedo-Roa, R.; Cruz-Irisson, M.; Navarro, O.

    2014-05-01

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr2FeMoO6 double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by eg and t2g electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  2. On the bonding nature of electron states for the Fe-Mo double perovskite

    SciTech Connect

    Carvajal, E.; Cruz-Irisson, M.; Oviedo-Roa, R.; Navarro, O.

    2014-05-15

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr{sub 2}FeMoO{sub 6} double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by e{sub g} and t{sub 2g} electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  3. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    SciTech Connect

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  4. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers.

    PubMed

    Janosi, Lorant; Gorfe, Alemayehu

    2010-11-03

    The precise role of the sphingosine base trans double bond for the unique properties of sphingomyelins (SMs), one of the main lipid components in raftlike structures of biological membranes, has not been fully explored. Several reports comparing the hydration, lipid packing, and hydrogen-bonding behaviors of SM and glycerophospholipid bilayers found remarkable differences overall. However, the atomic interactions linking the double-bond geometry with these thermodynamic and structural changes remained elusive. A recent report on ceramides, which differ from SMs only by their hydroxyl headgroup, has shown that replacing the trans double bond of the sphingosine base by cis weakens the hydrogen-bonding potential of these lipids and thereby alters their biological activity. Based on data from extensive (a total 0.75 μs) atomistic molecular dynamics simulations of bilayers composed of all-trans, all-cis, and a trans/cis (4:1 ratio) racemic mixture of sphingomyelin lipids, here we show that the trans configuration allows for the formation of significantly more hydrogen bonds than the cis. The extra hydrogen bonds enabled tighter packing of lipids in the all-trans and trans/cis bilayers, thus reducing the average area per lipid while increasing the chain order and the bilayer thickness. Moreover, fewer water molecules access the lipid-water interface of the all-trans bilayer than of the all-cis bilayer. These results provide the atomic basis for the importance of the natural sphingomyelin trans double-bond conformation for the formation of ordered membrane domains.

  5. Nuclear magnetic resonance and molecular modeling study of exocyclic carbon-carbon double bond polarization in benzylidene barbiturates

    NASA Astrophysics Data System (ADS)

    Figueroa-Villar, J. Daniel; Vieira, Andreia A.

    2013-02-01

    Benzylidene barbiturates are important materials for the synthesis of heterocyclic compounds with potential for the development of new drugs. The reactivity of benzylidene barbiturates is mainly controlled by their exocyclic carbon-carbon double bond. In this work, the exocyclic double bond polarization was estimated experimentally by NMR and correlated with the Hammett σ values of the aromatic ring substituents and the molecular modeling calculated atomic charge difference. It is demonstrated that carbon chemical shift differences and NBO charge differences can be used to predict their reactivity.

  6. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions.

    PubMed

    Thomas, Michael C; Mitchell, Todd W; Harman, David G; Deeley, Jane M; Nealon, Jessica R; Blanksby, Stephen J

    2008-01-01

    Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including [M+H]+, [M+Li]+, [M+Na]+, and [M-H]-: in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z-18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.

  7. Conjugated Double Bonds in Lipid Bilayers: A Molecular Dynamic Simulation Study

    PubMed Central

    Zhao, Guijun; Subbaiah, P. V.; Chiu, See-Wing; Jakobsson, Eric; Scott, H. L.

    2011-01-01

    Conjugated linoleic acids (CLA) are found naturally in dairy products. Two isomers of CLA, that differ only in the location of cis and trans double bonds, are found to have distinct and different biological effects. The cis 9 trans 11 (C9T11) isomer is attributed to have the anti-carcinogenic effects, while the trans 10 cis 12 (T10C12) isomer is believed to be responsible for the anti-obesity effects. Since dietary CLA are incorporated into membrane phospholipids, we have used Molecular Dynamics (MD) simulations to investigate the comparative effects of the two isomers on lipid bilayer structure. Specifically, simulations of phosphatidylcholine lipid bilayers in which the sn-2 chains contained one of the two isomers of CLA were performed. Force field parameters for the torsional potential of double bonds were obtained from ab initio calculations. From the MD trajectories we calculated and compared structural properties of the two lipid bilayers, including areas per molecule, density profiles, thickness of bilayers, tilt angle of tail chains, order parameters profiles, radial distribution function (RDF) and lateral pressure profiles. The main differences found between bilayers of the two CLA isomers, are (1) the order parameter profile for C9T11 has a dip in the middle of sn-2 chain while the profile for T10C12 has a deeper dip close to terminal of sn-2 chain, and (2) the lateral pressure profiles show differences between the two isomers. Our simulation results reveal localized physical structural differences between bilayers of the two CLA isomers that may contribute to different biological effects through differential interactions with membrane proteins or cholesterol. PMID:21320475

  8. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    SciTech Connect

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; Huang, Jingsong

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap is distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.

  9. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE PAGES

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; ...

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  10. Big area additive manufacturing of high performance bonded NdFeB magnets

    SciTech Connect

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-10-31

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  11. Big area additive manufacturing of high performance bonded NdFeB magnets

    DOE PAGES

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; ...

    2016-10-31

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic propertiesmore » are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.« less

  12. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    PubMed Central

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-01-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials. PMID:27796339

  13. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets.

    PubMed

    Li, Ling; Tirado, Angelica; Nlebedim, I C; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R R; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A; Paranthaman, M Parans

    2016-10-31

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm(3), and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m(3) (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  14. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    NASA Astrophysics Data System (ADS)

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-10-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  15. A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing

    DTIC Science & Technology

    2016-09-13

    AFRL-AFOSR-VA-TR-2016-0317 A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing Pavana...PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...PERFORMING ORGANIZATION REPORT NUMBER 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  16. Addition of HCl to the double-pulse copper chloride laser

    NASA Technical Reports Server (NTRS)

    Vetter, A. A.; Nerheim, N. M.

    1977-01-01

    Addition of small amounts of hydrogen chloride to the buffer gas of a double-pulse CuCl laser causes an increase in the production of copper atoms in the ground state. A maximum laser energy increase of 15% was observed and the span of delay times for which laser action occurred increased.

  17. Pt and Hf Additions to NiAl Bond Coats and Their Effect on the Lifetime of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Gleeson, B.; Sordelet, D.; Barrett, C. A.

    2003-01-01

    The lifetimes of thermal barrier coatings (TBC's) with various NiAlPt(HfZr) bond coats were determined by cyclic oxidation testing at 1163 C (2125 F). The bond coats were sprayed from powders by low pressure plasma spraying onto Rene N5 superalloy substrates. Yttria stabilized zirconia (8YSZ) top coats were applied by air plasma spraying. Surprisingly, there was not a strong correlation between TBC lifetime and Pt or Hf content although Zr additions decreased lifetimes. TBC failure morphologies and bond coat microstructures were examined and are discussed with respect to the bond coat compositions.

  18. Effect of Hf Additions to Pt Aluminide Bond Coats on EB-PVD TBC Life

    NASA Technical Reports Server (NTRS)

    Nesbitt, James; Nagaraj, Ben; Williams, Jeffrey

    2000-01-01

    Small Hf additions were incorporated into a Pt aluminide coating during chemical vapor deposition (CVD) on single crystal RENE N5 substrates. Standard yttria-stabilized zirconia top coats were subsequently deposited onto the coated substrates by electron beam-physical vapor deposition (EB-PVD). The coated substrates underwent accelerated thermal cycle testing in a furnace at a temperature in excess of 1121 C (2050 F) (45 minute hot exposure, 15 minute cool to approximately 121 C (250 F)) until the thermal barrier coating (TBC) failed by spallation. Incorporating Hf in the bond coat increased the TBC life by slightly more than three times that of a baseline coating without added Hf. Scanning electron microscopy of the spalled surfaces indicated that the presence of the Hf increased the adherence of the thermally grown alumina to the Pt aluminide bond coat. The presence of oxide pegs growing into the coating from the thermally grown alumina may also partially account for the improved TBC life by creating a near-surface layer with a graded coefficient of thermal expansion.

  19. Microstructural Characterization of Bonding Interfaces in Aluminum 3003 Blocks Fabricated by Ultrasonic Additive Manufacturing

    SciTech Connect

    Schick, D. E.; Babu, Sudarsanam Suresh; Lippold, John C; Hahnlen, R.M.; Dapino, M.J.; Dehoff, Ryan R; Collins, P.

    2010-01-01

    Ultrasonic additive manufacturing (UAM) is a process by which hybrid and near-netshaped products can be manufactured from thin metallic tapes. One of the main concerns of UAM is the development of anisotropic mechanical properties. In this work, the microstructures in the bond regions are characterized with optical and electron microscopy. Recrystallization and grain growth across the interface are proposed as a mechanism for the bond formation. The presence of voids or unbonded areas, which reduce the load-bearing cross section and create a stress intensity factor, is attributed to the transfer of the sonotrode texture to the new foil layer. This results in large peaks and valleys that are not filled in during processing. Tensile testing revealed the weld interface strength was 15% of the bulk foil. Shear tests of the weld interfaces showed almost 50% of the bulk shear strength of the material. Finally, optical microscopy of the fracture surfaces from the tensile tests revealed 34% of the interface area was unbonded.

  20. Study of double bond equivalents and the numbers of carbon and oxygen atom distribution of dissolved organic matter with negative-mode FT-ICR MS.

    PubMed

    Bae, EunJung; Yeo, In Joon; Jeong, Byungkwan; Shin, Yongsik; Shin, Kyung-Hoon; Kim, Sunghwan

    2011-06-01

    A strong linear relationship was observed between the average double bond equivalence (DBE) and the ratio of carbon to oxygen atoms in oxygenated compounds of dissolved organic matter (DOM). Data were acquired by a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), equipped with a negative-mode electrospray ionization source. The slope and y-intercepts extracted from the linear relationship can be used to compare DOM samples originating from different locations. Significant differences in these parameters were observed between inland riverine and offshore coastal DOM samples. Offshore coastal DOM molecules underwent a change of one DBE for each removal or addition of two oxygen atoms. This suggested the existence of multiple carboxyl groups, each of which contains a double bond and two oxygen atoms. Inland riverine samples exhibited a change of ~1.5 DBE following the addition or removal of two oxygen atoms. This extra change in DBE was attributed to cyclic structures or unsaturated chemical bonds. The DBE value with maximum relative abundance and the minimum DBE value for each class of oxygenated compounds showed that approximately two oxygen atoms contributed to a unity change in DBE. The qualitative analyses given here are in a good agreement with results obtained from analyses using orthogonal analytical techniques. This study demonstrates that DBE and the carbon number distribution, observed by high resolution mass spectrometry, can be valuable in elucidating and comparing structural features of oxygenated molecules of DOM.

  1. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  2. Hydrogen Bonding Cluster-Enabled Addition of Sulfonic Acids to Haloalkynes: Access to Both (E)- and (Z)-Alkenyl Sulfonates.

    PubMed

    Zeng, Xiaojun; Liu, Shiwen; Shi, Zhenyu; Xu, Bo

    2016-10-07

    We developed an efficient synthesis of alkenyl sulfonates via hydrogen bonding cluster-enabled addition of sulfonic acids to haloalkynes. The reactivity of sulfonic acids could be significantly enhanced in the presence of strong hydrogen bonding donors. This metal-free method results in good chemical yields for a wide range of haloalkyne substrates and demonstrates good functional group tolerance. What is more, we can control the stereoselectivity of addition (cis vs trans) by varying the steric bulk of the sulfonic acid.

  3. Improving the bond strength between steel rebar and concrete by ozone treatment of rebar and polymer addition to concrete

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1997-05-01

    Ozone treatment of steel rebar, together with latex addition (20% by weight of cement) to concrete, resulted in a 39% increase in the shear bond strength between rebar and concrete, compared to a 25% increase resulted from either ozone treatment alone or latex addition alone. Ozone treatment and latex addition resulted in similarly small increases in the contact electrical resistivity between rebar and concrete. Methylcellulose addition (0.4% by weight of cement) to concrete gave slightly less bond strength increase than the latex addition, but did not affect the contact resistivity.

  4. The unexpected mechanism of carbonyl hydrosilylation catalyzed by (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)).

    PubMed

    Shirobokov, Oleg G; Gorelsky, Serge I; Simionescu, Razvan; Kuzmina, Lyudmila G; Nikonov, Georgii I

    2010-11-07

    Complex (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)) (2, Ar = 2,6-diisopropylphenyl) catalyzes the hydrosilylation of carbonyls by an unexpected associative mechanism. Complex 2 also reacts with PhSiH(3) by a σ-bond metathesis mechanism to give the silyl derivative (Cp)(ArN[double bond, length as m-dash])Mo(SiH(2)Ph)(PMe(3)).

  5. THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH

    SciTech Connect

    Fox, Douglas J.; Ray, Douglas; Rubesin, Philip C.; Schaefer III, Henry F.

    1980-06-01

    Nonempirical quantum mechanical methods have been used to investigate the A{ell}CH{sub 3}, A{ell}CH{sub 2}, and A{ell}CH molecules, which may be considered to represent the simplest aluminum-carbon single, double, and triple bonds. Equilibrium geometries and vibrational frequencies were determined at the self-consistent-field level of theory using double zeta basis set: A{ell}(11s7p/6s4p), C(9s5p/4s2p), H(4s/2s). The {sup 1}A{sub 1} ground state of A{ell}CH{sub 3} has a reasonably conventional A{ell}-C single bond of length 2.013 {angstrom}, compared to 1.96 {angstrom} in the known molecule A{ell}(CH{sub 3}){sub 3}. The CH equilibrium distance is 1.093 {angstrom} and the A{ell}-C-H angle 111.9{sup o}. The structures of three electron states each of A{ell}CH{sub 2} and A{ell}CH were similarly predicted, The interesting result is that the ground state of A{ell}CH{sub 2} does not contain an A{ell}-C double bond, and the ground state of A{ell}CH is not characterized by an A{ell}{triple_bond}C bond. The multiply-bonded electronic states do exist but they lie 21 kcal (A{ell}CH{sub 2}) and 86 kcal (A{ell}CH) above the respective ground states. The dissociation energies of the three ground electronic states are predicted to be 68 kcal (A{ell}CH{sub 3}), 77 kcal (A{ell}CH{sub 2}), and 88 kcal (A{ell}CH), Vibrational frequencies are also predicted for the three molecules, and their electronic structures are discussed with reference to Mulliken populations and dipole moments.

  6. Fabrication of extremely thermal-stable GaN template on Mo substrate using double bonding and step annealing process

    NASA Astrophysics Data System (ADS)

    Qing, Wang; Yang, Liu; Yongjian, Sun; Yuzhen, Tong; Guoyi, Zhang

    2016-08-01

    A new layer transfer technique which comprised double bonding and a step annealing process was utilized to transfer the GaN epilayer from a sapphire substrate to a Mo substrate. Combined with the application of the thermal-stable bonding medium, the resulting two-inch-diameter GaN template showed extremely good stability under high temperature and low stress state. Moreover, no cracks and winkles were observed. The transferred GaN template was suitable for homogeneous epitaxial, thus could be used for the direct fabrication of vertical LED chips as well as power electron devices. It has been confirmed that the double bonding and step annealing technique together with the thermal-stable bonding layer could significantly improve the bonding strength and stress relief, finally enhancing the thermal stability of the transferred GaN template. Project supported by the Guangdong Innovative Research Team Program (No. 2009010044), the China Postdoctoral Science Foundation (No. 2014M562233), the National Natural Science Foundation of Guangdong, China (No. 2015A030312011), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL2014KF17).

  7. Radical formation in the FMN-photosensitized reactions of unsaturated fatty acids bearing double bonds at different positions.

    PubMed

    Nishihama, Nao; Iwahashi, Hideo

    2016-08-15

    Although the reaction mechanisms through which flavin mononucleotide works as an endogenous photosensitizer have been investigated (Baier et al., 2006; Edwards and Silva, 2001; Pajares et al., 2001; Criado et al., 2003; Massad et al., 2008) [23-27], few studies have been performed for the reactions of flavin mononucleotide with unsaturated fatty acids. To examine the reactions of flavin mononucleotide with unsaturated fatty acids bearing a double bond at different positions, an electron spin resonance, a high performance liquid chromatography-electron spin resonance and a high performance liquid chromatography-electron spin resonance-mass spectrometry were employed. The control reaction mixtures contained 25μmolL(-1) of flavin mononucleotide, 1.0mmolL(-1) of FeSO4(NH4)2SO4, 10mmolL(-1) of cholic acid, 30mmolL(-1) of phosphate buffer (pH 7.4) and 0.1molL(-1) of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone in deuterium oxide. In addition, it also contained 4.3mmolL(-1) of one of the following: (z)-11-octadecenoic acid, (z)-6-octadecenoic acid, (z)-9-octadecenoic acid or (z, z)-9, 12-octadecadienoic acid. The control reaction mixtures without FeSO4(NH4)2SO4 and α-(4-pyridyl-1-oxide)-N-tert-butylnitrone were exposed to the visible light at 436nm (7.8Jcm(-2)). After the irradiation, α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was added. The reactions started from adding FeSO4(NH4)2SO4 and performed at 25°C for 1min. Electron spin resonance measurements of the control reaction mixtures showed prominent signals (α(N)=1.58mT and α(Hβ)=0.26mT). High performance liquid chromatography-electron spin resonance analyses of the control reaction mixtures showed prominent peaks at the retention times of 31.1min {(z)-6-octadecenoic acid}, 39.6min {(z)-9-octadecenoic acid}, 44.9min {(z)-11-octadecenoic acid} and 40.2min {(z, z)-9, 12-octadecadienoic acid}. High performance liquid chromatography-electron spin resonance-mass analyses of the control reaction mixtures showed that 4

  8. Effect of adhesion promoting monomer addition to MMA-TBBO resin on bonding to pure palladium.

    PubMed

    Minami, Hiroyuki; Murahara, Sadaaki; Muraguchi, Koichi; Sakoguchi, Kenji; Suzuki, Shiro; Tanaka, Takuo

    2013-01-01

    This study evaluated the effects of combined use of metal primers and modified monomers on the bonding of MMA-TBBO resins to pure palladium (Pd). Bonding surface was polished with 600-grit silicon carbide paper and primed with one of these four metal primers: V-Primer, M. L. Primer, Metaltite, or Alloy Primer. Four monomers, including three modified ones, were added to MMATBBO resin. One was a methyl methacrylate monomer containing no adhesion promoting monomers, while the other two modified monomers contained the functional monomer of either V-Primer or Alloy Primer. Bonded specimens were prepared by incremental build-up of MMA-TBBO resin on primed Pd surfaces. Shear bond strengths were measured after thermal cycling. Bonding to Pd was significantly improved when modified monomer containing the functional monomer of Alloy Primer was used in combination with M. L. Primer or Metaltite applied on the bonding surface.

  9. Theoretical study of activation C sbnd C double bond of C 2H 4 by CrO2+ in gas phase

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Cheng; Chen, Xiao-Xia

    2006-05-01

    The gas-phase reaction of activation C sbnd C double bond of C 2H 4 by CrO2+(2A1/4A″) has been investigated using density functional theory (DFT) at the UB3LYP/6-311++G (3df, 3pd)//6-311G(2d, p) level. The calculation results show that the reaction experiences a rearranged process. On the basis of Hammond postulate, this is a typical 'two-state reactivity' (TSR) reaction. The involving crossing between the potential energy surfaces is discussed by means of the intrinsic reaction coordinate (IRC) approach used by Yoshizawa et al., and a crossing point (CP) is located. In addition, the orbital interaction analysis of activation C sbnd C bond is carried out by fragment molecular orbital (FMO), and compared with the DCD model.

  10. Highly enantioselective direct Michael addition of nitroalkanes to nitroalkenes catalyzed by amine-thiourea bearing multiple hydrogen-bonding donors.

    PubMed

    Dong, Xiu-Qin; Teng, Huai-Long; Wang, Chun-Jiang

    2009-03-19

    A highly diastereoselective and enantioselective Michael addition of nitroalkanes to nitroalkenes has been achieved by chiral bifunctional amine-thiourea catalyst bearing multiple hydrogen-bonding donors. This catalytic system performs well over a broad scope of substrates, furnishing various 1,3-dinitro compounds in high diastereoselectivity (up to 98:2) and excellent enantioselectivity (up to 99% ee) under mild conditions. Multiple hydrogen bonding donors play a significant role in accelerating reactions, improving diastereoselectivities and enantioselectivities.

  11. Functionalization of the benzobicyclo[3.2.1] octadiene skeleton possessing one isolated double bond via photocatalytic oxygenation

    NASA Astrophysics Data System (ADS)

    Vuk, Dragana; Horváth, Ottó; Marinić, Željko; Škorić, Irena

    2016-03-01

    Photocatalytic oxygenation of three phenyl derivatives of a bicyclic skeleton with a free double bond 1a, 1b and 1c were carried out by utilizing a cationic and an anionic manganese(III) porphyrin irradiated in the visible range. While photocatalysis of 1a and 1b led to the formation of the corresponding hydroperoxy derivatives 2 and 3, respectively, (besides unidentified high-molecular-weight products) in the presence of the anionic Mn(III) porphyrin, the cationic photocatalyst proved to be less efficient and less selective with 1a. In the case of 1b, also with the cationic porphyrin, the corresponding hydroperoxy derivative (3) was the main product at a shorter reaction time (2 h), whereas a longer irradiation (4 h) led to the significant formation of a keto derivative (5) with a hydroperoxy substituent and a free double bond at positions deviating from those in the previous products (2 and 3). A dramatic change in the reactivity was observed for the methoxy derivative (1c). It gave only traces of identifiable products by using the anionic photocatalyst, while application of the cationic Mn(III) porphyrin resulted in a relatively efficient formation of an epoxy derivative (6) due to the reaction of the isolated double bond.

  12. Selective oxidation of the double bonds in the 4-phenyl-1,2,4-triazoline-3,5-dione diels-alder adduct of ergosterol acetate.

    PubMed

    Piatak, D M; Swenson, R P

    1984-01-01

    Methods for oxidations at the 6(7)- and 22(23)-double bonds in the phenyltriazoline adduct of ergosterol acetate (I) are described. KMnO4 and OsO4 were found to react with the 6(7)-double bond to yield the 6,7-glycol and osmate ester, respectively. Other reagents (I2/AgOAc, H2O2, m-chloroperbenzoic acid, HCO3H) formed either isomeric epoxides or glycols with the 22(23)-double bond, with the latter two reagents giving their products in quite high yields.

  13. Stable Gold(III) Catalysts by Oxidative Addition of a Carbon-Carbon Bond

    PubMed Central

    Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch

    2014-01-01

    Whereas low-valent late transition metal catalysis has become indispensible for chemical synthesis, homogeneous high-valent transition metal catalysis is underdeveloped, mainly due to the reactivity of high-valent transition metal complexes and the challenges associated with synthesizing them. In this manuscript, we report a mild carbon-carbon bond cleavage reaction by a Au(I) complex that generates a stable Au(III) cationic complex. Complementary to the well-established soft and carbophilic Au(I) catalyst, this Au(III) complex exhibits hard, oxophilic Lewis acidity. This is exemplified by catalytic activation of α,β-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(III)-activated cinnamaldehyde intermediate. The concepts revealed in this study provide a strategy for accessing high-valent transition metal catalysis from readily available precursors. PMID:25612049

  14. Stable gold(III) catalysts by oxidative addition of a carbon-carbon bond

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch; Toste, F. Dean

    2015-01-01

    Low-valent late transition-metal catalysis has become indispensable to chemical synthesis, but homogeneous high-valent transition-metal catalysis is underdeveloped, mainly owing to the reactivity of high-valent transition-metal complexes and the challenges associated with synthesizing them. Here we report a carbon-carbon bond cleavage at ambient conditions by a Au(I) complex that generates a stable Au(III) cationic complex. In contrast to the well-established soft and carbophilic Au(I) catalyst, this Au(III) complex exhibits hard, oxophilic Lewis acidity. For example, we observed catalytic activation of α,β-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(III)-activated cinnamaldehyde intermediate. The concepts revealed suggest a strategy for accessing high-valent transition-metal catalysis from readily available precursors.

  15. Ion acceleration enhanced by additional neutralizing electrons in a magnetically expanding double layer plasma

    SciTech Connect

    Takahashi, Kazunori; Fujiwara, Tamiya

    2010-10-15

    Electrons neutralizing an ion beam are additionally supplied to a magnetically expanding double layer (DL) plasma from the downstream side of the DL. The rf power and the argon gas pressure are maintained at 200 W and 55 mPa, respectively, and the source magnetic field is varied in the range of about 70-550 G. It is observed that the ion beam energy corresponding to the DL potential drop increases up to 30 eV with an increase in the magnetic field when supplying the additional electrons, while it saturates at 20 eV for the case of the absence of the additional electrons. The supplied electrons are believed to be an energy source for the DL such that increasing the magnetic field is able to increase the potential drop beyond the limit found in the absence of the supplied electrons.

  16. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry.

    PubMed

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, Karolina; Bosáková, Zuzana; Cvačka, Josef

    2015-07-01

    A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N(+•) adducts ([M + 55](+•)) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C-C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55](+•) precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa.

  17. Additional base-pair formation in DNA duplexes by a double-headed nucleotide.

    PubMed

    Madsen, Charlotte S; Witzke, Sarah; Kumar, Pawan; Negi, Kushuma; Sharma, Pawan K; Petersen, Michael; Nielsen, Poul

    2012-06-11

    We have designed and synthesised a double-headed nucleotide that presents two nucleobases in the interior of a dsDNA duplex. This nucleotide recognises and forms Watson-Crick base pairs with two complementary adenosines in a Watson-Crick framework. Furthermore, with judicious positioning in complementary strands, the nucleotide recognises itself through the formation of a T:T base pair. Thus, two novel nucleic acid motifs can be defined by using our double-headed nucleotide. Both motifs were characterised by UV melting experiments, CD and NMR spectroscopy and molecular dynamics simulations. Both motifs leave the thermostability of the native dsDNA duplex largely unaltered. Molecular dynamics calculations showed that the double-headed nucleotides are accommodated in the dsDNA by entirely local perturbations and that the modified duplexes retain an overall B-type geometry with the dsDNA unwound by around 25 or 60°, respectively, in each of the modified motifs. Both motifs can be accommodated twice in a dsDNA duplex without incurring any loss of stability and extrapolating from this observation and the results of modelling, it is conceivable that both can be multiplied several times within a dsDNA duplex. These new motifs extend the DNA recognition repertoire and may form the basis for a complete series of double-headed nucleotides based on all 16 base combinations of the four natural nucleobases. In addition, both motifs can be used in the design of nanoscale DNA structures in which a specific duplex twist is required.

  18. Nucleophilic addition/double cyclization cascade processes between enynyl Fischer carbene complexes and alkynyl malonates.

    PubMed

    Álvarez-Fernández, Ana; Suárez-Rodríguez, Tatiana; Suárez-Sobrino, Ángel L

    2014-07-18

    Two new selective cascade processes for enynyl Fischer carbene complexes 1 are described in their reaction with alkynyl malonates. When carbene complexes 1 react with the sodium enolate of homopropargyl malonates 3 a consecutive Michael-type addition/cyclopentannulation/6-exo cyclization takes place leading, in a regio- and stereoselective way, to n/5/6 angular tricyclic compounds 5. Furthermore, when propargylic malonates are used, a delayed protonation of the reaction mixture allows intermediate 1,4-addition adduct Ia to evolve through a 5-exo cyclization, consisting of an intramolecular nucleophilic attack from the central carbon of the allenylmetallate over the triple C-C bond. Further spontaneous cyclopentannulation of the resulting metallatriene gives rise to bicyclic and linear polycyclic compounds 6 and 7, some of them bearing a polyquinane framework.

  19. Collision-induced dissociation of fatty acid [M - 2H + Na]- ions: charge-directed fragmentation and assignment of double bond position.

    PubMed

    Thomas, Michael C; Altvater, Jens; Gallagher, Thomas J; Nette, Geoffrey W

    2014-11-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] (-) ions. In the current manuscript, the CID behavior of these [M - 2H + Na] (-) ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF](-) ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na](-) ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na](-) ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆(9,12,15)18:3, ∆(6,9,12)18:3, and ∆(5,8,11)18:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  20. The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes.

    PubMed

    Skolová, Barbora; Jandovská, Kateřina; Pullmannová, Petra; Tesař, Ondřej; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-05-20

    Dihydroceramides (dCer) are members of the sphingolipid family that lack the C4 trans double bond in their sphingoid backbone. In addition to being precursors of ceramides (Cer) and phytoceramides, dCer have also been found in the extracellular lipid membranes of the epidermal barrier, the stratum corneum. However, their role in barrier homeostasis is not known. We studied how the lack of the trans double bond in dCer compared to Cer influences the permeability, lipid chain order, and packing of multilamellar membranes composed of the major skin barrier lipids: (d)Cer, fatty acids, cholesterol, and cholesteryl sulfate. The permeability of the membranes with long-chain dCer was measured using various markers and was either comparable to or only slightly greater than (by up to 35%, not significant) that of the Cer membranes. The dCer were less sensitive to acyl chain shortening than Cer (the short dCer membranes were up to 6-fold less permeable that the corresponding short Cer membranes). Infrared spectroscopy showed that long dCer mixed less with fatty acids but formed more thermally stable ordered domains than Cer. The key parameter explaining the differences in permeability in the short dCer and Cer was the proportion of the orthorhombic phase. Our results suggest that the presence of the trans double bond in Cer is not crucial for the permeability of skin lipid membranes and that dCer may be underappreciated members of the stratum corneum lipid barrier that increase its heterogeneity.

  1. Rh(III)-Catalyzed Diastereoselective C–H Bond Addition/Cyclization Cascade of Enone Tethered Aldehydes

    PubMed Central

    Boerth, Jeffrey A.

    2016-01-01

    The Rh(III)-catalyzed cascade addition of a C–H bond across alkene and carbonyl π-bonds is reported. The reaction proceeds under mild reaction conditions with low catalyst loading. A range of directing groups were shown to be effective as was the functionalization of alkenyl in addition to aromatic C(sp2)–H bonds. When the enone and aldehyde electrophile were tethered together, cyclic β-hydroxy ketones with three contiguous stereocenters were obtained with high diastereoselectivity. The intermolecular three-component cascade reaction was demonstrated for both aldehyde and imine electrophiles. Moreover, the first x-ray structure of a cationic Cp*Rh(III) enolate with interatomic distances consistent with an η3-bound enolate is reported. PMID:26918112

  2. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  3. Latex Clearing Protein—an Oxygenase Cleaving Poly(cis-1,4-Isoprene) Rubber at the cis Double Bonds

    PubMed Central

    Hiessl, Sebastian; Böse, Dietrich; Oetermann, Sylvia; Eggers, Jessica; Pietruszka, Jörg

    2014-01-01

    Gordonia polyisoprenivorans strain VH2, a potent rubber-degrading actinomycete, harbors two latex clearing proteins (Lcps), which are known to be essential for the microbial degradation of rubber. However, biochemical information on the exact role of this protein in the degradation of polyisoprene was lacking. In this study, the gene encoding Lcp1VH2 was heterologously expressed in strains of Escherichia coli, the corresponding protein was purified, and its role in rubber degradation was examined by measurement of oxygen consumption as well as by chromatographic and spectroscopic methods. It turned out that active Lcp1VH2 is a monomer and is responsible for the oxidative cleavage of poly(cis-1,4-isoprene) in synthetic as well as in natural rubber by the addition of oxygen (O2) to the cis double bonds. The resulting oligomers possess repetitive isoprene units with aldehyde (CHO-CH2—) and ketone (—CH2-CO-CH3) functional groups at the termini. Two fractions with average isoprene contents of 18 and 10, respectively, were isolated, thus indicating an endocleavage mechanism. The activity of Lcp1VH2 was determined by applying a polarographic assay. Alkenes, acyclic terpenes, or other rubber-like polymers, such as poly(cis-1,4-butadiene) or poly(trans-1,4-isoprene), are not oxidatively cleaved by Lcp1VH2. The pH and temperature optima of the enzyme are at pH 7 and 30°C, respectively. Furthermore, it was demonstrated that active Lcp1VH2 is a Cu(II)-containing oxygenase that exhibits a conserved domain of unknown function which cannot be detected in any other hitherto-characterized enzyme. The results presented here indicate that this domain might represent a new protein family of oxygenases. PMID:24928880

  4. Latex clearing protein-an oxygenase cleaving poly(cis-1,4-isoprene) rubber at the cis double bonds.

    PubMed

    Hiessl, Sebastian; Böse, Dietrich; Oetermann, Sylvia; Eggers, Jessica; Pietruszka, Jörg; Steinbüchel, Alexander

    2014-09-01

    Gordonia polyisoprenivorans strain VH2, a potent rubber-degrading actinomycete, harbors two latex clearing proteins (Lcps), which are known to be essential for the microbial degradation of rubber. However, biochemical information on the exact role of this protein in the degradation of polyisoprene was lacking. In this study, the gene encoding Lcp1VH2 was heterologously expressed in strains of Escherichia coli, the corresponding protein was purified, and its role in rubber degradation was examined by measurement of oxygen consumption as well as by chromatographic and spectroscopic methods. It turned out that active Lcp1VH2 is a monomer and is responsible for the oxidative cleavage of poly(cis-1,4-isoprene) in synthetic as well as in natural rubber by the addition of oxygen (O2) to the cis double bonds. The resulting oligomers possess repetitive isoprene units with aldehyde (CHO-CH2-) and ketone (-CH2-CO-CH3) functional groups at the termini. Two fractions with average isoprene contents of 18 and 10, respectively, were isolated, thus indicating an endocleavage mechanism. The activity of Lcp1VH2 was determined by applying a polarographic assay. Alkenes, acyclic terpenes, or other rubber-like polymers, such as poly(cis-1,4-butadiene) or poly(trans-1,4-isoprene), are not oxidatively cleaved by Lcp1VH2. The pH and temperature optima of the enzyme are at pH 7 and 30°C, respectively. Furthermore, it was demonstrated that active Lcp1VH2 is a Cu(II)-containing oxygenase that exhibits a conserved domain of unknown function which cannot be detected in any other hitherto-characterized enzyme. The results presented here indicate that this domain might represent a new protein family of oxygenases.

  5. Enantioselective C-H bond addition of pyridines to alkenes catalyzed by chiral half-sandwich rare-earth complexes.

    PubMed

    Song, Guoyong; O, Wylie W N; Hou, Zhaomin

    2014-09-03

    Cationic half-sandwich scandium alkyl complexes bearing monocyclopentadienyl ligands embedded in chiral binaphthyl backbones act as excellent catalysts for the enantioselective C-H bond addition of pyridines to various 1-alkenes, leading to formation of a variety of enantioenriched alkylated pyridine derivatives in high yields and excellent enantioselectivity (up to 98:2 er).

  6. Determination of the bond-angle distribution in vitreous B{sub 2}O{sub 3} by {sup 11}B double rotation (DOR) NMR spectroscopy

    SciTech Connect

    Hung, I.; Howes, A.P.; Parkinson, B.G.; Anupold, T.; Samoson, A.; Brown, S.P.; Harrison, P.F.; Holland, D.; Dupree, R.

    2009-09-15

    The B-O-B bond angle distributions for both ring and non-ring boron sites in vitreous B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR and multiple-quantum (MQ) DOR NMR. The [B{sub 3}O{sub 6}] boroxol rings are observed to have a mean internal B-O-B angle of 120.0+-0.7 deg. with a small standard deviation, sigma{sub R}=3.2+-0.4 deg., indicating that the rings are near-perfect planar, hexagonal structures. The rings are linked predominantly by non-ring [BO{sub 3}] units, which share oxygens with the boroxol ring, with a mean B{sub ring}-O-B{sub non-ring} angle of 135.1+-0.6 deg. and sigma{sub NR}=6.7+-0.4 deg. In addition, the fraction of boron atoms, f, which reside in the boroxol rings has been measured for this sample as f=0.73+-0.01. - Graphical abstract: Connectivities and B-O-B bond angle distributions of ring and non-ring boron atoms in v-B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR, multiple-quantum (MQ) DOR NMR and spin-diffusion DOR. Near-perfect planar, hexagonal [B{sub 3}O{sub 6}] boroxol rings are shown to be present. Display Omitted

  7. Acid-catalyzed oxidative addition of a C-H bond to a square planar d⁸ iridium complex.

    PubMed

    Hackenberg, Jason D; Kundu, Sabuj; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2014-06-25

    While the addition of C-H bonds to three-coordinate Ir(I) fragments is a central theme in the field of C-H bond activation, addition to square planar four-coordinate complexes is far less precedented. The dearth of such reactions may be attributed, at least in part, to kinetic factors elucidated in seminal work by Hoffmann. C-H additions to square planar carbonyl complexes in particular are unprecedented, in contrast to the extensive chemistry of oxidative addition of other substrates (e.g., H2, HX) to Vaska's Complex and related species. We report that Bronsted acids will catalyze the addition of the alkynyl C-H bond of phenylacetylene to the pincer complex (PCP)Ir(CO). The reaction occurs to give exclusively the trans-C-H addition product. Our proposed mechanism, based on kinetics and DFT calculations, involves initial protonation of (PCP)Ir(CO) to generate a highly active five-coordinate cationic intermediate, which forms a phenylacetylene adduct that is then deprotonated to give product.

  8. Low-lying singlet states of carotenoids having 8-13 conjugated double bonds as determined by electronic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping

    2005-07-01

    Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.

  9. ELECTRON DONOR ACCEPTOR DESCRIPTORS OF THE SINGLE AND DOUBLE BONDED SUBSTITUENT AND HETEROATOM INCORPORATION EFFECTS. A REVIEW.

    PubMed

    Mazurek, Andrzej

    2016-01-01

    The properties of the series of Electron Donor-Acceptor (EDA) descriptors of classical substituent effect (sEDA(I), pEDA(I)), double bonded substituent effect (sEDA(=), pEDA(=)), heteroatom incorporation effect in monocyclic systems (sEDA(II), pEDA(II)), and in ring-junction position (sEDA(III), pEDA(III)), are reviewed. The descriptors show the amount of electrons donated to or withdrawn from the σ-(sEDA) or π(pEDA) valence orbitals by the substituent or incorporant. The new descriptors are expected to enrich the potency of QSAR analyses in drug design and materials chemistry.

  10. A study of Sn addition on bonding arrangement of Se-Te alloys using far infrared transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Sharma, Parikshit; Katyal, S. C.; Sharma, Pankaj; Rangra, V. S.

    2011-07-01

    Far infrared transmission spectra of Se92Te8-xSnx (x = 0, 1, 2, 3, 4, 5) glassy alloys are obtained in the spectral range 50-600 cm-1 at room temperature. The results are interpreted in terms of the vibrations of the isolated molecular units in such a way so as to preserve fourfold and twofold coordination for Sn and chalcogen atoms (Se,Te), respectively. With the addition of Sn, Far-IR spectra shift toward high frequency side and some new bands start appearing. Sn atoms appear to substitute for the selenium atoms in the outrigger sites due to large bond formation probability. Theoretical calculations of bond energy, relative probability of bond formation, force constant, and wave number were also made to justify the result.

  11. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  12. Recycling of used commercial phosphate-bonded investments with additional mono-ammonium phosphate.

    PubMed

    Zhang, Zutai; Tamaki, Yukimichi; Hotta, Yasuhiro; Miyazaki, Takashi

    2005-03-01

    Industrial waste is on the increase, resulting in severe environmental contamination. Against this background, this study sought to investigate the possibility of recycling used phosphate-bonded investments. Commercial phosphate-bonded investment was mixed and heated according to manufacturer's instructions, then powdered with a ball mill machine to be used as recycled investment (Code: R). Mono-ammonium phosphate (NH4H2PO4) of 2, 5, 8, 11, and 14 g were added to 100 g of R because of residual MgO, and coded as Ra, Rb, Rc, Rd, and Re respectively. Investment properties were then examined. Particle size of R was 50.66 microm and close to the original investment. It was found that more NH4H2PO4 led to larger setting expansion, smaller thermal expansion, and lower fired strength. The data of Re in these three aspects were 1.42 +/- 0.09%, 0.78 +/- 0.21%, and 8.85 +/- 0.88 MPa respectively, and differences against the original investment were significant. Ra showed significantly longer setting time than other investments. Based on the results of this study, we concluded that it was possible to set used phosphate-bonded investments by adding NH4H2PO4; in particular, Rd showed suitable expansion and acceptable mechanical properties.

  13. Car-Parrinello Molecular Dynamics Simulations of Infrared Spectra of Crystalline Vitamin C with Analysis of Double Minimum Proton Potentials for Medium-Strong Hydrogen Bonds.

    PubMed

    Brela, Mateusz Z; Wójcik, Marek J; Boczar, Marek; Witek, Łukasz; Yasuda, Mitsuru; Ozaki, Yukihiro

    2015-06-25

    We studied proton dynamics of a hydrogen bonds of the crystalline l-ascorbic acid. Our approach was based on the Car-Parrinello molecular dynamics. The focal point of our study was simulation of the infrared spectra of l-ascorbic acid associated with the O-H stretching modes that are very sensitive to the strength of hydrogen bonding. In the l-ascorbic acid there are four kinds of hydrogen bonds. We calculated their spectra by using anharmonic approximation and the time course of the dipole moment function as obtained from the Car-Parrinello simulation. The quantization of the nuclear motion of the protons was made to perform detailed analysis of strength and properties of hydrogen bonds. We presented double minimum proton potentials with small value of barriers for medium-strong hydrogen bonds. We have also shown the difference character of medium-strong hydrogen bonds compared to weaker hydrogen bonds in the l-ascorbic acid.

  14. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  15. 4-Trifluoromethyl-p-quinols as dielectrophiles: three-component, double nucleophilic addition/aromatization reactions.

    PubMed

    Dong, Jinhuan; Shi, Lou; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2016-06-01

    In recent years, numerous methods have emerged for the synthesis of trifluoromethylated arenes based on the late-stage introduction of a trifluoromethyl group onto an aryl ring. In sharp comparison, the synthesis of trifluoromethylated arenes based on the pre-introduction of a trifluoromethyl group onto an "aromatic to be" carbon has rarely been addressed. It has been found that 4-trifluoromethyl-p-quinol silyl ethers, the readily available and relatively stable compounds, can act as dielectrophiles to be applied to multi-component reactions for the synthesis of various trifluoromethylated arenes. Catalyzed by In(OTf)3, 4-trifluoromethyl-p-quinol silyl ethers react with C-, N-, and S-nucleophiles, respectively, in a regiospecific 1,2-addition manner to generate the corresponding highly reactive electrophilic intermediates. Further reaction of the in-situ generated electrophiles with a C-nucleophile followed by spontaneous aromatization enables the construction of functionalized trifluoromethyl arenes. This three-component, double nucleophilic addition/aromatization reaction based on the pre-introduction of a trifluoromethyl group onto an "aromatic to be" carbon provides a divergent strategy for the synthesis of trifluoromethylated arenes under mild reaction conditions in a single operation.

  16. 4-Trifluoromethyl-p-quinols as dielectrophiles: three-component, double nucleophilic addition/aromatization reactions

    PubMed Central

    Dong, Jinhuan; Shi, Lou; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2016-01-01

    In recent years, numerous methods have emerged for the synthesis of trifluoromethylated arenes based on the late-stage introduction of a trifluoromethyl group onto an aryl ring. In sharp comparison, the synthesis of trifluoromethylated arenes based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon has rarely been addressed. It has been found that 4-trifluoromethyl-p-quinol silyl ethers, the readily available and relatively stable compounds, can act as dielectrophiles to be applied to multi-component reactions for the synthesis of various trifluoromethylated arenes. Catalyzed by In(OTf)3, 4-trifluoromethyl-p-quinol silyl ethers react with C-, N-, and S-nucleophiles, respectively, in a regiospecific 1,2-addition manner to generate the corresponding highly reactive electrophilic intermediates. Further reaction of the in-situ generated electrophiles with a C-nucleophile followed by spontaneous aromatization enables the construction of functionalized trifluoromethyl arenes. This three-component, double nucleophilic addition/aromatization reaction based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon provides a divergent strategy for the synthesis of trifluoromethylated arenes under mild reaction conditions in a single operation. PMID:27246540

  17. Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation.

