Barlett, Melissa; Moon, Hee Sun; Peacock, Aaron A; Hedrick, David B; Williams, Kenneth H; Long, Philip E; Lovley, Derek; Jaffe, Peter R
2012-07-01
Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.
Organic photosensitizers with a heteroleptic dual donor for dye-sensitized solar cells.
Kim, Joo Young; Kim, Young Sik
2012-04-01
Using DFT and TDDFT calculations, we investigated the substitution effect in the electronic and optical properties of dye sensitizers with a dual donor composed of triphenylamine and/or indoline moieties. Due to replacement with the dual donor moieties, the HOMO levels were split into HOMO and HOMO - 1 levels, and the bandgaps between the HOMO and LUMO levels decreased, leading to the creation of bathochromically extended absorption spectra. Nearly degenerated splitting of the HOMO levels resulted from the similarity of the electronic structure between the HOMO and the HOMO - 1 levels, delocalized over both dual-donor moieties, when replacing the dual donors. It was shown that the additional electron-donating group creates an additional absorption band and causes a cascading two-electron process aiding the charge separation process. Owing to a more panchromatic attribute, easier energy transfer and feasible retardation of the recombination between the injected electrons and the electrolyte, it is expected that dyeTI will show better performance than the other dyes (dyeT dyeTT and dyeIT) as denoted here in terms of the conversion efficiency of dye-sensitized solar cells (DSSCs). This work presents the probable benefits of dye sensitizers with dual-donor moieties and provides insight into the development of more efficient dye sensitizers for DSSCs through modification of the Frontier molecular orbitals.
2014-05-01
as trichloroethene (TCE) and tetrachloroethene (PCE). EISB typically relies on the addition of electron donor formulations to enhance the rate of... value (NPV) cost when applied using passive (i.e., biostimulation) methods. Hence, the selection of electron donors has a major implication on EISB...Engineering Service Center NAVFACSW NAVFAC Southwest nBA n-Butyl acetate nBuOH n-Butanol nHEX n-Hexanol NPV net present value O&M operation and
NASA Astrophysics Data System (ADS)
John, Beena Mary; Ushamani, M.; Sreekumar, K.; Joseph, Rani; Sudha Kartha, C.
2007-01-01
The diffraction efficiency, sensitivity, and storage life of methylene blue-sensitized poly(vinyl chloride) film was improved by the addition of an electron donor in the matrix. The addition of pyridine enhanced the diffraction efficiency by two times, and storage life of the gratings was increased to 2-3 days.
Coherent coupling between a quantum dot and a donor in silicon
Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...
2017-10-18
Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less
Enhanced dimethyl phthalate biodegradation by accelerating phthalic acid di-oxygenation.
Tang, Yingxia; Zhang, Yongming; Jiang, Ling; Yang, Chao; Rittmann, Bruce E
2017-12-01
The aerobic biodegradation of dimethyl phthalate (DMP) is initiated with two hydrolysis reactions that generate an intermediate, phthalic acid (PA), that is further biodegraded through a two-step di-oxygenation reaction. DMP biodegradation is inhibited when PA accumulates, but DMP's biodegradation can be enhanced by adding an exogenous electron donor. We evaluated the effect of adding succinate, acetate, or formate as an exogenous electron donor. PA removal rates were increased by 15 and 30% for initial PA concentrations of 0.3 and 0.6 mM when 0.15 and 0.30 mM succinate, respectively, were added as exogenous electron donor. The same electron-equivalent additions of acetate and formate had the same acceleration impacts on PA removal. Consequently, the DMP-removal rate, even PA coexisting with DMP simultaneously, was accelerated by 37% by simultaneous addition of 0.3 mM succinate. Thus, lowering the accumulation of PA by addition of an electron increased the rate of DMP biodegradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin
Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less
Azizian, Mohammad F; Marshall, Ian P G; Behrens, Sebastian; Spormann, Alfred M; Semprini, Lewis
2010-04-01
A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to "Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support chemical observations that a greater percentage of the electron donor addition was channeled to Fe(III) reduction when lactate and propionate were added compared to formate, and formate was more effective than lactate in supporting dehalogenation. The results demonstrate the importance of electron donor selection and competing electron acceptor reactions when implementing reductive dehalogenation remediation technologies. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Marshall, Ian P. G.; Behrens, Sebastian; Spormann, Alfred M.; Semprini, Lewis
2010-04-01
A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to " Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support chemical observations that a greater percentage of the electron donor addition was channeled to Fe(III) reduction when lactate and propionate were added compared to formate, and formate was more effective than lactate in supporting dehalogenation. The results demonstrate the importance of electron donor selection and competing electron acceptor reactions when implementing reductive dehalogenation remediation technologies.
Halogenated solvent remediation
Sorenson, Jr., Kent S.
2008-11-11
Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.
He, Ping; Lu, Yong; Dong, Cheng-Guo; Hu, Qiao-Sheng
2008-01-01
Anionic four electron donor-based palladacycle-catalyzed 1,4-additions of arylboronic acids with α,β-unsaturated ketones and 1,2-additions of arylboronic acids with aldehydes and α-ketoesters are described. Our study demonstrated that palladacycles were highly efficient, practical catalysts for these addition reactions. The work described here not only opened a new paradigm for the application of palladacycles, but may also pave the road for other metalacycles as practically useful catalysts for such addition reactions including asymmetric ones. PMID:17217300
Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L
2007-10-30
Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.
NASA Astrophysics Data System (ADS)
Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L.
2007-10-01
Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H 2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H 2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H 2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H 2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.
Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine.
Yang, Chao; Tang, Yingxia; Xu, Hua; Yan, Ning; Li, Naiyu; Zhang, Yongming; Rittmann, Bruce E
2018-05-21
Pyridine and its heterocyclic derivatives are widely encountered in industrial wastewaters, and they are relatively recalcitrant to biodegradation. Pyridine biodegradation is initiated by two mono-oxygenation reactions that compete for intracellular electron donor (2H). In our experiments, UV photolysis of pyridine generated succinate, whose oxidation augmented the intracellular electron donor and accelerated pyridine biodegradation and mineralization. The first mono-oxygenation reaction always was faster than the second one, because electrons provided by intracellular electron donors were preferentially utilized by the first mono-oxygenase; this was true even when the concentration of 2HP was greater than the concentration of pyridine. In addition, the first mono-oxygenation had faster kinetics because it had higher affinity for its substrate (pyridine), along with less substrate self-inhibition.
Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications
NASA Technical Reports Server (NTRS)
Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin
2002-01-01
It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.
Electron Donor-Acceptor Nature of the Ethanol-CO2 Dimer
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Martin-Drumel, Marie-Aline; McCarthy, Michael A.
2017-08-01
Supercritical CO2 is an appealing nontoxic, environmentally friendly solvent for the industrial extraction of many classes of compounds, from caffeine to natural product drug precursors to petrochemical impurities. Apolar in isolation, the ability of supercritical CO2 to dissolve polar species has been empirically shown to be greatly enhanced by the addition of a small molar percentage of a polar cosolvent, often ethanol. Computational work predicts that the isolated ethanol-CO2 complex can exist either in an electron-donor configuration or through a hydrogen-bonding one; yet, neither has been previously experimentally observed. Here, we demonstrate by rotational spectroscopy that the isolated, gas-phase ethanol-CO2 dimer is an electron donor-acceptor complex.
NASA Astrophysics Data System (ADS)
Sargent, Andrew Landman
Approximate molecular orbital and ab initio quantum chemical techniques are used to investigate the electronic structure, bonding and reactivity of several transition metal inorganic and organometallic complexes. Modest-sized basis sets are developed for the second-row transition metal atoms and are designed for use in geometry optimizations of inorganic and organometallic complexes incorporating these atoms. The basis sets produce optimized equilibrium geometries which are slightly better than those produced with standard 3-21G basis sets, and which are significantly better than those produced with effective core potential basis sets. Linear semibridging carbonyl ligands in heterobimetallic complexes which contain a coordinatively unsaturated late transition metal center are found to accept electron density from, rather than donate electron density to, these centers. Only when the secondary metal center is a coordinatively unsaturated early transition metal center does the semibridging ligand donate electron density to this center. Large holes in the d shell around the metal center are more prominent and prevalent in early than in late transition metal centers, and the importance of filling in these holes outweighs the importance of mitigating the charge imbalance due to the dative metal-metal interaction. Semibridging thiocarbonyl ligands are more effective donors of electron density than the carbonyl ligands since the occupied donor orbitals of pi symmetry are higher in energy. The stereoselectivity of H_2 addition to d^8 square-planar transition metal complexes is controlled by the interactions between the ligands in the plane of addition and the concentrations of electronic charge around the metal center as the complex evolves from a four-coordinate to a six-coordinate species. Electron -withdrawing ligands help stabilize the five-coordinate species while strong electron donor ligands contribute only to the destabilizing repulsive interactions. The relative thermodynamic stabilities of the final complexes can be predicted based on the relative orientations of the strongest sigma-donor ligands.
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Marder, Seth (Inventor); Perry, Joseph (Inventor)
2012-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.
Hartzell, P L; Escalante-Semerena, J C; Bobik, T A; Wolfe, R S
1988-01-01
Different preparations of the methylreductase were tested in a simplified methylcoenzyme M methylreductase assay with artificial electron donors under a nitrogen atmosphere. ATP and Mg2+ stimulated the reaction. Tris(2,2'-bipyridine)ruthenium (II), chromous chloride, chromous acetate, titanium III citrate, 2,8-diaminoacridine, formamidinesulfinic acid, cob(I)alamin (B12s), and dithiothreitol were tested as electron donors; the most effective donor was titanium III citrate. Methylreductase (component C) was prepared by 80% ammonium sulfate precipitation, 70% ammonium sulfate precipitation, phenyl-Sepharose chromatography, Mono Q column chromatography, DEAE-cellulose column chromatography, or tetrahydromethanopterin affinity column chromatography. Methylreductase preparations which were able to catalyze methanogenesis in the simplified reaction mixture contained contaminating proteins. Homogeneous component C obtained from a tetrahydromethanopterin affinity column was not active in the simplified assay but was active in a methylreductase assay that contained additional protein components. Images PMID:3372480
Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition.
Yanykin, D V; Khorobrykh, A A; Mamedov, M D; Klimov, V V
2016-11-01
Recently, it has been shown that the addition of 1M trehalose leads to the increase of the rate of oxygen photoconsumption associated with activation of electron transport in the reaction center of photosystem 2 (PS2) in Mn-depleted PS2 membranes (apo-WOC-PS2) [37]. In the present work the effect of trehalose on photoinhibition of apo-WOC-PS2 preparations (which are characterized by a high sensitivity to the donor side photoinhibition of PS2) was investigated. The degree of photoinhibition was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to reactivate the electron transport (measured by light-induced changes of chlorophyll fluorescence yield (∆F)) in apo-WOC-PS2. It was found that 1M trehalose enhanced the Mn 2+ -dependent suppression of photoinhibition of apo-WOC-PS2: in the presence of trehalose the addition of 0.2μM Mn 2+ (corresponding to 2 Mn 2+ per one reaction center) was sufficient for an almost complete suppression of the donor side photoinhibition of the complex. In the absence of trehalose it was necessary to add 100μM Mn 2+ to achieve a similar result. The effect of trehalose was observed during photoinhibition of apo-WOC-PS2 at low (15μmolphotons -1 m -2 ) and high (200μmolphotons -1 m -2 ) light intensity. When Mn 2+ was replaced by other PS2 electron donors (ferrocyanide, DPC) as well as by Ca 2+ the protective effect of trehalose was not observed. It was also found that 1M trehalose decreased photoinhibition of apo-WOC-PS2 if the samples contained endogenous manganese (1-2 Mn ions per one RC was enough for the maximum protection effect). It is concluded that structural changes in PS2 caused by the addition of trehalose enhance the capability of photochemical reaction centers of apo-WOC-PS2 to accept electrons from manganese (both exogenous and endogenous), which in turn leads to a considerable suppression of the donor side photoinhibition of PS2. Copyright © 2016 Elsevier B.V. All rights reserved.
Inostroza, Natalia; Mendizabal, Fernando; Arratia-Pérez, Ramiro; Orellana, Carlos; Linares-Flores, Cristian
2016-01-01
We report a computational study of a series of organic dyes built with triphenylamine (TPA) as an electron donor group. We designed a set of six dyes called (TPA-n, where n = 0-5). In order to enhance the electron-injection process, the electron-donor effect of some specific substituent was studied. Thus, we gave insights into the rational design of organic TPA-based chromophores for use in dye-sensitized solar cells (DSSCs). In addition, we report the HOMO, LUMO, the calculated excited state oxidized potential E(dye*)(eV) and the free energy change for electron-injection ΔGinject(eV), and the UV-visible absorption bands for TPA-n dyes by a time-dependent density functional theory (TDDFT) procedure at the B3LYP and CAM-B3LYP levels with solvent effect. The results demonstrate that the introduction of the electron-acceptor groups produces an intramolecular charge transfer showing a shift of the absorption wavelengths of TPA-n under studies. Graphical Abstract Several organic dyes TPA-n with different donors and acceptors are modeled. A strong conjugation acrros the donor and anchoring groips (TPA-n) bas been studied. Candidate TPA-3 shows a promising results.
Pina, João; de Melo, J Seixas; Breusov, D; Scherf, Ullrich
2013-09-28
A comprehensive spectral and photophysical investigation of four donor-acceptor-donor (DAD) oligomers consisting of electron-deficient 2,1,3-benzothiadiazole or quinoxaline moieties linked to electron-rich thienyl or bithienyl units has been undertaken. Additionally, a bis(dithienyl) substituted naphthalene was also investigated. The D-A-D nature of these oligomers resulted in the presence of an intramolecular charge transfer (ICT) state, which was further substantiated by solvatochromism studies (analysis with the Lippert-Mataga formalism). Hereby, significant differences have been obtained for the fluorescence quantum yields of the oligomers in the non-polar solvent methylcyclohexane vs. the polar ethanol. The study was further complemented with the determination of the optimized ground-state molecular geometries for the oligomers together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The electronic transitions show a clear HOMO to LUMO charge-transfer character. In contrast to the thiophene oligomers (the oligothiophenes with n = 1-7), where the intersystem crossing (ISC) yield decreases with n, the studied DAD oligomers were found to show an increase in the ISC efficiency with the number of (donor) thienyl units.
2010-06-01
addition, a new class of donor molecules was invented in the course of the DRI program. 2.1 Polymer Based Donor-acceptor Material The following work by...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Lee, Il-Su; Bae, Jae-Ho; Yang, Yanru; McCarty, Perry L
2004-10-01
Carbohydrates such as molasses are being added to aquifers to serve as electron donors for reductive dehalogenation of chloroethenes. Glucose, as a model carbohydrate, was studied to better understand the processes involved and to evaluate the effectiveness for dehalogenation of different approaches for carbohydrate addition. A simulation model was developed and calibrated with experimental data for the reductive dehalogenation of tetrachloroethene to ethene via cis-1,2-dichloroethene. The model included fermentors that convert the primary donor (glucose) into butyrate, acetate and hydrogen, methanogens, and two separate dehalogenator groups. The dehalogenation groups use the hydrogen intermediate as an electron donor and the different haloethenes as electron acceptors through competitive inhibition. Model simulations suggest first that the initial relative population size of dehalogenators and H(2)-utilizing methanogens greatly affects the degree of dehalogenation achieved. Second, the growth and decay of biomass from soluble carbohydrate plays a significant role in reductive dehalogenation. Finally, the carbohydrate delivery strategies used (periodic versus batch addition and the time interval between periodic addition) greatly affect the degree of dehalogenation that can be obtained with a given amount of added carbohydrate.
Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca
2016-09-01
Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baruah, Tunna; Garnica, Amanda; Paggen, Marina
2016-04-14
We study the electronic structure of C{sub 60} fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Ourmore » results show that all functionalized fullerenes with an exception of the C{sub 60}-pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C{sub 60} fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C{sub 61}-butyric acid methyl ester (PCBM)-P3MT complex.« less
Finster, Kai; Bak, Friedhelm
1993-01-01
Anaerobic enrichment cultures with either propionate, succinate, lactate, or valerate and elemental sulfur and inocula from shallow marine or deep-sea sediments were dominated by rod-shaped motile bacteria after three transfers. By application of deep-agar dilutions, five eubacterial strains were obtained in pure culture and designated Kyprop, Gyprop, Kysw2, Gylac, and Kyval. All strains were gram negative and grew by complete oxidation of the electron donors and concomitant stoichiometric reduction of elemental sulfur to hydrogen sulfide. The isolates used acetate, propionate, succinate, lactate, pyruvate, oxaloacetate, maleate, glutamate, alanine, aspartate, and yeast extract. All isolates, except strain Gylac, used citrate as an electron donor but valerate was oxidized only by strain Kyval. Fumarate and malate were degraded by all strains without an additional electron donor or acceptor. Kyprop, Gyprop, and Gylac utilized elemental sulfur as the sole inorganic electron acceptor, while Kysw2 and Kyval also utilized nitrate, dimethyl sulfoxide, or Fe(III)-citrate as an electron acceptor. Images PMID:16348934
Tapia-Rodriguez, Aida; Luna-Velasco, Antonia; Field, Jim A; Sierra-Alvarez, Reyes
2010-04-01
Uranium has been responsible for extensive contamination of groundwater due to releases from mill tailings and other uranium processing waste. Past evidence has confirmed that certain bacteria can enzymatically reduce soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) under anaerobic conditions in the presence of appropriate electron donors. This paper focuses on the evaluation of anaerobic granular sludge as a source of inoculum for the bioremediation of uranium in water. Batch experiments were performed with several methanogenic anaerobic granular sludge samples and different electron donors. Abiotic controls consisting of heat-killed inoculum and non-inoculated treatments confirmed the biological removal process. In this study, unadapted anaerobic granular sludge immediately reduced U(VI), suggesting an intrinsic capacity of the sludge to support this process. The high biodiversity of anaerobic granular sludge most likely accounts for the presence of specific microorganisms capable of reducing U(VI). Oxidation by O(2) was shown to resolubilize the uranium. This observation combined with X-ray diffraction evidence of uraninite confirmed that the removal during anaerobic treatment was due to reductive precipitation. The anaerobic removal activity could be sustained after several respikes of U(VI). The U(VI) removal was feasible without addition of electron donors, indicating that the decay of endogenous biomass substrates was contributing electron equivalents to the process. Addition of electron donors, such as H(2) stimulated the removal of U(VI) to varying degrees. The stimulation was greater in sludge samples with lower endogenous substrate levels. The present work reveals the potential application of anaerobic granular sludge for continuous bioremediation schemes to treat uranium-contaminated water. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Organic electronic devices with multiple solution-processed layers
Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.
2015-08-04
A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.
Al Majid, Abdullah M. A.; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H. M.; Naushad, Mu.
2014-01-01
The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to β-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906
Parallel bulk heterojunction photovoltaics based on all-conjugated block copolymer additives
Mok, Jorge W.; Kipp, Dylan; Hasbun, Luis R.; ...
2016-08-23
We demonstrated that the addition of block copolymers to binary donor–acceptor blends represents an effective approach to target equilibrium, co-continuous morphologies of interpenetrating donors and acceptors in our recent study. We report a study of the impact of all-conjugated poly(thieno[3,4-b]-thiophene-co-benzodithiophene)-b-polynaphthalene diimide (PTB7-b-PNDI) block copolymer additives on the electronic properties and photovoltaic performance of bulk heterojunction organic photovoltaic active layers comprised of a PTB7 donor and a phenyl-C61-butyric acid methyl ester (PCBM61) acceptor. We find that small amounts of BCP additives lead to improved performance due to a large increase in the device open-circuit voltage (VOC), and the VOC is pinnedmore » to this higher value for higher BCP additive loadings. Such results contrast prior studies of ternary blend OPVs where either a continuous change in VOC or a value of VOC pinned to the lowest value is observed. We hypothesize and provide evidence in the form of device and morphology analyses that the impact of VOC is likely due to the formation of a parallel bulk heterojunction made up of isolated PCBM and PNDI acceptor domains separated by intermediate PTB7 donor domains. Our work demonstrates that all-conjugated block copolymers can be utilized as additives to both dictate morphology and modulate the electronic properties of the active layer.« less
Parallel bulk heterojunction photovoltaics based on all-conjugated block copolymer additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mok, Jorge W.; Kipp, Dylan; Hasbun, Luis R.
We demonstrated that the addition of block copolymers to binary donor–acceptor blends represents an effective approach to target equilibrium, co-continuous morphologies of interpenetrating donors and acceptors in our recent study. We report a study of the impact of all-conjugated poly(thieno[3,4-b]-thiophene-co-benzodithiophene)-b-polynaphthalene diimide (PTB7-b-PNDI) block copolymer additives on the electronic properties and photovoltaic performance of bulk heterojunction organic photovoltaic active layers comprised of a PTB7 donor and a phenyl-C61-butyric acid methyl ester (PCBM61) acceptor. We find that small amounts of BCP additives lead to improved performance due to a large increase in the device open-circuit voltage (VOC), and the VOC is pinnedmore » to this higher value for higher BCP additive loadings. Such results contrast prior studies of ternary blend OPVs where either a continuous change in VOC or a value of VOC pinned to the lowest value is observed. We hypothesize and provide evidence in the form of device and morphology analyses that the impact of VOC is likely due to the formation of a parallel bulk heterojunction made up of isolated PCBM and PNDI acceptor domains separated by intermediate PTB7 donor domains. Our work demonstrates that all-conjugated block copolymers can be utilized as additives to both dictate morphology and modulate the electronic properties of the active layer.« less
Ternary bulk heterojunction for wide spectral range organic photodetectors
NASA Astrophysics Data System (ADS)
Shin, Hojung; Kim, Jaehoon; Lee, Changhee
2017-08-01
Ternary bulk heterojunction (BHJ) system, dual electron donors and an acceptor, was studied for developing wide spectral range organic photodetectors (OPDs). With two electron donor polymers with different bandgaps and an efficient electron acceptor of [6,6]-Phenyl-C71-butyric acid methyl ester (PC70BM), different blend ratios for ternary BHJ OPD were examined to achieve high photoresponsivity over a wide spectral range. OPDs based on ternary BHJ showed improved photovoltage response compared to binary BHJ. Current-voltage (J-V) characteristics as a function of external bias and light illumination were measured to reveal the underlying charge recombination mechanism which is found to be dominantly ruled by space charge limit (SCL) effect. Additional in-depth analyses including absorbance, cross-section scanning electron microscope (SEM), incident photon-to-electron conversion efficiency (IPCE) were performed.
Caccavo, F; Lonergan, D J; Lovley, D R; Davis, M; Stolz, J F; McInerney, M J
1994-01-01
A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed. Images PMID:7527204
Fang, Feng; Wang, Lei; Xi, Xue-fei; Hu, Jia-jun; Fu, Xiao-hua; Lu, Bing; Xu, Dian-sheng
2015-05-01
The seawater samples collected from many different areas with different depth in the South China Sea were cultivated using different electron donors respectively. And the variation in the potential carbon fixation capability ( PCFC ) of non-photosynthetic microbial community (NPMC) in seawater with different depth was determined after a cycle of cultivation through the statistic analysis. In addition, the cause for the variation was clarified through analyzing key gene abundance regarding CO2 fixation and characteristics of seawater with different depth. The result showed that the PCFCs of NPMC in seawater with different depth were generally low and had no significant difference when using NaNO2 as the electron donor. The PCFC of NPMC in surface seawater was higher than that in deep seawater when using H2 as the electron donor, on the contrary, the PCFC of NPMC in deep seawater was higher than that in surface seawater when using Na2S2O3 as the electron donor. The abundance of the main CO2 fixation gene cbbL in surface seawater was higher than that in deep seawater while the cbbM gene abundance in deep seawater was higher than that in surface seawater. Most hydrogen-oxidizing bacteria had the cbbL gene, and most sulfur bacteria had the cbbM gene. The tendency of seawater cbbL/cbbM gene abundance with the change of depth revealed that there were different kinds of bacteria accounting for the majority in NPMC fixing CO2 at different depth of ocean, which led to different response of PCFC of NPMC at different depth of the sea to different electron donors. The distributions of dissolved oxygen and inorganic carbon concentration with the change of the depth of the sea might be an important reason leading to the difference of NPMC structure and even the difference of PCFC at different depth of the sea.
Bhatt, Praveena; Kumar, M Suresh; Mudliar, Sandeep; Chakrabarti, Tapan
2008-05-01
Anaerobic dechlorination of technical grade hexachlorocyclohexane (THCH) was studied in a continuous upflow anaerobic sludge blanket (UASB) reactor with methanol as a supplementary substrate and electron donor. A reactor without methanol served as the experimental control. The inlet feed concentration of THCH in both the experimental and the control UASB reactor was 100 mg l(-1). After 60 days of continuous operation, the removal of THCH was >99% in the methanol-supplemented reactor as compared to 20-35% in the control reactor. THCH was completely dechlorinated in the methanol fed reactor at 48 h HRT after 2 months of continuous operation. This period was also accompanied by increase in biomass in the reactor, which was not observed in the experimental control. Batch studies using other supplementary substrates as well as electron donors namely acetate, butyrate, formate and ethanol showed lower % dechlorination (<85%) and dechlorination rates (<3 mg g(-1)d(-1)) as compared to methanol (98%, 5 mg g(-1)d(-1)). The optimum concentration of methanol required, for stable dechlorination of THCH (100 mg l(-1)) in the UASB reactor, was found to be 500 mg l(-1). Results indicate that addition of methanol as electron donor enhances dechlorination of THCH at high inlet concentration, and is also required for stable UASB reactor performance.
ERIC Educational Resources Information Center
Cagle, Ethan C.; Totsch, Timothy R.; Erdmann, Mitzy A.; Gray, Gary M.
2018-01-01
[superscript 31]P{[superscript 1]H} nuclear magnetic resonance spectroscopy is a particularly useful tool for studying the reactions of P-donor ligands such as phosphines and phosphites with transition metals and other Lewis bases because the reactions take place on the nonbonding pair of electrons on the phosphorus. In addition, [superscript 31]P…
NASA Astrophysics Data System (ADS)
Gao, Bowen; Meng, Jing
2018-07-01
The copolymer poly-BDT-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (PC20BDTDPP) with the bulkier alkoxy on BDT and alkyl on DPP is widely used in organic photovoltaic cells as a potential donor material. Power conversion efficiency (PCE) of polymer solar cells fabricated withPC20BDTDPP as the electron donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor was improved from 4.90% to 9.10% by adding 1-5% of the co-solvents (1-chloronaphthalene and 1,8-octanedithiol) as processing additives. The enhanced PCE was attributed to optimized surface morphology and packed polymer chains leading to better phase separation morphology by the solvent additive. Furthermore, owing to its very narrow band gap, the synthesized polymer demonstrates a great potential for tandem or parallel-like solar cells.
NASA Astrophysics Data System (ADS)
Gao, Bowen; Meng, Jing
2018-04-01
The copolymer poly-BDT-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (PC20BDTDPP) with the bulkier alkoxy on BDT and alkyl on DPP is widely used in organic photovoltaic cells as a potential donor material. Power conversion efficiency (PCE) of polymer solar cells fabricated withPC20BDTDPP as the electron donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor was improved from 4.90% to 9.10% by adding 1-5% of the co-solvents (1-chloronaphthalene and 1,8-octanedithiol) as processing additives. The enhanced PCE was attributed to optimized surface morphology and packed polymer chains leading to better phase separation morphology by the solvent additive. Furthermore, owing to its very narrow band gap, the synthesized polymer demonstrates a great potential for tandem or parallel-like solar cells.
All-electric control of donor nuclear spin qubits in silicon
NASA Astrophysics Data System (ADS)
Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.
2017-10-01
The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.
Gohil, Hiral; Ogram, Andrew; Thomas, John
2014-09-01
The aim of this study was to evaluate the impact of selected electron donors and electron acceptors on the anaerobic biodegradation of DDT and its major metabolites in a muck soil with a long history of exposure to the pesticide. Loss of DDT was measured in anaerobic microcosms supplemented with H2, lactate, and acetate. The greatest loss of DDT (approximately 87 %) was observed in microcosms amended with lactate and no additional electron acceptor compared to the no additional electron donor or acceptor sets. An increase in measureable concentrations of DDx was observed in un-amended microcosms. In larger scale mesocosms, significant increases in dissolved organic carbon (DOC) corresponded with low redox potentials. Increases in DOC corresponded with sharp increases in measured concentrations of DDx, followed by a decrease in measured DDT concentrations in lactate-amended mesocosms. Our studies indicate that sorbed DDx is released upon anaerobic incubation, and that indigenous microorganisms capable of DDx degradation respond to lactate additions. Both the potential for release of sorbed DDx and the potential for biodegradation of DDx should be considered during remediation of DDx-contaminated organic soils at low redox potentials.
2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCusker, James
The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.
Theoretical Study of Electron Transfer Properties of Squaraine Dyes for Dye Sensitized Solar Cell
NASA Astrophysics Data System (ADS)
Juwita, Ratna; Tsai, Hui-Hsu Gavin
2018-01-01
The environmental issues and high cost of Ru create many scientists to explore cheaper and safer sensitizer as alternative for dye sensitized solar cells (DSCs). Dyes play an important role in solar energy conversion efficiency. The squaraine (SQ) dyes has good spectral match with the solar spectra, therefore, SQ dyes have great potential for the applications in DSCs. SQ01_CA is an unsymmetrical SQ dye, reported by Grätzel and colleagues in 2007, featuring a D-π-spacer-A framework and has a carboxylic acid anchoring group. The electron donating ability of indolium in SQ01_CA and SQ01_CAA dyes is relatively weak, better performance may be achieved by introducing an additional donor moiety into indolium [1]. In this study, we investigate six unsymmetrical SQ dyes adsorbed on a (TiO2)38 cluster [2] using density functional theory (DFT) and time-dependent DFT to study electron transfer properties of squaraine dyes on their photophysical. SQ01_CA, WH-SQ01_CA, and WH-SQ02_CA use a carboxylic acid group as its electron acceptor. Furthermore, SQ01_CAA, WH-SQ01_CAA, and WH-SQ02_CAA use a cyanoacrylic acid group as its electron acceptor. WH-SQ01_CA and WH-SQ01_CAA have an alkyl, while WH-SQ02_CA and WH-SQ02_CAA have alkoxyl substituted diarylamines to the indolium donor of sensitizer SQ01_CA. Our calculations show with additional diarylamines in donor tail of WH-SQ02_CAA, the SQ dyes have red-shifted absorption and have slightly larger probability of electron density transferred to TiO2 moiety. Furthermore, an additional -CN group as electron a withdrawing group in the acceptor exhibits red-shifted absorption and enhances the electron density transferred to TiO2 and anchoring moiety after photo-excitation. The tendency of calculated probabilities of electron density being delocalized into TiO2 and driving force for excited-state electron injection of these studied SQ dyes is compatible with their experimentally observed.
Saint-Louis, Carl Jacky; Shavnore, Renée N; McClinton, Caleb D C; Wilson, Julie A; Magill, Lacey L; Brown, Breanna M; Lamb, Robert W; Webster, Charles Edwin; Schrock, Alan K; Huggins, Michael T
2017-12-13
Nine new polycyclic aromatic BN-1,2-azaborine analogues containing the N-BOH moiety were synthesized using a convenient two-step, one-pot procedure. Characterization of the prepared compounds show the luminescence wavelength and the quantum yields of the azaborines were tunable by controlling the power and location of the donor and acceptor substituents on the chromophore. UV-visible spectroscopy and density functional theory (DFT) computations revealed that the addition of electron-donating moieties to the isoindolinone hemisphere raised the energy of the HOMO, resulting in the reduction of the HOMO-LUMO gap. The addition of an electron-accepting moiety to the isoindolinone hemisphere and an electron-donating group to the boronic acid hemisphere decreased the HOMO-LUMO gap considerably, leading to emission properties from partial intramolecular charge transfer (ICT) states. The combined effect of an acceptor on the isoindolinone side and a donor on the boronic acid side (strong acceptor-π-donor) gave the most red-shifted absorption. The polycyclic aromatic BN-1,2-azaborines emitted strong fluorescence in solution and in the solid-state with the largest red-shifted emission at 640 nm and a Stokes shift of Δλ = 218 nm, or Δν = 8070 cm -1 .
Nanographenes as electron-deficient cores of donor-acceptor systems.
Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus
2018-05-15
Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.
Hoeft, S.E.; Kulp, T.R.; Stolz, J.F.; Hollibaugh, J.T.; Oremland, R.S.
2004-01-01
Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3- into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the ??-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.
2015-06-01
The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.
Improving first-time donor attendance rates through the use of enhanced donor preparation materials.
Masser, Barbara; France, Christopher R; Foot, Jayne; Rozsa, Amy; Hayman, Jane; Waller, Daniel; Hunder, Everard
2016-06-01
Many nondonors are positive about blood donation and this motivates booking an appointment to donate. However, as their appointment approaches barriers to donating-such as anxiety-may become salient and deter attendance. Building on research of France and colleagues demonstrating the positive effect of enhanced preparation materials on donor recruitment, this study sought to determine whether these materials could effectively boost first donation appointment attendance. A field study comprising a 3 (brochure: none, e-mail, hard copy) × 2 (national call center [NCC] contact: none, call) between-subjects design was conducted with 3646 nondonors who had scheduled their first appointment. Participants in the brochure conditions received either a hard copy or an e-mailed link to electronic materials modeled on the donor preparation research of France and colleagues. Participants in the NCC call condition also received a call scripted in line with these preparation materials. The key outcome was new donor attendance rate. Although first-appointment attendance rates were high in the control (no additional contact) condition at 85.07% of those not canceling in advance, dual exposure to the preparation materials through a NCC call and an electronic brochure boosted attendance. The relative risk of attending in the NCC call and electronic brochure condition was 1.0836 (95% confidence interval, 1.0352-1.1343; p = 0.0006), with attendance 8.36% higher than in the control. This gain in attendance came at a relative increase in recruitment costs of 2%. The use of tailored communication to address new donors' concerns and prepare them for donating bolsters attendance rates. © 2016 AABB.
Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays.
Boyd, S A; Sheng, G; Teppen, B J; Johnston, C T
2001-11-01
To more fully understand the potential for transport of nitroaromatic compounds in soils and subsoils,the adsorption of a series of para- and meta-substituted nitrobenzenes (SNBs) by K-smectite clay was measured. Adsorption isotherms were fit to the Freundlich equation, and the resultant Freundlich adsorption coefficients (log(Kf) were positively correlated with the Hammett substituent constant (r2 = 0.80). This relationship and a positive reaction constant (p = 1.15) indicate that the adsorption reaction is favored by electron-withdrawing substituents. These results are consistent with an electron donor (smectite)-acceptor (substituted nitrobenzene) mechanism offered previously. However, quantum calculations did not reveal any systematic relationship between the Hammett constant and the electron density on the aromatic ring, which would explain a donor-acceptor relationship. Rather, electron density donated by a second substituent on nitrobenzene appears to be appropriated by the nitro group leaving ring electron density unchanged. Fourier transform infrared spectroscopy revealed shifts in the -NO2 vibrational modes of 1,3,5-trinitrobenzene (TNB) upon adsorption to K+-smectite that were consistent with the complexation of K+ by -NO2 groups. Such TNB vibrational shifts were not observed for SWy-1 saturated with more strongly hydrated cations (i.e., Na+, Mg2+, Ca2+, and Ba2+). The simultaneous interaction of multiple -NO2 groups with exchangeable K+ was indicated by molecular dynamic simulations. Adsorption of SNBs by smectite clays appears to result from the additive interactions of -NO2 groups and secondary substituents with interlayer K+ ions. Adsorption occurs to a greater or lesser extent depending on the abilities of substituents to complex additional interlayer cations and the water solubilities of SNBs. We conclude that the adsorption trends of SNBs on K-SAz-1 can be explained without recourse to hypothetical electron donor-acceptor complexes.
Xu, Huajun; Yang, Dan; Liu, Fenggang; Fu, Mingkai; Bo, Shuhui; Liu, Xinhou; Cao, Yuan
2015-11-28
In this work, we investigated the enhancement of the electro-optic response by introducing electron-rich heteroatoms as additional donors into the donor or bridge of a conventional second-order nonlinear optical chromophore. A series of chromophores C2-C4 based on the same tricyanofuran acceptor (TCF) but with different heteroatoms in the alkylamino phenyl donor (C2 or C3) or thiophene bridge (C4) have been synthesized and systematically investigated. Density functional theory calculations suggested that chromophores C2-C4 had a smaller energy gap and larger first-order hyperpolarizability (β) than traditional chromophore C1 due to the additional heteroatoms. Single crystal structure analyses and optimized configurations indicate that the rationally introduced heteroatom group would bring larger β and weaker intermolecular interactions which were beneficial for translating molecular β into macro-electro-optic activity in electric field poled films. The electro-optic coefficient of poled films containing 25 wt% of these new chromophores doped in amorphous poly-carbonate afforded values of 83 and 91 pm V(-1) at 1310 nm for chromophores C3 and C4, respectively, which are two times higher than that of the traditional chromophore C1 (39 pm V(-1)). High r33 values indicated that introducing heteroatoms to the donor and bridge of a conventional molecular structure can efficiently improve the electron-donating ability, which improves the β. The long-chain on the donor or bridge part, acting as the isolation group, may reduce inter-molecular electrostatic interactions, thus enhancing the macroscopic EO activity. These results, together with good solubility and compatibility with the polymer, show the new chromophore's potential application in electro-optic devices.
Oxidation of humic substances supports denitrification reactions in agricultural soils.
NASA Astrophysics Data System (ADS)
van Trump, J. I.; Coates, J. D.
2007-12-01
Humic substances (HS) are a ubiquitous, recalcitrant, and diverse class of compounds arising from degradation and condensation of plant and microbial biopolymers. Many bacteria oxidize hydroquinones within humic substances to their quinone analogs, providing electrons for respiratory processes such as nitrate reduction. Microbial hydroquinone oxidation contributes to the redox state of HS and supports denitrification, which may be of import to agricultural soils where nitrate retention is critical and HS are prevalent. Most probable number counts were performed on soils collected from a Nebraska farm, with the model humic hydroquinone 2,6- anthrahydroquinone disulfonate (AHDS) serving as an electron donor and nitrate as the electron acceptor. Results indicated that AHDS oxidizing, nitrate reducing bacteria were present in soils from bluegrass fields (104 cells/g) and aspen groves (106 cells/g), as well as in plots of corn (106 cells/g), and soybean treated (106 cells/g) and un-treated (105 cells/g) with pig slurry. These results demonstrate that microorganisms participating in the proposed metabolism are prevalent within agricultural soils. Upflow glass columns were constructed, containing a support matrix of glass beads amended with 10% w/w soil from the corn plot previously mentioned. All columns were subjected to a continual flow of phosphate-buffered water amended with sodium nitrate. Above the point source for nitrate injection, phosphate-buffered water containing electron donor treatments were continually injected. The impacts of electron donor treatments (no donor, oxidized HS, reduced HS, and acetate) on denitrification and other geochemical parameters were observed. Column studies were able to resolve effects of electron donor treatment both spatially as a function of distance from the injection point source, and temporally, as a function of time of donor treatment. Four sample ports in each column were routinely analyzed for concentrations of nitrate, nitrite, Fe(II), and humic-born hydroquinones. All data were analyzed with respect to dilution factors obtained through analysis of a conservative bromide tracer present in electron donor medium. Addition of oxidized HS, reduced HS, and acetate all resulted in significant loss of nitrate from the columns. Significant nitrite accumulation was not observed. Of all the electron donor treatments, reduced HS, enriched for hydroquinone-containing functional moieties, supported the greatest degree of denitrification. The participation of excess hydroquinones in denitrification accounted for approximately 104% of the difference in nitrate reduction between reduced and oxidized HS treatments. This electron balance allowed for assignment of respiratory activity due to hydroquinone oxidation, rather than degradation of humic substances or associated electron-donating compounds. These results suggest that denitrification reactions catalyzed by microbial oxidation of reduced HS may be prevalent in agricultural soils. Likewise, these results demonstrate for the first time that respiratory behavior due to hydroquinone oxidation, as well as impact upon local geochemistry, can be analyzed in complex flow-through model systems.
Hybrid super electron donors - preparation and reactivity.
Garnier, Jean; Thomson, Douglas W; Zhou, Shengze; Jolly, Phillip I; Berlouis, Leonard E A; Murphy, John A
2012-01-01
Neutral organic electron donors, featuring pyridinylidene-imidazolylidene, pyridinylidene-benzimidazolylidene and imidazolylidene-benzimidazolylidene linkages are reported. The pyridinylidene-benzimidazolylidene and imidazolylidene-benzimidazolylidene hybrid systems were designed to be the first super electron donors to convert iodoarenes to aryl radicals at room temperature, and indeed both show evidence for significant aryl radical formation at room temperature. The stronger pyridinylidene-imidazolylidene donor converts iodoarenes to aryl anions efficiently under appropriate conditions (3 equiv of donor). The presence of excess sodium hydride base has a very important and selective effect on some of these electron-transfer reactions, and a rationale for this is proposed.
Park, Sora; Seon, Jiyun; Byun, Imgyu; Cho, Sunja; Park, Taejoo; Lee, Taeho
2010-05-01
The applicability of modified spent caustic (MSC) as an electron donor for denitrification was evaluated in a lab-scale reactor for the Bardenpho process under various electron donor conditions: (A) no electron donor, (B) methanol, (C) thiosulfate and (D) MSC conditions. TN removal efficiency varied in each condition, 23.1%, 87.8%, 83.7% and 71.7%, respectively. The distribution ratio of nitrifying bacteria and DGGE profile including sulfur-reducing or oxidizing bacteria also varied depending on the conditions. These results indicated that the MSC would be used as an efficient electron donor for denitrification by autotrophic denitrifier in wastewater treatment process. Copyright 2009 Elsevier Ltd. All rights reserved.
Electric-field control of a hydrogenic donor's spin in a semiconductor
NASA Astrophysics Data System (ADS)
de, Amrit; Pryor, Craig E.; Flatté, Michael E.
2009-03-01
The orbital wave function of an electron bound to a single donor in a semiconductor can be modulated by an applied AC electric field, which affects the electron spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a single hydrogenic donor (Si) using a real-space multi-band k.p formalism show that in addition to breaking the high symmetry of the hydrogenic donor state, the g-tensor has a strong nonlinear dependence on the applied fields. By explicitly integrating the time dependent Schr"odinger equation it is seen that Rabi oscillations can be obtained for electric fields modulated at sub-harmonics of the Larmor frequency. The Rabi frequencies obtained from sub-harmonic modulation depend on the magnitudes of the AC and DC components of the electric field. For a purely AC field, the highest Rabi frequency is obtained when E is driven at the 2nd sub-harmonic of the Larmor frequency. Apart from suggesting ways to measure g-tensor anisotropies and nonlinearities, these results also suggest the possibility of direct frequency domain measurements of Rabi frequencies.
Pelaz, L; Gómez, A; Garralón, G; Letona, A; Fdz-Polanco, M
2017-11-01
A fixed film bioreactor for the denitrification of the effluent from an anaerobic membrane bioreactor (AnMBR) treating domestic wastewater was designed, built and investigated. After anaerobic treatment, the wastewater usually has a low C/N ratio (∼1.3), and a remaining chemical oxygen demand of around 117mg O 2 /L, which is not enough to make conventional heterotrophic denitrification possible. That effluent also holds methane and sulfide dissolved and oversaturated after leaving the AnMBR. This paper demonstrates the feasibility of using these reduced compounds as electron donors in order to remove 80mg NO x - -N/L at 18°C and 2h of hydraulic retention time. In addition, the influence of the NO 2 - /NO 3 - ratios in the feed was studied. Total nitrogen removal was achieved in all the cases studied, except for a feed with 100% NO 3 - . Methane was the main electron donor used to remove the nitrites and nitrates, with a participation rate of over 70%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self Organization in Compensated Semiconductors
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
2004-03-01
In partially compensated semiconductor (PCS) Fermi level is pinned to donor sub-band. Due to positional randomness and almost isoenergetic hoppings, donor-spanned electronic subsystem in PCS forms fluid-like highly mobile collective state. This makes PCS playground for pattern formation, self-organization, complexity emergence, electronic neural networks, and perhaps even for origins of life, bioevolution and consciousness. Through effects of impact and/or Auger ionization of donor sites, whole PCS may collapse (spinodal decomposition) into microblocks potentially capable of replication and protobiological activity (DNA analogue). Electronic screening effects may act in RNA fashion by introducing additional length scale(s) to system. Spontaneous quantum computing on charged/neutral sites becomes potential generator of informationally loaded microstructures akin to "Carl Sagan Effect" (hidden messages in Pi in his "Contact") or informational self-organization of "Library of Babel" of J.L. Borges. Even general relativity effects at Planck scale (R.Penrose) may affect the dynamics through (e.g.) isotopic variations of atomic mass and local density (A.A.Berezin, 1992). Thus, PCS can serve as toy model (experimental and computational) at interface of physics and life sciences.
Kurdrid, Pavinee; Subudhi, Sanjukta; Cheevadhanarak, Supapon; Tanticharoen, Morakot; Hongsthong, Apiradee
2007-12-01
When the gene desD encoding Spirulina Delta(6)-desaturase was heterologously expressed in E. coli, the enzyme was expressed without the ability to function. However, when this enzyme was co-expressed with an immediate electron donor, i.e. the cytochrome b (5) domain from Mucor rouxii, the results showed the production of GLA (gamma-linolenic acid), the product of the reaction catalyzed by Delta(6)-desaturase. The results revealed that in E. coli cells, where cytochrome b (5) is absent and ferredoxin, a natural electron donor of Delta(6)-desaturase, is present at a very low level, the cytochrome b (5) domain can complement for the function of ferredoxin in the host cells. In the present study, the Spirulina-ferredoxin gene was cloned and co-expressed with the Delta(6)-desaturase in E. coli. In comparison to the co-expression of cytochrome b ( 5 ) with the Delta(6)-desaturase, the co-expression with ferredoxin did not cause any differences in the GLA level. Moreover, the cultures containing the Delta(6)-desaturase co-expressed with cytochrome b (5) and ferredoxin were exogenously supplied with the intermediate electron donors, NADPH (nicotinamide adenine dinucleotide phosphate, reduced form) and FADH(2) (flavin adenine dinucleotide, reduced form), respectively. The GLA level in these host cells increased drastically, by approximately 50%, compared to the cells without the intermediate electron donors. The data indicated that besides the level of immediate electron donors, the level of intermediate electron donors is also critical for GLA production. Therefore, if the pools of the immediate and intermediate electron donors in the cells are manipulated, the GLA production in the heterologous host will be affected.
Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel
2007-01-08
Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.
Hexavalent Chromate Reductase Activity in Cell Free Extracts of Penicillium sp.
Arévalo-Rangel, Damaris L.; Cárdenas-González, Juan F.; Martínez-Juárez, Víctor M.; Acosta-Rodríguez, Ismael
2013-01-01
A chromium-resistant fungus isolated from contaminated air with industrial vapors can be used for reducing toxic Cr(VI) to Cr(III). This study analyzes in vitro reduction of hexavalent chromium using cell free extract(s) of the fungus that was characterized based on optimal temperature, pH, use of electron donors, metal ions and initial Cr(VI) concentration in the reaction mixture. This showed the highest activity at 37°C and pH 7.0; there is an increase in Cr(VI) reductase activity with addition of NADH as an electron donor, and it was highly inhibited by Hg2+, Ca2+ and Mg2+, and azide, EDTA, and KCN. PMID:24027493
Hoeft, Shelley E.; Kulp, Thomas R.; Stolz, John F.; Hollibaugh, James T.; Oremland, Ronald S.
2004-01-01
Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3− into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the δ-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.
NASA Astrophysics Data System (ADS)
Samanta, Arup; Muruganathan, Manoharan; Hori, Masahiro; Ono, Yukinori; Mizuta, Hiroshi; Tabe, Michiharu; Moraru, Daniel
2017-02-01
Quantum dots formed by donor-atoms in Si nanodevices can provide a breakthrough for functionality at the atomic level with one-by-one control of electrons. However, single-electron effects in donor-atom devices have only been observed at low temperatures mainly due to the low tunnel barriers. If a few donor-atoms are closely coupled as a molecule to form a quantum dot, the ground-state energy level is significantly deepened, leading to higher tunnel barriers. Here, we demonstrate that such an a-few-donor quantum dot, formed by selective conventional doping of phosphorus (P) donors in a Si nano-channel, sustains Coulomb blockade behavior even at room temperature. In this work, such a quantum dot is formed by 3 P-donors located near the center of the selectively-doped area, which is consistent with a statistical analysis. This finding demonstrates practical conditions for atomic- and molecular-level electronics based on donor-atoms in silicon nanodevices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savchenko, D., E-mail: dariyasavchenko@gmail.com; National Technical University of Ukraine “Kyiv Polytechnic Institute,” Kyiv 03056; Shanina, B.