    PubMed

    Molińska, Ewa; Klimczak, Urszula; Komaszyło, Joanna; Derewiaka, Dorota; Obiedziński, Mieczysław; Kania, Magdalena; Danikiewicz, Witold; Swiezewska, Ewa

    2015-04-01

    Isoprenoid alcohols are common constituents of living cells. They are usually assigned a role in the adaptation of the cell to environmental stimuli, and this process might give rise to their oxidation by reactive oxygen species. Moreover, cellular isoprenoids may also undergo various chemical modifications resulting from the physico-chemical treatment of the tissues, e.g., heating during food processing. Susceptibility of isoprenoid alcohols to heat treatment has not been studied in detail so far. In this study, isoprenoid alcohols differing in the number of isoprene units and geometry of the double bonds, β-citronellol, geraniol, nerol, farnesol, solanesol and Pren-9, were subjected to thermo-oxidation at 80 °C. Thermo-oxidation resulted in the decomposition of the tested short-chain isoprenoids as well as medium-chain polyprenols with simultaneous formation of oxidized derivatives, such as hydroperoxides, monoepoxides, diepoxides and aldehydes, and possible formation of oligomeric derivatives. Oxidation products were monitored by GC-FID, GC-MS, ESI-MS and spectrophotometric methods. Interestingly, nerol, a short-chain isoprenoid with a double bond in the cis (Z) configuration, was more oxidatively stable than its trans (E) isomer, geraniol. However, the opposite effect was observed for medium-chain polyprenols, since Pren-9 (di-trans-poly-cis-prenol) was more susceptible to thermo-oxidation than its all-trans isomer, solanesol. Taken together, these results experimentally confirm that both short- and long-chain polyisoprenoid alcohols are prone to thermo-oxidation.

  18. Chemical bonding and dynamic fluxionality of a B15(+) cluster: a nanoscale double-axle tank tread.

    PubMed

    Wang, Ying-Jin; You, Xue-Rui; Chen, Qiang; Feng, Lin-Yan; Wang, Kang; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-21

    A planar, elongated B15(+) cationic cluster is shown to be structurally fluxional and functions as a nanoscale tank tread on the basis of electronic structure calculations, bonding analyses, and molecular dynamics simulations. The outer B11 peripheral ring behaves like a flexible chain gliding around an inner B4 rhombus core, almost freely at the temperature of 500 K. The rotational energy barrier is only 1.37 kcal mol(-1) (0.06 eV) at the PBE0/6-311+G* level, further refined to 1.66 kcal mol(-1) (0.07 eV) at the single-point CCSD(T)/6-311G*//CCSD/6-311G* level. Two soft vibrational modes of 166.3 and 258.3 cm(-1) are associated with the rotation, serving as double engines for the system. Bonding analysis suggests that the "island" electron clouds, both σ and π, between the peripheral ring and inner core flow and shift continuously during the intramolecular rotation, facilitating the dynamic fluxionality of the system with a small rotational barrier. The B15(+) cluster, roughly 0.6 nm in dimension, is the first double-axle nanoscale tank tread equipped with two engines, which expands the concepts of molecular wheels, Wankel motors, and molecular tanks.

  19. Cobalt(III)-Catalyzed Synthesis of Indazoles and Furans by C–H Bond Functionalization/Addition/Cyclization Cascades

    PubMed Central

    2015-01-01

    The development of operationally straightforward and cost-effective routes for the assembly of heterocycles from simple inputs is important for many scientific endeavors, including pharmaceutical, agrochemical, and materials research. In this article we describe the development of a new air-stable cationic Co(III) catalyst for convergent, one-step benchtop syntheses of N-aryl-2H-indazoles and furans by C–H bond additions to aldehydes followed by in situ cyclization and aromatization. Only a substoichiometric amount of AcOH is required as an additive that is both low-cost and convenient to handle. The syntheses of these heterocycles are the first examples of Co(III)-catalyzed additions to aldehydes, and reactions are demonstrated for a variety of aromatic, heteroaromatic, and aliphatic derivatives. The syntheses of both N-aryl-2H-indazoles and furans have been performed on 20 mmol scales and should be readily applicable to larger scales. The reported heterocycle syntheses also demonstrate the use of directing groups that have not previously been applied to Co(III)-catalyzed C–H bond functionalizations. Additionally, the synthesis of furans demonstrates the first example of Co(III)-catalyzed functionalization of alkenyl C–H bonds. PMID:25494296

  20. Cobalt(III)-catalyzed synthesis of indazoles and furans by C-H bond functionalization/addition/cyclization cascades.

    PubMed

    Hummel, Joshua R; Ellman, Jonathan A

    2015-01-14

    The development of operationally straightforward and cost-effective routes for the assembly of heterocycles from simple inputs is important for many scientific endeavors, including pharmaceutical, agrochemical, and materials research. In this article we describe the development of a new air-stable cationic Co(III) catalyst for convergent, one-step benchtop syntheses of N-aryl-2H-indazoles and furans by C-H bond additions to aldehydes followed by in situ cyclization and aromatization. Only a substoichiometric amount of AcOH is required as an additive that is both low-cost and convenient to handle. The syntheses of these heterocycles are the first examples of Co(III)-catalyzed additions to aldehydes, and reactions are demonstrated for a variety of aromatic, heteroaromatic, and aliphatic derivatives. The syntheses of both N-aryl-2H-indazoles and furans have been performed on 20 mmol scales and should be readily applicable to larger scales. The reported heterocycle syntheses also demonstrate the use of directing groups that have not previously been applied to Co(III)-catalyzed C-H bond functionalizations. Additionally, the synthesis of furans demonstrates the first example of Co(III)-catalyzed functionalization of alkenyl C-H bonds.

  1. The Reductive Activation of CO2 Across a Ti=Ti Double Bond: Synthetic, Structural, and Mechanistic Studies

    PubMed Central

    2015-01-01

    The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti2Pn†2 (1) (Pn† = 1,4-{SiiPr3}2C8H4) with CO2 is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO2 reaction is performed at −78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO2 molecule bound symmetrically to the two Ti centers in a μ:η2,η2 binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO2 is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti–Ti bond has been cleaved and one pentalene ligand binds in an η8 fashion to each of the formally TiIII centers. The molecular structure of 7 shows a “side-on” bound carbonyl ligand. Bonding of the double-sandwich species Ti2Pn2 (Pn = C8H6) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO2 reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-TiIII species to yield di-TiII and di-TiIV products. 1 forms a structurally characterized, thermally stable CS2 adduct 8 that shows symmetrical binding to the Ti2 unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph3PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which the Ti

  2. The Reductive Activation of CO2 Across a Ti=Ti Double Bond: Synthetic, Structural, and Mechanistic Studies.

    PubMed

    Kilpatrick, Alexander F R; Green, Jennifer C; Cloke, F Geoffrey N

    2015-10-26

    The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti2Pn(†)2 (1) (Pn(†) = 1,4-{Si(i)Pr3}2C8H4) with CO2 is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO2 reaction is performed at -78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO2 molecule bound symmetrically to the two Ti centers in a μ:η(2),η(2) binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO2 is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti-Ti bond has been cleaved and one pentalene ligand binds in an η(8) fashion to each of the formally Ti(III) centers. The molecular structure of 7 shows a "side-on" bound carbonyl ligand. Bonding of the double-sandwich species Ti2Pn2 (Pn = C8H6) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO2 reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-Ti(III) species to yield di-Ti(II) and di-Ti(IV) products. 1 forms a structurally characterized, thermally stable CS2 adduct 8 that shows symmetrical binding to the Ti2 unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph3PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which

  3. Theoretical in-Solution Conformational/Tautomeric Analyses for Chain Systems with Conjugated Double Bonds Involving Nitrogen(s)

    PubMed Central

    Nagy, Peter I.

    2015-01-01

    Conformational/tautomeric transformations for X=CH–CH=Y structures (X = CH2, O, NH and Y = NH) have been studied in the gas phase, in dichloromethane and in aqueous solutions. The paper is a continuation of a former study where s-cis/s-trans conformational equilibria were predicted for analogues. The s-trans conformation is preferred for the present molecules in the gas phase on the basis of its lowest internal free energy as calculated at the B97D/aug-cc-pvqz and CCSD(T)CBS (coupled-cluster singles and doubles with non-iterative triples extrapolated to the complete basis set) levels. Transition state barriers are of 29–36 kJ/mol for rotations about the central C–C bonds. In solution, an s-trans form is still favored on the basis of its considerably lower internal free energy compared with the s-cis forms as calculated by IEF-PCM (integral-equation formalism of the polarizable continuum dielectric solvent model) at the theoretical levels indicated. A tetrahydrate model in the supermolecule/continuum approach helped explore the 2solute-solvent hydrogen bond pattern. The calculated transition state barrier for rotation about the C–C bond decreased to 27 kJ/mol for the tetrahydrate. Considering explicit solvent models, relative solvation free energies were calculated by means of the free energy perturbation method through Monte Carlo simulations. These calculated values differ remarkably from those by the PCM approach in aqueous solution, nonetheless the same prevalent conformation was predicted by the two methods. Aqueous solution structure-characteristics were determined by Monte Carlo. Equilibration of conformers/tautomers through water-assisted double proton-relay is discussed. This mechanism is not viable, however, in non-protic solvents where the calculated potential of mean force curve does not predict remarkable solute dimerization and subsequent favorable orientation. PMID:25984602

  4. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding

    NASA Astrophysics Data System (ADS)

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G.

    2017-02-01

    In this manuscript we extend Wertheim’s two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  5. CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets

    SciTech Connect

    Paranthaman, M. Parans

    2016-07-18

    The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3 were demonstrated. Magnetic measurements indicate that there is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH)max = 5.47 MGOe (43.50 kJ/m3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.

  6. Additives-biological activities of tin-containing polymers bonded to noncarbons

    SciTech Connect

    Carraher, C.; Butler, C.; Foster, V.; Pandya, B.; Sterling, D.

    1993-12-31

    Organotin-containing polymers serve as effective additives to a silicon-based sealant, latex coating and talc exhibiting inhibition to tested bacteria and fungi. These polymers are candidates for uses a paint additives, sealant and caulk additives and within talc as an epidermal treatment.

  7. The extension of a DNA double helix by an additional Watson-Crick base pair on the same backbone.

    PubMed

    Kumar, Pawan; Sharma, Pawan K; Madsen, Charlotte S; Petersen, Michael; Nielsen, Poul

    2013-06-17

    Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand.

  8. Catalytic asymmetric synthesis of spirocyclic azlactones by a double Michael-addition approach.

    PubMed

    Weber, Manuel; Frey, Wolfgang; Peters, René

    2013-06-17

    Spirocyclic azlactones are shown to be useful precursors of cyclic quaternary amino acids, such as the constrained cyclohexane analogues of phenylalanine. These compounds are of interest as building blocks for the synthesis of artificial peptide analogues with controlled folds in the peptide backbone. They were prepared in the present study by a step- and atom-economic catalytic asymmetric tandem approach, requiring two steps starting from N-benzoyl glycine and divinylketones. The key of this protocol is the enantioselective formation of the azlactone spirocycles, which involves a PdII-catalyzed double 1,4-addition of an in situ generated azlactone intermediate to the dienone (a formal [5+1] cycloaddition). As the catalyst, a planar chiral ferrocene bispalladacycle was used. Mechanistic studies suggest a monometallic reaction pathway. Although the diastereoselectivity was found to be moderate, the enantioselectivity is usually high for the formation of the azlactone spirocycles, which contain up to three contiguous stereocenters. Spectroscopic studies have shown that the spirocycles often prefer a twist over a chair conformation of the cyclohexanone moiety.

  9. Electrostatic and Charge-Induced Methane Activation by a Concerted Double C-H Bond Insertion.

    PubMed

    Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schlangen, Maria; Shaik, Sason; Schwarz, Helmut

    2017-02-01

    A mechanistically unique, simultaneous activation of two C-H bonds of methane has been identified during the course of its reaction with the cationic copper carbide, [Cu-C](+). Detailed high-level quantum chemical calculations support the experimental findings obtained in the highly diluted gas phase using FT-ICR mass spectrometry. The behavior of [Cu-C](+)/CH4 contrasts that of [Au-C](+)/CH4, for which a stepwise bond-activation scenario prevails. An explanation for the distinct mechanistic differences of the two coinage metal complexes is given. It is demonstrated that the coupling of [Cu-C](+) with methane to form ethylene and Cu(+) is modeled very well by the reaction of a carbon atom with methane mediated by an oriented external electric field of a positive point charge.

  10. Theoretical study of the formation of naphthalene from the radical/π-bond addition between single-ring aromatic hydrocarbons.

    PubMed

    Comandini, Andrea; Brezinsky, Kenneth

    2011-06-09

    The experimental investigations performed in the 1960s on the o-benzyne + benzene reaction as well as the more recent studies on reactions involving π-electrons highlight the importance of π-bonding for different combustion processes related to PAH's and soot formation. In the present investigation radical/π-bond addition reactions between single-ring aromatic compounds have been proposed and computationally investigated as possible pathways for the formation of two-ring fused compounds, such as naphthalene, which serve as precursors to soot formation. The computationally generated optimized structures for the stationary points were obtained with uB3LYP/6-311+G(d,p) calculations, while the energies of the optimized complexes were refined using the uCCSD(T) method and the cc-pVDZ basis set. The computations have addressed the relevance of a number of radical/π-bond addition reactions including the singlet benzene + o-benzyne reaction, which leads to formation of naphthalene and acetylene through fragmentation of the benzobicyclo[2,2,2]octatriene intermediate. For this reaction, the high-pressure limit rate constants for the individual elementary reactions involved in the overall process were evaluated using transition state theory analysis. Other radical/π-bond addition reactions studied were between benzene and triplet o-benzyne, between benzene and phenyl radical, and between phenyl radicals, for all of which potential energy surfaces were produced. On the basis of the results of these reaction studies, it was found necessary to propose and subsequently confirm additional, alternative pathways for the formation of the types of PAH compounds found in combustion systems. The potential energy surface for one reaction in particular, the phenyl + phenyl addition, is shown to contain a low-energy channel leading to formation of naphthalene that is energetically comparable to the other examined conventional pathways leading to formation of biphenyl compounds. This

  11. Construction of hybrid material with double chemical bond from functional bridge ligand: Molecular modification, lotus root-like micromorphology and strong luminescence

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Sui, Yu-Long

    2006-07-01

    Modifying benzoic acid with a cross-linking molecule (3-aminopropyl)triethoxysilane (abbreviated as APES), a fictional molecular bridge with double reactivity was achieved by the amidation reaction between them. Then the modified functional molecule, which behaving as a bridge, both coordinate with terbium ion through amide's oxygen atom and form the Si-O chemical bond in an in situ sol-gel process with matrix precursor (tetraethoxysilane, TEOS). As a result, a novel molecular hybrid material (Tb-BA-APES) with double chemical bond (Tb-O coordination bond and Si-O covalent bond) was constructed. The strong luminescence of Tb 3+ substantiates optimum energy couple and effective intramolecular energy transfer between the triplet state energy of modified ligand bridge and emissive energy level of Tb 3+. Especially SEM of the molecular hybrid material exhibits unexpected microlotus root-like pore morphology.

  12. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  13. Linearity and additivity in cluster-induced sputtering: A molecular-dynamics study of van der Waals bonded systems

    SciTech Connect

    Anders, Christian; Urbassek, Herbert M.; Johnson, Robert E.

    2004-10-15

    Using molecular-dynamics simulation, we study sputtering of a condensed-gas solid induced by the impact of atomic clusters with sizes 1{<=}n{<=}10{sup 4}. Above a nonlinear onset regime, we find a linear increase of the sputter yield Y with the total energy E of the bombarding cluster. The fitting coefficients in the linear regime depend only on the cluster size n such that for fixed bombardment energy, sputtering decreases with increasing cluster size n. We find that to a good approximation the sputter yield in this regime obeys an additivity rule in cluster size n such that doubling the cluster size at the same cluster velocity amounts to doubling the sputter yield. The sputter-limiting energy {epsilon}{sub s} is introduced which separates erosion ({epsilon}>{epsilon}{sub s}) from growth ({epsilon}<{epsilon}{sub s}) under cluster impact.

  14. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    PubMed Central

    Tsukanov, A.A.; Psakhie, S.G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered. PMID:26817816

  15. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. A.; Psakhie, S. G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

  16. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    PubMed

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application.

  17. Rare-earth-catalyzed C-H bond addition of pyridines to olefins.

    PubMed

    Guan, Bing-Tao; Hou, Zhaomin

    2011-11-16

    An efficient and general protocol for the ortho-alkylation of pyridines via C-H addition to olefins has been developed, using cationic half-sandwich rare-earth catalysts, which provides an atom-economical method for the synthesis of alkylated pyridine derivatives. A wide range of pyridine and olefin substrates including α-olefins, styrenes, and conjugated dienes are compatible with the catalysts.

  18. Stability of Criegee intermediates formed by ozonolysis of different double bonds.

    PubMed

    Kalinowski, Jaroslaw; Heinonen, Petri; Kilpeläinen, Ilkka; Räsänen, Markku; Gerber, R Benny

    2015-03-19

    The formation of Criegee intermediates by ozonolysis of different species containing C═N and C═P bonds is studied computationally. Electronic structure calculations are carried out for the energetics of ozonolysis, and the lifetime of the Criegee intermediate formed is computed by transition state theory. All calculations are carried out for formation of CH2OO, the simplest Criegee intermediate. Extremely large differences are found for the lifetime of CH2OO depending on the specific C═N, C═P, and C═C precursor, due to the great variations in the exoergicity of the ozonolysis. The largest lifetimes of CH2OO are found to be up to a millisecond range for a Schiff base precursor, being orders of magnitude greater than for C═C and C═P precursors at the same conditions. The results provide insights into the role of the precursor in determining the stability of the Criegee species formed and suggest an approach for preparing Criegee intermediates of relatively long lifetimes.

  19. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  20. Copper-catalyzed double C-S bonds formation via different paths: synthesis of benzothiazoles from N-benzyl-2-iodoaniline and potassium sulfide.

    PubMed

    Zhang, Xiaoyun; Zeng, Weilan; Yang, Yuan; Huang, Hui; Liang, Yun

    2014-02-07

    A new, highly efficient procedure for the synthesis of benzothiazoles from easily available N-benzyl-2-iodoaniline and potassium sulfide has been developed. The results show copper-catalyzed double C-S bond formation via a traditional cross-coupling reaction and an oxidative cross-coupling reaction.

  1. Dependence of bonding interactions in Layered Double Hydroxides on metal cation chemistry

    NASA Astrophysics Data System (ADS)

    Shamim, Mostofa; Dana, Kausik

    2016-12-01

    The evolution of various Infrared bands of Layered Double Hydroxides (LDH) with variable Zn:Al ratio was analyzed to correlate it with the changes in octahedral metal cation chemistry, interlayer carbonate anion and hydroxyl content of LDH. The synthesized phase-pure LDHs were crystallized as hexagonal 2H polytype with a Manasseite structure. The broad and asymmetric hydroxyl stretching region (2400-4000 cm-1) can be deconvoluted into four different bands. With increase in Zn2+:Al3+ metal ratio, the peak position of stretching frequencies of Al3+sbnd OH and carbonate-bridged hydroxyl (water) decrease almost linearly. Individual band's peak position and area under the curve have been successfully correlated with the carbonate and hydroxyl content of LDH. Due to lowering of symmetry of the carbonate anion, the IR-inactive peak νCsbnd O, symm at 1064 cm-1 becomes IR active. The peak position of metal-oxygen bands and carbonate bending modes are practically unaffected by the Zn2+:Al3+ ratio but the area under the individual M-O bands shows a direct correlation.

  2. Peel bond strength of resilient liner modified by the addition of antimicrobial agents to denture base acrylic resin

    PubMed Central

    ALCÂNTARA, Cristiane S.; de MACÊDO, Allana F.C.; GURGEL, Bruno C.V.; JORGE, Janaina H.; NEPPELENBROEK, Karin H.; URBAN, Vanessa M.

    2012-01-01

    In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. Objective This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril) on its peel bond strength to one denture base (QC 20, Dentsply). Material and Methods Acrylic specimens (n=9) were made (75x10x3 mm) and stored in distilled water at 37ºC for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9) were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1) without any drug incorporation was used as control. Specimens (n=9) (75x10x6 mm) were plasticized according to the manufacturers' instructions and stored in distilled water at 37ºC for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa) were analyzed by analysis of variance (α=0.05) and the failure modes were visually classified. Results No significant difference was found among experimental groups (p=0.148). Cohesive failure located within the resilient material was predominantly observed in all tested groups. Conclusions Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents. PMID:23329241

  3. Simple but Stronger UO, Double but Weaker UNMe Bonds: The Tale Told by Cp2UO and Cp2UNR

    SciTech Connect

    LPCNO, CNRS-UPS-INSA, INSA Toulouse; Institut Charles Gerhardt, CNRS, Universite Montpellier; Laboratoire de Chimie et Physique Quantiques, CNRS, IRSAMC, Universite Paul Sabatier; Andersen, Richard; Barros, Noemi; Maynau, Daniel; Maron, Laurent; Eisenstein, Odile; Zi, Guofu; Andersen, Richard

    2007-06-27

    The free energies of reaction and the activation energies are calculated, with DFT (B3PW91) and small RECP (relativistic core potential) for uranium, for the reaction of Cp2UNMe and Cp2UO with MeCCMe and H3Si-Cl that yields the corresponding addition products. CAS(2,7) and DFT calculations on Cp2UO and Cp2UNMe give similar results, which validates the use of DFT calculations in these cases. The calculated results mirror the experimental reaction of [1,2,4-(CMe3)3C5H2]2UNMe with dimethylacetylene and [1,2,4-(CMe3)3C5H2]2UO with Me3SiCl. The net reactions are controlled by the change in free energy between the products and reactants, not by the activation energies, and therefore by the nature of the UO and UNMe bonds in the initial and final states. A NBO analysis indicates that the U-O interaction in Cp2UO is composed of a single U-O bond with three lone pairs of electrons localized on oxygen, leading to a polarized U-O fragment. In contrast, the U-NMe interaction in Cp2UNMe is composed of a and component and a lone pairof electrons localized on the nitrogen, resulting in a less polarized UNMe fragment, in accord with the lower electronegativity of NMe relative to O. The strongly polarized U(+)-O(-) bond is calculated to be about 70 kcal mol-1 stronger than the less polarized U=NMe bond.

  4. Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder Effects on the Sinterability and Mechanical Properties

    SciTech Connect

    Lee, Sea-Hoon; Cho, Chun-Rae; Park, Young-Jo; Ko, Jae-Woong; Kim, Hai-Doo; Lin, Hua-Tay; Becher, Paul F

    2013-01-01

    The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain Lu2O3-SiO2 additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at 1850oC through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at 1950oC. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine Si3N4 particles after nitridation and sintering at and above 1600oC. The amount of residual SiO2 within the specimens was not strongly affected by adding fine Si powder because most of the SiO2 layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and 8.0 MPa m1/2, respectively.

  5. Magnetic properties and coercivity mechanism of isotropic HDDR NdFeB bonded magnets with Co and Dy addition

    NASA Astrophysics Data System (ADS)

    Chen, W.; Gao, R. W.; Zhu, M. G.; Pan, W.; Li, W.; Li, X. M.; Han, G. B.; Feng, W. C.; Wang, B.

    2003-04-01

    Isotropic NdDyFeCoB bonded magnets with high coercivity of 1.59 MA/m and low temperature coefficient of remanence of -0.056%/ K (in the temperature range 298-428 K) were prepared successfully by controlling the HDDR process and adjusting the compositions. The influence of Co and Dy additions on the magnetic properties and the magnetization reversal process in magnet was investigated. The high coercivity in (Nd 0.8Dy 0.2) 13(Fe 0.875Co 0.125) 81B 6 HDDR magnet can be attributed to its unique microstructure and the enhancement of anisotropy field of 2:14:1 phase by substitution of Nd by Dy.

  6. Rh(III)-catalyzed addition of alkenyl C-H bond to isocyanates and intramolecular cyclization: direct synthesis 5-ylidenepyrrol-2(5H)-ones.

    PubMed

    Hou, Wei; Zhou, Bing; Yang, Yaxi; Feng, Huijin; Li, Yuanchao

    2013-04-19

    The rhodium-catalyzed addition of an alkenyl C-H bond to isocyanates via sp(2) C-H bond activation followed by an intramolecular cyclization is described. This atom-economic and catalytic reaction affords a simple and straightforward access to biologically relevant 5-ylidene pyrrol-2(5H)-ones and can be carried out under mild and neutral conditions in the absence of any additives and environmentally hazardous waste production.

  7. A novel vitamin D analog with two double bonds in its side chain. A potent inducer of osteoblastic cell differentiation.

    PubMed

    Mahonen, A; Jääskeläinen, T; Mäenpää, P H

    1996-04-12

    EB 1089 (1 alpha,25-dihydroxy-22,24-diene-24,26,27-trihomovitamin D3) is a novel, synthetic analog of calcitriol, characterized by two extra double bonds in its side chain. It is less potent than calcitriol in its calcemic action, but is an order of magnitude more potent in its antiproliferative action. The aim of this study was to determine the ability of EB 1089 to induce the well-known biological effects of calcitriol in MG-63 human osteosarcoma cells (i.e. by inhibiting cell proliferation and by induction of differentiation). Both calcitriol and EB 1089 significantly decreased cell growth after 2 days in culture. At 5 days, however, Eb 1089 was more potent than the natural hormone in inhibiting the proliferation of MG-63 cells. Potent effects of EB 1089 on cell differentiation were also seen in the stimulation of alkaline phosphatase activity, cellular vitamin D receptor mRNA levels, and medium osteocalcin synthesis. EB 1089 was clearly more effective than calcitriol in stimulating alkaline phosphatase activity and osteocalcin synthesis. In gel shift assays, the binding of vitamin D receptor to the composite AP-1 plus vitamin-D responsive promoter region of the human osteocalcin gene after EB 1089 treatment was stronger and longer-lasting than after calcitriol treatment.

  8. Novel Odd-Chain Fatty Acids with a Terminal Double Bond in Ovaries of the Limpet Cellana toreuma.

    PubMed

    Kawashima, Hideki; Ohnishi, Masao

    2017-04-01

    Our previous study characterized highly diverse dienoic fatty acids (FA), in particular an uncommon non-methylene-interrupted (NMI) FA, in the ovaries of the Japanese limpet Cellana toreuma belonging to the archaeogastropods, but many minor chemically unidentified FA remain. In this study, among previously unidentified FA (less than 0.1% of total FA), four novel NMI FA with a terminal double bond [7,18-nonadecadienoic (19:2Δ7,18), 11,18-nonadecadienoic (19:2Δ11,18), 7,20-heneicosadienoic (21:2Δ7,20), and 11,20-heneicosadienoic (21:2Δ11,20) acids] were found, along with known 14-pentadecenoic (15:1Δ14), 16-heptadecenoic (17:1Δ16), and 9,18-nonadecadienoic (19:2Δ9,18) acids, based on capillary GC-MS of their methyl esters, 3-pyridylcarbinol derivatives, and argentation thin-layer chromatography. From our findings, possible biosynthetic pathways for the novel FA are discussed.

  9. Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping.

    PubMed

    Altoè, Piero; Cembran, Alessandro; Olivucci, Massimo; Garavelli, Marco

    2010-11-23

    Quantum mechanics/molecular mechanics calculations based on ab initio multiconfigurational second order perturbation theory are employed to construct a computer model of Bacteriorhodopsin that reproduces the observed static and transient electronic spectra, the dipole moment changes, and the energy stored in the photocycle intermediate K. The computed reaction coordinate indicates that the isomerization of the retinal chromophore occurs via a complex motion accounting for three distinct regimes: (i) production of the excited state intermediate I, (ii) evolution of I toward a conical intersection between the excited state and the ground state, and (iii) formation of K. We show that, during stage ii, a space-saving mechanism dominated by an asynchronous double bicycle-pedal deformation of the C10═C11─C12═C13─C14═N moiety of the chromophore dominates the isomerization. On this same stage a N─H/water hydrogen bond is weakened and initiates a breaking process that is completed during stage iii.

  10. Effect of additive metals, Sn, Ga, and In in Ag-Pd-Au-Cu alloys on initial bond strength of 4-META adhesive cement to these alloys.

    PubMed

    Goto, Shin-ichi; Churnjitapirom, Pornkiat; Miyagawa, Yukio; Ogura, Hideo

    2008-09-01

    The purpose of this study was to investigate the effects of three additives, Sn, Ga, and In, as well as the main constituents, Pd and Cu, of Ag-Pd-Au-Cu alloys on the initial bond strength of 4-META adhesive cement to these alloys. The Ag-Pd-Au-Cu alloys consisted of 20%, 30% or 40% Pd, and 10%, 15% or 20% Cu, 20% Au, and Ag as balance. Besides, additive metals (Sn, Ga, and In) of 2% and 4% were added to these compositions. The addition of three additives, in general, increased the initial bond strength of the cement in comparison to the mother compositions (0% additives), although the degrees of effectiveness of the three additives were different and varied with their contents. Among these additives, a remarkable increase in bond strength was observed with the addition of In. The increase in Cu content, in many cases, resulted in an increase in bond strength at high Pd contents (30% and 40%), but a decrease at low Pd content (20%) in some cases. The positive effects of the three additives and Cu could be due to the formation of a suitable oxide layer for strong bonding with 4-META.

  11. Cleavage of ether, ester, and tosylate C(sp3)-O bonds by an iridium complex, initiated by oxidative addition of C-H bonds. Experimental and computational studies.

    PubMed

    Kundu, Sabuj; Choi, Jongwook; Wang, David Y; Choliy, Yuriy; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-04-03

    A pincer-ligated iridium complex, (PCP)Ir (PCP = κ(3)-C6H3-2,6-[CH2P(t-Bu)2]2), is found to undergo oxidative addition of C(sp(3))-O bonds of methyl esters (CH3-O2CR'), methyl tosylate (CH3-OTs), and certain electron-poor methyl aryl ethers (CH3-OAr). DFT calculations and mechanistic studies indicate that the reactions proceed via oxidative addition of C-H bonds followed by oxygenate migration, rather than by direct C-O addition. Thus, methyl aryl ethers react via addition of the methoxy C-H bond, followed by α-aryloxide migration to give cis-(PCP)Ir(H)(CH2)(OAr), followed by iridium-to-methylidene hydride migration to give (PCP)Ir(CH3)(OAr). Methyl acetate undergoes C-H bond addition at the carbomethoxy group to give (PCP)Ir(H)[κ(2)-CH2OC(O)Me] which then affords (PCP-CH2)Ir(H)(κ(2)-O2CMe) (6-Me) in which the methoxy C-O bond has been cleaved, and the methylene derived from the methoxy group has migrated into the PCP Cipso-Ir bond. Thermolysis of 6-Me ultimately gives (PCP)Ir(CH3)(κ(2)-O2CR), the net product of methoxy group C-O oxidative addition. Reaction of (PCP)Ir with species of the type ROAr, RO2CMe or ROTs, where R possesses β-C-H bonds (e.g., R = ethyl or isopropyl), results in formation of (PCP)Ir(H)(OAr), (PCP)Ir(H)(O2CMe), or (PCP)Ir(H)(OTs), respectively, along with the corresponding olefin or (PCP)Ir(olefin) complex. Like the C-O bond oxidative additions, these reactions also proceed via initial activation of a C-H bond; in this case, C-H addition at the β-position is followed by β-migration of the aryloxide, carboxylate, or tosylate group. Calculations indicate that the β-migration of the carboxylate group proceeds via an unusual six-membered cyclic transition state in which the alkoxy C-O bond is cleaved with no direct participation by the iridium center.

  12. Revisiting CoRoT RR Lyrae stars: detection of period doubling and temporal variation of additional frequencies

    NASA Astrophysics Data System (ADS)

    Szabó, R.; Benkő, J. M.; Paparó, M.; Chapellier, E.; Poretti, E.; Baglin, A.; Weiss, W. W.; Kolenberg, K.; Guggenberger, E.; Le Borgne, J.-F.

    2014-10-01

    Context. High-precision, space-based photometric missions like CoRoT and Kepler have revealed new and surprising phenomena in classical variable stars. Such discoveries were the period doubling in RR Lyrae stars and the frequent occurrence of additional periodicities some of which can be explained by radial overtone modes, but others are discordant with the radial eigenfrequency spectrum. Aims: We search for signs of period doubling in CoRoT RR Lyrae stars. The occurrence of this dynamical effect in modulated RR Lyrae stars might help us to gain more information about the mysterious Blazhko effect. The temporal variability of the additional frequencies in representatives of all subtypes of RR Lyrae stars is also investigated. Methods: We preprocess CoRoT light curves by applying trend and jump correction and outlier removal. Standard Fourier technique is used to analyze the frequency content of our targets and follow the time-dependent phenomena. Results: The most comprehensive collection of CoRoT RR Lyrae stars, including new discoveries is presented and analyzed. We found alternating maxima and in some cases half-integer frequencies in four CoRoT Blazhko RR Lyrae stars, as clear signs of the presence of period doubling. This reinforces that period doubling is an important ingredient for understanding the Blazhko effect - a premise we derived previously from the Kepler RR Lyrae sample. As expected, period doubling is detectable only for short time intervals in most modulated RRab stars. Our results show that the temporal variability of the additional frequencies in all RR Lyrae subtypes is ubiquitous. The ephemeral nature and the highly variable amplitude of these variations suggest a complex underlying dynamics of and an intricate interplay between radial and possibly nonradial modes in RR Lyrae stars. The omnipresence of additional modes in all types of RR Lyrae - except in non-modulated RRab stars - implies that asteroseismology of these objects should be

  13. Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process Effects of Rare Earth Oxide Sintering Additives

    SciTech Connect

    Lee, S. H.; Ko, J. W.; Park, Y. J.; Kim, H. D.; Lin, Hua-Tay; Becher, Paul F

    2012-01-01

    Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, Lu2O3-SiO2 (US), La2O3-MgO (AM) and Y2O3-Al2O3 (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the La2O3-MgO system. Since the Lu2O3-SiO2 system has the highest melting temperature, full densification could not be achieved after sintering at 1950oC. However, the system had a reasonably high bending strength of 527 MPa at 1200oC in air and a high fracture toughness of 9.2 MPa m1/2. The Y2O3-Al2O3 system had the highest room temperature bending strength of 1.2 GPa

  14. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    SciTech Connect

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-15

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO{sub 3}{sup -} compound and its H{sub 2}PO{sub 4}{sup -}-intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO{sub 4}{sup 2-} caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil. -- Graphical abstract: We synthesized phosphate-intercalated Ca-Fe-LDH materials that can act as bifunctional inorganic vectors for the slow release of phosphate fertilizer and also the neutralization of acid soil. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. Display Omitted Research Highlights: {yields} The phosphate forms of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) were synthesized via co-precipitation method. The crystal structure, bonding character, and release kinetics of phosphate of the phosphate-intercalates were investigated. These Ca-Fe-LDH materials are applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  15. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    SciTech Connect

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusual feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.

  16. Double lawton SN2'addition to epoxyvinyl sulfones: selective construction of the stereotetrads of aplyronine A.

    PubMed

    El-Awa, Ahmad; Fuchs, Philip

    2006-07-06

    [reaction: see text] Enantiopure epoxyvinyl sulfones function as templates for the diastereoselective construction of the three stereotetrads of aplyronine A. Lawton S(N)2' addition of 3,5-dimethylpyrazole followed by its displacement in an alcohol-directed Lawton S(N)2' reaction establishes the required product stereochemistry with high selectivity.

  17. Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli.

    PubMed

    Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V; Beal, Nathan J; O'Malley, Patrick J; Tajkhorshid, Emad; Gennis, Robert B; Dikanov, Sergei A

    2016-10-11

    The respiratory cytochrome bo3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQH), which is a transient intermediate during the electron-mediated reduction of O2 to water. It is known that SQH is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQH was investigated with orientation-selective Q-band (∼34 GHz) pulsed (1)H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo3 in a H2O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor Tz' = 11.8 MHz, whereas for H2, Tz' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo3 QH site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.

  18. Biotransformation of the double bond in allyl glycidyl ether to an epoxide ring. Evidence from hemoglobin adducts in mice.

    PubMed

    Pérez, H L; Osterman-Golkar, S

    2000-02-15

    Allyl glycidyl ether (AGE) is used industrially in the production of various epoxy resins. The compound is mutagenic and evidence for carcinogenicity in mice and rats has been reported. A previous study in mice showed that AGE reacts directly, without metabolic activation, with N-terminal valine in hemoglobin to form adducts (AGEVal). Metabolism of AGE may lead to formation of diglycidyl ether (I) through epoxidation of the double bond or 1-allyloxy-2,3-dihydroxypropane (II) through hydrolysis of the epoxide ring. 2,3-Dihydroxypropyl glycidyl ether (III) may be formed either by hydrolysis of I or epoxidation of II. The main aim of the present study was to investigate if AGE is metabolized to the reactive epoxides I or III by analysis of adducts with hemoglobin. Nine male mice (C3H/Hej) were administered AGE dissolved in tricaprylin, 4 mg/mouse, by intraperitoneal (i.p.) injection. Eleven male mice were administered 4 mg/mouse of AGE dissolved in acetone, by skin application. Adducts of I or III with N-terminal valine, N-(2-hydroxy-3-(2,3-dihydroxy)propyloxy)propylvaline (diOHPrGEVal), were demonstrated in mice administered AGE by i.p. injection. The levels were in the range 1600-5600 pmol/g globin. The level of diOHPrGEVal in mice administered AGE by skin application (n = 5) was below the detection limit of the analytical method, 20 pmol/g globin. The level of AGEVal, analyzed in mice administered AGE by skin application (n = 6), was about 20 pmol/g globin (median value), as compared with 1600 pmol/g globin previously found in mice administered AGE by i.p. injection. Neither AGEVal nor diOHPrGEVal were detected in control animals. Both adducts were analyzed using a modified Edman method for derivatization and using gas chromatography/tandem mass spectrometry for detection. The hydroxyl groups of the Edman derivative of diOHPrGEVal were protected by acetylation.

  19. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGES

    Welz, Oliver; Savee, John D.; Osborn, David L.; ...

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  20. Pd-Catalyzed Autotandem Reactions with N-Tosylhydrazones. Synthesis of Condensed Carbo- and Heterocycles by Formation of a C-C Single Bond and a C═C Double Bond on the Same Carbon Atom.

    PubMed

    Paraja, Miguel; Valdés, Carlos

    2017-04-05

    A new Pd-catalyzed autotandem reaction is introduced that consists of the cross-coupling of a benzyl bromide with a N-tosylhydrazone followed by an intramolecular Heck reaction with an aryl bromide. During the process, a single and a double C-C bond are formed on the same carbon atom. Two different arrangements for the reactive functional groups are possible, rendering great flexibility to the transformation. The same strategy led to 9-methylene-9H-fluorenes, 9-methylene-9H-xanthenes, 9-methylene-9,10-dihydroacridines, and also dihydropyrroloisoquinoline and dihydroindoloisoquinoline derivatives.

  1. Hydrogen production from water decomposition by redox of Fe 2O 3 modified with single- or double-metal additives

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojie; Wang, Hui

    2010-05-01

    Iron oxide modified with single- or double-metal additives (Cr, Ni, Zr, Ag, Mo, Mo-Cr, Mo-Ni, Mo-Zr and Mo-Ag), which can store and supply pure hydrogen by reduction of iron oxide with hydrogen and subsequent oxidation of reduced iron oxide with steam (Fe 3O 4 (initial Fe 2O 3)+4H 2↔3Fe+4H 2O), were prepared by impregnation. Effects of various metal additives in the samples on hydrogen production were investigated by the above-repeated redox. All the samples with Mo additive exhibited a better redox performance than those without Mo, and the Mo-Zr additive in iron oxide was the best effective one enhancing hydrogen production from water decomposition. For Fe 2O 3-Mo-Zr, the average H 2 production temperature could be significantly decreased to 276 °C, the average H 2 formation rate could be increased to 360.9-461.1 μmol min -1 Fe-g -1 at operating temperature of 300 °C and the average storage capacity was up to 4.73 wt% in four cycles, an amount close to the IEA target.

  2. Markovnikov free radical addition reactions, a sleeping beauty kissed to life.

    PubMed

    Hoffmann, Reinhard W

    2016-02-07

    This review covers free radical additions, which are initiated by the formal addition of a hydrogen atom to a C[double bond, length as m-dash]C double bond. These reactions originated in the realms of inorganic chemistry, polymer chemistry, and organic chemistry, whereby barriers between these disciplines impeded the rapid implementation of the findings.

  3. Effects of Platinum Additions and Sulfur Impurities on the Microstructure and Scale Adhesion Behavior of Single-Phase CVD Aluminide Bond Coatings

    SciTech Connect

    Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Pint, B.A.; Wright, I.G.; Zhang, Y.

    1999-02-28

    The adhesion of alumina scales to aluminide bond coats is a life-limiting factor for some advanced thermal barrier coating systems. This study investigated the effects of aluminide bond coat sulfur and platinum contents on alumina scale adhesion and coating microstructural evolution during isothermal and cyclic oxidation testing at 1150 C. Low-sulfur NiAl and NiPtAl bond coats were fabricated by chemical vapor deposition (CVD). Lowering the sulfur contents of CVD NiAl bond coatings significantly improved scale adhesion, but localized scale spallation eventually initiated along coating grain boundaries. Further improvements in scale adhesion were obtained with Pt additions. The observed influences of Pt additions included: (1) mitigation of the detrimental effects of high sulfur levels, (2) drastic reductions in void growth along the scale-metal interface, (3) alteration of the oxide-metal interface morphology, and (4) elimination of Ta-rich oxides in the Al{sub 2}O{sub 3} scales during thermal cycling. The results of this study also suggested that the microstructure (especially the grain size) of CVD aluminide bond coatings plays a significant role in scale adhesion.

  4. 46 CFR Appendix F to Subpart C of... - Optional Rider for Additional NVOCC Financial Responsibility for Group Bonds [Optional Rider to...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 9 2011-10-01 2011-10-01 false Optional Rider for Additional NVOCC Financial Responsibility for Group Bonds F Appendix F to Subpart C of Part 515 Shipping FEDERAL MARITIME COMMISSION... Against Ocean Transportation Intermediaries Pt. 515, Subpt. C, App. F Appendix F to Subpart C of Part...

  5. 46 CFR Appendix F to Subpart C of... - Optional Rider for Additional NVOCC Financial Responsibility for Group Bonds [Optional Rider to...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Optional Rider for Additional NVOCC Financial Responsibility for Group Bonds F Appendix F to Subpart C of Part 515 Shipping FEDERAL MARITIME COMMISSION... Against Ocean Transportation Intermediaries Pt. 515, Subpt. C, App. F Appendix F to Subpart C of Part...

  6. Double bond in the side chain of 1alpha,25-dihydroxy-22-ene-vitamin D(3) is reduced during its metabolism: studies in chronic myeloid leukemia (RWLeu-4) cells and rat kidney.

    PubMed

    Sunita Rao, D; Balkundi, D; Uskokovic, M R; Tserng, K; Clark, J W; Horst, R L; Satyanarayana Reddy, G

    2001-08-01

    the aforementioned metabolites, 1alpha,25(OH)(2)-22-ene-D(3) is also converted into two additional metabolites namely, 1alpha,24,25(OH)(3)-22-ene-D(3) and 1alpha,25(OH)(2)-24-oxo-22-ene-D(3). Furthermore, we did not observe direct conversion of 1alpha,25(OH)(2)-22-ene-D(3) into 1alpha,25(OH)(2)D(3). These findings indicate that 1alpha,25(OH)(2)-22-ene-D(3) is first converted into 1alpha,24,25(OH)(3)-22-ene-D(3) and 1alpha,25(OH)(2)-24-oxo-22-ene-D(3). Then the double bonds in the side chains of 1alpha,24,25(OH)(3)-22-ene-D(3) and 1alpha,25(OH)(2)-24-oxo-22-ene-D(3) undergo reduction to form 1alpha,24(R),25(OH)(3)D(3) and 1alpha,25(OH)(2)-24-oxo-D(3), respectively. Thus, our study indicates that the double bond in 1alpha,25(OH)(2)-22-ene-D(3) is reduced during its metabolism. Furthermore, it appears that the double bond reduction occurs only during the second or the third step of 1alpha,25(OH)(2)-22-ene-D(3) metabolism indicating that prior C-24 hydroxylation of 1alpha,25(OH)(2)-22-ene-D(3) is required for the double bond reduction to occur.