2016-04-07
We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation “sandwich method” (SSM) with a donor concentration of about 10{sup 17 }cm{sup −3} at T = 10–40 K. The donor electrons of the N donors substituting quasi-cubic “k1” and “k2” sites (N{sub k1,k2}) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T{sub 1}{sup −1}), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T{sup 9}, respectively. Themore » character of the temperature dependence of the T{sub 1}{sup −1} for the donor electrons of N substituting hexagonal (“h”) site (N{sub h}) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (T{sub m}{sup −1}) with the temperature increase for the N{sub h} donors in both types of the samples, as well as for the N{sub k1,k2} donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time T{sub m} for the N{sub k1,k2} donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at N{sub h} and N{sub k1,k2} sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.« less
Hao, Yan; Yang, Wenxing; Zhang, Lei; Jiang, Roger; Mijangos, Edgar; Saygili, Yasemin; Hammarström, Leif; Hagfeldt, Anders; Boschloo, Gerrit
2016-01-01
Photoelectrochemical approach to solar energy conversion demands a kinetic optimization of various light-induced electron transfer processes. Of great importance are the redox mediator systems accomplishing the electron transfer processes at the semiconductor/electrolyte interface, therefore affecting profoundly the performance of various photoelectrochemical cells. Here, we develop a strategy—by addition of a small organic electron donor, tris(4-methoxyphenyl)amine, into state-of-art cobalt tris(bipyridine) redox electrolyte—to significantly improve the efficiency of dye-sensitized solar cells. The developed solar cells exhibit efficiency of 11.7 and 10.5%, at 0.46 and one-sun illumination, respectively, corresponding to a 26% efficiency improvement compared with the standard electrolyte. Preliminary stability tests showed the solar cell retained 90% of its initial efficiency after 250 h continuous one-sun light soaking. Detailed mechanistic studies reveal the crucial role of the electron transfer cascade processes within the new redox system. PMID:28000672
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wensui; Zhou, Jizhong; Wu, Weimin
2007-01-01
A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonatemore » (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponomarenko, N. S.; Poluektov, O. G.; Bylina, E. J.
High-field electron paramagnetic resonance (HF EPR) has been employed to investigate the primary electron donor electronic structure of Blastochloris viridis heterodimer mutant reaction centers (RCs). In these mutants the amino acid substitution His(M200)Leu or His(L173)Leu eliminates a ligand to the primary electron donor, resulting in the loss of a magnesium in one of the constituent bacteriochlorophylls (BChl). Thus, the native BChl/BChl homodimer primary donor is converted into a BChl/bacteriopheophytin (BPhe) heterodimer. The heterodimer primary donor radical in chemically oxidized RCs exhibits a broadened EPR line indicating a highly asymmetric distribution of the unpaired electron over both dimer constituents. Observed tripletmore » state EPR signals confirm localization of the excitation on the BChl half of the heterodimer primary donor. Theoretical simulation of the triplet EPR lineshapes clearly shows that, in the case of mutants, triplet states are formed by an intersystem crossing mechanism in contrast to the radical pair mechanism in wild type RCs. Photooxidation of the mutant RCs results in formation of a BPhe anion radical within the heterodimer pair. The accumulation of an intradimer BPhe anion is caused by the substantial loss of interaction between constituents of the heterodimer primary donor along with an increase in the reduction potential of the heterodimer primary donor D/D{sup +} couple. This allows oxidation of the cytochrome even at cryogenic temperatures and reduction of each constituent of the heterodimer primary donor individually. Despite a low yield of primary donor radicals, the enhancement of the semiquinone-iron pair EPR signals in these mutants indicates the presence of kinetically viable electron donors.« less
Novel High Efficient Organic Photovoltaic Materials
NASA Technical Reports Server (NTRS)
Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)
2001-01-01
In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder the electron-hole recombination. Thus, improved charge separation is expected. In addition, charge migration will also be facilitated due to the expected nano-phase separated and highly ordered block copolymer ultrastructural. The combination of all these factors will result in significant overall enhancement of photovoltaic power conversion efficiency.
Application of acetate, lactate, and fumarate as electron donors in microbial fuel cell
NASA Astrophysics Data System (ADS)
Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.
2013-09-01
Microbial fuel cells (MFCs) are devices that use bacteria as the catalysts to oxidize organic and inorganic matter and generate current. Up to now, several classes of extracellular electron transfer mechanisms have been elucidated for various microorganisms. Shewanellaceae and Geobacteraceae families include the most of model exoelectrogenic microorganisms. Desulfuromonas acetoxidans bacterium inhabits aquatic sedimental sulfur-containing environments and is philogenetically close to representatives of Geobacteraceae family. Two chamber microbial fuel cell (0.3 l volume) was constructed with application of D. acetoxidans IMV B-7384 as anode biocatalyst. Acetic, lactic and fumaric acids were separately applied as organic electron donors for bacterial growth in constructed MFC. Bacterial cultivation in MFC was held during twenty days. Lactate oxidation caused electric power production with the highest value up to 0.071 mW on 64 hour of D. acetoxidans IMV B-7384 growth. Addition of acetic and fumaric acids into bacterial growth medium caused maximal power production up to 0.075 and 0.074 mW respectively on the 40 hour of their growth. Increasing of incubation time up to twentieth day caused decrease of generated electric power till 0.018 mW, 0.042 mW and 0.047 mW under usage of lactic, acetic and fumaric acids respectively by investigated bacteria. Power generation by D. acetoxidans IMV B-7384 was more stabile and durable under application of acetic and fumaric acids as electron donors in constructed MFC, than under addition of lactic acid in the same concentration into the growth medium.
Huang, Jingang; Chu, Shushan; Chen, Jianjun; Chen, Yi; Xie, Zhengmiao
2014-06-01
The multiple effects of henna plant biomass as a source of carbon, electron donor, and redox mediator (RM) on the enhanced bio-reduction of Orange II (AO7) were investigated. The results indicated that the maximum AO7 reduction rate in the culture with henna powder was ∼6-fold that in the sludge control culture lacking henna. On the one hand, AO7 reduction can be advantageously enhanced by the release of available electron donors; on the other hand, the associated lawsone can act as a fixed RM and play a potential role in shuttling electrons from the released electron donors to the final electron acceptor, AO7. The soluble chemical oxygen demand (SCOD) during each experiment and the FTIR spectra suggested that the weakened AO7 reduction along with the retention of henna powder might not be attributed to the lack of fixed lawsone but rather to the insufficiency of electron donors. Copyright © 2014 Elsevier Ltd. All rights reserved.
ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon
NASA Astrophysics Data System (ADS)
Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm
In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.
Luo, Shuai; Guo, Weihua; Nealson, Kenneth H; Feng, Xueyang; He, Zhen
2016-02-12
Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and (13)C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the (13)C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that (13)C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms.
Solvent as electron donor: Donor/acceptor electronic coupling is a dynamical variable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castner, E.W. Jr.; Kennedy, D.; Cave, R.J.
2000-04-06
The authors combine analysis of measurements by femtosecond optical spectroscopy, computer simulations, and the generalized Mulliken-Hush (GMH) theory in the study of electron-transfer reactions and electron donor-acceptor interactions. The study focus is on ultrafast photoinduced electron-transfer reactions from aromatic amine solvent donors to excited-state acceptors. The experimental results from femtosecond dynamical measurements fall into three categories: six coumarin acceptors reductively quenched by N,N-dimethylaniline (DMA), eight electron-donating amine solvents reductively quenching coumarin 152 (7-(dimethylamino)-4-(trifluoromethyl)-coumarin), and reductive quenching dynamics of two coumarins by DMA as a function of dilution in the nonreactive solvents toluene and chlorobenzene. Applying a combination of molecular dynamicsmore » trajectories, semiempirical quantum mechanical calculations (of the relevant adiabatic electronic states), and GMH theory to the C152/DMA photoreaction, the authors calculate the electron donor/acceptor interaction parameter H{sub DA} at various time frames, H{sub DA} is strongly modulated by both inner-sphere and outer-sphere nuclear dynamics, leading us to conclude that H{sub DA} must be considered as a dynamical variable.« less
Methods for the synthesis of donor-acceptor cyclopropanes
NASA Astrophysics Data System (ADS)
Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.
2018-03-01
The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.
Mössbauer study of iron minerals transformations by Fuchsiella ferrireducens
NASA Astrophysics Data System (ADS)
Gracheva, M. A.; Chistyakova, N. I.; Antonova, A. V.; Rusakov, V. S.; Zhilina, T. N.; Zavarzina, D. G.
2017-11-01
Biogenic transformations of iron-containing minerals synthesized ferrihydrite, magnetite and hydrothermal siderite by anaerobic alkaliphilic bacterium Fuchsiella ferrireducens (strain Z-7101T) were studied by 57Fe Mössbauer spectroscopy. Mössbauer investigations of solid phase samples obtained after microbial transformation were carried out at room temperature and at 82 K. It was found that all tested minerals transformed during bacterial growth. In the presence of synthesized ferrihydrite, added as an electron acceptor, a mixture of large (more than 100 nm) and small (˜5 nm) particles of magnetically ordered phase and siderite was formed. Synthesized magnetite that contains both Fe3+ and Fe2+ forms could serve as electron acceptor as well as an electron donor for F.ferrireducens growth. As a result of its biotransformation, no siderite formation was observed while small particles of magnetite were formed. In the case of the addition of siderite as an electron donor formation of a small amount of a new phase containing Fe2+ caused by recrystallization of siderite during bacterial growth was detected.
NASA Astrophysics Data System (ADS)
Amerikheirabadi, Fatemeh
Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.
Meng, L; Matsuno, N; Watanabe, K; Furukori, M; Obara, H; Bochimoto, H; Watanabe, T; Fukukawa, H
2016-09-01
The shortage of organ donors is a universal problem. Use of grafts from donors after cardiac death would greatly contribute to the expansion of the donor organ pool. The two major methods of preservation are cold storage and machine perfusion (MP) preservation, and each has its own advantages. Several studies have reported the relative merits of MP for the preservation for grafts from donors after cardiac death. In this study, we used scanning electron microscopy (SEM) to assess the damage to the liver between hypothermic and rewarming preservation conditions. Porcine livers were perfused with a newly developed MP system. The livers were perfused for 4 hours with a modified University of Wisconsin solution-gluconate solution. In group 1, grafts were preserved with warm ischemic time for 60 minutes and hypothermic machine perfusion (HMP) for 4 hours. In group 2, grafts were preserved with warn ischemic time for 60 minutes and had rewarming up to 22°C by MP (RMP) for 4 hours. A significant enlargement of the mitochondria were observed in both the HMP and RMP groups under higher magnification, Additionally, vacuoles appeared occasionally in hepatocytes in the RMP for 4 hours group, but not in the HMP for 4 hours group. An analysis by scanning electron microscope appears to be useful to evaluate the levels of damage of hepatocytes compared with transmission electron microscopy, and further study is needed to analyze the significance of the appearance of swelling of mitochondria and vacuolization during preservation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, Anindita; Cao, Wenrui; Zhang, Hongjie; Saren, Gaowa; Jiang, Mingyu; Yu, Xinke
2017-11-01
Oceanic stretches experiencing perpetual darkness and extreme limitation of utilizable organic matter often rely on chemosynthetic carbon (C)-fixation. However, C-fixation is not limited to carbon-deplete environments alone but might also occur in varying degrees in carbon-replete locales depending on the nature and concentration of utilizable carbon, electron donors and acceptors. Quantification of microbial C-fixation and relative contribution of domains bacteria and archaea are therefore crucial. The present experiment estimates the differential rates of C-fixation by archaea and bacteria along with the effects of different electron donors. Four Sino-Pacific marine sediments from Bashi strait (Western Pacific Warm Pool), East China Sea, South China Sea and Okinawa Trough were examined. Total microbial C-uptake was estimated by doping of aqueous NaH14CO3. Total bacterial C-uptake was measured by blocking archaeal metabolism using inhibitor GC7. Archaeal contribution was estimated by subtracting total bacterial from total microbial C-uptake. Effect of electron donor addition was analyzed by spiking with ammonium, sulfide, and reduced metals. Results suggested that C-fixation in marine sediments was not the function of archaea alone, which was in contrast to results from several recent publications. C-fixing bacteria are also equally active. Often in spite of great effort of one domain to fix carbon, the system does not become net C-fixing due to equal and opposite C-releasing activity of the other domain. Thus a C-releasing bacterial or archaeal community can become C-fixing with the change of nature and concentration of electron donors.
Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo
2006-01-12
The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.
Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi
2007-08-15
A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. (c) 2007 Wiley Periodicals, Inc.
Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.
Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa
2005-11-01
Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.
Fine Splitting of Electron States in Silicon Nanocrystal with a Hydrogen-like Shallow Donor
2007-01-01
Electron structure of a silicon quantum dot doped with a shallow hydrogen-like donor has been calculated for the electron states above the optical gap. Within the framework of the envelope-function approach we have calculated the fine splitting of the ground sixfold degenerate electron state as a function of the donor position inside the quantum dot. Also, dependence of the wave functions and energies on the dot size was obtained.
The significance of microbial processes in hydrogeology and geochemistry
Chapelle, F.H.
2000-01-01
Microbial processes affect the chemical composition of groundwater and the hydraulic properties of aquifers in both contaminated and pristine groundwater systems. The patterns of water-chemistry changes that occur depend upon the relative abundance of electron donors and electron acceptors. In many pristine aquifers, where microbial metabolism is limited by the availability of electron donors (usually organic matter), dissolved inorganic carbon (DIC) accumulates slowly along aquifer flow paths and available electron acceptors are consumed sequentially in the order dissolved oxygen > nitrate > Fe(III) > sulfate > CO2 (methanogenesis). In aquifers contaminated by anthropogenic contaminants, an excess of available organic carbon often exists, and microbial metabolism is limited by the availability of electron acceptors. In addition to changes in groundwater chemistry, the solid matrix of the aquifer is affected by microbial processes. The production of carbon dioxide and organic acids can lead to increased mineral solubility, which can lead to the development of secondary porosity and permeability. Conversely, microbial production of carbonate, ferrous iron, and sulfide can result in the precipitation of secondary calcite or pyrite cements that reduce primary porosity and permeability in groundwater systems.
NASA Astrophysics Data System (ADS)
Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando
2016-08-01
Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices. Electronic supplementary information (ESI) available: Synthesis, TGA, FTIR, AFM and XPS data, UV-vis and transient absorption spectra (Fig. S1-S15 and Tables S1 and S2). See DOI: 10.1039/c6nr02829b
Bai, Yang; Zhou, Zhong-Jun; Wang, Jia-Jun; Li, Ying; Wu, Di; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung
2013-04-04
Using the strong electron hole cage C20F19 acceptor, the NH2...M/M3O (M = Li, Na, and K) complicated donors with excess electron, and the unusual σ chain (CH2)4 bridge, we construct a new kind of electride molecular salt e(-)@C20F19-(CH2)4-NH2...M(+)/M3O(+) (M = Li, Na, and K) with excess electron anion inside the hole cage (to be encapsulated excess electron-hole pair) serving as a new A-B-D strategy for enhancing nonlinear optical (NLO) response. An interesting push-pull mechanism of excess electron generation and its long-range transfer is exhibited. The excess electron is pushed out from the (super)alkali atom M/M3O by the lone pair of NH2 in the donor and further pulled inside the hole cage C20F19 acceptor through the efficient long σ chain (CH2)4 bridge. Owing to the long-range electron transfer, the new designed electride molecular salts with the excess electron-hole pair exhibit large NLO response. For the e(-)@C20F19-(CH2)4-NH2...Na(+), its large first hyperpolarizability (β0) reaches up to 9.5 × 10(6) au, which is about 2.4 × 10(4) times the 400 au for the relative e(-)@C20F20...Na(+) without the extended chain (CH2)4-NH2. It is shown that the new strategy is considerably efficient in enhancing the NLO response for the salts. In addition, the effects of different bridges and alkali atomic number on β0 are also exhibited. Further, three modulating factors are found for enhancing NLO response. They are the σ chain bridge, bridge-end group with lone pair, and (super)alkali atom. The new knowledge may be significant for designing new NLO materials and electronic devices with electrons inside the cages. They may also be the basis of establishing potential organic chemistry with electron-hole pair.
Origin and roles of oxygen impurities in hexagonal boron nitride epilayers
NASA Astrophysics Data System (ADS)
Grenadier, S. J.; Maity, A.; Li, J.; Lin, J. Y.; Jiang, H. X.
2018-04-01
Photoluminescence emission spectroscopy and electrical transport measurements have been employed to study the origin and roles of oxygen impurities in hexagonal boron nitride (h-BN) epilayers grown on sapphire substrates. The temperature dependence of the electrical resistivity revealed the presence of a previously unnoticed impurity level of about 0.6 eV in h-BN epilayers grown at high temperatures. The results suggested that in addition to the common nitrogen vacancy (VN) shallow donors in h-BN, oxygen impurities diffused from sapphire substrates during high temperature growth also act as substitutional donors (ON). The presence of ON gives rise to an additional emission peak in the photoluminescence spectrum, corresponding to a donor-acceptor pair recombination involving the ON donor and the CN (carbon occupying nitrogen site) deep level acceptor. Moreover, due to the presence of ON donors, the majority charge carrier type changed to electrons in epilayers grown at high temperatures, in contrast to typical h-BN epilayers which naturally exhibit "p-type" character. The results provided a more coherent picture for common impurities/defects in h-BN as well as a better understanding of the growth mediated impurities in h-BN epilayers, which will be helpful for finding possible ways to further improve the quality and purity of this emerging material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homnick, Paul J.; Lahti, P. M.
2012-01-01
Push–pull organic molecules composed of electron donor diarylamines at the 2- and 2,7-positions of fluorenone exhibit intramolecular charge-transfer behaviour in static absorption and emission spectra. Electrochemical and spectral data combined in a modular electronic analysis model show how the donor HOMO and acceptor LUMO act as major determinants of the frontier molecular orbital energy levels.
NASA Technical Reports Server (NTRS)
Morre, D. James
2002-01-01
The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.
An Electron-bifurcating Caffeyl-CoA Reductase*
Bertsch, Johannes; Parthasarathy, Anutthaman; Buckel, Wolfgang; Müller, Volker
2013-01-01
A low potential electron carrier ferredoxin (E0′ ≈ −500 mV) is used to fuel the only bioenergetic coupling site, a sodium-motive ferredoxin:NAD+ oxidoreductase (Rnf) in the acetogenic bacterium Acetobacterium woodii. Because ferredoxin reduction with physiological electron donors is highly endergonic, it must be coupled to an exergonic reaction. One candidate is NADH-dependent caffeyl-CoA reduction. We have purified a complex from A. woodii that contains a caffeyl-CoA reductase and an electron transfer flavoprotein. The enzyme contains three subunits encoded by the carCDE genes and is predicted to have, in addition to FAD, two [4Fe-4S] clusters as cofactor, which is consistent with the experimental determination of 4 mol of FAD, 9 mol of iron, and 9 mol of acid-labile sulfur. The enzyme complex catalyzed caffeyl-CoA-dependent oxidation of reduced methyl viologen. With NADH as donor, it catalyzed caffeyl-CoA reduction, but this reaction was highly stimulated by the addition of ferredoxin. Spectroscopic analyses revealed that ferredoxin and caffeyl-CoA were reduced simultaneously, and a stoichiometry of 1.3:1 was determined. Apparently, the caffeyl-CoA reductase-Etf complex of A. woodii uses the novel mechanism of flavin-dependent electron bifurcation to drive the endergonic ferredoxin reduction with NADH as reductant by coupling it to the exergonic NADH-dependent reduction of caffeyl-CoA. PMID:23479729
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shubin, E-mail: shubin@email.unc.edu
Electrophilic aromatic substitution as one of the most fundamental chemical processes is affected by atoms or groups already attached to the aromatic ring. The groups that promote substitution at the ortho/para or meta positions are, respectively, called ortho/para and meta directing groups, which are often characterized by their capability to donate electrons to or withdraw electrons from the ring. Though resonance and inductive effects have been employed in textbooks to explain this phenomenon, no satisfactory quantitative interpretation is available in the literature. Here, based on the theoretical framework we recently established in density functional reactivity theory (DFRT), where electrophilicity andmore » nucleophilicity are simultaneously quantified by the Hirshfeld charge, the nature of ortho/para and meta group directing is systematically investigated for a total of 85 systems. We find that regioselectivity of electrophilic attacks is determined by the Hirshfeld charge distribution on the aromatic ring. Ortho/para directing groups have most negative charges on the ortho/para positions, while meta directing groups often possess the largest negative charge on the meta position. Our results do not support that ortho/para directing groups are electron donors and meta directing groups are electron acceptors. Most neutral species we studied here are electron withdrawal in nature. Anionic systems are always electron donors. There are also electron donors serving as meta directing groups. We predicted ortho/para and meta group directing behaviors for a list of groups whose regioselectivity is previously unknown. In addition, strong linear correlations between the Hirshfeld charge and the highest occupied molecular orbital have been observed, providing the first link between the frontier molecular orbital theory and DFRT.« less
Wang, Yanlan; Monfredini, Anna; Deyris, Pierre-Alexandre; Blanchard, Florent; Derat, Etienne; Malacria, Max
2017-01-01
We present that cationic rings can act as donor ligands thanks to suitably delocalized metal–metal bonds. This could grant parent complexes with the peculiar properties of aromatic rings that are crafted with main group elements. We assembled Pd nuclei into equilateral mono-cationic triangles with unhindered faces. Like their main group element counterparts and despite their positive charge, these noble-metal rings form stable bonding interactions with other cations, such as positively charged silver atoms, to deliver the corresponding tetranuclear dicationic complexes. Through a mix of modeling and experimental techniques we propose that this bonding mode is an original coordination-like one rather than a 4-centre–2-electron bond, which have already been observed in three dimensional aromatics. The present results thus pave the way for the use of suitable metal rings as ligands. PMID:29163890
Luo, Shuai; Guo, Weihua; H. Nealson, Kenneth; Feng, Xueyang; He, Zhen
2016-01-01
Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and 13C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the 13C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that 13C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms. PMID:26868848
Ahn, Se Chang; Hubbard, Brian; Cha, Daniel K; Kim, Byung J
2014-01-01
Ammonium perchlorate is one of the main constituents in Army's insensitive melt-pour explosive, PAX-21 in addition to RDX and 2,4-dinitroanisole (DNAN). The objective of this study is to develop an innovative treatment process to remove both perchlorate and energetic compounds simultaneously from PAX-21 production wastewater. It was hypothesized that the pretreatment of PAX-21 wastewater with zero-valent iron (ZVI) would convert energetic compounds to products that are more amenable for biological oxidation and that these products serve as electron donors for perchlorate-reducing bacteria. Results of batch ZVI reduction experiments showed that DNAN was completely reduced to 2,4-diaminoanisole and RDX was completely reduced to formaldehyde. Anaerobic batch biodegradation experiments showed that perchlorate (30 mg L(-1)) in ZVI-treated PAX-21 wastewater was decreased to an undetectable level after 5 days. Batch biodegradation experiments also confirmed that formaldehyde in ZVI-treated wastewater was the primary electron donor for perchlorate-respiring bacteria. The integrated iron-anaerobic bioreactor system was effective in completely removing energetic compounds and perchlorate from the PAX-21 wastewater without adding an exogenous electron donor. This study demonstrated that ZVI pretreatment not only removed energetic compounds, but also transformed energetic compounds to products that can serve as the source of electrons for perchlorate-respiring bacteria.
NASA Astrophysics Data System (ADS)
Jang, Seogjoo
2007-11-01
The Förster resonance energy transfer theory is generalized for inelastic situations with quantum mechanical modulation of the donor-acceptor coupling. Under the assumption that the modulations are independent of the electronic excitation of the donor and the acceptor, a general rate expression is derived, which involves two dimensional frequency-domain convolution of the donor emission line shape, the acceptor absorption line shape, and the spectral density of the modulation of the donor-acceptor coupling. For two models of modulation, detailed rate expressions are derived. The first model is the fluctuation of the donor-acceptor distance, approximated as a quantum harmonic oscillator coupled to a bath of other quantum harmonic oscillators. The distance fluctuation results in additional terms in the rate, which in the small fluctuation limit depend on the inverse eighth power of the donor-acceptor distance. The second model is the fluctuation of the torsional angle between the two transition dipoles, which is modeled as a quantum harmonic oscillator coupled to a bath of quantum harmonic oscillators and causes sinusoidal modulation of the donor-acceptor coupling. The rate expression has new elastic and inelastic terms, depending sensitively on the value of the minimum energy torsional angle. Experimental implications of the present theory and some of the open theoretical issues are discussed.
NASA Astrophysics Data System (ADS)
Löfgren, Robin; Pawar, Ravinder; Öberg, Sven; Larsson, J. Andreas
2018-02-01
Charged defects are traditionally computed by adding (subtracting) electrons for negative (positive) impurities. When using periodic boundary conditions this results in artificially charged supercells that also require a compensating background charge of the opposite sign, which makes slab supercells problematic because of an arbitrary dependence on the vacuum thickness. In this work, we test the method of using neutral supercells through the use of a substitutional electron donor (acceptor) to describe charged systems. We use density functional theory (DFT) to compare the effects of charging the well-studied NV-center in diamond by a substitutional donor nitrogen. We investigate the influence of the donor-N on the NV-center properties as a function of the distance between them, and find that they converge toward those obtained when adding an electron. We analyze the spin density and conclude that the donor-N has a zero magnetic moment, and thus, will not be seen in electron spin resonance. We validate our DFT energies through comparison to GW simulations. Charging the NV-center with a substitutional donor-N enables accurate calculations of slabs, without the ambiguity of using charged supercells. Implantation of donor-N atoms opens up the possibility to engineer NV-centers with the desired charge state for future ICT and sensor applications.
Pinzón, Julio R.; Gasca, Diana C.; Shankara, Gayathri. S; Bottari, Giovanni; Torres, Tomás; Guldi, Dirk M.; Echegoyen, Luis
2009-01-01
Two isomeric [5,6]-pyrrolidine-Ih-Sc3N@C80 electron donor acceptor conjugates containing triphenylamine (TPA) as the donor system were synthesized. Electrochemical and photophysical studies of the novel conjugates were made and compared with those of their C60 analogues, in order to determine i) the effect of the linkage position (N-substituted versus 2-substituted pyrrolidine) of the donor system in the formation of photoinduced charge separated states, ii) the thermal stability towards the retro-cycloaddition reaction and iii) the effect of changing C60 for Ih-Sc3N@C80 as the electron acceptor. It was found that when the donor is connected to the pyrrolidine nitrogen atom, the resulting dyad produces a significantly longer lived radical pair than the corresponding 2-substituted isomer for both the C60 and Ih-Sc3N@C80 dyads. In addition to that, the N-substituted TPA-Ih-Sc3N@C80 dyad has much better thermal stability than the 2-subtituted one. Finally, the Ih-Sc3N@C80 dyads have considerably longer lived charge separated states than their C60 analogues, thus approving the advantage of using Ih-Sc3N@C80 instead of C60 as the acceptor for the construction of fullerene based donor acceptor conjugates. These findings are important for the design and future application of Ih-Sc3N@C80 dyads as materials for the construction of plastic organic solar cells. PMID:19445462
Autotrophic antimonate bio-reduction using hydrogen as the electron donor.
Lai, Chun-Yu; Wen, Li-Lian; Zhang, Yin; Luo, Shan-Shan; Wang, Qing-Ying; Luo, Yi-Hao; Chen, Ran; Yang, Xiaoe; Rittmann, Bruce E; Zhao, He-Ping
2016-01-01
Antimony (Sb), a toxic metalloid, is soluble as antimonate (Sb(V)). While bio-reduction of Sb(V) is an effective Sb-removal approach, its bio-reduction has been coupled to oxidation of only organic electron donors. In this study, we demonstrate, for the first time, the feasibility of autotrophic microbial Sb(V) reduction using hydrogen gas (H2) as the electron donor without extra organic carbon source. SEM and EDS analysis confirmed the production of the mineral precipitate Sb2O3. When H2 was utilized as the electron donor, the consortium was able to fully reduce 650 μM of Sb(V) to Sb(III) in 10 days, a rate comparable to the culture using lactate as the electron donor. The H2-fed culture directed a much larger fraction of it donor electrons to Sb(V) reduction than did the lactate-fed culture. While 98% of the electrons from H2 were used to reduce Sb(V) by the H2-fed culture, only 12% of the electrons from lactate was used to reduce Sb(V) by the lactate-fed culture. The rest of the electrons from lactate went to acetate and propionate through fermentation, to methane through methanogenesis, and to biomass synthesis. High-throughput sequencing confirmed that the microbial community for the lactate-fed culture was much more diverse than that for the H2-fed culture, which was dominated by a short rod-shaped phylotype of Rhizobium (α-Protobacteria) that may have been active in Sb(V) reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hardman, Samantha J O; Pudney, Christopher R; Hay, Sam; Scrutton, Nigel S
2013-12-03
In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Spin-orbit coupling induced two-electron relaxation in silicon donor pairs
NASA Astrophysics Data System (ADS)
Song, Yang; Das Sarma, S.
2017-09-01
We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.
OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400
Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. This organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of bipheny...
Liepins, R.; Aldissi, M.
1984-07-27
Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.
Liepins, Raimond; Aldissi, Mahmoud
1988-01-01
Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.
Spin noise spectroscopy of ZnO
NASA Astrophysics Data System (ADS)
Horn, H.; Berski, F.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.; Hübner, J.; Oestreich, M.
2013-12-01
We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.
Carbon Monoxide as an Electron Donor for the Biological Reduction of Sulphate
Parshina, Sofiya N.; Sipma, Jan; Henstra, Anne Meint; Stams, Alfons J. M.
2010-01-01
Several strains of Gram-negative and Gram-positive sulphate-reducing bacteria (SRB) are able to use carbon monoxide (CO) as a carbon source and electron donor for biological sulphate reduction. These strains exhibit variable resistance to CO toxicity. The most resistant SRB can grow and use CO as an electron donor at concentrations up to 100%, whereas others are already severely inhibited at CO concentrations as low as 1-2%. Here, the utilization, inhibition characteristics, and enzymology of CO metabolism as well as the current state of genomics of CO-oxidizing SRB are reviewed. Carboxydotrophic sulphate-reducing bacteria can be applied for biological sulphate reduction with synthesis gas (a mixture of hydrogen and carbon monoxide) as an electron donor. PMID:20628586
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zybert, M.; Marchweka, M.; Sheregii, E. M.
Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at mega-gauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6 to 300 K. The 14 x 14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magneto-donor states in the GaAs wells and possibly in the AlGaAs barriers. The magneto-donor energies are calculated using a variationalmore » procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed mengeto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.« less
Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
Biffinger, Justin C; Byrd, Jacqueline N; Dudley, Breanna L; Ringeisen, Bradley R
2008-01-18
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the presence of oxygen, power densities of 270+/-10, 350+/-20, and 120+/-10 W/m(3) were recorded from the mini-MFC for glucose, fructose, and ascorbic acid electron donors, respectively, while sucrose and acetate produced no response. The power produced from glucose decreased considerably (
NASA Astrophysics Data System (ADS)
Caicedo, Mauricio; Echeverry, Carlos A.; Guimarães, Robson R.; Ortiz, Alejandro; Araki, Koiti; Insuasty, Braulio
2017-04-01
In this work, we present the synthesis of novel donor-acceptor compounds based on 3-methylquinoxaline-2(1H)one which follow an easy synthetic route, involving Knoevenagel reaction with electron-donor groups such as N,N-dimethylaminobenzene, ferrocene, triphenylamine (TPA) and ((E)-4,4'-(ethene-1,2-diyl) bis (N,N-diphenylaniline). Additionally, the optical properties were measured by means of the absorption and emission spectroscopy suggesting a push-pull behavior which was further confirmed by electrochemical experiments. Finally, the quinoxaline-2(1H)one fragment not only bestow wide absorption, but also can chelate to titanium ions on the TiO2 surface, allowing a strong electron coupling between the excited-state energy level of the dyes and the conduction band of TiO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cave, R.J.; Newton, M.D.; Kumar, K.
1995-12-07
The recently developed generalized Mulliken-Hush approach for the calculation of the electronic coupling matrix element for electron-transfer processes is applied to two rigidly linked donor-bridge-acceptor systems having dimethoxyanthracene as the donor and a dicarbomethoxycyclobutene unit as the acceptor. The dependence of the electronic coupling matrix element as a function of bridge type is examined with and without solvent molecules present. For clamp-shaped bridge structures solvent can have a dramatic effect on the electronic coupling matrix element. The behavior with variation of solvent is in good agreement with that observed experimentally for these systems. 23 refs., 2 tabs.
Spin Measurements of an Electron Bound to a Single Phosphorous Donor in Silicon
NASA Astrophysics Data System (ADS)
Luhman, D. R.; Nguyen, K.; Tracy, L. A.; Carr, S. M.; Borchardt, J.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J.; Carroll, M. S.; Lilly, M. P.
2014-03-01
The spin of an electron bound to a single donor implanted in silicon is potentially useful for quantum information processing. We report on our efforts to measure and manipulate the spin of an electron bound to a single P donor in silicon. A low number of P donors are implanted using a self-aligned process into a silicon substrate in close proximity to a single-electron-transistor (SET) defined by lithographically patterned polysilicon gates. The SET is used to sense the occupancy of the electron on the donor and for spin read-out. An adjacent transmission line allows the application of microwave pulses to rotate the spin of the electron. We will present data from various experiments designed to exploit these capabilities. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria
NASA Technical Reports Server (NTRS)
Fischer, U.
1985-01-01
Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.
Maharjan, Bijesh; Korom, Scott F.; Smith, Erik A.
2013-01-01
The concentrations of electron donors in aquifer sediments are important to the understanding of the fate and transport of redox-sensitive constituents in groundwater, such as nitrate. For a study by the U.S. Geological Survey National Water-Quality Assessment Program, 50 sediment samples were collected from below the water table from 11 boreholes at the U.S. Geological Survey Agricultural Chemicals Team research site near New Providence, Iowa, during 2006-07. All samples were analyzed for gravel, sand (coarse, medium, and fine), silt, clay, Munsell soil color, inorganic carbon content, and for the following electron donors: organic carbon, ferrous iron, and inorganic sulfide. A subset of 14 sediment samples also was analyzed for organic sulfur, but all of these samples had concentrations less than the method detection limit; therefore, the presence of this potential electron donor was not considered further. X-ray diffraction analyses provided important semi-quantitative information of well-crystallized dominant minerals within the sediments that might be contributing electron donors.
ERIC Educational Resources Information Center
Rugano, Emilio Kariuki
2011-01-01
This descriptive and causal comparative study sought to identify motivations for alumni donor acquisition and retention in Christian institutions of higher learning. To meet this objective, motivations for alumni donors, lapsed donors, and non-donors were analyzed and compared. Data was collected through an electronic survey of a stratified sample…
Wu, Yongzhen; Zhu, Weihong
2013-03-07
The high performance and low cost of dye-sensitized solar cells (DSSCs) have drawn great interest from both academic and industrial circles. The research on exploring novel efficient sensitizers, especially on inexpensive metal-free pure organic dyes, has never been suspended. The donor-π bridge-acceptor (D-π-A) configuration is mainstream in the design of organic sensitizers due to its convenient modulation of the intramolecular charge-transfer nature. Recently, it has been found that incorporation of additional electron-withdrawing units (such as benzothiadiazole, benzotriazole, quinoxaline, phthalimide, diketopyrrolopyrrole, thienopyrazine, thiazole, triazine, cyanovinyl, cyano- and fluoro-substituted phenyl) into the π bridge as internal acceptors, termed the D-A-π-A configuration, displays several advantages such as tuning of the molecular energy levels, red-shift of the charge-transfer absorption band, and distinct improvement of photovoltaic performance and stability. We apply the D-A-π-A concept broadly to the organic sensitizers containing additional electron-withdrawing units between electron donors and acceptors. This review is projected to summarize the category of pure organic sensitizers on the basis of the D-A-π-A feature. By comparing the structure-property relationship of typical photovoltaic D-A-π-A dyes, the important guidelines in the design of such materials are highlighted.
Bernal-Bayard, Pilar; Pallara, Chiara; Carmen Castell, M; Molina-Heredia, Fernando P; Fernández-Recio, Juan; Hervás, Manuel; Navarro, José A
2015-12-01
In the Phaeodactylum tricornutum alga, as in most diatoms, cytochrome c6 is the only electron donor to photosystem I, and thus they lack plastocyanin as an alternative electron carrier. We have investigated, by using laser-flash absorption spectroscopy, the electron transfer to Phaeodactylum photosystem I from plastocyanins from cyanobacteria, green algae and plants, as compared with its own cytochrome c6. Diatom photosystem I is able to effectively react with eukaryotic acidic plastocyanins, although with less efficiency than with Phaeodactylum cytochrome c6. This efficiency, however, increases in some green alga plastocyanin mutants mimicking the electrostatics of the interaction site on the diatom cytochrome. In addition, the structure of the transient electron transfer complex between cytochrome c6 and photosystem I from Phaeodactylum has been analyzed by computational docking and compared to that of green lineage and mixed systems. Taking together, the results explain why the Phaeodactylum system shows a lower efficiency than the green systems, both in the formation of the properly arranged [cytochrome c6-photosystem I] complex and in the electron transfer itself. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wanninayake, Aruna Pushpa Kumara
Organic solar cell is a promising technology because of the versatility of organic materials in terms of tunability of their electrical and optical properties. In addition, their relative insensitivity to film imperfections potentially allows for very low-cost high-throughput roll-to-roll processing. However, the power conversion efficiency of organic solar cell is still limited and needs to be improved in order to be competitive with grid parity. This work is focused on the design and characterization of a new organic/inorganic hybrid device to enhance the efficiency factors of bilayer organic solar cells such as: light absorption, exciton diffusion, exciton dissociation, charge transportation and charge collection at the electrodes. In a hybrid solar cell operation, external quantum efficiency is determined by these five factors. The external quantum efficiency has linear relationship to the power conversation efficiency via short circuit current density. Bulk heterojunction (BHJ) PSCs benefit from a homogeneous donor-acceptor (D-A) contact interface compared to their inorganic counterpart. A homogenous D-A interface offers a longer free path for charge carriers, resulting in a longer diffusional pathway and a larger coulomb interaction between electrons and holes. This is triggered by the low dielectric constant of organic semiconductors. Among various conventional donor-acceptor structures, poly(3-hexylthiophene)/[6,6]-phenyl-C70-butyric acid methyl ester (P3HT/PCBM) mixture is the most promising and ideal donor-acceptor pair due to their unique properties. In order to take benefits from both organic and inorganic materials, inorganic nanoparticles are incorporated in this donor-acceptor polymer structure. Light trapping enhances light absorption and increases efficiencies with thinner device structure. In this study, copper oxide nanoparticles are used in the P3HT/PC70BM active layer to optimize the optical absorption properties in the blend. In addition, zinc oxide nanoparticles are used for tuning the conjugated polymer films due to their high electron accepting ability and optical absorption properties. In the zinc oxide structure, electrons exhibit higher mobility, which enhances the exciton dissociation efficiency. In addition, metal nanoparticles such as gold are added to the hole transport layer to enhance the overall hole transport ability. The optimum morphology of P3HT/PCBM films is described by two main features: 1) the molecular ordering within the donor or acceptor phase, which affects the photon absorption and carrier mobility; and 2) the scale of phase separation between the donor and the acceptor, which can directly influence the exciton dissociation and charge transport and/or collection processes. Hence, the molecular ordering and the phase separation between the donor and acceptor phases are crucial for solar cells with high efficiency. Optimization of the morphology of the organic/inorganic hybrid layers will be achieved via thermal annealing. The main goal of this work is to fabricate inorganic nanoparticles incorporated polymer PV devices with increased power conversion efficiency (PCE). This goal is achieved through four research objectives which are 1) enhancement of exciton generation and morphology by CuO NPs, 2) enhancement of exciton transportation and carrier diffusion by thermal annealing, 3) Improvement of exciton dissociation and electron mobility using ZnO NPs, and 4) improvement of hole collection ability using Au NPs. The key findings in this research can be applied to fabricate solar cells with higher power conversion efficiencies.
Electron-Transfer Dynamics for a Donor-Bridge-Acceptor Complex in Ionic Liquids.
DeVine, Jessalyn A; Labib, Marena; Harries, Megan E; Rached, Rouba Abdel Malak; Issa, Joseph; Wishart, James F; Castner, Edward W
2015-08-27
Intramolecular photoinduced electron transfer from an N,N-dimethyl-p-phenylenediamine donor bridged by a diproline spacer to a coumarin 343 acceptor was studied using time-resolved fluorescence measurements in three ionic liquids and in acetonitrile. The three ionic liquids have the bis[(trifluoromethyl)sulfonyl]amide anion paired with the tributylmethylammonium, 1-butyl-1-methylpyrrolidinium, and 1-decyl-1-methylpyrrolidinium cations. The dynamics in the two-proline donor-bridge-acceptor complex are compared to those observed for the same donor and acceptor connected by a single proline bridge, studied previously by Lee et al. (J. Phys. Chem. C 2012, 116, 5197). The increased conformational freedom afforded by the second bridging proline resulted in multiple energetically accessible conformations. The multiple conformations have significant variations in donor-acceptor electronic coupling, leading to dynamics that include both adiabatic and nonadiabatic contributions. In common with the single-proline bridged complex, the intramolecular electron transfer in the two-proline system was found to be in the Marcus inverted regime.
Electron donor preference of a reductive dechlorinating consortium
Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.
2005-01-01
A wetland sediment-derived microbial consortium was developed by the USGS and propagated in vitro to large quantities by SiREM Laboratory for use in bioaugmentation applications. The consortium had the capacity to completely dechlorinate 1,1,2,2-tetrachloroethene, tetrachloroethylene, trichloroethylene, 1,1,2-trichloroethane, cis- and trans-1,2-dichoroethylene, 1.1-dichloroethylene, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride and chloroform. A suite of electron donors with characteristics useful for bioaugmentation applications was tested. The electron donors included lactate (the donor used during WBC-2 development), ethanol, chitin (Chitorem???), hydrogen releasing compound (HRC???), emulsified vegetable oil (Newman Zone???), and hydrogen gas. Ethanol, lactate, and chitin were particularly effective with respect to stimulating, supporting, and sustaining reductive dechlorination of the broad suite of chemicals that WBC-2 biodegraded. Chitorem??? was the most effective "slow release" electron donor tested. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
Yumoto, Isao; Kamagata, Yoichi
2014-01-01
Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. PMID:25304512
Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi
2015-01-01
Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Otaki, Hiroyo; Everroad, R. Craig; Matsuura, Katsumi; Haruta, Shin
2012-01-01
Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons). PMID:22446313
Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1
Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki
2014-01-01
Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate. PMID:25548048
Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.
Lei, Ting; Wang, Jie-Yu; Pei, Jian
2014-04-15
Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.
Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources.
Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov; Wang, Jianlong; Angelidaki, Irini
2017-10-01
Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate production was examined. When substrate concentration was controlled at 100mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700mM, which inhibited the fermentation process. The highest caproate concentration of 8.42g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550mM total carbon). Results obtained in this study can pave the way towards efficient chain elongation from ethanol-rich wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optoelectronics of organic nanofibers formed by co-assembly of porphyrin and perylenediimide.
Li, Yuangang; Wang, Weina; Leow, Wan Ru; Zhu, Bowen; Meng, Fanben; Zheng, Liyan; Zhu, Jia; Chen, Xiaodong
2014-07-23
Organic nanofibers are formed by simple ionic co-assembly of positively charged porphyrin (electron donor) and negatively charged perylenediimide (electron acceptor) derivatives in aqueous solution. Two kinds of electron transfer routes between electron donor and electron acceptor under light excitation in nanofibers are confirmed by DFT calculations and experimental data. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of different electron donor feeding patterns on TCE reductive dechlorination performance.
Panagiotakis, I; Antoniou, K; Mamais, D; Pantazidou, M
2015-03-01
This study investigates how the feeding pattern of e(-) donors might affect the efficiency of enhanced in situ bioremediation in TCE-contaminated aquifers. A series of lab-scale batch experiments were conducted using butyrate or hydrogen gas (H2) as e(-) donor and a TCE-dechlorinating microbial consortium dominated by Dehalococcoides spp. The results of these experiments demonstrate that butyrate is similarly efficient for TCE dechlorination whether it is injected once or in doses. Moreover, the present work indicates that the addition of butyrate in great excess cannot be avoided, since it most likely provide, even indirectly, significant part of the H2 required. Furthermore, methanogenesis appears to be the major ultimate e(-) accepting process in all experiments, regardless the e(-) donor used and the feeding pattern. Finally, the timing of injection of H2 seems to significantly affect dechlorination performance, since the injection during the early stages improves VC-to-ETH dechlorination and reduce methanogenic activity.
Yamashita, Makoto; Cuevas Vicario, Jose V; Hartwig, John F
2003-12-31
To determine the trans effect on the rates of reductive eliminations from arylpalladium(II) amido complexes, the reactions of arylpalladium amido complexes bearing symmetrical and unsymmetrical DPPF (DPPF = bis(diphenylphosphino)ferrocene) derivatives were studied. THF solutions of LPd(Ar)(NMeAr') (L = DPPF, DPPF-OMe, DPPF-CF3, DPPF-OMe,Ph, DPPF-Ph,CF3, and DPPF-OMe,CF3; Ar = C6H4-4-CF3; Ar' = C6H4-4-CH3, Ph, and C6H4-4-OMe) underwent C-N bond forming reductive elimination at -15 C to form the corresponding N-methyldiarylamine in high yield. Complexes ligated by symmetrical DPPF derivatives with electron-withdrawing substituents on the DPPF aryl groups underwent reductive elimination faster than complexes ligated by symmetrical DPPF derivatives with electron-donating substituents on the ligand aryl groups. Studies of arylpalladium amido complexes containing unsymmetrical DPPF ligands revealed several trends. First, the complex with the weaker donor trans to nitrogen and the stronger donor trans to the palladium-bound aryl group underwent reductive elimination faster than the regioisomeric complex with the stronger donor trans to nitrogen and the weaker donor trans to the palladium-bound aryl group. Second, the effect of varying the substituents on the phosphorus donor trans to the nitrogen was larger than the effect of varying the substituents on the phosphorus donor trans to the palladium-bound aryl group. Third, the difference in rate between the isomeric arylpalladium amido complexes was similar in magnitude to the differences in rates resulting from conventional variation of substituents on the symmetric phosphine ligands. This result suggests that the geometry of the complex is equal in importance to the donating ability of the dative ligands. The ratio of the differences in rates of reaction of the isomeric complexes was similar to the relative populations of the two geometric isomers. This result and consideration of transition state geometries suggest that the reaction rates are controlled more by substituent effects on ground state stability than on transition state energies. In addition, variation of the aryl group at the amido nitrogen showed systematically that complexes with more electron-donating groups at nitrogen undergo faster reductive elimination than those with less electron-donating groups at nitrogen.
Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.
Li, Wenting; Lee, Taegweon; Oh, Soong Ju; Kagan, Cherie R
2011-10-01
We report the synthesis, properties, and photovoltaic applications of a new conjugated copolymer (C12DPP-π-BT) containing a donor group (bithiophene) and an acceptor group (2,5-didodecylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione), bridged by a phenyl group. Using cyclic voltammetry, we found the energy levels of C12DPP-π-BT are intermediate to common electron donor and acceptor photovoltaic materials, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), respectively. Whereas P3HT and PCBM are exclusively electron donating or accepting, we predict C12DPP-π-BT may uniquely serve as either an electron donor or an acceptor when paired with PCBM or P3HT forming junctions with large built-in potentials. We confirmed the ambipolar nature of C12DPP-π-BT in space charge limited current measurements and in C12DPP-π-BT:PCBM and C12DPP-π-BT:P3HT bulk heterojunction solar cells, achieving power conversion efficiencies of 1.67% and 0.84%, respectively, under illumination of AM 1.5G (100 mW/cm(2)). Adding diiodooctane to C12DPP-π-BT:PCBM improved donor-acceptor inter-mixing and film uniformity, and therefore enhanced charge separation and overall device efficiency. Using higher-molecular-weight polymer C12DPP-π-BT in both C12DPP-π-BT:PCBM and C12DPP-π-BT:P3HT devices improved charge transport and hence the performance of the solar cells. In addition, we compared the structural and electronic properties of C12DPP-π-BT:PCBM and C12DPP-π-BT:P3HT blends, representing the materials classes of polymer:fullerene and polymer:polymer blends. In C12DPP-π-BT:PCBM blends, higher short circuit currents were obtained, consistent with faster charge transfer and balanced electron and hole transport, but lower open circuit voltages may be reduced by trap-assisted recombination and interfacial recombination losses. In contrast, C12DPP-π-BT:P3HT blends exhibit higher open circuit voltage, but short circuit currents were limited by charge transfer between the polymers. In conclusion, C12DPP-π-BT is a promising material with intrinsic ambipolar characteristics for organic photovoltaics and may operate as either a donor or acceptor in the design of bulk heterojunction solar cells. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Bhattacharya, Labanya; Sahu, Sridhar
2018-05-01
Two different oligomers, containing methyl substituted Benzodithiophene (BDT) as donor unit, fluorinated thiophene as the π-bridge unit and two different kinds of acceptors based on fluorinated benzothiadiazole, fluorinated benzoselenadiazole units are designed for bulk heterojunction (BHJ) organic solar cell (OSC). The ground and excited state properties of those donor-π-acceptor-π-donor (D-π-A-π-D) oligomeric configurations are characterized via density functional (DFT) and time dependent density functional theory (TD-DFT). The parameters such as dipole moment (ρ), chemical potential (µ), electronegativity (χ), frontier molecular orbital (FMO) analysis, HOMO-LUMO gap, open circuit voltage (Voc) and driving force (ΔE) are calculated to analyze geometrical, electronic structural, quantum chemical and photovoltaic properties of the compounds. In addition, optical absorption spectra are also presented for the optical characterization of the compounds.
Wasielewski, Michael R.; Gaines, George L.; Niemczyk, Mark P.; Johnson, Douglas G.; Gosztola, David J.; O'Neil, Michael P.
1996-01-01
A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound.
Ramifications of codoping SrI2:Eu with isovalent and aliovalent impurities
NASA Astrophysics Data System (ADS)
Feng, Qingguo; Biswas, Koushik
2016-12-01
Eu2+ doped SrI2 is an important scintillator having applications in the field of radiation detection. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach, we report on the properties of SrI2:Eu and the influence of codoping with aliovalent (Na, Cs) and isovalent (Mg, Ca, Ba, and Sn) impurities. These codopants do not preferably bind with Eu and are expected to remain as isolated impurities in the SrI2 host. As isolated defects they display amphoteric behavior having, in most cases, significant ionization energies of the donor and acceptor levels. Furthermore, the acceptor states of Na, Cs, and Mg can bind with I-vacancy forming charge compensated donor-acceptor pairs. Such pairs may also bind additional holes or electrons similar to the isolated defects. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed.
Scanning Tunneling Microscopy Analysis of a Pentacene/Graphene/SiC(0001) system
NASA Astrophysics Data System (ADS)
Yost, Andrew; Suzer, Ozgun; Smerdon, Joseph; Chien, Teyu; Guest, Jeffrey
2014-03-01
A complete understanding of the structure of molecular assemblies, as well as an understanding of donor-acceptor interactions is crucial in the development of emergent molecular electronics technologies such as organic photovoltaics. The pentacene (C22H14) is a good electron donor in Pentacene-C60 system, which is a model system of an organic photovoltaic cell.. Here we present scanning tunneling microscopy studies of the pentacene(Pn) molecule on Graphene(G) that is epitaxially grown on SiC(0001). In addition to the morphologies reported in literature, several new structures of Pn on on G/SiC(0001) were observed with different periodicity and registry both in monolayer and bilayer coverages of molecules on the surface. Preliminary scanning tunneling spectroscopy of the molecular system is also discussed; well-isolated states and a large HOMO-LUMO gap indicate the Pn is weakly coupled to the grapheme and underlying substrate.
Lavergne, D; Droux, M; Jacquot, J P; Miginiac-Maslow, M; Champigny, M L; Gadal, P
1985-10-01
Light activation of either NADP-malate dehydrogenase (EC 1.1.1.82) or fructose-1,6-bisphosphate phosphatase (EC 3.1.3.11) was assayed in a reconstituted chloroplastic, system comprising the isolated proteins of the ferredoxin-thioredoxin light-activation system and thylakoids from either mesophyll or bundle-sheath tissues of different C4 plants. While C4-plant thylakoids functionned almost equally well with C3-or C4-plant proteins, the photosyntem-II-deficient bundle-sheath thylakoids from the NADP-malic enzyme type, were unable to perform enzyme photoactivation unless supplemented with an electron donor to photosystem I. Bundle-sheath thylakoids isolated from plants showing no photosystem-II deficiency did not require such an addition. The results are discussed with respect to a possible requirement for a physiological reductant of ferredoxin for enzyme light activation in bundle-sheath, tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel E. Kostka
This project represented a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL served as the lead in-stitution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliver-ables. In situ uranium bioremediation is focused on biostimulating indigenous microorganisms through a combination of pH neutralization and the addition of large amounts of electron donor. Successful biostimulation of U(VI) reduction has been demonstrated in the field and in the laboratory. However, little data is available on the dynamics of microbial populations capable of U(VI) reduction, and the differences in the microbialmore » community dynamics between proposed electron donors have not been explored. In order to elucidate the potential mechanisms of U(VI) reduction for optimization of bioremediation strategies, structure-function relationships of microbial populations were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate from the Oak Ridge Field Research Center (ORFRC), Oak Ridge, Tennessee.« less
Huang, Jingang; Wen, Yue; Ding, Ning; Xu, Yue; Zhou, Qi
2012-09-15
Sulfate is frequently found in wastewaters that contain nitrobenzene. To reveal the effect of sulfate on the reductive transformation of nitrobenzene to aniline--with acetate or propionate as potential electron donors in anaerobic systems--an acetate series (R1-R5) and a propionate series (R6-R10) were set up. Each of these was comprised of five laboratory-scale sequence batch reactors. The two series were amended with the same amount of nitrobenzene and electron donor electron equivalents, whereas with increasing sulfate concentrations. Results indicated that the presence of sulfate could depress nitrobenzene reduction. Such depression is linked to the inhibition of nitroreductase activity and/or the shift of electron flow. In the acetate series, although sulfate did not strongly compete with nitrobenzene for electron donors, noncompetitive inhibition of specific nitrobenzene reduction rates by sulfate was observed, with an inhibition constant of 0.40 mM. Propionate, which can produce intermediate H₂ as preferred reducing equivalent, is a more effective primary electron donor for nitrobenzene reduction as compared to acetate. In the propionate series, sulfate was found to be a preferential electron acceptor as compared to nitrobenzene, resulting in a quick depletion of propionate and then a likely termination of H₂-releasing under higher sulfate concentrations (R9 and R10). In such a situation, nitrobenzene reduction slowed down, occurring two-stage zero-order kinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Semprini, L.; Azizian, M.; Green, J.; Mayer-Blackwell, K.; Spormann, A. M.
2015-12-01
Two cultures - the Victoria Strain (VS) and the Evanite Strain (EV), enriched with the organohalide respiring bacteria Dehalococcoides mccartyi - were grown in chemostats for more than 4 years at a mean cell residence time of 50 days. The slow doubling rate represents growth likely experienced in the subsurface. The chemostats were fed formate as an electron donor and trichloroethene (TCE) as the terminal electron acceptor. Under excess formate conditions, stable operation was observed with respect to TCE transformation, steady-state hydrogen (H2) concentrations (40 nM), and the structure of the dehalogenating community. Both cultures completely transformed TCE to ethene, with minor amounts of vinyl chloride (VC) observed, along with acetate formation. When formate was limited, TCE was transformed incompletely to ethene (40-60%) and VC (60- 40%), and H2 concentrations ranged from 1 to 3 nM. The acetate concentration dropped below detection. Batch kinetic studies of TCE transformation with chemostat harvested cells found transformation rates of c-DCE and VC were greatly reduced when the cells were grown with limited formate. Upon increasing formate addition to the chemostats, from limited to excess, essentially complete transformation of TCE to ethene was achieved. The increase in formate was associated with an increase in H2 concentration and the production of acetate. Results of batch kinetic tests showed increases in transformation rates for TCE and c-DCE by factors of 3.5 and 2.5, respectively, while VC rates increased by factors of 33 to 500, over a six month period. Molecular analysis of chemostat samples is being performed to quantify the changes in copy numbers of reductase genes and to determine whether shifts in the strains of Dehalococcoides mccartyi where responsible for the observed rate increases. The results demonstrate the importance of electron donor supply for successful in-situ remediation.
Distribution of oxygen in silicon and its effects on electronic characteristics on a microscale
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Rava, P.; Lagowski, J. J.
1980-01-01
The microdistribution of oxygen in silicon was obtained by scanning IR absorption in as grown Czochralski crystals. The crystals were subsequently submitted to various heat treatments. The profiles of the generated thermal donors were determined by spreading resistance measurements. Contrary to the prevailing views, it was found that the concentration of the activated thermal donors is not strictly a function of the oxygen concentration, but depends strongly on an additional factor, which was shown to be associated with vacancy concentration. These conclusions could only be reached on the basis of microscale characterization. In fact, commonly employed macroscale analysis has led to erroneous conclusions.
Park, Y S; Kale, T S; Nam, C-Y; Choi, D; Grubbs, R B
2014-07-28
We report a general strategy for fine-tuning the bandgap of donor-acceptor-donor based organic molecules by modulating the electron-donating ability of the donor moiety by changing the benzochalcogenophene donor groups from benzothiophenes to benzoselenophenes to benzotellurophenes. These molecules show red-shifts in absorption and external quantum efficiency maxima from sulfur to selenium to tellurium. In bulk heterojunction solar cell devices, the benzoselenophene derivative shows a power conversion efficiency as high as 5.8% with PC61BM as the electron acceptor.
Li, Kui; Zhang, Wei-De
2018-03-01
Conjugated polymers with tailored donor-acceptor units have recently attracted considerable attention in organic photovoltaic devices due to the controlled optical bandgap and retained favorable separation of charge carriers. Inspired by these advantages, an effective strategy is presented to solve the main obstructions of graphitic carbon nitride (g-C 3 N 4 ) photocatalyst for solar energy conversion, that is, inefficient visible light response and insufficient separation of photogenerated electrons and holes. Donor-π-acceptor-π-donor polymers are prepared by incorporating 4,4'-(benzoc 1,2,5 thiadiazole-4,7-diyl) dianiline (BD) into the g-C 3 N 4 framework (UCN-BD). Benefiting from the visible light band tail caused by the extended π conjugation, UCN-BD possesses expanded visible light absorption range. More importantly, the BD monomer also acts as an electron acceptor, which endows UCN-BD with a high degree of intramolecular charge transfer. With this unique molecular structure, the optimized UCN-BD sample exhibits a superior performance for photocatalytic hydrogen evolution upon visible light illumination (3428 µmol h -1 g -1 ), which is nearly six times of that of the pristine g-C 3 N 4 . In addition, the photocatalytic property remains stable for six cycles in 3 d. This work provides an insight into the synthesis of g-C 3 N 4 -based D-π-A-π-D systems with highly visible light response and long lifetime of intramolecular charge carriers for solar fuel production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.
Timmers, Ruud A; Rothballer, Michael; Strik, David P B T B; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees
2012-04-01
The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.
Enriching Metal-Oxidizing Microbes from Marine Sediment on Cathodic Currents
NASA Astrophysics Data System (ADS)
Rowe, A. R.; Nealson, K. H.
2013-12-01
The ability of organisms to transfer electrons to and from substrates outside the cell is reshaping the way we look at microbial respiration. While this process, termed extracellular electron transport (EET), has been described in a number of metal reducing organisms, current evidence suggests that this process is widespread in nature and across physiologies. Additionally, it has been speculated that these previously overlooked electrochemical interactions may play an important role in global biogeochemical cycles. Requirements for EET could play a role in why the ';uncultured majority' have so far been resistant to culturing. As such, we are currently developing culturing techniques to target microbes capable of utilizing insoluble electron acceptors utilizing electrochemical techniques. Microbe-electrode interactions are analogous to the reactions that occur between microbes and minerals and may provide an apt way to mimic the environmental conditions (i.e., insoluble electron donor/acceptor at specific redox potentials) required for culturing specialized or EET dependent metabolisms. It has been previously demonstrated that aquatic sediments are capable of utilizing anodes as electron acceptors, thereby generating a current. While, it is known that microbes utilize electrons from a cathode for the reduction of different metals and oxygen in microbial fuel cells, currently there are no reports of environmental enrichments of microbes using cathodes. Replicate microcosms from marine sediments (sampled from Catalina Harbor, California) were incubated with ITO plated glass electrodes. Negative current production at -400mV (vs. Ag/AgCl reference electrodes) potentials was sustained for four weeks. Secondary enrichments were then constructed using the cathode as the primary electron source and a variety of anaerobic terminal electron acceptors--Nitrate, Fe3+, and SO42-. Positive current was maintained in enrichment cultures (compared to abiotic control containing terminal electron acceptors. Batch feeds of different electron donors resulted in a spike in electric current over a 24 hour period of time. Two subsequent enrichment cultures have been phylogenetically characterized that were supplied solely with elemental sulfur (So) as an electron donor, and either nitrate, δ-MnO2 or Fe3+ as the terminal electron acceptor. Current efforts are geared towards isolating currently iron-oxidizing and sulfur-oxidizing lithotrophs.
Statistical exchange-coupling errors and the practicality of scalable silicon donor qubits
NASA Astrophysics Data System (ADS)
Song, Yang; Das Sarma, S.
2016-12-01
Recent experimental efforts have led to considerable interest in donor-based localized electron spins in Si as viable qubits for a scalable silicon quantum computer. With the use of isotopically purified 28Si and the realization of extremely long spin coherence time in single-donor electrons, the recent experimental focus is on two-coupled donors with the eventual goal of a scaled-up quantum circuit. Motivated by this development, we simulate the statistical distribution of the exchange coupling J between a pair of donors under realistic donor placement straggles, and quantify the errors relative to the intended J value. With J values in a broad range of donor-pair separation ( 5 <|R |<60 nm), we work out various cases systematically, for a target donor separation R0 along the [001], [110] and [111] Si crystallographic directions, with |R0|=10 ,20 or 30 nm and standard deviation σR=1 ,2 ,5 or 10 nm. Our extensive theoretical results demonstrate the great challenge for a prescribed J gate even with just a donor pair, a first step for any scalable Si-donor-based quantum computer.
Dexter energy transfer pathways.
Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N
2016-07-19
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.
Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.
1996-07-23
A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound are disclosed. 4 figs.
Incomplete Ionization of a 110 meV Unintentional Donor in β-Ga2O3 and its Effect on Power Devices.
Neal, Adam T; Mou, Shin; Lopez, Roberto; Li, Jian V; Thomson, Darren B; Chabak, Kelson D; Jessen, Gregg H
2017-10-16
Understanding the origin of unintentional doping in Ga 2 O 3 is key to increasing breakdown voltages of Ga 2 O 3 based power devices. Therefore, transport and capacitance spectroscopy studies have been performed to better understand the origin of unintentional doping in Ga 2 O 3 . Previously unobserved unintentional donors in commercially available [Formula: see text] Ga 2 O 3 substrates have been electrically characterized via temperature dependent Hall effect measurements up to 1000 K and found to have a donor energy of 110 meV. The existence of the unintentional donor is confirmed by temperature dependent admittance spectroscopy, with an activation energy of 131 meV determined via that technique, in agreement with Hall effect measurements. With the concentration of this donor determined to be in the mid to high 10 16 cm -3 range, elimination of this donor from the drift layer of Ga 2 O 3 power electronics devices will be key to pushing the limits of device performance. Indeed, analytical assessment of the specific on-resistance (R onsp ) and breakdown voltage of Schottky diodes containing the 110 meV donor indicates that incomplete ionization increases R onsp and decreases breakdown voltage as compared to Ga 2 O 3 Schottky diodes containing only the shallow donor. The reduced performance due to incomplete ionization occurs in addition to the usual tradeoff between R onsp and breakdown voltage.
Energetics of pathogenic bacteria and opportunities for drug development.
Cook, Gregory M; Greening, Chris; Hards, Kiel; Berney, Michael
2014-01-01
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes. © 2014 Elsevier Ltd All rights reserved.
Photosensitizing Electron Transfer Processes of Fullerenes, Carbon Nanotubes, and Carbon Nanohorns.
Ito, Osamu
2017-03-01
In this account, studies on the photosensitizing electron transfer of nanocarbons, such as fullerenes, single-walled carbon nanotubes (SWCNTs), and carbon nanohorns (CNH), performed in our laboratory for about 15 years in the early 21st century have been briefly reviewed. These novel nanocarbons act as excellent electron acceptors, when they are linked to light-absorbing electron donors, such as porphyrins or phthalocyanines. For such molecule-nanocarbon hybrids, the direct confirmation of fast, transient, electron-transfer phenomena must be performed with time-resolved spectroscopic methods, such as transient absorption spectral measurements, in addition to fluorescence time-profile measurements in the wide-wavelength regions. Careful use of these methods affords useful information to understand photoinduced electron-transfer mechanisms. In addition, kinetic data obtained by these methods can assist in the construction of light-active devices, such as photovoltaic cells and solar H 2 -generation systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone
NASA Astrophysics Data System (ADS)
Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru
2016-10-01
Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.
Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX
2009-05-12
A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.
Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep
2016-09-01
The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.
NASA Astrophysics Data System (ADS)
El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2017-11-01
The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.
Accelerating Quinoline Biodegradation and Oxidation with Endogenous Electron Donors.
Bai, Qi; Yang, Lihui; Li, Rongjie; Chen, Bin; Zhang, Lili; Zhang, Yongming; Rittmann, Bruce E
2015-10-06
Quinoline, a recalcitrant heterocyclic compound, is biodegraded by a series of reactions that begin with mono-oxygenations, which require an intracellular electron donor. Photolysis of quinoline can generate readily biodegradable products, such as oxalate, whose bio-oxidation can generate endogenous electron donors that ought to accelerate quinoline biodegradation and, ultimately, mineralization. To test this hypothesis, we compared three protocols for the biodegradation of quinoline: direct biodegradation (B), biodegradation after photolysis of 1 h (P1h+B) or 2 h (P2h+B), and biodegradation by adding oxalate commensurate to the amount generated from photolysis of 1 h (O1+B) or 2 h (O2+B). The experimental results show that P1h+B and P2h+B accelerated quinoline biodegradation by 19% and 50%, respectively, compared to B. Protocols O1+B and O2+B also gave 19% and 50% increases, respectively. During quinoline biodegradation, its first intermediate, 2-hydroxyquinoline, accumulated gradually in parallel to quinoline loss but declined once quinoline was depleted. Mono-oxygenation of 2-hydroxyquinoline competed with mono-oxygenation of quinoline, but the inhibition was relieved when extra electrons donors were added from oxalate, whether formed by UV photolysis or added exogenously. Rapid oxalate oxidation stimulated both mono-oxygenations, which accelerated the overall quinoline oxidation that provided the bulk of the electron donor.
NASA Astrophysics Data System (ADS)
Kirner, Sabrina V.; Guldi, Dirk M.; Megiatto, Jackson D., Jr.; Schuster, David I.
2014-12-01
A new series of nanoscale electron donor-acceptor systems with [2]catenane architectures has been synthesized, incorporating magnesium porphyrin (MgP) or free base porphyrin (H2P) as electron donor and C60 as electron acceptor, surrounding a central tetrahedral Cu(i)-1,10-phenanthroline (phen) complex. Model catenated compounds incorporating only one or none of these photoactive moieties were also prepared. The synthesis involved the use of Sauvage's metal template protocol in combination with the 1,3-dipolar cycloaddition of azides and alkynes (``click chemistry''), as in other recent reports from our laboratories. Ground state electron interactions between the individual constituents was probed using electrochemistry and UV-vis absorption spectroscopy, while events occurring following photoexcitation in tetrahydrofuran (under both aerobic and anaerobic conditions) at various wavelengths were followed by means of time-resolved transient absorption and emission spectroscopies on the femtosecond and nanosecond time scales, respectively, complemented by measurements of quantum yields for generation of singlet oxygen. From similar studies with model catenates containing one or neither of the chromophores, the events following photoexcitation could be elucidated. The results were compared with those previously reported for analogous catenates based on zinc porphyrin (ZnP). It was determined that a series of energy transfer (EnT) and electron transfer (ET) processes take place in the present catenates, ultimately generating long-distance charge separated (CS) states involving oxidized porphyrin and reduced C60 moieties, with lifetimes ranging from 400 to 1060 nanoseconds. Shorter lived short-distance CS states possessing oxidized copper complexes and reduced C60, with lifetimes ranging from 15 to 60 ns, were formed en route to the long-distance CS states. The dynamics of the ET processes were analyzed in terms of their thermodynamic driving forces. It was clear that intramolecular back ET was occurring in the inverted region of the Marcus parabola correlating rates and driving forces for electron transfer processes. In addition, evidence for triplet excited states as a product of either incomplete ET or back ET was found. The differences in behavior of the three catenates upon photoexcitation are analyzed in terms of the energy levels of the various intermediate states and the driving forces for EnT and ET processes.
Fullerene derivatives as electron donor for organic photovoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Taojun; Wang, Xiao-Feng, E-mail: xf-wang@yz.yamagata-u.ac.jp, E-mail: ziruo@yz.yamagata-u.ac.jp; Sano, Takeshi
2013-11-11
We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C{sub 60} bisadduct (ICBA) and phenyl C{sub 61}-butyric acid methyl ester as the electron donors with fullerene C{sub 70} as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C{sub 70} PHJ cell gives clear external quantummore » efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, G. D.
We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikelymore » to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.« less
Two-Electron Transfer Pathways.
Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N
2015-06-18
The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple electrons in condensed-phase redox systems, including multiple-electron redox species, multimetallic/multielectron redox catalysts, and multiexciton excited states.
Dell'acqua, Simone; Pauleta, Sofia R; Monzani, Enrico; Pereira, Alice S; Casella, Luigi; Moura, José J G; Moura, Isabel
2008-10-14
The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.
NASA Astrophysics Data System (ADS)
Park, Soohyeong; Nam, Sungho; Seo, Jooyeok; Jeong, Jaehoon; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo
2015-02-01
Here, we report the influence of halogen-terminated additives on the performance and the nanostructure of all-polymer solar cells that are made with bulk heterojunction (BHJ) films of poly(3-hexylthiophene) (P3HT) (as an electron donor) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) (as an electron acceptor). Diiodooctane (DIO) and dibromooctane (DBO) were employed as additives in order to compare the effect of different halogen groups (bromine and iodine). Results showed that the power conversion efficiency of devices was slightly (˜15%) improved by using additives due to the increased open-circuit voltage and fill factor. The synchrotron radiation grazing-incidence X-ray diffraction (GIXD) measurements disclosed that the performance improvement was closely related to the relatively well-evolved nanostructures in the P3HT:F8BT films caused by the additives.
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.; Rösch, Notker
2002-09-01
The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.
Lara, Paloma; Morett, Enrique; Juárez, Katy
2017-11-01
Stimulation of microbial reduction of Cr(VI) to the less toxic and less soluble Cr(III) through electron donor addition has been regarded as a promising approach for the remediation of chromium-contaminated soil and groundwater sites. However, each site presents different challenges; local physicochemical characteristics and indigenous microbial communities influence the effectiveness of the biostimulation processes. Here, we show microcosm assays stimulation of microbial reduction of Cr(VI) in highly alkaline and saline soil samples from a long-term contaminated site in Guanajuato, Mexico. Acetate was effective promoting anaerobic microbial reduction of 15 mM of Cr(VI) in 25 days accompanied by an increase in pH from 9 to 10. Our analyses showed the presence of Halomonas, Herbaspirillum, Nesterenkonia/Arthrobacter, and Bacillus species in the soil sample collected. Moreover, from biostimulated soil samples, it was possible to isolate Halomonas spp. strains able to grow at 32 mM of Cr(VI). Additionally, we found that polluted groundwater has bacterial species different to those found in soil samples with the ability to resist and reduce chromate using acetate and yeast extract as electron donors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.
Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less
Targeting ideal acceptor-donor materials based on hexabenzocoronene
NASA Astrophysics Data System (ADS)
Santos Silva, H.; Metz, Sebastian; Hiorns, Roger C.; Bégué, D.
2018-06-01
A series of new hybrid donor-acceptor materials based on hexabenzocoronenes (HBC) functionalized with electron donors is investigated by combining a variety of quantum mechanical and molecular dynamic methodologies for use in organic photovoltaic (OPV) devices. Segments of a low band gap alternating copolymer constructed of benzo[1,2-b;3,4-b]dithiophene and thieno[3,4-c]pyrrole-4,6-dione were attached to the conjugated HBC core. The copolymer was chosen for its known high performance in OPVs, and both moieties were singled out due to their exceptional resistance to photo-oxidation, an important requirement for such applications. The macromolecular topology of these systems are expected to induce supra-molecular columns, such as those common to discotic liquid crystals, conducive to the effective percolation of electrons in OPV devices. A challenge with these systems, that of the mixing of the electronic structures of the donor and acceptor moieties that result in excitonic losses and charge recombination, was diminished by trialling a range of linking units. It was found possible to propose ideal donor-acceptor structures with enhanced charge dissociations and transfers in the π-stacking direction for use in OPV and other organic electronic devices.
Electronic structure of clathrates Bax@AlySi46-y ; thermoelectric devices
NASA Astrophysics Data System (ADS)
Eguchi, Haruki; Nagano, Takatoshi; Takenaka, Hiroyuki; Tsumuraya, Kazuo
2002-03-01
Clathrates have received much attention as a candidate of high performance thermoelectric devices. This is because they have a) low thermal conductivity due to rattle effect of the alkali or heavy alkali-earth metals such as Ba atoms in the cages of clusters of the clathrates, and b) adjustablity of the Fermi levels through replacement of frame Si atoms with acceptor Al atoms and addition of the cage atoms as donors. We present the dispersion curves with LDA and GGA approximations for the exchange correlation of electrons using the planewave based pseudopotential methods and predict the electronic properties of the clathrates.
The tuning of P-donor ligands: the aryl and other pendent group effects (PGEs) revisited.
Poë, Anthony J
2009-03-21
Electronic and steric effects of P-donor ligands can be modified by varying the pendent groups attached to the phosphorus atoms. However, the so-called "Aryl Effects" of phosphites and other P-donor ligands that contain no aryl groups can be shown simply to be additional examples of electronic Pendent Group Effects (PGEs) by which effects are transmitted to the phosphorus atoms or through them. These effects are quite distinct from those caused by varying sigma-donicity and pi-acidity parameters, and are strictly proportional to the number of pendent groups of a particular type. In each case, the extent of the effect is determined by the difference between the actual property observed and that predicted on the basis that the ligand behaves in the same way as alkyl phosphines after allowing for steric and pi-acidity effects. The PGEs are therefore unique to particular pendent groups and to the method of measuring their effects. They are not "parameters" in the sense of being generally applicable in Linear Free Energy Relationships. The PGEs of a variety of pendent groups are derived from the so-called "aryl effects" determined by Giering & Prock et al. for vertical ionization potentials (IPs) and some other properties of the P-donor ligands. In almost all cases the IPs are reduced by the PGEs, and the extent of the reduction (in eV) decreases in the sequence C(6)F(5) (-0.67) approximately Cl (-0.67) < Pyrr (-0.53) < Ph (-0.49) < OR (-0.19) < OCH(2)CH(2)Cl (-0.07) < etpb (-0.03) < N(C(4)H(8)) (+0.01). Different PGEs are found for other P-donor-dependent properties although they are simply related to each other.
Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J
2017-08-02
We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.
Two-electron states of a group-V donor in silicon from atomistic full configuration interactions
NASA Astrophysics Data System (ADS)
Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib
2018-05-01
Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.
Watson, T F; Weber, B; House, M G; Büch, H; Simmons, M Y
2015-10-16
We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D(+) or D(-) charge state of the donor. By performing read-out at the stable two electron D(0)↔D(-) charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D(+)↔D(0) transition (99.6%). Furthermore, we show that read-out via the D(-) charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of F(I)=99.8%.
NASA Astrophysics Data System (ADS)
Liyanage, Arawwawala Don Thilanga
After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on the structure-property study of imide functionalized D-A polymers. Here we used thiophene-imide (TPD) as the acceptor moiety and prepare several D-A polymers by varying the donor units. When selecting the donor units, more priority goes to the fused ring systems. One main reason to use imide functionality is due to the, open position of the imide nitrogen, which provides an attaching position to alkyl substituent. Through this we can easily manipulate solubility and solid state packing arrangement. Also these imide acceptors have low-lying LUMOs due to their electron deficient nature and this will allow tuning the optical energy gap by careful choice of donor materials with different electron donating ability. The fourth chapter mainly contribute to the synthesis and structure property study of a completely novel electron acceptor moiety consist of a unsaturated pyrrolidinone unit known as Pechmann dye (PD) core. Pechmann dyes are closely related to the Indigo family. This can refer as 3-butenolide dimer connected via an alkene bridge, containing a benzene ring at the 5 and 5' positions of the lactone rings. We have prepared several D-A polymers using this PD system with benzodithiophene (BDT) as the donor unit. Different to common D-A polymers the HOMO and LUMO of the PD acceptor moiety are energetically located within the gap of the BDT, so that the electronic and optical properties (HOMO-LUMO transition) are dictated by the PD properties. The promising electronic properties, band gaps, high absorption coefficients and broad absorption suggest this new D-A polymers as an interesting donor material for organic solar cell (OSC) applications. KEY WORDS: Organic semiconductor materials, Self assembly, (opto)-electronic properties, Donor-Acceptor conjugated polymers, Fluorinated arene, 3,3'-bithiophene donors, Thiophene-imide (TPD), Pechmann dye, benzodithiophene, organic solar cell.
NASA Astrophysics Data System (ADS)
Bominaar, E. L.; Achim, C.; Borshch, S. A.
1999-06-01
Polynuclear transition-metal complexes, such as Fe-S clusters, are the prosthetic groups in a large number of metalloproteins and serve as temporary electron storage units in a number of important redox-based biological processes. Polynuclearity distinguishes clusters from mononuclear centers and confers upon them unique properties, such as spin ordering and the presence of thermally accessible excited spin states in clusters with paramagnetic sites, and fractional valencies in clusters of the mixed-valence type. In an earlier study we presented an effective-mode (EM) analysis of electron transfer from a binuclear mixed-valence donor with paramagnetic sites to a mononuclear acceptor which revealed that the cluster-specific attributes have an important impact on the kinetics of long-range electron transfer. In the present study, the validity of these results is tested in the framework of more detailed theories which we have termed the multimode semiclassical (SC) model and the quantum-mechanical (QM) model. It is found that the qualitative trends in the rate constant are the same in all treatments and that the semiclassical models provide a good approximation of the more rigorous quantum-mechanical description of electron transfer under physiologically relevant conditions. In particular, the present results corroborate the importance of electron transfer via excited spin states in reactions with a low driving force and justify the use of semiclassical theory in cases in which the QM model is computationally too demanding. We consider cases in which either one or two donor sites of a dimer are electronically coupled to the acceptor. In the case of multiconnectivity, the rate constant for electron transfer from a valence-delocalized (class-III) donor is nonadditive with respect to transfer from individual metal sites of the donor and undergoes an order-of-magnitude change by reversing the sign of the intradimer metal-metal resonance parameter (β). In the case of single connectivity, the rate constant for electron transfer from a valence-localized (class-II) donor can readily be tuned over several orders of magnitude by introducing differences in the electronic potentials at the two metal sites of the donor. These results indicate that theories of cluster-based electron transfer, in order to be realistic, need to consider both intrinsic electronic structure and extrinsic interactions of the cluster with the protein environment.
Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.
1989-01-01
The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.
Świerszcz, Iwona; Skurski, Piotr; Simons, Jack
2012-02-23
Ab initio electronic structure calculations were performed on a doubly charged polypeptide model H(+)-Lys(Ala)(19)-CO-CH(NH(2))-CH(2)-SS-CH(2)-(NH(2))CH-CO-(Ala)(19)-Lys-H(+) consisting of a C-terminal protonated Lys followed by a 19-Ala α-helix with a 20th Ala-like unit whose side chain is linked by a disulfide bond to a corresponding Ala-like unit connected to a second 19-Ala α-helix terminated by a second C-terminal-protonated Lys. The Coulomb potentials arising from the two charged Lys residues and dipole potentials arising from the two oppositely directed 72 D dipoles of the α-helices act to stabilize the SS bond's σ* orbital. The Coulomb potentials provide stabilization of 1 eV, while the two large dipoles generate an additional 4 eV. Such stabilization allows the SS σ* orbital to attach an electron and thereby generate disulfide bond cleavage products. Although calculations are performed only on SS bond cleavage, discussion of N-C(α) bond cleavage caused by electron attachment to amide π* orbitals is also presented. The magnitudes of the stabilization energies as well as the fact that they arise from Coulomb and dipole potentials are supported by results on a small model system consisting of a H(3)C-SS-CH(3) molecule with positive and negative fractional point charges to its left and right designed to represent (i) two positive charges ca. 32 Å distant (i.e., the two charged Lys sites of the peptide model) and (ii) two 72 D dipoles (i.e., the two α-helices). Earlier workers suggested that internal dipole forces in polypeptides could act to guide incoming free electrons (i.e., in electron capture dissociation (ECD)) toward the positive end of the dipole and thus affect the branching ratios for cleaving various bonds. Those workers argued that, because of the huge mass difference between an anion donor and a free electron, internal dipole forces would have a far smaller influence over the trajectory of a donor (i.e., in electron transfer dissociation (ETD)). The present findings suggest that, in addition to their effects on guiding electron or donor trajectories, dipole potentials (in combination with Coulomb potentials) also alter the energies of SS σ* and amide π* orbitals, which then affects the ability of these orbitals to bind an electron. Thus, both by trajectory-guiding and by orbital energy stabilization, Coulomb and dipole potentials can have significant influences on the branching ratios of ECD and ETC in which disulfide or N-C(α) bonds are cleaved. © 2012 American Chemical Society
Li, Huiyang; Fang, Manman; Hou, Yingqin; Tang, Runli; Yang, Yizhou; Zhong, Cheng; Li, Qianqian; Li, Zhen
2016-05-18
Four organic sensitizers (LI-68-LI-71) bearing various conjugated bridges were designed and synthesized, in which the only difference between LI-68 and LI-69 (or LI-70 and LI-71) was the absence/presence of the CN group as the auxiliary electron acceptor. Interestingly, compared to the reference dye of LI-68, LI-69 bearing the additional CN group exhibited the bad performance with the decreased Jsc and Voc values. However, once one thiophene moiety near the anchor group was replaced by pyrrole with the electron-rich property, the resultant LI-71 exhibited a photoelectric conversion efficiency increase by about 3 folds from 2.75% (LI-69) to 7.95% (LI-71), displaying the synergistic effect of the two moieties (CN and pyrrole). Computational analysis disclosed that pyrrole as the auxiliary electron donor (D') in the conjugated bridge can compensate for the lower negative charge in the electron acceptor, which was caused by the CN group as the electron trap, leading to the more efficient electron injection and better photovoltaic performance.
NASA Technical Reports Server (NTRS)
Kaminska, M.; Parsey, J. M.; Lagowski, J.; Gatos, H. C.
1982-01-01
Current oscillations thermally activated by the release of electrons from deep levels in undoped semiinsulating GaAs were observed for the first time. They were attributed to electric field-enhanced capture of electrons by the dominant deep donor EL2 (antisite AsGa defect). This enhanced capture is due to the configurational energy barrier of EL2, which is readily penetrated by hot electrons.
Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Boning; Liang, Min; Zmich, Nicole
Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less
Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors
Wu, Boning; Liang, Min; Zmich, Nicole; ...
2018-01-29
Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less
Miao, Kai; Liang, Mao; Wang, Zhihui; Zhang, Chunyao; Sun, Zhe; Xue, Song
2017-01-18
Thiophene derivatives, including thieno[3,2-b][1]benzothiophene (TBT), benzo[b]thiophene (BT), 2-phenylthieno[3,2-b]thiophene (PTT) and 2-phenylthiophene (PT), have been introduced as donors for the construction of triarylamine organic dyes (M52, M53, M56, M57 and M52A). The absorption, electrochemical and photovoltaic properties as well as the stabilities of these dyes are systematically investigated and compared with the reference dye (M55), whose donor is composed of the hexyloxybenzene (HOB) unit. It is found that introducing the TBT, BT, PTT or PT donors positively shifted the HOMO and LUMO levels of the organic dyes, providing a larger driving force for regeneration and reducing the energy loss for electron injection. In addition, we found that M52, which contains the TBT unit, exhibited better photovoltaic performance and photostability as compared to the reference dye. In contrast, M53 displayed the lowest efficiency and stability of these dyes, indicating that the BT unit is not a good building block for donors. Interestingly, upon the incorporation of the mixed donor (TBT-HOB), M52A achieved a desirable driving force for regeneration without a loss in light absorption, thus resulting in a further improved photovoltaic performance with respect to that of M52. This work demonstrates that introducing donors based on thiophene derivatives is a good strategy for tuning the energy levels and thereby enhancing the efficiency of the resulting devices.
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, H.; Yamamoto, T.
1997-08-01
We propose an effective doping method, the codoping (doping with n- and p-type dopants at the same time) method, for the fabrication of low-resistivity p-type ZnSe and GaN with wide-band-gap based upon ab-initio electronic band structure calculations. p-type doping eminently leads to an increase in the electrostatic energy, called the Madelung energy, which shifts the Se 4p levels for p-type doped ZnSe and the N 2p levels for p-type doped GaN materials towards higher energy regions. This leads to a destabilization of ionic charge distributions in p-type ZnSe and p-type GaN crystals, resulting in the self-compensation of anion intrinsic defects. For ZnSe crystals, we propose the codoping of n-type In donors at Zn sites and p-type N acceptors at Se sites based on the calculation. In addition, we propose the codoping of n-type Si-donors at Ga sites (n-type O donors at N sites) and p-type Be- or Mg acceptors at Ga sites. The codoping decreases the Madelung energy and leads to an increase in the net acceptor carrier density.
Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils
Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.
2011-01-01
ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120
Bioelectrical Perchlorate Remediation
NASA Astrophysics Data System (ADS)
Thrash, C.; Achenbach, L. A.; Coates, J. D.
2007-12-01
Several bioreactor designs are currently available for the ex-situ biological attenuation of perchlorate- contaminated waters and recently, some of these reactor designs were conditionally approved by the California Department of Health Services for application in the treatment of perchlorate contaminated drinking water. However, all of these systems are dependent on the continual addition of a chemical electron donor to sustain microbial activity and are always subject to biofouling and downstream water quality issues. In addition, residual labile electron donor in the reactor effluent can stimulate microbial growth in water distribution systems and contribute to the formation of potentially toxic trihalomethanes during disinfection by chlorination. As part of our ongoing studies into microbial perchlorate reduction we investigated the ability of dissimilatory perchlorate reducing bacteria (DPRB) to metabolize perchlorate using a negatively charged electrode (cathode) in the working chamber of a bioelectrical reactor (BER) as the primary electron donor. In this instance the DPRB use the electrons on the electrode surface either directly or indirectly in the form of electrolytically produced H2 as a source of reducing equivalents for nitrate and perchlorate reduction. As part of this investigation our fed-batch studies showed that DPRB could use electrons from a graphite cathode poised at -500mV (vs. Ag/AgCl) for the reduction of perchlorate and nitrate. We isolated a novel organism, Dechlorospirillum strain VDY, from the cathode surface after 70 days operation which readily reduced 100 mg.L-1 perchlorate in a mediatorless batch bioelectrical reactor (BER) in 6 days. Continuous up-flow BERs (UFBERs) seeded with active cultures of strain VDY continuously treated waters containing 100 mg.L-1 perchlorate with almost 100% efficiency throughout their operation achieving a non-optimized volumetric loading of 60 mg.L-1 reactor volume.day-1. The same UFBERs also treated low-level perchlorate (100 μg.L-1) influent as well as mixed-waste influents more typically found in the environment containing both nitrate and perchlorate. Through extended periods of operation (>70 days), no loss in treatment efficiency was noted and no measurable growth in biomass was observed. Gas phase analysis indicated that low levels of H2 produced at the cathode surface through electrolysis can provide enough reducing equivalents to mediate this metabolism. The results of these studies demonstrate that perchlorate remediation can be facilitated through the use of a cathode as the primary electron donor, and that continuous treatment in such a system approaches current industry standards. This has important implications for the continuous treatment of this critical contaminant in industrial waste streams and drinking water. Such a process has the advantage of long-term, low-maintenance operation with ease of online monitoring and control while limiting the injection of additional chemicals into the water treatment process and outgrowth of the microbial populations. This would negate the need for the continual removal and disposal of biomass produced during treatment and also the downstream issues associated with corrosion and biofouling of distribution systems and the production of toxic disinfection byproducts.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... either electronic or written comments on the collection of information by October 1, 2013. ADDRESSES: Submit electronic comments on the collection of information to http://www.regulations.gov . Submit... detecting antibodies to T. cruzi in plasma and serum samples from individual human donors, including donors...
Slodek, Aneta; Maroń, Anna; Pająk, Michał; Matussek, Marek; Grudzka-Flak, Iwona; Małecki, Jan Grzegorz; Świtlicka, Anna; Krompiec, Stanisław; Danikiewicz, Witold; Grela, Małgorzata; Gryca, Izabela; Penkala, Mateusz
2018-04-16
Six novel fluoranthene derivatives, three terminally substituted and three bis(fluoranthenes) with fluorene, bithiophene and carbazole spacers were obtained via [2+2+2] cycloaddition and thoroughly characterized. Based on the conducted studies, the obtained derivatives can be classified as D-A (donor-acceptor) and A-D-A (acceptor-donor-acceptor) systems, where fluoranthene unit acts as an electron-withdrawing unit. The optical results revealed that novel fluoranthene derivatives absorb light in the range of 236-417 nm originating from ππ* transition within the conjugated system. The compounds exhibit fluorescence ranging from deep blue to green originating mainly from intramolecular charge transfer (ICT) states. The high Stoke shifts, high quantum yield in solution (φ= 0.22-0.57) and in the solid state (φ= 0.18-0.44) have been observed for fluoranthene derivatives. All derivatives possess multi-step oxidations at low potentials. The electronic structure of presented compounds is additionally supported by TD-DFT computations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Spiegel, J. Dominik; Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M.
2017-01-01
BODIPY-based dyads serve as model systems for the investigation of excitation energy transfer (EET). Through-space EET is brought about by direct and exchange interactions between the transition densities of donor and acceptor localized states. The presence of a molecular linker gives rise to additional charge transfer (CT) contributions. Here, we present a novel approach for the calculation of the excitonic coupling matrix element (ECME) including CT contributions which is based on supermolecular one-electron transition density matrices (STD). The validity of the approach is assessed for a model system of two π -stacked ethylene molecules at varying intermolecular separation. Wave functions and electronic excitation energies of five EET cassettes comprising anthracene as exciton donor and BODIPY as exciton acceptor are obtained by the redesigned combined density functional theory and multireference configuration interaction (DFT/MRCI-R) method. CT contributions to the ECME are shown to be important in the covalently linked EET cassettes.
Laurent, Adèle D; Medveď, Miroslav; Jacquemin, Denis
2016-06-17
We present the first theoretical investigation of a recently proposed class of photochromes, namely donor-acceptor Stenhouse adduct (DASA) switches [J. Am. Chem. Soc. 2014, 136, 8169-8172]. By using density functional theory and its time-dependent counterpart, we investigate the ground- and excited-state structures, electronic transition energies, and several properties of the two isomeric forms. In addition to demonstrating that the selected level of theory is able to reproduce the main experimental facts, we show that 1) the two forms of the DASA photochromes are close to isoenergetic; 2) the two isomers possess similar total dipole moments, in spite of their very different sizes; 3) both isomers have a zwitterionic nature; 4) the nature of the dipole-allowed electronic excited state is vastly different in the two forms; and 5) the specific band shape of the extended DASA can be reproduced by vibronic calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The ETHANOL-CO_2 Dimer is AN Electron Donor-Acceptor Complex
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Martin-Drumel, Marie-Aline; McCarthy, Michael C.
2017-06-01
Supercritical (sc) CO_2 is a common industrial solvent for the extraction of caffeine, nicotine, petrochemicals, and natural products. The ability of apolar scCO_2 to dissolve polar solutes is greatly enhanced by the addition of a polar co-solvent, often methanol or ethanol. Experimental and theoretical work show that methanol interactions in scCO_2 are predominantly hydrogen bonding, while the gas-phase complex is an electron donor-acceptor (EDA) configuration. Ethanol, meanwhile, is predicted to form EDA complexes both in scCO_2 and in the gas phase, but there have been no experimental measurements to support this conclusion. Here, we report a combined chirped-pulse and cavity FTMW study of the ethanol-CO_2 complex. Comparison with theory indicates the EDA complex is dominant under our experimental conditions. We confirm the structure with isotopic substitution, and derive a semi-experimental equilibrium structure. Our results are consistent with theoretical predictions that the linearity of the CO_2 subgroup is broken by the complexation interaction.
Meker, Sigalit; Manna, Cesar M; Peri, Dani; Tshuva, Edit Y
2011-10-14
A series of Ti(IV) complexes containing diamino bis(phenolato) "salan" type ligands with NH coordination were prepared, and their hydrolysis and cytotoxicity were analyzed and compared to the N-methylated analogues. Substituting methyl groups on the coordinative nitrogen donor of highly active and stable Ti(IV) salan complexes with H atoms has two main consequences: the hydrolysis rate increases and the cytotoxic activity diminishes. In addition, the small modification of a single replacement of Me with H leads to a different major hydrolysis product, where a dinuclear Ti(IV) complex with two bridging oxo ligands is obtained, as characterized by X-ray crystallography, rather than a trinuclear cluster. A partial hydrolysis product containing a single oxo bridge was also crystallographically analyzed. Investigation of a series of complexes with NH donors of different steric and electronic effects revealed that cytotoxicity may be restored by fine tuning these parameters even for complexes of low stability.
Soni, Disha; Duvva, Naresh; Badgurjar, Deepak; Roy, Tapta Kanchan; Nimesh, Surendra; Arya, Geeta; Giribabu, Lingamallu; Chitta, Raghu
2018-04-16
A highly water-soluble phenothiazine (PTZ)-boron dipyrromethene (BODIPY)-based electron donor-acceptor dyad (WS-Probe), which contains BODIPY as the signaling antennae and PTZ as the OCl - reactive group, was designed and used as a fluorescent chemosensor for the detection of OCl - . Upon addition of incremental amounts of NaOCl, the quenched fluorescence of WS-Probe was enhanced drastically, which indicated the inhibition of reductive photoinduced electron transfer (PET) from PTZ to 1 BODIPY*; the detection limit was calculated to be 26.7 nm. Selectivity studies with various reactive oxygen species, cations, and anions revealed that WS-Probe was able to detect OCl - selectively. Steady-state fluorescence studies performed at varied pH suggested that WS-Probe can detect NaOCl and exhibits maximum fluorescence in the pH range of 7 to 8, similar to physiological conditions. ESI-MS analysis and 1 H NMR spectroscopy titrations showed the formation of sulfoxide as the major oxidized product upon addition of hypochlorite. More interestingly, when WS-Probe was treated with real water samples, the fluorescence response was clearly visible with tap water and disinfectant, which indicated the presence of OCl - in these samples. The in vitro cell viability assay performed with human embryonic kidney 293 (HEK 293) cells suggested that WS-probe is non-toxic up to 10 μm and implicates the use of the probe for biological applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Donor defects and small polarons on the TiO2(110) surface
NASA Astrophysics Data System (ADS)
Moses, P. G.; Janotti, A.; Franchini, C.; Kresse, G.; Van de Walle, C. G.
2016-05-01
The role of defects in the chemical activity of the rutile TiO2(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend to localize in the form of small polarons, which are the factual cause of the deep states ˜1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO2 and related oxides.
McGrath, Dominic V.; Mayukh, Mayank; Placencia, Diogenes; Armstrong, Neal R.
2016-11-29
Organic photovoltaic (OPV) devices are disclosed. An exemplary device has first and second electrodes and an organic, photovoltaically active zone located between the first and second electrodes. The photovoltaically active zone includes an organic electron-donor material and an organic electron-acceptor material. The electron-donor material includes one or more trivalent- or tetravalent-metal phthalocyanines with alkylchalcogenide ring substituents, and is soluble in at least one organic solvent. This solubility facilitates liquid-processability of the donor material, including formation of thin-films, on an unlimited scale to form planar and bulk heterojunctions in organic OPVs. These donor materials are photovoltaically active in both visible and near-IR wavelengths of light, enabling more of the solar spectrum, for example, to be applied to producing electricity. Also disclosed are methods for producing the metalated phthalocyanines and actual devices.
NASA Astrophysics Data System (ADS)
Singh, Neeti; Khan, Ishaat M.; Ahmad, Afaq
2010-04-01
The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength ( f), transition dipole moment ( μEN), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used.
Assessing the Feasibility of DNAPL Source Zone Remediation: Review of Case Studies
2004-05-01
such as sugars, alcohols, fatty acids that are fermented to hydrogen and used for reductive dechlorination) are more soluble than the chlorinated...addition because a greater percentage of the hydrogen produced during the fermentation of added electron donors is consumed by dechlorinating...Battelle, 2002; Stegemeier and Vinegar , 2001; Roote, 2003; USEPA, 1999): i) increasing vapor pressure and volatilization rates of low boiling point
NASA Astrophysics Data System (ADS)
Karabıyık, Hande; Sevinçek, Resul; Karabıyık, Hasan
2014-05-01
We report experimental and theoretical evidences for supramolecular aromaticity as a new concept to be widely used in researches about molecular crystals. CSD survey regarding frequently encountered resonance-assisted H-bonds (RAHBs) in formic acid, formamide, formimidamide, formic acid-formamide, and formamide-formimidamide dimers shows that supramolecular quasirings formed by RAHBs have remarkable electronic delocalization within themselves, which is reminiscent of aromaticity at supramolecular level. This study criticizes and reevaluates the validity of conventional judgment which states that ring systems formed by intermolecular H-bonds cannot be aromatic. Thus, the term aromaticity can be extended to supramolecular systems formed by RAHBs. Supramolecular aromaticity has a multi-fold nature involving both σ- and π-delocalization, and σ-delocalization through RAHBs takes on a task of compensating σ-deficiency within quasirings. Atomic composition in donor-acceptor set of the dimers is descriptive for supramolecular aromaticity. We revised bond-valence parameters for RAHBs and they suggest that hypervalent character of H atoms is more pronounced than their hypovalent character in RAHBs. The σ-delocalized bonding within H-bonded quasirings necessitates hypervalent character of H atoms. Quantum chemical calculations based on adiabatic Hydrogen Atom Transfer (HAT) between the monomers reveal that topological parameters at ring critical points (RCPs) of the quasirings correlate well with Shannon's entropic aromaticity index. The presence of additional LP orbital on O atoms implying more diffused LP-orbitals in donor-acceptor set leads to the formation of resonance-disabling states reducing supramolecular aromaticity of a quasiring and energetic cost of the electron transfer between the monomers. There is a nonignorable electron transfer between the monomers even in the cases where H atoms are close to donor or acceptor atom. NBO analyses have revealed that formally vacant LP* orbitals on H-atoms in TS geometries mediate intermolecular electron transfer as a result of the hyperconjugative stereoelectronic interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Changwon; Atalla, Viktor; Smith, Sean
Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less
Park, Changwon; Atalla, Viktor; Smith, Sean; ...