  7. Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-Based Lubricant Additives

    NASA Astrophysics Data System (ADS)

    Wang, Hongdong; Liu, Yuhong; Chen, Zhe; Wu, Bibo; Xu, Sailong; Luo, Jianbin

    2016-03-01

    High efficient and sustainable utilization of water-based lubricant is essential for saving energy. In this paper, a kind of layered double hydroxide (LDH) nanoplatelets is synthesized and well dispersed in water due to the surface modification with oleylamine. The excellent tribological properties of the oleylamine-modified Ni-Al LDH (NiAl-LDH/OAm) nanoplatelets as water-based lubricant additives are evaluated by the tribological tests in an aqueous environment. The modified LDH nanoplatelets are found to not only reduce the friction but also enhance the wear resistance, compared with the water-based cutting fluid and lubricants containing other particle additives. By adding 0.5 wt% LDH nanoplatelets, under 1.5 GPa initial contact pressure, the friction coefficient, scar diameter, depth and width of the wear track dramatically decrease by 83.1%, 43.2%, 88.5% and 59.5%, respectively. It is considered that the sufficiently small size and the excellent dispersion of NiAl-LDH/OAm nanoplatelets in water are the key factors, so as to make them enter the contact area, form a lubricating film and prevent direct collision of asperity peaks. Our investigations demonstrate that the LDH nanoplatelet as a water-based lubricant additive has a great potential value in industrial application.

  8. Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-Based Lubricant Additives

    PubMed Central

    Wang, Hongdong; Liu, Yuhong; Chen, Zhe; Wu, Bibo; Xu, Sailong; Luo, Jianbin

    2016-01-01

    High efficient and sustainable utilization of water-based lubricant is essential for saving energy. In this paper, a kind of layered double hydroxide (LDH) nanoplatelets is synthesized and well dispersed in water due to the surface modification with oleylamine. The excellent tribological properties of the oleylamine-modified Ni-Al LDH (NiAl-LDH/OAm) nanoplatelets as water-based lubricant additives are evaluated by the tribological tests in an aqueous environment. The modified LDH nanoplatelets are found to not only reduce the friction but also enhance the wear resistance, compared with the water-based cutting fluid and lubricants containing other particle additives. By adding 0.5 wt% LDH nanoplatelets, under 1.5 GPa initial contact pressure, the friction coefficient, scar diameter, depth and width of the wear track dramatically decrease by 83.1%, 43.2%, 88.5% and 59.5%, respectively. It is considered that the sufficiently small size and the excellent dispersion of NiAl-LDH/OAm nanoplatelets in water are the key factors, so as to make them enter the contact area, form a lubricating film and prevent direct collision of asperity peaks. Our investigations demonstrate that the LDH nanoplatelet as a water-based lubricant additive has a great potential value in industrial application. PMID:26951794

  9. Non-innocent additives in a palladium(II)-catalyzed C-H bond activation reaction: insights into multimetallic active catalysts.

    PubMed

    Anand, Megha; Sunoj, Raghavan B; Schaefer, Henry F

    2014-04-16

    The role of a widely employed additive (AgOAc) in a palladium acetate-catalyzed ortho-C-H bond activation reaction has been examined using the M06 density functional theory. A new hetero-bimetallic Pd-(μ-OAc)3-Ag is identified as the most likely active species. This finding could have far-reaching implications with respect to the notion of the active species in palladium catalysis in the presence of other metal salt additives.

  10. Infrared spectroscopic studies on 4-amino-6-oxopyrimidine in a low-temperature Xe matrix and crystalline polymorphs composed of double hydrogen-bonded ribbons

    NASA Astrophysics Data System (ADS)

    Ohyama, Kazuko; Goto, Kenta; Shinmyozu, Teruo; Yamamoto, Norifumi; Iizumi, Shota; Miyagawa, Masaya; Nakata, Munetaka; Sekiya, Hiroshi

    2014-03-01

    Infrared (IR) spectra of the enol and keto forms of 4-amino-6-oxopyrimidine (AOP) isolated in a low-temperature Xe matrix were recorded, where the change from the keto to the enol form was found to be induced by UV irradiation (λ > 270 nm). On the other hand, the hydrated crystal of AOP exhibited a similar IR spectrum to the anhydrous crystal by dehydration, suggesting that the dehydrated and anhydrous crystals are polymorphs. It has been found from the IR spectral analyses that the AOP crystal is dominated by infinite double H-bonded ribbons, which has been supported by quantum chemical calculations.

  11. Resolution of concerted versus sequential mechanisms in photo-induced double-proton transfer reaction in 7-azaindole H-bonded dimer

    PubMed Central

    Catalán, Javier; del Valle, Juan Carlos; Kasha, Michael

    1999-01-01

    The experimental and theoretical bases for a synchronous or concerted double-proton transfer in centro-symmetric H-bonded electronically excited molecular dimers are presented. The prototype model is the 7-azaindole dimer. New research offers confirmation of a concerted mechanism for excited-state biprotonic transfer. Recent femtosecond photoionization and coulombic explosion techniques have given rise to time-of-flight MS observations suggesting sequential two-step biprotonic transfer for the same dimer. We interpret the overall species observed in the time-of-flight experiments as explicable without conflict with the concerted mechanism of proton transfer. PMID:10411876

  12. Selective reduction of C=C double bonds in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of microcystins.

    PubMed

    Deleuze, Christelle; De Pauw, Edwin; Quinton, Loic

    2010-01-01

    Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute a group of closely related cyclic heptapeptides. Their sequences are made up of classical amino acids as well as post- translational modified ones. Interestingly, in vivo metabolism of microcystins seems to be greatly dependent on various minor structural differences and particularly those of the seventh amino acid, which can be either dehydroalanine (or a derivative), dehydroaminobutyric acid (or a derivative), serine or alanine. As a consequence, microcystins have been classified on the basis of the nature of this singular amino acid. A major difficulty in the classification of such toxins is that some of them share the same molecular masses and the same molecular formulas. Consequently, a simple mass measurement is not sufficient to determine the structure and the class of a toxin of interest. Heavy and expensive techniques are used to classify them, such as multi-dimensional nuclear magnetic resonance and amino acid analysis. In this work, a new matrix-assisted laser desorption/ionization time-of-flight method leading to an easy classification of MCs is proposed. The methodology relies on the reductive properties of the matrix 1,5-diaminonaphtalene (1,5-DAN) which appears to be able to selectively reduce the double carbon-carbon bond belonging to the seventh amino acid. Moreover, the yield of reduction seems to be influenced by the degree of substitution of this double bond, allowing a discrimination between dehydroalanine and dehydroaminobutyric acid. This selective reduction was confirmed by the study of three synthetic peptides by mass spectrometry and tandem mass spectrometry. According to these results, the use of reductive matrices seems to be promising in the study of microcystins and in their classification. More generally, 1,5-DAN allows the selective

  13. Reactions of organoaluminum compounds with acetylene as a method for the synthesis of aliphatic derivatives with a z-disubstituted double bond

    SciTech Connect

    Andreeva, N.I.; Kuchin, A.V.; Tolstikov, G.A.

    1985-11-01

    This paper develops a method for the synthesis of aliphatic compounds with a Z-disubstituted double bond, which are important synthons for the preparation of such natural products as insect pheromones, aromatic principles, etc. In the carbalumination reaction of acetylene Z-alkenyldialkylaluminums are formed selectively. A-Alkenyldialkylaluminums are highly reactive and can readily be converted into Z-allyl alcohols and their ethers, and into Z-iodovinyl derivatives. By the reactions of vinyl organoaluminum compounds with the complex CH/sub 3/COClhaAlCl/sub 3/ E-conjugated ketones were obtained.

  14. A Facile Method to Prepare Double-Layer Isoporous Hollow Fiber Membrane by In Situ Hydrogen Bond Formation in the Spinning Line.

    PubMed

    Noor, Nazia; Koll, Joachim; Radjabian, Maryam; Abetz, Clarissa; Abetz, Volker

    2016-03-01

    A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.

  15. Double nucleophilic 1,2-addition of silylated dialkyl phosphites to 4-phosphono-1-aza-1,3-dienes: synthesis of gamma-phosphono-alpha-aminobisphosphonates.

    PubMed

    Masschelein, Kurt G R; Stevens, Christian V

    2007-11-23

    gamma-Phosphono-alpha-aminobisphosphonates were synthesized from a new class of 4-phosphono-1-aza-1,3-dienes by the addition of dialkyl trimethylsilyl phosphites to these azadienes in the presence of acid. Depending on the steric demand of the group on nitrogen, double 1,2-addition or tandem 1,4-1,2-addition occurred.

  16. Bis(alkyl) rare-earth complexes coordinated by bulky tridentate amidinate ligands bearing pendant Ph2P[double bond, length as m-dash]O and Ph2P[double bond, length as m-dash]NR groups. Synthesis, structures and catalytic activity in stereospecific isoprene polymerization.

    PubMed

    Rad'kova, Natalia Yu; Tolpygin, Aleksei O; Rad'kov, Vasily Yu; Khamaletdinova, Nadia M; Cherkasov, Anton V; Fukin, Georgi K; Trifonov, Alexander A

    2016-11-22

    A series of new tridentate amidines 2-[Ph2P[double bond, length as m-dash]X]C6H4NHC(tBu)[double bond, length as m-dash]N(2,6-R2C6H3) (X = O, R = iPr (1); X = S, R = Me (2); X = NPh, R = Me (3); X = N(2,6-Me2C6H3), R = Me (4)) bearing various types of donor Ph2P[double bond, length as m-dash]X groups in a pendant chain was synthesized. Bis(alkyl) complexes {2-[Ph2P[double bond, length as m-dash]X]C6H4NC(tBu)N(2,6-R2C6H3)}Ln(CH2SiMe3)2 (Ln = Y, X = O, R = iPr (5); Ln = Er, X = O, R = iPr (6); Ln = Lu, X = O, R = iPr (7); Ln = Y, X = NPh, R = Me (8); Ln = Lu, X = NPh, R = Me (9); Ln = Lu, X = N(2,6-Me2C6H3), R = Me (10)) were prepared using alkane elimination reactions of 1, 3 and 4 with Ln(CH2SiMe3)3(THF)2 (Ln = Y, Er, Lu) in toluene and were isolated in 45 (5), 62 (6), 56 (7), 65 (8), 60 (9), and 60 (10) % yields respectively. The X-ray diffraction studies showed that complexes 6-8 are solvent free and feature intramolecular coordination of the P[double bond, length as m-dash]X (X = O, NPh) group to the lanthanide ions. The ternary systems 5-10/borate/AlR3 (borate = [PhNHMe2][B(C6F5)4], [Ph3C][B(C6F5)4], AlR3 = AliBu3, AliBu2H; molar ratio = 1/1/10 or 1/1/1, toluene) proved to be active in isoprene polymerization and enable complete conversion of 1000-10 000 equivalents of the monomer into a polymer at 25 °C within 0.5-24 h affording polyisoprenes with polydispersities Mw/Mn = 1.22-3.18. A comparative study of the catalytic performance of the bis(alkyl) complexes coordinated by tridentate amidinate ligands containing different pendant donor groups demonstrated that replacement of the Ph2P[double bond, length as m-dash]O group by Ph2P[double bond, length as m-dash]NPh leads to a switch of stereoselectivity in isoprene polymerization from cis-1,4 (up to 98.5%) to trans-1,4 (up to 84.8%). And conversely introduction of methyl substituents in the 2,6 positions of the phenyl group of the Ph2P[double bond, length as m-dash]NPh fragment allows us to restore the 1,4-cis

  17. Sequential and selective hydrogenation of the C(alpha)-C(beta) and M-C(alpha) double bonds of an allenylidene ligand coordinated to osmium: new reaction patterns between an allenylidene complex and alcohols.

    PubMed

    Bolaño, Tamara; Castarlenas, Ricardo; Esteruelas, Miguel A; Oñate, Enrique

    2007-07-18

    Complex [OsH(=C=C=CPh2)(CH3CN)2(PiPr3)2]BF4 (1) reacts with primary and secondary alcohols to give the corresponding dehydrogenated alcohols and the hydride-carbene derivative [OsH(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF4 (2), as a result of hydrogen transfer reactions from the alcohols to the Calpha-Cbeta double bond of the allenylidene ligand of 1. The reactions with phenol and t-butanol, which do not contain any beta-hydrogen, afford the alkoxy-hydride-carbyne complexes [OsH(OR)(CCH=CPh2)(CH3CN)(PiPr3)2]BF4 (R = Ph (3), tBu (4)), as a consequence of the 1,3-addition of the O-H bond of the alcohols to the metallic center and the Cbeta atom of the allenylidene of 1. On the basis of the reactions of 1 with these tertiary alcohols, deuterium labeling experiments, and DFT calculations, the mechanism of the hydrogenation is proposed. In acetonitrile under reflux, the Os-C double bond of 2 undergoes hydrogenation to give 1,1-diphenylpropene and [Os{CH2CH(CH3)PiPr2(CH3CN)3(PiPr3)]BF4 (11), containing a metalated phosphine ligand. This reaction is a first-order process with activation parameters of DeltaH = 89.0 +/- 6.3 kJ mol-1 and DeltaS = -43.5 +/- 9.6 J mol-1 K-1. The X-ray structures of 2 and 3 are also reported.

  18. Double Trouble’: Diagnostic Challenges in Duchenne Muscular Dystrophy in Patients with an Additional Hereditary Skeletal Dysplasia

    PubMed Central

    Donkervoort, Sandra; Schindler, Alice; Tesi-Rocha, Carolina; Schreiber, Allison; Leach, Meganne E.; Dastgir, Jahannaz; Hu, Ying; Mankodi, Ami; Wagner, Kathryn R.; Friedman, Neil R.; Bönnemann, Carsten G.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations Dystrophin and affects 1 in 3600-6000 males. It is characterized by progressive weakness, leading to loss of ambulation, respiratory insufficiency, cardiomyopathy, and scoliosis. We describe the unusual phenotype of 3 patients with skeletal dysplasias in whom an additional diagnosis of DMD was later established. Two unrelated boys presented with osteogenesis imperfecta due to point mutations in COL1A1 and were both subsequently found to have a 1bp frameshift deletion in the Dystrophin gene at age 3 and age 15, respectively. The third patient had a diagnosis of pseudoachondroplasia caused by a mutation in the COMP gene and was found to have a deletion of exons 48-50 in Dystrophin at age 9. We discuss the atypical presentation caused by the concomitant presence of 2 conditions affecting the musculoskeletal system, emphasizing aspects that may confound the presentation of a well-characterized disease like DMD. Additional series of patients with DMD and a secondary inherited condition are necessary to establish the natural history in this “double trouble” population. The recognition and accurate diagnosis of patients with two independent genetic disease processes is essential for management, prognosis, genetic risk assessment, and discussion regarding potential therapeutic interventions. PMID:24070816

  19. Dynamic 1H-NMR study of unusually high barrier to rotation about the partial Csbnd N double bond in N,N-dimethyl carbamoyl 5-aryloxytetrazoles

    NASA Astrophysics Data System (ADS)

    Movahedifar, Fahimeh; Modarresi-Alam, Ali Reza; Kleinpeter, Erich; Schilde, Uwe

    2017-04-01

    The synthesis of new N,N-dimethyl carbamoyl 5-aryloxytetrazoles have been reported. Their dynamic 1H-NMR via rotation about Csbnd N bonds in moiety of urea group [a; CO-NMe2 and b; (2-tetrazolyl)N-CO rotations] in the solvents CDCl3 (223-333 K) and DMSO (298-363 K) is studied. Accordingly, the free energies of activation, obtained 16.5 and 16.9 kcal mol-1 respectively, attributed to the conformational isomerization about the Me2Nsbnd Cdbnd O bond (a rotation). Moreover, a and b barrier to rotations in 5-((4-methylphenoxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide (P) also were computed at level of B3LYP using 6-311++G** basis set. The optimized geometry parameters are in good agreement with X-ray structure data. The computation of energy barrier for a and b was determined 16.9 and 2.5 kcal mol-1, respectively. The former is completely in agreement with the result obtained via dynamic NMR. X-ray structure analysis data demonstrate that just 2-acylated tetrazole was formed in the case of 5-(p-tolyloxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide. X-ray data also revealed a planar trigonal orientation of the Me2N group which is coplanar to carbonyl group with the partial double-bond Csbnd N character. It also demonstrates the synperiplanar position of Cdbnd O group with tetrazolyl ring. On average, in solution the plane containing carbonyl bond is almost perpendicular to the plane of the tetrazolyl ring (because of steric effects as confirmed by B3LYP/6-311++G**) while the plane containing Me2N group is coplanar with carbonyl bond which is in contrast with similar urea derivatives and it demonstrates the unusually high rotational energy barrier of these compounds.

  20. Direct Syn Addition of Two Silicon Atoms to a C≡C Triple Bond by Si-Si Bond Activation: Access to Reactive Disilylated Olefins.

    PubMed

    Ahmad, Maha; Gaumont, Annie-Claude; Durandetti, Muriel; Maddaluno, Jacques

    2017-02-20

    A catalytic intramolecular silapalladation of alkynes affords, in good yields and stereoselectively, syn-disilylated heterocycles of different chemical structure and size. When applied to silylethers, this reaction leads to vinylic silanols that undergo a rhodium-catalyzed addition to activated olefins, providing the oxa-Heck or oxa-Michael products, depending on the reaction conditions.

  1. Differential roles of internal and terminal double bonds in docosahexaenoic acid: Comparative study of cytotoxicity of polyunsaturated fatty acids to HT-29 human colorectal tumor cell line.

    PubMed

    Sato, Satoshi B; Sato, Sho; Kawamoto, Jun; Kurihara, Tatsuo

    2011-01-01

    The role of the double bonds in docosahexaenoic acid (22:6(Δ4,7,10,13,16,19); DHA) in cytotoxic lipid peroxidation was studied in a superoxide dismutase-defective human colorectal tumor cell line, HT-29. In a conventional culture, DHA and other polyunsaturated fatty acids (PUFAs) were found to induce acute lipid peroxidation and subsequent cell death. PUFAs that lack one or both the terminal double bonds (Δ19 and Δ4) but share Δ7,10,13,16 such as 22:5(Δ7,10,13,16,19), 22:5(Δ4,7,10,13,16), and 22:4(Δ7,10,13,16) were more effective than DHA. Lipid peroxidation and cell death were completely inhibited, except by 22:4(Δ7,10,13,16) when radical-mediated reactions were suppressed by culturing cells in 2% O(2) in the presence of vitamin E. DHA and C22:5 PUFAs but not 22:4(Δ7,10,13,16) were efficiently incorporated in phosphatidylinositol, regardless of the culturing conditions. These and other results suggested that the internal unsaturations Δ7,10,13,16 were sensitive to lipid peroxidation, whereas the terminal ones Δ19 and Δ4 appeared to be involved in assimilation into phospholipids.

  2. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    PubMed

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks.

  3. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.

    PubMed Central

    Hristova, K; White, S H

    1998-01-01

    Changes in the structure of the hydrocarbon core (HC) of fluid lipid bilayers can reveal how bilayers respond to the partitioning of peptides and other solutes (Jacobs, R. E., and S. H. White. 1989. Biochemistry. 28:3421-3437). The structure of the HC of dioleoylphosphocholine (DOPC) bilayers can be determined from the transbilayer distribution of the double-bonds (Wiener, M. C., and S. H. White. 1992. Biophys. J. 61:434-447). This distribution, representing the time-averaged projection of the double-bond positions onto the bilayer normal (z), can be obtained by means of neutron diffraction and double-bond specific deuteration (Wiener, M. C., G. I. King, and S. H. White. 1991. Biophys. J. 60:568-576). For fully resolved bilayer profiles, a close approximation of the distribution could be obtained by x-ray diffraction and isomorphous bromine labeling at the double-bonds of the DOPC sn-2 acyl chain (Wiener, M. C., and S. H. White. 1991. Biochemistry. 30:6997-7008). We have modified the bromine-labeling approach in a manner that permits determination of the distribution in under-resolved bilayer profiles observed at high water contents. We used this new method to determine the transbilayer distribution of the double-bond bromine labels of DOPC over a hydration range of 5.4 to 16 waters per lipid, which reveals how the HC structure changes with hydration. We found that the transbilayer distributions of the bromines can be described by a pair of Gaussians of 1/e half-width A(Br) located at z = +Z(Br) relative to the bilayer center. For hydrations from 5.4 waters up to 9.4 waters per lipid, Z(Br) decreases from 7.97 +/- 0.27 A to 6.59 +/- 0.15 A, while A(Br) increased from 4.62 +/- 0.62 A to 5.92 +/- 0.37 A, consistent with the expected hydration-induced decrease in HC thickness and increase in area per lipid. After the phosphocholine hydration shell was filled at approximately 12 waters per lipid, we observed a shift in Z(Br) to approximately 7.3 A, indicative of a

  4. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.

    PubMed

    Hristova, K; White, S H

    1998-05-01

    Changes in the structure of the hydrocarbon core (HC) of fluid lipid bilayers can reveal how bilayers respond to the partitioning of peptides and other solutes (Jacobs, R. E., and S. H. White. 1989. Biochemistry. 28:3421-3437). The structure of the HC of dioleoylphosphocholine (DOPC) bilayers can be determined from the transbilayer distribution of the double-bonds (Wiener, M. C., and S. H. White. 1992. Biophys. J. 61:434-447). This distribution, representing the time-averaged projection of the double-bond positions onto the bilayer normal (z), can be obtained by means of neutron diffraction and double-bond specific deuteration (Wiener, M. C., G. I. King, and S. H. White. 1991. Biophys. J. 60:568-576). For fully resolved bilayer profiles, a close approximation of the distribution could be obtained by x-ray diffraction and isomorphous bromine labeling at the double-bonds of the DOPC sn-2 acyl chain (Wiener, M. C., and S. H. White. 1991. Biochemistry. 30:6997-7008). We have modified the bromine-labeling approach in a manner that permits determination of the distribution in under-resolved bilayer profiles observed at high water contents. We used this new method to determine the transbilayer distribution of the double-bond bromine labels of DOPC over a hydration range of 5.4 to 16 waters per lipid, which reveals how the HC structure changes with hydration. We found that the transbilayer distributions of the bromines can be described by a pair of Gaussians of 1/e half-width A(Br) located at z = +Z(Br) relative to the bilayer center. For hydrations from 5.4 waters up to 9.4 waters per lipid, Z(Br) decreases from 7.97 +/- 0.27 A to 6.59 +/- 0.15 A, while A(Br) increased from 4.62 +/- 0.62 A to 5.92 +/- 0.37 A, consistent with the expected hydration-induced decrease in HC thickness and increase in area per lipid. After the phosphocholine hydration shell was filled at approximately 12 waters per lipid, we observed a shift in Z(Br) to approximately 7.3 A, indicative of a

  5. Tribological performance of Mg/Al/Ce layered double hydroxides nanoparticles and intercalated products as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Qin, Haojing; Zuo, Ranfang; Bai, Zhimin

    2015-10-01

    Mg/Al/Ce ternary layered double hydroxides (LDHs) were synthesized via coprecipitation and intercalated by succinic acid and lauric acid through ion exchange method respectively. The LDHs products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FT-IR). Tribological properties of LDHs as lubricant additives were evaluated by four-ball friction and air compressor test. The results indicated that Mg/Al/Ce LDHs were prepared successfully with Ce/Al molar ratio of 0.05 and crystallization temperature of 140 °C. The interlayer spacing of LDHs precursor was expanded by succinic acid and lauric acid to 8.838 and 17.519 Å respectively. All the three LDHs products can reduce friction and wear of engine lubricating oil in the tests. LDHs intercalated with lauric acid showed best tribological performance among them which was attributed to sliding each other between laminates, good dispersibility in oil medium and a protective tribofilm formed on the worn surface.

  6. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce

  7. α-Halogenoacetanilides as hydrogen-bonding organocatalysts that activate carbonyl bonds: fluorine versus chlorine and bromine.

    PubMed

    Koeller, Sylvain; Thomas, Coralie; Peruch, Fréderic; Deffieux, Alain; Massip, Stéphane; Léger, Jean-Michel; Desvergne, Jean-Pierre; Milet, Anne; Bibal, Brigitte

    2014-03-03

    α-Halogenoacetanilides (X=F, Cl, Br) were examined as H-bonding organocatalysts designed for the double activation of CO bonds through NH and CH donor groups. Depending on the halide substituents, the double H-bond involved a nonconventional CH⋅⋅⋅O interaction with either a HCXn (n=1-2, X=Cl, Br) or a HCAr bond (X=F), as shown in the solid-state crystal structures and by molecular modeling. In addition, the catalytic properties of α-halogenoacetanilides were evaluated in the ring-opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α-dichloro- and α-dibromoacetanilides containing electron-deficient aromatic groups afforded the most attractive double H-bonding properties towards CO bonds, with a NH⋅⋅⋅O⋅⋅⋅HCX2 interaction.

  8. Depolarized light scattering in dilute solutions of alkanes: A comparison of the bond additive and interacting atom approximations to the molecular polarizability

    SciTech Connect

    Keyes, T.; Evans, G.T.; Ladanyi, B.M.

    1981-04-01

    The molecular polarizability of a few small alkane (4--10 bond) chains has been represented by (1) an interacting atom model (IAM), wherein the atoms are treated as isotropic point polarizabilities interacting by the dipole tensor; and (2) the bond additive approximation (BAA) in which each bond is assigned an axially symmetric polarizability tensor, and the total molecular polarizability is the sum of the individual bond values. For selected values of the gauche--trans energy difference (0.3 kcal/mole), the calculated mean anisotropy per backbone atom /N increases linearly with N for the IAM and is essentially independent of N in the BAA. Orientational correlation functions have been determined for several second rank tensors characterizing the flexible chains using a modified version of Fixman's Brownian dynamics programs. The orientational correlation functions displayed an effective nonanalytic decay for short times merging into an exponential for long times. Single particle correlation times for the IAM increased more rapidly with N than did those of the BAA. Relaxation of the end-to-end vector (actually its second rank analog) was found to be the slowest process, followed by the IAM and the BAA polarizabilities, and finally the fastest was a local rotational mode.

  9. Development of MDP-based one-step self-etch adhesive--effect of additional 4-META on bonding performance.

    PubMed

    Iwai, Hitoshi; Fujita, Kou; Iwai, Hirotoshi; Ikemi, Takuji; Goto, Haruhiko; Aida, Masahiro; Nishiyama, Norihiro

    2013-01-01

    We designed three experimental 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based one-step (EX) adhesives consisting of MDP, urethane dimethacrylate, and triethylene glycol dimethacrylate adhesives with different water contents (98.4, 196.8, and 294.4 mg/g), and 4-methacryloyloxyethyl trimellitic anhydride (4-META) or 2-hydroxyethyl methacrylate (HEMA)-containing onestep adhesive. The effect of the amount of MDP-calcium (MDP-Ca) salt produced through demineralization of enamel and dentin on the bonding performance was examined. The efficacy of 4-META and HEMA was then discussed. When the amount of water in EX adhesive was increased, the production amount of MDP-Ca salt of enamel increased, but not the dentin. The enamel bond strength slightly increased with increasing the production amount of MDP-Ca salt, in contrast to the dentin. However, addition of 4-META in the EX adhesive (water content=98.4 mg/g) increased both bond strengths, although the production amounts of MDP-Ca salt significantly decreased. The 4-META enhances both bond strengths more effectively than the HEMA.

  10. Effect of Addition of Curcumin Nanoparticles on Antimicrobial Property and Shear Bond Strength of Orthodontic Composite to Bovine Enamel

    PubMed Central

    Sodagar, Ahmad; Bahador, Abbas; Pourhajibagher, Maryam; Ahmadi, Badreddin; Baghaeian, Pedram

    2016-01-01

    Objectives: This study sought to assess the effect of curcumin nanoparticles (curcNPs) on antimicrobial property and shear bond strength (SBS) of orthodontic composite to bovine enamel. Materials and Methods: In this in vitro, experimental study, 1%, 5% and 10% curcNPs were added to Transbond XT composite. Stainless steel brackets were bonded to 48 sound bovine incisors in four groups (n=12) using composite containing 0% (control), 1%, 5% and 10% curcNPs. The bracket-tooth SBS was measured by a universal testing machine. The adhesive remnant index (ARI) score was calculated after debonding using a stereomicroscope. Also, 180 discs were fabricated of the four composites; 108 were subjected to eluted component test, 36 were used for disc diffusion test and 36 were used for biofilm test to assess their antimicrobial activity against Streptococcus mutans, Streptococcus sanguinis and Lactobacillus acidophilus. Results: The highest and lowest SBS belonged to control and 10% curcNP groups, respectively. The difference in SBS was significant among the four groups (P=0.008). The SBS of control group was significantly higher than that of 10% curcNPs (P=0.006). The four groups were not significantly different in terms of ARI score (P>0.05). Growth inhibition zones were not seen in any group. In biofilm test, the colony counts of all bacteria significantly decreased by an increase in percentage of curcNPs. Colony count significantly decreased only at 30 days. Conclusions: At 1% concentration, curcNPs have significant antimicrobial activity against cariogenic bacteria with no adverse effect on SBS. However, insolubility of curcNPs remains a major drawback. PMID:28127332

  11. [The titration of double bonds in fatty acids of blood plasma in patients in testing of glucose tolerance].

    PubMed

    Titov, V N; Sazhina, N N; Evteeva, N M; Aripovskiĭ, A V; Tkhagalizhokova, E M

    2015-01-01

    The article deals with per oral glucose tolerance test applied to 20 patients with arterial hypertension. The blood plasma was analyzed to detect content of individual fatty acids, double bounds, glucose, insulin and metabolites of fatty acids. In patients with different resistance to insulin content of non-etherized fatty acids decreased approximatively up to 3 times. Without insulin resistance secretion of insulin in 2 hours after glucose load increased up to 3 times and content of individual fatty acids decreases in greater extent. Under insulin resistance secretion of insulin increases up to 8 times and decreasing of content of fatty acids is less expressed. The decrease in blood plasma of content of oleic and linoleic fatty acids and double bounds reflects effectiveness of effect of insulin--blockade of hydrolysis of triglycerides in subcutaneous adipocytes. The concentration of insulin positively correlates with initial content of palmitic fatty acid in the pool of lipids of blood plasma.

  12. [The content of individual fatty acids and numbers of double bonds, insulin, C-peptide and unesterified fatty acids in blood plasma in testing tolerance to glucose].

    PubMed

    Titov, V N; Sazhina, N N; Aripovskiĭ, A V; Evteeva, N M; Tkhagalizhokova, É M; Parkhimovich, R M

    2014-10-01

    The glucose tolerance test demonstrates that content of unesterified fatty acids in blood plasma decreases up to three times and the content of oleic and linoleic acids is more decreased in the pool of fatty acids lipids. Out of resistance to insulin, hormone secretion increases up to three times. The decreasing of level of individual fatty acids occurs in a larger extent. Under resistance to insulin secretion of insulin is increasing up to eight times. The decreasing of level of each fatty acid is less expressed. The effect of insulin reflects decreasing of content of double bonds in blood plasma. The number of double bonds characterizes the degree of unsaturation of fatty acids in lipids of blood plasma. The higher number of double bonds is in the pool of unesterified fatty acids the more active is the effect of insulin. The hyper-secretion of insulin is directly proportional to content of palmitic fatty acid in lipids of blood plasma on fasting. According the phylogenetic theory of general pathology, the effect of insulin on metabolism of glucose is mediated by fatty acids. The insulin is blocking lipolysis in insulin-depended subcutaneous adipocytes and decreases content of unesterified fatty acids in blood plasma. The insulin is depriving all cells of possibility to absorb unesterified fatty acids and "forces" them to absorb glucose increasing hereby number of GLUT4 on cell membrane. The resistance to insulin is manifested in high concentration of unesterfied fatty acids, hyperinsulinemia, hyperalbuminemia and increasing of concentration of C-reactive protein-monomer. The resistance to insulin is groundlessly referred to as a symptom of diabetes mellitus type II. The resistance to insulin is only a functional disorder lasting for years. It can be successfully arrested. The diabetes mellitus is developed against the background of resistance to insulin only after long-term hyper-secretion of insulin and under emaciation and death of β-cells. The diabetes

  13. Stereochemical Control of Enzymatic Carbon-Carbon Bond-Forming Michael-Type Additions by "Substrate Engineering".

    PubMed

    Miao, Yufeng; Tepper, Pieter G; Geertsema, Edzard M; Poelarends, Gerrit J

    2016-11-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT) promiscuously catalyzes the Michael-type addition of acetaldehyde to β-nitrostyrene derivatives to yield chiral γ-nitroaldehydes, which are important precursors for pharmaceutically active γ-aminobutyric acids. In this study, we investigated the effect of different substituents at the aromatic ring of the Michael acceptor on the catalytic efficiency and stereoselectivity of the 4-OT-catalyzed acetaldehyde addition reactions. Highly enantioenriched (R)- and (S)-γ-nitroaldehydes and 4-substituted chroman-2-ol could be obtained in good to excellent yields by applying different substituents at appropriate positions of the aromatic substrate. Stereochemical control of these enzymatic Michael-type additions by "substrate engineering" allowed the enantioselective synthesis of valuable γ-aminobutyric acid precursors. In addition, the results suggest a novel enzymatic synthesis route towards precursors for chromans and derivatives, which are valuable scaffolds for preparing biologically active natural products.

  14. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects

    NASA Astrophysics Data System (ADS)

    Jamalpoor, Ali; Kiani, Ali

    2017-03-01

    On the basis of the modified strain gradient theory, the present paper deals with the theoretical analysis of the free vibration of coupled double-FGM viscoelastic nanoplates by Kelvin-Voigt visco-Pasternak medium. To establish static equilibrium of atoms on the each nanoplate surface, the effects of the surface layers are considered. The properties of material in the thickness direction vary according to the power low distribution. Kirchhoff plate assumption and Hamilton's variational principle are employed to achieve the partial differential equations for three different cases of vibration (out-of-phase, in-phase, and one nanoplate of the system being stationary) and corresponding boundary conditions. Navier's approach which satisfies the simply supported boundary conditions applied to analytically investigate the size effect on the natural frequencies of double-FGM viscoelastic nanoplate systems. Numerical studies are carried out to illustrate the influence of viscoelastic damping structural of the nanoplates, damping coefficient of the visco-Pasternak medium, independent length scale parameter, aspect ratio, surface properties, and other factors on the frequency behavior system. Some numerical results of this research illustrate that the frequencies may increase or decrease with respect to the sign of the surface properties of FGMs.

  15. Metal composition of layered double hydroxides (LDHs) regulating ClO(-)4 adsorption to calcined LDHs via the memory effect and hydrogen bonding.

    PubMed

    Lin, Yajie; Fang, Qile; Chen, Baoliang

    2014-03-01

    A series of calcined carbonate layered double hydroxides (CLDHs) with various metal compositions and different M(2+)/M(3+) ratios were prepared as adsorbents for perchlorate. Adsorption isotherms fit Langmuir model well, and the adsorption amount followed the order of MgAl-CLDHs ≥ MgFe-CLDHs > ZnAl-CLDHs. The isotherms of MgAl-CLDHs and MgFe-CLDHs displayed a two-step shape at low and high concentration ranges and increased with an increase in the M(2+)/M(3+) ratio from 2 to 4. The two-step isotherm was not observed for ZnAl-CLDHs, and the adsorption was minimally affected by the M(2+)/M(3+) ratio. The LDHs, CLDHs and the reconstructed samples were characterized by X-ray diffraction, SEM, FT-IR and Raman spectra to delineate the analysis of perchlorate adsorption mechanisms. The perchlorate adsorption of MgAl-CLDHs and MgFe-CLDHs was dominated by the structural memory effect and the hydrogen bonds between the free hydroxyl groups on the reconstructed-LDHs and the oxygen atoms of the perchlorates. For ZnAl-CLDHs, the perchlorate adsorption was controlled by the structural memory effect only, as the hydroxyl groups on the hydroxide layers preferred to form strong hydrogen bonds with carbonate over perchlorate, which locked the intercalated perchlorate into a more confined nano-interlayer. Several distinct binding mechanisms of perchlorate by CLDHs with unique M(2+) ions were proposed.

  16. Formation of C-C Bonds via Ruthenium Catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level.

    PubMed

    Shibahara, Fumitoshi; Krische, Michael J

    2008-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation employing isopropanol as terminal reductant, π-unsaturated compounds (1,3-dienes, allenes, 1,3-enynes and alkynes) reductively couple to aldehydes to furnish products of carbonyl addition. In the absence of isopropanol, π-unsaturated compounds couple directly from the alcohol oxidation level to form identical products of carbonyl addition. Such "alcohol-unsaturate C-C couplings" enable carbonyl allylation, propargylation and vinylation from the alcohol oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. Thus, direct catalytic C-H functionalization of alcohols at the carbinol carbon is achieved.

  17. Water interaction and bond strength to dentin of dye-labelled adhesive as a function of the addition of rhodamine B

    PubMed Central

    WANG, Linda; BIM, Odair; LOPES, Adolfo Coelho de Oliveira; FRANCISCONI-DOS-RIOS, Luciana Fávaro; MAENOSONO, Rafael Massunari; D’ALPINO, Paulo Henrique Perlatti; HONÓRIO, Heitor Marques; ATTA, Maria Teresa

    2016-01-01

    ABSTRACT Objective This study investigated the effect of the fluorescent dye rhodamine B (RB) for interfacial micromorphology analysis of dental composite restorations on water sorption/solubility (WS/WSL) and microtensile bond strength to dentin (µTBS) of a 3-step total etch and a 2-step self-etch adhesive system. Material and Methods The adhesives Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) were mixed with 0.1 mg/mL of RB. For the WS/WSL tests, cured resin disks (5.0 mm in diameter x 0.8 mm thick) were prepared and assigned into four groups (n=10): MP, MP-RB, SE, and SE-RB. For µTBS assessment, extracted human third molars (n=40) had the flat occlusal dentin prepared and assigned into the same experimental groups (n=10). After the bonding and restoration procedures, specimens were sectioned in rectangular beams, stored in water and tested after seven days or after 12 months. The failure mode of fractured specimens was qualitatively evaluated under optical microscope (x40). Data from WS/WSL and µTBS were assessed by one-way and three-way ANOVA, respectively, and Tukey’s test (α=5%). Results RB increased the WSL of MP and SE. On the other hand, WS of both MP and SE was not affected by the addition of RB. No significance in µTBS between MP and MP-RB for seven days or one year was observed, whereas for SE a decrease in the µTBS means occurred in both storage times. Conclusions RB should be incorporated into non-simplified DBSs with caution, as it can interfere with their physical-mechanical properties, leading to a possible misinterpretation of bonded interface. PMID:27556201

  18. Additional double-wall roof in single-wall, closed, convective incubators: Impact on body heat loss from premature infants and optimal adjustment of the incubator air temperature.

    PubMed

    Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre

    2016-09-01

    Radiant heat loss is high in low-birth-weight (LBW) neonates. Double-wall or single-wall incubators with an additional double-wall roof panel that can be removed during phototherapy are used to reduce Radiant heat loss. There are no data on how the incubators should be used when this second roof panel is removed. The aim of the study was to assess the heat exchanges in LBW neonates in a single-wall incubator with and without an additional roof panel. To determine the optimal thermoneutral incubator air temperature. Influence of the additional double-wall roof was assessed by using a thermal mannequin simulating a LBW neonate. Then, we calculated the optimal incubator air temperature from a cohort of human LBW neonate in the absence of the additional roof panel. Twenty-three LBW neonates (birth weight: 750-1800g; gestational age: 28-32 weeks) were included. With the additional roof panel, R was lower but convective and evaporative skin heat losses were greater. This difference can be overcome by increasing the incubator air temperature by 0.15-0.20°C. The benefit of an additional roof panel was cancelled out by greater body heat losses through other routes. Understanding the heat transfers between the neonate and the environment is essential for optimizing incubators.

  19. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  20. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    SciTech Connect

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzahk, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.

  1. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4 , C2H3F , and 1 ,1 -C2H2F2 ) near and above threshold

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Gatton, A.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzhak, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-01

    We investigate bond-rearrangement driven by photo-double-ionization (PDI) near and above the double-ionization threshold in a sequence of carbon-carbon double-bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy method to resolve all photo-double-ionization events leading to two-ion fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of no, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing, as evident by the reordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molecules and drives bond rearrangement during the dissociation process. The energy sharing and the relative angle between the three-dimensional momentum vectors of the two electrons enable us to distinguish between knockout and other ionization mechanisms of the PDI processes.

  2. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    NASA Astrophysics Data System (ADS)

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-01

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO 3- compound and its H 2PO 4--intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO 42- caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO 42- and H 2PO 4-. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  3. Experimental investigations of a partial Ru-O bond during the metal-ligand bifunctional addition in Noyori-type enantioselective ketone hydrogenation.

    PubMed

    Takebayashi, Satoshi; Dabral, Nupur; Miskolzie, Mark; Bergens, Steven H

    2011-06-29

    The transition state for the metal-ligand bifunctional addition step in Noyori's enantioselective ketone hydrogenation was investigated using intramolecular trapping experiments. The bifunctional addition between the Ru dihydride trans-[Ru((R)-BINAP)(H)(2)((R,R)-dpen)] and the hydroxy ketone 4-HOCH(2)C(6)H(4)(CO)CH(3) at -80 °C exclusively formed the corresponding secondary ruthenium alkoxide trans-[Ru((R)-BINAP)(H)(4-HOCH(2)C(6)H(4)CH(CH(3))O)((R,R)-dpen)]. Combined with the results of control experiments, this observation provides strong evidence for the formation of a partial Ru-O bond in the transition state.

  4. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  5. Making Fe(BPBP)-catalyzed C-H and C[double bond, length as m-dash]C oxidations more affordable.

    PubMed

    Yazerski, Vital A; Spannring, Peter; Gatineau, David; Woerde, Charlotte H M; Wieclawska, Sara M; Lutz, Martin; Kleijn, Henk; Gebbink, Robertus J M Klein

    2014-04-07

    The limited availability of catalytic reaction components may represent a major hurdle for the practical application of many catalytic procedures in organic synthesis. In this work, we demonstrate that the mixture of isomeric iron complexes [Fe(OTf)2(mix-BPBP)] (mix-1), composed of Λ-α-[Fe(OTf)2(S,S-BPBP)] (S,S-1), Δ-α-[Fe(OTf)2(R,R-BPBP)] (R,R-1) and Δ/Λ-β-[Fe(OTf)2(R,S-BPBP)] (R,S-1), is a practical catalyst for the preparative oxidation of various aliphatic compounds including model hydrocarbons and optically pure natural products using hydrogen peroxide as an oxidant. Among the species present in mix-1, S,S-1 and R,R-1 are catalytically active, act independently and represent ca. 75% of mix-1. The remaining 25% of mix-1 is represented by mesomeric R,S-1 which nominally plays a spectator role in both C-H and C[double bond, length as m-dash]C bond oxidation reactions. Overall, this mixture of iron complexes displays the same catalytic profile as its enantiopure components that have been previously used separately in sp(3) C-H oxidations. In contrast to them, mix-1 is readily available on a multi-gram scale via two high yielding steps from crude dl/meso-2,2'-bipyrrolidine. Next to its use in C-H oxidation, mix-1 is active in chemospecific epoxidation reactions, which has allowed us to develop a practical catalytic protocol for the synthesis of epoxides.