2017-06-16
Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less
2012-04-01
fermented yeast , pure hydrogen, or endogenous biomass decay). When similarly respiring (~120 ?eeq PCE/(L-hr)) batch and PSS cultures were contrasted, the...electron equivalence (eeq) basis), and electron donor type (butyrate, lactate, yeast extract, fermented yeast , pure hydrogen, or endogenous biomass...acceptor ratios (0.7 to 17 on an electron equivalence (eeq) basis), and 12 electron donor type (butyrate, lactate, yeast extract, fermented yeast , pure
[KEEPING THE ELECTRON-DONOR PROPERTIES OF DRINKING WATER].
Gibert, K K; Stekhin, A A; Iakovleva, G V; Sul'ina, Iu S
2015-01-01
In a study there was performed the experimental evaluation of long-term structural--physical changes of the phase of associated water in drinking water treated in hypomagnetic conditions according to the the technology providing the retention of of ortho/para isomers of water in the presence of a catalyst--triplet oxygen. According to the results of measurements ofparameters of nano-associates formed in the water there was found a series ofconsistencies, allowing to determine the mechanisms of the impact of hypomagnetic treatment on the catalytic properties ofwater and long-term stability of its activated state, that provides the long-term maintenance of high biological activity of drinking water. In particular, under hypomagnetic conditions of the treatment there is formed denser packing of amorphous ice--VI in the composition of associates peroxide, serving as a kind of "reservoir" of atmospheric gases. In such a "reservoir" there realized higher pressure, compared with normal geophysical conditions, that stimulates the gas-phase reactions with the formation of dimers and trimers of oxygen existing in the 2-electron--active configurations with binding energies of 0.3 eVand ~0.2 eV providing phase modulation, resulting in condensation of environment additional electrons on paramagnetic oxygen, which provides the long-term maintenance of the electron--donor ability of water and electrically non-equilibrium state.
NASA Astrophysics Data System (ADS)
Yang, Zhenqing; Shao, Di; Li, Juan; Tang, Lian; Shao, Changjin
2018-05-01
In this work, we designed a series of butterfly type organic dyes, named ME07-ME13 by introducing such as triphenylamine, phenothiazine, coumarin groups etc. as electron donors and further investigated their absorption spectra using density functional theory (DFT) and time-dependent DFT (TDDFT). All designed dyes cover the entire visible absorption spectrum from 300 to 800 nm. It's fascinating that ME13 molecule has two absorption peak and the molar coefficient of two absorption peaks are above 4.645 × 104 M-1·cm-1. The light absorption area of ME13 exhibits an increment of 16.5-19.1% compared to ME07-ME12. Furthermore, we performed a detailed analysis on their geometrical and electronic properties, including molecular structures, energy levels, light harvesting efficiency (LHE), driving force (ΔGinject), regeneration (ΔGregen),electron dipole moments (μnormal), intermolecular electron transfer and dye/(TiO2)38 system electron transitions. The results of calculation reveal that double coumarin donors in ME13 are promising functional groups for butterfly type organic dye sensitizers. It is expected that the design of double donors can provide a new strategy and guidance for the investigation in high efficiency dye-sensitized devices.
Low potential manganese ions as efficient electron donors in native anoxygenic bacteria.
Deshmukh, Sasmit S; Protheroe, Charles; Ivanescu, Matei-Alexandru; Lag, Sarah; Kálmán, László
2018-04-01
Systematic control over molecular driving forces is essential for understanding the natural electron transfer processes as well as for improving the efficiency of the artificial mimics of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may identify evolutionary intermediates and provide insights to the energetics of biological water oxidation. This work presents effective environmental methods that substantially and simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic enzyme from native anoxygenic bacteria without the necessity of genetic modification or synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the manganese (II) to manganese (III) transition to an unusually low value (~400 mV) at pH 9.4 and allowed its binding to the bacterial reaction center. Binding to a novel buried binding site elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up to 92 mV also at pH 9.4 and facilitated the electron transfer that is able to compete with the wasteful charge recombination. These events impaired the function of the natural electron donor and made BTP-coordinated manganese a viable model for an evolutionary alternative. Copyright © 2018 Elsevier B.V. All rights reserved.
Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho
2012-12-21
Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.
Yamada, J; Watanabe, M; Akutsu, H; Nakatsuji, S; Nishikawa, H; Ikemoto, I; Kikuchi, K
2001-05-09
The synthesis, electrochemical properties, and molecular structure of a new pi-electron donor, 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP), is described. In contrast to the hitherto-known tetrachalcogenafulvalene pi-donors providing organic superconductors, this donor contains only the bis-fused 1,3-dithiole-2-ylidene unit as a pi-electron system, yet produces a series of ambient-pressure superconductors beta-(BDA-TTP)2X [X = SbF6 (magnetic T(c) = 6.9 K, resistive T(c) = 7.5 K), AsF6 (magnetic T(c) = 5.9 K, resistive T(c) = 5.8 K), and PF6 (magnetic T(c) = 5.9 K)], which are isostructural. The values of the intermolecular overlap integrals calculated on the donor layers of these superconductors suggest a two-dimensional (2D) electronic structure with loose donor packing. Tight-binding band calculations also indicate that these superconductors have the 2D band dispersion relations and closed Fermi surfaces.
NASA Astrophysics Data System (ADS)
El Aouami, A.; Feddi, E.; El-Yadri, M.; Aghoutane, N.; Dujardin, F.; Duque, C. A.; Phuc, Huynh Vinh
2018-02-01
In this paper we present a theoretical investigation of quantum confinement effects on the electron and single donor states in GaN conical quantum dot with spherical edge. In the framework of the effective mass approximation, the Schrödinger equations of electron and donor have been solved analytically in an infinite potential barrier model. Our calculations show that the energies of electron and donor impurity are affected by the two characteristic parameters of the structure which are the angle Ω and the radial dimension R. We show that, despite the fact that the reduction of the two parameters Ω and R leads to the same confinement effects, the energy remains very sensitive to the variation of the radial part than the variation of the angular part. The analysis of the photoionization cross-section corresponding to optical transitions between the conduction band and the first donor energy level shows clearly that the reduction of the radius R causes a shift in resonance peaks towards the high energies. On the other hand, the optical transitions between 1 s - 1 p , 1 p - 1 d and 1 p - 2 s show that the increment of the conical aperture Ω (or reduction of R) implies a displacement of the excitation energy to higher energies.
Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit
2016-06-01
We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.
Uranium(VI) Reduction by Anaeromyxobacter dehalogenans Strain 2CP-C
Wu, Qingzhong; Sanford, Robert A.; Löffler, Frank E.
2006-01-01
Previous studies demonstrated growth of Anaeromyxobacter dehalogenans strain 2CP-C with acetate or hydrogen as the electron donor and Fe(III), nitrate, nitrite, fumarate, oxygen, or ortho-substituted halophenols as electron acceptors. In this study, we explored and characterized U(VI) reduction by strain 2CP-C. Cell suspensions of fumarate-grown 2CP-C cells reduced U(VI) to U(IV). More-detailed growth studies demonstrated that hydrogen was the required electron donor for U(VI) reduction and could not be replaced by acetate. The addition of nitrate to U(VI)-reducing cultures resulted in a transitory increase in U(VI) concentration, apparently caused by the reoxidation of reduced U(IV), but U(VI) reduction resumed following the consumption of N-oxyanions. Inhibition of U(VI) reduction occurred in cultures amended with Fe(III) citrate, or citrate. In the presence of amorphous Fe(III) oxide, U(VI) reduction proceeded to completion but the U(VI) reduction rates decreased threefold compared to control cultures. Fumarate and 2-chlorophenol had no inhibitory effects on U(VI) reduction, and both electron acceptors were consumed concomitantly with U(VI). Since cocontaminants (e.g., nitrate, halogenated compounds) and bioavailable ferric iron are often encountered at uranium-impacted sites, the metabolic versatility makes Anaeromyxobacter dehalogenans a promising model organism for studying the complex interaction of multiple electron acceptors in U(VI) reduction and immobilization. PMID:16672509
Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena
2017-06-01
The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.
Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.
Cui, Chaohua; Wong, Wai-Yeung
2016-02-01
Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metal-organic frameworks for adsorption and separation of noble gases
Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad
2017-05-30
A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.
Dexter energy transfer pathways
Skourtis, Spiros S.; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M.; Beratan, David N.
2016-01-01
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185
NASA Technical Reports Server (NTRS)
Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin
2002-01-01
Supra-molecular or nano-structured electro-active polymers are potentially useful for developing variety inexpensive and flexible shaped opto-electronic devices. In the case of organic photovoltaic materials or devices, for instance, photo induced electrons and holes need to be separated and transported in organic acceptor (A) and donor (D) phases respectively. In this paper, preliminary results of synthesis and characterizations of a coupled block copolymers containing a conjugated donor block RO-PPV and a conjugated acceptor block SF-PPV and some of their electronic/optical properties are presented. While the donor block film has a strong PL emission at around 570 nm, and acceptor block film has a strong PL emission at around 590 nm, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99%. Experimental results demonstrated an effective photo induced electron transfer and charge separation due to the interfaces of donor and acceptor blocks. The system is very promising for variety light harvesting applications, including "plastic" photovoltaic devices.
Photo-induced electron transfer method
Wohlgemuth, R.; Calvin, M.
1984-01-24
The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.
Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair.
Kadirvel, Manikandan; Arsic, Biljana; Freeman, Sally; Bichenkova, Elena V
2008-06-07
2-O-tert-Butyldimethylsilyl-4,6-bis-O-pyrenoyl-myo-inositol-1,3,5-orthoformate (6) and 2-O-tert-butyldimethylsilyl-4-O-[4-(dimethylamino)benzoyl]-6-O-pyrenoyl-myo-inositol-1,3,5-orthoacetate (10) adopt conformationally restricted unstable chairs with five axial substituents. In the symmetrical diester 6, the two pi-stacked pyrenoyl groups are electron acceptor-donor partners, giving a strong intramolecular excimer emission. In the mixed ester 10, the pyrenoyl group is the electron acceptor and the 4-(dimethylamino)benzoyl ester is the electron donor, giving a strong intramolecular exciplex emission. The conformation of the mixed ester 10 was assessed using 1H NMR spectroscopy (1H-NOESY) and computational studies. which showed the minimum inter-centroid distance between the two aromatic systems to be approximately 3.9 A. Upon addition of acid, the orthoformate/orthoacetate trigger in 6 and 10 was cleaved, which caused a switch of the conformation of the myo-inositol ring to the more stable penta-equatorial chair, leading to separation of the aromatic ester groups and loss of excimer and exciplex fluorescence, respectively. This study provides proof of principle for the development of novel fluorescent molecular probes.
Effects of Phosphorus Implantation on the Activation of Magnesium Doped in GaN
NASA Astrophysics Data System (ADS)
Liu, Kuan-Ting; Chang, Shoou-Jinn; Wu, Sean
2009-08-01
The effects of phosphorus implantation on the activation of magnesium doped in GaN at different dopant concentration ratios have been systematically investigated. Hall effect measurements show that P implantation improves the hole concentration, and that this improvement is dependent on P/Mg dopant concentration ratio and annealing conditions. This phenomenon is attributable to the reduction in self-compensation that results from the formation of deep donors and the enhanced Mg atom activation, which is in reasonable agreement with the optical properties observed by photoluminescence measurements. In addition, a new photoluminescence peak resulting from P-related transitions is also observed, evidently owing to the recombination of electrons from the shallow native donors with holes previously captured by isoelectronic P traps.
Role of coherence and delocalization in photo-induced electron transfer at organic interfaces
NASA Astrophysics Data System (ADS)
Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.
2016-09-01
Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.
Anaerobic Benzene Oxidation by Geobacter Species
Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.
2012-01-01
The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648
Souto, Manuel; Yuan, Li; Morales, Dayana C; Jiang, Li; Ratera, Imma; Nijhuis, Christian A; Veciana, Jaume
2017-03-29
This Communication describes the mechanism of charge transport across self-assembled monolayers (SAMs) of two donor-acceptor systems consisting of a polychlorotriphenylmethyl (PTM) electron-acceptor moiety linked to an electron-donor ferrocene (Fc) unit supported by ultraflat template-stripped Au and contacted by a eutectic alloy of gallium and indium top contacts. The electronic and supramolecular structures of these SAMs were well characterized. The PTM unit can be switched between the nonradical and radical forms, which influences the rectification behavior of the junction. Junctions with nonradical units rectify currents via the highest occupied molecular orbital (HOMO) with a rectification ratio R = 99, but junctions with radical units have a new accessible state, a single-unoccupied molecular orbital (SUMO), which turns rectification off and drops R to 6.
Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben
2017-07-18
Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure-property relationships and in turn help us design high-performance semiconductors based on DA complexes. In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure-property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.
Radio frequency reflectometry and charge sensing of a precision placed donor in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hile, Samuel J., E-mail: samhile@gmail.com; House, Matthew G.; Peretz, Eldad
2015-08-31
We compare charge transitions on a deterministic single P donor in silicon using radio frequency reflectometry measurements with a tunnel coupled reservoir and DC charge sensing using a capacitively coupled single electron transistor (SET). By measuring the conductance through the SET and comparing this with the phase shift of the reflected radio frequency (RF) excitation from the reservoir, we can discriminate between charge transfer within the SET channel and tunneling between the donor and reservoir. The RF measurement allows observation of donor electron transitions at every charge degeneracy point in contrast to the SET conductance signal where charge transitions aremore » only observed at triple points. The tunnel coupled reservoir has the advantage of a large effective lever arm (∼35%), allowing us to independently extract a neutral donor charging energy ∼62 ± 17 meV. These results demonstrate that we can replace three terminal transistors by a single terminal dispersive reservoir, promising for high bandwidth scalable donor control and readout.« less
Pica, G.; Lovett, B. W.; Bhatt, R. N.; ...
2016-01-14
A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighboring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. In this work, we present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalabilitymore » issues intrinsic to exchange-based two-qubit gates, as it does not rely on subnanometer precision in donor placement and is robust against noise in the control fields. In conclusion, we use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.« less
The 13C nuclear magnetic resonance in graphite intercalation compounds
NASA Technical Reports Server (NTRS)
Tsang, T.; Resing, H. A.
1985-01-01
The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.
C-13 nuclear magnetic resonance in graphite intercalation compounds
NASA Technical Reports Server (NTRS)
Tsang, T.; Resing, H. A.
1985-01-01
The C-13 NMR chemical shifts of graphite intercalation compounds have been calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about - 140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal-conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.
Beatty, Joel W; Stephenson, Corey R J
2014-07-23
Natural product modification with photoredox catalysis allows for mild, chemoselective access to a wide array of related structures in complex areas of chemical space, providing the possibility for novel structural motifs as well as useful quantities of less abundant congeners. While amine additives have been used extensively as stoichiometric electron donors for photocatalysis, the controlled modification of amine substrates through single-electron oxidation is ideal for the synthesis and modification of alkaloids. Here, we report the conversion of the amine (+)-catharanthine into the natural products (-)-pseudotabersonine, (-)-pseudovincadifformine, and (+)-coronaridine utilizing visible light photoredox catalysis.
Microbial arsenic metabolism: New twists on an old poison
Stolz, J.F.; Basu, P.; Oremland, R.S.
2010-01-01
Phylogenetically diverse microorganisms metabolize arsenic despite its toxicity and are part of its robust iogeochemical cycle. Respiratory arsenate reductase is a reversible enzyme, functioning in some microbes as an arsenate reductase but in others as an arsenite oxidase. As(III) can serve as an electron donor for anoxygenic photolithoautotrophy and chemolithoautotrophy. Organoarsenicals, such as the feed additive roxarsone, can be used as a source of energy, releasing inorganic arsenic.
NASA Astrophysics Data System (ADS)
Gittel, Antje
The injection of seawater during the process of secondary oil recovery in offshore oilfields supplies huge amounts of sulphate to the prokaryotic reservoir communities. Together with the presence of oil organics and their degradation products as electron donors, this facilitates the enrichment and growth of sulphate-reducing prokaryotes (SRP) in the reservoir, as well as in pipings and top-side installations (Sunde and Torsvik, 2005; Vance and Thrasher, 2005). The activity of SRP causes severe economic problems due to the reactivity and toxicity of the produced hydrogen sulphide (H2S), one of the major problems being reservoir souring. Besides the use of broad-spectrum biocides or inhibitors for sulphate reduction, the addition of nitrate effectively decreased the net production of H2S in model column studies (Myhr et al., 2002; Hubert et al., 2005; Dunsmore et al., 2006) and field trials (Telang et al., 1997; Bødtker et al., 2008). The mechanisms by which nitrate addition might affect souring control are (i) the stimulation of heterotrophic nitrate-reducing bacteria (hNRB) that outcompete SRP for electron donors, (ii) the activity of nitrate-reducing, sulphide-oxidising bacteria (NR-SOB), and (iii) the inhibition of SRP by the production of nitrite and nitrous oxides (Sunde and Torsvik, 2005; Hubert and Voordouw, 2007).
Okazaki, Masato; Pander, Piotr; Higginbotham, Heather; Monkman, Andrew P.
2017-01-01
Novel U-shaped donor–acceptor–donor (D–A–D) π-conjugated multi-functional molecules comprising dibenzo[a,j]phenazine (DBPHZ) as an acceptor and phenothiazines (PTZ) as donors have been developed. Most importantly, the D–A–D compounds exhibit not only distinct tricolor-changeable mechanochromic luminescence (MCL) properties but also efficient thermally activated delayed fluorescence (TADF). Quantum chemical calculations, X-ray diffraction analysis, and systematic studies on the photophysical properties indicated that the “two-conformation-switchable” PTZ units play a highly important role in achieving multi-color-changing MCL. Time-resolved photophysical measurements revealed that the developed D–A–D compounds also exhibit efficient orange-TADF. Furthermore, organic light-emitting diode (OLED) devices fabricated with the new TADF emitters have achieved high external quantum efficiencies (EQEs) up to 16.8%, which significantly exceeds the theoretical maximum (∼5%) of conventional fluorescent emitters. PMID:28553504
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Niva A.; Roland, Steffen; Love, John A.
Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less
NASA Astrophysics Data System (ADS)
Nasri, Djillali
2018-07-01
Using the plane wave expansion in the frame of the effective mass approximation, a straightforward method is presented to calculate the energy levels and the corresponding wavefunctions in a two dimensional GaAs/AlxGa1-xAs eccentric quantum rings (QRs) with and without donor impurity. The transition energy and their related optical absorption coefficients are calculated. The obtained results show that the transition energy between the ground state and the first two excited states and their related optical matrix are strongly influenced by the eccentricity and the donor position. The resonant peaks of the absorption coefficients for electron are blueshifted, while for QRs with an off center impurity the resonant peaks are red or blueshifted depending on the donor positions and eccentricity. In addition, we have found that a small eccentricity acts on the QRs qualitatively as a weak radial electric field. Moreover, an electric field is no longer able to reproduce perfectly the eccentricity effect when the eccentricity becomes relatively strong. Finally, our results are qualitatively similar to those reported in recent works dealing with concentric QRs under a radial electric field.
Organic field effect transistor composed by fullerene C60 and heterojunctions
NASA Astrophysics Data System (ADS)
Vasconcelos, Railson C.; Aleixo, Vicente F. P.; Del Nero, Jordan
2017-02-01
We present a study of the complex electronic behavior of a fullerene (C60) molecule attached to six leads (heterojunctions), which works as a three-dimension rectifier. In addition, we confirmed that the fullerene works not only as an electron donor, but also as barrier and transport channel to electrons through the molecule. Moreover, when the phenylpropanodinilla (PPP) lead is orthogonally subjected to bias voltage, the charge distribution and the current displays regions of saturation and resonance similar to semiconductor devices. In order to understand the electronic transport in the molecule, we applied non-equilibrium green function (NEGF) method and performed Fowler-Nordheim (FN) and Millikan-Lauritsen (ML) analyses. The ML curves proved to be sufficient to describe the FN characteristics. In this work, we report the theoretical design for electronic transport of a 3D device (6-terminal).
Donor-bridge-acceptor energetics determine the distance dependence of electron tunneling in DNA
NASA Astrophysics Data System (ADS)
Lewis, Frederick D.; Liu, Jianqin; Weigel, Wilfried; Rettig, Wolfgang; Kurnikov, Igor V.; Beratan, David N.
2002-10-01
Electron transfer (ET) processes in DNA are of current interest because of their involvement in oxidative strand cleavage reactions and their relevance to the development of molecular electronics. Two mechanisms have been identified for ET in DNA, a single-step tunneling process and a multistep charge-hopping process. The dynamics of tunneling reactions depend on both the distance between the electron donor and acceptor and the nature of the molecular bridge separating the donor and acceptor. In the case of protein and alkane bridges, the distance dependence is not strongly dependent on the properties of the donor and acceptor. In contrast, we show here that the distance decay of DNA ET rates varies markedly with the energetics of the donor and acceptor relative to the bridge. Specifically, we find that an increase in the energy of the bridge states by 0.25 eV (1 eV = 1.602 × 1019 J) relative to the donor and acceptor energies for photochemical oxidation of nucleotides, without changing the reaction free energy, results in an increase in the characteristic exponential distance decay constant for the ET rates from 0.71 to 1.1 Å1. These results show that, in the small tunneling energy gap regime of DNA ET, the distance dependence is not universal; it varies strongly with the tunneling energy gap. These DNA ET reactions fill a "missing link" or transition regime between the large barrier (rapidly decaying) tunneling regime and the (slowly decaying) hopping regime in the general theory of bridge-mediated ET processes.
The adsorption properties of titanium dioxide
NASA Astrophysics Data System (ADS)
Lanin, S. N.; Vlasenko, E. V.; Kovaleva, N. V.; Zung, Fam Tien
2008-12-01
The adsorption properties of titanium dioxide were studied by gas chromatography. We used organic compounds from different classes, namely, n-alkanes, n-alkenes (C6-C8), and polar compounds (electron donors and acceptors) as test adsorbates. The differential heats of adsorption and the contributions of dispersion and specific intermolecular interaction energies were determined for the systems from the experimental retention data. The electron-donor and electron-acceptor characteristics of the ultimately hydroxylated surface of TiO2 were evaluated.
Edge-on and face-on functionalized Pc on enriched semiconducting SWCNT hybrids.
Arellano, Luis M; Martín-Gomis, Luis; Gobeze, Habtom B; Molina, Desiré; Hermosa, Cristina; Gómez-Escalonilla, María J; Fierro, José Luis G; Sastre-Santos, Ángela; D'Souza, Francis; Langa, Fernando
2018-03-15
Enriched semiconducting single-walled carbon nanotubes (SWCNT (6,5) and SWCNT (7,6)) and HiPco nanotubes were covalently functionalized with either zinc phthalocyanine or silicon phthalocyanine as electron donors. The synthetic strategy resulted in edge-on and face-on geometries with respect to the phthalocyanine geometry, with both phthalocyanines held by an electronically conducting diphenylacetylene linker. The extent of functionalization in the MPc-SWCNT (M = Zn or Si) donor-acceptor nanohybrids was determined by systematic studies involving AFM, TGA, XPS, optical and Raman techniques. Intramolecular interactions in MPc-SWCNT nanohybrids were probed by studies involving optical absorbance, Raman, luminescence and electrochemical studies. Different degrees of interactions were observed depending on the type of MPc and mode of attachment. Substantial quenching of MPc fluorescence in these hybrids was observed from steady-state and three-dimensional fluorescence mapping, which suggests the occurrence of excited state events. Evidence for the occurrence of excited state charge transfer type interactions was subsequently secured from femtosecond transient absorption studies covering both the visible and near-infrared regions. Furthermore, electron-pooling experiments performed in the presence of a sacrificial electron donor and a second electron acceptor revealed accumulation of one-electron reduced product upon continuous irradiation of the nanohybrids. In such experiments, the ZnPc-SWCNT (6,5) nanohybrid outperformed other nanohybrids and this suggests that this is a superior donor-acceptor system for photocatalytic applications.
Novel High Efficient Organic Photovoltaic Materials
NASA Technical Reports Server (NTRS)
Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)
2003-01-01
Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.
Vanin, Anatoly F
2018-06-01
The overview demonstrates how the use of only one physico-chemical approach, viz., the electron paramagnetic resonance method, allowed detection and identification of dinitrosyl iron complexes with thiol-containing ligands in various animal and bacterial cells. These complexes are formed in biological objects in the paramagnetic (electron paramagnetic resonance-active) mononuclear and diamagnetic (electron paramagnetic resonance-silent) binuclear forms and control the activity of nitrogen monoxide, one of the most universal regulators of metabolic processes in the organism. The analysis of electronic and spatial structures of dinitrosyl iron complex sheds additional light on the mechanism whereby dinitrosyl iron complex with thiol-containing ligands function in human and animal cells as donors of nitrogen monoxide and its ionized form, viz., nitrosonium ions (NO + ).
NASA Astrophysics Data System (ADS)
Datka, J.; Kukulska-Zajaç, E.; Kozyra, P.
2006-08-01
Cu + ions in zeolites activate organic molecules containing π electrons by π back donation, which results in a distinct weakening of multiple bonds. In this study, we followed the activation of alkenes (ethene and propene) by Cu + ions in CuY and CuX zeolites of various Cu content. We also studied the strength of bonding of alkenes to Cu + ions. IR studies have shown that there are two kinds of Cu + sites of various electron donor properties. We suppose that they could be attributed to the presence of Cu + ions of various number of oxygen atoms surrounding the cation. IR studies have shown that Cu ions introduced into Y and X zeolites in the first-order (at low Cu content) form Cu + ions of stronger electron donor properties (i.e. activate alkenes to larger extend) than Cu ions introduced in the next order (at higher Cu content). IR and TPD studies of alkenes desorption evidenced that Cu + ions of stronger electron donor properties bond alkenes stronger than less electron donor ones. It suggests that π back donation has more important contribution to the strength of bonding alkenes to cation than π donation.
Photo-induced electron transfer method
Wohlgemuth, Roland; Calvin, Melvin
1984-01-01
The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.
NASA Astrophysics Data System (ADS)
Halasa, Salaheldin; Arany, Praveen; Hamblin, Michael R.
2016-03-01
Nitromedicine is a new medical treatment paradigm, focused on increasing nitric oxide (NO) bioavailability and modulating redox-signaling pathways combined with phototherapy, electrotherapy and stem cell therapy. It has been known since the discovery of the biological role of NO in the 1980s, that supplying NO donors such can have many beneficial effects in different conditions by stimulating stem cells and modulating the immune response, but there also exists a substantial risk of side-effects with long-term use. Excess NO can inhibit mitochondrial metabolism by binding to cytochrome c oxidase (CCO) and can also produce reactive nitrogen species (Peroxynitrite) by interacting with reactive oxygen species (ROS). To avoid these potential damaging side-effects we propose to combine the use of NO donors with three additional components. Firstly we believe that addition of antioxidants such as hydrogen sulfide donors, polyphenols and vitamins can neutralize ROS and RNS. Secondly we believe that application of appropriate wavelengths and dosages of light (blue, red or near infrared depending on the exact condition being treated) will dissociate NO from CCO (and other storage sites) thus restoring mitochondrial ATP production and stimulating healing in many situations. Thirdly delivering electrons to the body might help to saturate the free radicals with electrons, eliminate underlying oxidative stress, stabilize mitochondria, prevent further formation of pathological free radicals and increase the nitric oxide bioavailability. This combination therapy may be applied to treat a large variety of oxidative stressed related diseases such as degenerative diseases, immunological diseases, chronic infectious diseases, cancers and a broad range of unmet medical needs involving chronic inflammation with an emphasis on pain management.
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.
2015-12-01
Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.
House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.
2015-01-01
Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556
NASA Astrophysics Data System (ADS)
Duymus, Hulya; Arslan, Mustafa; Kucukislamoglu, Mustafa; Zengin, Mustafa
2006-12-01
Charge transfer (CT) complexes of some non-steroidal anti-inflammatory drugs, naproxen and etodolac which are electron donors with some π-acceptors, such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL), have been investigated spectrophotometrically in chloroform at 21 °C. The coloured products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptors. Beer's law is obeyed and colours were produced in non-aqueous media. All complexes were stable at least 2 h except for etodolac with DDQ stable for 5 min. The equilibrium constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters Δ H, Δ S, Δ G° were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptors were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands in all cases.
Donor defects and small polarons on the TiO{sub 2}(110) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, P. G.; Janotti, A., E-mail: janotti@udel.edu; Van de Walle, C. G.
2016-05-14
The role of defects in the chemical activity of the rutile TiO{sub 2}(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend tomore » localize in the form of small polarons, which are the factual cause of the deep states ∼1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO{sub 2} and related oxides.« less
Singh, Neeti; Khan, Ishaat M; Ahmad, Afaq
2010-04-01
The charge transfer complexes of the donor p-toluidine with pi-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (K(CT)), molar extinction coefficient (epsilon(CT)), standard free energy (DeltaG(o)), oscillator strength (f), transition dipole moment (mu(EN)), resonance energy (R(N)) and ionization potential (I(D)). The results indicate that the formation constant (K(CT)) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used. Copyright 2010 Elsevier B.V. All rights reserved.
Han, Liang; Liu, Mingming; Ye, Deyong; Zhang, Ning; Lim, Ed; Lu, Jing; Jiang, Chen
2014-03-01
Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.
2017-12-01
The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.
Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang
2016-06-22
Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE).
Ye, Long; Sun, Kai; Jiang, Wei; Zhang, Shaoqing; Zhao, Wenchao; Yao, Huifeng; Wang, Zhaohui; Hou, Jianhui
2015-05-06
Among the diverse nonfullerene acceptors, perylene bisimides (PBIs) have been attracting much attention due to their excellent electron mobility and tunable molecular and electronic properties by simply engineering the bay and head linkages. Herein, guided by two efficient small molecular acceptors, we designed, synthesized, and characterized a new nonfullerene small molecule PPDI with fine-tailored alkyl chains. Notably, a certificated PCE of 5.40% is realized in a simple structured fullerene-free polymer solar cell comprising PPDI as the electron acceptor and a fine-tailored 2D-conjugated polymer PBDT-TS1 as the electron donor. Moreover, the device behavior, morphological feature, and origin of high efficiency in PBDT-TS1/PPDI-based fullerene-free PSC were investigated. The synchronous selection and design of donor and acceptor materials reported here offer a feasible strategy for realizing highly efficient fullerene-free organic photovoltaics.
Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium
NASA Astrophysics Data System (ADS)
Sigillito, Anthony James
Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a single-phonon T1 process. At lower frequencies or lower temperatures the qubit coherence times should substantially increase. Finally, we measure the electric field tunability of donors in germanium and find a four order-of-magnitude enhancement in the spin-orbit Stark shift and confirm that the donors should be tunable by at least 4 times the electron spin ensemble linewidth (in isotopically enriched material). Germanium should therefore also be more sensitive to electrically driven nuclear magnetic resonance. Based on these results germanium is a promising alternative to silicon for spin qubits.
Biological degradation of dense nonaqueous phase liquids (DNAPLs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ensley, B.; Strong-Gunderson, J.M.; Palumbo, A.V.
1996-08-01
In situ bioremediation is a very attractive, safe and efficient method of not only removing, but eliminating hazardous compounds from the environment. However, the quickest and most efficient method of restoring a hazardous waste site would be to link several remediation processes. In situ biodegradation can involve the addition of nutrients, oxygen, electron donors, electron acceptors, organisms or all the above. These amendments can be introduced and coupled to a variety of other technologies such as permeability enhancements, chemical treatments and/or physical processes. In addition to in situ technologies, bioremediation in bioreactors is an efficient tool facilitating mineralization of contaminants.more » Overall, biodegradation has a significant potential to increase the rate of site restoration and decrease overall costs. 37 refs., 2 figs.« less
Dai, Panpan; Yang, Lin; Liang, Mao; Dong, Huanhuan; Wang, Peng; Zhang, Chunyao; Sun, Zhe; Xue, Song
2015-10-14
With respect to the electron-withdrawing acceptors of D-A-π-A organic dyes, reports on the second electron-donating donors for D-D-π-A organic dyes are very limited. Both of the dyes have attracted significant attention in the field of dye-sensitized solar cells (DSCs). In this work, four new D-D-π-A organic dyes with dithieno[3,2-b:2',3'-d]pyrrole (DTP) or bis(amine) donor have been designed and synthesized for a investigation of the influence of the terminal electron donor in D-D-π-A organic dye-sensitized solar cells. It is found that DTP is a promising building block as the terminal electron donor when introduced in the dithiophenepyrrole direction, but not just a good bridge, which exhibits several characteristics: (i) efficiently increasing the maximum molar absorption coefficient and extending the absorption bands; (ii) showing stronger charge transfer interaction as compared with the pyrrole direction; (iii) beneficial to photocurrent generation of DSCs employing cobalt electrolytes. DSCs based on M45 with the Co-phen electrolyte exhibit good light-to-electric energy conversion efficiencies as high as 9.02%, with a short circuit current density (JSC) of 15.3 mA cm(-2), open circuit voltage (VOC) of 867 mV and fill factor (FF) of 0.68 under AM 1.5 illumination (100 mW cm(-2)). The results demonstrate that N,S-heterocycles such as DTP unit could be promising candidates for application in highly efficient DSCs employing cobalt electrolyte.
Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; ...
2015-08-20
We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.
We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less
Photoluminescence Study of N-Type Thermal Conversion in Semi-Insulating GaAs.
1982-12-01
free electron to the crystal. For example, in GaAs, a tellurium atom on an arsenic site (TeAs) or a silicon atom on a gallium site (SiGa) are donor atoms...Photoconductivity Photoluminescenc Silicon, SiGa 5.81 6.80 Germanium, GeGa 6.08 Sulfur, SAs 6.10 Selenium, SeAs 5.89 6.10 Tellurium , TeAs When an electron...34 to the neutral donor or acceptor (Ref 16:15). The following excitonic com- plexes have been observed in GaAs: (i) exciton bound to a neutron donor at
Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors
Wu, Tzi-Yi; Tsao, Ming-Hsiu; Chen, Fu-Lin; Su, Shyh-Gang; Chang, Cheng-Wen; Wang, Hong-Paul; Lin, Yuan-Chung; Ou-Yang, Wen-Chung; Sun, I-Wen
2010-01-01
New organic dyes comprising carbazole, iminodibenzyl, or phenothiazine moieties, respectively, as the electron donors, and cyanoacetic acid or acrylic acid moieties as the electron acceptors/anchoring groups were synthesized and characterized. The influence of heteroatoms on carbazole, iminodibenzyl and phenothiazine donors, and cyano-substitution on the acid acceptor is evidenced by spectral, electrochemical, photovoltaic experiments, and density functional theory calculations. The phenothiazine dyes show solar-energy-to-electricity conversion efficiency (η) of 3.46–5.53%, whereas carbazole and iminodibenzyl dyes show η of 2.43% and 3.49%, respectively. PMID:20162019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E.
How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that hasmore » only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.« less
Development of Medical Technology for Contingency Response to Marrow Toxic Agents
2012-07-26
Confirmatory Testing DC Donor Center DIY Do it yourself DNA Deoxyribonucleic Acid DoD Department of Defense D/R Donor/Recipient EBMT European Group...recruitment support (Search screen redesign, New Donor Notes, HHQ enhancements, Site Maintenance redesign, Communications History, DIY ). National...Web and Do It Yourself ( DIY ) This project enables the ability to electronically contact the donors via email and allow them to update their contact
Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.
2006-04-01
Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.
Formation of tyrosine radicals in photosystem II under far-red illumination.
Ahmadova, Nigar; Mamedov, Fikret
2018-04-01
Photosystem II (PS II) contains two redox-active tyrosine residues on the donor side at symmetrical positions to the primary donor, P 680 . Tyr Z , part of the water-oxidizing complex, is a preferential fast electron donor while Tyr D is a slow auxiliary donor to P 680 + . We used PS II membranes from spinach which were depleted of the water oxidation complex (Mn-depleted PS II) to study electron donation from both tyrosines by time-resolved EPR spectroscopy under visible and far-red continuous light and laser flash illumination. Our results show that under both illumination regimes, oxidation of Tyr D occurs via equilibrium with Tyr Z • at pH 4.7 and 6.3. At pH 8.5 direct Tyr D oxidation by P 680 + occurs in the majority of the PS II centers. Under continuous far-red light illumination these reactions were less effective but still possible. Different photochemical steps were considered to explain the far-red light-induced electron donation from tyrosines and localization of the primary electron hole (P 680 + ) on the Chl D1 in Mn-depleted PS II after the far-red light-induced charge separation at room temperature is suggested.
Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.
Tremblay, Pier-Luc; Angenent, Largus T; Zhang, Tian
2017-04-01
Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO 2 . Extracellular electron-transfer mechanisms involved in the acquisition of electrons from metals by electrical microbially influenced corrosion (EMIC), from other living cells by interspecies electron transfer (IET), or from an electrode during MES rely on: (i) mediators such as H 2 ; (ii) physical contact through electron-transfer proteins; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baeseman, J.L.; Smith, R.L.; Silverstein, J.
2006-01-01
Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.
Impacts of Enhanced Reductive Bioremediation on Post-Remediation Groundwater Quality
2015-11-15
and natural attenuation of SWQIs at ERB sites. Much of the organic carbon added to the aquifer is fermented to CH4. In coarse-grained sediments...for stimulating ERB involves addition of a fermentable organic substrate to the aquifer to serve as an electron donor and carbon source for microbial...composed of edible oils or solid substrates tend to stay in place for an extended treatment period. Soluble substrates or soluble fermentation
High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots.
Baranov, Pavel G; Orlinskii, Sergei B; de Mello Donegá, Celso; Schmidt, Jan
2010-10-01
It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast to optical methods, they allow the identification of the dopants and provide information about the spatial distribution of the electronic wave function. This latter aspect is particularly attractive because it allows for a quantitative measurement of the effect of confinement on the shape and properties of the wave function. In this contribution EPR and ENDOR results are presented on doped ZnO QDs. Shallow donors (SDs), related to interstitial Li and Na and substitutional Al atoms, have been identified in this material by pulsed high-frequency EPR and ENDOR spectroscopy. The shallow character of the wave function of the donors is evidenced by the multitude of ENDOR transitions of the (67)Zn nuclear spins and by the hyperfine interaction of the (7)Li, (23)Na and (27)Al nuclear spins that are much smaller than for atomic lithium, sodium and aluminium. The EPR signal of an exchange-coupled pair consisting of a shallow donor and a deep Na-related acceptor has been identified in ZnO nanocrystals with radii smaller than 1.5 nm. From ENDOR experiments it is concluded that the deep Na-related acceptor is located at the interface of the ZnO core and the Zn(OH)(2) capping layer, while the shallow donor is in the ZnO core. The spatial distribution of the electronic wave function of a shallow donor in ZnO semiconductor QDs has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine interactions as monitored by ENDOR spectroscopy quantitatively reveal the transition from semiconductor to molecular properties upon reduction of the size of the nanoparticles. In addition, the effect of confinement on the g-factor of SDs in ZnO as well as in CdS QDs is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the (67)Zn nuclear spins in the core of ZnO QDs and of the (1)H nuclear spins in the Zn(OH)(2) capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques.
High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots
Baranov, Pavel G.; de Mello Donegá, Celso; Schmidt, Jan
2010-01-01
It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast to optical methods, they allow the identification of the dopants and provide information about the spatial distribution of the electronic wave function. This latter aspect is particularly attractive because it allows for a quantitative measurement of the effect of confinement on the shape and properties of the wave function. In this contribution EPR and ENDOR results are presented on doped ZnO QDs. Shallow donors (SDs), related to interstitial Li and Na and substitutional Al atoms, have been identified in this material by pulsed high-frequency EPR and ENDOR spectroscopy. The shallow character of the wave function of the donors is evidenced by the multitude of ENDOR transitions of the 67Zn nuclear spins and by the hyperfine interaction of the 7Li, 23Na and 27Al nuclear spins that are much smaller than for atomic lithium, sodium and aluminium. The EPR signal of an exchange-coupled pair consisting of a shallow donor and a deep Na-related acceptor has been identified in ZnO nanocrystals with radii smaller than 1.5 nm. From ENDOR experiments it is concluded that the deep Na-related acceptor is located at the interface of the ZnO core and the Zn(OH)2 capping layer, while the shallow donor is in the ZnO core. The spatial distribution of the electronic wave function of a shallow donor in ZnO semiconductor QDs has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine interactions as monitored by ENDOR spectroscopy quantitatively reveal the transition from semiconductor to molecular properties upon reduction of the size of the nanoparticles. In addition, the effect of confinement on the g-factor of SDs in ZnO as well as in CdS QDs is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the 67Zn nuclear spins in the core of ZnO QDs and of the 1H nuclear spins in the Zn(OH)2 capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques. PMID:20936163
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.
2006-02-01
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.
Voityuk, Alexander A
2006-02-14
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of V(da) because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a pi stack, where donor and acceptor are separated by a bridging unit, can be obtained as V(da) = (E(2)-E(1))mu(12)R(da) + (2E(3)-E(1)-E(2))2mu(13)mu(23)R(da) (2), where E(1), E(2), and E(3) are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, mu(ij) is the transition dipole moments between the states i and j, and R(da) is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.
Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions.
Beaujuge, Pierre M; Amb, Chad M; Reynolds, John R
2010-11-16
With the development of light-harvesting organic materials for solar cell applications and molecular systems with fine-tuned colors for nonemissive electrochromic devices (e.g., smart windows, e-papers), a number of technical challenges remain to be overcome. Over the years, the concept of "spectral engineering" (tailoring the complex interplay between molecular physics and the various optical phenomena occurring across the electromagnetic spectrum) has become increasingly relevant in the field of π-conjugated organic polymers. Within the spectral engineering toolbox, the "donor-acceptor" approach uses alternating electron-rich and electron-deficient moieties along a π-conjugated backbone. This approach has proved especially valuable in the synthesis of dual-band and broadly absorbing chromophores with useful photovoltaic and electrochromic properties. In this Account, we highlight and provide insight into a present controversy surrounding the origin of the dual band of absorption sometimes encountered in semiconducting polymers structured using the "donor-acceptor" approach. Based on empirical evidence, we provide some schematic representations to describe the possible mechanisms governing the evolution of the two-band spectral absorption observed on varying the relative composition of electron-rich and electron-deficient substituents along the π-conjugated backbone. In parallel, we draw attention to the choice of the method employed to estimate and compare the absorption coefficients of polymer chromophores exhibiting distinct repeat unit lengths, and containing various extents of solubilizing side-chains along their backbone. Finally, we discuss the common assumption that "donor-acceptor" systems should have systematically lower absorption coefficients than their "all-donor" counterparts. The proposed models point toward important theoretical parameters which could be further explored at the macromolecular level to help researchers take full advantage of the complex interactions taking place in π-conjugated polymers with intramolecular "donor-acceptor" characteristics.
Density of Electronic States in Impurity-Doped Quantum Well Wires
NASA Astrophysics Data System (ADS)
Sierra-Ortega, J.; Mikhailov, I. D.
2003-03-01
We analyze the electronic states in a cylindrical quantum well-wire (QWW) with randomly distributed neutral, D^0 and negatively charged D^- donors. In order to calculate the ground state energies of the off-center donors D^0 and D^- as a function of the distance from the axis of the QWW, we use the recently developed fractal dimension method [1]. There the problems are reduced to those similar for a hydrogen-like atom and a negative-hydrogen-like ion respectively, in an isotropic effective space with variable fractional dimension. The numerical trigonometric sweep method [2] and the three-parameter Hylleraas-type trial function are used to solve these problems. Novel curves for the density of impurity states in cylindrical QWWs with square-well, parabolic and soft-edge barrier potentials are present. Additionally we analyze the effect of the repulsive core on the density of the impurity states. [1] I.D. Mikhailov, F. J. Betancur, R. Escorcia and J. Sierra-Ortega, Phys. Stat. Sol., 234(b), 590 (2002) [2] F. J. Betancur, I. D. Mikhailov and L. E. Oliveira, J. Appl. Phys. D, 31, 3391(1998)
Jurss, Jonah W.; Khnayzer, Rony S.; Panetier, Julien A.; El Roz, Karim A.; Nichols, Eva M.
2015-01-01
Mononuclear metalloenzymes in nature can function in cooperation with precisely positioned redox-active organic cofactors in order to carry out multielectron catalysis. Inspired by the finely tuned redox management of these bioinorganic systems, we present the design, synthesis, and experimental and theoretical characterization of a homologous series of cobalt complexes bearing redox-active pyrazines. These donor moieties are locked into key positions within a pentadentate ligand scaffold in order to evaluate the effects of positioning redox non-innocent ligands on hydrogen evolution catalysis. Both metal- and ligand-centered redox features are observed in organic as well as aqueous solutions over a range of pH values, and comparison with analogs bearing redox-inactive zinc(ii) allows for assignments of ligand-based redox events. Varying the geometric placement of redox non-innocent pyrazine donors on isostructural pentadentate ligand platforms results in marked effects on observed cobalt-catalyzed proton reduction activity. Electrocatalytic hydrogen evolution from weak acids in acetonitrile solution, under diffusion-limited conditions, reveals that the pyrazine donor of axial isomer 1-Co behaves as an unproductive electron sink, resulting in high overpotentials for proton reduction, whereas the equatorial pyrazine isomer complex 2-Co is significantly more active for hydrogen generation at lower voltages. Addition of a second equatorial pyrazine in complex 3-Co further minimizes overpotentials required for catalysis. The equatorial derivative 2-Co is also superior to its axial 1-Co congener for electrocatalytic and visible-light photocatalytic hydrogen generation in biologically relevant, neutral pH aqueous media. Density functional theory calculations (B3LYP-D2) indicate that the first reduction of catalyst isomers 1-Co, 2-Co, and 3-Co is largely metal-centered while the second reduction occurs at pyrazine. Taken together, the data establish that proper positioning of non-innocent pyrazine ligands on a single cobalt center is indeed critical for promoting efficient hydrogen catalysis in aqueous media, akin to optimally positioned redox-active cofactors in metalloenzymes. In a broader sense, these findings highlight the significance of electronic structure considerations in the design of effective electron–hole reservoirs for multielectron transformations. PMID:29142725
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Almonacid, Hannia
Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of theirmore » critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.« less
Muhammad, Shabbir; Nakano, Masayoshi; Al-Sehemi, Abdullah G; Irfan, Ahmad; Chaudhry, Aijaz Rasool; Tonami, Takayoshi; Ito, Soichi; Kishi, Ryohei; Kitagawa, Yasutaka
2018-06-06
Contrary to the enormous number of previous studies on carbon nanotubes (CNTs), herein, we realized the origin of the intrinsic open-shell diradical character and second hyperpolarizability γ using a broken symmetry approach. This study was inspired by our recent findings (S. Muhammad, et al., Nanoscale, 2016, 8, 17998 and Nakano, et al., J. Phys. Chem. C, 2016, 120, 1193). We performed structural modifications through a unique asymmetric donor-nanotube framework, which led to a novel paradigm of modified CNTs with tunable open-shell diradical character and remarkably superior NLO response properties. Interestingly, asymmetry and diradical character were found to be the crucial factors to modulate the second hyperpolarizability γ. We initially performed a comparative analysis of the diradical characters and γ amplitudes of boron nitride nanotubes (BNNTs) and CNTs possessing significant ionic characters and covalent characters, respectively. The basic findings for these simple configurations were further extended to the donor-acceptor CNT paradigm, which finally led to excellent asymmetric donor-CNT configurations with remarkably larger γ amplitudes. Furthermore, among the CNTs, finite length zigzag CNT(6,0)3 were modified with different donor-acceptor configurations. Interestingly, for the first time, unique donor-nanotube configurations [1,4-(NH2)2CNT-(6,0)3 and 1,4-(NH2)2CNT-(6,0)5] were found; they showed significantly robust γ amplitudes as large as 2519 × 103 and 4090 × 103 a.u. at the LC-UBLYP(μ = 0.33)/6-31G* level of theory. Additionally, several molecular level insights have been obtained for these novel donor-nanotube configurations using their odd electron densities, molecular electrostatic maps, densities of states and γ density analyses to highlight the realization of these novel materials for highly efficient optical and NLO applications.
NASA Astrophysics Data System (ADS)
Sivakumar, V.; Ponnamma, Deepalekshmi; Hussein, Yasser H. A.
2017-02-01
Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQT) but not the triplets AQT or AQST. However in aqueous medium, AN quenches AQST and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQT or AQST while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications.
Electronic structure and vibrational analysis of AHA⋯HX complexes
NASA Astrophysics Data System (ADS)
Joshi, Kaustubh A.; Gejji, Shridhar P.