  6. Computational study of the double C-Cl bond activation of dichloromethane and phosphine alkylation at [CoCl(PR3)3].

    PubMed

    Algarra, Andrés G; Braunstein, Pierre; Macgregor, Stuart A

    2013-03-28

    Density functional theory calculations have been employed to model the double C-Cl bond activation of CH(2)Cl(2) at [CoCl(PR(3))(3)] to give [CoCl(3)(CH(2)PR(3))(PR(3))(2)]. Calculations incorporating dichloromethane solution (PCM approach) on a [CoCl(PMe(3))(3)] model system showed the two C-Cl cleavage steps to involve different mechanisms. The first C-Cl cleavage step occurs on the triplet surface and proceeds via Cl abstraction with a barrier of 19.1 kcal mol(-1). Radical recombination would then give singlet mer,trans-[CoCl(2)(CH(2)Cl)(PMe(3))(3)] with an overall free energy change of +1.8 kcal mol(-1). Alternative C-Cl activation processes based on nucleophilic attack by the Co centre at dichloromethane with loss of Cl(-) have significantly higher barriers. The second C-Cl cleavage occurs via nucleophilic attack of PMe(3) at the CH(2)Cl ligand with formation of a new P-C bond and displacement of Cl(-). This may either occur in an intermolecular fashion (after prior PMe(3) dissociation) or intramolecularly. Both processes have similar barriers of ca. 12 kcal mol(-1). The comproportionation of [CoCl(3)(CH(2)PMe(3))(PMe(3))(2)] with [CoCl(PMe(3))(3)] to give [CoCl(2)(CH(2)PMe(3))(PMe(3))], [CoCl(2)(PMe(3))(2)] and 2 PMe(3) is computed to be strongly exergonic, consistent with the observation of this process in analogous experimental systems.

  7. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine.

    PubMed

    Evans, David G; Duan, Xue

    2006-02-07

    In recent years layered double hydroxides (LDHs), also known as hydrotalcite-like materials, have attracted considerable interest from both industry and academia. In this article, we discuss methods of preparing LDHs with an emphasis on the way in which particle size and morphology can be controlled with regard to specific target applications; scale-up of one such preparation procedure is also described. In addition, we review selected applications of LDHs developed by our own and other laboratories.

  8. Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations.

    PubMed

    Bueren-Calabuig, Juan A; Giraudon, Christophe; Galmarini, Carlos M; Egly, Jean Marc; Gago, Federico

    2011-10-01

    The difference in melting temperature of a double-stranded (ds) DNA molecule in the absence and presence of bound ligands can provide experimental information about the stabilization brought about by ligand binding. By simulating the dynamic behaviour of a duplex of sequence 5'-d(TAATAACGGATTATT)·5'-d(AATAATCCGTTATTA) in 0.1 M NaCl aqueous solution at 400 K, we have characterized in atomic detail its complete thermal denaturation profile in <200 ns. A striking asymmetry was observed on both sides of the central CGG triplet and the strand separation process was shown to be strongly affected by bonding in the minor groove of the prototypical interstrand crosslinker mitomycin C or the monofunctional tetrahydroisoquinolines trabectedin (Yondelis), Zalypsis and PM01183. Progressive helix unzipping was clearly interspersed with some reannealing events, which were most noticeable in the oligonucleotides containing the monoadducts, which maintained an average of 6 bp in the central region at the end of the simulations. These significant differences attest to the demonstrated ability of these drugs to stabilize dsDNA, stall replication and transcription forks, and recruit DNA repair proteins. This stabilization, quantified here in terms of undisrupted base pairs, supports the view that these monoadducts can functionally mimic a DNA interstrand crosslink.

  9. Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations

    PubMed Central

    Bueren-Calabuig, Juan A.; Giraudon, Christophe; Galmarini, Carlos M.; Egly, Jean Marc; Gago, Federico

    2011-01-01

    The difference in melting temperature of a double-stranded (ds) DNA molecule in the absence and presence of bound ligands can provide experimental information about the stabilization brought about by ligand binding. By simulating the dynamic behaviour of a duplex of sequence 5′-d(TAATAACGGATTATT)·5′-d(AATAATCCGTTATTA) in 0.1 M NaCl aqueous solution at 400 K, we have characterized in atomic detail its complete thermal denaturation profile in <200 ns. A striking asymmetry was observed on both sides of the central CGG triplet and the strand separation process was shown to be strongly affected by bonding in the minor groove of the prototypical interstrand crosslinker mitomycin C or the monofunctional tetrahydroisoquinolines trabectedin (Yondelis®), Zalypsis® and PM01183®. Progressive helix unzipping was clearly interspersed with some reannealing events, which were most noticeable in the oligonucleotides containing the monoadducts, which maintained an average of 6 bp in the central region at the end of the simulations. These significant differences attest to the demonstrated ability of these drugs to stabilize dsDNA, stall replication and transcription forks, and recruit DNA repair proteins. This stabilization, quantified here in terms of undisrupted base pairs, supports the view that these monoadducts can functionally mimic a DNA interstrand crosslink. PMID:21727089

  10. Molecular structures and hydrogen bonding in the crystalline hydrates of two flexible double betaines with different quaternary ammonio groups in the adipic acid skeleton

    NASA Astrophysics Data System (ADS)

    Wu, De-Dong; Mak, Thomas C. W.

    1995-12-01

    Crystalline dihydrates of two flexible double betaines -O 2CCH(R)CH 2CH 2CH(R)CO -2 ( 1, R = Me 3N +, 2, R = C 5H 5N +) have been characterized by single-crystal X-ray analysis. Both compounds crystallize in the monoclinic space group {P2 1}/{c} with a = 7.463(4), b = 10.312(6), c = 9.978(5) Å, β = 90.18(5)°, Z = 2 for 1·2H 2O and a = 9.063(2), b = 7.665(1), c = 11.962(1) Å, β = 94.89(1)°, Z = 2 for 2·2H 2O. Both betaine molecules occupy l¯ sites but differ with regard to the orientation of the carboxylate groups and ammonio groups. In each crystal structure, the formation of donor hydrogen bonds from the water molecules to adjacent carboxylate groups gives rise to an infinte two-dimensional network composed of a packing of identical 26-membered rings.

  11. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    PubMed Central

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464

  12. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM).

    PubMed

    He, Jingwei; Söderling, Eva; Vallittu, Pekka K; Lassila, Lippo V J

    2013-01-01

    In order to endow dental resin with antibacterial activity, a series of antibacterial quaternary ammonium methacrylate monomers (QAM) with different substituted alkyl chain length (from 10 to 18) were incorporated into commonly used 2,2-bis[4-(2'-hydroxy-3'-methacryloyloxy-propoxy)-phenyl]propane (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA) (50 wt/50 wt) dental resin as immobilized antibacterial agents. Double bond conversion (DC), flexural strength (FS) and modulus (FM), and young and mature biofilms inhibition effectiveness of prepared dental resins were studied and Bis-GMA/TEGDMA without QAM was used as reference. Results showed that there was no significant difference on DC, FS, and FM between copolymer with and without 5 wt% QAM. Substituted alkyl chain length of QAM had no influence on DC, FS, and FM of copolymer, but had influence on antibacterial activity of copolymer. Antibacterial activity of copolymer increased with increasing of substituted alkyl chain length of QAM, and the sequence followed as 5%C10 < 5%C11 ≈ 5%C12 < 5%C16 ≈ 5%C18. Copolymers containing C18 and C16 had the best inhibition effectiveness on both young biofilm and mature biofilm, copolymers containing C12 and C11 only had inhibition effectiveness on young biofilm and copolymer containing C10 had none inhibition effectiveness on neither young biofilm nor mature biofilm.

  13. The behavior of pyrrolyl ligands within the rare-earth metal alkyl complexes. Insertion of C=N and C=O double bonds into Ln-sigma-C bonds.

    PubMed

    Yang, Yi; Cui, Dongmei; Chen, Xuesi

    2010-04-28

    This paper presents some unusual reactions of lanthanide tris(alkyl)s or lanthanide mono-Cp' (Cp' = (C(5)Me(4))SiMe(3)) bis(alkyl)s with pyrrolyl ligands, and the eta(5)- or eta(1)-coordination mode of the pyrrolyl ring, as well as C=N and C=O double bonds insertion into Ln-sigma-C moities. N,N,O-tridentate ligand HL(1), 2-(2-CH(3)OC(6)H(3)N=CH)-C(4)H(3)NH, was prepared. Treatment of HL(1) with rare-earth metal tris(alkyl)s, Ln(CH(2)SiMe(3))(3)(THF)(2), generated centrosymmetric bimetallic (pyrrolylaldiminato)lanthanide mono(alkyl) complexes [{2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N}LnR](2) (1a: Ln = Y; 1b: Ln = Lu) (R = CH(2)SiMe(3)). In this process, HL(1) was deprotonated by the metal alkyl and its imino C=N group was deactivated by the intramolecular alkylation, generating dianionic species that bridged the two metal alkyl units in eta(5)/eta(1):kappa(1) modes. When the reaction was carried out in dimethoxyethane (DME), asymmetric complex [2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N](2)Y(2)R(2)(DME) (2) was given. Furthermore, the reaction of alkyl complex 1b and benzophenone (Ph(2)C=O) afforded alkyl-insertion product [{2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N}LuOC(R)Ph(2)](2) (3). Both the intermolecular alkylation and the pyrrole's behavior as the hetero-cyclopentadienyl ligand were also observed in complexes 2 and 3. HL(1) reacted with (eta(5)-Cp')Y(CH(2)SiMe(3))(2)(THF) (E) to form a mixed ligands supported alkyl complex [(eta(5)-Cp')(L(1))]Y(CH(2)SiMe(3))(THF) (4), whilst complex E was treated with 2-(2,6-iPr(2)C(6)H(3)N=CH)-C(4)H(3)NH (HL(2)) to yield [(eta(5)-Cp')(L(2))]Y(CH(2)SiMe(3))(THF) (5). However, reaction of E and 2-(Me(2)NCH(2))-C(4)H(3)NH (HL(3)) afforded Y[(eta(5)-Cp')(L(3))(2)] (6), and ligand redistribution was found in this process. The molecular structures of complexes 5 and 6 were confirmed by X-ray diffraction, which indicated that the C=N double bond survived and the pyrrolyl ring coordinated to the metal center in eta(1)-mode.

  14. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  15. Dexamethasone as An Additive to Bupivacaine in Fascia Lliaca Compartment Block: A Prospective, Randomized and Double Blind Study

    PubMed Central

    Kumar N, Suresh; N, Kiran; Sebastian, Don; Gowda RM, Punith

    2014-01-01

    Background: Patients with fracture femur experience severe pain on movement during positioning for spinal anaesthesia. Fascia Iliaca Compartment Block (FICB) has been used effectively for providing analgesia during positioning of the patient for spinal anaesthesia. Aim: To test the hypothesis that, adding dexamethasone would significantly prolong the duration of Bupivacaine in FICB. Materials and Methods: Sixty patients aged 18 to 80 years posted for ORIF (Open Reduction and Internal Fixation) of fracture femur were included to receive FICB. This was a prospective, randomized, double blind study done at tertiary medical college hospital. Thirty patients received 38ml of 0.25 % bupivacaine with 2ml saline and another 30 patients received 38ml of 0.25 % bupivacaine with 2ml dexamethasone (8mg). Thirty minutes after FICB, patient satisfaction during positioning for spinal anesthesia was recorded. In the post-operative period, duration of analgesia and the total doses of rescue analgesics were recorded in both the groups. Results: Patients who received Bupivacaine with dexamethasone had significant prolongation of analgesia and required fewer doses of rescue analgesics as compared to patients who received Bupivacaine alone for FICB. However, the onset of analgesia, VAS scores and patient satisfaction during positioning for spinal anaesthesia were similar in both groups. Conclusion: Our study shows that adding Dexamethasone (8mg) to Bupivacaine for FICB significantly prolonged the duration of block and decreased the requirement of rescue analgesics as compared to patients who received Bupivacaine alone. FICB is relatively easy and safe to perform. In our study we did not encounter any complication while doing the procedures and also by adding dexamethasone. PMID:25302209

  16. [2,3]-Wittig rearrangement of enantiomerically enriched 3-substituted 1-propenyloxy-1-phenyl-2-propen-1-yl carbanions: effect of heteroatoms and conjugating groups on planarization of an alpha-oxy-benzylcarbanion through a double bond.

    PubMed

    Sasaki, Michiko; Ikemoto, Hidaka; Kawahata, Masatoshi; Yamaguchi, Kentaro; Takeda, Kei

    2009-01-01

    Don't get trapped: The effect of conjugating electron-withdrawing groups and alpha-anion-stabilizing heteroatom substituents on configurational stability of chiral carbanions through a double bond was examined on the basis of extent of chirality transfer in intramolecular trapping in [2,3]-Wittig rearrangement of chiral 3-substituted 1-propenyloxy-1-phenyl-2-propen-1-yl carbanions (see scheme).The effect of conjugating electron-withdrawing groups and alpha-anion-stabilizing heteroatom substituents on configurational stability of chiral carbanions through a double bond was examined on the basis of extent of chirality transfer in intramolecular trapping in [2,3]-Wittig rearrangement of chiral 3-substituted 1-propenyloxy-1-phenyl-2-propen-1-yl carbanions.

  17. Double threshold in bi- and multilingual contexts: preconditions for higher academic attainment in English as an additional language

    PubMed Central

    Lechner, Simone; Siemund, Peter

    2014-01-01

    Bi- and multilingualism has been shown to have positive effects on the attainment of third and additional languages. These effects, however, depend on the type of bi- and multilingualism and the status of the languages involved (Cenoz, 2003; Jessner, 2006). In this exploratory trend study, we revisit Cummins' Threshold Hypothesis (1979), claiming that bilingual children must reach certain levels of attainment in order to (a) avoid academic deficits and (b) allow bilingualism to have a positive effect on their cognitive development and academic attainment. To this end, we examine the attainment of English as an academic language of 16-years-old school children from Hamburg (n = 52). Our findings support the existence of thresholds for literacy attainment. We argue that language external factors may override positive effects of bilingualism. In addition, these factors may compensate negative effects attributable to low literacy attainment in German and the heritage languages. We also show that low attainment levels in migrant children's heritage languages preempt high literacy attainment in additional languages. PMID:24926277

  18. Double threshold in bi- and multilingual contexts: preconditions for higher academic attainment in English as an additional language.

    PubMed

    Lechner, Simone; Siemund, Peter

    2014-01-01

    Bi- and multilingualism has been shown to have positive effects on the attainment of third and additional languages. These effects, however, depend on the type of bi- and multilingualism and the status of the languages involved (Cenoz, 2003; Jessner, 2006). In this exploratory trend study, we revisit Cummins' Threshold Hypothesis (1979), claiming that bilingual children must reach certain levels of attainment in order to (a) avoid academic deficits and (b) allow bilingualism to have a positive effect on their cognitive development and academic attainment. To this end, we examine the attainment of English as an academic language of 16-years-old school children from Hamburg (n = 52). Our findings support the existence of thresholds for literacy attainment. We argue that language external factors may override positive effects of bilingualism. In addition, these factors may compensate negative effects attributable to low literacy attainment in German and the heritage languages. We also show that low attainment levels in migrant children's heritage languages preempt high literacy attainment in additional languages.

  19. Facile and Promising Method for Michael Addition of Indole and Pyrrole to Electron-Deficient trans-β-Nitroolefins Catalyzed by a Hydrogen Bond Donor Catalyst Feist's Acid and Preliminary Study of Antimicrobial Activity

    PubMed Central

    Al Majid, Abdullah M. A.; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H. M.; Naushad, Mu.

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to β-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906

  20. Facile and promising method for michael addition of indole and pyrrole to electron-deficient trans-β-nitroolefins catalyzed by a hydrogen bond donor catalyst Feist's acid and preliminary study of antimicrobial activity.

    PubMed

    Al Majid, Abdullah M A; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H M; Naushad, Mu

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to β-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported.

  1. Solvent effects on the a sub g C double bond C stretching mode in the 2 sup 1 A sub g sup minus excited state of. beta. -carotene and two derivatives: Picosecond time-resolved resonance Raman spectroscopy

    SciTech Connect

    Noguchi, T.; Hayashi, H. Univ. of Tokyo ); Tasumi, M. ); Atkinson, G.H. Hebrew Univ., Jerusalem )

    1991-04-18

    Picosecond time-resolved resonance Raman spectra in the C{double bond}C stretching region are presented for {beta}-carotene and two of its derivatives, {beta}-apo-8{prime}-carotenal and ethyl {beta}-apo-8{prime}-carotenoate. The solvent effects on the Franck-Condon-active a{sub g} C{double bond}C stretching mode in the {sup 1}A{sub g}{sup {minus}} ground state (S{sub 0}) and the 2{sup 1}A{sub g}{sup {minus}} excited state (S{sub 1}) of each carotenoid are described. The C{double bond}C stretching frequencies in S{sub 1} are affected by the solvent and show a correlation with the absorption maxima of the S{sub 2} ({sup 1}B{sub u}{sup +}) {l arrow} S{sub 0} transition, while those in S{sub 0} are not significantly affected. These results are interpreted in terms of the vibronic coupling among the S{sub 0}, S{sub 1}, and S{sub 2} electronic states, the solvent effect on the energy of the S{sub 1} and S{sub 2} states, and the structures of carotenoid molecules.

  2. Addition of Si-H and B-H bonds and redox reactivity involving low-coordinate nitrido-vanadium complexes.

    PubMed

    Thompson, Rick; Tran, Ba L; Ghosh, Soumya; Chen, Chun-Hsing; Pink, Maren; Gao, Xinfeng; Carroll, Patrick J; Baik, Mu-Hyun; Mindiola, Daniel J

    2015-03-16

    In this study we enumerate the reactivity for two molecular vanadium nitrido complexes of [(nacnac)V≡N(X)] formulation [nacnac = (Ar)NC(Me)CHC(Me)(Ar)(-), Ar = 2,6-(CHMe2)2C6H3); X(-) = OAr (1) and N(4-Me-C6H4)2 (Ntolyl2) (2)]. Density functional theory calculations and reactivity studies indicate the nitride motif to have nucleophilic character, but where the nitrogen atom can serve as a conduit for electron transfer, thus allowing the reduction of the vanadium(V) metal ion with concurrent oxidation of the incoming substrate. Silane, H2SiPh2, readily converts the nitride ligand in 1 into a primary silyl-amide functionality with concomitant two-electron reduction at the vanadium center to form the complex [(nacnac)V{N(H)SiHPh2}(OAr)] (3). Likewise, addition of the B-H bond in pinacolborane to the nitride moiety in 2 results in formation of the boryl-amide complex [(nacnac)V{N(H)B(pinacol)}(Ntolyl2)] (4). In addition to spectroscopic data, complexes 3 and 4 were also elucidated structurally by single-crystal X-ray diffraction analysis. One-electron reduction of 1 with 0.5% Na/Hg on a preparative scale allowed for the isolation and structural determination of an asymmetric bimolecular nitride radical anion complex having formula [Na]2[(nacnac)V(N)(OAr)]2 (5), in addition to room-temperature solution X-band electron paramagnetic resonance spectroscopic studies.

  3. Reactions of the alkoxy radicals formed following OH-addition to alpha-pinene and beta-pinene. C-C bond scission reactions.

    PubMed

    Dibble, T S

    2001-05-09

    The atmospheric degradation pathways of the atmospherically important terpenes alpha-pinene and beta-pinene are studied using density functional theory. We employ the correlation functional of Lee, Yang, and Parr and the three-parameter HF exchange functional of Becke (B3LYP) together with the 6-31G(d) basis set. The C-C bond scission reactions of the beta-hydroxyalkoxy radicals that are formed after OH addition to alpha-pinene and beta-pinene are investigated. Both of the alkoxy radicals formed from the alpha-pinene-OH adduct possess a single favored C-C scission pathway with an extremely low barrier (approximately 3 kcal/mol) leading to the formation of pinonaldehyde. Neither of these pathways produces formaldehyde, and preliminary computational results offer some support for suggestions that 1,5 or 1,6 H-shift (isomerization) reactions of alkoxy radicals contribute to formaldehyde production. In the case of the alkoxy radical formed following OH addition to the methylene group of beta-pinene, there exists two C-C scission reactions with nearly identical barrier heights (approximately 7.5 kcal/mol); one leads to known products (nopinone and formaldehyde) but the ultimate products of the competing reaction are unknown. The single C-C scission pathway of the other alkoxy radical from beta-pinene possesses a very low (approximately 4 kcal/mol) barrier. The kinetically favored C-C scission reactions of all four alkoxy radicals appear to be far faster than expected rates of reaction with O2. The rearrangement of the alpha-pinene-OH adduct, a key step in the proposed mechanism of formation of acetone from alpha-pinene, is determined to possess a barrier of 11.6 kcal/mol. This value is consistent with another computational result and is broadly consistent with the modest acetone yields observed in product yield studies.

  4. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Bhushan, Bharat

    2016-08-01

    Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  5. Thermochemical Properties and Bond Dissociation Energies for Fluorinated Methanol, CH3-xFxOH, and Fluorinated Methyl Hydroperoxides, CH3-xFxOOH: Group Additivity.

    PubMed

    Wang, Heng; Bozzelli, Joseph W

    2016-09-08

    Oxygenated fluorocarbons are routinely found in sampling of environmental soils and waters as a result of the widespread use of fluoro and chlorofluoro carbons as heat transfer fluids, inert materials, polymers, fire retardants and solvents; the influence of these chemicals on the environment is a growing concern. The thermochemical properties of these species are needed for understanding their stability and reactions in the environment and in thermal process. Structures and thermochemical properties on the mono- to trifluoromethanol, CH3-xFxOH, and fluoromethyl hydroperoxide, CH3-xFxOOH (1 ≤ x ≤ 3), are determined by CBS-QB3, CBS-APNO, and G4 calculations. Entropy, S°298, and heat capacities, Cp(T)'s (300 ≤ T/K ≤ 1500) from vibration, translation, and external rotation contributions are calculated on the basis of the vibration frequencies and structures obtained from the B3LYP/6-31+G(d,p) density functional method. Potential barriers for the internal rotations are also calculated from this method and used to calculate hindered rotor contributions to S°298 and Cp(T)'s using direct integration over energy levels of the internal rotational potentials. Standard enthalpies of formation, ΔfH°298 (units in kcal mol(-1)) are CH2FOOH (-83.7), CHF2OOH (-138.1), CF3OOH (-193.6), CH2FOO(•) (-44.9), CHF2OO(•) (-99.6), CF3OO(•) (-153.8), CH2FOH (-101.9), CHF2OH (-161.6), CF3OH (-218.1), CH2FO(•) (-49.1), CHF2O(•) (-97.8), CF3O(•) (-150.5), CH2F(•) (-7.6), CHF2(•) (-58.8), and CF3(•) (-112.6). Bond dissociation energies for the R-OOH, RO-OH, ROO-H, R-OO(•), RO-O(•), R-OH, RO-H, R-O(•), and R-H bonds are determined and compared with methyl hydroperoxide to observe the trends from added fluoro substitutions. Enthalpy of formation for the fluoro-hydrocarbon oxygen groups C/F/H2/O, C/F2/H/O, C/F3/O, are derived from the above fluorinated methanol and fluorinated hydroperoxide species for use in Benson's Group Additivity. It was determined that

  6. Additive effects of low-level laser therapy with exercise on subacromial syndrome: a randomised, double-blind, controlled trial.

    PubMed

    Abrisham, Seyyed Mohammad Jalil; Kermani-Alghoraishi, Mohammad; Ghahramani, Rahil; Jabbari, Latife; Jomeh, Hossein; Zare, Maryam

    2011-10-01

    The subacromial syndrome is the most common source of shoulder pain. The mainstays of conservative treatment are non-steroidal anti-inflammatory drugs and exercise therapy. Recently, low-level laser therapy (LLLT) has been popularized in the treatment of various musculoskeletal disorders. The aim of this study is to evaluate the additive effects of LLLT with exercise in comparison with exercise therapy alone in treatment of the subacromial syndrome. We conducted a randomised clinical study of 80 patients who presented to clinic with subacromial syndrome (rotator cuff and biceps tendinitis). Patients were randomly allocated into two groups. In group I (n = 40), patients were given laser treatment (pulsed infrared laser) and exercise therapy for ten sessions during a period of 2 weeks. In group II (n = 40), placebo laser and the same exercise therapy were given for the same period. Patients were evaluated for the pain with visual analogue scale (VAS) and shoulder range of motion (ROM) in an active and passive movement of flexion, abduction and external rotation before and after treatment. In both groups, significant post-treatment improvements were achieved in all parameters (P = 0.00). In comparison between the two groups, a significant improvement was noted in all movements in group I (P = 0.00). Also, there was a substantial difference between the groups in VAS scores (P = 0.00) which showed significant pain reduction in group I. This study indicates that LLLT combined exercise is more effective than exercise therapy alone in relieving pain and in improving the shoulder ROM in patients with subacromial syndrome.

  7. Dehydrofluorination of Hydrofluorocarbons by Titanium Alkylidynes via Sequential C-H/C-F Bond Activation Reactions. A Synthetic, Structural, and Mechanistic Study of 1,2-CH Bond Addition and [beta]-Fluoride Elimination

    SciTech Connect

    Fout, A.R.; Scott, J.; Miller, D.L.; Bailey, B.C.; Pink, M.; Mindiola, D.J.

    2009-01-07

    The neopentylidene-neopentyl complex (PNP)Ti=CH{sup t}Bu(CH{sub 2}{sup t}Bu) (1); (PNP{sup -} = N[2-P(CHMe{sub 2}){sub 2}-4-methylphenyl]{sub 2}) extrudes neopentane in neat fluorobenzene under mild conditions (25 C) to generate the transient titanium alkylidyne (PNP)Ti-C{sup t}Bu (A), which subsequently undergoes regioselective 1,2-CH bond addition of a fluorobenzene across the Ti-C linkage to generate (PNP)Ti=CH{sup t}Bu(o-FC{sub 6}H{sub 4}) (2). Kinetic and mechanistic studies suggest that the C-H activation process is pseudo-first-order in titanium, with the {alpha}-hydrogen abstraction being the rate-determining step and the post-rate-determining step being the C-H bond activation of fluorobenzene. At 100 C complex 2 does not equilibrate back to A and the preference for C-H activation in benzene versus fluorobenzene is 2:3, respectively. Compound 1 also reacts readily, and in most cases cleanly, with a series of hydrofluoroarenes (HAr{sub F}), to form a family of alkylidene-arylfluoride derivatives of the type (PNP)Ti=CH{sup t}Bu(Ar{sub F}). Thermolysis of the latter compounds generates the titanium alkylidene-fluoride (PNP)Ti=CH{sup t}Bu(F) (14) by a {beta}-fluoride elimination, concurrent with formation of o-benzyne. {beta}-Fluoride elimination to yield 14 occurs from 2 under elevated temperatures with k{sub average} = 4.96(16) x 10{sup -5} s{sup -1} and with activation parameters {Delta}H{sub {-+}} = 29(1) kcal/mol and {Delta}S{sub {-+}} = -3(4) cal/mol {center_dot}K. It was found that {beta}-fluoride elimination is accelerated when electron-rich groups are adjacent to the fluoride group, thus implying that a positive charge buildup at the arylfluoride ring occurs in the activated complex of 2. The alkylidene derivative (PNP)Ti=CHSiMe{sub 3}(CH{sub 2}SiMe{sub 3}) (15) also undergoes {alpha}-hydrogen abstraction to form the putative (PNP)Ti'-CSiMe{sub 3} (B) at higher temperatures (>70 C) and dehydrofluorinates the same series of HArF when the reaction

  8. ``Additive'' cooperativity of hydrogen bonds in complexes of catechol with proton acceptors in the gas phase: FTIR spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Varfolomeev, Mikhail A.; Klimovitskii, Alexander E.; Abaidullina, Dilyara I.; Madzhidov, Timur I.; Solomonov, Boris N.

    2012-06-01

    Experimental study of hydrogen bond cooperativity in hetero-complexes in the gas phase was carried out by IR-spectroscopy method. Stretching vibration frequencies of Osbnd H groups in phenol and catechol molecules as well as of their complexes with nitriles and ethers were determined in the gas phase using a specially designed cell. Osbnd H groups experimental frequency shifts in the complexes of catechol induced by the formation of intermolecular hydrogen bonds are significantly higher than in the complexes of phenol due to the hydrogen bond cooperativity. It was shown that the cooperativity factors of hydrogen bonds in the complexes of catechol with nitriles and ethers in the gas phase are approximately the same. Quantum chemical calculations of the studied systems have been performed using density functional theory (DFT) methods. It was shown, that theoretically obtained cooperativity factors of hydrogen bonds in the complexes of catechol with proton acceptors are in good agreement with experimental values. Cooperative effects lead to a strengthening of intermolecular hydrogen bonds in the complexes of catechol on about 30%, despite the significant difference in the proton acceptor ability of the bases. The analysis within quantum theory of atoms in molecules was carried out for the explanation of this fact.

  9. "Additive" cooperativity of hydrogen bonds in complexes of catechol with proton acceptors in the gas phase: FTIR spectroscopy and quantum chemical calculations.

    PubMed

    Varfolomeev, Mikhail A; Klimovitskii, Alexander E; Abaidullina, Dilyara I; Madzhidov, Timur I; Solomonov, Boris N

    2012-06-01

    Experimental study of hydrogen bond cooperativity in hetero-complexes in the gas phase was carried out by IR-spectroscopy method. Stretching vibration frequencies of O-H groups in phenol and catechol molecules as well as of their complexes with nitriles and ethers were determined in the gas phase using a specially designed cell. O-H groups experimental frequency shifts in the complexes of catechol induced by the formation of intermolecular hydrogen bonds are significantly higher than in the complexes of phenol due to the hydrogen bond cooperativity. It was shown that the cooperativity factors of hydrogen bonds in the complexes of catechol with nitriles and ethers in the gas phase are approximately the same. Quantum chemical calculations of the studied systems have been performed using density functional theory (DFT) methods. It was shown, that theoretically obtained cooperativity factors of hydrogen bonds in the complexes of catechol with proton acceptors are in good agreement with experimental values. Cooperative effects lead to a strengthening of intermolecular hydrogen bonds in the complexes of catechol on about 30%, despite the significant difference in the proton acceptor ability of the bases. The analysis within quantum theory of atoms in molecules was carried out for the explanation of this fact.

  10. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.

    PubMed

    Colangelo, Francesco; Messina, Francesco; Cioffi, Raffaele

    2015-12-15

    In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance.

  11. Oxidative addition of Pd to C-H, C-C and C-Cl bonds: Importance of relativistic effects in DFT calculations

    NASA Astrophysics Data System (ADS)

    Diefenbach, Axel; Bickelhaupt, F. Matthias

    2001-09-01

    To assess the importance of relativistic effects for the quantum chemical description of oxidative addition reactions of palladium to C-H, C-C and C-Cl bonds, we have carried out a systematic study of the corresponding reactions of CH4, C2H6 and CH3Cl with Pd-d10 using nonrelativistic (NR), quasirelativistic (QR), and zeroth-order regularly approximated (ZORA) relativistic density functional theory (DFT) at the BP86/TZ(2)P level. Relativistic effects are important according to both QR and ZORA, the former yielding similar but somewhat more pronounced effects than the latter, more reliable method: activation barriers are reduced by 6-14 kcal/mol and reaction enthalpies become 15-20 kcal/mol more exothermic if one goes from NR to ZORA. This yields, for example, 298 K activation enthalpies ΔH298≠ of -5.0 (C-H), 9.6 (C-C) and -6.0 kcal/mol (C-Cl) relative to the separate reactants at ZORA-BP86/TZ(2)P. In accordance with gas-phase experiments on reactions of Pd with alkanes, we find reaction profiles with pronounced potential wells for reactant complexes (collisionally stabilized and observed in experiments for alkanes larger than CH4) at -11.4 (CH4), -11.6 (C2H6) and -15.6 kcal/mol (CH3Cl) relative to separated reactants [ZORA-BP86/TZ(2)P]. Furthermore, we analyze the height of and the relativistic effects on the activation energies ΔE≠ in terms of the activation strain ΔEstrain≠ of and the transition-state interaction ΔEint≠ between the reactants in the activated complex, with ΔE≠=ΔEstrain≠+ΔEint≠.

  12. Orthogonal halogen and hydrogen bonds involving a peptide bond model† †Electronic supplementary information (ESI) available: Experimental part, DSC, IR spectroscopic and crystallographic data. CCDC 899779–899785. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ce01514b Click here for additional data file. Click here for additional data file.

    PubMed Central

    Vasylyeva, Vera; Nayak, Susanta K.; Cavallo, Gabriella; Resnati, Giuseppe

    2014-01-01

    The peptide bond model N-methylacetamide self-assembles with a range of dihalotetrafluorobenzenes forming co-crystals that all show the occurrence of orthogonal hydrogen and halogen bonds. PMID:25663816

  13. Catalytic hydrofunctionalization of alkynes through P-H bond addition: the unique role of orientation and properties of the phosphorus group in the insertion step.

    PubMed

    Ananikov, Valentine P; Makarov, Anton V; Beletskaya, Irina P

    2011-11-04

    The puzzling question of alkyne insertion into Pd-P and Pd-H bonds leading to the formation of new Pd-C, C-P, and C-H bonds was explored by theoretical calculations at the CCSD(T) and B3LYP levels of theory. The key factors responsible for selectivity of catalytic hydrofunctionalization of alkynes were resolved and studied in details for the models of hydrophosphorylation, hydrophosphinylation, and hydrophospination reactions. In contrast with the generally accepted mechanistic picture, the calculations have shown that several pathways are possible depending on the nature and geometrical arrangement of the phosphorus group. It was found that the product of alkyne insertion into the metal-hydrogen bond should be easily formed under kinetic-control conditions, while the product of alkyne insertion into the metal-phosphorus bond may be formed in certain cases under thermodynamic control. For the first time, the calculations have revealed the role of the oxygen atom in the reactivity of P=P(O)R(2) groups and the role of the interactions involving the lone pair of the P=PR(2) group in the reagent. The fundamental properties of the Pd-P, C-P, and P-H bonds were reported, and the larger bond strength upon increasing the number of oxygen atoms bound to phosphorus (P=PR(2), P(O)R(2), and P(O)(OR)(2)) have been shown. The relationship between bond energy, acidity, and reactivity of the studied phosphorus compounds has been determined.

  14. X-ray Crystal Structure of a Metalled Double-Helix Generated by Infinite and Consecutive C*-Ag(I) -C* (C*:N(1) -Hexylcytosine) Base Pairs through Argentophilic and Hydrogen Bond Interactions.

    PubMed

    Terrón, Angel; Moreno-Vachiano, Blas; Bauzá, Antonio; García-Raso, Angel; Fiol, Juan Jesús; Barceló-Oliver, Miquel; Molins, Elies; Frontera, Antonio

    2017-02-10

    The synthesis of a metalled double-helix containing exclusively silver-mediated C*-C* base pairs is reported herein (C*=N(1) hexylcytosine). Remarkably, it is the first crystal structure containing infinite and consecutive C*-Ag(I) -C* base pairs that form a double helix. The Ag(I) ion occupies the center between two C* residues with N(3)-Ag bond lengths of 2.1 Å and short Ag(I) -Ag(I) distances (3.1 Å) suggesting an interesting argentophilic attraction as a stabilization source of the helical disposition. The solid-state structure is further stabilized by metal-mediated base-pairs, hydrogen bonding and π-stacking interactions. Moreover, the angle N(3)-Ag-N(3) is almost linear in the [Ag(N(1) hexylcytosine)2 ](+) motif and the bases are not coplanar, thus generating a double-strand helical aggregate in the solid state. The noncovalent and argentophilic interactions have been rationalized based on DFT calculations.

  15. 15N electron nuclear double resonance of the primary donor cation radical P+.865 in reaction centers of Rhodopseudomonas sphaeroides: additional evidence for the dimer model.

    PubMed Central

    Lubitz, W; Isaacson, R A; Abresch, E C; Feher, G

    1984-01-01

    Four 15N hyperfine coupling constants, including signs, have been measured by electron nuclear double resonance (ENDOR) and electron nuclear nuclear triple resonance (TRIPLE) for the bacteriochlorophyll a radical cation, BChla+., in vitro and for the light-induced primary donor radical cation, P+.865, in reaction centers of Rhodopseudomonas sphaeroides R-26. A comparison of the data shows that the hyperfine coupling constants have the same sign in both radicals and are, on the average, smaller by a factor of 2 in P+.865. These results provide additional evidence that P+.865 is a bacteriochlorophyll dimer and are in contradiction with the monomer structure of P+.865 recently proposed by O'Malley and Babcock. The reduction factors of the individual 15N couplings, together with the evidence from proton ENDOR data and molecular orbital calculations, indicate a dimer structure in which only two rings (either I and I or III and III) of the bacteriochlorophyll macrocycles overlap. PMID:6096857

  16. Effect of addition of chitosan to self-etching primer: antibacterial activity and push-out bond strength to radicular dentin

    PubMed Central

    Elsaka, Shaymaa; Elnaghy, Amr

    2012-01-01

    The purpose of this study was to evaluate the antibacterial activity of a modified self-etching primer incorporating chitosan and whether this modification affected the bond strength to radicular dentin. A modified self-etching primer was prepared by adding chitosan solutions at 0.03%, 0.06%, 0.12% and 0.25% (W/W) to RealSeal selfe-tching primer. RealSeal primer without chitosan was used as the control. The antibacterial activity of the modified self-etching primer was evaluated using the direct contact test against Enterococcus faecalis. The bonding ability of the RealSeal system to radicular dentin was evaluated using the push-out bond strength test. The modes of failure were examined under a stereomicroscope. Data were analyzed using analysis of variance (ANOVA) and Tukey's test, with a P-value < 0.05 indicating statistical significance. The results showed that the antibacterial properties of the freshly prepared and aged modified self-etching primer incorporating chitosan exhibited potent antibacterial effect against Enterococcus faecalis compared with the unmodified primer. The RealSeal system with the aged modified self-etching primer incorporating chitosan showed no significant differences in the bond strength as compared with the control (P = 0.99). The findings suggest that modified self-etching primer incorporating chitosan is a promising antibacterial primer which does not adversely affect the bond strength of the RealSeal system to radicular dentin. PMID:23554762

  17. Adsorption mechanisms of isoxazole and oxazole on Si(100)-2 × 1 surface: Si-N dative bond addition vs. [4+2] cycloaddition

    NASA Astrophysics Data System (ADS)

    Kumer Ghosh, Manik; Choi, Cheol Ho

    2011-12-01

    The surface reaction pathways of isoxazole and oxazole on Si(100)-2 × 1 surface were theoretically investigated. They both form a weakly bound Si-N dative bond adduct on Si(100)-2 × 1 surface. In the case of isoxazole, the barrierlessly formed Si-N adduct is the most important surface product, that cannot be easily converted into other species. On the other hand, a facile concerted [4+2]CC cycloaddition without involving the initial Si-N dative bond adduct was also found in the case of oxazole adsorption. The existence of Diels-Alder reactions is attributed to the particular arrangement of the two heteroatoms of oxazole in such a way that the two Si-C σ-bonds can be formed in a [4+2] fashion. In short, the unique geometric arrangements and electronegativity of these similar heteroatomic molecules yielded distinctively different surface reaction characteristics.

  18. Changes in acral blood flux under local application of ropivacaine and lidocaine with and without an adrenaline additive: a double-blind, randomized, placebo-controlled study.

    PubMed

    Häfner, Hans-Martin; Schmid, Ute; Moehrle, Matthias; Strölin, Anke; Breuninger, Helmut

    2008-01-01

    Vascular effects of local anesthetics are especially important in dermatological surgery. In particular, adequate perfusion must be ensured in order to offset surgical manipulations during surgical interventions at the acra. However, the use of adrenaline additives appears fraught with problems when anesthesia affects the terminal vascular system, particularly during interventions at the fingers, toes, penis, outer ears, and tip of the nose. We studied skin blood flux at the fingerpads via laser Doppler flowmetry over the course of 24 hours in a prospective, double-blind, randomized, placebo-controlled study with 20 vascularly healthy test persons following Oberst's-method anesthetic blocks. In each case, 6 ml ropivacaine (7.5 mg/ml) (A), lidocaine 1% without an additive (B), and lidocaine 1% with an adrenaline additive (1:200,000) (C) was used respectively as a verum. Isotonic saline solution was injected as a placebo (D). Measurements were carried out with the aid of a computer simultaneously at D II and D IV on both hands. Administration of (A) led to increased blood flux (+155.2%); of (B) initially to a decrease of 27%; of (C) to a reduction of 55% which was reversible after 40 minutes and of (D) to no change.(A) resulted in sustained vasodilatation which was still demonstrable after 24 h. (B) had notably less vasodilative effect, although comparison with (D) clearly showed that (B) is indeed vasodilative. (C) resulted in only a passing decrease in perfusion; this was no longer measurable when checked after 6 and 24 h. This transient inadequacy of blood flux also appeared after administration of (D). These tests show that adrenaline additive in local anesthesia does not decrease blood flow more than 55% for a period of 16 min. Following these results an adrenaline additive can be safely used for anesthetic blocks at the acra in healthy persons.

  19. Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon D2hC2(BeH)4 species via hydrogen-bridged -BeH2Be- bonds.

    PubMed

    Zhao, Xue-Feng; Li, Haixia; Yuan, Cai-Xia; Li, Yan-Qin; Wu, Yan-Bo; Wang, Zhi-Xiang

    2016-01-15

    This computational study identifies the rhombic D2hC2 (BeH)4 (2a) to be a species featuring double planar tetracoordinate carbons (ptCs). Aromaticity and the peripheral BeBeBeBe bonding around CC core contribute to the stabilization of the ptC structure. Although the ptC structure is not a global minimum, its high kinetic stability and its distinct feature of having a bonded C2 core from having two separated carbon atoms in the global minimum and other low-lying minima could make the ptC structure to be preferred if the carbon source is dominated by C2 species. The electron deficiency of the BeH group allows the ptC species to serve as building blocks to construct large/nanostructures, such as linear chains, planar sheets, and tubes, via intermolecular hydrogen-bridged bonds (HBBs). Formation of one HBB bond releases more than 30.0 kcal/mol of energy, implying the highly exothermic formation processes and the possibility to synthesize these nano-size structures.

  20. Structure of transition-metal cluster compounds: Use of an additional orbital resulting from the f, g character of spd bond orbitals*

    PubMed Central

    Pauling, Linus

    1977-01-01

    A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed. PMID:16592470

  1. The concept of bond order

    NASA Astrophysics Data System (ADS)

    Elliott, Robert J.; Richards, W. Graham

    A method for obtaining precise charge densities in defined regions of space from ab initio molecular wavefunctions is employed to place the concept of bond order on a firm theoretical footing. The bond orders obtained for carbon—carbon bonds in a range of organic compounds are assessed: those for buta-1,3-diene confirm that it consists of essentially localised double and single bonds.

  2. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  3. Transition-metal-free Chemoselective Oxidative C-C Coupling of the sp(3) C-H Bond of Oxindoles with Arenes and Addition to Alkene: Synthesis of 3-Aryl Oxindoles, and Benzofuro- and Indoloindoles.

    PubMed

    Sattar, Moh; Rathore, Vandana; Prasad, Ch Durga; Kumar, Sangit

    2017-04-04

    A transition-metal (TM)-free and halogen-free NaOtBu-mediated oxidative cross-coupling between the sp(3) C-H bond of oxindoles and sp(2) C-H bond of nitroarenes has been developed to access 3-aryl substituted and 3,3-aryldisubstituted oxindoles in DMSO at room temperature in a short time. Interestingly, the sp(3) C-H bond of oxindoles could also react with styrene under TM-free conditions for the practical synthesis of quaternary 3,3-disubstituted oxindoles. The synthesized 3-oxindoles have also been further transformed into advanced heterocycles, that is, benzofuroindoles, indoloindoles, and substituted indoles. Mechanistic experiments of the reaction suggests the formation of an anion intermediate from the sp(3) C-H bond of oxindole by tert-butoxide base in DMSO. The addition of nitrobenzene to the in-situ generated carbanion leads to the 3-(nitrophenyl)oxindolyl carbanion in DMSO which is subsequently oxidized to 3-(nitro-aryl) oxindole by DMSO.