2005-10-01
Electronic structures of the binary complexes of acetohydroxamic acid (AHA) and hydrogen halides, HX (X = F, Cl, Br) have been investigated using the second order perturbation theory. In the lowest energy structure of AHA⋯HF complex, hydrogen fluoride acts as a proton-donor with carbonyl oxygen and simultaneously as a proton-acceptor with the hydroxyl group. For chloro- and bromo-substituted derivatives, however, the lowest minimum possesses hydrogen-bonded interactions with the carbonyl oxygen in addition to those from the methyl proton of AHA. Frequency shifts of NH and CN stretching vibrations enable one to distinguish different conformers of AHA⋯HX complexes.
2015-01-01
Natural product modification with photoredox catalysis allows for mild, chemoselective access to a wide array of related structures in complex areas of chemical space, providing the possibility for novel structural motifs as well as useful quantities of less abundant congeners. While amine additives have been used extensively as stoichiometric electron donors for photocatalysis, the controlled modification of amine substrates through single-electron oxidation is ideal for the synthesis and modification of alkaloids. Here, we report the conversion of the amine (+)-catharanthine into the natural products (−)-pseudotabersonine, (−)-pseudovincadifformine, and (+)-coronaridine utilizing visible light photoredox catalysis. PMID:25003992
Schmidt, Alexander H.; Solloch, Ute V.; Baier, Daniel; Grathwohl, Alois; Hofmann, Jan; Pingel, Julia; Stahr, Andrea; Ehninger, Gerhard
2011-01-01
Large registries of potential unrelated stem cell donors have been established in order to enable stem cell transplantation for patients without HLA-identical related donors. Donor search is complicated by the fact that the stored HLA information of many registered donors is incomplete. We carried out a project that was aimed to improve chances of patients with ongoing donor searches to find an HLA-matched unrelated donor. For that purpose, we carried out additional donor center-initiated HLA-DRB1 typing of donors who were only typed for the HLA loci A and B so far and were potential matches for patients in need of a stem cell transplant. In total, 8,861 donors were contacted for donor center-initiated HLA-DRB1 typing within 1,089 donor searches. 12 of these donors have donated stem cells so far, 8 thereof for their respective target patients. We conclude that chances of patients with ongoing donor searches to find an HLA-matched unrelated donor can indeed be improved by donor-center initiated typing that is carried out in addition to the standard donor search process. Our results also raise questions regarding the appropriate use of incompletely typed donors within unrelated donor searches. PMID:21625451
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savchenko, D., E-mail: dariyasavchenko@gmail.com; National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv 03056; Kalabukhova, E.
2016-01-28
We have studied the temperature behavior of the electron spin resonance (ESR) spectra of nitrogen (N) donors in n-type 6H SiC crystals grown by Lely and sublimation sandwich methods (SSM) with donor concentration of 10{sup 17 }cm{sup −3} at T = 60–150 K. A broad signal in the ESR spectrum was observed at T ≥ 80 K with Lorentzian lineshape and g{sub ||} = 2.0043(3), g{sub ⊥} = 2.0030(3), which was previously assigned in the literature to the N donors in the 1s(E) excited state. Based on the analysis of the ESR lineshape, linewidth and g-tensor we attribute this signal to the conduction electrons (CE). The emergence of the CE ESRmore » signal at T > 80 K was explained by the ionization of electrons from the 1s(A{sub 1}) ground and 1s(E) excited states of N donors to the conduction band while the observed reduction of the hyperfine (hf) splitting for the N{sub k1,k2} donors with the temperature increase is attributed to the motional narrowing effect of the hf splitting. The temperature dependence of CE ESR linewidth is described by an exponential law (Orbach process) with the activation energy corresponding to the energy separation between 1s(A{sub 1}) and 1s(E) energy levels for N residing at quasi-cubic sites (N{sub k1,k2}). The theoretical analysis of the temperature dependence of microwave conductivity measured by the contact-free method shows that due to the different position of the Fermi level in two samples the ionization of free electrons occurs from the energy levels of N{sub k1,k2} donors in Lely grown samples and from the energy level of N{sub h} residing at hexagonal position in 6H SiC grown by SSM.« less
Ultrafast electron transfer processes studied by pump-repump-probe spectroscopy.
Fischer, Martin K; Gliserin, Alexander; Laubereau, Alfred; Iglev, Hristo
2011-03-01
The photodetachment of Br(-), I(-) and OH(-) in aqueous solution is studied by 2- and 3-pulse femtosecond spectroscopy. The UV excitation leads to fast electron separation followed by formation of a donor-electron pairs. An additional repump pulse is used for secondary excitation of the intermediates. The 3-pulse technique allows distinguishing the pair-intermediate from the fully separated electron. Using this method we observe a novel geminate recombination channel of .OH with adjacent hydrated electrons. The process leads to an ultrafast quenching (0.7 ps) of almost half the initial number of radicals. The phenomenon is not observed in Br(-) and I(-). Our results demonstrate the potential of the 3-pulse spectroscopy to elucidate the mechanism of ultrafast ET reactions. Photodetachment of aqueous anions studied by two- and three pulse spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Robertson, Luke D.; Kane, B. E.
Quantum point contacts (QPCs) realized in materials with anisotropic electron mass, such as Si, may exhibit valley filter phenomena leading to extreme sensitivity to single donor occupancy, and thus are of interest to measurement schemes for donor-based quantum information processing. To this end, we have developed ambipolar devices on a H-Si(111):Si(100)/SiO2 flip-chip assembly which utilize in-plane, degenerately doped n+ (P) and p+ (B) contacts to probe transport in a 2D electron system (2DES). In addition to providing electrostatic isolation of carriers, these p-type contacts can be used as lateral depletion gates to modulate the 2DES conductance, and if extended to the nanoscale can lead to 1D confinement and quantized conductance of the 2DES. In this talk, I will describe our efforts to use a Ga focused-ion beam for direct-write implant lithography to pattern QPCs and Ga nanowires on H-Si(111) surfaces. I will present low temperature (4.2K) conductance data collected on 30nm Ga nanowires to demonstrate their effectiveness as lateral depletion gates, and discuss on going measurements to confine and modulate the conductance of the 2DES using Ga QPCs.
Photoinduced electron transfer in fixed distance chlorophyll-quinone donor-acceptor molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasielewski, M.R.; Johnson, D.G.; Svec, W.A.
1987-01-01
A series of fixed distance chlorophyll-quinone donor-acceptor molecules have been prepared. The donor consists of either methyl pyropheophorbide a or methyl pyrochlorophyllide a, while the acceptor is either benzoquinone or naphthoquinone. The acceptors are fused to a triptycene spacer group, which in turn is attached to the donors at their vinyl groups. Picosecond transient absorption measurements have been used to identify electron transfer from the lowest excited singlet state of the donor to the acceptor as the mechanism of fluorescence quenching in these molecules. The charge separation rate constants increase from 2 x 10/sup 10/ s/sup -1/ to 4 xmore » 10/sup 11/ s/sup -1/ as the free energy of charge separation increases, while the radical pair recombination rate constants decrease from 1.2 x 10/sup 11/ s/sup -1/ to 2 x 10/sup 9/ s/sup -1/ as the free energy of recombination increases. The resulting total reorganization energy lambda = 0.9 eV.« less
Two-electron spin correlations in precision placed donors in silicon.
Broome, M A; Gorman, S K; House, M G; Hile, S J; Keizer, J G; Keith, D; Hill, C D; Watson, T F; Baker, W J; Hollenberg, L C L; Simmons, M Y
2018-03-07
Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.
Ran, Niva A.; Roland, Steffen; Love, John A.; ...
2017-07-19
Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less
Electron shuttling in phosphorus donor qubit systems
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Gamble, John King; Nielsen, Erik; Muller, Richard P.; Witzel, Wayne M.; Montano, Ines; Carroll, Malcolm S.
2014-03-01
Phosphorus donors in silicon are a promising qubit architecture, due in large part to their long nuclear coherence times and the recent development of atomically precise fabrication methods. Here, we investigate issues related to implementing qubits with phosphorus donors in silicon, employing an effective mass theory that non-phenomenologically takes into account inter-valley coupling. We estimate the significant sources of decoherence and control errors in this system to compute the fidelity of primitive gates and gate timescales. We include the effects of valley repopulation during the process of shuttling an electron between a donor and nearby interface or between neighboring donors, evaluating the control requirements for ensuring adiabaticity with respect to the valley sector. This work was supported in part by the LDRD program at Sandia National Labs, a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. DOE NNSA under contract DE-AC04-94AL85000.
Leblebici, Sibel Y; Chen, Teresa L; Olalde-Velasco, Paul; Yang, Wanli; Ma, Biwu
2013-10-23
Photocurrent generation in organic solar cells requires that excitons, which are formed upon light absorption, dissociate into free carriers at the interface of electron acceptor and donor materials. The high exciton binding energy, arising from the low permittivity of organic semiconductor films, generally causes low exciton separation efficiency and subsequently low power conversion efficiency. We demonstrate here, for the first time, that the exciton binding energy in B,O-chelated azadipyrromethene (BO-ADPM) donor films is reduced by increasing the film permittivity by blending the BO-ADPM donor with a high dielectric constant small molecule, camphoric anhydride (CA). Various spectroscopic techniques, including impedance spectroscopy, photon absorption and emission spectroscopies, as well as X-ray spectroscopies, are applied to characterize the thin film electronic and photophysical properties. Planar heterojunction solar cells are fabricated with a BO-ADPM:CA film as the electron donor and C60 as the acceptor. With an increase in the dielectric constant of the donor film from ∼4.5 to ∼11, the exciton binding energy is reduced and the internal quantum efficiency of the photovoltaic cells improves across the entire spectrum, with an ∼30% improvement in the BO-ADPM photoactive region.
NASA Astrophysics Data System (ADS)
Iqraoun, E.; Sali, A.; Rezzouk, A.; Feddi, E.; Dujardin, F.; Mora-Ramos, M. E.; Duque, C. A.
2017-06-01
The donor impurity-related electron states in GaAs cone-like quantum dots under the influence of an externally applied static electric field are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The uncorrelated Schrödinger-like electron states are obtained in quasi-analytical form and the entire electron-impurity correlated states are used to calculate the photoionisation cross section. Results for the electron state energies and the photoionisation cross section are reported as functions of the main geometrical parameters of the cone-like structures as well as of the electric field strength.
Understanding biogeobatteries: Where geophysics meets microbiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revil, A.; Mendonca, C.A.; Atekwana, E.A.
2009-08-15
Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include ironmore » oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.« less
Relationship of Hydrogen Bioavailability to Chromate Reduction in Aquifer Sediments
Marsh, Tamara L.; McInerney, Michael J.
2001-01-01
Biological Cr(VI) reduction was studied in anaerobic sediments from an aquifer in Norman, Okla. Microcosms containing sediment and mineral medium were amended with various electron donors to determine those most important for biological Cr(VI) reduction. Cr(VI) (about 340 μM) was reduced with endogenous substrates (no donor), or acetate was added. The addition of formate, hydrogen, and glucose stimulated Cr(VI) reduction compared with reduction in unamended controls. From these sediments, an anaerobic Cr(VI)-utilizing enrichment was obtained that was dependent upon hydrogen for both growth and Cr(VI) reduction. No methane was produced by the enrichment, which reduced about 750 μM Cr(VI) in less than six days. The dissolved hydrogen concentration was used as an indicator of the terminal electron accepting process occurring in the sediments. Microcosms with sediments, groundwater, and chromate metabolized hydrogen to a concentration below the detection limits of the mercury vapor gas chromatograph. In microcosms without chromate, the hydrogen concentration was about 8 nM, a concentration comparable to that under methanogenic conditions. When these microcosms were amended with 500 μM Cr(VI), the dissolved hydrogen concentration quickly fell below the detection limits. These results showed that the hydrogen concentration under chromate-reducing conditions became very low, as low as that reported under nitrate- and manganese-reducing conditions, a result consistent with the free energy changes for these reactions. The utilization of formate, lactate, hydrogen, and glucose as electron donors for Cr(VI) reduction indicates that increasing the availability of hydrogen results in a greater capacity for Cr(VI) reduction. This conclusion is supported by the existence of an enrichment dependent upon hydrogen for growth and Cr(VI) reduction. PMID:11282599
NASA Astrophysics Data System (ADS)
Miyan, Lal; Khan, Ishaat M.; Ahmad, Afaq
2015-07-01
The charge transfer (CT) complex of 1,2-dimethylimidazole (DMI) as an electron donor with π acceptor 2,4-dinitro-1-naphthol (DNN) has been studied spectrophotometrically in different solvents like chloroform, acetonitrile, methanol, methylene chloride, etc. at room temperature. The CT complex which is formed through the transfer of lone pair electrons from DMI to DNN exhibits well resolved CT bands and the regions of these bands were remarkably different from those of the donor and acceptor. The stoichiometry of the CT complex was found to be 1:1 by a straight-line method between donor and acceptor with maximum absorption bands. The novel CT complex has been characterized by FTIR, TGA-DTA, powder XRD, 1H NMR and 13C NMR spectroscopic techniques. The Benesi-Hildebrand equation has been used to determine the formation constant (KCT), molar extinction coefficient (εCT), standard gibbs free energy (ΔG°) and other physical parameters of the CT complex. The formation constant recorded higher values and molar extinction coefficient recorded lower values in chloroform compared with methylene chloride, methanol and acetonitrile, confirming the strong interaction between the molecular orbital's of donor and acceptor in the ground state in less polar solvent. This CT complex has been studied by absorption spectra of donor 1,2-dimethylimidazole (DMI) and acceptor 2,4-dinitro-1-naphthol (DNN) by using the spectrophotometric technique in various solvents at room temperature.
Shewmon, Nathan; Watkins, Davita; Galindo, Johan; ...
2015-07-20
For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between π-conjugated electron donor molecules encourage formation of vertically aligned donor π-stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groupsmore » that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C 60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical π-stacking for directing the favorable morphology of the BHJ.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Tanabe, Setsuhisa
2015-03-30
A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host.more » The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.« less
Reduction and removal of heptavalent technetium from solution by Escherichia coli.
Lloyd, J R; Cole, J A; Macaskie, L E
1997-03-01
Anaerobic, but not aerobic, cultures of Escherichia coli accumulated Tc(VII) and reduced it to a black insoluble precipitate. Tc was the predominant element detected when the precipitate was analyzed by proton-induced X-ray emission. Electron microscopy in combination with energy-dispersive X-ray analysis showed that the site of Tc deposition was intracellular. It is proposed that Tc precipitation was a result of enzymatically mediated reduction of Tc(VII) to an insoluble oxide. Formate was an effective electron donor for Tc(VII) reduction which could be replaced by pyruvate, glucose, or glycerol but not by acetate, lactate, succinate, or ethanol. Mutants defective in the synthesis of the transcription factor FNR, in molybdenum cofactor (molybdopterin guanine dinucleotide [MGD]) synthesis, or in formate dehydrogenase H synthesis were all defective in Tc(VII) reduction, implicating a role for the formate hydrogenlyase complex in Tc(VII) reduction. The following observations confirmed that the hydrogenase III (Hyc) component of formate hydrogenlyase in both essential and sufficient for Tc(VII) reduction: (i) dihydrogen could replace formate as an effective electron donor for Tc(VII) reduction by wild-type bacteria and mutants defective in MGD synthesis; (ii) the inability of fnr mutants to reduce Tc(VII) can be suppressed phenotypically by growth with 250 microM Ni2+ and formate; (iii) Tc(VII) reduction is defective in a hyc mutant; (iv) the ability to reduce Tc(VII) was repressed during anaerobic growth in the presence of nitrate, but this repression was counteracted by the addition of formate to the growth medium; (v) H2, but not formate, was an effective electron donor for a Sel- mutant which is unable to incorporate selenocysteine into any of the three known formate dehydrogenases of E. coli. This appears to be the first report of Hyc functioning as an H2-oxidizing hydrogenase or as a dissimilatory metal ion reductase in enteric bacteria.
Hydride vapor phase GaN films with reduced density of residual electrons and deep traps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, A. Y., E-mail: aypolyakov@gmail.com; Smirnov, N. B.; Govorkov, A. V.
2014-05-14
Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versusmore » 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.« less
Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pechurskaya, Tatiana A.; Harnastai, Ivan N.; Grabovec, Irina P.
2007-02-16
The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major rolemore » in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.« less
Narrow Gap, High Mobility, and Stable Pi Conjugated Polymers
2012-09-20
wide-angle X-ray scattering (2D-WAXS) of P5.1 (extruded at 210oC). This trend is reflected in conventional bulk- heterojunction OPV devices as shown...Additives in Molecular Bulk Heterojunction Solar Cells Using a bithiophene capped, isoindigo core, DAD molecule as the donor phase, and PCBM as the...PCE values of 3.7% as illustrated in Figure 11. Figure 11. Combining interface control using MoOx as an electron transport material and PDMS
Nozawa-Kumada, Kanako; Abe, Erina; Ito, Shungo; Shigeno, Masanori; Kondo, Yoshinori
2018-05-02
The transformation of nitrobenzenes into azobenzenes by pyridine-derived super electron donor 2 is described. This method provides an efficient synthesis of azobenzenes because of not requiring the use of expensive transition-metals, toxic or flammable reagents, or harsh conditions. Moreover, when using 2-fluoronitrobenzenes as substrates, phenazines were found to be obtained. The process affords a novel synthesis of phenazines.
The effect of twisted D–D–π–A configuration on electron transfer and photo-physics characteristics
NASA Astrophysics Data System (ADS)
Liu, Yunpeng; Li, Yuanzuo; Song, Peng; Ma, Fengcai; Yang, Yanhui
2018-05-01
Two D-D-π-A organic dyes (M45, M46) with dithieno[3,2-b:2‧,3‧-d]pyrrole (DTP) units as election donors in two perpendicular directions, were investigated using density functional theory (DFT) and time-dependent DFT. The ground-state geometries, the absorption, the electronic structures, the charge density difference and molecular electrostatic potential were obtained. To simulate a more realistic performance, all calculations were based on gas condition and dichloromethane solvent. Photoelectric parameters were evaluated by the following factors: the light harvesting efficiency, electron injection driving force, the excited lifetime and vertical dipole moment. Meanwhile, the polarisability and hyperpolarisability were investigated to further explain the relationship between non-linear optical properties and efficiency. The direction of the DTP obviously affects the twisted degree of molecule, forming a better coplanarity on the donor 2 of M45, which results in stronger charge transfer interactions. Furthermore, M45 possesses significant advantages in geometric structure, absorption band and intramolecular charge transfer mechanism. These critical parameters supported the higher performance of M45 in comparison with M46. Moreover, four dyes were designed by the substitution of donor 2, which further verify the influence of the twisted donor 2 on electron transfer and photoelectric properties of D-D-π-A configuration.
Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata
2015-02-01
A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sun, Lu; Shen, Liang; Mengd, Fanxu; Xu, Peng; Guo, Wenbin; Ruan, Shengping
2014-05-01
Here we demonstrate the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT):1 -(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) solar cells. Poly[(4,42-bis(2-ethylhexyl) dithieno [3,2-b:22,32-d] silole)-2,6-diylalt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT) was chosen as the electron-donating polymer to improve the short circuit current (J(sc)) due to its distinct absorption in the near-IR range and similar HOMO level with that of P3HT. In the study, we found that J(sc) was improved for ternary blend (P3HT:PSBTBT:PCBM) solar cells. The dependence of device performance was investigated. J(sc) got decreased with increasing the ratio of PSBTBT. Result showed that J(sc) of ternary blend solar cells was improved greatly after thermal annealing at 150 degrees C, close to that of the binary blend (PSBTBT:PCBM) solar cells.
Liyanage, Nalaka P; Cheema, Hammad; Baumann, Alexandra R; Zylstra, Alexa R; Delcamp, Jared H
2017-06-22
Near-infrared-absorbing organic dyes are critically needed in dye-sensitized solar cells (DSCs). Thieno[3,4-b]pyrazine (TPz) based dyes can access the NIR spectral region and show power conversion efficiencies (PCEs) of up to 8.1 % with sunlight being converted at wavelengths up to 800 nm for 17.6 mA cm -2 of photocurrent in a co-sensitized DSC device. Precisely controlling dye excited-state energies is critical for good performances in NIR DSCs. Strategies to control TPz dye energetics with stronger donor groups and TPz substituent choice are evaluated here. Additionally, donor size influence versus dye loading on TPz dyes is analyzed with respect to the TiO 2 surface protection designed to prevent recombination of electrons in TiO 2 with the redox shuttle. Importantly, the dyes evaluated were demonstrated to work well with low Li + concentration electrolytes, with iodine and cobalt redox shuttle systems, and efficiently as part of co-sensitized devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-Fullerene Electron Acceptors for Use in Organic Solar Cells
2015-01-01
Conspectus The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers with a large intramolecular twist, which suppresses both nucleation and crystal growth. The generic design concept of rotationally symmetrical aromatic small molecules with extended π orbital delocalization, including polyaromatic hydrocarbons, phthalocyanines, etc., has also provided some excellent small molecule acceptors. In most cases, additional electron withdrawing functionality, such as imide or ester groups, can be incorporated to stabilize the LUMO and improve properties. New calamitic acceptors have been developed, where molecular orbital hybridization of electron rich and poor segments can be judiciously employed to precisely control energy levels. Conformation and intermolecular associations can be controlled by peripheral functionalization leading to optimization of crystallization length scales. In particular, the use of rhodanine end groups, coupled electronically through short bridged aromatic chains, has been a successful strategy, with promising device efficiencies attributed to high lying LUMO energy levels and subsequently large open circuit voltages. PMID:26505279
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Perry, Joseph (Inventor); Marder, Seth (Inventor)
2001-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are disclosed. Many of these compositions are compounds satisfying the formulae D-.PI.-D, A-.PI.-A, D-A-D and A-D-A, wherein D is an electron donor group, A is an electron acceptor group and .PI. comprises a bridge of .pi.-conjugated bonds connecting the electron donor groups and electron acceptor groups. In A-D-A and D-A-D compounds, the .pi. bridge is substituted with electron donor groups and electron acceptor groups, respectively. Also disclosed are methods that generate an electronically excited state of a compound, including those satisfying one of these formulae. The electronically excited state is achieved in a method that includes irradiating the compound with light. Then, the compound is converted to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of light. The sum of the energies of all of the absorbed photons is greater than or equal to the transition energy from a ground state of the compound to the multi-photon excited state. The energy of each absorbed photon is less than the transition energy between the ground state and the lowest single-photon excited state of the compound is less than the transition energy between the multi-photon excited state and the ground state.
Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang
2016-01-22
A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron transport chains in organohalide-respiring bacteria and bioremediation implications.
Wang, Shanquan; Qiu, Lan; Liu, Xiaowei; Xu, Guofang; Siegert, Michael; Lu, Qihong; Juneau, Philippe; Yu, Ling; Liang, Dawei; He, Zhili; Qiu, Rongliang
In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H 2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Organ Procurement Organizations and the Electronic Health Record.
Howard, R J; Cochran, L D; Cornell, D L
2015-10-01
The adoption of electronic health records (EHRs) has adversely affected the ability of organ procurement organizations (OPOs) to perform their federally mandated function of honoring the donation decisions of families and donors who have signed the registry. The difficulties gaining access to potential donor medical record has meant that assessment, evaluation, and management of brain dead organ donors has become much more difficult. Delays can occur that can lead to potential recipients not receiving life-saving organs. For over 40 years, OPO personnel have had ready access to paper medical records. But the widespread adoption of EHRs has greatly limited the ability of OPO coordinators to readily gain access to patient medical records and to manage brain dead donors. Proposed solutions include the following: (1) hospitals could provide limited access to OPO personnel so that they could see only the potential donor's medical record; (2) OPOs could join with other transplant organizations to inform regulators of the problem; and (3) hospital organizations could be approached to work with Center for Medicare and Medicaid Services (CMS) to revise the Hospital Conditions of Participation to require OPOs be given access to donor medical records. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N
2017-09-19
How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP + oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox processes of their own. We dissect the thermodynamics and kinetics of electron bifurcation in Nfn and find that the key features of electron bifurcation are (1) spatially separated transfer pathways that diverge from a two-electron donor, (2) one thermodynamically uphill and one downhill redox pathway, with a large negative shift in the donor's reduction potential after departure of the first electron, and (3) electron tunneling and activation factors that enable bifurcation, producing a 1:1 partitioning of electrons onto the two pathways. Electron bifurcation is found in the CO 2 reducing pathways of methanogenic archaea, in the hydrogen pathways of hydrogenases, in the nitrogen fixing pathway of Fix, and in the mitochondrial charge transfer chain of complex III, cytochrome bc 1 . While crossed potentials may offer the biological advantage of producing tightly regulated high energy reactive species, neither kinetic nor thermodynamic considerations mandate crossed potentials to generate successful electron bifurcation. Taken together, the theoretical framework established here, focusing on the underpinning electron tunneling barriers and activation free energies, explains the logic of electron bifurcation that enables energy conversion and conservation in Nfn, points toward bioinspired schemes to execute multielectron redox chemistry, and establishes a roadmap for examining novel electron bifurcation networks in nature.
Tang, Guoping; Watson, David B; Wu, Wei-Min; Schadt, Christopher W; Parker, Jack C; Brooks, Scott C
2013-04-02
We amended a shallow fast-flowing uranium (U) contaminated aquifer with emulsified vegetable oil (EVO) and subsequently monitored the biogeochemical responses for over a year. Using a biogeochemical model developed in a companion article (Tang et al., Environ. Sci. Technol.2013, doi: 10.1021/es304641b) based on microcosm tests, we simulated geochemical and microbial dynamics in the field test during and after the 2-h EVO injection. When the lab-determined parameters were applied in the field-scale simulation, the estimated rate coefficient for EVO hydrolysis in the field was about 1 order of magnitude greater than that in the microcosms. Model results suggested that precipitation of long-chain fatty acids, produced from EVO hydrolysis, with Ca in the aquifer created a secondary long-term electron donor source. The model predicted substantial accumulation of denitrifying and sulfate-reducing bacteria, and U(IV) precipitates. The accumulation was greatest near the injection wells and along the lateral boundaries of the treatment zone where electron donors mixed with electron acceptors in the groundwater. While electron acceptors such as sulfate were generally considered to compete with U(VI) for electrons, this work highlighted their role in providing electron acceptors for microorganisms to degrade complex substrates thereby enhancing U(VI) reduction and immobilization.
Sivakumar, V; Ponnamma, Deepalekshmi; Hussein, Yasser H A
2017-02-15
Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQ T ) but not the triplets AQ T or AQS T . However in aqueous medium, AN quenches AQS T and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQ T or AQS T while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Xuesong; Markandeya, Nagula; Jonusauskas, Gediminas; McClenaghan, Nathan D; Maurizot, Victor; Denisov, Sergey A; Huc, Ivan
2016-10-07
A series of photoactive triads have been synthesized and investigated in order to elucidate photoinduced electron transfer and hole migration mechanism across nanosized, rigid helical foldamers. The triads are comprised of a central helical oligoamide foldamer bridge with 9, 14, 18, 19, or 34 8-amino-2-quinolinecarboxylic acid repeat units, and of two chromophores, an N-terminal oligo(para-phenylenevinylene) electron donor and a C-terminal perylene bis-imide electron acceptor. Time-resolved fluorescence and transient absorption spectroscopic studies showed that, following photoexcitation of the electron acceptor, fast electron transfer occurs initially from the oligoquinoline bridge to the acceptor chromophore on the picosecond time scale. The oligo(para-phenylenevinylene) electron donor is oxidized after a time delay during which the hole migrates across the foldamer from the acceptor to the donor. The charge separated state that is finally generated was found to be remarkably long-lived (>80 μs). While the initial charge injection rate is largely invariant for all foldamer lengths (ca. 60 ps), the subsequent hole transfer to the donor varies from 1 × 10 9 s -1 for the longest sequence to 17 × 10 9 s -1 for the shortest. In all cases, charge transfer is very fast considering the foldamer length. Detailed analysis of the process in different media and at varying temperatures is consistent with a hopping mechanism of hole transport through the foldamer helix, with individual hops occurring on the subpicosecond time scale (k ET = 2.5 × 10 12 s -1 in CH 2 Cl 2 ). This work demonstrates the possibility of fast long-range hole transfer over 300 Å (through bonds) across a synthetic modular bridge, an achievement that had been previously observed principally with DNA structures.
Infrared Fingerprints of nN → σ*NH Hyperconjugation in Hydrazides.
Andrade, Laize A F; Silla, Josué M; Cormanich, Rodrigo A; Freitas, Matheus P
2017-12-01
An earlier study demonstrated that hyperconjugation operates in hydrazides by analyzing the N-H stretching mode in gas phase infrared (IR) spectroscopy, and then observing two very distinct bands corresponding to isolated isomers experiencing or not the n N → σ* N-H electron delocalization. The present work reports a chemical method to obtain insight on the hyperconjugation in hydrazide derivatives from solution IR spectroscopy. The analogous amides did not show a ν N-H red-shifted band, as the electron donor orbital in the above hyperconjugative interaction does not exist. In addition, the effect of electron withdrawing groups bonded to a nitrogen atom, namely the trifluoroacetyl and the methanesulfonyl groups, was analyzed on the conformational isomerism and on the ability to induce a stronger hyperconjugation in the resulting compounds.
Liu, Wenrui; Zhang, Jianyun; Zhou, Zichun; Zhang, Dongyang; Zhang, Yuan; Xu, Shengjie; Zhu, Xiaozhang
2018-05-16
Fused-ring electron acceptors (FREAs) have recently received intensive attention. Besides the continuing development of new FREAs, the demand for FREAs featuring good compatibility to donor materials is becoming more and more urgent, which is highly desirable for screening donor materials and achieving new breakthroughs. In this work, a new FREA is developed, ZITI, featuring an octacyclic dithienocyclopentaindenoindene central core. The core is designed by linking 2,7-dithienyl substituents and indenoindene with small methylene groups, in which the indeno[1,2-b]thiophene-2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile part provides a large and unoccupied π-surface. Most notably, ZITI possesses an excellent compatibility with commercially available polymer donors, delivering very high power conversion efficiencies of over 13%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organic photosensitive devices
Peumans, Peter; Forrest, Stephen R.
2013-01-22
A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.
NASA Technical Reports Server (NTRS)
Frank, Natia L.; Meade, Thomas J.
2003-01-01
Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.
A general framework for the solvatochromism of pyridinium phenolate betaine dyes
NASA Astrophysics Data System (ADS)
Rezende, Marcos Caroli; Aracena, Andrés
2013-02-01
A general framework for the solvatochromic behavior of pyridinium phenolate betaine dyes is presented, based on the variations with the medium of the electrophilic Fukui functions of their electron-pair donor and acceptor moieties. The model explains the ‘anomalous' solvatochromic behavior of large betaines, which change their behavior from negative to inverted, when electron-pair donor and acceptor groups are separated by a conjugated chain of variable size.
Biodegradation of Polychlorinated Methanes in Methanogenic Systems
1991-01-01
occurring toxicant and C-1 growth substrate. J. General Microbiol. 132:1139-1142. 18. Hoover, S. R. and N. Porges. 1952. Assimilation of dairy wastes by...carbon and electron donor source; (3) to examine the level of micronutrients - provided as yeast extract (YE) - needed in the system feed; (4) to...provided the electron donor needed to consume oxygen and lower the redox potential in the precolumn; YE provided micronutrients . No reductant (Na2S
1976-08-01
Bratt, Howard Davis, Frank Renda , Paul Chia, Arthur Lockwood. Bell Telephone Labs Leo F. Johnson, Alfred U. MacRae, Paul Norton. Texas Ins truments Werner...impurities which can "donate" their extra electron not required for bonding with the silicon atoms. When there are more acceptors than donors the material...will be p-type. The extra electrons from the donors can complete the bond missing due to the boron atoms. This process is call compensation. The
Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, D.-B.; Goan, H.-S.
2008-11-07
In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that ismore » below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.« less
Origin of background electron concentration in In xGa 1-xN alloys
Pantha, B. N.; Wang, H.; Khan, N.; ...
2011-08-15
The origin of high background electron concentration (n) in In xGa 1-xN alloys has been investigated. A shallow donor was identified as having an energy level (E D1) that decreases with x (E D1 = 16 meV at x = 0 and E D1 = 0 eV at x ~ 0.5) and that crossover the conduction band at x ~ 0.5. This shallow donor is believed to be the most probable cause of high n in InGaN. This understanding is consistent with the fact that n increases sharply with an increase in x and becomes constant for x > 0.5.more » A continuous reduction in n was obtained by increasing the V/III ratio during the epilayer growth, suggesting that nitrogen vacancy-related impurities are a potential cause of the shallow donors and high background electron concentration in InGaN« less
NASA Astrophysics Data System (ADS)
Kozlova, E. A.; Parmon, V. N.
2017-09-01
Current views on heterogeneous photocatalysts for visible- and near-UV-light-driven production of molecular hydrogen from water and aqueous solutions of inorganic and organic electron donors are analyzed and summarized. Main types of such photocatalysts and methods for their preparation are considered. Particular attention is paid to semiconductor photocatalysts based on sulfides that are known to be sensitive to visible light. The known methods for increasing the quantum efficiency of the target process are discussed, including design of the structure, composition and texture of semiconductor photocatalysts and variation of the medium pH and the substrate and photocatalyst concentrations. Some important aspects of the activation and deactivation of sulfide photocatalysts and the evolution of their properties in the course of hydrogen production processes in the presence of various types of electron donors are analyzed. The bibliography includes 276 references.
Lupton, F S; Conrad, R; Zeikus, J G
1984-01-01
Desulfovibrio vulgaris Madison and Thermodesulfobacterium commune contained functionally distinct hydrogenase activities, one which exchanged 3H2 into 3H2O and was inhibited by carbon monoxide and a second activity which produced H2 in the presence of CO. Cell suspensions of D. vulgaris used either lactate, pyruvate, or CO as the electron donor for H2 production in the absence of sulfate. Both sulfidogenic species produced and consumed hydrogen as a trace gas during growth on lactate or pyruvate as electron donors and on thiosulfate or sulfate as electron acceptors. Higher initial levels of hydrogen were detected during growth on lactate-sulfate than on pyruvate-sulfate. D. vulgaris but not T. commune also produced and then consumed CO during growth on organic electron donors and sulfate or thiosulfate. High partial pressures of exogenous H2 inhibited growth and substrate consumption when D. vulgaris was cultured on pyruvate alone but not when it was metabolizing pyruvate plus sulfate or lactate plus sulfate. The data are discussed in relation to supporting two different models for the physiological function of H2 metabolism during growth of sulfidogenic bacteria on organic electron donors plus sulfate. A trace H2 transformation model is proposed for control of redox processes during growth on either pyruvate or lactate plus sulfate, and an obligate H2 cycling model is proposed for chemiosmotic energy coupling during growth on CO plus sulfate. PMID:6480553
Coates, John D.; Cole, Kimberly A.; Chakraborty, Romy; O'Connor, Susan M.; Achenbach, Laurie A.
2002-01-01
Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 × 101 in aquifer sediments to a high of 9.33 × 106 in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N2. Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included simple volatile fatty acids such as propionate, butyrate, and valerate as well as simple organic acids such as lactate and pyruvate. Analysis of the complete sequences of the 16S rRNA genes revealed that the isolates were not closely related to each other and were phylogenetically diverse, with members in the alpha, beta, gamma, and delta subdivisions of the Proteobacteria. Most of the isolates were closely related to known genera not previously recognized for their ability to couple growth to HS oxidation, while one of the isolates represented a new genus in the delta subclass of the Proteobacteria. The results presented here demonstrate that microbial oxidation of HS is a ubiquitous metabolism in the environment. This study represents the first description of HS-oxidizing isolates and demonstrates that microorganisms capable of HS oxidation are phylogenetically diverse. PMID:11976120
Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A
2002-05-01
Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included simple volatile fatty acids such as propionate, butyrate, and valerate as well as simple organic acids such as lactate and pyruvate. Analysis of the complete sequences of the 16S rRNA genes revealed that the isolates were not closely related to each other and were phylogenetically diverse, with members in the alpha, beta, gamma, and delta subdivisions of the PROTEOBACTERIA: Most of the isolates were closely related to known genera not previously recognized for their ability to couple growth to HS oxidation, while one of the isolates represented a new genus in the delta subclass of the PROTEOBACTERIA: The results presented here demonstrate that microbial oxidation of HS is a ubiquitous metabolism in the environment. This study represents the first description of HS-oxidizing isolates and demonstrates that microorganisms capable of HS oxidation are phylogenetically diverse.
Connor, Joseph P; Raife, Thomas; Medow, Joshua E
2018-02-01
The Digital Intern (DI) is an electronic decision support tool for the management of organ donors. One algorithm determines the dose, in units of red blood cells to be transfused, based on hematocrit (Hct) thresholds and targets. The effectiveness of the transfusion dose calculated by the DI in terms of achieving the selected Hct target and the duration of the targeted dose is not known. This was a retrospective study to describe the outcomes of transfusions prescribed by the DI. Pre- and posttransfusion Hct levels were compared to define response and all posttransfusion Hct values were plotted to evaluate the duration of the prescribed dose. A total of 120 organ donors were studied and 22 donors had 28 transfusions (six were transfused twice). The transfused donors were a mix of trauma and medical admissions and brain death and cardiac death donors. The transfusion target of 24% Hct was attained in 96% of transfusions. The mean number of units transfused was 1.4 and the mean time from transfusion to procurement was 19.8 hours. There was a decline in Hct over time after transfusion in all but one case with a mean decline of 1.9% Hct over 13 hours. Six donors were transfused twice, likely due to a longer donor time period (41.7 hr vs. 27 hr). The DI provided transfusion dosing that achieved the desired threshold in the majority of organ donors transfused. Ongoing work focuses on application of this technology to transfusions in general patient populations. © 2017 AABB.
Energetic Limitations on Microbial Respiration of Organic Compounds using Aqueous Fe(III) Complexes
NASA Astrophysics Data System (ADS)
Naughton, H.; Fendorf, S. E.
2015-12-01
Soil organic matter constitutes up to 75% of the terrestrial carbon stock. Microorganisms mediate the breakdown of organic compounds and the return of carbon to the atmosphere, predominantly through respiration. Microbial respiration requires an electron acceptor and an electron donor such as small fatty acids, organic acids, alcohols, sugars, and other molecules that differ in oxidation state of carbon. Carbon redox state affects how much energy is required to oxidize a molecule through respiration. Therefore, different organic compounds should offer a spectrum of energies to respiring microorganisms. However, microbial respiration has traditionally focused on the availability and reduction potential of electron acceptors, ignoring the organic electron donor. We found through incubation experiments that the organic compound serving as electron donor determined how rapidly Shewanella putrefaciens CN32 respires organic substrate and the extent of reduction of the electron acceptor. We simulated a range of energetically favorable to unfavorable electron acceptors using organic chelators bound to Fe(III) with equilibrium stability constants ranging from log(K) of 11.5 to 25.0 for the 1:1 complex, where more stable complexes are less favorable for microbial respiration. Organic substrates varied in nominal oxidation state of carbon from +2 to -2. The most energetically favorable substrate, lactate, promoted up to 30x more rapid increase in percent Fe(II) compared to less favorable substrates such as formate. This increased respiration on lactate was more substantial with less stable Fe(III)-chelate complexes. Intriguingly, this pattern contradicts respiration rate predicted by nominal oxidation state of carbon. Our results suggest that organic substrates will be consumed so long as the energetic toll corresponding to the electron donor half reaction is counterbalanced by the energy available from the electron accepting half reaction. We propose using the chemical structure of organic matter, elucidated with techniques such as FT-ICR MS, to improve microbial decomposition and carbon cycling models by incorporating energetic limitations due to carbon oxidation.
[1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.
Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio
2016-04-15
Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices.
Distributions of microbial activities in deep subseafloor sediments
NASA Technical Reports Server (NTRS)
D'Hondt, Steven; Jorgensen, Bo Barker; Miller, D. Jay; Batzke, Anja; Blake, Ruth; Cragg, Barry A.; Cypionka, Heribert; Dickens, Gerald R.; Ferdelman, Timothy; Hinrichs, Kai-Uwe;
2004-01-01
Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary consistently from one subseafloor environment to another. Net rates of major activities principally rely on electron acceptors and electron donors from the photosynthetic surface world. At open-ocean sites, nitrate and oxygen are supplied to the deepest sedimentary communities through the underlying basaltic aquifer. In turn, these sedimentary communities may supply dissolved electron donors and nutrients to the underlying crustal biosphere.
NASA Astrophysics Data System (ADS)
Clayton, Andrew H. A.; Ghiggino, Kenneth P.; Wilson, Gerard J.; Keyte, Peter J.; Paddon-Row, Michael N.
1992-07-01
Photoinduced electron transfer (ET) is studied in a series of novel molecules containing a dimethoxynaphthalene (DMN) donor and either a pyridine (P) or N-methylpyridinium (P-Me +) acceptor covalently linked via a rigid nonbornalogous bridge ( n sigma bonds in length). ET rates of the order of 10 10 s -1 were measured for the DMN- n-P-Me + series ( n = 4, 6), while no appreciable ET was observed for the DMN- n-P compounds. Electronic and nuclear factors are discussed and the results rationalized in terms of Marcus—Hush and non-adiabatic ET theories.
Photogeneration of hydrogen from water by a robust dye-sensitized photocathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, B.; Das, A. K.; Marquard, S.
2016-11-15
We report here on a novel photocathode with a “donor-dye-catalyst” assembly structure for water reduction. The photoelectrocatalytic performance of the photocathode under mild conditions, with a photocurrent of -56 μA/cm2 and a Faradaic yield of 53%, is superior relative to other reported photocathodes with surface attached molecular catalysts. Detailed electron transfer analyses, based on transient absorption measurements, show that the successful application of this photocathode originates mainly from the slow back electron transfer following light excitation. The results also demonstrate that addition of the long-chain assembly to the macro-mesoporous electrode surface plays a fundamental role in providing sufficient catalyst formore » water reduction.« less
Zweig, Joshua E; Newhouse, Timothy R
2017-08-16
A new class of bidirectionally quantitative photoswitches based on the hemithioindigo (HTI) scaffold is reported. Incorporation of a pyrrole hydrogen-bond donor leads to a bathochromic shift allowing for quantitative bidirectional isomerization. Additionally, extending conjugation from the electron-rich pyrrole results in quantitative visible-light photoswitches, as well as photoswitches that isomerize with red and near-infrared light. The presence of the hydrogen bond leading to the observed redshift is supported by computational and spectroscopic evidence.
Adsorption of H2, O2, H2O, OH and H on monolayer MoS2
NASA Astrophysics Data System (ADS)
Ferreira, F.; Carvalho, A.; Moura, Í. J. M.; Coutinho, J.; Ribeiro, R. M.
2018-01-01
Hydrogen and hydrogen-containing gases are commonly used as reductants in chemical vapor deposition growth of MoS2. Here, we consider the defects resulting from the presence of hydrogen during growth and the resulting electronically active defects. In particular, we find that the interstitial hydrogen defect is a negative-U center with amphoteric donor and acceptor properties. Additionally, we consider the effects of interaction with water and oxygen. The defects are analysed using density functional theory calculations.
NASA Astrophysics Data System (ADS)
Poklonski, N. A.; Vyrko, S. A.; Zabrodskii, A. G.
2010-08-01
Expressions for the pre-exponential factor σ3 and the thermal activation energy ɛ3 of hopping electric conductivity of electrons via hydrogen-like donors in n-type gallium arsenide are obtained in the quasiclassical approximation. Crystals with the donor concentration N and the acceptor concentration KN at the intermediate compensation ratio K (approximately from 0.25 to 0.75) are considered. We assume that the donors in the charge states (0) and (+1) and the acceptors in the charge state (-1) form a joint nonstoichiometric simple cubic 'sublattice' within the crystalline matrix. In such sublattice the distance between nearest impurity atoms is Rh = [(1 + K)N]-1/3 which is also the length of an electron hop between donors. To take into account orientational disorder of hops we assume that the impurity sublattice randomly and smoothly changes orientation inside a macroscopic sample. Values of σ3(N) and ɛ3(N) calculated for the temperature of 2.5 K agree with known experimental data at the insulator side of the insulator-metal phase transition.
Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Thomas, Russell A.P.; Kalin, Robert; Lloyd, Jonathan R.
2015-01-01
Palladium catalysts offer the potential for the effective treatment of a variety of priority reducible pollutants in natural waters. In this study, microbially synthesized magnetite nanoparticles were functionalized with Pd(0), creating a highly reactive, magnetically recoverable, nano-scale catalyst (Pd-BnM). This was then investigated for the treatment of model Cr(VI) contaminated solutions at a range of pH values, and also alkaline Cr(VI) contaminated leachates from chromite ore processing residue (COPR); a contaminant issue of global concern. The sample of COPR used in this study was obtained from a site in Glasgow, UK, where extensive Cr(VI) contamination has been reported. In initial experiments Pd-BnM was supplied with H2 gas or formate as electron donors, and Cr(VI) removal from model synthetic solutions was quantified at various pH values (2–12). Effective removal was noted at neutral to environmentally relevant alkaline (pH 12) pH values, while the use of formate as an electron donor resulted in loss of performance under acidic conditions (pH 2). Reaction kinetics were then assessed with increasing Pd-BnM loading in both model pH 12 Cr(VI) solutions and the COPR leachate. When formate was used as the electron donor for Pd-BnM, to treat COPR leachate, there was significant inhibition of Cr(VI) removal. In contrast, a promotion of reaction rate, was observed when H2 was employed. Upon sustained reaction with model Cr(VI) solutions, in the presence of excess electron donor (formate or H2), appreciable quantities of Cr(VI) were removed before eventual inactivation of the catalyst. Faster onset of inactivation was reported in the COPR leachates, removing 4% and 64% of Cr(VI) observed from model Cr(VI) solutions, when formate and H2 were used as electron donors, respectively. XAS, TEM-EDX and XPS analysis of the catalysts that had been inactivated in the model solution, showed that the surface had an extensive covering of reduced Cr(III), most likely as a CrOOH phase. COPR reacted catalysts recorded a lower abundance of Cr(III) alongside a high abundance of the leachate components Ca and Si, implicating these elements in the faster onset of inactivation. PMID:26146457
Sazanovich, Igor V; Best, Jonathan; Scattergood, Paul A; Towrie, Michael; Tikhomirov, Sergei A; Bouganov, Oleg V; Meijer, Anthony J H M; Weinstein, Julia A
2014-12-21
Visible light-induced charge transfer dynamics were investigated in a novel transition metal triad acceptor-chromophore-donor, (NDI-phen)Pt(II)(-C≡C-Ph-CH2-PTZ)2 (1), designed for photoinduced charge separation using a combination of time-resolved infrared (TRIR) and femtosecond electronic transient absorption (TA) spectroscopy. In 1, the electron acceptor is 1,4,5,8-naphthalene diimide (NDI), and the electron donor is phenothiazine (PTZ), and [(phen)Pt(-C≡C-Ph-)], where phen is 1,10-phenanthroline, represents the chromophoric core. The first excited state observed in 1 is a (3)MLCT/LL'CT, with {Pt(II)-acetylide}-to-phen character. Following that, charge transfer from the phen-anion onto the NDI subunit to form NDI(-)-phen-[Pt-(C≡C)2](+)-PTZ2 occurs with a time constant of 2.3 ps. This transition is characterised by appearance of the prominent NDI-anion features in both TRIR and TA spectra. The final step of the charge separation in 1 proceeds with a time constant of ∼15 ps during which the hole migrates from the [Pt-(C≡C)2] subunit to one of the PTZ groups. Charge recombination in 1 then occurs with two distinct time constants of 36 ns and 107 ns, corresponding to the back electron transfer to each of the two donor groups; a rather rare occurrence which manifests that the hole in the final charge-separated state is localised on one of the two donor PTZ groups. The assignment of the nature of the excited states and dynamics in 1 was assisted by TRIR investigations of the analogous previously reported ((COOEt)2bpy)Pt(C≡C-Ph-CH2-PTZ)2 (2), (J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355; J. E. McGarrah, J. T. Hupp and S. N. Smirnov, J. Phys. Chem. A, 2009, 113, 6430) as well as (bpy)Pt(C≡C-Ph-C7H15)2, which represent the acceptor-free dyad, and the chromophoric core, respectively. Thus, the step-wise formation of the full charge-separated state on the picosecond time scale and charge recombination via tunnelling have been established; and the presence of two distinct charge recombination pathways has been observed.
NASA Astrophysics Data System (ADS)
Kulp, T. R.; Jean, J.