  4. Recent Progress in Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism.

    PubMed

    Courant, Thibaut; Masson, Géraldine

    2016-08-19

    Radical difunctionalizations of alkenes constitute an efficient method for the construction of complex organic molecules. This synopsis focuses on visible-light catalysis, a recent and very promising technological refinement of this class of transformations. Examples taken from the literature illustrate the use of a variety of (metallic or nonmetallic) systems, which allow us to leverage the energy of readily available visible-light radiation to efficiently create some of the most commonly looked for types of bonds (C-X, C-O, C-N, and C-C) under mild conditions and starting from unsaturated substrates.

  5. Helices with additional H-bonds: crystallographic conformations of α,γ-hybrid peptides helices composed of β-hydroxy γ-amino acids (statines).

    PubMed

    Malik, Ankita; Kumar, Mothukuri Ganesh; Bandyopadhyay, Anupam; Gopi, Hosahudya N

    2017-01-01

    β-Hydroxy-γ-amino acids (Statines) are a class of naturally occurring non-ribosomal amino acids frequently found in many peptide natural products. Peptidomimetics constituted with statines have been used as inhibitors for various aspartic acid proteases. In contrast to the synthetic γ-amino acids, very little is known about the folding behavior of these naturally occurring β-hydroxy γ-amino acids. To understand the folding behavior of statines, three α,γ-hybrid peptides P1 (Ac-Aib-γPhe-Aib-(R, S)Phesta-Aib-γPhe-Aib-CONH2 ), P2 (Ac-Aib-γPhe-Aib-(S, S)Phesta-Aib-γPhe-Aib-CONH2 ), and P3 (Ac-Aib-γPhe-Aib-(S, S)Phesta-Aib-(S, S)Phesta-Aib-CONH2 ) were synthesized on solid phase and their helical conformations in single crystals were studied. Results suggest that both syn and anti diastereoisomers of statines can be accommodated into the helix without deviating overall helical conformation of α,γ-hybrid peptides. In comparison with syn diastereoisomer, the anti diastereoisomer was found to be directly involved in the intramolecular H-bonding with the backbone carbonyl groups (i to i + 3) similar to the backbone amide NHs in the helix.

  6. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis.

    PubMed

    Becker, Julia; Modl, Tanja; Gessner, Viktoria H

    2014-09-01

    The synthesis of a ruthenium carbene complex based on a sulfonyl-substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal-carbon interaction can be tuned between a Ru-C single bond with additional electrostatic interactions and a Ru=C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non-polar bonds (O-H, H-H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non-innocent ligand supporting the bond activation as nucleophilic center in the 1,2-addition across the metal-carbon double bond. This metal-ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis.

  7. Remarkable ligand effect in Ni- and Pd-catalyzed bisthiolation and bisselenation of terminal alkynes: solving the problem of stereoselective dialkyldichalcogenide addition to the C triple chemical bond C Bond.

    PubMed

    Ananikov, Valentine P; Gayduk, Konstantin A; Beletskaya, Irina P; Khrustalev, Victor N; Antipin, Mikhail Yu

    2008-01-01

    We have developed two new catalytic systems based on Ni and Pd complexes to solve the challenging problem of dialkyldichalcogenide (Alk2E2; E=S, Se) addition to alkynes. A comparative study of two catalytic systems-Ni/PMe2Ph and Pd/PCy2Ph-has revealed that the Ni catalyst is superior with respect to high catalytic activity and more general scope relative to the Pd system. A novel synthetic methodology was developed for the preparation of (Z)-bis(alkylthio)alkenes and (Z)-bis(alkylseleno)alkenes from terminal alkynes with excellent stereoselectivity and high yields.

  8. Hydrogen bonding mediated enantioselective organocatalysis in brine: significant rate acceleration and enhanced stereoselectivity in enantioselective Michael addition reactions of 1,3-dicarbonyls to β-nitroolefins.

    PubMed

    Bae, Han Yong; Some, Surajit; Oh, Joong Suk; Lee, Yong Seop; Song, Choong Eui

    2011-09-14

    Brine provides remarkable rate acceleration and a higher level of stereoselectivity over organic solvents, due to the hydrophobic hydration effect, in the enantioselective Michael addition reactions of 1,3-dicarbonyls to β-nitroolefins using chiral H-donors as organocatalysts.

  9. Catalytic addition of amine N-H bonds to carbodiimides by half-sandwich rare-earth metal complexes: efficient synthesis of substituted guanidines through amine protonolysis of rare-earth metal guanidinates.

    PubMed

    Zhang, Wen-Xiong; Nishiura, Masayoshi; Hou, Zhaomin

    2007-01-01

    Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the

  10. Recent Developments in the Addition of Phosphinylidene-Containing Compounds to Unactivated Unsaturated Hydrocarbons: Phosphorus-Carbon Bond-Formation via Hydrophosphinylation and Related Processes

    PubMed Central

    Coudray, Laëtitia

    2012-01-01

    Summary The reactions of phosphinylidene-containing compounds with unactivated unsaturated hydrocarbons are reviewed. The review is organized by phosphorus-containing functional group types. Free-radical and metal-catalyzed additions of R1R2P(O)H to alkenes, alkynes, and related compounds, deliver functionalized organophosphorus compounds RP(O)R1R2, including H-phosphinates, phosphinates, tertiary phosphine oxides, and phosphonates. The review covers the literature up to February 2008. PMID:23308039

  11. Oral vitamins C and E as additional treatment in patients with acute anterior uveitis: a randomised double masked study in 145 patients

    PubMed Central

    van Rooij, J.; Schwartzenberg, S.; Mulder, P.; Baarsma, S.

    1999-01-01

    AIM—To investigate the effect of additional oral vitamins C and E on acute anterior uveitis.
METHODS—A placebo controlled double masked study on the effect of vitamin C 500 mg in combination with vitamin E 100 mg twice daily in 145 patients with acute anterior uveitis. As a primary end point variable, laser cell/flare measurements were performed. Best corrected and stenopeic visual acuity (VA) testing and clinical variable scores were measured.
RESULTS—Laser flare measurements (ph/s) before treatment were 207.1 (SD 258) in the vitamin group and 143.6 (156) in the placebo group. After 3 days corresponding values were 80.2 (129) and 54.7 (82), after 7 days 89.2 (187) (12.5) and 85.8 (208), after 14 days 47.1 (109.5) and 40.5 (116) after 28 days 23.1 (53.6) and 23.1 (48), and after 56 days 15.6 (26) and 15.3 (17). There was no significant difference in time trend between the two treatment groups (RMANOVA; p = 0.53). Baseline VA (logMAR) was 0.106 (0.241) in the vitamin group and 0.128 (0.456) in the placebo group. VA after 3 days was 0.236 (0.293) and 0.344 ( 0.489), after 7 days 0.204 (0.292) and 0.292 (0.479), after 14 days 0.162 (0.274) and 0.193 (0.454), after 28 days 0.096 (0.232) and 0.158 (0.436), and 0.026 (0.213) and 0.106 (0.437) after 56 days. Although no significant difference in time trend was detected, evaluation of the VA data of the last time point (56 days) by means of the Mann-Whitney test showed a significantly better VA in the vitamin group (p = 0.01).
CONCLUSIONS—There was no significant effect of vitamins C and E on laser flare measurements. The significant effect of the oral vitamins on visual acuity at 8 weeks after start of the oral vitamins C and E may indicate a protective effect in patients with acute anterior uveitis.

 PMID:10535857

  12. Gold-Catalyzed Highly Regioselective Oxidation of C-C Triple Bonds Without Acid Additives: Propargyl Moieties as Masked α,β-Unsaturated Carbonyls

    PubMed Central

    Lu, Biao; Li, Chaoqun; Zhang, Liming

    2010-01-01

    Gold-catalyzed intermolecular oxidations of internal alkynes have been achieved with high regioselectivities using 8-alkylqinoline N-oxides as oxidants and in the absence of acid additives. Synthetically versatile α,β-unsaturated carbonyls are obtained in good to excellent yields and with excellent E-selectivities. A range of functional groups such as THP, MOMO, N3, OTBS, and N-Boc are tolerated. This reaction allows to mask α,β-unsaturated carbonyls as propargyl moieties, thus offering a practical solution to issues of functional group compatibility with α,β-unsaturated carbonyls, likely encountered in syntheses of complex structures. PMID:20853846

  13. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  14. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane

  15. Fundamentals of fiber bonding in thermally point-bonded nonwovens

    NASA Astrophysics Data System (ADS)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond

  16. Role of the inner-sphere reorganization in the photoinduced electron transfer reaction of Ru(II) complexes containing imine C=N or Azo N=N double bonds in the ligands

    SciTech Connect

    Maruyama, Mutsuhiro; Kaizu, Youkoh

    1995-04-20

    Photoinduced oxidative and reductive electron transfer (ET) reactions of excited Ru(imin){sub 3}{sup 2+} (imin = 2-(N-methylformimidoyl)pyridine), Ru(imin){sub 2}(CN){sub 2}, and Ru(azpy){sub 3}{sup 2+} (azpy = 2-(phenylazo)pyridine), where imin and azpy contain imine C=N and azo N=N double bonds, respectively, with organic quenchers were investigated in acetonitrile solutions, and their {Delta}G dependencies of the quenching rate constants (k{sub q}) were compared with those of Ru(bpy){sub 3}{sup 2+} (bpy = 2,2`-bipyridine) and Ru(L){sub 2}(CN){sub 2} complexes where L = 4,4`- or 5,5`-dmbpy (dmbpy = dimethyl-2,2`-bipyridine) and phen (phen = 1,10-phenanthroline). The oxidative quenching rate constants of Ru(imin){sub 3}{sup 2+} and Ru(imin){sub 2}(CN){sub 2} are smaller than those of the corresponding bpy, dmbpy, and phen complexes at the same {Delta}G value in the normal region. However, the {Delta}G dependencies of the reductive quenching rate constants of Ru(imin){sub 3}{sup 2+} and Ru(azpy){sub 3}{sup 2+} coincide with that of the corresponding bpy complex. The inner-sphere reorganization ({lambda}{sub in}) caused by the deformation of the C=N bond of imin is considered to be the main reason for the disadvantage of ET in the normal region of the oxidative ET reactions of excited Ru(imin){sub 3}{sup 2+} and Ru(imin){sub 2}(CN){sub 2}. 44 refs., 6 figs., 6 tabs.

  17. Synthesis, crystal structure and DFT studies of a Zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n. The additional stabilizing role of S⋯π chalcogen bond

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed

    2017-04-01

    A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.

  18. Half-sandwich o-N,N-dimethylaminobenzyl complexes over the full size range of group 3 and lanthanide metals. synthesis, structural characterization, and catalysis of phosphine P--H bond addition to carbodiimides.

    PubMed

    Zhang, Wen-Xiong; Nishiura, Masayoshi; Mashiko, Tomohiro; Hou, Zhaomin

    2008-01-01

    The acid-base reactions between the rare-earth metal (Ln) tris(ortho-N,N-dimethylaminobenzyl) complexes [Ln(CH2C(H4NMe2-o)3] with one equivalent of the silylene-linked cyclopentadiene-amine ligand (C5Me4H)SiMe2NH(C6H2Me3-2,4,6) afforded the corresponding half-sandwich aminobenzyl complexes [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Ln(CH2C6H4NMe2-o)(thf)] (2-Ln) (Ln=Y, La, Pr, Nd, Sm, Gd, Lu) in 60-87 % isolated yields. The one-pot reaction between ScCl(3) and [Me2Si(C5Me4)(NC6H2Me3-2,4,6)]Li2 followed by reaction with LiCH2C6H4NMe2-o in THF gave the scandium analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Sc(CH2C6H4NMe2-o)] (2-Sc) in 67 % isolated yield. 2-Sc could not be prepared by the acid-base reaction between [Sc(CH2C6H4NMe2-o)3] and (C5Me4H)SiMe2NH(C6H2Me3-2,4,6). These half-sandwich rare-earth metal aminobenzyl complexes can serve as efficient catalyst precursors for the catalytic addition of various phosphine P--H bonds to carbodiimides to form a series of phosphaguanidine derivatives with excellent tolerability to aromatic carbon-halogen bonds. A significant increase in the catalytic activity was observed, as a result of an increase in the metal size with a general trend of La>Pr, Nd>Sm>Gd>Lu>Sc. The reaction of 2-La with 1 equiv of Ph2PH yielded the corresponding phosphide complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)(thf)2] (4), which, on recrystallization from benzene, gave the dimeric analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)]2 (5). Addition of 4 or 5 to iPrN=C=NiPr in THF yielded the phosphaguanidinate complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(thf)] (6), which, on recrystallization from ether, afforded the ether-coordinated structurally characterizable analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(OEt2)] (7). The reaction of 6 or 7 with Ph2PH in THF yielded 4 and the phosphaguanidine iPrN=C(PPh2)NHiPr (3a). These results suggest that the catalytic formation of a phosphaguanidine compound proceeds through the nucleophilic addition

  19. Hydrogen bonding asymmetric star-shape derivative of bile acid leads to supramolecular fibrillar aggregates that wrap into micrometer spheres† †Electronic supplementary information (ESI) available: Materials and methods, experimental section, and characterization. See DOI: 10.1039/c6sm01329e Click here for additional data file. Click here for additional data file. Click here for additional data file.

    PubMed Central

    Myllymäki, Teemu T. T.; Yang, Hongjun; Liljeström, Ville; Kostiainen, Mauri A.; Malho, Jani-Markus; Zhu, X. X.

    2016-01-01

    We report that star-shaped molecules with cholic acid cores asymmetrically grafted by low molecular weight polymers with hydrogen bonding end-groups undergo aggregation to nanofibers, which subsequently wrap into micrometer spherical aggregates with low density cores. Therein the facially amphiphilic cholic acid (CA) is functionalized by four flexible allyl glycidyl ether (AGE) side chains, which are terminated with hydrogen bonding 2-ureido-4[1H]pyrimidinone (UPy) end-groups as connected by hexyl spacers, denoted as CA(AGE6-C6H12-UPy)4. This wedge-shaped molecule is expected to allow the formation of a rich variety of solvent-dependent structures due to the complex interplay of interactions, enabled by its polar/nonpolar surface-active structure, the hydrophobicity of the CA in aqueous medium, and the possibility to control hydrogen bonding between UPy molecules by solvent selection. In DMSO, the surfactant-like CA(AGE6-C6H12-UPy)4 self-assembles into nanometer scale micelles, as expected due to its nonpolar CA apexes, solubilized AGE6-C6H12-UPy chains, and suppressed mutual hydrogen bonds between the UPys. Dialysis in water leads to nanofibers with lateral dimensions of 20–50 nm. This is explained by promoted aggregation as the hydrogen bonds between UPy molecules start to become activated, the reduced solvent dispersibility of the AGE-chains, and the hydrophobicity of CA. Finally, in pure water the nanofibers wrap into micrometer spheres having low density cores. In this case, strong complementary hydrogen bonds between UPy molecules of different molecules can form, thus promoting lateral interactions between the nanofibers, as allowed by the hydrophobic hexyl spacers. The wrapping is illustrated by transmission electron microscopy tomographic 3D reconstructions. More generally, we foresee hierarchically structured matter bridging the length scales from molecular to micrometer scale by sequentially triggering supramolecular interactions. PMID:27491728

  20. Bond-slip behavior of CFRP plate-concrete interface

    NASA Astrophysics Data System (ADS)

    Cho, D. Y.; Park, S. K.; Hong, S. N.

    2011-11-01

    The paper deals with evaluation of the bond performance between a CFRP plate and concrete with respect to various compressive strengths of concrete and bond lengths of the CFRP plate as parameters. To consider stress conditions in the tensile zone of reinforced concrete (RC) structures, double-lap axial tension tests were conducted for eight specimens with CFRP plates bonded to concrete prisms. In addition, a simple linear bond-slip model for the CFRP plate/concrete joints, developed from the bond tests, was used. To verify the model proposed, a total of seven RC beams were strengthened with CFRP plates and tested in flexure employing various bond lengths, strengthening methods, and numbers of CFRP plates. A nonlinear finite-element analysis, with the bond-slip model incorporated in the DIANA program, was performed for the strengthened RC beams. Also, the results of flexural test and analytical predictions are found to be in close agreement in terms of yield and ultimate loads and ductility.

  1. Novel photofunctional multicomponent rare earth (Eu3+, Tb3+, Sm3+ and Dy3+) hybrids with double cross-linking siloxane covalently bonding SiO2/ZnS nanocomposite.

    PubMed

    Yan, Bing; Zhao, Yan; Li, Ya-Juan

    2011-01-01

    Zinc sulfide (ZnS) quantum dot is modified with 3-mercaptopropyltrimethoxysilane (MPTMS) to obtain MPTMS functionalized SiO(2)/ZnS nanocomposite. Novel rare earth/inorganic/organic hybrid materials are prepared by using 3-(triethoxysilyl)-propyl isocyanate (TESPIC) as an organic bridge molecule that can both coordinate to rare earth ions (Eu(3+), Tb(3+), Sm(3+) and Dy(3+)) and form an inorganic Si-O-Si network with SiO(2) ZnS nanocomposite after cohydrolysis and copolycondensation through a sol-gel process. These multicomponent hybrids with double cross-linking siloxane (TESPIC-MPTMS) covalently bonding SiO(2)/ZnS and assistant ligands (Phen = 1,10-phenanthroline, Bipy = 2,2'-bipyridyl) are characterized and especially the photoluminescence properties of them are studied in detail. The luminescent spectra of the hybrids show the dominant excitation of TESPIC-MPTMS-SiO(2)/ZnS unit and the unique emission of rare earth ions, suggesting that TESPIC-MPTMS-SiO(2)/ZnS unit behaves as the main energy donor and effective energy transfer take place between it and rare earth ions. Besides, the luminescent performance of Bipy-RE-TESPIC-MPTM-SiO(2)/ZnS hybrids are superior to that of Phen-RE-TESPIC-MPTMS-SiO(2)/ZnS ones (RE=Eu, Tb, Sm, Dy), which reveals that Bipy or Phen only act as structural ligand within the hybrid systems.

  2. Improving the performance of adhesively bonded double cantilever beam specimen -- an experimental study of brittle adhesives under mode-I loading

    NASA Astrophysics Data System (ADS)

    Rudra, Sharan

    Many industrial applications use mechanical fasteners for joining two materials of similar or dissimilar nature. These mechanical fasteners have few limitations such as contact of metal surfaces leading to corrosion which can be overcome by the use of adhesives and hence being replaced rapidly. While numerous global tests have been conducted to measure the interfacial toughness of adhesive joints, limited local tests have been conducted to determine the interfacial traction-separation laws or interfacial cohesive laws. Among the limited local tests in some recent experimental studies, very few studies have considered the effects of the addition of filler material in the adhesive to improve their mechanical properties and also to make it cost effective by decreasing the volume of adhesive used. In this study, the effect of addition of filler material such as basalt fibers in the adhesive layer was studied. Mode-I test was conducted on the adhesive joints; inclusion of basalt fibers of varying length and weight percentages was studied. Adherents used were G-10 laminates while general purpose epoxy was used as the adhesive material. This epoxy was particularly selected as it demonstrated a brittle nature upon curing as ductile adhesives were already studied previously. Also, the viscosity of the EPON 828 resin is low compared to many other resins which would make the homogenous mixing of fibers an easier task. This work mainly concentrated on the improvement of adhesive properties using filler material. Basalt fibers were used as fillers as these fibers have high tensile strength and impact resistance. Neat epoxy was the control specimen and tests were performed with epoxy containing basalt fibers with 2%, 5% and 10% weight fractions that also have varying length of fibers. The fiber lengths which were considered were 0.4mm and 0.15mm. Mode-I tests were conducted on several samples with glass fiber composite laminates (GFRP) as adherents which were of similar

  3. D-cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: a double-blind, parallel, placebo-controlled study.

    PubMed

    van Berckel, B N; Evenblij, C N; van Loon, B J; Maas, M F; van der Geld, M A; Wynne, H J; van Ree, J M; Kahn, R S

    1999-08-01

    A hypofunction of the glutamatergic system and NMDA receptors in schizophrenia has been hypothesized. Therefore, stimulation of these receptors could be of benefit to patients with schizophrenia. D-cycloserine has been used for this purpose. This study reports the effects of 100 mg D-cycloserine, when added to typical antipsychotics in chronic schizophrenic patients exhibiting prominent negative symptoms, using a placebo-controlled, double-blind, parallel, design. D-cycloserine slightly worsened psychotic symptoms and general psychopathology as compared to placebo. D-cycloserine failed to change negative symptoms and had no effect on extrapyramidal symptoms. The exacerbation of schizophrenic symptoms may be explained by the antagonistic effects of this dose of D-cycloserine at the glycine recognition site of the NMDA receptor due to competition with the endogenous agonist glycine. Another explanation for the increase in psychopathology may be an interaction with the effects of antipsychotics on NMDA mediated neurotransmission. Thus, D-cycloserine in this study did not ameliorate schizophrenic symptoms. However, the fact that they actually worsened suggests that NMDA systems may be involved in the pathogenesis of schizophrenia. Further placebo-controlled studies with lower dosages of D-cycloserine, preferably in drug-free patients, are necessary to evaluate if D-cycloserine is of use for the treatment of patients with schizophrenia.

  4. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  5. Stereoselective umpolung tandem addition of heteroatoms to phenol.

    PubMed

    Todd, Michael A; Sabat, Michal; Myers, William H; Smith, Timothy M; Harman, W Dean

    2008-06-04

    Upon coordination to {TpW(PMe3)(NO)}, phenol tautomerizes to a cyclohexadienone (a 2H-phenol). The uncoordinated, nonaromatic double bond of this ligand undergoes stepwise addition of electrophiles followed by nucleophiles to produce 4,5-disubstituted cyclohexenone complexes. The metal stabilizes the intermediate cationic ligand and sterically blocks one face of the ligand, resulting in a high degree of stereo- and regiocontrol. These substituted cyclohexenones are readily liberated from the metal by oxidative decomplexation.

  6. Gene expression suggests double-segmental and single-segmental patterning mechanisms during posterior segment addition in the beetle Tribolium castaneum.

    PubMed

    Janssen, Ralf

    2014-01-01

    In the model arthropod Drosophila, all segments are patterned simultaneously in the blastoderm. In most other arthropods, however, posterior segments are added sequentially from a posterior segment addition zone. Posterior addition of single segments likely represents the ancestral mode of arthropod segmentation, although in Drosophila, segments are patterned in pairs by the pair-rule genes. It has been shown that in the new model insect, the beetle Tribolium, a segmentation clock operates that apparently patterns all segments in pairs as well. Here, I report on the expression of the segment polarity gene H15/midline in Tribolium. In the anterior embryo, segmental stripes of H15 appear in pairs, but in the posterior of the embryo stripes appear in a single-segmental periodicity. This implies that either two completely different segmentation-mechanisms may act in the germ band of Tribolium, that the segmentation clock changes its periodicity during development, or that the speed in which posterior segments are patterned changes. In any case, the data suggest the presence of another (or modified), yet undiscovered, mechanism of posterior segment addition in one of the best-understood arthropod models. The finding of a hitherto unrecognized segmentation mechanism in Tribolium may have major implications for the understanding of the origin of segmentation mechanisms, including the origin of pair rule patterning. It also calls for (re)-investigation of posterior segment addition in Tribolium and other previously studied arthropod models.

  7. Alpha-alkylation of ketones by addition of zinc enamides to unactivated olefins.

    PubMed

    Nakamura, Masaharu; Hatakeyama, Takuji; Nakamura, Eiichi

    2004-09-29

    A zinc enamide generated from the corresponding N-aryl imine undergoes addition to an unactivated olefin, such as ethylene, 1-octene, and isobutylene, to generate an alpha-alkylated gamma-zincioimine intermediate in good to excellent yield. Terminal and gem-disubstituted olefins react with >99% regioselectivity, allowing the C-C bond formation to take place at the more hindered carbon of the double bond. The organozinc intermediate undergoes further C-C bond formation with a carbon electrophile to give, upon hydrolysis of the imine, an alpha-alkylated ketone bearing a variety of functionalized primary, secondary, and tertiary alkyl groups.

  8. Organic chemistry: No double bond left behind

    NASA Astrophysics Data System (ADS)

    Sarlah, David

    2016-03-01

    Alkenyl halides are some of the most useful building blocks for synthesizing small organic molecules. A catalyst has now allowed their direct preparation from widely available alkenes using the cross-metathesis reaction. See Article p.459

  9. Crystal and molecular structure of W(eta/sup 2/-HC double bond COAlCl/sub 3/)(CO)(PMe/sub 3/)/sub 3/Cl, a product of the coupling of methylidyne and carbonyl ligands on tungsten

    SciTech Connect

    Churchill, M.R.; Wasserman, H.J.

    1983-01-05

    A single-crystal x-ray diffraction analysis has been performed on the title complex, which was prepared by Holmes and Schrock through AlCl/sub 3/-promoted coupling of W(CH)(PMe/sub 3/)/sub 4/Cl with carbon monoxide. The complex crystallizes in the centrosymmetric monoclinic space group P2/sub 1//c with a = 10.420 (2) A, b = 12.896 (2) A, c = 19.319 (4) A, ..beta.. = 105.880 (15)/sup 0/, V = 2497.1 (9) A/sup 3/, rho(calcd) = 1.73 g cm/sup -3/ for Z = 4, and mol wt = 650.0. Automated four-circle diffractometer intensity data (Syntex P2/sub 1/) were used to solve the structure; refinement led to R/sub F/ = 3.2% and R/sub wF/ = 3.0% for all 4423 unique reflections with 4.0/sup 0/ < 2 theta < 50.0/sup 0/ (Mo K..cap alpha.. radiation). The octahedral coordination environment about the central tungsten atom consists of three meridional PMe/sub 3/ ligands, a terminal carbonyl, a chloride, and an eta/sup 2/-HC double bond COAlCl/sub 3/ ligand. The last is oriented parallel to the carbonyl ligand and is best described as a substituted acetylene with an acetylenic carbon-carbon linkage of 1.316 (6) A and short tungsten-carbon distances of 2.034 (4) and 2.009 (5) A. The aluminum-oxygen distance is 1.751 (3) A; this value represents a significantly stronger Al-O interaction than has been observed in other structures containing Al-O (carbonyl; acyl) linkages.

  10. Comparison of the Addition of Siberian Ginseng (Acanthopanax senticosus) Versus Fluoxetine to Lithium for the Treatment of Bipolar Disorder in Adolescents: A Randomized, Double-Blind Trial

    PubMed Central

    Weng, Shenhong; Tang, Jihua; Wang, Gaohua; Wang, Xiaoping; Wang, Hui

    2007-01-01

    Background: Bipolar disorder (BD) is a common, recurrent, and often life-long major psychiatric condition characterized by manic, depressive, and mixed episodes. Without treatment, there is substantial risk for morbidity and mortality, making BD a considerable public health problem. Objective: The purpose of this study was to compare the relative effectiveness and tolerability of Acanthopanax senficosus (A senficosus)—an herb that is derived from eleutherosides and polysaccharides found in the plant's root— versus fluoxetine added to lithium in the treatment of BD in adolescents. Methods: This was a double-blind, 6-week study. The patients were randomized into 2 treatment groups—A senticosus plus lithium (A senticosus group) and fluoxetine plus lithium (fluoxetine group). The patients underwent a baseline assessment using the 17-Item Hamilton Depression Rating Scale (HAMD-17) and the Young Mania Rating Scale (YMRS) during the screening period. Patients were scheduled for clinical visits at the end of weeks 1, 2, 4, and 6. At the end of the 6-week treatment period, each patient's condition was rated as follows: response (indicating an improvement of ≥50% in the HAMD-17 score from baseline); remission (a HAMD-17 score of ⪯7); and switching to mania (a YMRS score >16, and meeting the criteria of the Diagnostic and Statistical Manual of Mental Disorders [Fourth Edition, Text Revision] for a manic episode). At each visit (with the exception of the enrollment visit), the patients were queried as to whether they experienced any health problems since the previous visit, a Treatment Emergent Symptom Scale assessment was completed, and the serum lithium concentration was analyzed. The patients were instructed to report adverse events (AEs) at any time during the study. AEs were also observed by the investigator(s) at clinical visits. Results: Seventy-nine Chinese adolescents were initially enrolled into the study. However, 76 adolescents were assessed for inclusion

  11. Effects of the addition of fluoride to a 4-META/MMA-TBB-based resin adhesive on fluoride release, acid resistance of enamel and shear bond strength in vitro.

    PubMed

    Iijima, Masahiro; Ito, Shuichi; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Saito, Takashi; Mizoguchi, Itaru

    2013-01-01

    This study investigated fluoride release, acid resistance and shear bond strength (SBS) of new 4-META/MMA-TBB-based fluoride-containing resin adhesive (Super-Bond/F3). Super-Bond, Transbond Plus and Fuji Ortho LC were selected for comparison. Fluoride release into distilled water during 6-month period was measured using disk-shaped specimens. Brackets were bonded to human premolars with each material and then the specimens for the nanoindentation test were subjected to alternating immersion (demineralizing and remineralizing solutions); the hardness and elastic modulus of the enamel around bracket were determined. Rest of the specimens was subjected to examine the SBS. Super-Bond/F3 and Fuji Ortho LC showed significantly greater fluoride release compared with the other materials. The reductions in hardness and the elastic modulus for Super-Bond/F3 and Fuji Ortho LC were lower than those for the other materilas. Super-Bond and Super-Bond/F3 showed significantly greater SBS than Fuji Ortho FC. In conclusion, Super-Bond/F3 showed high fluoride-release, cariostatic potential and equivalent SBS.

  12. How many hydrogen-bonded α-turns are possible?

    PubMed

    Schreiber, Anette; Schramm, Peter; Hofmann, Hans-Jörg

    2011-06-01

    The formation of α-turns is a possibility to reverse the direction of peptide sequences via five amino acids. In this paper, a systematic conformational analysis was performed to find the possible isolated α-turns with a hydrogen bond between the first and fifth amino acid employing the methods of ab initio MO theory in vacuum (HF/6-31G*, B3LYP/6-311 + G*) and in solution (CPCM/HF/6-31G*). Only few α-turn structures with glycine and alanine backbones fulfill the geometry criteria for the i←(i + 4) hydrogen bond satisfactorily. The most stable representatives agree with structures found in the Protein Data Bank. There is a general tendency to form additional hydrogen bonds for smaller pseudocycles corresponding to β- and γ-turns with better hydrogen bond geometries. Sometimes, this competition weakens or even destroys the i←(i + 4) hydrogen bond leading to very stable double β-turn structures. This is also the reason why an "ideal" α-turn with three central amino acids having the perfect backbone angle values of an α-helix could not be localized. There are numerous hints for stable α-turns with a distance between the C(α)-atoms of the first and fifth amino acid smaller than 6-7 Å, but without an i←(i + 4) hydrogen bond.

  13. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2-->4I 11/2 and 4F 3/2-->4I 13/2 transitions.

    PubMed

    Chang, Y T; Huang, Y P; Su, K W; Chen, Y F

    2008-12-08

    The effective focal lengths of thermal lens in diode-end-pumped continuous-wave Nd:YVO(4) lasers for the (4)F(3/2)-->(4)I(11/2) and (4)F(3/2)-->(4)I(13/2) transitions were determined. The experimental results revealed that the thermal lensing effect for the (4)F(3/2)-->(4)I(11/2) transition can be sufficiently improved by employing a single-end diffusion-bonded Nd:YVO(4) crystal replacing a conventional Nd:YVO(4) crystal. However, using a double-end diffusion-bonded Nd:YVO(4) crystal was a great improvement over a single-end diffusion-bonded Nd:YVO(4) crystal for the (4)F(3/2)-->(4)I(13/2) transition with stronger thermal lensing effect.

  14. Addition of Somatostatin After Successful Endoscopic Variceal Ligation Does not Prevent Early Rebleeding in Comparison to Placebo: A Double Blind Randomized Controlled Trial

    PubMed Central

    Kumar, Ashish; Jha, Sanjeev K.; Mittal, Vibhu V.; Sharma, Praveen; Sharma, Barjesh C.; Sarin, Shiv K.

    2015-01-01

    Background Efficacy of endoscopic sclerotherapy in controlling acute variceal bleeding is significantly improved when vasoactive drug is added. Endoscopic variceal ligation (EVL) is superior to sclerotherapy. Whether efficacy of EVL will also improve with addition of somatostatin is not known. We compared EVL plus somatostatin versus EVL plus placebo in control of acute variceal bleeding. Methods Consecutive cirrhotic patients with acute esophageal variceal bleeding were enrolled. After emergency EVL, patients were randomized to receive either somatostatin (250 mcg/hr) or placebo infusion. Primary endpoint was treatment failure within 5 days. Treatment failure was defined as fresh hematemesis ≥2 h after start of therapy, or a 3 gm drop in Hb, or death. Results 61 patients were enrolled (EVL plus somatostatin group, n = 31 and EVL plus placebo group, n = 30). The baseline characteristics were similar. Within the initial 5-day period, the frequency of treatment failure was similar in both the groups (EVL plus somatostatin group 8/31 [26%] versus EVL plus placebo group 7/30 [23%]; P = 1.000). The mortality was also similar in the two groups (3/31 [10%] vs. 3/30 [10%]; P = 1.000). Baseline HVPG ≥19 mm Hg and active bleeding at index endoscopy were independent predictors of treatment failure. Conclusions Addition of somatostatin infusion to EVL therapy does not offer any advantage in control of acute variceal bleeding or reducing mortality. The reason for this may be its failure to maintain sustained reduction in portal pressure for five days. Active bleeding at index endoscopy and high baseline HVPG should help choose early alternative treatment options. Trial registered with ClincalTrials.gov vide NCT01267669. PMID:26628838

  15. Evaluation of composite bonded joints

    SciTech Connect

    Whitworth, H.A.; Othieno, M.; Yin, S.W.

    1995-12-31

    The present investigation evaluates the influence of joining technique on the static and fatigue behavior of composite bonded joints. Specimens used in this investigation were LDF AS4/PEKK graphite/thermoplastic composites and IM6/3501-6 graphite/poxy composite laminates. Joints were made by either adhesive bonding or fusing bonding. For the adhesive bonded joints, in some cases specimens were bonded without any surface pretreatment while in other cases the surfaces were either grit blast or corona. treated prior to bonding. For the fusion bonded joints, joints were prepared by either induction welding or thermabonding. In addition, some specimens were conditioned in a wet environment for thirty days in order to observe the influence of moisture on the static strengths. During fatigue testing, the residual stiffness was continually monitored in order to assess the extent of fatigue damage development.

  16. Bonding without Tears.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1982-01-01

    Discusses merits of using sigma-pi model of ethylene as a teaching aid in introductory organic chemistry. The nonmathematical treatment of sigma-pi bonding is then extended to such phenomena as conjugation, hyperconjugation, Markovnikoff addition, aromaticity, and aromatic substitution. (SK)

  17. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  18. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  19. Intermolecular addition reactions of N-alkyl-N-chlorosulfonamides to unsaturated compounds.

    PubMed

    Heuger, Gerold; Göttlich, Richard

    2015-01-01

    N-Alkyl-N-chlorosulfonamides add to alkenes under copper(I) catalysis. In reactions of styrene derivatives with terminal double bonds the addition products were obtained in excellent yield and high regioselectivity. Lower yields are obtained in addition reactions to non-aromatic alkenes. The reaction most likely proceeds via a redox catalysis and amidyl radicals, a concerted mechanism has been ruled out and a polar mechanism via chloronium ions would lead to the opposite regiochemistry.

  20. The Quadruple Bonding in C2 Reproduces the Properties of the Molecule.

    PubMed

    Shaik, Sason; Danovich, David; Braida, Benoit; Hiberty, Philippe C

    2016-03-14

    Ever since Lewis depicted the triple bond for acetylene, triple bonding has been considered as the highest limit of multiple bonding for main elements. Here we show that C2 is bonded by a quadruple bond that can be distinctly characterized by valence-bond (VB) calculations. We demonstrate that the quadruply-bonded structure determines the key observables of the molecule, and accounts by itself for about 90% of the molecule's bond dissociation energy, and for its bond lengths and its force constant. The quadruply-bonded structure is made of two strong π bonds, one strong σ bond and a weaker fourth σ-type bond, the bond strength of which is estimated as 17-21 kcal mol(-1). Alternative VB structures with double bonds; either two π bonds or one π bond and one σ bond lie at 129.5 and 106.1 kcal mol(-1), respectively, above the quadruply-bonded structure, and they collapse to the latter structure given freedom to improve their double bonding by dative σ bonding. The usefulness of the quadruply-bonded model is underscored by "predicting" the properties of the (3)Σ+u state. C2's very high reactivity is rooted in its fourth weak bond. Thus, carbon and first-row main elements are open to quadruple bonding!

  1. Bond Sensitivity to Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Caldwell, G. A.; Hudson, W. D.; Hudson, W. D.; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Currently during fabrication of the Space Shuttle booster rocket motors, the use of silicone and silicone-containing products is prohibited in most applications. Many shop aids and other materials containing silicone have the potential, if they make contact with a bond surface, to transfer some of the silicone to the substrates being bonded. Such transfer could result in a reduction of the bond strength or even failure of the subsequent bonds. This concern is driving the need to understand the effect of silicones and the concentration needed to affect a given bond-line strength. Additionally, as silicone detection methods used for materials acceptance improve what may have gone unnoticed earlier is now being detected. Thus, realistic silicone limits for process materials (below which bond performance is satisfactory) are needed rather than having an absolute no silicone permitted policy.

  2. Constructing Models in Teaching of Chemical Bonds: Ionic Bond, Covalent Bond, Double and Triple Bonds, Hydrogen Bond and Molecular Geometry

    ERIC Educational Resources Information Center

    Uce, Musa

    2015-01-01

    Studies in chemistry education show that chemistry topics are considered as abstract, complicated and hard to understand by students. For this reason, it is important to develop new materials and use them in classes for better understanding of abstract concepts. Moving from this point, a student-centered research guided by a teacher was conducted…

  3. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  4. Activation energies for addition of O/3P/ to simple olefins.

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1972-01-01

    Description of relative rate measurements for the addition of O(3P) to C2H4, C2F4, C3H6, and C4H8-1 in liquid argon at 87.5 K. The data strongly indicate that the activation energies for the addition of O(3P) to the double bonds of propylene and butene-1 are identical, probably to within 0.1 kcal/mole. It is very doubtful that differences in pre-exponential factors or other factors such as solvent effects, could invalidate this conclusion. A similar argument holds for the C2H4 and C2F4 reactions. Furthermore, the experiments suggest that the activation energy for addition of O(3P) to the double bond of butene-1 is about 0.1 kcal/mole.

  5. 13 CFR 115.33 - Surety bonding line.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., including outstanding bids, during the term of the bonding line; (3) The number of such bonded and unbonded... forms to SBA—(1) Bid Bonds. Within 15 business days after the Execution of any Bid Bonds under a bonding... was not made. (3) Additional information. The Surety must submit any other data SBA requests....

  6. 13 CFR 115.33 - Surety bonding line.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., including outstanding bids, during the term of the bonding line; (3) The number of such bonded and unbonded... forms to SBA—(1) Bid Bonds. Within 15 business days after the Execution of any Bid Bonds under a bonding... was not made. (3) Additional information. The Surety must submit any other data SBA requests....

  7. Exocyclic push-pull conjugated compounds. Part 3. An experimental NMR and theoretical MO ab initio study of the structure, the electronic properties and barriers to rotation about the exocyclic partial double bond in 2- exo-methylene- and 2-cyanoimino-quinazolines and -benzodiazepines

    NASA Astrophysics Data System (ADS)

    Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.

    2000-03-01

    The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.

  8. Effect of bond thickness on fracture and fatigue strength of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mall, S.; Ramamurthy, G.

    1989-01-01

    An experimental investigation of composite to composite bonded joints was undertaken to study the effect of bond thickness on debond growth rate under cyclic loading and critical strain energy release rate under static loading. Double cantilever beam specimens of graphite/epoxy adherends bonded with EC 3445 were tested under mode I loading. A different behavior of fracture and fatigue strength was observed with variation of bondline thickness.

  9. Benchmarking Density Functionals for Chemical Bonds of Gold.

    PubMed

    Kepp, Kasper P

    2017-03-09

    Gold plays a major role in nanochemistry, catalysis, and electrochemistry. Accordingly, hundreds of studies apply density functionals to study chemical bonding with gold, yet there is no systematic attempt to assess the accuracy of these methods applied to gold. This paper reports a benchmark against 51 experimental bond enthalpies of AuX systems and seven additional polyatomic and cationic molecules. Twelve density functionals were tested, covering meta functionals, hybrids with variable HF exchange, double-hybrid, dispersion-corrected, and nonhybrid GGA functionals. The defined benchmark data set probes all types of bonding to gold from very electronegative halides that force Au(+) electronic structure, via covalently bonded systems, hard and soft Lewis acids and bases that either work against or complement the softness of gold, the Au2 molecule probing gold's bond with itself, and weak bonds between gold and noble gases. Zero-point vibrational corrections are relatively small for Au-X bonds, ∼ 11-12 kJ/mol except for Au-H bonds. Dispersion typically provides ∼5 kJ/mol of the total bond enthalpy but grows with system size and is 10 kJ/mol for AuXe and AuKr. HF exchange and LYP correlation produce weaker bonds to gold. Most functionals provide similar trend accuracy, though somewhat lower for M06 and M06L, but very different numerical accuracy. Notably, PBE and TPSS functionals with dispersion display the smallest numerical errors and very small mean signed errors (0-6 kJ/mol), i.e. no bias toward over- or under-binding. Errors are evenly distributed versus atomic number, suggesting that relativistic effects are treated fairly; the mean absolute error is almost halved from B3LYP (45 kJ/mol) to TPSS and PBE (23 kJ/mol, including difficult cases); 23 kJ/mol is quite respectable considering the diverse bonds to gold and the complication of relativistic effects. Thus, studies that use DFT with effective core potentials for gold chemistry, with no alternative due

  10. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  11. Synthesis of 1,5-Dioxocanes via the Two-Fold C-O Bond Forming Nucleophilic 4+4-Cyclodimerization of Cycloprop-2-en-1-ylmethanols

    PubMed Central

    Edwards, Andrew; Bennin, Trevor; Rubina, Marina; Rubin, Michael

    2015-01-01

    An efficient [4+4] cyclodimerization of cyclopropenemethanols operating via a two-fold strain release-driven addition of alkoxides across the double bond of cyclopropenes was investigated. This chemo- and diastereoselective transformation provided previously unknown 2,7-dioxatricyclo[7.1.0.04,6]decane scaffolds. PMID:26594355

  12. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  13. Recovery of the wild type atomic flexibility in the HIV-1 protease double mutants.

    PubMed

    De Conto, Valderes; Braz, Antônio S K; Perahia, David; Scott, Luis P B

    2015-06-01

    The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients.

  14. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  15. Synthesis and characterization of hydrogen-bond acidic functionalized graphene

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Han, Qiang; Pan, Yong; Cao, Shuya; Ding, Mingyu

    2014-05-01

    Hexafluoroisopropanol phenyl group functionalized materials have great potential in the application of gas-sensitive materials for nerve agent detection, due to the formation of strong hydrogen-bonding interactions between the group and the analytes. In this paper, take full advantage of ultra-large specific surface area and plenty of carbon-carbon double bonds and hexafluoroisopropanol phenyl functionalized graphene was synthesized through in situ diazonium reaction between -C=C- and p-hexafluoroisopropanol aniline. The identity of the as-synthesis material was confirmed by transmission electron microscopy, Raman spectroscopy, ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis. The synthesis method is simply which retained the excellent physical properties of original graphene. In addition, the novel material can be assigned as an potential candidate for gas sensitive materials towards organophosphorus nerve agent detection.

  16. Anharmonic dynamics of intramolecular hydrogen bonds driven by DNA breathing

    NASA Astrophysics Data System (ADS)

    Alexandrov, B. S.; Stanev, V. G.; Bishop, A. R.; Rasmussen, K. Ø.

    2012-12-01

    We study the effects of the anharmonic strand-separation dynamics of double-stranded DNA on the infrared spectra of the intramolecular base-pairing hydrogen bonds. Using the extended Peyrard-Bishop-Dauxois model for the DNA breathing dynamics coupled with the Lippincott-Schroeder potential for N-H⋯N and N-H⋯O hydrogen bonding, we identify a high-frequency (˜96 THz) feature in the infrared spectra. We show that this sharp peak arises as a result of the anharmonic base-pair breathing dynamics of DNA. In addition, we study the effects of friction on the infrared spectra. For higher temperatures (˜300 K), where the anharmonicity of DNA dynamics is pronounced, the high-frequency peak is always present irrespective of the friction strength.

  17. Kinetic and DFT studies on the mechanism of C-S bond formation by alkyne addition to the [Mo3S4(H2O)9]4+ cluster.

    PubMed

    Pino-Chamorro, Jose Ángel; Algarra, Andrés G; Fernández-Trujillo, M Jesús; Hernández-Molina, Rita; Basallote, Manuel G

    2013-12-16

    Reaction of [Mo3(μ3-S)(μ-S)3] clusters with alkynes usually leads to formation of two C-S bonds between the alkyne and two of the bridging sulfides. The resulting compounds contain a bridging alkenedithiolate ligand, and the metal centers appear to play a passive role despite reactions at those sites being well illustrated for this kind of cluster. A detailed study including kinetic measurements and DFT calculations has been carried out to understand the mechanism of reaction of the [Mo3(μ3-S)(μ-S)3(H2O)9](4+) (1) cluster with two different alkynes, 2-butyne-1,4-diol and acetylenedicarboxylic acid. Stopped-flow experiments indicate that the reaction involves the appearance in a single kinetic step of a band at 855 or 875 nm, depending on the alkyne used, a position typical of clusters with two C-S bonds. The effects of the concentrations of the reagents, the acidity, and the reaction medium on the rate of reaction have been analyzed. DFT and TD-DFT calculations provide information on the nature of the product formed, its electronic spectrum and the energy profile for the reaction. The structure of the transition state indicates that the alkyne approaches the cluster in a lateral way and both C-S bonds are formed simultaneously.

  18. Marginal adaptation of dentin bonded ceramic inlays: effects of bonding systems and luting resin composites.

    PubMed

    Haller, Bernd; Hässner, Katrin; Moll, Karlheinz

    2003-01-01

    This in vitro study evaluated the marginal adaptation of bonded inlays of lucite-reinforced glass ceramic (Empress) to dentin as influenced by different bonding systems and by luting resin composites (LRCs) with different curing modes. Forty-eight Empress inlays etched with 5% hydrofluoric acid and treated with a silane-coupling agent (Monobond-S) were bonded to two-surface Class II cavities. Two total-etch bonding systems (OptiBond FL, Nexus) and one bonding system with selective enamel etching and a self-conditioning dentin primer (ART Bond) were included in the study. ART Bond was tested with and without the pre-curing of a first layer of adhesive resin selectively applied to the cervical cavity floor (selective double-bond technique). Each bonding system was used in combination with a light-cured resin composite (Prodigy) and a dual-cured LRC (Nexus or Vita Cerec Duo Cement). Marginal integrity was evaluated before and after thermocycling (TC) in a scanning electron microscope (SEM). Dye penetration tests were performed after TC was completed. The median percentages of continuous margin in dentin ranged from 80% to 100% before TC and from 53.5% to 96.1 % after TC. After TC, the influence of the bonding system was more pronounced than that of the LRC. In combination with the LC resin composite, ART Bond with precuring was significantly higher and the Nexus bonding system had significantly lower proportions of continuous margin than all the other bonding systems investigated. Swelling of the adhesive along the gingival margins was frequently found with the Nexus bonding system and with ART Bond without pre-curing. Microleakage was detected with all bonding system/LRC combinations, with somewhat lower rates in specimens completed using the selective double-bond technique. With the exception of the Nexus bonding system, post-TC marginal integrity was not influenced by the curing mode of the LRC (LC vs DC). In conclusion, the marginal quality of dentin bonded

  19. Reactivity in the periphery of functionalised multiple bonds of heavier group 14 elements.

    PubMed

    Präsang, Carsten; Scheschkewitz, David

    2016-02-21

    Heavier group 14 multiple bonds have intrigued chemists since more than a century. The synthesis of stable compounds with double and triple bonds with silicon, germanium, tin and lead had considerable impact on modern ideas of chemical bonding. These developments were made possible by the use of bulky substituents that provide kinetic and thermodynamic protection. Since about a decade the compatibility of heavier multiple bonds with various functional groups has moved into focus. This review covers multiply bonded group 14 species with at least one additional reactive site. The vinylic functionalities of groups 1 and 17, resulting in nucleophilic and electrophilic disila vinyl groups, respectively, are the most prevalent and well-studied. They have been employed repeatedly for the transfer of heavier multiple bonds to yield low-valent group 14 compounds with novel structural motifs. Vinylic functionalities of groups 2 to 16 and a few σ-bonded transition metal complexes are experimentally known, but their reactivity has been studied to a lesser extent. Donor-coordinated multiple bonds are a relatively new field of research, but the large degree of unsaturation as isomers of alkynes (as well as residual functionality in some cases) offers considerable possibility for further manipulation, e.g. for the incorporation into more extended systems. Heavier allyl halides constitute the major part of heavier multiple bonds with a functional group in allylic position and some examples of successful transformations are given. At present, remote functionalities are basically limited to para-phenylene functionalised disilenes. The reported use of the latter for further derivatisation might encourage investigations in this direction. In summary, the study of peripherally functionalised multiple bonds with heavier group 14 elements is already well beyond its infancy and may be an instrumental factor in awakening the potential of group 14 chemistry for applications in polymers and

  20. Two-center two-electron covalent bonds with deficient bonding densities.

    PubMed

    Yang, Yang

    2012-10-18

    Electron-deficient covalent bonds are a type of covalent bonds without electron accumulation at their bonding regions. Compared with normal covalent bonds, they are quite sensitive to chemical environments. Electron-deficient and normal covalent bonds are not isolated from each other. An electron-deficient bond may change to a normal one upon the change of substituting groups. Neither bond elongation nor atom electronegativity is directly related to the electron deficiency in an electron-deficient bond. Atoms in molecules (AIM) analyses suggest that electron-deficient bonds are characterized by positive Laplacians and small ρ(BCP) values. The positive Laplacian is caused by insignificant electron accumulation perpendicular to the bond path. On the basis of electron localization function (ELF) descriptors, electron-deficient bonds have small basin populations, low η values and high relative fluctuations. There may be one or two bond basins for an electron-deficient bond. In addition, such a bond may correlate with two more valence basins close to the two participating atoms. Electron-deficient bonds are usually weak and long. This is consistent with the low s characters in their natural bond orbitals (NBOs).

  1. A computational study on the N-heterocyclic carbene-catalyzed Csp(2)-Csp(3) bond activation/[4+2] cycloaddition cascade reaction of cyclobutenones with imines: a new application of the conservation principle of molecular orbital symmetry.

    PubMed

    Wang, Yang; Wu, Bohua; Zhang, Haoyang; Wei, Donghui; Tang, Mingsheng

    2016-07-20

    A comprehensive density functional theory (DFT) investigation has been performed to interrogate the mechanisms and stereoselectivities of the Csp(2)-Csp(3) single bond activation of cyclobutenones and their [4+2] cycloaddition reaction with imines via N-heterocyclic carbene (NHC) organocatalysis. According to our calculated results, the fundamental reaction pathway contains four steps: nucleophilic addition of NHC to cyclobutenone, C-C bond cleavage for the formation of an enolate intermediate, [4+2] cycloaddition of the enolate intermediate with isatin imine, and the elimination of the NHC catalyst. In addition, the calculated results also reveal that the second reaction step is the rate-determining step, whereas the third step is the regio- and stereo-selectivity determining step. For the regio- and stereo-selectivity determining step, all four possible attack modes were considered. The addition of the C[double bond, length as m-dash]N bond in isatin imine to the dienolate intermediate is more energy favorable than the addition of the C[double bond, length as m-dash]O bond to a dienolate intermediate. Moreover, the Re face addition of the C[double bond, length as m-dash]N bond in isatin imine to the Re face of the dienolate intermediate leading to the SS configuration N-containing product was demonstrated to be most energy favorable, which is mainly due to the stronger second-order perturbation energy value in the corresponding transition state. Furthermore, by tracking the frontier molecular orbital (FMO) changes in the rate-determining C-C bond cleavage step, we found that the reaction obeys the conservation principle of molecular orbital symmetry. We believe that the present work would provide valuable insights into this kind of reaction.

  2. Hydrogen bonding in the hexagonal ice surface.

    PubMed

    Barnett, Irene Li; Groenzin, Henning; Shultz, Mary Jane

    2011-06-16

    A recently developed technique in sum frequency generation spectroscopy, polarization angle null (or PAN-SFG), is applied to two orientations of the prism face of hexagonal ice. It is found that the vibrational modes of the surface are similar in different faces. As in the basal face, the prism face of ice contains five dominant resonances: 3096, 3146, 3205, 3253, and 3386 cm(-1). On the basal face, the reddest resonance occurs at 3098 cm(-1); within the bandwidth, the same as the prism face. On both the prism and basal faces, this mode contains a significant quadrupole component and is assigned to the bilayer stitching hydrogen bonds. The bluest of the resonances, 3386 cm(-1), occurs slightly blue-shifted at 3393 cm(-1) in the basal face. The prism face has two orientations: one with the optic or c axis in the input plane (the plane formed by the surface normal and the interrogating beam propagation) and one with the c axis perpendicular to the input plane. The 3386 cm(-1) mode has significant intensity only with the c axis in the input plane. On the basis of these orientation characteristics, the 3386 cm(-1) mode is assigned to double-donor molecules in either the top half bilayer or in the lower half bilayer. On the basis of frequency considerations, it is assigned to double-donor molecules in the top half bilayer. These are water molecules containing a nonbonded lone pair. In addition to identification of the components of the broad hydrogen-bonded region, PAN-SFG measures the tangential vs longitudinal content of the vibrational modes. In accord with previous suggestions, the lower frequency modes are predominantly tangential, whereas the higher frequency modes are mainly longitudinal. On the prism face, the 3386 cm(-1) mode is entirely longitudinal.

  3. The effect of addition of low dose fentanyl to epidural bupivacaine (0.5%) in patients undergoing elective caesarean section: A randomized, parallel group, double blind, placebo controlled study

    PubMed Central

    Parate, LH; Manjrekar, SP; Anandaswamy, TC; Manjunath, B

    2015-01-01

    Background: Opioids have synergistic action with local anesthetics which may alter characteristics of epidural block. Giving opioids to mother before delivery of baby is still fully not accepted with some fearing risk of neonatal depression. Aims: Our primary aim was to evaluate the analgesic effect of addition of 50 μg fentanyl to epidural 0.5% bupivacaine in patients undergoing elective caesarean section using visual analog scale. The secondary aim was to assess onset of analgesia, volume of drug required to achieve T6 level, grade and duration of motor block and Apgar score. Materials and Methods: In this prospective, randomized, double blind, placebo controlled study 64 patients scheduled for elective caesarean section under epidural anesthesia were randomly divided into two groups of 32 each. The fentanyl group received 1ml of 50 μg fentanyl and the saline group received 1ml of normal saline mixed with 10ml of 0.5% bupivacaine for epidural anesthesia. VAS score, time to achieve T6 level, dose of bupivacaine, intraoperative analgesic consumption and duration of analgesia, grade and duration of motor block and any adverse maternal and neonatal effects were noted. Statistical Analysis: Data was analyzed using Students t test, chi-square test and Mann-Whitney U-test. The values of P < 0.05 were considered statistically significant. Results: Fentanyl improved the VAS score significantly (1.6 ± 1.32) compared to the saline group (3.77 ± 1.0, P < 0.0001). It also reduced the intraoperaitve analgesic supplementation compared to the saline group. (P = 0.031). The postoperative duration of analgesia was prolonged in the fentanyl group (275.80 ± 13.61 min) compared to the saline group (191.47 ± 12.16 min, P < 0.0001). The other characteristics of epidural block were unaltered. Conclusion: Addition of 50 μg fentanyl to epidural 0.5% bupivacaine significantly reduces the VAS score. It also reduces intra-operative analgesia supplementation and prolongs the duration

  4. Ultra precision and reliable bonding method

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2001-01-01

    The bonding of two materials through hydroxide-catalyzed hydration/dehydration is achieved at room temperature by applying hydroxide ions to at least one of the two bonding surfaces and by placing the surfaces sufficiently close to each other to form a chemical bond between them. The surfaces may be placed sufficiently close to each other by simply placing one surface on top of the other. A silicate material may also be used as a filling material to help fill gaps between the surfaces caused by surface figure mismatches. A powder of a silica-based or silica-containing material may also be used as an additional filling material. The hydroxide-catalyzed bonding method forms bonds which are not only as precise and transparent as optical contact bonds, but also as strong and reliable as high-temperature frit bonds. The hydroxide-catalyzed bonding method is also simple and inexpensive.

  5. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  6. In-silico bonding schemes to encode chemical bonds involving sharing of electrons in molecular structures.

    PubMed

    Punnaivanam, Sankar; Sathiadhas, Jerome Pastal Raj; Panneerselvam, Vinoth

    2016-05-01

    Encoding of covalent and coordinate covalent bonds in molecular structures using ground state valence electronic configuration is achieved. The bonding due to electron sharing in the molecular structures is described with five fundamental bonding categories viz. uPair-uPair, lPair-uPair, uPair-lPair, vPair-lPair, and lPair-lPair. The involvement of lone pair electrons and the vacant electron orbitals in chemical bonding are explained with bonding schemes namely "target vacant promotion", "source vacant promotion", "target pairing promotion", "source pairing promotion", "source cation promotion", "source pairing double bond", "target vacant occupation", and "double pairing promotion" schemes. The bonding schemes are verified with a chemical structure editor. The bonding in the structures like ylides, PCl5, SF6, IF7, N-Oxides, BF4(-), AlCl4(-) etc. are explained and encoded unambiguously. The encoding of bonding in the structures of various organic compounds, transition metals compounds, coordination complexes and metal carbonyls is accomplished.

  7. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  8. What Determines Bond Costs. Municipal Bonds Series.

    ERIC Educational Resources Information Center

    Young, Douglas; And Others

    Public officials in small towns who participate infrequently in the bond market need information about bond financing. This publication, one in a series of booklets published by the Western Rural Development Center using research gathered between 1967-77, discusses factors influencing the marketability and cost of bond financing for towns and…

  9. 25 CFR 276.4 - Bondings and insurance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Bondings and insurance. 276.4 Section 276.4 Indians... ACT PROGRAM UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS § 276.4 Bondings and insurance. In... bonding and insurance. The Bureau will not impose additional bonding and insurance requirements,...

  10. 25 CFR 276.4 - Bondings and insurance.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Bondings and insurance. 276.4 Section 276.4 Indians... ACT PROGRAM UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS § 276.4 Bondings and insurance. In... bonding and insurance. The Bureau will not impose additional bonding and insurance requirements,...

  11. A Star-shaped Oligo(phenylenevinylene) Liquid Crystal Host with an Anthracene Guest-A Double Nanosegregating Supermesogen.

    PubMed

    Maier, Philipp; Grüne, Matthias; Lehmann, Matthias

    2017-01-23

    Hexasubstituted C3 -symmetric benzenes with three elongated shape-persistent oligo(phenylenevinylene) arms and three pyridyl hydrogen-bond acceptors have been synthesized. These mesogens assemble in a double-helical columnar liquid crystal (LC) structure, owing to the compensation of free spaces between conjugated arms by dimer formation. The void is filled also by up to three anthracene carboxylic acids as guests forming hydrogen bonded supermesogens assembling in columnar LC and soft-crystal phases. Thin film fluorescence and solid-state NMR spectroscopy imply a transition from a disordered columnar LC to an unexpected double nanosegregated morphology of a filled soft columnar crystal phase. An additional intracolumnar separation of anthracene and oligo(phenylenevinylene) chromophores occurs, separate to the general segregation of aliphatic and aromatic building blocks in LC structures. The new type of supermesogens will enable the rational design of host-guest double cables with a wide range of different conjugated building blocks.

  12. 7 CFR 1942.19 - Information pertaining to preparation of notes or bonds and bond transcript documents for public...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Preference” and “Fourth Preference” in paragraph (e) of this section. (8) Additional revenue bonds. Parity bonds may be issued to complete the project. Otherwise, parity bonds may not be issued unless the net... and maintenance expense) for the fiscal year preceding the year in which such parity bonds are to...

  13. 7 CFR 1942.19 - Information pertaining to preparation of notes or bonds and bond transcript documents for public...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Preference” and “Fourth Preference” in paragraph (e) of this section. (8) Additional revenue bonds. Parity bonds may be issued to complete the project. Otherwise, parity bonds may not be issued unless the net... and maintenance expense) for the fiscal year preceding the year in which such parity bonds are to...

  14. 7 CFR 1942.19 - Information pertaining to preparation of notes or bonds and bond transcript documents for public...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Preference” and “Fourth Preference” in paragraph (e) of this section. (8) Additional revenue bonds. Parity bonds may be issued to complete the project. Otherwise, parity bonds may not be issued unless the net... and maintenance expense) for the fiscal year preceding the year in which such parity bonds are to...

  15. 7 CFR 1942.19 - Information pertaining to preparation of notes or bonds and bond transcript documents for public...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Preference” and “Fourth Preference” in paragraph (e) of this section. (8) Additional revenue bonds. Parity bonds may be issued to complete the project. Otherwise, parity bonds may not be issued unless the net... and maintenance expense) for the fiscal year preceding the year in which such parity bonds are to...

  16. N-Doped Cationic PAHs by Rh(III)-Catalyzed Double C-H Activation and Annulation of 2-Arylbenzimidazoles with Alkynes.

    PubMed

    Villar, José M; Suárez, Jaime; Varela, Jesús A; Saá, Carlos

    2017-04-07

    A novel class of N-doped cationic PAHs (polycyclic aromatic hydrocarbons) bearing the benzo[c,d]fluoranthene scaffold has been synthesized by the Rh(III)-catalyzed double-oxidative annulation of 2-arylbenzimidazoles with alkynes. The overall process involves a double C-N bond formation through a double C-H/N-H functionalization.The solid-state structures and electronic properties of the new N-doped PAHs were analyzed. These cationic azapolycycles were readily reduced in the presence of LiAlH4 or by the addition of PhLi to give interesting phenyl and diphenylmethanediamine derivatives.

  17. The Limit of Intramolecular H-Bonding.

    PubMed

    Hubbard, Thomas A; Brown, Alisdair J; Bell, Ian A W; Cockroft, Scott L

    2016-11-23

    Hydrogen bonds are ubiquitous interactions in molecular recognition. The energetics of such processes are governed by the competing influences of pre-organization and flexibility that are often hard to predict. Here we have measured the strength of intramolecular interactions between H-bond donor and acceptor sites separated by a variable linker. A striking distance-dependent threshold was observed in the intramolecular interaction energies. H-bonds were worth less than -1 kJ mol(-1) when the interacting groups were separated by ≥6 rotating bonds, but ranged between -5 and -9 kJ mol(-1) for ≤5 rotors. Thus, only very strong external H-bond acceptors were able to compete with the stronger internal H-bonds. In addition, a constant energetic penalty per rotor of ∼5-6 kJ mol(-1) was observed in less strained situations where the molecule contained ≥4 rotatable bonds.

  18. Development of Ag-Pd-Au-Cu alloy for multiple dental applications. Part 1. Effects of Pd and Cu contents, and addition of Ga or Sn on physical properties and bond with ultra-low fusing ceramic.

    PubMed

    Goto, S; Miyagawa, Y; Ogura, H

    2000-09-01

    Ag-Pd-Au-Cu quaternary alloys consisting of 30-50% Ag, 20-40% Pd, 10-20% Cu and 20% Au (mother alloys) were prepared. Then 5% Sn or 5% Ga was added to the mother alloy compositions, and another two alloy systems (Sn-added alloys and Ga-added alloys) were also prepared. The bond between the prepared alloys and an ultra-low fusing ceramic as well as their physical properties such as the solidus point, liquidus point and the coefficient of thermal expansion were evaluated. The solidus point and liquidus point of the prepared alloys ranged from 802 degrees C to 1142 degrees C and from 931 degrees C to 1223 degrees C, respectively. The coefficient of thermal expansion ranged from 14.6 to 17.1 x 10(-6)/degrees C for the Sn- and Ga-added alloys. In most cases, the Pd and Cu contents significantly influenced the solidus point, liquidus point and coefficient of thermal expansion. All Sn- and Ga-added alloys showed high area fractions of retained ceramic (92.1-100%), while the mother alloy showed relatively low area fractions (82.3%) with a high standard deviation (20.5%). Based on the evaluated properties, six Sn-added alloys and four Ga-added alloys among the prepared alloys were suitable for the application of the tested ultra-low fusing ceramic.

  19. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  20. Sulfonate activation of the electrophilic reactivity of chlorine and alkyl hypochlorides by the insertion of sulfur trioxide at the C1-C1 and O-C1 bonds. Addition of chlorine chloro- and ethoxysulfate to olefins

    SciTech Connect

    Zefirov, N.S.; Koz'min, A.S.; Sorokin, V.D.; Zhdankin, V.V.

    1986-10-10

    At low temperatures (-40 to -80/sup 0/C) sulfur trioxide enters the chlorine molecule (with the formation of chlorine chlorosulfate) and the ethyl hypochlorite molecule (giving chlorine ethoxysulfate). Both new compounds are highly reactive electrophilic chlorinating reagents and add to ethylene, activated alkenes (1-hexene and cyclohexene), and deactivated olefins (methyl methacrylate, tri- and tetrachloroethylene) in methylene chloride solution at low temperatures. The addition of chlorine chlorosulfate leads to the formation of ..beta..-chloroalkyl chlorosulfates with yields of 24-85%, and the addition of chlorine ethoxysulfate leads to ..beta..-chloroalkyl ethylsulfates with yields of 65-85%. The reactions with unsymmetrical olefins lead to mixtures of the regioisomers with a preference for the products from addition according to the Markovnikov rule; the addition to cyclohexene is trans-stereospecific. The investigated processes represent a new simple approach to the production of sulfate-activated chlorinating reagents and extend the possibilities for functional substitution of olefins.

  1. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed.

  2. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions† †Electronic supplementary information (ESI) available: GPC chromatograms, additional transmission electron micrographs, digital photographs, visible absorption spectra and laser diffraction data, further optical and fluorescence micrographs. See DOI: 10.1039/c6nr03856e Click here for additional data file.

    PubMed Central

    Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.

    2016-01-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56–poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA–PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20–100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56–poly(benzyl methacrylate)300 [PGMA56–PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56–PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39–poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39–PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to

  3. A double mutation of Escherichia coli 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase disrupts six hydrogen bonds with, yet fails to prevent binding of, an isoprenoid diphosphate

    PubMed Central

    Sgraja, Tanja; Kemp, Lauris E.; Ramsden, Nicola; Hunter, William N.

    2005-01-01

    The essential enzyme 2C-methyl-d-erythritol-2,4-cyclodiphosphate (MECP) synthase, found in most eubacteria and the apicomplexan parasites, participates in isoprenoid-precursor biosynthesis and is a validated target for the development of broad-spectrum antimicrobial drugs. The structure and mechanism of the enzyme have been elucidated and the recent exciting finding that the enzyme actually binds diphosphate-containing isoprenoids at the interface formed by the three subunits that constitute the active protein suggests the possibility of feedback regulation of MECP synthase. To investigate such a possibility, a form of the enzyme was sought that did not bind these ligands but which would retain the quaternary structure necessary to create the active site. Two amino acids, Arg142 and Glu144, in Escherichia coli MECP synthase were identified as contributing to ligand binding. Glu144 interacts directly with Arg142 and positions the basic residue to form two hydrogen bonds with the terminal phosphate group of the isoprenoid diphosphate ligand. This association occurs at the trimer interface and three of these arginines interact with the ligand phosphate group. A dual mutation was designed (Arg142 to methionine and Glu144 to leucine) to disrupt the electrostatic attractions between the enzyme and the phosphate group to investigate whether an enzyme without isoprenoid diphosphate could be obtained. A low-resolution crystal structure of the mutated MECP synthase Met142/Leu144 revealed that geranyl diphosphate was retained despite the removal of six hydrogen bonds normally formed with the enzyme. This indicates that these two hydrophilic residues on the surface of the enzyme are not major determinants of isoprenoid binding at the trimer interface but rather that hydrophobic interactions between the hydrocarbon tail and the core of the enzyme trimer dominate ligand binding. PMID:16511114

  4. [Double responses].

    PubMed

    Motté, G; Dinanian, S; Sebag, C; Drieu, L; Slama, M

    1995-12-01

    Double response is a rare electrocardiographic phenomenon requiring two atrioventricular conduction pathways with very different electrophysiological properties. Double ventricular responses are the usual manifestation: an atrial depolarisation (spontaneous or provoked, anticipated or not) is followed by a first ventricular response dependent on an accessory pathway or a rapid nodal pathway and then a second response resulting from sufficiently delayed transmission through a nodal pathway for the ventricles to have recovered their excitability when the second wave of activation reaches them. A simple curiosity when isolated and occurring under unusual conditions, particularly during electrophysiological investigation of the Wolff-Parkinson-White syndrome, the double response may initiate symptomatic non-reentrant junctional tachycardia when associated with nodal duality and repeating from atria in sinus rhythm. The functional incapacity and resistance to antiarrhythmic therapy may require referral for ablation of the slow pathway.

  5. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal–carbon bonding† †Electronic supplementary information (ESI) available: Additional information on metal–carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k Click here for additional data file.

    PubMed Central

    Deng, Qingming; Heine, Thomas

    2016-01-01

    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-T d and Ti@C30-C 2v(3). PMID:26815243

  6. Highly diastereo- and regioselective transition metal-catalyzed additions of metal hydrides and bimetallic species to cyclopropenes: easy access to multisubstituted cyclopropanes.

    PubMed

    Trofimov, Alexander; Rubina, Marina; Rubin, Michael; Gevorgyan, Vladimir

    2007-11-09

    The first highly efficient, diastereo- and regioselective transition metal-catalyzed addition of metal hydrides (stannanes, silanes, and germanes) and bimetallic species (ditins and silyltins) to cyclopropenes has been developed. It was shown that the addition across the double bond of cyclopropenes is generally controlled by steric factors and proceeds from the least hindered face. This methodology represents a powerful and atom-economic approach toward a wide variety of highly substituted stereodefined cyclopropylmetals, useful building blocks unavailable by other methods.

  7. Self-assembled multiwalled carbon nanotube films assisted by ureidopyrimidinone-based multiple hydrogen bonds.

    PubMed

    Wang, Sumin; Guo, Hao; Wang, Xiaomin; Wang, Qiguan; Li, Jinhua; Wang, Xinhai

    2014-11-04

    Self-assembled functionalized multiwalled carbon nanotube (MWNT) films were successfully constructed, linked by a kind of strong binding strength from the self-complementary hydrogen-bonding array of ureidopyrimidinone-based modules (UPM) attached. Employing the feasible reaction of isocyanate containing ureidopyrimidinone with amine modified MWNTs, the UPMs composed of ureidopyrimidinone and ureido were attached to MWNTs with the content as low as 0.6 mmol/g MWNTs. Upon multiple hydrogen-bonding interactions from incorporation of the AADD (A, hydrogen-bonding acceptor; D, hydrogen-bonding donor) quadruple hydrogen bonds of ureidopyrimidinone and the double hydrogen bonds of ureido group, UPM functionalized MWNTs (MWNT-UPM) can be well dispersed in the polar solvent of N,N-dimethylformamide (DMF), while they tend to self-assemble to give a self-supported film in the apolar solvent of CHCl3. In addition, by using the multiple hydrogen-bonding interactions as the driving force, the layer-by-layer (LBL) MWNT-UPM films with high coverage on solid slides can be processed. Because of the self-association of MWNT-UPM in apolar solvent, it was found that the LBL assembly of MWNT-UPM was more favorable in the polar solvent of DMF than in the apolar solvent of CHCl3. Moreover, the hydrogen-bonding linked MWNT-UPM films showed good stability upon soaking in different solvents. Furthermore, the as-prepared LBL films showed electrochemical active behaviors, exhibiting a remarkable catalytic effect on the reduction of nifedipine.

  8. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  9. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.

    PubMed

    Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael

    2014-12-22

    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant.

  10. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  11. Measurement of bonding energy in an anhydrous nitrogen atmosphere and its application to silicon direct bonding technology

    NASA Astrophysics Data System (ADS)

    Fournel, F.; Continni, L.; Morales, C.; Da Fonseca, J.; Moriceau, H.; Rieutord, F.; Barthelemy, A.; Radu, I.

    2012-05-01

    Bonding energy represents an important parameter for direct bonding applications as well as for the elaboration of physical mechanisms at bonding interfaces. Measurement of bonding energy using double cantilever beam (DCB) under prescribed displacement is the most used technique thanks to its simplicity. The measurements are typically done in standard atmosphere with relative humidity above 30%. Therefore, the obtained bonding energies are strongly impacted by the water stress corrosion at the bonding interfaces. This paper presents measurements of bonding energies of directly bonded silicon wafers under anhydrous nitrogen conditions in order to prevent the water stress corrosion effect. It is shown that the measurements under anhydrous nitrogen conditions (less than 0.2 ppm of water in nitrogen) lead to high stable debonding lengths under static load and to higher bonding energies compared to the values measured under standard ambient conditions. Moreover, the bonding energies of Si/SiO2 or SiO2/SiO2 bonding interfaces are measured overall the classical post bond annealing temperature range. These new results allow to revisit the reported bonding mechanisms and to highlight physical and chemical phenomena in the absence of stress corrosion effect.

  12. Signal analysis approach to ultrasonic evaluation of diffusion bond quality

    SciTech Connect

    Chinn, D; Thomas, G

    1999-06-08

    Solid state bonds like the diffusion bond are attractive techniques for joining dissimilar materials since they are not prone to the defects that occur with fusion welding. Ultrasonic methods can detect the presence of totally unbonded regions but have difficulty sensing poor bonded areas where the substrates are in intimate contact. Standard ultrasonic imaging is based on amplitude changes in the signal reflected from the bond interface. Unfortunately amplitude alone is not sensitive to bond quality. We demonstrated that there is additional information in the ultrasonic signal that correlates with bond quality. In our approach we interrogated a set of dissimilar diffusion bonded samples with broad band ultrasonic signals. The signals were digitally processed and the characteristics of the signals that corresponded to bond quality were determined. These characteristics or features were processed with pattern recognition algorithms to produce predictions of bond quality. The predicted bond quality was then compared with the destructive measurement to assess the classification capability of the ultrasonic technique

  13. Site selectivity and reversibility in the reactions of titanium hydrazides with Si-H, Si-X, C-X and H+ reagents: Ti=N(α) 1,2-silane addition, Nβ alkylation, Nα protonation and σ-bond metathesis.

    PubMed

    Tiong, Pei Jen; Nova, Ainara; Schwarz, Andrew D; Selby, Jonathan D; Clot, Eric; Mountford, Philip

    2012-02-28

    We report a combined experimental and computational comparative study of the reactions of the homologous titanium dialkyl- and diphenylhydrazido and imido compounds Cp*Ti{MeC(N(i)Pr)(2)}(NNR(2)) (R = Me (1) or Ph (2)) and Cp*Ti{MeC(N(i)Pr)(2)}(NTol) (3) with silanes, halosilanes, alkyl halides and [Et(3)NH][BPh(4)]. Compound 1 underwent reversible Si-H 1,2-addition to Ti=N(α) with RSiH(3) (experimental ΔH ca. -17 kcal mol(-1)), and irreversible addition with PhSiH(2)X (X = Cl, Br). DFT found that the reaction products and certain intermediates were stabilised by β-NMe(2) coordination to titanium. The Ti-D bond in Cp*Ti{MeC(N(i)Pr)(2)}(D){N(NMe(2))SiD(2)Ph} underwent σ-bond metathesis with BuSiH(3) and H(2). Compound 1 reacted with RR'SiCl(2) at N(α) to transfer both Cl atoms to Ti; 2 underwent a similar reaction. Compound 3 did not react with RSiH(3) or alkyl halides but formed unstable Ti=N(α) 1,2-addition or N(α) protonation products with PhSiH(2)X or [Et(3)NH][BPh(4)]. Compound 1 underwent exclusive alkylation at N(β) with RCH(2)X (R = H, Me or Ph; X = Br or I) whereas protonation using [Et(3)NH][BPh(4)] occurred at N(α). DFT studies found that in all cases electrophile addition to N(α) (with or without NMe(2) chelation) was thermodynamically favoured compared to addition to N(β).

  14. Progress in cold roll bonding of metals

    PubMed Central

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. PMID:27877949

  15. Progress in cold roll bonding of metals.

    PubMed

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-04-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described.

  16. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  17. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  18. DFT investigation of the mecahanism and stereochemistry of electrophilic transannular addition reaction of bromine to tricyclo[4.2.2.02,5]deca-3,7-diene.

    PubMed

    Abbasoglu, Rza; Misir, Miraç Nedim

    2012-03-01

    Full geometric optimization of tricyclo[4.2.2.02,5]deca-3,7-diene (TDD) has been done by DFT/B3LYP methods and the structure of the molecule was investigated. Cyclobuten double bond (I) of molecule is syn pyramidalized, and bicyclookten double bond (II) is also exo pyramidalized. The double bond (I) is more pyramidalized than the double bond (II) and it has higher reactivity. The TDD-Br2 system has been investigated by B3LYP/6-311++G(d,p) method and their stable configurations have been determined. The cationic intermediates and products obtained as a result of the addition reaction has been studied using B3LYP/6-311G(d,p) and B3LYP/6-311++G(d,p) methods. Bridged bromonium cation is more stable than U-type cation. Considering that the bridged cation does not isomerize to the less stable U-type cation, it is not possible for the U-type product to be obtained in the reaction. The bridged bromonium cation transformed into the more stable N-type cation and the N-type product was obtained via this cation. The thermodynamic stability of the anti, exo and anti, endo isomers of N-type dibromide molecule were almost identical. N-type product is 11.759 kcal mol more stable than U-type product.

  19. Double screening

    SciTech Connect

    Gratia, Pierre; Hu, Wayne; Joyce, Austin; Ribeiro, Raquel H.

    2016-06-15

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  20. AFOSR Wafer Bonding

    DTIC Science & Technology

    2009-07-31

    cleanliness (foreign particles) and surface morphology (roughness). Two silicon wafers, when properly cleaned, can easily bond at room temperature because of...4 Figure IV data for nSi-nGaN bond. Structure is similar to that shown in Figure Difficulties and Knowledge Added Surface Morphology and...Particles One of the most important features of materials in determining whether they will bond is the quality of the bonding surfaces , in both

  1. Acrylic mechanical bond tests

    SciTech Connect

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  2. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  3. Bonding aluminum beam leads

    NASA Technical Reports Server (NTRS)

    Burkett, F. S.

    1978-01-01

    Report makes it relatively easy for hybrid-circuit manufacturers to convert integrated circuit chips with aluminum bead leads. Report covers: techniques for handling tiny chips; proper geometries for ultrasonic bonding tips; best combinations of pressure, pulse time, and ultrasonic energy for bonding; and best thickness for metal films to which beam leads are bonded.

  4. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  5. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance.

    PubMed

    Reissig, Falco; Mamat, Constantin; Steinbach, Joerg; Pietzsch, Hans-Juergen; Freudenberg, Robert; Navarro-Retamal, Carlos; Caballero, Julio; Kotzerke, Joerg; Wunderlich, Gerd

    2016-01-01

    It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4-, since nearly all DNA damage caused by 99mTcO4- was prevented by incubating with DMSO.

  6. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance

    PubMed Central

    Reissig, Falco; Mamat, Constantin; Steinbach, Joerg; Pietzsch, Hans-Juergen; Freudenberg, Robert; Navarro-Retamal, Carlos; Caballero, Julio; Kotzerke, Joerg; Wunderlich, Gerd

    2016-01-01

    It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4–, since nearly all DNA damage caused by 99mTcO4– was prevented by incubating with DMSO. PMID:27583677

  7. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  8. Synthesis of double-clickable functionalised graphene oxide for biological applications† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cc05412e Click here for additional data file.

    PubMed Central

    Mei, Kuo-Ching; Rubio, Noelia; Costa, Pedro M.; Kafa, Houmam; Abbate, Vincenzo; Festy, Frederic; Bansal, Sukhvinder S.; Hider, Robert C.

    2015-01-01

    Azide- and alkyne-double functionalised graphene oxide (Click2 GO) was synthesised and characterised with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and Raman spectroscopy. Fourteen-percentage increase in azide content was found, after pre-treatment of GO with meta-chloroperoxybenzoic acid (mCPBA), determined with elemental analysis. No effect on A549 cell viability was found, up to 100 μg mL–1 and 72 h of incubation, determined with the modified lactate dehydrogenase (mLDH) assay. Two sequential copper(i) catalysed azide–alkyne cycloaddition (CuAAC) reactions were performed to conjugate the propargyl-modified blood–brain barrier targeting peptide Angiopep-2, and a bis-azide polyethylene glycol (M W = 3500), to the Click2 GO. The final conjugate was characterised with ATR-FTIR and TGA. PMID:26295072

  9. Shear bond strength of ceramic and metallic orthodontic brackets bonded with self-etching primer and conventional bonding adhesives

    PubMed Central

    Arash, Valiollah; Naghipour, Fatemeh; Ravadgar, Mehdi; Karkhah, Ahmad; Barati, Mohammad Saleh

    2017-01-01

    Introduction Adult patients typically require high-quality orthodontic treatment for ceramic brackets, but some clinicians remain concerned about the bond strength of these brackets. Therefore, the aim of this study was to determine the shear bond strength and de-bonding characteristics of metallic and ceramic brackets bonded with two types of bonding agents. Methods In an experimental study done in 2013 in Babol, Iran, 120 extracted human maxillary premolar teeth were randomly divided into four groups as follows: HM group: metallic bracket/conventional bonding agent; SM group: metallic bracket/Transbond self-etching primer; HC group: ceramic bracket/conventional bonding agent; SC group: ceramic bracket/Transbond self-etching primer. Twenty-four hours after thermocycling (1000 cycle, 5 °C–55 °C), the shear bond strength values were measured. The amount of resin remaining on the tooth surface (adhesive remnant index: ARI) was determined under a stereomicroscope. Enamel detachment index was evaluated under a scanning electron microscope. To perform statistical analysis, ANOVA, Kruskal–Wallis, and Tukey post-hoc tests were applied. The level of significance was set at p <0.05. Results The mean shear bond strength values (MPa ± SD) were group HM=12.59, group SM=11.15, group HC=7.7, and group SC=7.41. Bond strength differences between groups HM and SM (p=0.063) and between HC and SC (p=0.091) were not statistically significant. There were significant differences between HM and HC and between SM and SC groups (p < 0.05). Insignificant differences were found in ARI among all groups. Conclusion Our findings indicated that the metallic brackets had higher bond strengths in comparison with ceramic brackets. In addition, self-etching primer was able to produce fewer bonds compared with the conventional technique. Many samples showed the bracket-adhesive interface failure or failure inside the adhesive. PMID:28243410

  10. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  11. Hydrogen multicentre bonds.

    PubMed

    Janotti, Anderson; Van de Walle, Chris G

    2007-01-01

    The concept of a chemical bond stands out as a major development in the process of understanding how atoms are held together in molecules and solids. Lewis' classical picture of chemical bonds as shared-electron pairs evolved to the quantum-mechanical valence-bond and molecular-orbital theories, and the classification of molecules and solids in terms of their bonding type: covalent, ionic, van der Waals and metallic. Along with the more complex hydrogen bonds and three-centre bonds, they form a paradigm within which the structure of almost all molecules and solids can be understood. Here, we present evidence for hydrogen multicentre bonds-a generalization of three-centre bonds-in which a hydrogen atom equally bonds to four or more other atoms. When substituting for oxygen in metal oxides, hydrogen bonds equally to all the surrounding metal atoms, becoming fourfold coordinated in ZnO, and sixfold coordinated in MgO. These multicentre bonds are remarkably strong despite their large hydrogen-metal distances. The calculated local vibration mode frequency in MgO agrees with infrared spectroscopy measurements. Multicoordinated hydrogen also explains the dependence of electrical conductivity on oxygen partial pressure, resolving a long-standing controversy on the role of point defects in unintentional n-type conductivity of ZnO (refs 8-10).

  12. A cooperative hydrogen bonding system with a Csbnd H⋯O hydrogen bond in ofloxacin

    NASA Astrophysics Data System (ADS)

    Gao, Xiuxiang; Liu, Yufeng; Li, Huizhen; Bian, Jiang; Zhao, Ying; Cao, Ye; Mao, Yuezhi; Li, Xin; Xu, Yizhuang; Ozaki, Yukihiro; Wu, Jinguang

    2013-05-01

    We have investigated a cooperative hydrogen bonding system with a Csbnd H⋯O hydrogen bond in ofloxacin by using NMR, UV-Vis spectra together with quantum chemistry calculation. Both pH-dependent NMR experiments and DFT calculation indicate that the intra-molecular Csbnd H⋯O hydrogen bond between an aromatic proton and an oxygen atom from the carboxyl group is formed. Notably, the Csbnd H⋯O hydrogen bond forms a cooperative hydrogen bonding system with a neighboring Osbnd H⋯O hydrogen bond between the carboxyl group and the keto oxygen. The cooperative hydrogen bonding system makes the formation and disruption of the Osbnd H⋯O and Csbnd H⋯O hydrogen bonds in a synergistic manner. Comparison on the pKa value of the carboxylic group in different fluoroquinolones compounds indicates that the Csbnd H⋯O hydrogen bond plays a significant role in stabilizing the Osbnd H⋯O hydrogen bond. In addition, the formation and disruption of the cooperative hydrogen bonding system could regulate the conformation of the carboxyl group, which affects the size of the conjugated system and spectral behavior of π-π transition of ofloxacin.

  13. A comparison of bond strength between direct- and indirect-bonding methods.

    PubMed

    Linn, Brandon James; Berzins, David W; Dhuru, Virendra B; Bradley, Thomas Gerard

    2006-03-01

    The purpose of this study was to evaluate and compare the shear bond strength and the sites of bond failure for brackets bonded to teeth, using two indirect-bonding material protocols and a direct-bonding technique. Sixty extracted human premolars were collected and randomly divided into three groups. The direct-bonded group (group 1) used a light-cured adhesive and primer (Transbond XT). One indirect-bonded group (group 2) consisted of a chemical-cured primer (Sondhi Rapid Set) and light-cured adhesive (Transbond XT), whereas the other group (group 3) used a light-cured primer (Orthosolo) and adhesive (Enlight LV). Forty hours after bonding, the samples were debonded. Mean shear bond strengths were 16.27, 13.83, and 14.76 MPa for groups 1, 2, and 3, respectively. A one-way analysis of variance showed no significant difference in mean bond strength between groups (P = .21). Furthermore, a Weibull analysis showed all three groups tested provided over a 90% survival rate at normal masticatory and orthodontic force levels. For each tooth, an Adhesive Remnant Index (ARI) score was determined. Group 2 was found to have a significantly lower ARI score (P < .05) compared with groups 1 and 3. In addition, Pearson correlation coefficients indicated no strong correlation between bond strength and ARI score within or across all groups.

  14. σ-Bond Prevents Short π-Bonds: A Detailed Theoretical Study on the Compounds of Main Group and Transition Metal Complexes

    NASA Astrophysics Data System (ADS)

    Pathak, Biswarup; Umayal, Muthaiah; Jemmis, Eluvathingal D.