2009-12-01
Blackfoot Disease (BFD) is a peripheral vascular disease that is endemic to the Chianan Plain area on the southwestern coast of Taiwan. The disease has been linked to long term ingestion of arsenic-contaminated groundwater derived from deep (>100 m) wells that were drilled in the region during the early 1900’s. Victims of BFD typically exhibit symptoms that include ulceration and gangrene in the extremities, which are unique compared to cases of arsenic toxicosis arising in other As-impacted areas. While the exact etiology of BFD is still a subject of some debate, many workers suggest that elevated arsenic in combination with high concentrations of dissolved fluorescent humic compounds in the region’s groundwater are primary causative factors. Despite considerable research over the past 30 years into the occurrence and distribution of As in the region’s groundwater, few studies have been conducted to investigate the geochemical and microbiological processes that influence the element’s speciation and mobility in this aquifer. We measured the concentration and speciation of As associated with sediments and groundwater from wells drilled in the BFD endemic area and conducted sediment microcosm bioassays to investigate the potential for reductive desorption and mobilization of As from the aquifer sediments by endogenous populations of As(V)-reducing bacteria. Samples from 100 -120 m depth were characterized by the highest As concentrations in sediment (1.4 mg/kg) and water (175.4 μg/L). Sediment-adsorbed As was present primarily as As(V) (>87%), whereas ground water samples contained no measurable aqueous As(V). Instead, arsenic in the groundwater samples was present in organo-arsenic complexes and was detectable by hydride generation - atomic absorption spectrophotometry only after oxidative treatments to convert all As to As(V). Biological As(V) reduction was observed in live slurries of aquifer sediment from 120 and 140 m sediment depth. Microbial As(V) reduction in these sediments was not stimulated by amendment with lactate, or when hydrogen was supplied as a possible electron donor. However, As(V)-reduction was stimulated by the addition of the reduced humics analogue AHQDS, demonstrating that reduced humic substances in the aquifer can serve as electron donors for biological As(V) reduction. These findings suggest that the population of As(V) reducing bacteria in the aquifer are well suited to use endogenous organic compounds as heterotrophic electron donors and that this process is not electron-donor limited at in-situ conditions. The potential for reduced humic compounds to serve as electron donors for microbiological As(V) reduction may have considerable environmental significance with respect to the mobilization of adsorbed As from sediments in aquifers that are rich in dissolved organic matter. Further work should focus on identifying the precise nature of arsenic-organic matter interaction in the aquifer and the predominant As species that is associated with these compounds.
21 CFR 640.12 - Suitability of donor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.12 Suitability of donor. The source blood for Red Blood Cells shall be obtained from a donor who meets the criteria for donor...
21 CFR 640.12 - Suitability of donor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.12 Suitability of donor. The source blood for Red Blood Cells shall be obtained from a donor who meets the criteria for donor...
21 CFR 640.12 - Suitability of donor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.12 Suitability of donor. The source blood for Red Blood Cells shall be obtained from a donor who meets the criteria for donor...
21 CFR 640.12 - Suitability of donor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.12 Suitability of donor. The source blood for Red Blood Cells shall be obtained from a donor who meets the criteria for donor...
21 CFR 640.12 - Suitability of donor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.12 Suitability of donor. The source blood for Red Blood Cells shall be obtained from a donor who meets the criteria for donor...
Tarsang, Ruangchai; Promarak, Vinich; Sudyoadsuk, Taweesak; Namuangruk, Supawadee; Kungwan, Nawee; Jungsuttiwong, Siriporn
2014-12-01
In an attempt to shed light on how the addition of a benzothiadiazole (BTD) moiety influences the properties of dyes, a series of newly designed triphenylamine-based sensitizers incorporating a BTD unit as an additional electron-withdrawing group in a specific donor-acceptor-π-acceptor architecture has been investigated. We found that different positions of the BTD unit provided significantly different responses for light absorption. Among these, it was established that the further the BTD unit is away from the donor part, the broader the absorption spectra, which is an observation that can be applied to improve light-harvesting ability. However, when the BTD unit is connected to the anchoring group a faster, unfavorable charge recombination takes place; therefore, a thiophene unit was inserted between these two acceptors, providing redshifted absorption spectra as well as blocking unfavorable charge recombination. The results of our calculations provide valuable information and illustrate the potential benefits of using computation-aided sensitizer design prior to further experimental synthesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Janjua, Muhammad Ramzan Saeed Ashraf
2012-11-05
This work was inspired by a previous report (Janjua et al. J. Phys. Chem. A 2009, 113, 3576-3587) in which the nonlinear-optical (NLO) response strikingly improved with an increase in the conjugation path of the ligand and the nature of hexamolybdates (polyoxometalates, POMs) was changed into a donor by altering the direction of charge transfer with a second aromatic ring. Herein, the first theoretical framework of POM-based heteroaromatic rings is found to be another class of excellent NLO materials having double heteroaromatic rings. First hyperpolarizabilities of a large number of push-pull-substituted conjugated systems with heteroaromatic rings have been calculated. The β components were computed at the density functional theory (DFT) level (BP86 geometry optimizations and LB94 time-dependent DFT). The largest β values are obtained with a donor (hexamolybdates) on the benzene ring and an acceptor (-NO(2)) on pyrrole, thiophene, and furan rings. The pyrrole imido-substituted hexamolybdate (system 1c) has a considerably large first hyperpolarizability, 339.00 × 10(-30) esu, and it is larger than that of (arylimido)hexamolybdate, calculated as 0.302 × 10(-30) esu (reference system 1), because of the double aromatic rings in the heteroaromatic imido-substituted hexamolybdates. The heteroaromatic rings act as a conjugation bridge between the electron acceptor (-NO(2)) and donor (polyanion). The introduction of an electron donor into heteroaromatic rings significantly enhances the first hyperpolarizabilities because the electron-donating ability is substantially enhanced when the electron donor is attached to the heterocyclic aromatic rings. Interposing five-membered auxiliary fragments between strong donor (polyanion) or acceptor (-NO(2)) groups results in a large computed second-order NLO response. The present investigation provides important insight into the NLO properties of (heteroaromatic) imido-substituted hexamolybdate derivatives because these compounds exhibit enhanced hyperpolarizabilities compared to typical NLO arylimido hexamolybdates and heterocyclic aromatic rings reported in the literature.
NASA Astrophysics Data System (ADS)
Zhou, Jinwei; Findley, Bret R.; Braun, Charles L.; Sutin, Norman
2001-06-01
We recently reported that free radical ion quantum yields for electron-donor-acceptor (EDA) systems of alkylbenzenes-tetracyanoethylene (TCNE) exhibit a remarkable wavelength dependence in dichloromethane, a medium polarity solvent. We proposed that weak absorption by long-distance, unassociated or "random" D⋯A pairs is mainly responsible for the free radical ion yield. Here a model for the wavelength dependence of the free ion yield is developed for four systems in which differing degrees of EDA complex formation are present: 1,3,5-tri-tert-butylbenzene-TCNE in which only random pairs exist due to the bulky groups on the electron donor, and toluene—TCNE, 1,3,5-triethylbenzene-TCNE and 1,3,5-trimethylbenzene-TCNE. Mulliken-Hush theory is used to determine the excitation distance distribution of unassociated, random pairs at different wavelengths. For each absorption distribution, free radical ion yields at different wavelengths are then calculated using Onsager's result for the ion separation probability. Encouraging agreement between the calculated yields and our experimental results is obtained. As far as we are aware, this is the first time that photoexcitation of unassociated donor/acceptor pairs has been invoked as the source of separated radical ion pairs.
NASA Astrophysics Data System (ADS)
Kim, Munho; Cho, Sang June; Jayeshbhai Dave, Yash; Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Yoon, Jung U.; Ma, Zhenqiang
2018-01-01
Newly engineered substrates consisting of semiconductor-on-insulator are gaining much attention as starting materials for the subsequent transfer of semiconductor nanomembranes via selective etching of the insulating layer. Germanium-on-insulator (GeOI) substrates are critically important because of the versatile applications of Ge nanomembranes (Ge NMs) toward electronic and optoelectronic devices. Among various fabrication techniques, the Smart-CutTM technique is more attractive than other methods because a high temperature annealing process can be avoided. Another advantage of Smart-CutTM is the reusability of the donor Ge wafer. However, it is very difficult to realize an undamaged Ge wafer because there exists a large mismatch in the coefficient of thermal expansion among the layers. Although an undamaged donor Ge wafer is a prerequisite for its reuse, research related to this issue has not yet been reported. Here we report the fabrication of 4-inch GeOI substrates using the direct wafer bonding and Smart-CutTM process with a low thermal budget. In addition, a thermo-mechanical simulation of GeOI was performed by COMSOL to analyze induced thermal stress in each layer of GeOI. Crack-free donor Ge wafers were obtained by annealing at 250 °C for 10 h. Raman spectroscopy and x-ray diffraction (XRD) indicated similarly favorable crystalline quality of the Ge layer in GeOI compared to that of bulk Ge. In addition, Ge p-n diodes using transferred Ge NM indicate a clear rectifying behavior with an on and off current ratio of 500 at ±1 V. This demonstration offers great promise for high performance transferrable Ge NM-based device applications.
Pediatric Renal Transplantation in Oman: A Single-center Experience
Al Riyami, Mohamed S.; Al Saidi, Sulaiman; Al Ghaithi, Badria; Al Maskari, Anisa; Lala, Sadiq; Mohsin, Nabil; Hirshikesan, Lekha; Al Kalbani, Naifain
2018-01-01
Objectives This study sought to report 22 years experience in pediatric kidney transplantation in Oman. Methods Electronic charts of all Omani children below 13 years of age who received a kidney transplant from January 1994 to December 2015 were reviewed. Data collected included patient demographics, etiology of end-stage kidney disease, modality and duration of dialysis, donor type, complication of kidney transplantation (including surgical complications, infections, graft rejection) graft and patient survival, and duration of follow-up. Results During the study period transplantation from 27 living related donors (LRDs), 42 living unrelated donors (LURDs), also referred to as commercial transplant, and one deceased donor were performed. The median age at transplantation was nine years for both groups. The most common primary diagnosis was congenital anomalies of the kidney and urinary tract in 32.8% of patients followed by familial nephrotic syndrome in 20.0% and polycystic kidney disease in 18.5%. Almost half the patients were on hemodialysis before transplantation, 35.7% were on peritoneal dialysis, and 14.2% received preemptive renal transplantation. Children who received LURD kidneys had high surgical complications (42.8%) compared to the LRDs group (17.8%). Five patients from LURDs group had early graft nephrectomy and four patients developed non-graft function or delayed graft function. In addition, patients in the LURDs group had a higher incidence of hypertension and acute rejection. Graft and patient survival were both better in the LRDs than the LURDs group. Conclusions Although our pediatric kidney transplant program is a young program it has had successful patient outcomes comparable to international programs. Our study provides evidence that in addition to legal and ethical issues with commercial transplant, it also carries significantly higher morbidity and reduced graft and patient survival. PMID:29467993
Chamorro, Ester R; Sequeira, Alfredo F; Zalazar, M Fernanda; Peruchena, Nélida M
2008-09-15
In the present work, the distribution of the electronic charge density of the natural sex pheromone, the (Z)-13-hexadecen-11-ynyl acetate, in the female processionary moth, Thaumetopoea pytiocampa, and its nine analogue derivatives was studied within the framework of the Density Functional Theory and the Atoms in Molecules (AIM) Theory at B3LYP/6-31G *//B3LYP/6-31++G * * level. Additionally, molecular electrostatic potential (MEP) maps of the previously mentioned compounds were computed and compared. Furthermore, the substitution of hydrogen atoms from the methyl group in the acetate group by electron withdrawing substituents (i.e., halogen atoms) as well as the replacement effect of hydrogen by electron donor substituents (+I effect) as methyl group, were explored. The key feature of the topological distribution of the charge density in analogue compounds, such as the variations of the topological properties encountered in the region formed by neighbouring atoms from the substitution site were presented and discussed. Using topological parameters, such as electronic charge density, Laplacian, kinetic energy density, and potential energy density evaluated at bond critical points (BCP), we provide here a detailed analysis of the nature of the chemical bonding of these molecules. In addition, the atomic properties (population, charge, energy, volume, and dipole moment) were determined on selected atoms. These properties were analyzed at the substitution site (with respect to the natural sex pheromone) and related to the biological activity and to the possible binding site with the pheromone binding protein, (PBP). Moreover, the Laplacian function of the electronic density was used to locate electrophilic regions susceptible to be attacked (by deficient electron atoms or donor hydrogen). Our results indicate that the change in the atomic properties, such as electronic population and atomic volume, are sensitive indicators of the loss of the biological activity in the analogues studied here. The crucial interaction between the acetate group of the natural sex pheromone and the PBP is most likely to be a hydrogen bonding and the substitution of hydrogen atoms by electronegative atoms in the pheromone molecule reduces the hydrogen acceptor capacity. This situation is mirrored by the diminish of the electronic population on carbon and oxygen atoms at the carbonylic group in the halo-acetate group. Additionally, the modified acetate group (with electronegative atoms) shows new charge concentration critical points or regions of concentration of charge density in which an electrophilic attack can also occur. Finally, the use of the topological analysis based in the charge density distribution and its Laplacian function, in conjunction with MEP maps provides valuable information about the steric volume and electronic requirement of the sex pheromone for binding to the PBP.
Effect of proton transfer on the electronic coupling in DNA
NASA Astrophysics Data System (ADS)
Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.
2006-06-01
The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, Vda, in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate Vda for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the Vda matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the Vda matrix elements are also analyzed.
2009-01-01
wells in order to achieve the desired electron donor coverage. Soluble electron donors such as sodium lactate, citric acid , or ethanol have been used in...ORP) Monitoring.............39 6.7.5 Results of Volatile Fatty Acids (VFA) Analysis............................39 6.7.6 Results of Sulfate Analysis...VC vinyl chloride VFA volatile fatty acid VOC volatile organic compounds Technical material contained in this report has been approved for
Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.
Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A
2016-11-05
This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Implanted bismuth donors in 28-Si: Process development and electron spin resonance measurements
NASA Astrophysics Data System (ADS)
Weis, C. D.; Lo, C. C.; Lang, V.; George, R. E.; Tyryshkin, A. M.; Bokor, J.; Lyon, S. A.; Morton, J. J. L.; Schenkel, T.
2012-02-01
Spins of donor atoms in silicon are excellent qubit candidates. Isotope engineered substrates provide a nuclear spin free host environment, resulting in long spin coherence times [1,2]. The capability of swapping quantum information between electron and nuclear spins can enable quantum communication and gate operation via the electron spin and quantum memory via the nuclear spin [2]. Spin properties of donor qubit candidates in silicon have been studied mostly for phosphorous and antimony [1-3]. Bismuth donors in silicon exhibit a zero field splitting of 7.4 GHz and have attracted attention as potential nuclear spin memory and spin qubit candidates [4,5] that could be coupled to superconducting resonators [4,6]. We report on progress in the formation of bismuth doped 28-Si epi layers by ion implantation, electrical dopant activation and their study via pulsed electron spin resonance measurements showing narrow linewidths and good coherence times. [4pt] [1] A. M. Tyryshkin, et al. arXiv: 1105.3772 [2] J. J. L. Morton, et al. Nature (2008) [3] T. Schenkel, et al APL 2006; F. R. Bradbury, et al. PRL (2006) [4] R. E. George, et al. PRL (2010) [5] G. W. Morley, et al. Nat Mat (2010) [6] M. Hatridge, et al. PRB (2011), R. Vijay, et al. APL (2010) This work was supported by NSA (100000080295) and DOE (DE-AC02-05CH11231).
Witzel, Wayne; Montano, Ines; Muller, Richard P.; ...
2015-08-19
In this paper, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interactmore » with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. Furthermore, this system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Thus, putting this all together, we present a robust universal gate set for quantum computation.« less
Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.
2000-01-01
Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.
Density Functional Study on A-Units Based on Thieno[3,4- c]pyrrole-4,6-dione for Organic Solar Cells
NASA Astrophysics Data System (ADS)
Tang, Xiaoqin; Shen, Wei; Fu, Zhiyong; Liu, Xiaorui; Li, Ming
2017-08-01
The use of polymer donor materials has allowed great progress in organic solar cells. To search for potential donor materials, we have designed a series of donor-acceptor (D-A)-type alternating polymers composed of dithieno[3,2- b:2',3'- d]pyrrole (DTP) electron-rich units and thieno[3,4- c]pyrrole-4,6-dione (TPD) electron-deficient units. Their electronic and optical properties have been investigated using density functional theory and Marcus theory. The calculation results demonstrate that introduction of cyclic compounds (furyl, thienyl, and phenyl) into electron-deficient units of the molecules can result in lower highest occupied molecular orbital (HOMO) levels and reorganization energies compared with the experimental molecule ( X 0 ). To investigate the effects of electron-withdrawing units, three electron-withdrawing substituents (-OCH3, -F, and -CN) were introduced into the thienyl. The results indicated that the polymer X 2-3 will show the best performance among the designed polymers, offering low-lying HOMO energy level (-5.47 eV), narrow energy gap (1.97 eV), and high hole mobility (7.45 × 10-2 cm2 V-1 s-1). This work may provide a guideline for the design of efficient D-A polymers for organic solar cells with enhanced performance.
Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos
2017-01-01
Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm -2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Krzmarzick, Mark J; Khatiwada, Raju; Olivares, Christopher I; Abrell, Leif; Sierra-Alvarez, Reyes; Chorover, Jon; Field, James A
2015-05-05
Insensitive munitions (IM) are a new class of explosives that are increasingly being adopted by the military. The ability of soil microbial communities to degrade IMs is relatively unknown. In this study, microbial communities from a wide range of soils were tested in microcosms for their ability to degrade the IM, 3-nitro-1,2,4-triazol-5-one (NTO). All seven soil inocula tested were able to readily reduce NTO to 3-amino-1,2,4-triazol-5-one (ATO) via 3-hydroxyamino-1,2,4-triazol-5-one (HTO), under anaerobic conditions with H2 as an electron donor. Numerous other electron donors were shown to be suitable for NTO-reducing bacteria. The addition of a small amount of yeast extract (10 mg/L) was critical to diminish lag times and increased the biotransformation rate of NTO in nearly all cases indicating yeast extract provided important nutrients for NTO-reducing bacteria. The main biotransformation product, ATO, was degradable only in aerobic conditions, as evidenced by a rise in the inorganic nitrogen species nitrite and nitrate, indicative of nitrogen-mineralization. NTO was nonbiodegradable in aerobic microcosms with all soil inocula.
NASA Astrophysics Data System (ADS)
Zybert, M.; Marchewka, M.; Sheregii, E. M.; Rickel, D. G.; Betts, J. B.; Balakirev, F. F.; Gordon, M.; Stier, A. V.; Mielke, C. H.; Pfeffer, P.; Zawadzki, W.
2017-03-01
Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at megagauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6-300 K. The 14 ×14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magnetodonor states in the GaAs wells and possibly in the AlGaAs barriers. The magnetodonor energies are calculated using a variational procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed magneto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.
Olsen, Timothy W; Bottini, Alexander R; Mendoza, Pia; Grossniklausk, Hans E
2015-09-01
To describe the histopathologic findings of the four stages of age-related macular degeneration (AMD) as defined by the Age-Related Eye Disease Study (AREDS) using the Minnesota grading system (MGS). There are no animal models for AMD. Eye banks enable access to human tissue with AMD. The level of AMD (grades 1 through 4) as defined by AREDS is determined ex vivo using the MGS. The AREDS has the largest collection to date of prospectively gathered data on the natural history of AMD. Since the MGS uses the same clinical criteria as AREDS, the addition of histopathologic findings of graded tissue confirms important pathophysiology at each stage of AMD. Four eye bank eyes were graded according to the MGS. Only the right eyes were dissected for phenotype grading. The fellow (left) eyes were fixed for histopathologic study. The eyes were serially sectioned (7 μm) through the macula. Individual slides were examined, and a two-dimensional reconstruction of the topography of the macula was created for each donor. Selected, unstained slides were used for immunohistochemical staining. In one donor, portions of tissue were obtained for transmission electron microscopic (TEM) processing. Donor 1 had a rare hard, nodular druse (MGS1). Donor 2 had intermediate confluent drusen (MGS2). Donor 3 had numerous intermediate drusen (MGS3) in the right eye. Histopathology of the fellow left showed basal laminar deposits (BLamD), soft drusen, and an area of occult choroidal neovascularization underlying the retinal pigment epithelium (RPE) with endothelial cells (CD31-positive). Donor 4 also had MGS 3 along with reticular pseudodrusen (RPD). Histologic and TEM examination demonstrated diffuse BLamD, thickening of Bruch's membrane, hard drusen, and focal nodules underlying the RPE that corresponded to the RPD. EM examination demonstrated both BLamD and electron-dense material located just external to the elastic layer of Bruch's membrane. Eye bank eyes graded using the MGS serve as an important link to the phenotypic and epidemiologic data from the AREDS. Thus, the MGS serves as a system to study the histopathology at each stage of AMD to better understand the relevant pathophysiologic changes in disease progression.
Olsen, Timothy W.; Bottini, Alexander R.; Mendoza, Pia; Grossniklausk, Hans E.
2015-01-01
Purpose To describe the histopathologic findings of the four stages of age-related macular degeneration (AMD) as defined by the Age-Related Eye Disease Study (AREDS) using the Minnesota grading system (MGS). Clinical Relevance There are no animal models for AMD. Eye banks enable access to human tissue with AMD. The level of AMD (grades 1 through 4) as defined by AREDS is determined ex vivo using the MGS. The AREDS has the largest collection to date of prospectively gathered data on the natural history of AMD. Since the MGS uses the same clinical criteria as AREDS, the addition of histopathologic findings of graded tissue confirms important pathophysiology at each stage of AMD. Methods Four eye bank eyes were graded according to the MGS. Only the right eyes were dissected for phenotype grading. The fellow (left) eyes were fixed for histopathologic study. The eyes were serially sectioned (7 μm) through the macula. Individual slides were examined, and a two-dimensional reconstruction of the topography of the macula was created for each donor. Selected, unstained slides were used for immunohistochemical staining. In one donor, portions of tissue were obtained for transmission electron microscopic (TEM) processing. Results Donor 1 had a rare hard, nodular druse (MGS1). Donor 2 had intermediate confluent drusen (MGS2). Donor 3 had numerous intermediate drusen (MGS3) in the right eye. Histopathology of the fellow left showed basal laminar deposits (BLamD), soft drusen, and an area of occult choroidal neovascularization underlying the retinal pigment epithelium (RPE) with endothelial cells (CD31-positive). Donor 4 also had MGS 3 along with reticular pseudodrusen (RPD). Histologic and TEM examination demonstrated diffuse BLamD, thickening of Bruch’s membrane, hard drusen, and focal nodules underlying the RPE that corresponded to the RPD. EM examination demonstrated both BLamD and electron-dense material located just external to the elastic layer of Bruch’s membrane. Conclusion Eye bank eyes graded using the MGS serve as an important link to the phenotypic and epidemiologic data from the AREDS. Thus, the MGS serves as a system to study the histopathology at each stage of AMD to better understand the relevant pathophysiologic changes in disease progression. PMID:27895380
NASA Astrophysics Data System (ADS)
Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy
2016-03-01
A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (<100 meV), and thus allows RISC at ambient temperature. We found that the EL emission in OLED based on the exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, J.R.; Budil, D.E.; Gast, P.
The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative tomore » monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms.« less
NASA Astrophysics Data System (ADS)
Gali, Adam
2009-06-01
The negatively charged nitrogen-vacancy defect (NV-) in diamond has attracted much attention in recent years in qubit and biological applications. The negative charge is donated from nearby nitrogen donors that could limit or stem the successful application of NV- . In this study, we identify the neutral nitrogen-vacancy defect (NV0) by ab initio supercell calculations through the comparison of the measured and calculated hyperfine tensors of the A42 excited state. Our analysis shows that (i) the spin state can be selectively occupied optically, (ii) the electron spin state can be manipulated by time-varying magnetic field, and (iii) the spin state may be read out optically. Based on this NV0 is a hope for realizing qubit in diamond without the need of nitrogen donors. In addition, we propose that NV0 may be more sensitive magnetometer than the ultrasensitive NV- .
Fe-Catalyzed C–C Bond Construction from Olefins via Radicals
2017-01-01
This Article details the development of the iron-catalyzed conversion of olefins to radicals and their subsequent use in the construction of C–C bonds. Optimization of a reductive diene cyclization led to the development of an intermolecular cross-coupling of electronically-differentiated donor and acceptor olefins. Although the substitution on the donor olefins was initially limited to alkyl and aryl groups, additional efforts culminated in the expansion of the scope of the substitution to various heteroatom-based functionalities, providing a unified olefin reactivity. A vinyl sulfone acceptor olefin was developed, which allowed for the efficient synthesis of sulfone adducts that could be used as branch points for further diversification. Moreover, this reactivity was extended into an olefin-based Minisci reaction to functionalize heterocyclic scaffolds. Finally, mechanistic studies resulted in a more thorough understanding of the reaction, giving rise to the development of a more efficient second-generation set of olefin cross-coupling conditions. PMID:28094980
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Collier, Alice; Wagner, Gerd K
2017-11-27
We have previously developed a new class of inhibitors and chemical probes for glycosyltransferases through base-modification of the sugar-nucleotide donor. The key feature of these donor analogues is the presence of an additional substituent at the nucleobase. To date, the application of this general concept has been limited to UDP-sugars and UDP-sugar-dependent glycosyltransferases. Herein, we report for the first time the application of our approach to a GDP-mannose-dependent mannosyltransferase. We have prepared four GDP-mannose derivatives with an additional substituent at either position 6 or 8 of the nucleobase. These donor analogues were recognised as donor substrates by the mannosyltransferase Kre2p from yeast, albeit with significantly lower turnover rates than the natural donor GDP-mannose. The presence of the additional substituent also redirected enzyme activity from glycosyl transfer to donor hydrolysis. Taken together, our results suggest that modification of the donor nucleobase is, in principle, a viable strategy for probe and inhibitor development against GDP-mannose-dependent GTs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electronic messaging and communication with living kidney donors.
Ruck, Jessica M; Zhou, Sheng; Thomas, Alvin G; Cramm, Shannon L; Massie, Allan B; Montgomery, John R; Berger, Jonathan C; Henderson, Macey L; Segev, Dorry L
2018-02-01
New regulations require living kidney donor (LKD) follow-up for 2 years, but donor retention remains poor. Electronic communication (eg, text messaging and e-mail) might improve donor retention. To explore the possible impact of electronic communication, we recruited LKDs to participate in an exploratory study of communication via telephone, e-mail, or text messaging postdonation; communication through this study was purely optional and did not replace standard follow-up. Of 69 LKDs recruited, 3% requested telephone call, 52% e-mail, and 45% text messaging. Telephone response rate was 0%; these LKDs were subsequently excluded from analysis. Overall response rates with e-mail or text messaging at 1 week, 1 month, 6 months, 1 year, and 2 years were 94%, 87%, 81%, 72%, and 72%. Lower response rates were seen in African Americans, even after adjusting for age, sex, and contact method (incidence rate ratio (IRR) nonresponse 2.07 5.81 16.36 , P = .001). Text messaging had higher response rates than e-mail (IRR nonresponse 0.11 0.28 0.71 , P = .007). Rates of nonresponse were similar by sex (IRR 0.68, P = .4) and age (IRR 1.00, P > .9). In summary, LKDs strongly preferred electronic messaging over telephone and were highly responsive 2 years postdonation, even in this nonrequired, nonincentivized exploratory research study. These electronic communication tools can be automated and may improve regulatory compliance and postdonation care. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zheng, Shiling; Wang, Bingchen; Liu, Fanghua; Wang, Oumei
2017-11-01
Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.
Final report for the DOE Early Career Award #DE-SC0003912
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaraman, Arthi
This DoE supported early career project was aimed at developing computational models, theory and simulation methods that would be then be used to predict assembly and morphology in polymer nanocomposites. In particular, the focus was on composites in active layers of devices, containing conducting polymers that act as electron donors and nanoscale additives that act as electron acceptors. During the course this work, we developed the first of its kind molecular models to represent conducting polymers enabling simulations at the experimentally relevant length and time scales. By comparison with experimentally observed morphologies we validated these models. Furthermore, using these modelsmore » and molecular dynamics simulations on graphical processing units (GPUs) we predicted the molecular level design features in polymers and additive that lead to morphologies with optimal features for charge carrier behavior in solar cells. Additionally, we also predicted computationally new design rules for better dispersion of additives in polymers that have been confirmed through experiments. Achieving dispersion in polymer nanocomposites is valuable to achieve controlled macroscopic properties of the composite. The results obtained during the course of this DOE funded project enables optimal design of higher efficiency organic electronic and photovoltaic devices and improve every day life with engineering of these higher efficiency devices.« less
NASA Astrophysics Data System (ADS)
Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.; Scheutz, Charlotte; Binning, Philip J.; Broholm, Mette M.
2012-04-01
A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation efficiency and timeframe. A relatively simple approach is used to link the fermentation of the electron donor soybean oil to the sequential dechlorination of trichloroethene (TCE) while considering redox conditions and the heterogeneous clay till system (clay till matrix, fractures and sand stringers). The model is tested on lab batch experiments and applied to describe sediment core samples from a TCE-contaminated site. Model simulations compare favorably to field observations and demonstrate that dechlorination may be limited to narrow bioactive zones in the clay matrix around fractures and sand stringers. Field scale simulations show that the injected donor is expected to be depleted after 5 years, and that without donor re-injection contaminant rebound will occur in the high permeability zones and the mass removal will stall at 18%. Long remediation timeframes, if dechlorination is limited to narrow bioactive zones, and the need for additional donor injections to maintain dechlorination activity may limit the efficiency of ERD in low-permeability media. Future work should address the dynamics of the bioactive zones, which is essential to understand for predictions of long term mass removal.
Ho, Chun-Yu; Jamison, Timothy F.
2011-01-01
Both a strong electron donor (IPr) and a strong electron acceptor (P(OPh)3) are necessary for a highly selective, nickel-catalyzed coupling reaction between alkenes, aldehydes, and silyltriflates. Without the phosphite, catalysis is not observed and several side reactions are observed. The phosphite appears to suppress the formation of these byproducts and rescue the catalytic cycle by accelerating reductive elimination from an (IPr–Ni–H)(OTf) complex. PMID:17154217
NASA Astrophysics Data System (ADS)
Makhov, I. S.; Panevin, V. Yu; Firsov, D. A.; Vorobjev, L. E.; Sofronov, A. N.; Vinnichenko, M. Ya; Maleev, N. A.; Vasil'ev, A. P.
2018-03-01
Terahertz and near-infrared photoluminescence under conditions of interband stimulated emission are studied in n-GaAs/AlGaAs quantum well laser structure. The observed terahertz emission is related to the optical transitions of nonequilibrium electrons from the first electron subband and excited donor states to donor ground states in quantum wells. The opportunity to increase the intensity of impurity-assisted terahertz emission due to interband stimulated emission with the participation of impurity centres is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park Y. S.; Kale, T.; Wu, Q.
A series of diketopyrrolopyrrole(DPP)-based small molecules have been synthesized by palladium-catalyzed coupling reactions. Electron-donating moieties (benzothiophene, benzoselenophene, and benzotellurophene) are bridged by an electron-withdrawing DPP unit to generate donor-acceptor-donor (D-A-D) type molecules. We observe red-shifts in absorption spectra of these compounds by varying heteroatoms from sulfur to tellurium. In bulk heterojunction solar cells with [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor, we obtain power conversion efficiencies of 2.4% (benzothiophene), 4.1% (benzoselenophene), and 3.0% (benzotellurophene), respectively.
Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro
2018-04-17
Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.
Mixed oxide nanoparticles and method of making
Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul
2002-09-03
Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.
2013-12-27
In this final rule, the Office of Inspector General (OIG) amends the safe harbor regulation concerning electronic health records items and services, which defines certain conduct that is protected from liability under the Federal anti-kickback statute, section 1128B(b) of the Social Security Act (the Act). Amendments include updating the provision under which electronic health records software is deemed interoperable; removing the electronic prescribing capability requirement; extending the sunset provision until December 31, 2021; limiting the scope of protected donors to exclude laboratory companies; and clarifying the condition that prohibits a donor from taking any action to limit or restrict the use, compatibility, or interoperability of the donated items or services.
Polyfluorophore Excimers and Exciplexes as FRET Donors in DNA
Teo, Yin Nah; Kool, Eric T.
2009-01-01
We describe studies aimed at testing whether oligomeric exciplex- and excimer fluorophores conjugated to DNA have the potential to act as donors for energy transfer by the Förster mechanism. Oligodeoxyfluorosides (ODFs) are composed of stacked, electronically interacting fluorophores replacing the bases on a DNA scaffold. The monomer chromophores in the twenty tetramer-length ODFs studied here include pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and a nonfluorescent spacer (S); these are conjugated in varied combinations at the 3’ end of a 14mer DNA probe sequence. In the absence of an acceptor chromophore, many of the ODF-DNAs show broad, unstructured long-wavelength emission peaks characteristic of excimer and exciplex excited states, similar to what has been observed for unconjugated ODFs. Although such delocalized excited states have been widely studied, we know of no prior report of their use in FRET. We tested the ability of the twenty ODFs to donate energy to Cy5 and TAMRA dyes conjugated to a complementary strand of DNA, with these acceptors oriented either at the near or far end of the ODF-conjugated probes. Results showed that a number of the ODF fluorophores exhibited relatively efficient energy transfer characteristic of the Förster mechanism, as judged by drops in donor emission quantum yield and fluorescence lifetime, accompanied by increases in intensity of acceptor emission bands. Excimer/exciplex bands in the donors were selectively quenched while shorter-wavelength monomer emission stayed relatively constant, consistent with the notion that the delocalized excited states, rather than individual fluorophores, are the donors. Interestingly, only specific sequences of ODFs were able to act as donors, while others did not, even though their emission wavelengths were similar. The new FRET donors possess large Stokes shifts, which can be beneficial for multiple applications. In addition, all ODFs can be excited at a single wavelength; thus, ODFs may be candidates as “universal FRET donors”, thus allowing multicolor FRET of multiple species to be carried out with one excitation. PMID:19916519
Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots
NASA Astrophysics Data System (ADS)
Gil-Corrales, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2017-02-01
The donor-impurity-related optical absorption, relative refractive index changes, and Raman scattering in GaAs cone-like quantum dots are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The study involves 1 s -like, 2px-like, and 2pz-like states. The conical structure is chosen in such a way that the cone height is large enough in comparison with the base radius thus allowing the use a quasi-analytic solution of the uncorrelated Schrödinger-like electron states.
NASA Astrophysics Data System (ADS)
Rassamesard, Areefen; Pengpan, Teparksorn
2017-02-01
This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ < Z < D < TPD < OXD < TP < BT < TD. The TD is indicated as the most effective acceptor among those that were simulated. However, the small energy gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar spectrum. Hence, the BT acceptor functional group provides a compromise in the characteristics of a donor-acceptor copolymer, useful in a polymeric candidate material for the photoactive layer in a polymer solar cell.
Wang, Jin-Liang; Liu, Kai-Kai; Liu, Sha; Liu, Feng; Wu, Hong-Bin; Cao, Yong; Russell, Thomas P
2017-06-14
A pair of linear tetrafluorinated small molecular donors, named as ThIDTTh4F and ThIDTSe4F, which are with tetrathienyl-substituted IDT as electron-rich central core, electron-deficient difluorobenzothiadiazole as acceptor units, and donor end-capping groups, but having differences in the π-bridge (thiophene and selenophene), were successfully synthesized and evaluated as donor materials in organic solar cells. Such π-bridge and core units in these small molecules play a decisive role in the formation of the nanoscale separation of the blend films, which were systematically investigated through absorption spectra, grazing incidence X-ray diffraction pattern, transmission electron microscopy images, resonant soft X-ray scattering profiles, and charge mobility measurement. The ThIDTSe4F (with selenophene π-bridge)-based device exhibited superior performance than devices based on ThIDTh4F (with thiophene π-bridge) after post annealing treatment owing to optimized film morphology and improved charge transport. Power conversion efficiency of 7.31% and fill factor of ∼0.70 were obtained by using a blend of ThIDTSe4F and PC 71 BM with thermal annealing and solvent vapor annealing treatments, which is the highest PCE from aromatic side-chain substituted IDT-based small molecular solar cells. The scope of this study is to reveal the structure-property relationship of the aromatic side-chain substituted IDT-based donor materials as a function of π-bridge and the post annealing conditions.
Pei, Kai; Wu, Yongzhen; Wu, Wenjun; Zhang, Qiong; Chen, Baoqin; Tian, He; Zhu, Weihong
2012-06-25
Four organic D-A-π-A-featured sensitizers (TQ1, TQ2, IQ1, and IQ2) have been studied for high-efficiency dye-sensitized solar cells (DSSCs). We employed an indoline or a triphenylamine unit as the donor, cyanoacetic acid as the acceptor/anchor, and a thiophene moiety as the conjugation bridge. Additionally, an electron-withdrawing quinoxaline unit was incorporated between the donor and the π-conjugation unit. These sensitizers show an additional absorption band covering the broad visible range in solution. The contribution from the incorporated quinoxaline was investigated theoretically by using DFT and time-dependent DFT. The incorporated low-band-gap quinoxaline unit as an auxiliary acceptor has several merits, such as decreasing the band gap, optimizing the energy levels, and realizing a facile structural modification on several positions in the quinoxaline unit. As demonstrated, the observed additional absorption band is favorable to the photon-to-electron conversion because it corresponds to the efficient electron transitions to the LUMO orbital. Electrochemical impedance spectroscopy (EIS) Bode plots reveal that the replacement of a methoxy group with an octyloxy group can increase the injection electron lifetime by a factor of 2.4. IQ2 and TQ2 can perform well without any co-adsorbent, successfully suppress the charge recombination from TiO(2) conduction band to I(3)(-) in the electrolyte, and enhance the electron lifetime, resulting in a decreased dark current and enhanced open circuit voltage (V(oc)) values. By using a liquid electrolyte, DSSCs based on dye IQ2 exhibited a broad incident photon-to-current conversion efficiency (IPCE) action spectrum and high efficiency (η=8.50 %) with a short circuit current density (J(sc)) of 15.65 mA cm(-2), a V(oc) value of 776 mV, a fill factor (FF) of 0.70 under AM 1.5 illumination (100 mW cm(-2)). Moreover, the overall efficiency remained at 97% of the initial value after 1000 h of visible-light soaking. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jensen, Kenneth; Johnston, Jonathan B; de Montellano, Paul R Ortiz; Møller, Birger Lindberg
2012-02-01
The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx) is a multifunctional electron carrier that in plants accepts electrons from photosystem I (PSI) and facilitates photoreduction of NADP(+) to NADPH mediated by ferredoxin-NAD(P)H oxidoreductase (FdR). In bacteria, the electron flow is reversed and Fdx accepts electrons from NADPH via FdR and serves as the direct electron donor to bacterial P450s. By combining the two systems, we demonstrate that irradiation of PSI can drive the activity of a bacterial P450, CYP124 from Mycobacterium tuberculosis. The substitution of the costly cofactor NADPH with sunlight illustrates the potential of the light-driven hydroxylation system for biotechnology applications.
Synthesis and Characterization of SF-PPV-I
NASA Technical Reports Server (NTRS)
Wang, Y.; Fan, Z.; Taft, C.; Sun, S.
2001-01-01
Conjugated electro-active polymers find their potential applications in developing variety inexpensive and flexible shaped electronic and photonic devices, such as photovoltaic or photo/electro light emitting devices. In many of these opto-electronic polymeric materials, certain electron rich donors and electron deficient acceptors are needed in order to fine-tune the electronic or photonic properties of the desired materials and structures. While many donor type of conjugated polymers have been widely studied and developed in the past decades, there are relatively fewer acceptor type of conjugated polymers have been developed. Key acceptor type conjugated polymers developed so far include C60 and CN-PPV, and each has its limitations. Due to the complexity and diversity of variety future electronic materials and structural needs, alternative and synthetically amenable acceptor conjugated polymers need to be developed. In this paper, we present the synthesis and characterization of a new acceptor conjugated polymer, a sulfone derivatized polyphenylenevinylene "SF-PPV".
Increasing Saturated Electron-Drift Velocity in Donor-Acceptor Doped pHEMT Heterostructures
NASA Astrophysics Data System (ADS)
Protasov, D. Yu.; Gulyaev, D. V.; Bakarov, A. K.; Toropov, A. I.; Erofeev, E. V.; Zhuravlev, K. S.
2018-03-01
Field dependences of the electron-drift velocity in typical pseudomorphic high-electron-mobility transistor (pHEMT) heteroepitaxial structures (HESs) and in those with donor-acceptor doped (DApHEMT) heterostructures with quantum-well (QW) depth increased by 0.8-0.9 eV with the aid of acceptor layers have been studied by a pulsed technique. It is established that the saturated electron-drift velocity in DA-pHEMT-HESs is 1.2-1.3 times greater than that in the usual pHEMT-HESs. The electroluminescence (EL) spectra of DA-pHEMT-HESs do not contain emission bands related to the recombination in widebandgap layers (QW barriers). The EL intensity in these HESs is not saturated with increasing electric field. This is indicative of a suppressed real-space transfer of hot electrons from QW to barrier layers, which accounts for the observed increase in the saturated electron-drift velocity.
Martínez-Cifuentes, Maximiliano; Weiss-López, Boris; Araya-Maturana, Ramiro
2016-12-02
In this work, a computational study of a series of N -substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N -substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO) energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA) and vertical electron affinities (VEA), as well as vertical detachment energy (VDE). To study electrophilic properties of these structures, local reactivity indices, such as Fukui ( f ⁺) and Parr ( P ⁺) functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.
Homogeneity and variation of donor doping in Verneuil-grown SrTiO3:Nb single crystals
Rodenbücher, C.; Luysberg, M.; Schwedt, A.; Havel, V.; Gunkel, F.; Mayer, J.; Waser, R.
2016-01-01
The homogeneity of Verneuil-grown SrTiO3:Nb crystals was investigated. Due to the fast crystal growth process, inhomogeneities in the donor dopant distribution and variation in the dislocation density are expected to occur. In fact, for some crystals optical studies show variations in the density of Ti3+ states on the microscale and a cluster-like surface conductivity was reported in tip-induced resistive switching studies. However, our investigations by TEM, EDX mapping, and 3D atom probe reveal that the Nb donors are distributed in a statistically random manner, indicating that there is clearly no inhomogeneity on the macro-, micro-, and nanoscale in high quality Verneuil-grown crystals. In consequence, the electronic transport in the bulk of donor-doped crystals is homogeneous and it is not significantly channelled by extended defects such as dislocations which justifies using this material, for example, as electronically conducting substrate for epitaxial oxide film growth. PMID:27577508
NASA Technical Reports Server (NTRS)
Stiegman, A. E.; Graham, Eva; Khundkar, Lutfur R.; Perry, Joseph W.; Cheng, L.-T.; Perry, Kelly J.
1991-01-01
A series of donor-acceptor acetylene compounds was synthesized in which systematic changes in both the conjugation length and the donor-acceptor strength were made. The effect of these structural changes on the spectroscopic and electronic properties of the molecules and, ultimately, on the measured second-order molecular hyperpolarizabilities (beta) was investigated. It was found that increases in the donor-acceptor strength resulted in increases in the magnitude of beta. For this class of molecules, the increase is dominated by the energy of the intramolecular charge-transfer transition, while factors such as the ground to excited-state dipole moment change and the transition-moment integral are much less important. Increasing the conjugation length from one to two acetylene linkers did not result in an increase in the value of beta; however, beta increased sharply in going from two acetylenes to three. This increase is attributed to the superposition of several nearly isoenergetic excited states.
Park, D. H.; Zeikus, J. G.
1999-01-01
Neutral red (NR) functioned as an electronophore or electron channel enabling either cells or membranes purified from Actinobacillus succinogenes to drive electron transfer and proton translocation by coupling fumarate reduction to succinate production. Electrically reduced NR, unlike methyl or benzyl viologen, bound to cell membranes, was not toxic, and chemically reduced NAD. The cell membrane of A. succinogenes contained high levels of benzyl viologen-linked hydrogenase (12.2 U), fumarate reductase (13.1 U), and diaphorase (109.7 U) activities. Fumarate reductase (24.5 U) displayed the highest activity with NR as the electron carrier, whereas hydrogenase (1.1 U) and diaphorase (0.8 U) did not. Proton translocation by whole cells was dependent on either electrically reduced NR or H2 as the electron donor and on the fumarate concentration. During the growth of Actinobacillus on glucose plus electrically reduced NR in an electrochemical bioreactor system versus on glucose alone, electrically reduced NR enhanced glucose consumption, growth, and succinate production by about 20% while it decreased acetate production by about 50%. The rate of fumarate reduction to succinate by purified membranes was twofold higher with electrically reduced NR than with hydrogen as the electron donor. The addition of 2-(n-heptyl)-4-hydroxyquinoline N-oxide to whole cells or purified membranes inhibited succinate production from H2 plus fumarate but not from electrically reduced NR plus fumarate. Thus, NR appears to replace the function of menaquinone in the fumarate reductase complex, and it enables A. succinogenes to utilize electricity as a significant source of metabolic reducing power. PMID:10198002
Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen
2018-05-11
7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate-adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2':5',2″:5″,2″'-quaterthiophene (4T), a 4T:TAT donor-acceptor bulk heterojunction with a considerable HOMO-level offset at the donor-acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.
Li, Jian-Sheng; Sang, Xiao-Jing; Chen, Wei-Lin; Zhang, Lan-Cui; Zhu, Zai-Ming; Ma, Teng-Ying; Su, Zhong-Min; Wang, En-Bo
2015-06-24
In the field of material chemistry, it is of great significance to develop abundant and sustainable materials for solar energy harvesting and management. Herein, after evaluating the energy band characteristics of 13 kinds of polyoxometalates (POMs), the trisubstituted POM compound K6H4[α-SiW9O37Co3(H2O)3]·17H2O (SiW9Co3) was first studied due to its relatively smaller band gap (2.23 eV) and higher lowest unoccupied molecular orbital (LUMO) level (-0.63 V vs NHE). Additionally, the preliminary computational modeling indicated that SiW9Co3 exhibited the donor-acceptor (D-A) structure, in which the cobalt oxygen clusters and tungsten skeletons act as the electron donor and electron acceptor, respectively. By employing SiW9Co3 to modify the TiO2 film, the visible photovoltaic and photocurrent response were both enhanced, and the light-induced photocurrent at 420 nm was improved by 7.1 times. Moreover, the highly dispersive and small sized SiW9Co3 nanoclusters loading on TiO2 were successfully achieved by fabricating the nanocomposite film of {TiO2/SiW9Co3}3 with the layer-by-layer method, which can result in the photovoltaic performance enhancement of dye-sensitized solar cells (DSSCs), of which the overall power conversion efficiency was improved by 25.6% from 6.79% to 8.53% through the synergistic effect of POMs and Ru-complex.
Soltau, Sarah R.; Dahlberg, Peter D.; Niklas, Jens; Poluektov, Oleg G.; Mulfort, Karen L.
2016-01-01
A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(ii)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(iii)–Fd–Co(i) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(i)–ApoFld–Co(i) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(ii)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production. PMID:28451142
Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics
NASA Astrophysics Data System (ADS)
Tautz, Raphael; da Como, Enrico; Limmer, Thomas; Feldmann, Jochen; Egelhaaf, Hans-Joachim; von Hauff, Elizabeth; Lemaur, Vincent; Beljonne, David; Yilmaz, Seyfullah; Dumsch, Ines; Allard, Sybille; Scherf, Ullrich
2012-07-01
Polymeric semiconductors are materials where unique optical and electronic properties often originate from a tailored chemical structure. This allows for synthesizing conjugated macromolecules with ad hoc functionalities for organic electronics. In photovoltaics, donor-acceptor co-polymers, with moieties of different electron affinity alternating on the chain, have attracted considerable interest. The low bandgap offers optimal light-harvesting characteristics and has inspired work towards record power conversion efficiencies. Here we show for the first time how the chemical structure of donor and acceptor moieties controls the photogeneration of polaron pairs. We show that co-polymers with strong acceptors show large yields of polaron pair formation up to 24% of the initial photoexcitations as compared with a homopolymer (η=8%). π-conjugated spacers, separating the donor and acceptor centre of masses, have the beneficial role of increasing the recombination time. The results provide useful input into the understanding of polaron pair photogeneration in low-bandgap co-polymers for photovoltaics.
Sulfur-based autotrophic denitrification from the micro-polluted water.
Zhou, Weili; Liu, Xu; Dong, Xiaojing; Wang, Zheng; Yuan, Ying; Wang, Hui; He, Shengbing
2016-06-01
Eutrophication caused by high concentrations of nutrients is a huge problem for many natural lakes and reservoirs. Removing the nitrogen contamination from the low C/N water body has become an urgent need. Autotrophic denitrification with the sulfur compound as electron donor was investigated in the biofilter reactors. Through the lab-scale experiment, it was found that different sulfur compounds and different carriers caused very different treatment performances. Thiosulfate was selected to be the best electron donor and ceramsite was chosen as the suitable carrier due to the good denitrification efficiency, low cost and the good resistibility against the high hydraulic loads. Later the optimum running parameters of the process were determined. Then the pilot-scale experiment was carried out with the real micro-polluted water from the West Lake, China. The results indicated that the autotrophic denitrification with thiosulfate as electron donor was feasible and applicable for the micro-polluted lake water. Copyright © 2016. Published by Elsevier B.V.