    The unusual shortness of the bond length in several main group and transition metal compounds is explained on the basis of their π-alone bonding. The detailed electronic structure calculation on C2, HBBH, and Fe2(CO)6 shows that each of them has two π-alone bonds (unsupported by an underlying σ-bond), whereas B2 has two-half π-bonds. The C-C bond length in C2 is 1.240 Å, shorter than any C-C double (σ + π, in C2H4, C-C=1.338 Å) bonded species. The B-B bond distance in B2 (1.590 Å, two half-π bonds) is shorter than any B-B single σ-bonded (~1.706 Å) species. The calculated Fe-Fe bond distance of 2.002 Å in Fe2(CO)6 is shorter than those of some experimentally known M-M single bonded compounds in the range of 2.904-3.228 Å. Here, our detailed studies on the second and third row diatomics (five, six, seven and eight valence electrons species) and transition metal complexes show that π-alone bonds left to themselves are shorter than σ-bonds; in many ways, σ-bonds prevent π-bonds from adopting their optimal shorter distances.

  15. 26 CFR 1.149(g)-1 - Hedge bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Hedge bonds. 1.149(g)-1 Section 1.149(g)-1...) INCOME TAXES (CONTINUED) Tax Exemption Requirements for State and Local Bonds § 1.149(g)-1 Hedge bonds... for purposes of section 149(g) and this section. In addition, the following terms have the...

  16. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-03-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  17. Dynamics of vibrational relaxation in the S 1 state of carotenoids having 11 conjugated CC bonds

    NASA Astrophysics Data System (ADS)

    Hörvin Billsten, Helena; Zigmantas, Donatas; Sundström, Villy; Polívka, Tomáš

    2002-04-01

    Transient absorption spectra and kinetics in the 470-650 nm region were recorded for lycopene, β-carotene and zeaxanthin, all carotenoids with 11 conjugated double bonds, in two solvents with different polarity. Analysis of the red wing of the carotenoid S 1-S n transition revealed presence of a pronounced shoulder at early delay times. The kinetics recorded at this low-energy shoulder of the S 1-S n transition yields an additional decay component of 500-800 fs in addition to the main S 1 decay. This dynamics is ascribed to a vibrational relaxation in the S 1 state of the carotenoids.

  18. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  19. The expression profile of the major mouse SPO11 isoforms indicates that SPO11beta introduces double strand breaks and suggests that SPO11alpha has an additional role in prophase in both spermatocytes and oocytes.

    PubMed

    Bellani, Marina A; Boateng, Kingsley A; McLeod, Dianne; Camerini-Otero, R Daniel

    2010-09-01

    Both in mice and humans, two major SPO11 isoforms are generated by alternative splicing: SPO11alpha (exon 2 skipped) and SPO11beta. Thus, the alternative splicing event must have emerged before the mouse and human lineages diverged and was maintained during 90 million years of evolution, arguing for an essential role for both isoforms. Here we demonstrate that developmental regulation of alternative splicing at the Spo11 locus governs the sequential expression of SPO11 isoforms in male meiotic prophase. Protein quantification in juvenile mice and in prophase mutants indicates that early spermatocytes synthesize primarily SPO11beta. Estimation of the number of SPO11 dimers (betabeta/alphabeta/alphaalpha) in mutants in which spermatocytes undergo a normal number of double strand breaks but arrest in midprophase due to inefficient repair argues for a role for SPO11beta-containing dimers in introducing the breaks in leptonema. Expression kinetics in males suggested a role for SPO11alpha in pachytene/diplotene spermatocytes. Nevertheless, we found that both alternative transcripts can be detected in oocytes throughout prophase I, arguing against a male-specific function for this isoform. Altogether, our data support a role for SPO11alpha in mid- to late prophase, presumably acting as a topoisomerase, that would be conserved in male and female meiocytes.

  20. Electrical Bonding: A Survey of Requirement, Methods, and Specifications

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1998-01-01

    This document provides information helpful to engineers imposing electrical bonding requirements, reviewing waiver requests, or modifying specifications on various space programs. Electrical bonding specifications and some of the processes used in the United States have been reviewed. This document discusses the specifications, the types of bonds, the intent of each, and the basic requirements where possible. Additional topics discussed are resistance versus impedance, bond straps, corrosion, finishes, and special applications.

  1. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  2. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  3. Chemical bonding technology

    NASA Technical Reports Server (NTRS)

    Plueddemann, E.

    1986-01-01

    Primers employed in bonding together the various material interfaces in a photovoltaic module are being developed. The approach develops interfacial adhesion by generating actual chemical bonds between the various materials bonded together. The current status of the program is described along with the progress toward developing two general purpose primers for ethylene vinyl acetate (EVA), one for glass and metals, and another for plastic films.

  4. Hydrogen Bonds in Excited State Proton Transfer

    NASA Astrophysics Data System (ADS)

    Horke, D. A.; Watts, H. M.; Smith, A. D.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R. T.; Minns, R. S.

    2016-10-01

    Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.

  5. Effectiveness of simplified dentin bonding systems.

    PubMed

    Imai, T; Itoh, K; Tani, C; Manabe, A; Yamashita, T; Hisamitsu, H; Wakumoto, S

    1998-03-01

    The effectiveness of newly developed commercial dentin bonding systems (SB, MB II and KB) was evaluated by measuring the contraction gap width of a resin composite restored into a cylindrical dentin cavity prepared in an extracted human molar and by measuring the tensile bond strength to the flat dentin surface. In addition, calcium loss during dentin conditioning was analyzed using electron microanalyses. An experimental dentin bonding system composed of EDTA conditioning, GM solution priming and a bonding agent containing 10-MDP was employed as a control in which it was presumed that contraction gap formation was prevented completely. However, gap formation was observed using the three commercial simplified dentin bonding systems. SEM observation showed that the gap was formed between the resin composite and the top surface of the dentin cavity wall indicating that the fracture occurred at the adhesive interface, but never inside the dentin nor inside the resin composite.

  6. [The Bridgelok system for additional retention of bonded prostheses].

    PubMed

    Maroto García, J; Gutiérrez Molero, F; López Montero, M V

    1989-04-01

    The partial protesis with metal carving and cemented with composite resin is used frequently as a reversible method in order to substitute teeth, due to the light preparation necessary for the original teeth. Recently, a new system (Bridgelok) with pins has been proposed as safer for this kind of protesis. This paper studies if this new system originates a higher resistance compared to other system without pins.

  7. The effect of saliva on shear bond strengths of hydrophilic bonding systems.

    PubMed

    Webster, M J; Nanda, R S; Duncanson, M G; Khajotia, S S; Sinha, P K

    2001-01-01

    Failure of orthodontic bonded attachments and brackets is mostly attributed to contamination of the enamel surface. To overcome this problem, materials have been developed that purportedly overcome the moisture and contaminants present in the oral environment. This study compared the shear bond strengths of 2 lightcured hydrophilic bonding systems, Transbond XT with MIP (3M/Unitek, Monrovia, Calif) and Assure (Reliance Orthodontics, Itasca, Ill) with a hydrophobic bonding system, Transbond XT with XT primer (3M/Unitek). Comparison tests were conducted under 4 enamel surface conditions: (1) etched and dried; (2) etched and moistened with artificial saliva; (3) etched, primed, and moistened with artificial saliva; and (4) etched, primed, moistened with artificial saliva, and reprimed. In addition, an adhesive remnant index score was used to determine the amount of adhesive remaining on the tooth. Stainless steel brackets with mesh-backed pads (n = 144) were bonded to bovine teeth. Bond strength was then tested in shear using an Instron mechanical testing instrument. There were significant differences in the bond strengths among the products (P <.05), within surface treatments (P <.05), and among the different bonding materials in combination with various surface treatments (P <.05). Treatments 1 and 4 showed the highest mean bond strengths adhesive remnant index scores, whereas treatments 2 and 3 showed the lowest mean bond strengths and scores.

  8. A valence bond study of three-center four-electron pi bonding: electronegativity vs electroneutrality.

    PubMed

    DeBlase, Andrew; Licata, Megan; Galbraith, John Morrison

    2008-12-18

    Three-center four-electron (3c4e) pi bonding systems analogous to that of the ozone molecule have been studied using modern valence bond theory. Molecules studied herein consist of combinations of first row atoms C, N, and O with the addition of H atoms where appropriate in order to preserve the 3c4e pi system. Breathing orbital valence bond (BOVB) calculations were preformed at the B3LYP/6-31G**-optimized geometries in order to determine structural weights, pi charge distributions, resonance energies, and pi bond energies. It is found that the most weighted VB structure depends on atomic electronegativity and charge distribution, with electronegativity as the dominant factor. By nature, these systems are delocalized, and therefore, resonance energy is the main contributor to pi bond energies. Molecules with a single dominant VB structure have low resonance energies and therefore low pi bond energies.

  9. Additive-driven assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Daga, Vikram; Anderson, Eric; Watkins, James

    2011-03-01

    One challenge to the formation of well ordered hybrid materials is the incorporation of nanoscale additives including metal, semiconductor and dielectric nanoparticles at high loadings while maintaining strong segregation. Here we describe the molecular and functional design of small molecule and nanoparticle additives that enhance phase segregation in their block copolymer host and enable high additive loadings. Our approach includes the use of hydrogen bond interactions between the functional groups on the additive or particle that serve as hydrogen bond donors and one segment of the block copolymer containing hydrogen bond acceptors. Further, the additives show strong selectively towards the targeted domains, leading to enhancements in contrast between properties of the phases. In addition to structural changes, we explore how large changes in the thermal and mechanical properties occur upon incorporation of the additives. Generalization of this additive-induced ordering strategy to various block copolymers will be discussed.

  10. The influence of hydrogen bonds on the electronic structure of light-harvesting complexes from photosynthetic bacteria.

    PubMed

    Uyeda, G; Williams, J C; Roman, M; Mattioli, T A; Allen, J P

    2010-02-16

    The influence of hydrogen bonds on the electronic structure of the light-harvesting I complex from Rhodobacter sphaeroides has been examined by site-directed mutagenesis, steady-state optical spectroscopy, and Fourier-transform resonance Raman spectroscopy. Shifts of 4-23 nm in the Q(y) absorption band were observed in seven mutants with single or double changes at Leu alpha44, Trp alpha43, and Trp beta48. Resonance Raman spectra were consistent with the loss of a hydrogen bond with the alteration of either Trp alpha43 or Trp beta48 to Phe. However, when the Trp alpha43 to Phe alteration is combined with Leu alpha44 to Tyr, the spectra show that the loss of the hydrogen bond to alpha43 is compensated by the addition of a new hydrogen bond to Tyr alpha44. Comparison of the absorption and vibrational spectra of the seven mutants suggests that changes in the absorption spectra can be interpreted as being due to both structural and hydrogen-bonding changes. To model these changes, the structural and hydrogen bond changes are considered to be independent of each other. The calculated shifts agree within 1 nm of the observed values. Excellent agreement is also found assuming that the structural changes arise from rotations of the C3-acetyl group conformation and hydrogen bonding. These results provide the basis for a simple model that describes the effect of hydrogen bonds on the electronic structures of the wild-type and mutant light-harvesting I complexes and also is applicable for the light-harvesting II and light-harvesting III complexes. Other possible effects of the mutations, such as changes in the disorder of the environment of the bacteriochlorophylls, are discussed.

  11. Dentin bonding: can we make it last?

    PubMed

    Tjäderhane, L

    2015-01-01

    In dentin bonding, contemporary dental adhesive systems rely on formation of the hybrid layer, a biocomposite containing dentin collagen and polymerized resin adhesive. They are usually able to create at least reasonable integrity of the hybrid layer with high immediate bond strength. However, loss of dentin-bonded interface integrity and bond strength is commonly seen after aging both in vitro and in vivo. This is due to endogenous collagenolytic enzymes, matrix metalloproteinases, and cysteine cathepsins, responsible for the time-dependent loss of hybrid layer collagen. In addition, the hydrophilic nature of adhesive systems creates problems that lead to suboptimal hybrid layers. These problems include, for example, insufficient resin impregnation of dentin, phase separation, and a low rate of polymerization, all of which may reduce the longevity of the bonded interface. Preservation of the collagen matrix integrity by inhibition of endogenous dentin proteases is key to improving dentin bonding durability. Several approaches to retain the integrity of the hybrid layer and to improve the long-term dentin bond strength have been tested. These include the use of enzyme inhibitors, either separately or as incorporated into the adhesive resins; increase of collagen resistance to enzymatic degradation; and elimination of water from the interface to slow down or eliminate hydrolytic loss of the hybrid layer components. This review looks at the principles, current status, and future of the different techniques designed to prevent the loss of hybrid layer and bond strength.

  12. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  13. Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks

    NASA Astrophysics Data System (ADS)

    Straessle, R.; Pellaton, M.; Affolderbach, C.; Pétremand, Y.; Briand, D.; Mileti, G.; de Rooij, N. F.

    2013-02-01

    A low-temperature sealing technique for micro-fabricated alkali vapor cells for chip-scale atomic clock applications is developed and evaluated. A thin-film indium bonding technique was used for sealing the cells at temperatures of ≤140 °C. These sealing temperatures are much lower than those reported for other approaches, and make the technique highly interesting for future micro-fabricated cells, using anti-relaxation wall coatings. Optical and microwave spectroscopy performed on first indium-bonded cells without wall coatings are used to evaluate the cleanliness of the process as well as a potential leak rate of the cells. Both measurements confirm a stable pressure inside the cell and therefore an excellent hermeticity of the indium bonding. The double-resonance measurements performed over several months show an upper limit for the leak rate of 1.5 × 10-13 mbar.l/s. This is in agreement with additional leak-rate measurements using a membrane deflection method on indium-bonded test structures.

  14. Mother-Child Bonding.

    ERIC Educational Resources Information Center

    Pearce, Joseph Chilton

    1994-01-01

    Examines the nature of mother-child bonding from the prenatal stage through early infancy, discussing how the mother's actions, even before birth, stimulate her child's senses. Explains the crucial role that physical contact, breastfeeding, and visual stimuli have on mother-child bonding in human and animal newborns. (MDM)

  15. Interfacial bonding stability

    NASA Technical Reports Server (NTRS)

    Boerio, J.

    1984-01-01

    Interfacial bonding stability by in situ ellipsometry was investigated. It is found that: (1) gamma MPS is an effective primer for bonding ethylene vinyl acetate (EVA) to aluminum; (2) ellipsometry is an effective in situ technique for monitoring the stability of polymer/metal interfaces; (3) the aluminized back surface of silicon wafers contain significant amounts of silicon and may have glass like properties.

  16. Chemical Bonds I

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    Chemical bonding is discussed from a bond energy, rather than a wave mechanics, viewpoint. This approach is considered to be more suitable for the average student. (The second part of the article will appear in a later issue of the journal.) (AL)

  17. Tetrel Bonding Interactions.

    PubMed

    Bauzá, Antonio; Mooibroek, Tiddo J; Frontera, Antonio

    2016-02-01

    Tetrel (Tr) bonding is first placed into perspective as a σ-hole bonding interaction with atoms of the Tr family. An sp(3) R4Tr unit has four σ-holes with which a Lewis base can form a complex. We then highlight some inspiring crystal structures where Tr bonding is obvious, followed by an account of our own work. We have shown that Tr bonding is ubiquitous in the solid state and we have highlighted that Tr bonding with carbon is possible when C is placed in the appropriate chemical context. We hope that this account serves as an initial guide and source of inspiration for others wishing to exploit this vastly underexplored interaction.

  18. Wood Bond Testing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.

  19. Shape Bonding method

    NASA Technical Reports Server (NTRS)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  20. Nondestructive Determination of Bond Strength

    NASA Technical Reports Server (NTRS)

    2000-01-01

    . Another approach, in addition to differentiation between various cure conditions, may even provide information with respect to the bond strength. Several technical papers were published during the course of this research and a summary is presented in the Ph.D. dissertation of Tobias P. Berndt, a graduate student financially supported by this NASA Grant.

  1. Seeing Double

    NASA Astrophysics Data System (ADS)

    Pesic, Peter

    2003-10-01

    The separateness and connection of individuals is perhaps the central question of human life: What, exactly, is my individuality? To what degree is it unique? To what degree can it be shared, and how? To the many philosophical and literary speculations about these topics over time, modern science has added the curious twist of quantum theory, which requires that the elementary particles of which everything consists have no individuality at all. All aspects of chemistry depend on this lack of individuality, as do many branches of physics. From where, then, does our individuality come? In Seeing Double, Peter Pesic invites readers to explore this intriguing set of questions. He draws on literary and historical examples that open the mind (from Homer to Martin Guerre to Kafka), philosophical analyses that have helped to make our thinking and speech more precise, and scientific work that has enabled us to characterize the phenomena of nature. Though he does not try to be all-inclusive, Pesic presents a broad range of ideas, building toward a specific point of view: that the crux of modern quantum theory is its clash with our ordinary concept of individuality. This represents a departure from the usual understanding of quantum theory. Pesic argues that what is bizarre about quantum theory becomes more intelligible as we reconsider what we mean by individuality and identity in ordinary experience. In turn, quantum identity opens a new perspective on us. Peter Pesic is a Tutor and Musician-in-Residence at St. John's College, Santa Fe, New Mexico. He has a Ph.D. in physics from Stanford University.

  2. Helical molecular duplex strands: multiple hydrogen-bond-mediated assembly of self-complementary oligomeric hydrazide derivatives.

    PubMed

    Yang, Yong; Yang, Zhi-Yong; Yi, Yuan-Ping; Xiang, Jun-Feng; Chen, Chuan-Feng; Wan, Li-Jun; Shuai, Zhi-Gang

    2007-06-22

    Careful examination of the X-ray structure of a ditopic hydrazide derivative 7 led to the concept that with malonyl groups as interhydrazide linkers hydrogen-bonding-mediated molecular duplex strands might be obtained. Complexation studies between 7, 8, and 9 confirmed this hypothesis. Two quadruple hydrogen-bonded heterodimers formed, in which spectator repulsive secondary electrostatic interaction was found to play an important role in determining the stability of the complexes. Extensive studies on 1-4 indicated that the hydrogen-bonding mode could persist in longer oligomeric hydrazide derivatives with chain extension from monomer to tetramer. Molecular duplex strands via two to fourteen interstrand hydrogen bonds were obtained. In addition to affecting the stability of the duplex strands, spectator repulsive secondary electrostatic interaction also played an important role in determining dynamic behavior of the duplex strands as exemplified by variable temperature (1)H NMR experiments. IR studies confirmed stronger hydrogen bonding in the longer oligomers. The assemblies of 1-4 on HOPG were also studied by STM technology. Molecular mechanical calculations further revealed double-helical structures for the longer oligomers. The results provide new opportunities for development of polymeric helical duplexes with well-defined structures.

  3. Double Your Major, Double Your Return?

    ERIC Educational Resources Information Center

    Del Rossi, Alison F.; Hersch, Joni

    2008-01-01

    We use the 2003 National Survey of College Graduates to provide the first estimates of the effect on earnings of having a double major. Overall, double majoring increases earnings by 2.3% relative to having a single major among college graduates without graduate degrees. Most of the gains from having a double major come from choosing fields across…

  4. Disulfide Bond Requirements for Active Wnt Ligands*

    PubMed Central

    MacDonald, Bryan T.; Hien, Annie; Zhang, Xinjun; Iranloye, Oladoyin; Virshup, David M.; Waterman, Marian L.; He, Xi

    2014-01-01

    Secreted Wnt lipoproteins are cysteine-rich and lipid-modified morphogens that bind to the Frizzled (FZD) receptor and LDL receptor-related protein 6 (LRP6). Wnt engages FZD through protruding thumb and index finger domains, which are each assembled from paired β strands secured by disulfide bonds and grasp two sides of the FZD ectodomain. The importance of Wnt disulfide bonds has been assumed but uncharacterized. We systematically analyzed cysteines and associated disulfide bonds in the prototypic Wnt3a. Our data show that mutation of any individual cysteine of Wnt3a results in covalent Wnt oligomers through ectopic intermolecular disulfide bond formation and diminishes/abolishes Wnt signaling. Although individual cysteine mutations in the amino part of the saposin-like domain and in the base of the index finger are better tolerated and permit residual Wnt3a secretion/activity, those in the amino terminus, the thumb, and at the tip of the index finger are incompatible with secretion and/or activity. A few select double cysteine mutants based on the disulfide bond pattern restore Wnt secretion/activity. Further, a double cysteine mutation at the index finger tip results in a Wnt3a with normal secretion but minimal FZD binding and dominant negative properties. Our results experimentally validate predictions from the Wnt crystal structure and highlight critical but different roles of the saposin-like and cytokine-like domains, including the thumb and the index finger in Wnt folding/secretion and FZD binding. Finally, we modified existing expression vectors for 19 epitope-tagged human WNT proteins by removal of a tag-supplied ectopic cysteine, thereby generating tagged WNT ligands active in canonical and non-canonical signaling. PMID:24841207

  5. Cu/Cu direct bonding by metal salt generation bonding technique with organic acid and persistence of reformed layer

    NASA Astrophysics Data System (ADS)

    Koyama, Shinji; Hagiwara, Naoki; Shohji, Ikuo

    2015-03-01

    In this study, the effect of the metal salt generation bonding technique on the strength of a direct-bonded copper-copper interface was investigated. Copper surfaces were modified by boiling in several types of organic acids, and direct bonding was performed at a bonding temperature of 423-673 K under a load of 588 N (for a bonding time of 0.9 ks). As a result of the surface modification, bonded joints were obtained at bonding temperatures of 150 K (after treatment with formic acid) and 100 K (after citric acid treatment) lower than that required for the unmodified surfaces. In addition, the duration of the modification effects was investigated by exposing the modified surface to an air atmosphere furnace kept at 323 K. The bonding strength of the citric acid-modified surface remained unchanged even after 168 h, whereas that of the surface modified with formic acid decreased within 6 h.

  6. 120° silicon double mirrors for use in a micro-optical gyroscope

    NASA Astrophysics Data System (ADS)

    Niesel, T.; Dietzel, A.

    2014-03-01

    A new concept for the realization of a micro optical laser gyroscope was developed. It allows minimization of the influence of alignment errors by the use of double mirrors. As a consequence, the performance of a ring resonator structure is less vulnerable to micro assembly tolerances. The idea being pursued to improve the design robustness is based on the use of double mirror elements in which the angle between the two mirrors is intrinsically defined by silicon crystalline structure. With an angle of 120° between the mirrors the resulting reflection direction from each double mirror element is robust against deviations from ideal incidence angle. Here, the optical distortions due to rotational misalignments of double mirror elements that occur either during assembly or during operation due to thermal stresses are extremely low and can be determined after production and compensated. After describing the free space ring resonator concept all major processing and manufacturing steps of the double mirror elements are discussed. For the fabrication of these mirrors silicon wafers are used which are almost in (100) orientation but are tilted by 5.3° in <011> direction and, therefore, provide an etching facet with a slope of 60° by KOH wet chemical etching. A 33% KOH solution with addition of isopropanol is used to obtain more uniform and smooth facet surfaces. Two wafers structured in such way are connected by silicon direct bonding and then cut into small mirror elements which are mounted onto the gyroscope micro platform.

  7. Infrared spectral density of H-bonds within the strong anharmonic coupling theory: Indirect relaxation effect

    NASA Astrophysics Data System (ADS)

    Rekik, Najeh; Issaoui, Noureddine; Ghalla, Houcine; Oujia, Brahim; Wójcik, Marek J.

    2007-11-01

    The IR spectral density (SD) of the high frequency stretching mode of H-bonded complexes involving both the intrinsic anharmonicity of the fast and slow mode, together with direct and indirect relaxations is studied within the linear response theory. For this aim, we extend a quantum non-adiabatic treatment of H-bonds involving intrinsic anharmonicity of the fast mode [N. Rekik, A. Velescu, P. Blaise, O. Henri-Rousseau, Chem. Phys. 273 (2001) 11.] which is described by an asymmetric double well potential by accounting for the anharmonicity of the slow mode and the indirect relaxation. In addition, the repulsive potential intervening in the asymmetric double well potential is described by the sum of three Gaussian whereas in the previous model, only one Gaussian was taken into account. The anharmonic coupling between the high frequency X-H→…Y and the low frequency X←-H…Y→ modes is treated inside the strong anharmonic coupling theory. The relaxation of the fast mode (direct damping) and of the H-bond bridge (indirect damping) is incorporated by aid of our previous results [N. Rekik, B.Ouari, P. Blaise, O. Henri-Rousseau, J. Mol. Struc. (Theochem.) 687 (2004) 125-133.]. The IR SD is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The numerical calculation shows that the indirect damping plays a specific role in the features of the lineshapes of hydrogen bonds systems by favouring more the fine structure of the low frequency tail than that of the high frequency one.

  8. The Halogen Bond.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Milani, Roberto; Pilati, Tullio; Priimagi, Arri; Resnati, Giuseppe; Terraneo, Giancarlo

    2016-02-24

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

  9. The Halogen Bond

    PubMed Central

    2016-01-01

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  10. 43 CFR 3273.19 - What are the bonding requirements for a site license?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What are the bonding requirements for a... RESOURCE LEASING How To Apply for a Site License § 3273.19 What are the bonding requirements for a site... required bond amount. See subparts 3214 and 3215 for additional details on bonding procedures. (b) For...

  11. Effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin

    PubMed Central

    Ebrahim, Mohamed I.

    2017-01-01

    Background Bond strength of adhesive layer can absorb unwanted stresses of polymerization shrinkage in composite resin restorations; increased microshear bond strength can prevent failure of restoration materials, the purpose of this study was to evaluate the effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin. Material and Methods Two different types of adhesive systems: universal adhesive (ExciTE) and newly developed adhesive (Nano-Bond), and one type of light-cured resin restorative material (Nanocomposite resin) were used in this study. The occlusal surfaces of extracted human molar teeth were ground perpendicular to the long axis of each tooth to expose a flat dentin surface. The adhesives were applied on dentin surfaces (single application or double application). Nanocomposite resin was then placed and light cured for 40 seconds. After 24 hours of immersion in water at 37°C, then subjected to thermocycling before testing, a microshear bond test was carried out. The data were analyzed by a two-way ANOVA. For comparison between groups, Tukey’s post-hoc test was used. Results The mean bond strengths of ExciTE and Nano-Bond adhesives with a single application were 8.8 and 16.6 MPa, respectively. The mean bond strengths of ExciTE and Nano-Bond adhesives with double application were 13.2 and 21.8MPa, respectively. There were no statistically significant differences in microshear bond strengths between the single application of Nano-Bond and the double application of ExciTE adhesives. Conclusions Microshear bond strength increased significantly as the applied adhesive layer was doubled. Key words:Adhesive, microshear, bond, strength, nanocomposite. PMID:28210433

  12. Polar solvent fluctuations drive proton transfer in hydrogen bonded complexes of carboxylic acid with pyridines: NMR, IR and ab initio MD study.

    PubMed

    Koeppe, B; Pylaeva, S A; Allolio, C; Sebastiani, D; Nibbering, E T J; Denisov, G S; Limbach, H-H; Tolstoy, P M

    2017-01-04

    We study a series of intermolecular hydrogen-bonded 1 : 1 complexes formed by chloroacetic acid with 19 substituted pyridines and one aliphatic amine dissolved in CD2Cl2 at low temperature by (1)H and (13)C NMR and FTIR spectroscopy. The hydrogen bond geometries in these complexes vary from molecular (O-HN) to zwitterionic (O(-)H-N(+)) ones, while NMR spectra show the formation of short strong hydrogen bonds in intermediate cases. Analysis of C[double bond, length as m-dash]O stretching and asymmetric CO2(-) stretching bands in FTIR spectra reveal the presence of proton tautomerism. On the basis of these data, we construct the overall proton transfer pathway. In addition to that, we also study by use of ab initio molecular dynamics the complex formed by chloroacetic acid with 2-methylpyridine, surrounded by 71 CD2Cl2 molecules, revealing a dual-maximum distribution of hydrogen bond geometries in solution. The analysis of the calculated trajectory shows that the proton jumps between molecular and zwitterionic forms are indeed driven by dipole-dipole solvent-solute interactions, but the primary cause of the jumps is the formation/breaking of weak CHO bonds from solvent molecules to oxygen atoms of the carboxylate group.

  13. Aerogen Bonding Interaction: A New Supramolecular Force?

    PubMed

    Bauzá, Antonio; Frontera, Antonio

    2015-06-15

    We report evidence of the favorable noncovalent interaction between a covalently bonded atom of Group 18 (known as noble gases or aerogens) and a negative site, for example, a lone pair of a Lewis base or an anion. It involves a region of positive electrostatic potential (σ-hole), therefore it is a totally new and unexplored σ-hole-based interaction, namely aerogen bonding. We demonstrate for the first time the existence of σ-hole regions in aerogen derivatives by means of high-level ab initio calculations. In addition, several crystal structures retrieved from the Cambridge Structural Database (CSD) give reliability to the calculations. Energetically, aerogen bonds are comparable to hydrogen bonds and other σ-hole-based interactions but less directional. They are expected to be important in xenon chemistry.

  14. Exploring the Relationships Between Anharmonicity and OH Bond Lengths in Hydrogen Bonded Complexes

    NASA Astrophysics Data System (ADS)

    McCoy, Anne B.; Xantheas, Sotiris

    2016-06-01

    In this talk we explore the effects of anharmonicity on the zero-point averaged OH bond lengths in hydrogen bonded complexes. Clusters with as many as six HF molecules or water molecules are explored as well as protonated water clusters and complexes of water clusters with F^-, Cl^-, Br^- and OH^-. It is shown that there is a universal correlation between the vibrationally averaged OH or HF bond length and the anharmonc OH or HF stretch frequency. This relationship provides an extension to previously investigated correlations between the equilibrium bond lengths and harmonic frequencies and allows one to anticipate OH or HF bond lengths based on measured frequencies. In addition, differences between the R_z and R_0 structures are discussed within the context of these weakly bound complexes.

  15. Aspects of glycosidic bond formation in aqueous solution: chemical bonding and the role of water.

    PubMed

    Stubbs, John M; Marx, Dominik

    2005-04-22

    A model of the specific acid-catalyzed glycosidic bond formation in liquid water at ambient conditions is studied based on constrained Car-Parrinello ab initio molecular dynamics. Specifically the reaction of alpha-D-glucopyranose and methanol is found to proceed by a D(N)A(N) mechanism. The D(N) step consists of a concerted protonation of the O(1) hydroxyl leaving group; this process results in the breaking of the C(1)-O(1) bond, and oxocarbenium ion formation involving C(1)=O(5). The second step, A(N), is the formation of the C(1)-O(m) glycosidic bond, deprotonation of the methanol hydroxyl group O(m)H(m), and re-formation of the C(1)-O(5) single bond. A focus of this study is the analysis of the electronic structure during this condensed phase reaction relying on both Boys/Wannier localized orbitals and the electron localization function ELF. This analysis allows the clear elucidation of the chemical bonding features of the intermediate bracketed by the D(N) and A(N) steps, which is a non-solvent equilibrated oxocarbenium cation. Most interestingly, it is found that the oxygen in the pyranose ring becomes "desolvated" upon double bond/oxocarbenium formation, whereas it is engaged in the hydrogen-bonded water network before and after this period. This demonstrates that hydrogen bonding and thus the aqueous solvent play an active role in this reaction implying that microsolvation studies in the gas phase, both theoretical and experimental, might lead to qualitatively different reaction mechanisms compared to solution.

  16. Intrinsic bond strength of metal films on polymer substrates

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Osaki, Hiroyuki

    1990-01-01

    A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.

  17. C-C bond-forming desulfurizations of sulfoximines.

    PubMed

    Reggelin, M; Slavik, S; Bühle, P

    2008-09-18

    Highly substituted, enantiomerically pure azaheterocyclic ring systems play an important role in medicinal chemistry as potential peptide mimetics. Metalated 2-alkenyl sulfoximines offer an efficient entry to this class of compounds. In this paper, we describe a new means to remove the sulfonimidoyl auxiliary with concomitant formation of a C-C double bond.

  18. 30 CFR 281.33 - Bonds and bonding requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF... SHELF Financial Considerations § 281.33 Bonds and bonding requirements. (a) When the leasing...

  19. 30 CFR 281.33 - Bonds and bonding requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF... Bonds and bonding requirements. (a) When the leasing notice specifies that payment of a portion of...

  20. 27 CFR 24.147 - Operations bond or unit bond.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Establishment and Operations Bonds and Consents of Surety § 24.147 Operations bond or unit bond. Notwithstanding the provisions of § 24.146, each person intending to commence or to continue business as the proprietor of a bonded wine premises with an...

  1. The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds.

    PubMed

    Scheiner, Steve

    2013-02-19

    Among a wide range of noncovalent interactions, hydrogen (H) bonds are well known for their specific roles in various chemical and biological phenomena. When describing conventional hydrogen bonding, researchers use the notation AH···D (where A refers to the electron acceptor and D to the donor). However, the AH molecule engaged in a AH···D H-bond can also be pivoted around by roughly 180°, resulting in a HA···D arrangement. Even without the H atom in a bridging position, this arrangement can be attractive, as explained in this Account. The electron density donated by D transfers into a AH σ* antibonding orbital in either case: the lobe of the σ* orbital near the H atom in the H-bonding AH···D geometry, or the lobe proximate to the A atom in the HA···D case. A favorable electrostatic interaction energy between the two molecules supplements this charge transfer. When A belongs to the pnictide family of elements, which include phosphorus, arsenic, antimony, and bismuth, this type of interaction is called a pnicogen bond. This bonding interaction is somewhat analogous to the chalcogen and halogen bonds that arise when A is an element in group 16 or 17, respectively, of the periodic table. Electronegative substitutions, such as a F for a H atom opposite the electron donor atom, strengthen the pnicogen bond. For example, the binding energy in FH(2)P···NH(3) greatly exceeds that of the paradigmatic H-bonding water dimer. Surprisingly, di- or tri-halogenation does not produce any additional stabilization, in marked contrast to H-bonds. Chalcogen and halogen bonds show similar strength to the pnicogen bond for a given electron-withdrawing substituent. This insensitivity to the electron-acceptor atom distinguishes these interactions from H-bonds, in which energy depends strongly upon the identity of the proton-donor atom. As with H-bonds, pnicogen bonds can extract electron density from the lone pairs of atoms on the partner molecule, such as N, O, and

  2. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy.

    PubMed

    Sun, Qiang

    2010-02-07

    In this work, the Raman spectra of aqueous C(12)E(5) solutions are recorded and utilized to demonstrate the existence of single donator-single acceptor (DA) hydrogen bonding in water. From Raman OH stretching bands of aqueous C(12)E(5) solutions, the relative intensity of 3430 cm(-1) subband increases with C(12)E(5) concentrations. For confined water, the DA hydrogen bonding can be expected to be the important hydrogen bonding species. Therefore, the 3430 cm(-1) component can be ascribed to OH vibration engaged in DA hydrogen bonding. This is in agreement with our recent explanation on Raman OH stretching band of water. For water at ambient conditions, the double donor-double acceptor (DDAA) and DA should be the dominant hydrogen bonding species, the ratio of DDAA to DA can be approximately to be 0.75:1, and the mean hydrogen bonding can be determined to be 2.75.

  3. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2010-02-01

    In this work, the Raman spectra of aqueous C12E5 solutions are recorded and utilized to demonstrate the existence of single donator-single acceptor (DA) hydrogen bonding in water. From Raman OH stretching bands of aqueous C12E5 solutions, the relative intensity of 3430 cm-1 subband increases with C12E5 concentrations. For confined water, the DA hydrogen bonding can be expected to be the important hydrogen bonding species. Therefore, the 3430 cm-1 component can be ascribed to OH vibration engaged in DA hydrogen bonding. This is in agreement with our recent explanation on Raman OH stretching band of water. For water at ambient conditions, the double donor-double acceptor (DDAA) and DA should be the dominant hydrogen bonding species, the ratio of DDAA to DA can be approximately to be 0.75:1, and the mean hydrogen bonding can be determined to be 2.75.

  4. Bond strength and durability of glass ionomer cements used as bonding agents in the placement of orthodontic brackets.

    PubMed

    Klockowski, R; Davis, E L; Joynt, R B; Wieczkowski, G; MacDonald, A

    1989-07-01

    One potential risk of orthodontic treatment is the development of surface decalcification in association with use of brackets and bands. A bonding agent that could render tooth structure more resistant to the caries process clearly would reduce the negative iatrogenic outcomes of orthodontic therapy and thereby benefit the patient. Glass ionomer cement (GIC) bonds chemically to both enamel and dentin. In addition its high fluoride content makes enamel more resistant to caries. The purpose of this study was to evaluate the bond strength and durability of GIC when used as a bonding agent in the placement of orthodontic brackets. The materials tested were three GICs (Ketac-Fil, Ketac-Cem, and Chelon) and a standard bonding agent currently in widespread use (Rely-A-Bond). Brackets were attached to the facial surface of 96 premolar specimens and half the specimens for each bonding agent were thermocycled. Bond shear strength was determined with an Instron testing device by applying a load to the occlusal margin of each bracket to the point of failure. A two-way ANOVA indicated a significant bonding agent by thermocycling interaction (F = 4.78, p less than 0.01). Thermocycling decreased bond strength significantly for all materials, but had the greatest impact on Rely-A-Bond. However, Rely-A-Bond provided the strongest bond with and without thermocycling. Although bond strength for the standard orthodontic bonding agent deteriorates significantly under thermal stress, these results suggest that it is still greater than the bond strength provided by GIC materials.

  5. Communication: Energetics of reaction pathways for reactions of ethenol with the hydroxyl radical: the importance of internal hydrogen bonding at the transition state.

    PubMed

    Tishchenko, Oksana; Ilieva, Sonia; Truhlar, Donald G

    2010-07-14

    We find high multireference character for abstraction of H from the OH group of ethenol (also called vinyl alcohol); therefore we adopt a multireference approach to calculate barrier heights for the various possible reaction channels of OH+C(2)H(3)OH. The relative barrier heights of ten possible saddle points for reaction of OH with ethenol are predicted by multireference Møller-Plesset perturbation theory with active spaces based on correlated participating orbitals (CPOs) and CPO plus a correlated pi orbital (CPO+pi). Six barrier heights for abstracting H from a C-H bond range from 3.1 to 7.7 kcal/mol, two barrier heights for abstracting H from an O-H bond are both 6.0 kcal/mol, and two barrier heights for OH addition to the double bond are -1.8 and -2.8 kcal/mol. Thus we expect abstraction at high-temperature and addition at low temperature. The factor that determines which H is most favorable to abstract is an internal hydrogen bond that constitutes part of a six-membered ring at one of the abstraction saddle points; the hydrogen bond contributes about 3 kcal/mol stabilization.

  6. Polarization-induced σ-holes and hydrogen bonding.

    PubMed

    Hennemann, Matthias; Murray, Jane S; Politzer, Peter; Riley, Kevin E; Clark, Timothy

    2012-06-01

    The strong collinear polarizability of the A-H bond in A-H···B hydrogen bonds is shown to lead to an enhanced σ-hole on the donor hydrogen atom and hence to stronger hydrogen bonding. This effect helps to explain the directionality of hydrogen bonds, the well known cooperative effect in hydrogen bonding, and the occurrence of blue-shifting. The latter results when significant additional electron density is shifted into the A-H bonding region by the polarization effect. The shift in the A-H stretching frequency is shown to depend essentially linearly on the calculated atomic charge on the donor hydrogen for all donors in which A belongs to the same row of the periodic table. A further result of the polarization effect, which is also expected for other σ-hole bonds, is that the strength of the non-covalent interaction depends strongly on external electric fields.

  7. Structure and Bonding in Group 14 Congeners of Ethene: DFT Calculations in the Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Streit, Bennett R.; Geiger, David K.

    2005-01-01

    A computational experiment is devised for advanced inorganic laboratory course that allows the students to explore the structure and bonding patterns of ethene and some heavier analogues. The HOMO-LUMO gaps, double bond dissociation energetics, and optimized geometries of ethene, disilene, and digermene are explored.

  8. The Stereoselective Formation of Bicyclic Enamines with Bridgehead Unsaturation via Tandem C-H Bond Activation/Alkenylation/Electrocyclization

    SciTech Connect

    Ellman, Jonathan A.; Yotphan, Sirilata; Bergman, Robert

    2007-12-10

    Rhodium-catalyzed intermolecular C-H activation of {alpha}, {beta}-unsaturated imines in the presence of alkynes leads to a tandem process in which coupling to the alkyne occurs at the {beta}-C-H bond of the imine, followed by electrocyclization of the resulting azatriene intermediates to give dihydropyridines (eq 1). Consideration of the intramolecular version of this overall transformation (Scheme 1) raises interesting regiochemical issues. For example in a compound such as 1, where the nitrogen and alkyne are connected by a 4-carbon tether, the presumed first-formed hydrido(vinyl)rhodium function can add to the triple bond in a 1,2-fashion, producing complex 2 with a new endocyclic double bond. Alternatively, addition might occur in a 2,1-fashion, leading to product 4 with an exocyclic double bond. We now wish to report that this intramolecular cyclization occurs smoothly at 100 C, and the exocyclic double bond route is exclusively followed. Remarkably, products such as 4 do not resist further cyclization. Even though both the transition state for this process and the resulting product are presumably strained, the overall transformation leads to good yields of unusual bridgehead doubly-bonded enamines such as 5. The unique chemistry of conjugated enamine 5 is consistent with the increased strain of this molecule as well as with inhibited conjugation between the nitrogen lone pair and the adjacent double bond (vida infra). We began our investigation into the C-H activation/cyclization of alkyne-tethered imine 1 by extensive screening of transition metal catalysts for this process. Rhodium-based catalysts were found to be the most efficient (Table 1), leading exclusively to the bridgehead dienamine; none of the catalysts that were employed in the screening led to quinolizidine 3 or to the product of intramolecular Diels-Alder reaction. The optimized reaction conditions employ the electron-rich monophosphine ligand (p-NMe{sub 2})PhPEt{sub 2} in 1:1 ratio relative

  9. Binuclear methylborole iron carbonyls: iron-iron multiple bonds and perpendicular structures.

    PubMed

    Chen, Jianlin; Chen, Shaolin; Zhong, Liu; Feng, Hao; Xie, Yaoming; King, R Bruce

    2011-02-21

    Methylborole iron tricarbonyl, (η(5)-C(4)H(4)BCH(3))Fe(CO)(3), is known experimentally and is a potential source of binuclear (C(4)H(4)BCH(3))(2)Fe(2)(CO)(n) (n = 5, 4, 3, 2, 1) derivatives through reactions such as photolysis. In this connection the lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO)(5) structures are predicted theoretically to have a single bridging carbonyl group and Fe-Fe distances consistent with formal single bonds. The lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO)(4) structures have two bridging carbonyl groups and Fe═Fe distances suggesting formal double bonds. Analogously, the lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO)(3) structures have three bridging carbonyl groups and very short Fe≡Fe distances suggesting formal triple bonds. The tetracarbonyl (C(4)H(4)BCH(3))(2)Fe(2)(CO)(4) is predicted to be thermodynamically unstable toward disproportionation into (C(4)H(4)BCH(3))(2)Fe(2)(CO)(5) + (C(4)H(4)BCH(3))(2)Fe(2)(CO)(3), whereas the tricarbonyl is thermodynamically viable toward analogous disproportionation. The lowest energy structures of the more highly unsaturated methylborole iron carbonyls (C(4)H(4)BCH(3))(2)Fe(2)(CO)(n) (n = 2, 1) have hydrogen atoms bridging an iron-carbon bond. In addition, the lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO) structures are "slipped perpendicular" structures with bridging methylborole ligands, a terminal carbonyl group, and agostic CH(3)→Fe interactions involving the methyl hydrogens. Thus, in these highly unsaturated systems the methyl substituent in the methylborole ligand chosen in this work is not an "innocent bystander" but instead participates in the metal-ligand bonding.

  10. Strength of Chemical Bonds

    NASA Technical Reports Server (NTRS)

    Christian, Jerry D.

    1973-01-01

    Students are not generally made aware of the extraordinary magnitude of the strengths of chemical bonds in terms of the forces required to pull them apart. Molecular bonds are usually considered in terms of the energies required to break them, and we are not astonished at the values encountered. For example, the Cl2 bond energy, 57.00 kcal/mole, amounts to only 9.46 x 10(sup -20) cal/molecule, a very small amount of energy, indeed, and impossible to measure directly. However, the forces involved in realizing the energy when breaking the bond operate over a very small distance, only 2.94 A, and, thus, f(sub ave) approx. equals De/(r - r(sub e)) must be very large. The forces involved in dissociating the molecule are discussed in the following. In consideration of average forces, the molecule shall be assumed arbitrarily to be dissociated when the atoms are far enough separated so that the potential, relative to that of the infinitely separated atoms, is reduced by 99.5% from the potential of the molecule at the equilibrium bond length (r(sub e)) for Cl2 of 1.988 A this occurs at 4.928 A.

  11. Vibrational states and optical transitions in hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Johannsen, P. G.

    1998-03-01

    Proton energies in hydrogen bonds are mostly calculated using a double Morse potential (the DMP model). This form, however, does not reproduce the experimentally observed correlation between the proton stretching frequency and the bond length in an extended bond-length region sufficiently well. An alternative potential is proposed in the present paper. The quantum states of this non-symmetric double-well potential are calculated numerically using the Numerov (Fox-Goodwin) algorithm. It is shown that the optical spectra of hydrogen bonds in various substances can be well approximated on the basis of the transition frequencies and intensities predicted by the present model. For weakly interacting OH impurities in 0953-8984/10/10/008/img1, the overtone spectrum and line intensities are well reproduced, whereas the line broadenings and the decrease of the fundamental stretching frequencies in intermediate and strong hydrogen bonds are traced back to the influence of the reduced height of the central barrier. The model is also extrapolated to the range of symmetric hydrogen bonds, and the calculated transition frequencies are discussed with respect to most recent infra-red experiments on ice under strong compression. A possible artificial infra-red signal from strained diamond anvils is thereby noted.

  12. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln(3+)) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH2, and CN vibration bands during the urea nucleation stage. Rare earth ions such as La(3+), Gd(3+), and Lu(3+) can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln(3+) and urea molecules have been confirmed, which are Ln(3+)O[double bond, length as m-dash]C-N and Ln(3+)NH2-C. Compared with Ln(3+)NH2-C, Ln(3+) prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln(3+) into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln(3+) concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln(3+), the different effects of La(3+), Gd(3+), and Lu(3+) on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  13. Insulation bonding test system

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)

    1984-01-01

    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.

  14. Biomolecular halogen bonds.

    PubMed

    Ho, P Shing

    2015-01-01

    Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.

  15. Bond-rupture immunosensors--a review.

    PubMed

    Hirst, Evan R; Yuan, Yong J; Xu, W L; Bronlund, J E

    2008-07-15

    It has long been the goal of researchers to develop fast and reliable point-of-care alternatives to existing lab-based tests. A viable point-of-care biosensor is fast, reliable, simple, cost-effective, and detects low concentrations of the target analyte. The target of biosensors is biological such as bacteria or virus and as such, the antibody-antigen bond derived from the real immune response is used. Biosensor applications include lab-based tests for the purposes of diagnostics, drug discovery, and research. Additional applications include environmental, food, and agricultural monitoring. The main merits of the bond-rupture method are quick, simple, and capable of discriminating between specific and non-specific interactions. The separation of specific and non-specific bonds is important for working in real-life complex serums such as blood. The bond-rupture technique can provide both qualitative results, the detection of a target, and quantitative results, the concentration of target. Bond-rupture achieves this by a label-free method requiring no pre-processing of the analyte. A piezoelectric transducer such as the quartz crystal microbalance (QCM) shakes the bound particles free from the surface. Other transducers such as Surface Acoustic Wave (SAW) are also considered. The rupture of the bonds is detected as electronic noise. This review article links diverse research areas to build a picture of a field still in development.

  16. Cooperativity in beryllium bonds.

    PubMed

    Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia

    2014-03-07

    A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.

  17. Cast Aluminum Bonding Study

    DTIC Science & Technology

    1988-05-01

    fabricated using P?-’r;est11 bur)ld II19 te(hnll I Oly with 6 cIsL nqs. The cast a lumi num alloy used was A357 . The sur- face preparation was phosphoric acid...from a cast aluminum alloy designated A357 . The bonding surfaces of the adherends were prepared using PAA. One primer and two adhesives considered...System, Cast Aluminum Lap Shear 18 11 Bond Area of 350°F Adhesive System, Cast Aluminum Lap Shear 19 vi LIST OF TABLES TABLE PAGE 1 A357 Chemical

  18. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  19. Additional New Cytotoxic Triquinane-Type Sesquiterpenoids Chondrosterins K–M from the Marine Fungus Chondrostereum sp

    PubMed Central

    Huang, Lei; Lan, Wen-Jian; Deng, Rong; Feng, Gong-Kan; Xu, Qing-Yan; Hu, Zhi-Yu; Zhu, Xiao-Feng; Li, Hou-Jin

    2016-01-01

    By the method of 1H NMR prescreening and tracing the diagnostic proton signals of the methyl groups, three additional new triquinane-type sesquiterpenoids—chondrosterins K–M (1–3) and the known sesquiterpenoid anhydroarthrosporone (4)—were isolated from the marine fungus Chondrostereum sp. Their structures were elucidated on the basis of MS, 1D, and 2D NMR data. Chondrosterin K is a rare hirsutane sesquiterpenoid, in which a methyl group was migrated from C-2 to C-6 and has a double bond between C-2 and C-3. Compounds 1–3 showed significant cytotoxicities against various cancer cell lines in vitro. PMID:27571085

  20. Fundamental aspects of recoupled pair bonds. II. Recoupled pair bond dyads in carbon and sulfur difluoride

    SciTech Connect

    Dunning, Thom H. Takeshita, Tyler Y.; Xu, Lu T.

    2015-01-21

    Formation of a bond between a second ligand and a molecule with a recoupled pair bond results in a recoupled pair bond dyad. We examine the recoupled pair bond dyads in the a{sup 3}B{sub 1} states of CF{sub 2} and SF{sub 2}, which are formed by the addition of a fluorine atom to the a{sup 4}Σ{sup −} states of CF and SF, both of which possess recoupled pair bonds. The two dyads are very different. In SF{sub 2}, the second FS–F bond is very strong (D{sub e} = 106.3 kcal/mol), the bond length is much shorter than that in the SF(a{sup 4}Σ{sup −}) state (1.666 Å versus 1.882 Å), and the three atoms are nearly collinear (θ{sub e} = 162.7°) with only a small barrier to linearity (0.4 kcal/mol). In CF{sub 2}, the second FC–F bond is also very strong (D{sub e} = 149.5 kcal/mol), but the bond is only slightly shorter than that in the CF(a{sup 4}Σ{sup −}) state (1.314 Å versus 1.327 Å), and the molecule is strongly bent (θ{sub e} = 119.0°) with an 80.5 kcal/mol barrier to linearity. The a{sup 3}B{sub 1} states of CF{sub 2} and SF{sub 2} illustrate the fundamental differences between recoupled pair bond dyads formed from 2s and 3p lone pairs.

  1. Advanced double layer capacitors

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Forchione, J.; Laconti, A. B.

    1989-01-01

    There is a need for large amounts of power to be delivered rapidly in a number of airborne and space systems. Conventional, portable power sources, such as batteries, are not suited to delivering high peak power pulses. The charge stored at the electrode-electrolyte double layer is, however, much more assessible on a short time scale. Devices exploiting this concept were fabricated using carbon and metal oxides (Pinnacle Research) as the electrodes and sulfuric acid as the electrolyte. The approach reported, replaces the liquid sulfuric acid electrolyte with a solid ionomer electrolyte. The challenge is to form a solid electrode-solid ionomer electrolyte composite which has a high capacitance per geometric area. The approach to maximize contact between the electrode particles and the ionomer was to impregnate the electrode particles using a liquid ionomer solution and to bond the solvent-free structure to a solid ionomer membrane. Ruthenium dioxide is the electrode material used. Three strategies are being pursued to provide for a high area electrode-ionomer contact: mixing of the RuOx with a small volume of ionomer solution followed by filtration to remove the solvent, and impregnation of the ionomer into an already formed RuOx electrode. RuOx powder and electrodes were examined by non-electrochemical techniques. X-ray diffraction has shown that the material is almost pure RuO2. The electrode structure depends on the processing technique used to introduce the Nafion. Impregnated electrodes have Nafion concentrated near the surface. Electrodes prepared by the evaporation method show large aggregates of crystals surrounded by Nafion.

  2. Double field theory inspired cosmology

    SciTech Connect

    Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  3. Halogen- and Hydrogen-Bonded Salts and Co-crystals Formed from 4-Halo-2,3,5,6-tetrafluorophenol and Cyclic Secondary and Tertiary Amines: Orthogonal and Non-orthogonal Halogen and Hydrogen Bonding, and Synthetic Analogues of Halogen-Bonded Biological Systems

    PubMed Central

    Takemura, Akihiro; McAllister, Linda J; Hart, Sam; Pridmore, Natalie E; Karadakov, Peter B; Whitwood, Adrian C; Bruce, Duncan W

    2014-01-01

    Co-crystallisation of, in particular, 4-iodotetrafluorophenol with a series of secondary and tertiary cyclic amines results in deprotonation of the phenol and formation of the corresponding ammonium phenate. Careful examination of the X-ray single-crystal structures shows that the phenate anion develops a C=O double bond and that the C–C bond lengths in the ring suggest a Meissenheimer-like delocalisation. This delocalisation is supported by the geometry of the phenate anion optimised at the MP2(Full) level of theory within the aug-cc-pVDZ basis (aug-cc-pVDZ-PP on I) and by natural bond orbital (NBO) analyses. With sp2 hybridisation at the phenate oxygen atom, there is strong preference for the formation of two non-covalent interactions with the oxygen sp2 lone pairs and, in the case of secondary amines, this occurs through hydrogen bonding to the ammonium hydrogen atoms. However, where tertiary amines are concerned, there are insufficient hydrogen atoms available and so an electrophilic iodine atom from a neighbouring 4-iodotetrafluorophenate group forms an I⋅⋅⋅O halogen bond to give the second interaction. However, in some co-crystals with secondary amines, it is also found that in addition to the two hydrogen bonds forming with the phenate oxygen sp2 lone pairs, there is an additional intermolecular I⋅⋅⋅O halogen bond in which the electrophilic iodine atom interacts with the C=O π-system. All attempts to reproduce this behaviour with 4-bromotetrafluorophenol were unsuccessful. These structural motifs are significant as they reproduce extremely well, in low-molar-mass synthetic systems, motifs found by Ho and co-workers when examining halogen-bonding interactions in biological systems. The analogy is cemented through the structures of co-crystals of 1,4-diiodotetrafluorobenzene with acetamide and with N-methylbenzamide, which, as designed models, demonstrate the orthogonality of hydrogen and halogen bonding proposed in Ho’s biological study. PMID

  4. The double loop mattress suture

    PubMed Central

    Biddlestone, John; Samuel, Madan; Creagh, Terry; Ahmad, Tariq

    2014-01-01

    An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ≤ 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ≤ 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ≤ 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines. PMID:24698436

  5. Polyimide adhesives for titanium and composite bonding

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.

    1978-01-01

    Approach results in synthesis of addition polyimide adhesives with exceptional high temperature capabilities that show excellent potential for bonding titanium metal, polyimide/graphite composites, and combinations of these materials. Adhesives compatible with materials used in high performance aircraft and spacecraft structures also prove highly desirable in many other applications involving similar adherents.

  6. Bonding with the Past.

    ERIC Educational Resources Information Center

    Common Ground: Archeology and Ethnography in the Public Interest, 1998

    1998-01-01

    An interview with Linda Mayro, archaeologist and cultural resources manager for Pima County, Arizona, discusses efforts of local groups to preserve local Native-American and Mexican cultural-heritage sites in oppositon to commercial land developers. A public information campaign led to passage of a $6.4 million historic preservation bond. (SAS)

  7. GRAPHITE BONDING METHOD

    DOEpatents

    King, L.D.P.

    1964-02-25

    A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)

  8. Bonding with Your Baby

    MedlinePlus

    ... can take nearly all of your attention and energy — especially for a breastfeeding mom. Bonding will be much easier if you aren't exhausted by all of the other things going on at home, such as housework, meals, and laundry. It's helpful ...

  9. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W [Brookline, MA; Kochevar, Irene E [Charlestown, MA

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  10. [A double gallbladder].

    PubMed

    Mink van der Molen, A B; Salu, M K

    1991-04-06

    A 59-year-old woman is described with symptomatic cholelithiasis. A double gallbladder was incidentally found during abdominal surgery. The literature on a double gallbladder is reviewed with respect to incidence, anatomy, diagnosis and therapy.

  11. An Ex-vivo Shear and tensile bond strengths of orthodontic molar tubes bonded using different techniques

    PubMed Central

    Alwahadni, Ahed

    2017-01-01

    Background Molar bonding procedures need continuous improvement to be widely accepted clinically and eventually replace molar bands. Material and Methods The purpose of this study was to determine the effects of enamel micro-abrasion and silane coating of the base of molar tubes on shear and tensile bond strengths of orthodontic molar tubes. A total of 200 third molars were randomly allocated into five groups of 40 teeth as follows: group 1: molar tubes bonded to etched teeth (37% phosphoric acid gel; control group); group 2: molar tubes bonded to etched teeth (37% phosphoric acid) with the addition of silane to the base of molar tubes; group 3: molar tubes bonded to teeth pre-treated with 18% hydrochloric acid and pumice (micro-abrasion); group 4: molar tubes bonded to teeth pre-treated with microabrasion with the addition of silane to the base of molar tubes; group 5: molar tubes bonded to teeth pre-treated with microabrasion before conventional acid etching combined with the addition of silane to the base of molar tubes. The bond strength testing was performed using a computer control electromechanical universal testing machine. Results The highest mean shear and tensile bond strengths were recorded in group 5 (13.81±2.54MPa and 13.97±2.29 MPa, respectively). Micro-abrasion alone (group 3) and the combination of enamel micro-abrasion and the addition of silane (group 4) produced bond strength values comparable to the control. Conclusions Enamel surface pre-treatment (micro abrasion) before conventional acid etching combined with the addition of silane to the base of the molar tube produced the highest bond strengths among all tested groups. Key words:Molar, shear strength, tensile strength, orthodontic appliances. PMID:28298990

  12. Chromosome doubling method

    DOEpatents

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  13. 19 CFR 113.13 - Amount of bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... The amount of any Customs bond shall not be less than $100, except when the law or regulation... laws and regulations; (3) The value and nature of the merchandise involved in the transaction(s) to be... damages; and (6) Any additional information contained in any application for a bond. (c) Periodic...

  14. 26 CFR 1.103-7 - Industrial development bonds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... additional working capital and to finance the acquisition of certain new machinery, (3) that X will repay the... interest on the outstanding bonds, and (4) that the payments on the loan and the machinery will be the... if only the payment of the interest on the bonds were secured by payments on the loan and...

  15. 26 CFR 1.103-7 - Industrial development bonds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... additional working capital and to finance the acquisition of certain new machinery, (3) that X will repay the... interest on the outstanding bonds, and (4) that the payments on the loan and the machinery will be the... if only the payment of the interest on the bonds were secured by payments on the loan and...

  16. 26 CFR 1.103-7 - Industrial development bonds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... additional working capital and to finance the acquisition of certain new machinery, (3) that X will repay the... interest on the outstanding bonds, and (4) that the payments on the loan and the machinery will be the... if only the payment of the interest on the bonds were secured by payments on the loan and...

  17. The double identity of linguistic doubling.

    PubMed

    Berent, Iris; Bat-El, Outi; Brentari, Diane; Dupuis, Amanda; Vaknin-Nusbaum, Vered

    2016-11-29

    Does knowledge of language consist of abstract principles, or is it fully embodied in the sensorimotor system? To address this question, we investigate the double identity of doubling (e.g., slaflaf, or generally, XX; where X stands for a phonological constituent). Across languages, doubling is known to elicit conflicting preferences at different levels of linguistic analysis (phonology vs. morphology). Here, we show that these preferences are active in the brains of individual speakers, and they are demonstrably distinct from sensorimotor pressures. We first demonstrate that doubling in novel English words elicits divergent percepts: Viewed as meaningless (phonological) forms, doubling is disliked (e.g., slaflaf < slafmak), but once doubling in form is systematically linked to meaning (e.g., slaf = ball, slaflaf = balls), the doubling aversion shifts into a reliable (morphological) preference. We next show that sign-naive speakers spontaneously project these principles to novel signs in American Sign Language, and their capacity to do so depends on the structure of their spoken language (English vs. Hebrew). These results demonstrate that linguistic preferences doubly dissociate from sensorimotor demands: A single stimulus can elicit diverse percepts, yet these percepts are invariant across stimulus modality--for speech and signs. These conclusions are in line with the possibility that some linguistic principles are abstract, and they apply broadly across language modality.

  18. Double photoionization of halogenated benzene

    SciTech Connect

    AlKhaldi, Mashaal Q.; Wehlitz, Ralf

    2016-01-28

    We have experimentally investigated the double-photoionization process in C{sub 6}BrF{sub 5} using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C{sub 6}H{sub 3}D{sub 3}) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance.

  19. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt..., calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may... information required by the Act, the following: (1) The name of the additive “calcium chloride double salt...

  20. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate, calcium chloride double salt..., calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may... information required by the Act, the following: (1) The name of the additive “calcium chloride double salt...

  1. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium pantothenate, calcium chloride double salt..., calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may... information required by the Act, the following: (1) The name of the additive “calcium chloride double salt...

  2. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium pantothenate, calcium chloride double salt..., calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may... information required by the Act, the following: (1) The name of the additive “calcium chloride double salt...

  3. Reductive Insertion of Elemental Chalcogens into Boron-Boron Multiple Bonds.

    PubMed

    Braunschweig, Holger; Dellermann, Theresa; Ewing, William C; Kramer, Thomas; Schneider, Christoph; Ullrich, Stefan

    2015-08-24

    The syntheses of sulfur- and selenium-bridged cyclic compounds containing boron stabilized by N-heterocyclic carbenes (NHCs) have been achieved by the reductive insertion of elemental chalcogens into boron-boron multiple bonds. The three pairs of bonding electrons between the boron atoms in the triply bonded diboryne enabled six-electron reduction reactions, resulting in the formation of [2.2.1]-bicyclic systems wherein bridgehead boron atoms are spanned by three chalcogen bridges. A similar reaction using a diborene (boron-boron double bond) resulted in the reductive transfer of both pairs of bonding electrons to three sulfur atoms, yielding a NHC-stabilized trisulfidodiborolane. The demonstration of these six- and four-electron reductions lends support to the presence of three and two pairs of bonding electrons between the boron atoms of the diboryne and diborene, respectively, a fact that may be useful in future discussions on bond order.

  4. 46 CFR 171.106 - Wells in double bottoms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Wells in double bottoms. 171.106 Section 171.106... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.106 Wells in double bottoms. (a) This section applies to each vessel that has a well installed in a double bottom required...

  5. 46 CFR 171.106 - Wells in double bottoms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Wells in double bottoms. 171.106 Section 171.106... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.106 Wells in double bottoms. (a) This section applies to each vessel that has a well installed in a double bottom required...

  6. 46 CFR 171.106 - Wells in double bottoms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Wells in double bottoms. 171.106 Section 171.106... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.106 Wells in double bottoms. (a) This section applies to each vessel that has a well installed in a double bottom required...

  7. 46 CFR 171.106 - Wells in double bottoms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Wells in double bottoms. 171.106 Section 171.106... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.106 Wells in double bottoms. (a) This section applies to each vessel that has a well installed in a double bottom required...

  8. TOPICAL REVIEW: Progress in cold roll bonding of metals

    NASA Astrophysics Data System (ADS)

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-04-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. Corrections were made to the abstract and conclusion of this article on 18 June 2008. The corrected electronic version is identical to the print version.

  9. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    PubMed

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  10. Low temperature reactive bonding

    DOEpatents

    Makowiecki, Daniel M.; Bionta, Richard M.

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  11. Adverse reactions to drug additives.

    PubMed

    Simon, R A

    1984-10-01

    There is a long list of additives used by the pharmaceutical industry. Most of the agents used have not been implicated in hypersensitivity reactions. Among those that have, only reactions to parabens and sulfites have been well established. Parabens have been shown to be responsible for rare immunoglobulin E-mediated reactions that occur after the use of local anesthetics. Sulfites, which are present in many drugs, including agents commonly used to treat asthma, have been shown to provoke severe asthmatic attacks in sensitive individuals. Recent studies indicate that additives do not play a significant role in "hyperactivity." The role of additives in urticaria is not well established and therefore the incidence of adverse reactions in this patient population is simply not known. In double-blind, placebo-controlled studies, reactions to tartrazine or additives other than sulfites, if they occur at all, are indeed quite rare for the asthmatic population, even for the aspirin-sensitive subpopulation.

  12. Solid-Liquid Interdiffusion Bonding of Silicon Carbide to Steel for High Temperature MEMS Sensor Packaging and Bonding

    NASA Astrophysics Data System (ADS)

    Chan, Matthew Wei-Jen

    Complex engineering systems ranging from automobile engines to geothermal wells require specialized sensors to monitor conditions such as pressure, acceleration and temperature in order to improve efficiency and monitor component lifetime in what may be high temperature, corrosive, harsh environments. Microelectromechanical systems (MEMS) have demonstrated their ability to precisely and accurately take measurements under such conditions. The systems being monitored are typically made from metals, such as steel, while the MEMS sensors used for monitoring are commonly fabricated from silicon, silicon carbide and aluminum nitride, and so there is a sizable thermal expansion mismatch between the two. For these engineering applications the direct bonding of MEMS sensors to the components being monitored is often required. This introduces several challenges, namely the development of a bond that is capable of surviving high temperature harsh environments while mitigating the thermally induced strains produced during bonding. This project investigates the development of a robust packaging and bonding process, using the gold-tin metal system and the solid-liquid interdiffusion (SLID) bonding process, to join silicon carbide substrates directly to type-316 stainless steel. The SLID process enables bonding at lower temperatures while producing a bond capable of surviving higher temperatures. Finite element analysis was performed to model the thermally induced strains generated in the bond and to understand the optimal way to design the bond. The cross-sectional composition of the bonds has been analyzed and the bond strength has been investigated using die shear testing. The effects of high temperature aging on the bond's strength and the metallurgy of the bond were studied. Additionally, loading of the bond was performed at temperatures over 415 °C, more than 100 °C, above the temperature used for bonding, with full survival of the bond, thus demonstrating the benefit of

  13. IMPROVED BONDING METHOD

    DOEpatents

    Padgett, E.V. Jr.; Warf, D.H.

    1964-04-28

    An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)

  14. Minimal Doubling and Point Splitting

    SciTech Connect

    Creutz, M.

    2010-06-14

    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  15. Bond paths as privileged exchange channels.

    PubMed

    Pendás, A Martín; Francisco, Evelio; Blanco, Miguel A; Gatti, Carlo

    2007-01-01

    Evidence that the bond paths of the quantum theory of atoms-in-molecules (QTAIM) signal preferred quantum-mechanical exchange channels is presented. We show how bond paths between an atom A and the atoms B in its environment appear to be determined by competition among the A-B exchange-correlation energies that always contribute to stabilize the A-B interactions. These pairwise additive stabilizations depend neither on the attractive or repulsive nature of the classical electrostatic interaction between the atoms' charge densities, nor on the change in the self energies of the atoms involved. These other terms may well cause an overall molecular-energy increase in spite of a possibly large A-B exchange-correlation stabilization. After our proposal, bond paths, both at and out of equilibrium geometries, are endowed with a specific energetic meaning that should contribute to reconcile the orthodox QTAIM interpretation with other widely accepted views, and to settle recent controversies questioning the meaning of hydrogen-hydrogen bonding and the nature of the so-called "steric interactions", the role of bond paths in endohedral complexes, and the generality of the results provided by the QTAIM. Implications for the nature of more general closed-shell interactions are also briefly discussed.

  16. Characteristics of beryllium bonds; a QTAIM study.

    PubMed

    Eskandari, K

    2012-08-01

    The nature of beryllium bonds formed between BeX2 (X is H, F and Cl) and some Lewis bases have been investigated. The distribution of the Laplacian of electron density shows that there is a region of charge depletion around the Be atom, which, according to Laplacian complementary principal, can interact with a region of charge concentration of an atom in the base and form a beryllium bond. The molecular graphs of the investigated complexes indicate that beryllium in BeH2 and BeF2 can form “beryllium bonds” with O, N and P atoms but not with halogens. In addition, eight criteria based on QTAIM properties, including the values of electron density and its Laplacian at the BCP, penetration of beryllium and acceptor atom, charge, energy, volume and first atomic moment of beryllium atom, have been considered and compared with the corresponding ones in conventional hydrogen bonds. These bonds share many common features with very strong hydrogen bonds, however,some differences have also been observed.

  17. Significance of wood extractives for wood bonding.

    PubMed

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels.

  18. Reliable four-point flexion test and model for die-to-wafer direct bonding

    NASA Astrophysics Data System (ADS)

    Tabata, T.; Sanchez, L.; Fournel, F.; Moriceau, H.

    2015-07-01

    For many years, wafer-to-wafer (W2W) direct bonding has been very developed particularly in terms of bonding energy measurement and bonding mechanism comprehension. Nowadays, die-to-wafer (D2W) direct bonding has gained significant attention, for instance, in photonics and microelectro-mechanics, which supposes controlled and reliable fabrication processes. So, whatever the stuck materials may be, it is not obvious whether bonded D2W structures have the same bonding strength as bonded W2W ones, because of possible edge effects of dies. For that reason, it has been strongly required to develop a bonding energy measurement technique which is suitable for D2W structures. In this paper, both D2W- and W2W-type standard SiO2-to-SiO2 direct bonding samples are fabricated from the same full-wafer bonding. Modifications of the four-point flexion test (4PT) technique and applications for measuring D2W direct bonding energies are reported. Thus, the comparison between the modified 4PT and the double-cantilever beam techniques is drawn, also considering possible impacts of the conditions of measures such as the water stress corrosion at the debonding interface and the friction error at the loading contact points. Finally, reliability of a modified technique and a new model established for measuring D2W direct bonding energies is demonstrated.

  19. Communication: Frequency shifts of an intramolecular hydrogen bond as a measure of intermolecular hydrogen bond strengths

    NASA Astrophysics Data System (ADS)

    Gu, Quanli; Trindle, Carl; Knee, J. L.

    2012-09-01

    Infrared-ultraviolet double resonance spectroscopy has been applied to study the infrared spectra of the supersonically cooled gas phase complexes of formic acid, acetic acid, propionic acid, formamide, and water with 9-hydroxy-9-fluorenecarboxylic acid (9HFCA), an analog of glycolic acid. In these complexes each binding partner to 9HFCA can function as both proton donor and acceptor. Relative to its frequency in free 9HFCA, the 9-hydroxy (9OH) stretch is blue shifted in complexes with formic, acetic, and propionic acids, but is red shifted in the complexes with formamide and water. Density functional calculations on complexes of 9HFCA to a variety of H bonding partners with differing proton donor and acceptor abilities reveal that the quantitative frequency shift of the 9OH can be attributed to the balance struck between two competing intermolecular H bonds. More extensive calculations on complexes of glycolic acid show excellent consistency with the experimental frequency shifts.

  20. Communication: Frequency shifts of an intramolecular hydrogen bond as a measure of intermolecular hydrogen bond strengths.

    PubMed

    Gu, Quanli; Trindle, Carl; Knee, J L

    2012-09-07

    Infrared-ultraviolet double resonance spectroscopy has been applied to study the infrared spectra of the supersonically cooled gas phase complexes of formic acid, acetic acid, propionic acid, formamide, and water with 9-hydroxy-9-fluorenecarboxylic acid (9HFCA), an analog of glycolic acid. In these complexes each binding partner to 9HFCA can function as both proton donor and acceptor. Relative to its frequency in free 9HFCA, the 9-hydroxy (9OH) stretch is blue shifted in complexes with formic, acetic, and propionic acids, but is red shifted in the complexes with formamide and water. Density functional calculations on complexes of 9HFCA to a variety of H bonding partners with differing proton donor and acceptor abilities reveal that the quantitative frequency shift of the 9OH can be attributed to the balance struck between two competing intermolecular H bonds. More extensive calculations on complexes of glycolic acid show excellent consistency with the experimental frequency shifts.

  1. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  2. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  3. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.

    PubMed

    Jia, Haiyan; Huang, Zhangjun; Fei, Zhaofu; Dyson, Paul J; Zheng, Zhen; Wang, Xinling

    2016-11-16

    Hydrogels are polymeric materials that have a relatively high capacity for holding water. Recently, a double network (DN) technique was developed to fabricate hydrogels with a toughness comparable to rubber. The mechanical properties of DN hydrogels may be attributed to the brittle sacrificial bonding network of one hydrogel, facilitating stress dispersion, combined with ductile polymer chains of a second hydrogel. Herein, we report a novel class of tunable DN hydrogels composed of a polyurethane hydrogel and a stronger, dipole-dipole and H-bonding interaction reinforced (DHIR) hydrogel. Compared to conventional DN hydrogels, these materials show remarkable improvements in mechanical recovery, modulus, and yielding, with excellent self-healing and self-gluing properties. In addition, the new DN hydrogels exhibit excellent tensile and compression strengths and possess shape-memory properties, which make them promising for applications in engineering, biomedicine, and other domains where load bearing is required.

  4. Synthesis of a uranium(VI)-carbene: reductive formation of uranyl(V)-methanides, oxidative preparation of a [R2C═U═O]2+ analogue of the [O═U═O]2+ uranyl ion (R = Ph2PNSiMe3), and comparison of the nature of U(IV)═C, U(V)═C, and U(VI)═C double bonds.

    PubMed

    Mills, David P; Cooper, Oliver J; Tuna, Floriana; McInnes, Eric J L; Davies, E Stephen; McMaster, Jonathan; Moro, Fabrizio; Lewis, William; Blake, Alexander J; Liddle, Stephen T

    2012-06-20

    We report attempts to prepare uranyl(VI)- and uranium(VI) carbenes utilizing deprotonation and oxidation strategies. Treatment of the uranyl(VI)-methanide complex [(BIPMH)UO(2)Cl(THF)] [1, BIPMH = HC(PPh(2)NSiMe(3))(2)] with benzyl-sodium did not afford a uranyl(VI)-carbene via deprotonation. Instead, one-electron reduction and isolation of di- and trinuclear [UO(2)(BIPMH)(μ-Cl)UO(μ-O){BIPMH}] (2) and [UO(μ-O)(BIPMH)(μ(3)-Cl){UO(μ-O)(BIPMH)}(2)] (3), respectively, with concomitant elimination of dibenzyl, was observed. Complexes 2 and 3 represent the first examples of organometallic uranyl(V), and 3 is notable for exhibiting rare cation-cation interactions between uranyl(VI) and uranyl(V) groups. In contrast, two-electron oxidation of the uranium(IV)-carbene [(BIPM)UCl(3)Li(THF)(2)] (4) by 4-morpholine N-oxide afforded the first uranium(VI)-carbene [(BIPM)UOCl(2)] (6). Complex 6 exhibits a trans-CUO linkage that represents a [R(2)C═U═O](2+) analogue of the uranyl ion. Notably, treatment of 4 with other oxidants such as Me(3)NO, C(5)H(5)NO, and TEMPO afforded 1 as the only isolable product. Computational studies of 4, the uranium(V)-carbene [(BIPM)UCl(2)I] (5), and 6 reveal polarized covalent U═C double bonds in each case whose nature is significantly affected by the oxidation state of uranium. Natural Bond Order analyses indicate that upon oxidation from uranium(IV) to (V) to (VI) the uranium contribution to the U═C σ-bond can increase from ca. 18 to 32% and within this component the orbital composition is dominated by 5f character. For the corresponding U═C π-components, the uranium contribution increases from ca. 18 to 26% but then decreases to ca. 24% and is again dominated by 5f contributions. The calculations suggest that as a function of increasing oxidation state of uranium the radial contraction of the valence 5f and 6d orbitals of uranium may outweigh the increased polarizing power of uranium in 6 compared to 5.

  5. Development of nanosilica bonded monetite cement from egg shells.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Boroujeni, Nariman Mansouri; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5±1 min. The compressive strength after 24h of incubation was approximately 8.45±1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10±1 min) process by about 2.5 min and improve compressive strength (20.16±4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics.

  6. Unsaturated binuclear cyclopentadienylrhenium carbonyl derivatives: metal-metal multiple bonds and agostic hydrogen atoms.

    PubMed

    Xu, Bing; Li, Qian-shu; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2008-08-04

    The cyclopentadienylrhenium carbonyls Cp 2Re 2(CO) n (Cp = eta (5)-C 5H 5; n = 5, 4, 3, 2) have been studied by density functional theory. The global minima for the Cp 2Re 2(CO) n ( n = 5, 4, 3, 2) derivatives are predicted to be the singly bridged structure Cp 2Re 2(CO) 4(mu-CO) with a formal Re-Re single bond; the doubly semibridged structure Cp 2Re 2(CO) 4 with a formal ReRe double bond; the triply bridged structure Cp 2Re 2(mu-CO) 3 with a formal ReRe triple bond; and the doubly bridged structure Cp 2Re 2(mu-CO) 2, respectively. The first three of these predicted structures have been realized experimentally in the stable compounds (eta (5)-C 5H 5) 2Re 2(CO) 4(mu-CO), (eta (5)-Me 5C 5) 2Re 2(CO) 4 and (eta (5)-Me 5C 5) 2Re 2(mu-CO) 3. In addition, structures of the type Cp 2Re-Re(CO) n with both rings bonded only to one metal and unknown in manganese chemistry are also found for rhenium but at energies significantly above the global minima. The unsaturated Cp 2Re-Re(CO) n structures ( n = 4, 3, 2) have agostic Cp hydrogen atoms forming C-H-Re bridges to the unsaturated Re(CO) n group with a Re-H distance as short as 2.04 A.

  7. Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding.

    PubMed

    Brinck, Tore; Carlqvist, Peter; Stenlid, Joakim H

    2016-12-22

    A new local property, the local electron attachment energy [E(r)], is introduced and is demonstrated to be a useful guide to predict intermolecular interactions and chemical reactivity. The E(r) is analogous to the average local ionization energy but indicates susceptibility toward interactions with nucleophiles rather than electrophiles. The functional form E(r) is motivated based on Janak's theorem and the piecewise linear energy dependence of electron addition to atomic and molecular systems. Within the generalized Kohn-Sham method (GKS-DFT), only the virtual orbitals with negative eigenvalues contribute to E(r). In the present study, E(r) has been computed from orbitals obtained from GKS-DFT computations with a hybrid exchange-correlation functional. It is shown that E(r) computed on a molecular isodensity surface, ES(r), reflects the regioselectivity and relative reactivity for nucleophilic aromatic substitution, nucleophilic addition to activated double bonds, and formation of halogen bonds. Good to excellent correlations between experimental or theoretical measures of interaction strengths and minima in ES(r) (ES,min) are demonstrated.

  8. Unusual bonding and properties in main group element chemistry: rational synthesis, characterization, and experimental electron density determination of mixed-valent tetraphosphetes.

    PubMed

    Breuers, Verena; Lehmann, Christian W; Frank, Walter

    2015-03-16

    Five dispirocyclic λ(3),λ(5)-tetraphosphetes [{R2Si(NR(1))(NR(2))P2}2] (R(1) = R(2) and R(1) ≠ R(2)) are easily prepared in almost quantitative yields via photolysis of the respective bis(trimethylsilyl)phosphanyldiazaphosphasiletidines with intense visible light. These deep-yellow low-coordinate phosphorus compounds can be considered as the first higher congeners of the well-known cyclodiphosphazenes. The tetraphosphetes are remarkably stable in air and show unexpected molecular properties related to the unique bonding situation of the central four-π-electron four-membered phosphorus ring. The extent of rhombic distortion of the central P4 ring is remarkable due to an unusually acute angle at the σ(2)-phosphorus atoms. All of the P-P bonds are approximately equal in length. The distances are in the middle of the range given by phosphorus single and double bonds. The anisotropic absorption of visible light that can easily be observed in the case of the yellow/colorless dichroic crystals of [{Me2Si(NtBu)(NtBu)P2}2] and the exceptional (31)P NMR chemical shift of the σ(2)-phosphorus atoms are the most remarkable features of the λ(3),λ(5)-tetraphosphetes. In the case of [{Me2Si(NtBu)(NtBu)P2}2], the Hansen-Coppens multipole model is applied to extract the electron density from high-resolution X-ray diffraction data obtained at 100 K. Static deformation density and topological analysis reveal a unique bonding situation in the central unsaturated P4 fragment characterized by polar σ-bonding, pronounced out-of-ring non-bonding lone pair density on the σ(2)-phosphorus atoms, and an additional non-classical three-center back-bonding contribution.

  9. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor

    PubMed Central

    Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan

    2017-01-01

    In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation. PMID:28300752

  10. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials

    PubMed Central

    Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike

    2016-01-01

    Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond™ and Scotchbond™) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™. Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120™ testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P ≤ 0.05). Results. Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended. PMID:27738633

  11. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    PubMed

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction.

  12. Bond strength of direct and indirect bonded brackets after thermocycling.

    PubMed

    Daub, Jacob; Berzins, David W; Linn, Brandon James; Bradley, Thomas Gerard

    2006-03-01

    Thermocycling simulates the temperature dynamics in the oral environment. With direct bonding, thermocycling reduces the bond strength of orthodontic adhesives to tooth structure. The purpose of this study was to evaluate the shear bond strengths (SBS) of one direct and two indirect bonding methods/adhesives after thermocycling. Sixty human premolars were divided into three groups. Teeth in group 1 were bonded directly with Transbond XT. Teeth in group 2 were indirect bonded with Transbond XT/Sondhi Rapid Set, which is chemically cured. Teeth in group 3 were indirect bonded with Enlight LV/Orthosolo and light cured. Each sample was thermocycled between 5 degrees C and 55 degrees C for 500 cycles. Mean SBS in groups 1, 2, and 3 were not statistically significantly different (13.6 +/- 2.9, 12.3 +/- 3.0, and 11.6 +/- 3.2 MPa, respectively; P > .05). However, when these values were compared with the results of a previous study using the same protocol, but without thermocycling, the SBS was reduced significantly (P = .001). Weibull analysis further showed that group 3 had the lowest bonding survival rate at the minimum clinically acceptable bond-strength range. The Adhesive Remnant Index was also determined, and group 2 had a significantly (P < .05) higher percentage of bond failures at the resin/enamel interface.

  13. Mothers and Daughters in the Fiction of Joyce Carol Oates: The Terror and Beauty of Doubling.

    ERIC Educational Resources Information Center

    Mattes, Eleanor

    Joyce Carol Oates is unique in American fiction for her portrayals of the terror and the beauty in the mother-daughter relationship--the tensions and the bonds created by this particular form of doubling. Her more interesting explorations portraying some deeply pathological and some positive aspects of this form of doubling include the following:…

  14. Efficient simulation of semiflexible polymers with stiff bonds

    NASA Astrophysics Data System (ADS)

    Barkema, Gerard T.; van Leeuwen, J. M. J.

    2017-01-01

    We investigate the simulation of stiff (extensible) and rigid (inextensible) semiflexible polymers in solution. In particular, we focus on polymers represented as chains of beads, interconnected by bonds with a low to zero extensibility, and significant persistence in the bond orientations along the chain, whose dynamical behavior is described by the Langevin equation. We review the derivation of the pseudopotential needed for rigid bonds. The efficiency of a number of routines for such simulations is determined. We propose a routine for handling rigid bonds which is, for longer chains, substantially more efficient than the existing ones. We also show that for extensible polymers, the Rouse modes can be exploited to achieve highly efficient simulations. At realistic values for the extensibility, e.g., that of double-stranded DNA, the simulations are orders of magnitude faster than those for rigid bonds. With increasing stiffness, however, the allowable time step and hence the efficiency decreases, until a crossover point is reached below which the routines with rigid bonds are more efficient; we present a numerical estimate of this crossover point.

  15. Pathways to doubled haploidy: chromosome doubling during androgenesis.

    PubMed

    Seguí-Simarro, J M; Nuez, F

    2008-01-01

    Production of doubled haploid (DH) plants through androgenesis induction is a promising and convenient alternative to conventional selfing techniques for the generation of pure lines for breeding programs. This process comprises two main steps: induction of androgenesis and duplication of the haploid genome. Such duplication is sometimes indirectly induced by the treatments used to promote androgenic development. But usually, an additional step of direct chromosome doubling must be included in the protocol. Duplication of the haploid genome of androgenic individuals has been thought to occur through three mechanisms: endoreduplication, nuclear fusion and c-mitosis. In this review we will revise and analyze the evidences supporting each of the proposed mechanisms and their relevance during androgenesis induction, embryo/callus development and plant regeneration. Special attention will be devoted to nuclear fusion, whose evidences are accumulating in the last years.

  16. 78 FR 36018 - Bond Guarantee Program; Notice of Guarantee Availability (NOGA) Inviting Qualified Issuer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Eligible CDFIs. The Eligible CDFIs will use Bond Loan proceeds to provide Secondary Loans to Secondary... conditions of the Guarantee, Bonds, Bond Loans, and Secondary Loans. In addition to the Regulations, the CDFI... participant, including Qualified Issuers, Eligible CDFIs, and Secondary Borrowers, to pay principal,...

  17. 12 CFR 1808.502 - Evaluation of Designated Bonding Authority Applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF THE TREASURY COMMUNITY DEVELOPMENT FINANCIAL INSTITUTIONS BOND GUARANTEE PROGRAM Evaluation and Selection § 1808.502 Evaluation of Designated Bonding Authority Applications. In addition to the evaluation... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Evaluation of Designated Bonding...

  18. Comparison of Bond in Roll-bonded and Adhesively Bonded Aluminums

    NASA Technical Reports Server (NTRS)

    Schwensfeir, R. J., Jr.; Trenkler, G.; Delagi, R. G.; Forster, J. A.

    1985-01-01

    Lap-shear and peel test measurements of bond strength have been carried out as part of an investigation of roll bonding of 2024 and 7075 aluminum alloys. Shear strengths of the bonded material in the F temper are in the range of 14 to 16 ksi. Corresponding peel strengths are 120 to 130 lb/inch. These values, which are three to five times those reported in the literature for adhesively bonded 2024 and 7075, are a result of the true metallurgical bond achieved. The effects of heat-treating the bonded material are described and the improvements in bond strength discussed relative to the shear strength of the parent material. The significance of the findings for aerospace applications is discussed.

  19. Void-free wafer-level adhesive bonding utilizing modified poly (diallyl phthalate)

    NASA Astrophysics Data System (ADS)

    Zhong, Fang; Dong, Tao; Yong, He; Yan, Su; Wang, Kaiying

    2013-12-01

    A new thermosetting polymer, modified poly (diallyl phthalate) (PDAP), is used as intermediate layer to realize a void-free wafer-level transfer bonding, in which the bonding interface contains patterned metal. Through glass-silicon bonding experiments, bonding defects are easily recognized with light microscopy. Three typical defect types are identified as: uneven flow defect, particle defect and bubble defect. The processing parameters, such as bonding pressure, pre-baking temperature, polymer thickness and coating conditions, have been optimized based on analysis of the defect formation. The optimized conditions have yielded a void-free wafer-level adhesive bonding. Then, the die shearing test indicates a good bonding strength. Additionally, the transfer bonding process is applied in SOI-silicon bonding as a practical example of MEMS fabrication.

  20. Shear strength of resin developed by four bonding agents used with cast metal restorations.

    PubMed

    Reilly, B; Davis, E L; Joynt, R B; Quevedo, J

    1992-07-01

    The evolution of the acid etch technique has made possible a more conservative approach to the fabrication of cast metal restorations. The resin bonding technique, however, places a greater burden for success on the selection of a bonding agent. This study examined the shear bond strength durability of cast metal restorations bonded to tooth structure with one of four metal adhesive bonding agents. Results indicated stronger bonds for restorations cemented with Panavia EX bonding agent than with any of the other bonding agents tested, both with and without exposure to thermal stress. Although it was one of the easier materials with which to work, Panavia EX bonding agent requires the additional step of applying an agent to prevent oxygen contact in the setting process.