Organic photochemical storage of solar energy. Progress report, July 1, 1977--Feburary 28, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, G. II
1978-03-01
The prospects for driving endoergic reactions of simple, relatively abundant organic chemicals by photochemical means have been examined. Strategies for utilization of light of varying wavelength involve sensitization mechanisms which depend on the redox properties of energy storing substrates and photosensitizers. Of principal interest is valence isomerization which can be induced by electron donor-acceptor interaction between substrate and sensitizer in an excited complex or exciplex. Photophysical studies show that potentially isomerizable substrates efficiently intercept redox photosensitizers. The quenching of emission of electron acceptor sensitizers by non conjugated hydrocarbon dienes is indeed a function of the reduction potential of the acceptorsmore » (a series of aromatics with varying absorption characteristics) and the oxidation potentials of the substrates. Electron deficient dienes have been shown alternatively to be efficient quenchers of excited donor sensitizers. That exciplexes are formed between isomerizable substrates and donor or acceptor sensitizers has been confirmed by emission spectroscopy. The rearrangement of hexamethyldewarbenzene, a model exciplex isomerization has been examined in some detail.« less
Rode, Joanna E; Jamróz, Michał H; Dobrowolski, Jan Cz; Sadlej, Joanna
2012-08-02
Vibrational circular dichroism (VCD) chirality transfer occurs when an achiral molecule interacts with a chiral one and becomes VCD-active. Unlike for H-bonds, for organic electron donor-acceptor (EDA) complexes this phenomenon remains almost unknown. Here, the VCD chirality transfer from chiral quinine to achiral BF3 is studied at the B3LYP/aug-cc-pVDZ level. Accessibility of four quinine electron donor sites changes with conformation. Therefore, the quinine conformational landscape was explored and a considerable agreement between X-ray and the most stable conformer geometries was achieved. The BF3 complex through the aliphatic quinuclidine N atom is definitely dominating and is predicted to be easily recognizable in the VCD spectrum. Out of several VCD chirality transfer modes, the ν(s)(BF3) mode, the most intense in the entire VCD spectrum, satisfies the VCD mode robustness criterion and can be used for monitoring the chirality transfer phenomenon in quinine···BF3 system.
NASA Astrophysics Data System (ADS)
Singh, Neeti; Ahmad, Afaq
2010-08-01
The charge transfer complex of 1-Naphthylamine as a donor with π-acceptor picric acid has been studied spectrophotometrically in different solvents at room temperature. The results indicate that the formation of charge transfer complex is high in less polar solvent. The stoichiometry of the complex was found to be 1:1 by straight line method. The data are analysed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G o), oscillator strength ( ƒ), transition dipole moment ( μ EN), resonance energy ( R N) and ionization potential ( I D). It is concluded that the formation constant ( KCT) of the complex is found to be depends upon the nature of both electron acceptor and donor and also on the polarity of solvents. Further the charge transfer molecular complex between picric acid and 1-Naphthylamine is stabilized by hydrogen bonding.
Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P
2012-12-01
This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.
Never Declared Brain Dead Potential Organ Donors-An Additional Source of Donor Organs?
Webster, Patricia A; Markham, Lori E
2018-03-01
Patients never declared brain dead may represent an additional source of donor organs. To determine the number of likely brain dead potential donors who are never declared brain dead and to compare them with brain dead and donation after cardiac death potential organ donors. This study was a retrospective chart review of all catastrophically brain-injured patients referred to a single-organ procurement organization (OPO) over a 4-year period. This study identified 159 likely brain dead potential organ donors, 902 brain dead potential organ donors, and 357 potential donation after circulatory death donors over a 4-year period. None. This study did not predetermine outcome measures before data collection because the study group, likely brain dead potential organ donors, had not previously been described. Likely brain dead potential donors were significantly older than brain dead potential donors ( P < .0001) but were otherwise not different demographically. They were more likely to be a late referral to the OPO ( P < .0001) and less likely to be in the donor registry ( P < .0001). The most commonly identified factors associated with a failure to declare brain death were an unwillingness to continue supportive care by the family, premention of donation, a nontimely imminent death referral, known prior objection to donation, terminal instability, and a lack of cooperation with the OPO.
Ramkumar, Sekar; Manidurai, Paulraj
2017-02-15
New donor molecules with low ionization potential have been theoretically designed by replacing the benzene moieties in triphenylamine (TPA) with thiophene as well as furan. The designed new donors also exhibited planar structure, making an angle of 120° around the nitrogen atom that results in resonance effects through π-bonds of aryl rings. New sensitizers have been theoretically studied using DFT and TD-DFT by adopting these designed donors. UV-Vis absorption spectra, light harvesting ability (LHE) and electron injection ability (ΔG inject ) of the designed sensitizers have been calculated by taking L0 as reference. Orbital overlapping between donor and acceptor facilitates intra-molecular charge transfer, thereby increasing the interfacial electron injection from the sensitizer to the semiconductor nanoparticles. Our theoretical results demonstrate that sensitizers DTPA-AA and DFPA-AA have broader absorption and lower ΔG inject respectively compare to L0, this opens a new way for designing sensitizers for dye sensitized solar cells (DSSCs). All the dyes designed were found to be good light harvesters. Copyright © 2016 Elsevier B.V. All rights reserved.
Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Taojun; Wang, Xiao-Feng, E-mail: charles1976110@hotmail.com, E-mail: zrhong@ucla.edu, E-mail: kid@yz.yamagata-u.ac.jp; Sano, Takeshi
2014-09-01
Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100 nm thick in PHJ cells, suggesting the superior potentialmore » of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm{sup 2}, an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.« less
Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.
Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael
2018-01-24
Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.
Harkness, Mark; Fisher, Angela; Lee, Michael D; Mack, E Erin; Payne, Jo Ann; Dworatzek, Sandra; Roberts, Jeff; Acheson, Carolyn; Herrmann, Ronald; Possolo, Antonio
2012-04-01
A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study was designed as a fractional factorial experiment involving 177 bottles distributed between four industrial laboratories and was used to assess the impact of six electron donors, bioaugmentation, addition of supplemental nutrients, and two TCE levels (0.57 and 1.90 mM or 75 and 250 mg/L in the aqueous phase) on TCE dechlorination. Performance was assessed based on the concentration changes of TCE and reductive dechlorination degradation products. The chemical data was evaluated using analysis of variance (ANOVA) and survival analysis techniques to determine both main effects and important interactions for all the experimental variables during the 203-day study. The statistically based design and analysis provided powerful tools that aided decision-making for field application of this technology. The analysis showed that emulsified vegetable oil (EVO), lactate, and methanol were the most effective electron donors, promoting rapid and complete dechlorination of TCE to ethene. Bioaugmentation and nutrient addition also had a statistically significant positive impact on TCE dechlorination. In addition, the microbial community was measured using phospholipid fatty acid analysis (PLFA) for quantification of total biomass and characterization of the community structure and quantitative polymerase chain reaction (qPCR) for enumeration of Dehalococcoides organisms (Dhc) and the vinyl chloride reductase (vcrA) gene. The highest increase in levels of total biomass and Dhc was observed in the EVO microcosms, which correlated well with the dechlorination results. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aksungur, Tuğçe; Aydıner, Burcu; Seferoğlu, Nurgül; Özkütük, Müjgan; Arslan, Leyla; Reis, Yasemin; Açık, Leyla; Seferoğlu, Zeynel
2017-11-01
Two coumarin-indole conjugate fluorescent dyes having donor-acceptor-donor (D-A-D) (CI-1 and CI-2) were synthesized, and characterized using IR, 1H/13C NMR and HRMS. The absorption and emission properties of the dyes were determined in different solvents. The anion sensitivity and selectivity of the dyes were studied with some anions (CN-, F-, AcO-, Cl-, Br-, I-, HSO4- and H2PO4-) in DMSO, and their interaction mechanisms were evaluated by spectrophotometric and 1H NMR titration techniques. In addition, the molecular and electronic structures of CI-1, as well as the molecular complexes of CI-1, formed with the anions (F- and AcO-), were obtained theoretically and confirmed by DFT and TD-DFT calculations. CI-1 behaves as a colorimetric chemosensor for selective and sensitive detection of CN- in DMSO/H2O (9:1) over other competing anions such as F- and AcO-. However, only CN- interacts with chromophore CI-2 via Michael addition and the main absorption maxima shifts hypsochromically with an observed distinctive color change from orange to yellow. For using as a optic dye, the thermal stability properties of the dyes was determined by TGA (Thermal Gravimetric Analysis). Antimicrobial, antifungal and DNA-ligand interaction studies of the dyes were also examined. The dyes cause conformational changes on DNA and selectively bind to nucleotides of A/A and G/G.
Liu, Cuiying; Xu, Xianghua; Fan, Jianling
2015-12-01
The application of electron donor and electron shuttle substances has a vital influence on electron transfer, thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in anaerobic reaction systems. To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate (AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide, a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of (1) control, (2) citric acid, (3) AQDS, and (4) citric acid+AQDS. Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20days of incubation, and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane (DDD) was the dominant metabolite. The application of citric acid accelerated DDT dechlorination slightly in the first 8days, while the methanogenesis rate increased quickly, and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased. The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus enhancing the reductive dechlorination rate of DDT. The addition of citric acid+AQDS was most efficient in stimulating DDT dechlorination, but no significant interaction between citric acid and AQDS on DDT dechlorination was observed. The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites. Copyright © 2015. Published by Elsevier B.V.
McCann, Shelley; Boren, Alison; Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Saltikov, Chad W; Stolz, John F.; Oremland, Ronald S.
2017-01-01
Three novel strains of photosynthetic bacteria from the family Ectothiorhodospiraceae were isolated from soda lakes of the Great Basin Desert, USA by employing arsenite (As(III)) as the sole electron donor in the enrichment/isolation process. Strain PHS-1 was previously isolated from a hot spring in Mono Lake, while strain MLW-1 was obtained from Mono Lake sediment, and strain BSL-9 was isolated from Big Soda Lake. Strains PHS-1, MLW-1, and BSL-9 were all capable of As(III)-dependent growth via anoxygenic photosynthesis and contained homologs of arxA, but displayed different phenotypes. Comparisons were made with three related species: Ectothiorhodospira shaposhnikovii DSM 2111, Ectothiorhodospira shaposhnikovii DSM 243T, and Halorhodospira halophila DSM 244. All three type cultures oxidized arsenite to arsenate but did not grow with As(III) as the sole electron donor. DNA–DNA hybridization indicated that strain PHS-1 belongs to the same species as Ect. shaposhnikovii DSM 2111 (81.1% sequence similarity), distinct from Ect. shaposhnikovii DSM 243T (58.1% sequence similarity). These results suggest that the capacity for light-driven As(III) oxidation is a common phenomenon among purple photosynthetic bacteria in soda lakes. However, the use of As(III) as a sole electron donor to sustain growth via anoxygenic photosynthesis is confined to novel isolates that were screened for by this selective cultivation criterion.
Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater
NASA Astrophysics Data System (ADS)
Goltz, M. N.; Secody, R. E.; Huang, J.; Hatzinger, P. B.
2007-12-01
Perchlorate-contaminated groundwater is a significant national problem. An innovative technology was recently developed which uses a pair of dual-screened treatment wells to mix an electron donor into perchlorate- contaminated groundwater in order to effect in situ bioremediation of the perchlorate by indigenous perchlorate reducing bacteria (PRB) without the need to extract the contaminated water from the subsurface. The two treatment wells work in tandem to establish a groundwater recirculation zone in the subsurface. Electron donor is added and mixed into perchlorate-contaminated groundwater flowing through each well. The donor serves to stimulate biodegradation of the perchlorate by PRB in bioactive zones that form adjacent to the injection screens of the treatment wells. In this study, a model that simulates operation of the technology was calibrated using concentration data obtained from a field-scale technology evaluation project at a perchlorate-contaminated site. The model simulates transport of perchlorate, the electron donor (citrate, for this study), and competing electron acceptors (oxygen and nitrate) in the groundwater flow field induced by operation of the treatment well pair. A genetic algorithm was used to derive a set of best-fit model parameters to describe the perchlorate reduction kinetics in this field-scale evaluation project. The calibrated parameter values were then used to predict technology performance. The model qualitatively predicted the salient characteristics of the observed data. It appears the model may be a useful tool for designing and operating this technology at other perchlorate-contaminated sites.
Multicolor fluorescence of a styrylquinoline dye tuned by metal cations.
Shiraishi, Yasuhiro; Ichimura, Chizuru; Sumiya, Shigehiro; Hirai, Takayuki
2011-07-18
A styrylquinoline dye with a dipicolylamine (DPA) moiety (1) has been synthesized. The dye 1 in acetonitrile demonstrates multicolor fluorescence upon addition of different metal cations. Compound 1 shows a green fluorescence without cations. Coordination of 1 with Cd(2+) shows a blue emission, while with Hg(2+) and Pb(2+) exhibits yellow and orange emissions, respectively. The different fluorescence spectra are due to the change in intramolecular charge transfer (ICT) properties of 1 upon coordination with different cations. The DPA and quinoline moieties of 1 behave as the electron donor and acceptor units, respectively, and both units act as the coordination site for metal cations. Cd(2+) coordinates with the DPA unit. This reduces the donor ability of the unit and decreases the energy level of HOMO. This results in an increase in HOMO-LUMO gap and blue shifts the emission. Hg(2+) or Pb(2+) coordinate with both DPA and quinoline units. The coordination with the quinoline unit decreases the energy level of LUMO. This results in a decrease in HOMO-LUMO gap and red shifts the emission. Addition of two different metal cations successfully creates intermediate colors; in particular, the addition of Cd(2+) and Pb(2+) at once creates a bright white fluorescence. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2
NASA Astrophysics Data System (ADS)
Mandal, Suman; Pal, Somnath; Kundu, Asish K.; Menon, Krishnakumar S. R.; Hazarika, Abhijit; Rioult, Maxime; Belkhou, Rachid
2016-08-01
Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.
Transport through an impurity tunnel coupled to a Si/SiGe quantum dot
Foote, Ryan H.; Ward, Daniel R.; Prance, J. R.; ...
2015-09-11
Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here in this paper, we report the characterization of a quantum dot coupled to a localized electronic state and present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through the device enable the determination that the most likely location of the localized state is consistent with a location in the quantum well near the edge of the quantum dot. Finally, our results aremore » consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Kenneth R.; Mei, Jianguo; Stalder, Romain
The effect of the macromolecular additive, polydimethylsiloxane (PDMS), on the performance of solution processed molecular bulk heterojunction solar cells is investigated, and the addition of PDMS is shown to improve device power conversion efficiency by ~70% and significantly reduce cell-to-cell variation, from a power conversion efficiency of 1.25 ± 0.37% with no PDMS to 2.16 ± 0.09% upon the addition of 0.1 mg/mL PDMS to the casting solution. The cells are based on a thiophene and isoindigo containing oligomer as the electron donor and [6,6]-phenyl-C61 butyric acid methyl ester (PC 61BM) as the electron acceptor. PDMS is shown to havemore » a strong influence on film morphology, with a significant decrease in film roughness and feature size observed. The morphology change leads to improved performance parameters, most notably an increase in the short circuit current density from 4.3 to 6.8 mA/cm 2 upon addition of 0.1 mg/mL PDMS. The use of PDMS is of particular interest, as this additive appears frequently as a lubricant in plastic syringes commonly used in device fabrication; therefore, PDMS may unintentionally be incorporated into device active layers.« less
Zhang, Lvyong; Shen, Wei; He, Rongxing; Liu, Xiaorui; Fu, Zhiyong; Li, Ming
2014-11-01
Computationally driven material design has attracted increasing interest to accelerate the search for optimal conjugated donor materials in bulk heterojunction organic solar cells. A series of novel copolymers containing benzo[1,2-b:4,5-b']dithiophene (BDT) and thieno[3,4-c]pyrrole-4,6-dione (TPD) derivatives were simulated by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). We performed a systematic study on the influences on molecular geometry parameters, electronic properties, optical properties, photovoltaic performances, and intermolecular stacking as well as hole mobility when different chalcogenophenes in TPD derivatives were used and functional groups with different electron-withdrawing abilities such as alkyl, fluorine, sufonyl, and cyano were introduced to the nitrogen positions in electron-deficient units. The substitution position of electron-withdrawing groups may cause little steric hindrance to the neighboring donor units, especially fluorine and cyano group. It was found that the incorporation of these new electron-deficient substituents and sulfur-selenium exchange can be applicable to further modify and optimize existing molecular structures. Our findings will provide valuable guidance and chemical methodologies for a judicious material design of conjugated polymers for solar cell applications with desirable photovoltaic characteristics.
Isolation of Geobacter species from diverse sedimentary environments
Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.
1996-01-01
In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.
Miceli, Joseph F; Torres, César I; Krajmalnik-Brown, Rosa
2016-12-01
Fermentation is a key process in many anaerobic environments. Varying the concentration of electron donor fed to a fermenting community is known to shift the distribution of products between hydrogen, fatty acids and alcohols. Work to date has focused mainly on the fermentation of glucose, and how the microbial community structure is affected has not been explored. We fed ethanol, lactate, glucose, sucrose or molasses at 100 me- eq. L -1 , 200 me- eq. L -1 or 400 me- eq. L -1 to batch-fed cultures with fermenting, methanogenic communities. In communities fed high concentrations of electron donor, the fraction of electrons channeled to methane decreased, from 34% to 6%, while the fraction of electrons channeled to short chain fatty acids increased, from 52% to 82%, averaged across all electron donors. Ethanol-fed cultures did not produce propionate, but did show an increase in electrons directed to acetate as initial ethanol concentration increased. In glucose, sucrose, molasses and lactate-fed cultures, propionate accumulation co-occurred with known propionate producing organisms. Overall, microbial communities were determined by the substrate provided, rather than its initial concentration, indicating that a change in community function, rather than community structure, is responsible for shifts in the fermentation products produced. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rao, Joshi Laxmikanth; Bhanuprakash, Kotamarthi
2011-12-01
The molecular structures of the ground (S(0)) and first singlet excited (S(1)) states of Alq3 derivatives in which pyrazolyl and 3-methylpyrazolyl groups are substituted at the C4 positions of the 8-hydroxyquinolate ligands as electron acceptors, and piperidinyl and N-methylpiperazinyl groups are substituted at the same positions as electron donors, have been optimized using the B3LYP/6-31G and CIS/6-31G methods, respectively. In order to analyze the electronic transitions in these derivatives, the frontier molecular orbital characteristics were analyzed systematically, and it was found that the highest occupied molecular orbital is localized on the A ligand while the lowest unoccupied molecular orbital is localized on the B ligand in their ground states, similar to what is seen for mer-Alq3. The absorption and emission spectra were evaluated at the TD-PBE0/6-31G level, and it was observed that electron acceptor substitution causes a red-shift in the emission spectra, which is also seen experimentally. The reorganization energies were calculated at the B3LYP/6-31G level and the results show that acceptor/donor substitution has a significant effect on the intrinsic charge mobilities of these derivatives as compared to mer-Alq3.
High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.
Suarez-Zuluaga, Diego A; Weijma, Jan; Timmers, Peer H A; Buisman, Cees J N
2015-03-01
Anaerobic methane oxidation coupled to sulphate reduction and the use of ethane and propane as electron donors by sulphate-reducing bacteria represent new opportunities for the treatment of streams contaminated with sulphur oxyanions. However, growth of microbial sulphate-reducing populations with methane, propane or butane is extremely slow, which hampers research and development of bioprocesses based on these conversions. Thermodynamic calculations indicate that the growth rate with possible alternative terminal electron acceptors such as thiosulphate and elemental sulphur may be higher, which would facilitate future research. Here, we investigate the use of these electron acceptors for oxidation of methane, ethane and propane, with marine sediment as inoculum. Mixed marine sediments originating from Aarhus Bay (Denmark) and Eckernförde Bay (Germany) were cultivated anaerobically at a pH between 7.2 and 7.8 and a temperature of 15 °C in the presence of methane, ethane and propane and various sulphur electron acceptors. The sulphide production rates in the conditions with methane, ethane and propane with sulphate were respectively 2.3, 2.2 and 1.8 μmol S L(-1) day(-1). For sulphur, no reduction was demonstrated. For thiosulphate, the sulphide production rates were up to 50 times higher compared to those of sulphate, with 86.2, 90.7 and 108.1 μmol S L(-1) day(-1) for methane, ethane and propane respectively. This sulphide production was partly due to disproportionation, 50 % for ethane but only 7 and 14 % for methane and propane respectively. The oxidation of the alkanes in the presence of thiosulphate was confirmed by carbon dioxide production. This is, to our knowledge, the first report of thiosulphate use as electron acceptor with ethane and propane as electron donors. Additionally, these results indicate that thiosulphate is a promising electron acceptor to increase start-up rates for sulphate-reducing bioprocesses coupled to short-chain alkane oxidation.
An Overview of Electron Acceptors in Microbial Fuel Cells
Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini
2017-01-01
Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at the cathode as electron acceptors through reduction. Some contaminants can also function as electron mediators at the anode or cathode. While previous studies have done a thorough assessment of electron donors, cathodic electron acceptors and mediators have not been as well described. Oxygen is widely used as an electron acceptor due to its high oxidation potential and ready availability. Recent studies, however, have begun to assess the use of different electron acceptors because of the (1) diversity of redox potential, (2) needs of alternative and more efficient cathode reaction, and (3) expanding of MFC based technologies in different areas. The aim of this review was to evaluate the performance and applicability of various electron acceptors and mediators used in MFCs. This review also evaluated the corresponding performance, advantages and disadvantages, and future potential applications of select electron acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators. PMID:28469607
Parry, Gareth; Malbut, Katie; Dark, John H; Bexton, Rodney S
1992-01-01
Objective—To investigate the response of the transplanted heart to different pacing modes and to synchronisation of the recipient and donor atria in terms of cardiac output at rest. Design—Doppler derived cardiac output measurements at three pacing rates (90/min, 110/min and 130/min) in five pacing modes: right ventricular pacing, donor atrial pacing, recipient-donor synchronous pacing, donor atrial-ventricular sequential pacing, and synchronous recipient-donor atrial-ventricular sequential pacing. Patients—11 healthy cardiac transplant recipients with three pairs of epicardial leads inserted at transplantation. Results—Donor atrial pacing (+11% overall) and donor atrial-ventricular sequential pacing (+8% overall) were significantly better than right ventricular pacing (p < 0·001) at all pacing rates. Synchronised pacing of recipient and donor atrial segments did not confer additional benefit in either atrial or atrial-ventricular sequential modes of pacing in terms of cardiac output at rest at these fixed rates. Conclusions—Atrial pacing or atrial-ventricular sequential pacing appear to be appropriate modes in cardiac transplant recipients. Synchronisation of recipient and donor atrial segments in this study produced no additional benefit. Chronotropic competence in these patients may, however, result in improved exercise capacity and deserves further investigation. PMID:1389737
Gorman, Donald S.; Levine, R. P.
1966-01-01
A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453
Li, Xiaoning; Huang, Lijun; Hu, Xiche; Huang, Xuefei
2009-01-01
Summary Three series of thioglycosyl donors differing only in their respective aglycon substituents within each series have been prepared as representatives of typical glycosyl donors. The relative anomeric reactivities of these donors were quantified under competitive glycosylation conditions with various reaction time, promoters, solvents and acceptors. Over three orders of magnitude reactivity difference were generated by simple transformation of the para-substituent on the aglycon with methanol as the acceptor, while chemoselectivities became lower with carbohydrate acceptors. Excellent linear correlations were attained between relative reactivity values of donors and σp values of the substituents in the Hammett plots. This indicates that the glycosylation mechanism remains the same over a wide range of reactivities and glycosylation conditions. The negative slopes of the Hammett plots suggested that electron donating substituents expedite the reactions and the magnitudes of slopes can be rationalized by neighboring group participation as well as electronic properties of the glycon protective groups. Within the same series of donors, less nucleophilic acceptors gave smaller slopes in their Hammett plots. This is consistent with the notion that acceptor nucleophilic attack onto the reactive intermediate is part of the rate limiting step of the glycosylation reaction. Excellent linear Hammett correlations were obtained between relative reactivity values of three series of donors differing only in their aglycon substituents and σp values of the substituents. PMID:19081954
Zhang, Weiwei; Wu, Yongzhen; Zhu, Haibo; Chai, Qipeng; Liu, Jingchuan; Li, Hui; Song, Xiongrong; Zhu, Wei-Hong
2015-12-09
Indoline-based D-A-π-A organic sensitizers are promising candidates for highly efficient and long-term stable dye-sensitized solar cells (DSSCs). In order to further broaden the spectral response of the known indoline dye WS-2, we rationally engineer the molecular structure through enhancing the electron donor and extending the π-bridge, resulting in two novel indoline-based D-A-π-A organic sensitizers WS-92 and WS-95. By replacing the 4-methylphenyl group on the indoline donor of WS-2 with a more electron-rich carbazole unit, the intramolecular charge transfer (ICT) absorption band of dye WS-92 is slightly red-shifted from 550 nm (WS-2) to 554 nm (WS-92). In comparison, the incorporation of a larger π-bridge of cyclopentadithiophene (CPDT) unit in dye WS-95 not only greatly bathochromatically tunes the absorption band to 574 nm but also largely enhances the molar extinction coefficients (ε), thus dramatically improving the light-harvesting capability. Under the standard global AM 1.5 solar light condition, the photovoltaic performances of both organic dyes have been evaluated in DSSCs on the basis of the iodide/triiodide electrolyte without any coadsorbent or cosensitizer. The DSSCs based on WS-95 display better device performance with power conversion efficiency (η) of 7.69%. The additional coadsorbent in the dye bath of WS-95 does not improve the photovoltaic performance, indicative of its negligible dye aggregation, which can be rationalized by the grafted dioctyl chains on the CPDT unit. The cosensitization of WS-95 with a short absorption wavelength dye S2 enhances the IPCE and improves the η to 9.18%. Our results indicate that extending the π-spacer is more rational than enhancing the electron donor in terms of broadening the spectral response of indoline-based D-A-π-A organic sensitizers.
Electronic structure and reactivity of three-coordinate iron complexes.
Holland, Patrick L
2008-08-01
[Reaction: see text]. The identity and oxidation state of the metal in a coordination compound are typically thought to be the most important determinants of its reactivity. However, the coordination number (the number of bonds to the metal) can be equally influential. This Account describes iron complexes with a coordination number of only three, which differ greatly from iron complexes with octahedral (six-coordinate) geometries with respect to their magnetism, electronic structure, preference for ligands, and reactivity. Three-coordinate complexes with a trigonal-planar geometry are accessible using bulky, anionic, bidentate ligands (beta-diketiminates) that steer a monodentate ligand into the plane of their two nitrogen donors. This strategy has led to a variety of three-coordinate iron complexes in which iron is in the +1, +2, and +3 oxidation states. Systematic studies on the electronic structures of these complexes have been useful in interpreting their properties. The iron ions are generally high spin, with singly occupied orbitals available for pi interactions with ligands. Trends in sigma-bonding show that iron(II) complexes favor electronegative ligands (O, N donors) over electropositive ligands (hydride). The combination of electrostatic sigma-bonding and the availability of pi-interactions stabilizes iron(II) fluoride and oxo complexes. The same factors destabilize iron(II) hydride complexes, which are reactive enough to add the hydrogen atom to unsaturated organic molecules and to take part in radical reactions. Iron(I) complexes use strong pi-backbonding to transfer charge from iron into coordinated alkynes and N 2, whereas iron(III) accepts charge from a pi-donating imido ligand. Though the imidoiron(III) complex is stabilized by pi-bonding in the trigonal-planar geometry, addition of pyridine as a fourth donor weakens the pi-bonding, which enables abstraction of H atoms from hydrocarbons. The unusual bonding and reactivity patterns of three-coordinate iron compounds may lead to new catalysts for oxidation and reduction reactions and may be used by nature in transient intermediates of nitrogenase enzymes.
NASA Astrophysics Data System (ADS)
Yang, J. L.; Sullivan, P.; Schumann, S.; Hancox, I.; Jones, T. S.
2012-01-01
We demonstrate organic discrete heterojunction photovoltaic cells based on fullerene (C60) and copper hexadecafluorophthalocyanine (F16CuPc), in which the C60 and F16CuPc act as the electron donor and the electron acceptor, respectively. The C60/F16CuPc cells fabricated with conventional and inverted architectures both exhibit comparable power conversion efficiencies. Furthermore, we show that the photocurrent in both cells is generated by a conventional exciton dissociation mechanism rather than the exciton recombination mechanism recently proposed for a similar C60/F16ZnPc system [Song et al., J. Am. Chem. Soc. 132, 4554 (2010)]. These results demonstrate that new unconventional material systems are a potential way to fabricate organic photovoltaic cells with inverted as well as conventional architectures.
Do thermal donors reduce the lifetimes of Czochralski-grown silicon crystals?
NASA Astrophysics Data System (ADS)
Miyamura, Y.; Harada, H.; Nakano, S.; Nishizawa, S.; Kakimoto, K.
2018-05-01
High-performance electronics require long carrier lifetimes within their silicon crystals. This paper reports the effects of thermal donors on the lifetimes of carriers in as-grown n-type silicon crystals grown by the Czochralski method. We grew silicon crystals with two different concentrations of thermal donors using the following two cooling processes: one was cooled with a 4-h halt after detaching the crystal from the melt, and the other was cooled continuously. The crystal grown with the cooling halt contained higher concentrations of thermal donors of the order of 1 × 1013 cm-3, while the crystal without the halt had no thermal donors. The measured bulk lifetimes were in the range of 15-18 ms. We concluded that thermal donors in Czochralski-grown silicon crystals do not act to reduce their lifetimes.
McEntee, Monica; Stevanovic, Ana; Tang, Wenjie; Neurock, Matthew; Yates, John T
2015-02-11
Infrared (IR) studies of Au/TiO2 catalyst particles indicate that charge transfer from van der Waals-bound donor or acceptor molecules on TiO2 to or from Au occurs via transport of charge carriers in the semiconductor TiO2 support. The ΔνCO on Au is shown to be proportional to the polarizability of the TiO2 support fully covered with donor or acceptor molecules, producing a proportional frequency shift in νCO. Charge transfer through TiO2 is associated with the population of electron trap sites in the bandgap of TiO2 and can be independently followed by changes in photoluminescence intensity and by shifts in the broad IR absorbance region for electron trap sites, which is also proportional to the polarizability of donors by IR excitation. Density functional theory calculations show that electron transfer from the donor molecules to TiO2 and to supported Au particles produces a negative charge on the Au, whereas the transfer from the Au particles to the TiO2 support into acceptor molecules results in a positive charge on the Au. These changes along with the magnitudes of the shifts are consistent with the Stark effect. A number of experiments show that the ∼3 nm Au particles act as "molecular voltmeters" in influencing ΔνCO. Insulator particles, such as SiO2, do not display electron-transfer effects to Au particles on their surface. These studies are preliminary to doping studies of semiconductor-oxide particles by metal ions which modify Lewis acid/base oxide properties and possibly strongly modify the electron-transfer and catalytic activity of supported metal catalyst particles.
Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiang; Geva, Eitan
2016-08-14
The nonequilibrium Fermi’s golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi’s golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable tomore » the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi’s golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.« less
High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.
Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar
2011-04-21
Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.
Fernández, N; Sierra-Alvarez, R; Amils, R; Field, J A; Sanz, J L
2009-01-01
Water contamination by nitrate is a wideworld extended phenomena. Biological autotrophic denitrification has a real potential to face this problem and presents less drawbacks than the most extended heterotrophic denitrification. Three bench-scale UASB reactors were operated under autotrophic (R1, H2S as electron donor), mixotrophic (R2, H2S plus p-cresol as electron donors) and heterotrophic (R3, p-cresol as electron donor) conditions using nitrate as terminal electron acceptor. 16S rDNA genetic libraries were built up to compare their microbial biodiversity. Six different bacteria phyla and three archaeal classes were observed. Proteobacteria was the main phyla in all reactors standing out the presence of denitrifiers. Microorganisms similar to Thiobacillus denitrificans and Acidovorax sp. performed the autotrophic denitification. These OTUs were displaced by chemoheterotrophic denitrifiers, especially by Limnobacter-like and Ottowia-like OTUs. Other phyla were Bacteroidetes, Chloroflexi, Firmicutes and Actinobacteria that--as well as Archaea members--were implicated in the degradation of organic matter, as substrate added as coming from endogenous sludge decay under autotrophic conditions. Archaea diversity remained low in all the reactors being Methanosaeta concilii the most abundant one.
Impurity and phonon scattering in silicon nanowires
NASA Astrophysics Data System (ADS)
Zhang, W.; Persson, M. P.; Mera, H.; Delerue, C.; Niquet, Y. M.; Allan, G.; Wang, E.
2011-03-01
We model the scattering of electrons by phonons and dopant impurities in ultimate [110]-oriented gate-all-around silicon nanowires with an atomistic valence force field and tight-binding approach. All electron-phonons interactions are included. We show that impurity scattering can reduce with decreasing nanowire diameter due to the enhanced screening by the gate. Donors and acceptors however perform very differently : acceptors behave as tunnel barriers for the electrons, while donors behave as quantum wells which introduce Fano resonances in the conductance. As a consequence the acceptors are much more limiting the mobility than the donors. The resistances of single acceptors are also very dependent on their radial position in the nanowire, which might be a significant source of variability in ultimate silicon nanowire devices. Concerning phonons, we show that, as a result of strong confinement, i) electrons couple to a wide and complex distribution of phonons modes, and ii) the mobility has a non-monotonic variation with wire diameter and is strongly reduced with respect to bulk. French National Research Agency ANR project QUANTAMONDE Contract No. ANR-07-NANO-023-02 and by the Délégation Générale pour l'Armement, French Ministry of Defense under Grant No. 2008.34.0031.
Cost-effectiveness of alternative changes to a national blood collection service.
Willis, S; De Corte, K; Cairns, J A; Zia Sadique, M; Hawkins, N; Pennington, M; Cho, G; Roberts, D J; Miflin, G; Grieve, R
2018-05-16
To evaluate the cost-effectiveness of changing opening times, introducing a donor health report and reducing the minimum inter-donation interval for donors attending static centres. Evidence is required about the effect of changes to the blood collection service on costs and the frequency of donation. This study estimated the effect of changes to the blood collection service in England on the annual number of whole-blood donations by current donors. We used donors' responses to a stated preference survey, donor registry data on donation frequency and deferral rates from the INTERVAL trial. Costs measured were those anticipated to differ between strategies. We reported the cost per additional unit of blood collected for each strategy versus current practice. Strategies with a cost per additional unit of whole blood less than £30 (an estimate of the current cost of collection) were judged likely to be cost-effective. In static donor centres, extending opening times to evenings and weekends provided an additional unit of whole blood at a cost of £23 and £29, respectively. Introducing a health report cost £130 per additional unit of blood collected. Although the strategy of reducing the minimum inter-donation interval had the lowest cost per additional unit of blood collected (£10), this increased the rate of deferrals due to low haemoglobin (Hb). The introduction of a donor health report is unlikely to provide a sufficient increase in donation frequency to justify the additional costs. A more cost-effective change is to extend opening hours for blood collection at static centres. © 2018 The Authors. Transfusion Medicine published by John Wiley & Sons Ltd on behalf of British Blood Transfusion Society.
The Roles of Biofilm Conductivity and Donor Substrate Kinetics in a Mixed-Culture Biofilm Anod
We experimentally assessed kinetics and thermodynamics of electron transfer (ET) from the donor substrate (acetate) to the anode for a mixed-culture biofilm anode. We interpreted the results with a modified biofilm-conduction model consisting of three ET steps: (1) intracellular...
Sellors, John W; Hayward, Robert; Swanson, Graham; Ali, Anita; Haynes, R Brian; Bourque, Ronald; Moore, Karen-Ann; Lohfeld, Lynne; Dalby, Dawn; Howard, Michelle
2002-01-01
Background Self-administered computer-assisted blood donor screening strategies may elicit more accurate responses and improve the screening process. Methods Randomized crossover trial comparing responses to questions on a computerized hand-held tool (HealthQuiz, or HQ), to responses on the standard written instrument (Donor Health Assessment Questionnaire, or DHAQ). Randomly selected donors at 133 blood donation clinics in the area of Hamilton, Canada participated from 1995 to 1996. Donors were randomized to complete either the HQ or the DHAQ first, followed by the other instrument. In addition to responses of 'yes' and 'no' on both questionnaires, the HQ provided a response option of 'not sure'. The primary outcome was the number of additional donors deferred by the HQ. Results A total of 1239 donors participated. Seventy-one potential donors were deferred as a result of responses to the questionnaires; 56.3% (40/71) were deferred by the DHAQ, and an additional 43.7% (31/71) were deferred due to risks identified by the HQ but not by the DHAQ. Fourteen donors self-deferred; 11 indicated on the HQ that they should not donate blood on that day but did not use the confidential self-exclusion option on the DHAQ, and three used the self-exclusion option on the DHAQ but did not indicate that they should not donate blood on the HQ. The HQ identified a blood contact or risk factor for HIV/AIDS or sexually transmitted infection that was not identified by the DHAQ in 0.1% to 2.7% of donors. Conclusion A self-administered computerized questionnaire may increase risk reporting by blood donors. PMID:12191432
Non-fullerene electron acceptors for organic photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik
Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.
Fine-tuning of electronic properties in donor-acceptor conjugated polymers based on oligothiophenes
NASA Astrophysics Data System (ADS)
Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka
2018-03-01
A novel series of donor-acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.
Petrollino, Davide; Forlani, Giuseppe
2012-07-01
The streptococcal enzyme that catalyzes the last step in proline biosynthesis was heterologously expressed and the recombinant protein was purified to electrophoretic homogeneity and characterized thoroughly. As for δ1-pyrroline-5-carboxylate reductases from other sources, it was able to use either NADH or NADPH as the electron donor in vitro. However, with NADH the activity was markedly inhibited by physiological levels of NADP+. Results also strengthen the possibility that an unusual ordered substrate binding occurs, in which the dinucleotide binds last.
Peculiar bonding associated with atomic doping and hidden honeycombs in borophene
NASA Astrophysics Data System (ADS)
Lee, Chi-Cheng; Feng, Baojie; D'angelo, Marie; Yukawa, Ryu; Liu, Ro-Ya; Kondo, Takahiro; Kumigashira, Hiroshi; Matsuda, Iwao; Ozaki, Taisuke
2018-02-01
Engineering atomic-scale structures allows great manipulation of physical properties and chemical processes for advanced technology. We show that the B atoms deployed at the centers of honeycombs in boron sheets, borophene, behave as nearly perfect electron donors for filling the graphitic σ bonding states without forming additional in-plane bonds by first-principles calculations. The dilute electron density distribution owing to the weak bonding surrounding the center atoms provides easier atomic-scale engineering and is highly tunable via in-plane strain, promising for practical applications, such as modulating the extraordinarily high thermal conductance that exceeds the reported value in graphene. The hidden honeycomb bonding structure suggests an unusual energy sequence of core electrons that has been verified by our high-resolution core-level photoelectron spectroscopy measurements. With the experimental and theoretical evidence, we demonstrate that borophene exhibits a peculiar bonding structure and is distinctive among two-dimensional materials.
Titanium in silicon as a deep level impurity
NASA Technical Reports Server (NTRS)
Chen, J.-W.; Milnes, A. G.; Rohatgi, A.
1979-01-01
Titanium inserted in silicon by diffusion or during Czochralski ingot growth is electrically active to a concentration level of about 4 x 10 to the 14th per cu cm. It is reported that Hall measurements after diffusion show conversion of lightly doped p-type Si to n-type due to a Ti donor level at E sub c -0.22 eV. In addition, in DLTS measurements of n(+)p structures this level shows as an electron (minority carrier) trap at E sub c -0.26 eV with an electron capture cross section of about 3 x 10 to the -15th per sq cm at 300 K. Finally, a Ti electrically active concentration of about 1.35 x 10 to the 13th per cu cm in p type Si results in a minority carrier (electron) lifetime of 50 nsec at 300 K.
21 CFR 660.31 - Suitability of the donor.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.31 Suitability of the donor. Donors of peripheral blood for Reagent Red Blood Cells shall meet the...
21 CFR 660.31 - Suitability of the donor.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.31 Suitability of the donor. Donors of peripheral blood for Reagent Red Blood Cells shall meet the...
21 CFR 660.31 - Suitability of the donor.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.31 Suitability of the donor. Donors of peripheral blood for Reagent Red Blood Cells shall meet the...
21 CFR 660.31 - Suitability of the donor.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.31 Suitability of the donor. Donors of peripheral blood for Reagent Red Blood Cells shall meet the...
NASA Astrophysics Data System (ADS)
Tracy, L. A.; Luhman, D. R.; Carr, S. M.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Lilly, M. P.; Carroll, M. S.
2016-02-01
We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ˜9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ˜ 2.7 × 10 3 , the power dissipation of the amplifier is 13 μW, the bandwidth is ˜ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ √{ Hz } . With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.
Single molecule-level study of donor-acceptor interactions and nanoscale environment in blends
NASA Astrophysics Data System (ADS)
Quist, Nicole; Grollman, Rebecca; Rath, Jeremy; Robertson, Alex; Haley, Michael; Anthony, John; Ostroverkhova, Oksana
2017-02-01
Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules were imaged in PMMA in the presence of acceptor (A) molecules using wide-field fluorescence microscopy. Two sample configurations were realized: (i) a fixed concentration of Pn donor molecules, with increasing concentration of acceptor molecules (functionalized indenflouorene or PCBM) and (ii) a fixed concentration of acceptor molecules with an increased concentration of the Pn donor. The D-A energy transfer and changes in the donor emission due to those in the acceptor- modified polymer morphology were quantified. The increase in the acceptor concentration was accompanied by enhanced photobleaching and blinking of the Pn donor molecules. To better understand the underlying physics of these processes, we modeled photoexcited electron dynamics using Monte Carlo simulations. The simulated blinking dynamics were then compared to our experimental data, and the changes in the transition rates were related to the changes in the nanoscale environment. Our study provides insight into evolution of nanoscale environment during the formation of bulk heterojunctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez
2015-01-19
Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor andmore » acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.« less
Donors' blood group declaration before donation can be used as a tool for electronic crossmatching.
Arslan, O
2005-12-01
Electronic crossmatching (E-XM) is used to detect ABO incompatibility. In developing countries, as many of the donations are from first-time donors, it is difficult to guarantee the accuracy of the ABO/Rh label on these units to use them for E-XM. This problem was overcome with a new software 'hemosoft', using donors' blood group declaration before donation as a tool for E-XM. During registration, donors either declare their blood group or give no comment. For, ABO/Rh grouping, either two results from different donations or only one in concordant with the declaration before donation is needed. If there is a conflict, second typing is performed from the unit segment. If donors give no declaration, two different technicians perform typing, one from the sample tube and the other from the unit segment. Of 18,618 donations performed, 640 (3%) were repeated and the rest were first-time donations. In 16,327, typing was performed once, as the blood group declaration and the typing results were identical. In 2407, grouping was performed twice, as donors gave no declaration or conflicts between declaration and typing results were found. No labelling or wrong unit-release errors were detected in units donated, typed and labelled in our centre. In 26,402 donations, 16,314 (61.8%) E-XMs were performed. No major haemolytic transfusion reaction was recorded. Donors' ABO/Rh declaration before donation can be used as a tool for E-XM, instead of the requirement for serological confirmation or a second donation to guarantee grouping.
NO-sensing performance of vacancy defective monolayer MoS2 predicted by density function theory
NASA Astrophysics Data System (ADS)
Li, Feifei; Shi, Changmin
2018-03-01
Using density functional theory (DFT), we predict the NO-sensing performance of monolayer MoS2 (MoS2-MLs) with and without MoS3-vacancy/S-vacancy defects. Our theoretical results demonstrate that MoS3- and S-vacancy defective MoS2-MLs show stronger chemisorption and greater electron transfer effects than pure MoS2-MLs. The charge transfer analysis showed pure and defective MoS2-MLs all act as donors. Both MoS3-vacancy and S-vacancy defects induce dramatic changes of electronic properties of MoS2-MLs, which have direct relationship with gas sensing performance. In addition, S-vacancy defect leads to more electrons transfer to NO molecule than MoS3-vacancy defect. The H2O molecule urges more electrons transfer from MoS3- or S-vacancy defective MoS2-MLs to NO molecule. We believe that this calculation results will provide some information for future experiment.
Dramatic Influence of an Anionic Donor on the Oxygen-Atom Transfer Reactivity of a MnV–Oxo Complex
Neu, Heather M; Quesne, Matthew G; Yang, Tzuhsiung; Prokop-Prigge, Katharine A; Lancaster, Kyle M; Donohoe, James; DeBeer, Serena; de Visser, Sam P; Goldberg, David P
2014-01-01
Addition of an anionic donor to an MnV(O) porphyrinoid complex causes a dramatic increase in 2-electron oxygen-atom-transfer (OAT) chemistry. The 6-coordinate [MnV(O)(TBP8Cz)(CN)]− was generated from addition of Bu4N+CN− to the 5-coordinate MnV(O) precursor. The cyanide-ligated complex was characterized for the first time by Mn K-edge X-ray absorption spectroscopy (XAS) and gives Mn–O=1.53 Å, Mn–CN=2.21 Å. In combination with computational studies these distances were shown to correlate with a singlet ground state. Reaction of the CN− complex with thioethers results in OAT to give the corresponding sulfoxide and a 2e−-reduced MnIII(CN)− complex. Kinetic measurements reveal a dramatic rate enhancement for OAT of approximately 24 000-fold versus the same reaction for the parent 5-coordinate complex. An Eyring analysis gives ΔH≠=14 kcal mol−1, ΔS≠=−10 cal mol−1 K−1. Computational studies fully support the structures, spin states, and relative reactivity of the 5- and 6-coordinate MnV(O) complexes. PMID:25256417
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saravanamoorthy, S. N.; Peter, A. John, E-mail: a.john.peter@gmail.com
2016-05-23
Electronic properties of a hydrogenic donor impurity in a CdSe/Pb{sub 0.8}Cd{sub 0.2}Se/CdSe quantum dot quantum well system are investigated for various radii of core with shell materials. Confined energies are obtained taking into account the geometrical size of the system and thereby the donor binding energies are found. The diamagnetic susceptibility is estimated for a confined shallow donor in the well system. The results show that the diamagnetic susceptibility strongly depends on core and shell radii and it is more sensitive to variations of the geometrical size of the well material.
Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide.
Cox, S F; Davis, E A; Cottrell, S P; King, P J; Lord, J S; Gil, J M; Alberto, H V; Vilão, R C; Piroto Duarte, J; Ayres de Campos, N; Weidinger, A; Lichti, R L; Irvine, S J
2001-03-19
We confirm the recent prediction that interstitial protium may act as a shallow donor in zinc oxide, by direct spectroscopic observation of its muonium counterpart. On implantation into ZnO, positive muons--chemically analogous to protons in this context--form paramagnetic centers below about 40 K. The muon-electron contact hyperfine interaction, as well as the temperature and activation energy for ionization, imply a shallow level. Similar results for the cadmium chalcogenides suggest that such shallow donor states are generic to the II-VI compounds. The donor level depths should serve as a guide for the electrical activity of interstitial hydrogen.
NASA Astrophysics Data System (ADS)
Krol, M.; Kokkinaki, A.; Sleep, B.
2014-12-01
The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.
Alternating gradient photodetector
NASA Technical Reports Server (NTRS)
Overhauser, Albert W. (Inventor); Maserjian, Joseph (Inventor)
1989-01-01
A far infrared (FIR) range responsive photodetector is disclosed. There is a substrate of degenerate germanium. A plurality of alternating impurity-band and high resistivity layers of germanium are disposed on the substrate. The impurity-band layers have a doping concentration therein sufficiently high to include donor bands which can release electrons upon impingement by FIR photons of energy hv greater than an energy gap epsilon. The high resistivity layers have a doping concentration therein sufficiently low as to not include conducting donor bands and are depleted of electrons. Metal contacts are provided for applying an electrical field across the substrate and the plurality of layers. In the preferred embodiment as shown, the substrate is degenerate n-type (N++) germanium; the impurity-band layers are n+ layers of germanium doped to approximately the low 10(exp 16)/cu cm range; and, the high resistivity layers are n-layers of germanium doped to a maximum of approximately 10(exp)/cu cm. Additionally, the impurity-band layers have a thickness less than a conduction-electron diffusion length in germanium and likely to be in the range of 0.1 to 1.0 micron, the plurality of impurity-bands is of a number such that the flux of FIR photons passing therethrough will be substantially totally absorbed therein, the thickness of the high resistivity layers is such compared to the voltage applied that the voltage drop in each the high resistivity layers controls the occurence of impact ionization in the impurity-band layers to a desired level.
The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome
NASA Astrophysics Data System (ADS)
Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R.
2008-10-01
In the context of the fast-growing demand for innovative high-performance display technologies, the perspective of manufacturing low-cost functional materials that can be easily processed over large areas or finely printed into individual pixels, while being mechanically deformable, has motivated the development of novel electronically active organic components fulfilling the requirements for flexible displays and portable applications. Among all technologies relying on a low-power stimulated optical change, non-emissive organic electrochromic devices (ECDs) offer the advantage of being operational under a wide range of viewing angles and lighting conditions spanning direct sunlight as desired for various applications including signage, information tags and electronic paper. Combining mechanical flexibility, high contrast ratios and fast response times, along with colour tunability through structural control, polymeric electrochromes constitute the most attractive organic electronics for tomorrow's reflective/transmissive ECDs and displays. Although red, blue and most recently green electrochromic polymers (ECPs) required for additive primary colour space were investigated, attempts to make saturated black ECPs have not been reported, probably owing to the complexity of designing materials absorbing effectively over the whole visible spectrum. Here, we report on the use of the donor-acceptor approach to make the first neutral-state black polymeric electrochrome. Processable black-to-transmissive ECPs promise to affect the development of both reflective and transmissive ECDs by providing lower fabrication and processing costs through printing, spraying and coating methods, along with good scalability when compared with their traditional inorganic counterparts.
Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.
Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be usedmore » for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of three to five times, leading to a more rapid clean-up of the DNAPL zone. The most favored electron donor to add is one which partitions well with the chlorinated solvent or can be concentrated near it. Unfortunately, an ideal electron donor, such as vegetable oil, is difficult to introduce and mix with DNAPL in the ground, doing this properly remains an engineering challenge. Numerical model studies have indicated that several factors may significantly influence the rate and extent of enhancement, including the inhibitory effects of PCE and cDCE, the level of ED concentration, DNAPL configuration, and competition for ED. Such factors need to be considered when contemplating engineered DNAPL bioremediation. Pseudomonas stuzeri KC is an organism that transforms CT to carbon dioxide and chloride without the formation of the hazardous intermediate, chloroform. This is accomplished by production and secretion of a molecule called PDTC. This study was direct ed towards determining how PDTC works. Cu (II) at a ratio of 1:1 Cu to PDTC was found to result in the most rapid CT transformation, confirming that the PDTC-Cu complex is both a reactant and a catalyst in CT transformation. CT degradation requires that the PDTC be in a reduced form, which is generated by contact with cell components. Fe(II) inhibits CT transformation by PDTC. Studies indicated that this inhibition is enhanced by some compound or factor in the supernatant with molecular weight greater than 10,000 Da. We have made progress in determining what this factor might be, but have not yet been able to identify it. In related studies, we found that CT transformation by another organism, Shewanella oneidensis MR1, also involves an excreted factor, but this factor is different from PDTC and results in chloroform transformation as an intermediate. Our studies have indicated that this factor is similar to vitamin K2, and we have also confirmed that vitamin K2 does transform C T into chloroform.« less
Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria
Lovley, D.R.; Phillips, E.J.P.
1994-01-01
Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.
21 CFR 640.21 - Suitability of donors.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Platelets § 640.21 Suitability of donors. (a) Whole blood donors shall meet the criteria for suitability prescribed in § 640.3. (b) [Reserved] (c... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Suitability of donors. 640.21 Section 640.21 Food...
21 CFR 640.51 - Suitability of donors.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Cryoprecipitate § 640.51 Suitability of donors. (a) Whole blood donors shall meet the criteria for suitability prescribed in § 640.3. (b) Plasmapheresis... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Suitability of donors. 640.51 Section 640.51 Food...
21 CFR 640.63 - Suitability of donor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.63 Suitability of donor. (a) Method of determining. The suitability of a donor for Source Plasma shall be determined by a qualified... year. (2)(i) A donor who is to be immunized for the production of high-titer plasma shall be examined...
21 CFR 640.63 - Suitability of donor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.63 Suitability of donor. (a) Method of determining. The suitability of a donor for Source Plasma shall be determined by a qualified... year. (2)(i) A donor who is to be immunized for the production of high-titer plasma shall be examined...
21 CFR 640.63 - Suitability of donor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.63 Suitability of donor. (a) Method of determining. The suitability of a donor for Source Plasma shall be determined by a qualified... year. (2)(i) A donor who is to be immunized for the production of high-titer plasma shall be examined...
21 CFR 640.63 - Suitability of donor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.63 Suitability of donor. (a) Method of determining. The suitability of a donor for Source Plasma shall be determined by a qualified... year. (2)(i) A donor who is to be immunized for the production of high-titer plasma shall be examined...
21 CFR 640.63 - Suitability of donor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.63 Suitability of donor. (a) Method of determining. The suitability of a donor for Source Plasma shall be determined by a qualified... year. (2)(i) A donor who is to be immunized for the production of high-titer plasma shall be examined...
NASA Astrophysics Data System (ADS)
Su, Yajun; Li, Yan; Liu, Jiangang; Xing, Rubo; Han, Yanchun
2015-01-01
An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10-3 cm2 V-1 s-1 and an electron mobility of 1.40 × 10-3 cm2 V-1 s-1.An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10-3 cm2 V-1 s-1 and an electron mobility of 1.40 × 10-3 cm2 V-1 s-1. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05915h
Babanejad, Mehran; Izadi, Neda; Najafi, Farid; Alavian, Seyed Moayed
2016-03-01
The world health organization (WHO) recommends that all blood donations should be screened for evidence of infections, such as hepatitis B. The present study aimed to determine the prevalence of hepatitis B surface antigen (HBsAg) in blood donors at the eastern Mediterranean region office (EMRO) of the WHO and middle eastern countries. A meta-analysis was carried out based on the results of an electronic literature search of PubMed, Ovid, Scopus, and Google Scholar for articles published from January 1, 2000, to August 31, 2015. In accordance with a significant homogeneity test and a large value of I2, the random effects model was used to aggregate data from the studies and produce the pooled estimates using the "Metan" command. We included 66 eligible studies. The pooled prevalence of HBsAg in blood donors of both EMRO and middle eastern (E and M) countries was 2.03% (95% confidence interval [CI]: 1.79 - 2.26). In addition, the prevalence rates in the EMRO countries was 1.99% (95% CI: 1.84 - 2.14) and 1.62% in the Middle Eastern countries (95% CI: 1.36 - 1.88). The prevalence among blood donors with more than one study was 1.58% in Egypt, 0.58% in Iran, 0.67% in Iraq, 2.84% in Pakistan, 3.02% in Saudi Arabia, 1.68% in Turkey, and 5.05% in Yemen. Based on the WHO classification of hepatitis B virus (HBV) prevalence, the prevalence of HBsAg in blood donors from E and M countries reached an intermediate level. However, there were low prevalence levels in some E and M countries.
NASA Astrophysics Data System (ADS)
Sasamori, Kota; Takahashi, Kazuyuki; Kodama, Takeshi; Fujita, Wataru; Kikuchi, Koichi; Yamada, Jun-ichi
2013-05-01
The pressure-induced organic superconductor β-(BDA-TTP)2FeCl4 [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene], which shows a metal--insulator (MI) transition at TMI = 113 K under ambient pressure, has been found by X-ray study to have a two-fold crystal structure along the c-axis in the insulating state at 10 K. In the donor layer, there are four independent BDA-TTP molecules, which are divided into two charge-poor ones and two charge-rich ones on the basis of the folding dihedral angles around the intramolecular sulfur-to-sulfur axes of two outer dithiane rings in BDA-TTP. The charge separation leads to the formation of two types of dimers: a dimer consisting of two charge-poor donors and a dimer consisting of two charge-rich ones. The tight-binding band calculation revealed a band gap of 5.3 meV in the energy dispersion. The MI transition can be therefore accounted for by the charge separation. In addition, we investigated the crystal and electronic structures of β-(BDA-TTP)2FeCl4 at different pressures up to 21 kbar, and found that the application of pressures causes variations in both the conformation of donor molecule and the donor arrangement, which are responsible for almost uniform interaction in the donor stacking and for an increase in bandwidth (W). As a result, the suppression of MI transition and subsequent occurrence of superconductivity in β-(BDA-TTP)2FeCl4 would be observed with increasing pressure.
Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode
Rodenas, Pau; Zhu, Fangqi; Sleutels, Tom; Saakes, Michel; Buisman, Cees
2017-01-01
Abstract Background Bioelectrochemical systems (BESs) are capable of recovery of metals at a cathode through oxidation of organic substrate at an anode. Recently, also hydrogen gas was used as an electron donor for recovery of copper in BESs. Oxidation of hydrogen gas produced a current density of 0.8 A m‐2 and combined with Cu2+ reduction at the cathode, produced 0.25 W m‐2. The main factor limiting current production was the mass transfer of hydrogen to the biofilm due to the low solubility of hydrogen in the anolyte. Here, the mass transfer of hydrogen gas to the bioanode was improved by use of a gas diffusion electrode (GDE). Results With the GDE, hydrogen was oxidized to produce a current density of 2.9 A m‐2 at an anode potential of –0.2 V. Addition of bicarbonate to the influent led to production of acetate, in addition to current. At a bicarbonate concentration of 50 mmol L‐1, current density increased to 10.7 A m‐2 at an anode potential of –0.2 V. This increase in current density could be due to oxidation of formed acetate in addition to oxidation of hydrogen, or enhanced growth of hydrogen oxidizing bacteria due to the availability of acetate as carbon source. The effect of mass transfer was further assessed through enhanced mixing and in combination with the addition of bicarbonate (50 mmol L‐1) current density increased further to 17.1 A m‐2. Conclusion Hydrogen gas may offer opportunities as electron donor for bioanodes, with acetate as potential intermediate, at locations where excess hydrogen and no organics are available. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29200586
Eng, Alex Yong Sheng; Poh, Hwee Ling; Šaněk, Filip; Maryško, Miroslav; Matějková, Stanislava; Sofer, Zdeněk; Pumera, Martin
2013-07-23
Fully hydrogenated graphene (graphane) and partially hydrogenated graphene materials are expected to possess various fundamentally different properties from graphene. We have prepared highly hydrogenated graphene containing 5% wt of hydrogen via Birch reduction of graphite oxide using elemental sodium in liquid NH3 as electron donor and methanol as proton donor in the reduction. We also investigate the influence of preparation method of graphite oxide, such as the Staudenmaier, Hofmann or Hummers methods on the hydrogenation rate. A control experiment involving NaNH2 instead of elemental Na was also performed. The materials were characterized in detail by electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy both at room and low temperatures, X-ray fluorescence spectroscopy, inductively coupled plasma optical emission spectroscopy, combustible elemental analysis and electrical resistivity measurements. Magnetic measurements are provided of bulk quantities of highly hydrogenated graphene. In the whole temperature range up to room temperature, the hydrogenated graphene exhibits a weak ferromagnetism in addition to a contribution proportional to field that is caused not only by diamagnetism but also likely by an antiferromagnetic influence. The origin of the magnetism is also determined to arise from the hydrogenated graphene itself, and not as a result of any metallic impurities.
NASA Astrophysics Data System (ADS)
Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.
2013-01-01
The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weimin; Carley, Jack M; Watson, David B
Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uraniummore » was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.« less
Do, Thu Trang; Pham, Hong Duc; Manzhos, Sergei; Bell, John M; Sonar, Prashant
2017-05-24
We designed, synthesized, and characterized a series of novel electron deficient small molecule nonfullerene acceptors based on 1,8-naphthalimide (NAI) and 9-fluorenone (FN) with different branched alkyl chains using various techniques. These molecules are based on an acceptor-donor-acceptor-donor-acceptor (A1-D-A2-D-A1) molecular design configuration with NAI as the end-capping acceptor (A1), FN as electron-withdrawing central (A2) group, and thiophene ring as a donor (D) unit. These materials are named as NAI-FN-NAI (BO) and NAI-FN-NAI (HD) where BO and HD represent butyloctyl and hexyldecyl alkyl groups, respectively. To further modify energy levels of these materials, we converted the weak electron withdrawing ketonic group (C═O) attached to the FN moiety of NAI-FN-NAI (BO) to a stronger electron withdrawing cyano group (C≡N) to obtain the compound NAI-FCN-NAI (BO) by keeping the same alkyl chain. The optical, electrochemical, and thermal properties of the new acceptors were studied. The materials exhibited higher to medium band gaps, low lowest unoccupied molecular orbital (LUMO) energy levels, and highly thermally stable properties. Organic solar cell devices employing conventional poly(3-hexylthiophene) (P3HT) a donor polymer and the newly designed small molecules as the acceptor were investigated. Among all new materials, organic solar cell devices based on NAI-FN-NAI (BO) as an acceptor exhibit the highest performance with an open circuit voltage (V OC ) of 0.88 V, a short-circuit current density (J SC ) of 9.1 mAcm -2 , a fill factor (FF) of 45%, and an overall power conversion efficiency (PCE) of 3.6%. This is the first report of 9-fluorenone based nonfullerene acceptor with P3HT donor in organic solar cell devices with such a promising performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander; Hammes-Schiffer, Sharon
2015-11-17
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less
Patil, Hemlata; Chang, Jingjing; Gupta, Akhil; Bilic, Ante; Wu, Jishan; Sonar, Prashant; Bhosale, Sheshanath V
2015-09-18
Two solution-processable small organic molecules, (E)-6,6'-bis(4-(diphenylamino)phenyl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S10) and (E)-6,6'-di(9H-carbazol-9-yl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S11) were successfully designed, synthesized and fully characterized. S10 and S11 are based on a donor-acceptor-donor structural motif and contain a common electron accepting moiety, isoindigo, along with different electron donating functionalities, triphenylamine and carbazole, respectively. Ultraviolet-visible absorption spectra revealed that the use of triphenylamine donor functionality resulted in an enhanced intramolecular charge transfer transition and reduction of optical band gap, when compared with its carbazole analogue. Both of these materials were designed to be donor semiconducting components, exerted excellent solubility in common organic solvents, showed excellent thermal stability, and their promising optoelectronic properties encouraged us to scrutinize charge-carrier mobilities using solution-processable organic field effect transistors. Hole mobilities of the order of 2.2 × 10(-4) cm²/Vs and 7.8 × 10(-3) cm²/Vs were measured using S10 and S11 as active materials, respectively.
Dynamical photo-induced electronic properties of molecular junctions
NASA Astrophysics Data System (ADS)
Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.
2018-03-01
Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.
Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance.
Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Spanos, Michael; Ameri, Tayebeh; Brabec, Christoph J; Chochos, Christos L; Avgeropoulos, Apostolos
2015-10-01
The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organic solid state optical switches and method for producing organic solid state optical switches
Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.
1993-01-01
This invention consists of a light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, and a method for making said compound.
NASA Astrophysics Data System (ADS)
Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.
2017-11-01
Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.
Phosphorus and carrier density of heavily n-type doped germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takinai, K.; Wada, K.
2016-05-14
The threshold current density of n-type, tensile-strained Ge lasers strongly depends on the electron density. Although optical net gain analyses indicate that the optimum electron density should be on the order of 1 × 10{sup 20} cm{sup −3} to get the lowest threshold, it is not a simple task to increase the electron density beyond the mid range of 10{sup 19} cm{sup −3}. The present paper analyzes the phenomenon where electron density is not proportional to phosphorus donor density, i.e., “saturation” phenomenon, by applying the so-called amphoteric defect model. The analyses indicate that the saturation phenomenon can be well explained by the charge compensationmore » between the phosphorus donors (P{sup +}) and doubly negative charged Ge vacancies (V{sup 2−}).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenhardt, A.; Reiß, S.; Krischok, S., E-mail: stefan.krischok@tu-ilmenau.de
2014-01-28
The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearancemore » of surface states, which initially pin the Fermi level and induce downward band bending.« less
Molecular complexes of some anthraquinone anti-cancer drugs: experimental and computational study
NASA Astrophysics Data System (ADS)
El-Gogary, Tarek M.
2003-03-01
It is known that anti-cancer drugs target DNA in the cell. The mechanism of interaction of anti-cancer drugs with DNA is not fully understood. It is thought that the forces of interaction have some contribution from charge-transfer (CT) binding. The ability of some anthraquinones (AQs) anti-cancer drugs to form CT complexes with well-known electron donor molecules was investigated by NMR. The NMR spectroscopy has indicated the formation of CT complexes between 1,4-bis{[2-(dimethylamino) ethyl]amino}-5,8-dihydroxyanthracene-9,10-dione, (AQ4), and its des-hydroxylated equivalent 1,4-bis{[2-(dimethylamino) ethyl]amino}anthracene-9,10-dione, (AQ4H), as electron acceptors and pyrene (PY) and hexamethylbenzene (HMB) as electron donors. Association constants of the formed CT complexes were determined from the NMR data. AQ4 showed weaker electron accepting power than AQ4H, which could be easily explained on the basis of the electron donating nature of the two-hydroxyl groups. AQ4 and AQ4H have higher stability constant with PY than with HMB. This reflects the weaker interaction of the AQs with the latter, which is a direct effect of the six bulky methyl groups. Electronic absorption spectroscopy of the studied system was performed in chloroform and showed the absence of new absorption bands. The extent of interaction between AQs and donors has been computed using molecular mechanics and quantum mechanics. The computed values were compared with the experimental results of association constants.
Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji
2016-05-20
We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.
Wang, Yaqin; Tang, Wu; Cheng, Jianli; Behtash, Maziar; Yang, Kesong
2016-06-01
By using first-principles electronic structure calculations, we explored the possibility of producing two-dimensional electron gas (2DEG) at the polar/polar (LaO)(+)/(BO2)(+) interface in the LaAlO3/A(+)B(5+)O3 (A = Na and K, B = Nb and Ta) heterostructures (HS). Unlike the prototype polar/nonpolar LaAlO3/SrTiO3 HS system where there exists a least film thickness of four LaAlO3 unit cells to have an insulator-to-metal transition, we found that the polar/polar LaAlO3/A(+)B(5+)O3 HS systems are intrinsically conducting at their interfaces without an insulator-to-metal transition. The interfacial charge carrier densities of these polar/polar HS systems are on the order of 10(14) cm(-2), much larger than that of the LaAlO3/SrTiO3 system. This is mainly attributed to two donor layers, i.e., (LaO)(+) and (BO2)(+) (B = Nb and Ta), in the polar/polar LaAlO3/A(+)B(5+)O3 systems, while only one (LaO)(+) donor layer in the polar/nonpolar LaAlO3/SrTiO3 system. In addition, it is expected that, due to less localized Nb 4d and Ta 5d orbitals with respect to Ti 3d orbitals, these LaAlO3/A(+)B(5+)O3 HS systems can exhibit potentially higher electron mobility because of their smaller electron effective mass than that in the LaAlO3/SrTiO3 system. Our results demonstrate that the electronic reconstruction at the polar/polar interface could be an alternative way to produce superior 2DEG in the perovskite-oxide-based HS systems.
Humic substances as a mediator for microbially catalyzed metal reduction
Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.
1998-01-01
The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, D.H.; Laivenieks, M.; Guettler, M.V.
1999-07-01
Electrically reduced neutral red (NR) served as the sole source of reducing power for growth and metabolism of pure and mixed cultures of H[sub 2]-consuming bacteria in a novel electrochemical bioreactor system. NR was continuously reduced by the cathodic potential ([minus]1.5 V) generated from an electric current (0.3 to 1.0 mA), and it was subsequently oxidized by Actinobacillus succinogenes or by mixed methanogenic cultures. The A. succinogenes mutant strain FZ-6 did not grow on fumarate alone unless electrically reduced NR or hydrogen was present as the electron donor for succinate production. The mutant strain, unlike the wild type, lacked pyruvatemore » formate lyase and formate dehydrogenase. Electrically reduced NR also replaced hydrogen as the sole electron donor source for growth and production of methane from CO[sub 2]. These results show that both pure and mixed cultures can function as electrochemical devices when electrically generated reducing power can be used to drive metabolism. The potential utility of utilizing electrical reducing power in enhancing industrial fermentations or biotransformation processes is discussed.« less
A surface code quantum computer in silicon
Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.
2015-01-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
A surface code quantum computer in silicon.
Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L
2015-10-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.
Oremland, R.S.; Hoeft, S.E.; Santini, J.M.; Bano, N.; Hollibaugh, R.A.; Hollibaugh, J.T.
2002-01-01
Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the ??-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.
Significant enhancement by biochar of caproate production via chain elongation.
Liu, Yuhao; He, Pinjing; Shao, Liming; Zhang, Hua; Lü, Fan
2017-08-01
In this study, biochar was introduced into a chain elongation system to enhance the bioproduction of caproate and caprylate. The concentration of caproate increased to 21.1 g/L upon the addition of biochar, which is the highest level of caproate reported for such a system to date when ethanol was used as electron donor. The addition of biochar created a tougher system with more stable microorganism community structure for chain elongation, in which no obvious inhibition by products or substrates was observed, moreover, the lag phase was reduced 2.3-fold compared to the system without biochar. These reinforcement effect of biochar are attributed to the enhanced conductivity due to the significant enrichment of functional microorganisms via the microbial network surrounding smaller biochar particles, and via the adsorption on the rough surfaces or pores of larger particles, which facilitated electron transfer. Higher amounts of extracellular polymer substances and higher conductivity induced by biochar could contribute to the reinforcement effect in chain elongation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liver grafts from selected older donors do not have significantly more ischaemia reperfusion injury
Martins, Paulo N; Chang, Sue; Mahadevapa, Basant; Martins, Ann-Britt; Sheiner, Patricia
2011-01-01
Background There is a general concern that aged organs are more susceptible to ischaemia. In the light of recent proposals to change the liver allocation system by expanding regional sharing, it is feared that increased cold ischaemia time of grafts from older donors may reduce graft survival. The aim of this study was to correlate donor age and the patterns of ischaemia reperfusion injury and synthetic function early after liver transplantation. Methods We performed a retrospective study of first transplants using a single-centre electronic database. Patterns of liver injury (based on transaminases and post-reperfusion biopsy), synthetic function (international normalized ratio [INR]), and graft and patient survival in recipients receiving liver grafts from donors aged ≥65 years (group 1, n= 50) were compared with equivalent patterns in a matched cohort of recipients transplanted with grafts from donors aged <65 years (group 2, n= 50). Results There was no significant difference in transaminase levels from day 0 to day 6 after transplantation. When groups 1 and 2 were subdivided into two subgroups based on the duration of graft cold ischaemia time (<8 h and ≥8 h), there was no statistical difference in transaminase levels during the first 7 days. There were two cases (4%) of primary non-function in group 1 and one (2%) in group 2. Initial poor function did not differ significantly between the groups (26% vs. 24%; P= 0.81). In addition, there was no difference in histological changes in post-reperfusion biopsies (21% vs. 34%; P= 0.078) and rate of acute rejection episodes in the first year (30% vs. 32%; P= 0.99). There was no significant difference between groups 1 and 2 in 1-year patient and graft survivals (78% vs. 90% [P= 0.17]; 88% vs. 94% [P= 0.48], respectively). Conclusions Judiciously selected livers from aged donors are not associated with major increased susceptibility to ischaemia reperfusion injury. PMID:21309940
Seriously ill patients as living unspecified kidney donors: rationale and justification.
Rakké, Yannick S; Zuidema, Willij C; Hilhorst, Medard T; Erdman, Ruud A M; Massey, Emma K; Betjes, Michiel G H; Dor, Frank J M F; IJzermans, Jan N M; Weimar, Willem
2015-01-01
Between 2000 and December 2013, 106 live donor nephrectomies from anonymous living-donors were performed at the Erasmus MC Rotterdam; five of the donors (5.4%) had a life-threatening disease. The aim of the present report is to give the rational and justification for this procedure. All five donors underwent the national standard living-donor screening procedure. Additionally, motivation to donate and psychologic stability were assessed by a psychologist using in-depth interview techniques and a psychologic complaints questionnaire. Post-donor nephrectomy follow-up consisted of standard questionnaires and clinical check-ups. One patient had cerebral and caudal ependymomas, one had severe and progressive emphysema, two had Huntington's disease and one had a grade 2 oligodendroglioma. The psychologic screening revealed genuine motivation, adequate risk perception, and normal sense of reality. No contraindications for donation were found. The five donor nephrectomies made nine kidney transplantations possible. All donors were satisfied with the donation procedure. Three donors died during follow-up (0.6-4.9 years) as a result of their disease. In the absence of apparent additional health risks, medical, and psychologic contraindications, we consider it ethically justified to accept an offer from a cognitively competent patient with a life-threatening disease in view of their self-reported satisfaction during follow-up. Although based on a limited number of patients, we conclude that a stricter psychologic screening for seriously ill donors compared to healthy unspecified anonymous donors to unspecified patients is not necessary.
Dessì, Alessio; Monai, Matteo; Bessi, Matteo; Montini, Tiziano; Calamante, Massimo; Mordini, Alessandro; Reginato, Gianna; Trono, Cosimo; Fornasiero, Paolo; Zani, Lorenzo
2018-02-22
Donor-acceptor dyes are a well-established class of photosensitizers, used to enhance visible-light harvesting in solar cells and in direct photocatalytic reactions, such as H 2 production by photoreforming of sacrificial electron donors (SEDs). Amines-typically triethanolamine (TEOA)-are commonly employed as SEDs in such reactions. Dye-sensitized photoreforming of more sustainable, biomass-derived alcohols, on the other hand, was only recently reported by using methanol as the electron donor. In this work, several rationally designed donor-acceptor dyes were used as sensitizers in H 2 photocatalytic production, comparing the efficiency of TEOA and EtOH as SEDs. In particular, the effect of hydrophobic chains in the spacer and/or the donor unit of the dyes was systematically studied. The H 2 production rates were higher when TEOA was used as SED, whereas the activity trends depended on the SED used. The best performance was obtained with TEOA by using a sensitizer with just one bulky hydrophobic moiety, propylenedioxythiophene, placed on the spacer unit. In the case of EtOH, the best-performing sensitizers were the ones featuring a thiazolo[5,4-d]thiazole internal unit, needed for enhancing light harvesting, and carrying alkyl chains on both the donor part and the spacer unit. The results are discussed in terms of reaction mechanism, interaction with the SED, and structural/electrochemical properties of the sensitizers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hagen, Bas; Ali, Sara; Overkleeft, Herman S; van der Marel, Gijsbert A; Codée, Jeroen D C
2017-01-20
The synthesis of complex oligosaccharides is often hindered by a lack of knowledge on the reactivity and selectivity of their constituent building blocks. We investigated the reactivity and selectivity of 2-azidofucosyl (FucN 3 ) donors, valuable synthons in the synthesis of 2-acetamido-2-deoxyfucose (FucNAc) containing oligosaccharides. Six FucN 3 donors, bearing benzyl, benzoyl, or tert-butyldimethylsilyl protecting groups at the C3-O and C4-O positions, were synthesized, and their reactivity was assessed in a series of glycosylations using acceptors of varying nucleophilicity and size. It was found that more reactive nucleophiles and electron-withdrawing benzoyl groups on the donor favor the formation of β-glycosides, while poorly reactive nucleophiles and electron-donating protecting groups on the donor favor α-glycosidic bond formation. Low-temperature NMR activation studies of Bn- and Bz-protected donors revealed the formation of covalent FucN 3 triflates and oxosulfonium triflates. From these results, a mechanistic explanation is offered in which more reactive acceptors preferentially react via an S N 2-like pathway, while less reactive acceptors react via an S N 1-like pathway. The knowledge obtained in this reactivity study was then applied in the construction of α-FucN 3 linkages relevant to bacterial saccharides. Finally, a modular synthesis of the Staphylococcus aureus type 5 capsular polysaccharide repeating unit, a trisaccharide consisting of two FucNAc units, is described.
Wang, Wengong; Shen, Ping; Dong, Xinning; Weng, Chao; Wang, Guo; Bin, Haijun; Zhang, Jing; Zhang, Zhi-Guo; Li, Yongfang
2017-02-08
Three acceptor-π-donor-π-acceptor (A-π-D-π-A) small molecules (STFYT, STFRDN, and STFRCN) with spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene] (STF) as the central donor unit, terthiophene as the π-conjugated bridge, indenedione, 3-ethylrhodanine, or 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit are designed, synthesized, and characterized as electron donor materials in solution-processing organic solar cells (OSCs). The effects of the spiro STF-based central core and different acceptors on the molecular configuration, absorption properties, electronic energy levels, carrier transport properties, the morphology of active layers, and photovoltaic properties are investigated in detail. The three molecules exhibit desirable physicochemical features: wide absorption bands (300-850 nm) and high molar absorption coefficients (4.82 × 10 4 to 7.56 × 10 4 M -1 cm -1 ) and relatively low HOMO levels (-5.15 to -5.38 eV). Density functional theory calculations reveal that the spiro STF central core benefits to reduce the steric hindrance effect between the central donor block and terthiophene bridge and suppress excessive intermolecular aggregations. The optimized OSCs based on these molecules deliver power conversion efficiencies (PCEs) of 6.68%, 3.30%, and 4.33% for STFYT, STFRDN, and STFRCN, respectively. The higher PCE of STFYT-based OSCs should be ascribed to its better absorption ability, higher and balanced hole and electron mobilities, and superior active layer morphology as compared to the other two compounds. So far, this is the first example of developing the A-π-D-π-A type small molecules with a spiro central donor core for high-performance OSC applications. Meanwhile, these results demonstrate that using spiro central block to construct A-π-D-π-A molecule is an alternative and effective strategy for achieving high-performance small molecule donor materials.
Ultrafast dynamics of colloidal semiconductor nanocrystals relevant to solar fuels production
NASA Astrophysics Data System (ADS)
Cogan, Nicole M. B.; Liu, Cunming; Qiu, Fen; Burke, Rebeckah; Krauss, Todd D.
2017-05-01
Artificial conversion of sunlight to chemical fuels has attracted attention for several decades as a potential source of clean, renewable energy. We recently found that CdSe quantum dots (QDs) and simple aqueous Ni2+ salts in the presence of a sacrificial electron donor form a highly efficient, active, and robust system for photochemical reduction of protons to molecular hydrogen. Ultrafast transient absorption spectroscopy studies of electron transfer (ET) processes from the QDs to the Ni catalysts reveal extremely fast ET, and provide a fundamental explanation for the exceptional photocatalytic H2 activity. Additionally, by studying H2 production of the Ni catalyst with CdSe/CdS nanoparticles of various structures, it was determined that surface charge density plays an important role in charge transfer and ultimately H2 production activity.
Zero Quantum Coherence in a Series of Covalent Spin-Correlated Radical Pairs.
Nelson, Jordan N; Krzyaniak, Matthew D; Horwitz, Noah E; Rugg, Brandon K; Phelan, Brian T; Wasielewski, Michael R
2017-03-23
Photoinitiated subnanosecond electron transfer within covalently linked electron donor-acceptor molecules can result in the formation of a spin-correlated radical pair (SCRP) with a well-defined initial singlet spin configuration. Subsequent coherent mixing between the SCRP singlet and triplet m s = 0 spin states, the so-called zero quantum coherence (ZQC), is of potential interest in quantum information processing applications because the ZQC can be probed using pulse electron paramagnetic resonance (pulse-EPR) techniques. Here, pulse-EPR spectroscopy is utilized to examine the ZQC oscillation frequencies and ZQC dephasing in three structurally well-defined D-A systems. While transitions between the singlet and triplet m s = 0 spin states are formally forbidden (Δm s = 0), they can be addressed using specific microwave pulse turning angles to map information from the ZQC onto observable single quantum coherences. In addition, by using structural variations to tune the singlet-triplet energy gap, the ZQC frequencies determined for this series of molecules indicate a stronger dependence on the electronic g-factor than on electron-nuclear hyperfine interactions.
NASA Astrophysics Data System (ADS)
Shakib, Farnaz; Huo, Pengfei
Photo-induced proton-coupled electron transfer reactions (PCET) are at the heart of energy conversion reactions in photocatalysis. Here, we apply the recently developed ring-polymer surface-hopping (RPSH) approach to simulate the nonadiabatic dynamics of photo-induced PCET. The RPSH method incorporates ring-polymer (RP) quantization of the proton into the fewest-switches surface-hopping (FSSH) approach. Using two diabatic electronic states, corresponding to the electron donor and acceptor states, we model photo-induced PCET with the proton described by a classical isomorphism RP. From the RPSH method, we obtain numerical results that are comparable to those obtained when the proton is treated quantum mechanically. This accuracy stems from incorporating exact quantum statistics, such as proton tunnelling, into approximate quantum dynamics. Additionally, RPSH offers the numerical accuracy along with the computational efficiency. Namely, compared to the FSSH approach in vibronic representation, there is no need to calculate a massive number of vibronic states explicitly. This approach opens up the possibility to accurately and efficiently simulate photo-induced PCET with multiple transferring protons or electrons.
Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives
NASA Astrophysics Data System (ADS)
Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian
2008-08-01
The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.
NASA Astrophysics Data System (ADS)
Zhang, Maolin; Qin, Guangjiong; Liu, Jialei; Zhen, Zhen; Fedorchuk, A. A.; Lakshminarayana, G.; Albassam, A. A.; El-Naggar, A. M.; Ozga, Katarzyna; Kityk, I. V.
2017-08-01
Novel nonlinear optical (NLO) chromophore based on 6-(pyrrolidin-1-yl)-1H-indole as the electron donor group was designed and synthesized. The molecular structure of this chromophore was characterized by 1H NMR spectra, 13C NMR spectra, and MS spectra. The delocalized energy level was estimated by UV-Vis. spectra. The thermal property was studied by thermogravimetric analysis (TGA). The poled films containing chromophores ZML-1 with a loading density of 10 wt% in amorphous polycarbonate (APC) afford an average electro-optic (EO) coefficient (r33) of 19 pm/V at 1310 nm. Compared to the reported aniline-based chromophore (r33 = 12 pm/V) analogues, chromophore ZML-1 exhibits enhanced electro-optical activity.
Donor-derived infections among Chinese donation after cardiac death liver recipients.
Ye, Qi-Fa; Zhou, Wei; Wan, Qi-Quan
2017-08-21
To investigate blood cultures of deceased donors and report the confirmed transmission of bacterial infection from donors to liver recipients. We retrospectively studied the results of blood cultures among our donation after cardiac death (DCD) donors and calculated the donor-derived bacterial infection rates among liver recipients. Study participants underwent liver transplantation between January 1, 2010 and February 1, 2017. The study involved a total of 67 recipients of liver grafts from 67 DCD donors. We extracted the data of donors' and patients' characteristics, culture results and clinical outcomes, especially the post-transplant complications in liver recipients, from electronic medical records. We analyzed the characteristics of the donors and the corresponding liver recipients with emphasis put on donor-derived infections. Head trauma was the most common origin of death among our 67 DCD donors (46.3%). Blood taken prior to the procurement operation was cultured for 53 of the donors, with 17 episodes of bloodstream infections developing from 13 donors. The predominant organism isolated from the blood of donors was Gram-positive bacteria (70.6%). Only three (4.5%) of 67 liver recipients developed confirmed donor-derived bacterial infections, with two isolates of multidrug-resistant Klebsiella pneumoniae and one isolate of multidrug-resistant Enterobacter aerogenes. The liver recipients with donor-derived infections showed relation to higher crude mortality and graft loss rates (33.3% each) within 3 mo post transplantation, as compared to those without donor-derived infections (9.4% and 4.7%, respectively). All three liver recipients received appropriate antimicrobial therapy. Liver recipients have high occurrence of donor-derived infections. The liver recipients with donor-derived multidrug-resistant Enterobacteriaceae infections can have good outcome if appropriate antimicrobial therapy is given.
Hanson, Camilla S; Chadban, Steve J; Chapman, Jeremy R; Craig, Jonathan C; Wong, Germaine; Ralph, Angelique F; Tong, Allison
2015-03-01
Living kidney donation offers superior outcomes over deceased organ donation, but incurs psychosocial and ethical challenges for recipients because of the risks imposed on their donor. We aimed to describe the beliefs, attitudes, and expectations of patients with chronic kidney disease toward receiving a living kidney donor transplant. We conducted a systematic review of qualitative studies of patients' attitudes toward living kidney donation using a comprehensive literature search of electronic databases to February 2013. The findings were analyzed using thematic synthesis. Thirty-nine studies (n ≥ 1791 participants) were included. We identified six themes: prioritizing own health (better graft survival, accepting risk, and desperate aversion to dialysis), guilt and responsibility (jeopardizing donor health, anticipating donor regret, and causing donor inconvenience), ambivalence and uncertainty (doubting transplant urgency, insufficient information, confronted by unfamiliarity, and prognostic uncertainty), seeking decisional validation (a familial obligation, alleviating family burden, reciprocal benefits for donors, respecting donor autonomy, external reassurance, and religious approval), needing social support (avoiding family conflict, unrelenting indebtedness, and emotional isolation), and cautious donor recruitment (self-advocacy, lacking self-confidence, avoiding donor coercion, emotional vulnerability, respecting cultural, and religious taboos). Enhanced education and psychosocial support may help clarify, validate, and address patients' concerns regarding donor outcomes, guilt, relationship tensions, and donor recruitment. This may encourage informed decision-making, increase access to living kidney donation, and improve psychosocial adjustment for transplant recipients.
High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals
Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; ...
2016-01-01
Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less
Donor screening for hepatitis B virus infection in a cell and tissue bank.
Solves, P; Mirabet, V; Alvarez, M; Vila, E; Quiles, F; Villalba, J V; Montoro, J A; Soler, M A; Roig, R J
2008-12-01
Hepatitis B virus (HBV) has been transmitted by tissue transplantation. In order to reduce the risk of HBV transmission, testing for antibody to HBV core antigen (anti-HBc) is used in addition to testing for hepatitis B surface antigen (HBsAg) in many blood centers and tissue banks. We retrospectively analyzed the results of HBV assays in tissue donors. All tissue donors were tested for HBsAg and anti-HBc. All anti-HBc positive sera were tested for the antibody to HBsAg (anti-HBs). From July 2006, an HBV nucleic acid testing (NAT) assay was also performed. A total of 6855 tissue donors from January 1999 till July 2007 were tested for HBV assays: 4756 women and 2099 men. Positive HBsAg was found in 23 (0.36%) living donors, while no multiorgan or cord blood (CB) donor was found to be positive for HBsAg. Positive anti-HBc was found in 80 multiorgan donors (12.94%), 599 living donors (17.84%), and 103 CB donors (3.57%) (P<0.005), while isolated anti-HBc was found in 12 multiorgan (1.94%), in 126 living tissue donors (3.75%), and in 8 CB donors (0.28%). A total of 1310 donors were analyzed for single-sample DNA HBV NAT assay. We consider that anti-HBc and NAT assays must both still be performed in addition to HBsAg assay for HBV screening in tissue donors. All these tests will be useful in order to define an algorithm for safe and efficient management of the tissue bank.
Ramel, F; Amrani, A; Pieulle, L; Lamrabet, O; Voordouw, G; Seddiki, N; Brèthes, D; Company, M; Dolla, A; Brasseur, G
2013-12-01
Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (Cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxidase (Km, 300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km, 620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2-scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium Desulfovibrio against oxygen stress.
A predictive theory of charge separation in organic photovoltaics interfaces
NASA Astrophysics Data System (ADS)
Troisi, Alessandro; Liu, Tao; Caruso, Domenico; Cheung, David L.; McMahon, David P.
2012-09-01
The key process in organic photovoltaics cells is the separation of an exciton, close to the donor/acceptor interface into a free hole (in the donor) and a free electron (in the acceptor). In an efficient solar cell, the majority of absorbed photons generate such hole-electron pairs but it is not clear why such a charge separation process is so efficient in some blends (for example in the blend formed by poly(3- hexylthiophene) (P3HT) and a C60 derivative (PCBM)) and how can one design better OPV materials. The electronic and geometric structure of the prototypical polymer:fullerene interface (P3HT:PCBM) is investigated theoretically using a combination of classical and quantum simulation methods. It is shown that the electronic structure of P3HT in contact with PCBM is significantly altered compared to bulk P3HT. Due to the additional free volume of the interface, P3HT chains close to PCBM are more disordered and, consequently, they are characterized by an increased band gap. Excitons and holes are therefore repelled by the interface. This provides a possible explanation of the low recombination efficiency and supports the direct formation of "quasi-free" charge separated species at the interface. This idea is further explored here by using a more general system-independent model Hamiltonian. The long range exciton dissociation rate is computed as a function of the exciton distance from the interface and the average dissociation distance is evaluated by comparing this rate with the exciton migration rate with a kinetic model. The phenomenological model shows that also in a generic interface the direct formation if quasi-free charges is extremely likely.
Visible light water splitting using dye-sensitized oxide semiconductors.
Youngblood, W Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko; Mallouk, Thomas E
2009-12-21
Researchers are intensively investigating photochemical water splitting as a means of converting solar to chemical energy in the form of fuels. Hydrogen is a key solar fuel because it can be used directly in combustion engines or fuel cells, or combined catalytically with CO(2) to make carbon containing fuels. Different approaches to solar water splitting include semiconductor particles as photocatalysts and photoelectrodes, molecular donor-acceptor systems linked to catalysts for hydrogen and oxygen evolution, and photovoltaic cells coupled directly or indirectly to electrocatalysts. Despite several decades of research, solar hydrogen generation is efficient only in systems that use expensive photovoltaic cells to power water electrolysis. Direct photocatalytic water splitting is a challenging problem because the reaction is thermodynamically uphill. Light absorption results in the formation of energetic charge-separated states in both molecular donor-acceptor systems and semiconductor particles. Unfortunately, energetically favorable charge recombination reactions tend to be much faster than the slow multielectron processes of water oxidation and reduction. Consequently, visible light water splitting has only recently been achieved in semiconductor-based photocatalytic systems and remains an inefficient process. This Account describes our approach to two problems in solar water splitting: the organization of molecules into assemblies that promote long-lived charge separation, and catalysis of the electrolysis reactions, in particular the four-electron oxidation of water. The building blocks of our artificial photosynthetic systems are wide band gap semiconductor particles, photosensitizer and electron relay molecules, and nanoparticle catalysts. We intercalate layered metal oxide semiconductors with metal nanoparticles. These intercalation compounds, when sensitized with [Ru(bpy)(3)](2+) derivatives, catalyze the photoproduction of hydrogen from sacrificial electron donors (EDTA(2-)) or non-sacrificial donors (I(-)). Through exfoliation of layered metal oxide semiconductors, we construct multilayer electron donor-acceptor thin films or sensitized colloids in which individual nanosheets mediate light-driven electron transfer reactions. When sensitizer molecules are "wired" to IrO(2).nH(2)O nanoparticles, a dye-sensitized TiO(2) electrode becomes the photoanode of a water-splitting photoelectrochemical cell. Although this system is an interesting proof-of-concept, the performance of these cells is still poor (approximately 1% quantum yield) and the dye photodegrades rapidly. We can understand the quantum efficiency and degradation in terms of competing kinetic pathways for water oxidation, back electron transfer, and decomposition of the oxidized dye molecules. Laser flash photolysis experiments allow us to measure these competing rates and, in principle, to improve the performance of the cell by changing the architecture of the electron transfer chain.
Donor-π-Acceptor Polymer with Alternating Triarylborane and Triphenylamine Moieties.
Li, Haiyan; Jäkle, Frieder
2010-05-12
A luminescent main chain donor-π-acceptor-type polymer (4) was prepared via organometallic polycondensation reaction followed by post modification. With both electron-rich amine and electron-deficient borane moieties embedded in the main chain, 4 exhibits an interesting ambipolar character: it can be reduced and oxidized electrochemically at moderate potentials and shows a strong solvatochromic effect in the emission spectra. Complexation studies show that 4 selectively binds to fluoride and cyanide; quantitative titration with cyanide reveals a two-step binding process. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microbiology: A microbial arsenic cycle in a salt-saturated, extreme environment
Oremland, R.S.; Kulp, T.R.; Blum, J.S.; Hoeft, S.E.; Baesman, S.; Miller, L.G.; Stolz, J.F.
2005-01-01
Searles Lake is a salt-saturated, alkaline brine unusually rich in the toxic element arsenic. Arsenic speciation changed from arsenate [As(V)] to arsenite [As(III)] with sediment depth. Incubated anoxic sediment slurries displayed dissimilatory As(V)-reductase activity that was markedly stimulated by H2 or sulfide, whereas aerobic slurries had rapid As(III)-oxidase activity. An anaerobic, extremely haloalkaliphilic bacterium was isolated from the sediment that grew via As(V) respiration, using either lactate or sulfide as its electron donor. Hence, a full biogeochemical cycle of arsenic occurs in Searles Lake, driven in part by inorganic electron donors.
Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium
Caccavo, F.; Coates, J.D.; Rossello-Mora, R. A.; Ludwig, W.; Schleifer, K.H.; Lovley, D.R.; McInerney, M.J.
1996-01-01
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAI-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAI-1 differs from all other described bacteria, and represents the type strain of a new genus and species. Geovibrio ferrireducens.
Electrobioremediation of oil spills.
Daghio, Matteo; Aulenta, Federico; Vaiopoulou, Eleni; Franzetti, Andrea; Arends, Jan B A; Sherry, Angela; Suárez-Suárez, Ana; Head, Ian M; Bestetti, Giuseppina; Rabaey, Korneel
2017-05-01
Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sylvester-Hvid, Kristian O; Ratner, Mark A
2005-01-13
An extension of our two-dimensional working model for photovoltaic behavior in binary polymer and/or molecular photoactive blends is presented. The objective is to provide a more-realistic description of the charge generation and charge separation processes in the blend system. This is achieved by assigning an energy to each of the possible occupation states, describing the system according to a simple energy model for exciton and geminate electron-hole pair configurations. The energy model takes as primary input the ionization potential, electron affinity and optical gap of the components of the blend. The underlying photovoltaic model considers a nanoscopic subvolume of a photoactive blend and represents its p- and n-type domain morphology, in terms of a two-dimensional network of donor and acceptor sites. The nearest-neighbor hopping of charge carriers in the illuminated system is described in terms of transitions between different occupation states. The equations governing the dynamics of these states are cast into a linear master equation, which can be solved for arbitrary two-dimensional donor-acceptor networks, assuming stationary conditions. The implications of incorporating the energy model into the photovoltaic model are illustrated by simulations of the short circuit current versus thickness of the photoactive blend layer for different choices of energy parameters and donor-acceptor topology. The results suggest the existence of an optimal thickness of the photoactive film in bulk heterojunctions, based on kinetic considerations alone, and that this optimal thickness is very sensitive to the choice of energy parameters. The results also indicate space-charge limiting effects for interpenetrating donor-acceptor networks with characteristic domain sizes in the nanometer range and high driving force for the photoinduced electron transfer across the donor-acceptor internal interface.
Cheng, Na; Zhang, Changqiao; Liu, Yongjun
2017-08-01
Donor-acceptor conjugated polymers have been successfully applied in bulk heterojunction solar cell devices. Tuning their donor and acceptor units allows the design of new polymers with desired electronic and optical properties. Here, to screen new candidate polymers based on a newly synthesized donor unit, dithieo[2,3-d:2',3'-d']naphtho[1,2-b:3,4-b']dithiophene (NDT), a series of model polymers with different acceptor units were designed and denoted NDT-A 0 to NDT-A 12 , and the structures and optical properties of those polymers were investigated using DFT and TDDFT calculations. The results of the calculations revealed that the electronic and optical properties of these polymers depend on the acceptor unit present; specifically, their HOMO energies ranged from -4.89 to -5.38 eV, their HOMO-LUMO gaps ranged from 1.30 to 2.80 eV, and their wavelengths of maximum absorption ranged from 538 to 1212 nm. The absorption spectra of NDT-A 1 to NDT-A 6 , NDT-A 8 , NDT-A 9 , and NDT-A 12 occur within the visible region (<900 nm), indicating that these polymers are potential candidates for use in solar cells. On the other hand, the absorption spectra of NDT-A 7 , NDT-A 10 , and NDT-A 11 extend much further into the near-infrared region, implying that they absorb near-infrared light. These polymers could meet the requirements of donor units for use in tandem and ternary solar cells. Graphical abstract Theoretical calculations by TD-DFT reveal that the optical properties of NDT-based conjugated polymers can be well tuned by adopting different acceptor units, and these ploymers are potential donor materials for tandem and ternary solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponomarenko, Nina S.; Li, Liang; Marino, Antony R.
Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 x 100 x 100 {micro}m, belonged to space group P4{sub 3}2{sub 1}2, and were isomorphous to the ones reported earlier for the wild type (WT)more » strain. The structure was solved to a 2.5 {angstrom} resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C{sub 380}, revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.« less
Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds
Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver
2002-01-01
The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.
Electrical Manipulation of Spin Qubits in Li-doped Si
NASA Astrophysics Data System (ADS)
Petukhov, Andre; Pendo, Luke; Handberg, Erin; Smelyanskiy, Vadim
2011-03-01
We propose a complete quantum computing scheme based on Li donors in Si under external biaxial stress. The qubits are encoded on the ground state Zeeman doublets and coupled via long-range spin-spin interaction mediated by acoustic phonons. This interaction is unique for Li donors in Si due to their inverted electronic structure. Our scheme takes advantage of the fact that the energy level spacing in 1 s Li-donor manifold is comparable with the magnitude of the spin-orbit interaction. As a result the Li spin qubits can be placed 100 nm apart and manipulated by a combination of external electric field and microwave field impulses. We present a specially-designed sequence of the electric field impulses which allows for a typical time of a two-qubit gate ~ ~1~ μ s and a quality factor ~10-6 . These estimates are derived from detailed microscopic calculations of the quadratic Stark effect and electron-phonon decoherence times.
A single molecule rectifier with strong push-pull coupling
NASA Astrophysics Data System (ADS)
Saraiva-Souza, Aldilene; Macedo de Souza, Fabricio; Aleixo, Vicente F. P.; Girão, Eduardo Costa; Filho, Josué Mendes; Meunier, Vincent; Sumpter, Bobby G.; Souza Filho, Antônio Gomes; Del Nero, Jordan
2008-11-01
We theoretically investigate the electronic charge transport in a molecular system composed of a donor group (dinitrobenzene) coupled to an acceptor group (dihydrophenazine) via a polyenic chain (unsaturated carbon bridge). Ab initio calculations based on the Hartree-Fock approximations are performed to investigate the distribution of electron states over the molecule in the presence of an external electric field. For small bridge lengths (n =0-3) we find a homogeneous distribution of the frontier molecular orbitals, while for n >3 a strong localization of the lowest unoccupied molecular orbital is found. The localized orbitals in between the donor and acceptor groups act as conduction channels when an external electric field is applied. We also calculate the rectification behavior of this system by evaluating the charge accumulated in the donor and acceptor groups as a function of the external electric field. Finally, we propose a phenomenological model based on nonequilibrium Green's function to rationalize the ab initio findings.